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Abstract 
 
The identification and understanding of gene-environment interactions can provide insights 

into the pathways and mechanisms underlying complex diseases. However, testing for gene-

environment interaction remains a challenge since statistical power is often limited, the 

specification of environmental effects is nontrivial, and such misspecifications can lead to false 

positive findings. To address the lack of statistical power, recent methods aim to identify 

interactions on an aggregated level using, for example, polygenic risk scores. While this 

strategy increases power to detect interactions, identifying contributing key genes and 

pathways is difficult based on these global results. 

Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-

environment interaction testing framework for quantitative traits that is based on sample 

splitting and robust test statistics. RITSS can incorporate multiple genetic variants and/or 

multiple environmental factors. Using sample splitting, a screening step enables the selection 

and combination of potential interactions into scores with improved interpretability, based on 

the user’s unrestricted choices for statistical/machine learning approaches. In the testing step, 

the application of robust test statistics minimizes the susceptibility of the results to main effect 

misspecifications.  

Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate 

in a wide range of scenarios. In an application to lung function phenotypes and human height 

in the UK Biobank, RITSS identified genome-wide significant interactions with subcomponents 

of genetic risk scores. While the contributing single variant interactions are moderate, our 

analysis results indicate interesting interaction patterns that result in strong aggregated 

signals that provide further insights into gene-environment interaction mechanisms. 
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of genetic variants that 

are associated with complex diseases/phenotypes (MacArthur et al., 2017). However, the 

effect of a genetic variant on a complex phenotype or disease can be modified by 

environmental exposures (Hunter, 2005; Khoury, 2017). The knowledge about an interaction 

between environmental exposure (e.g., tobacco smoke or occupational exposure) and genetic 

variants can provide insights into the underlying pathways and disease mechanisms (Thomas, 

2010).  

Most of the methodological approaches for gene-environment interaction testing have 

focused on scenarios in which a single genetic variant and a single environmental variable are 

tested for potential interaction. Methods have been developed for case-control data, case-

only data, and quantitative trait studies, summarized in detail by Gauderman et al. 

(Gauderman et al., 2017).  

Since most gene-environment interaction effects are expected to be small and statistical 

power is consequently limited (Murcray et al., 2011), more efficient approaches were 

proposed. This includes so-called screening statistics that aim to prioritize genetic variants to 

reduce the multiple testing problem (Dai et al., 2012; Gauderman et al., 2010, 2013; Hsu et 

al., 2012; Kooperberg and Leblanc, 2008; Murcray et al., 2011, 2009; Paré et al., 2010; Zhang 

et al., 2016). Also, researchers proposed to aggregate genetic information in a genomic region 

in set-based tests to increase power (Jiao et al., 2013; Liu et al., 2016; Lin et al., 2013; Tzeng 

et al., 2011; Zhao et al., 2015; Lin et al., 2016; Su et al., 2017; Jiao et al., 2015; Kim et al., 2019). 

Recent approaches to increase power utilize mixed models or reaction models and 

incorporate multiple environmental variables to derive a combination of environmental 
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factors that modifies the genetic effect (Moore et al., 2019; Ni et al., 2019; Dahl et al., 2020; 

Kerin and Marchini, 2020; Wang et al., 2020).  

Also, current data analyses observed that genetic risk scores, weighted sums of genetic risk 

variants, interact with specific environmental factors in psychiatric (Peyrot et al., 2018) and 

cardiovascular diseases (Hindy et al., 2018). In addition, Aschard et al. observed an interaction 

between a genetic risk score for FEV1/FVC and ever-smoking status (Aschard et al., 2017). 

Related, Kim et al. also observed highly significant interactions between genome-wide 

polygenic risk scores for lung function and smoking variables (Kim et al., 2021). While 

detecting significant interactions on this aggregated level is encouraging, identification of 

individual genes and pathways is challenging based on such results. 

Besides the power limitation, another caveat of gene-environment interaction testing is that 

the misspecification of the marginal main effect models can lead to inflated type 1 error rates 

and false positive findings in interaction testing (Sun et al., 2018; Zhang et al., 2020). This is 

especially problematic for non-binary and/or continuous environmental factors where the 

implicit linearity assumption that is commonly used in the model might not be correct. One 

example is pack-years of smoking, where it is not straightforward to assume that every 

additional pack-year has the same, constant effect on the outcome. 

In this communication, we propose RITSS, a robust and flexible framework for gene-

environment interaction testing with quantitative traits. The general idea is to derive an 

interaction score comprised of the (weighted) sum of individual genetic variant / 

environmental factor pairs, such that the combination of these signals increases the power to 

detect an interaction while maintaining the biological interpretability of the results. To provide 

accurate statistical results, our approach utilizes a sample splitting strategy and test statistics 

that are robust against misspecifications of the main effects. The general form of RITSS allows 
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the incorporation of user-specified screening/learning approaches in the construction of 

candidate interaction scores while providing valid statistical inference without restrictive 

assumptions. In extensive simulation studies, we demonstrate the robustness of RITSS in 

various realistic scenarios. We applied RITSS to lung function phenotypes and human height 

in the UK Biobank, incorporating sex and smoking exposure information. Our analyses 

identified highly consistent interaction patterns across sets of genetic variants that result in 

statistically significant interactions with subcomponents of genetic risk scores, while the 

interaction effects at the single variant level are moderate. 

Methods 
 
We use the following notation: for study subject 𝑖, we denote the quantitative trait of interest 

by 𝑌𝑖, the 𝑚-dimensional genotype information by 𝑋𝑖, and the 𝑑-dimensional environmental 

information by 𝐸𝑖. Also, we define an additional 𝑝-dimensional covariate vector by 𝑍𝑖  that 

includes, for example, age, study indicators, and genetic principal components (Price et al., 

2006). We assume the following model 

𝑌𝑖 = 𝜇(𝐸𝑖, 𝑍𝑖) + ∑ 𝜋𝑗(𝐸𝑖, 𝑍𝑖)𝑋𝑖𝑗
𝑚
𝑗=1 + 𝜀𝑖   

where 𝐸[𝜀𝑖|𝑋𝑖, 𝑍𝑖 , 𝐸𝑖] = 0. The unknown function 𝜇 describes the main effect of the 

environmental factors 𝐸𝑖 and other covariates 𝑍𝑖. The genetic contribution of variant 𝑗 is 

modeled by 𝜋𝑗(𝐸𝑖, 𝑍𝑖)𝑋𝑖𝑗, where 𝜋𝑗 is an unknown function. The null hypothesis of no gene-

environment interaction is described by 𝐸[𝑌𝑖|𝐸𝑖 , 𝑍𝑖 , 𝑋𝑖] = 𝜇(𝐸𝑖, 𝑍𝑖) + ∑ 𝜋0𝑗(𝑍𝑖)𝑋𝑖𝑗
𝑚
𝑗=1 , where 

𝜋0𝑗 is an unknown function only depending on 𝑍𝑖. Therefore, we implicitly assume the absence 

of gene-gene-interactions but allow for interactions between the genetic variants and the 

covariates 𝑍𝑖  under the null hypothesis. Testing for gene-environment interaction in 

quantitative traits between a single variant 𝑗 and a single environmental factor 𝑙 is often 

underpowered. On the other side, testing for interaction between an environmental factor 𝑙 
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and a genetic risk score that combines genetic information across loci can have more power if 

the directions of the interaction effects are in line with the summation in the genetic risk score. 

However, the interpretation of interactions with such dense scores can be difficult. Our 

approach, RITSS, therefore aims to derive interaction scores of the form 𝑈𝑖 = ∑ ∑ 𝜋𝑗𝑙𝑋𝑖𝑗𝐸𝑖𝑙𝑙𝑗  

that combine signals while maintaining biological interpretability of the overall interaction 

result by keeping the number of involved factors of moderate size. As combining potential 

interaction signals into a score in a data-adaptive way and testing the score needs, in general, 

to be performed in independent parts of the data, RITSS utilizes a sample splitting approach. 

Another challenge in gene-environment interaction testing is the test statistic itself. The 

standard interaction score test, for example, for the pair consisting of variant 𝑗 and 

environmental factor 𝑙, is based on the following quantity: 

𝑇 = ∑ 𝑋𝑖𝑗 ∗ 𝐸𝑖𝑙 ∗ (𝑌𝑖 − 𝜇̂(𝐸𝑖, 𝑍𝑖) − ∑ 𝜋̂0𝑗(𝑍𝑖)𝑋𝑖𝑗

𝑚

𝑗=1

) = ∑ 𝑋𝑖𝑗 ∗ 𝐸𝑖𝑙 ∗ 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑

𝑖𝑖

 

Under the null hypothesis of no gene-environment interaction between variant 𝑗 and 

environmental factor 𝑙, the test statistic 𝑇 needs to have expectation 0 to provide a valid test. 

This is the case if approximately 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑 ≈ 𝜀𝑖, meaning that 𝑌𝑖 − 𝜇̂(𝐸𝑖, 𝑍𝑖) − ∑ 𝜋̂0𝑗(𝑍𝑖)𝑋𝑖𝑗

𝑚
𝑗=1  

captures the main effects reasonably well. However, if, for example, the environmental main 

effect of environmental factor 𝑙 is slightly mis specified, 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑 can have some residual 

dependency on 𝐸𝑖𝑙. Then, in general, 𝑇 does not have expectation 0 under the null hypothesis 

since the residual term can be correlated with 𝑋𝑖𝑗 ∗ 𝐸𝑖𝑙. The observation that mis specified 

main effects lead to inflated interaction type 1 error rates has been described in the recent 

literature (Sun et al., 2018; Zhang et al., 2020). Furthermore, when the number of genetic 

variants, environmental factors, and covariates (i.e., 𝑚, 𝑑, and 𝑝) increases, residual 
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dependency is more likely to occur since convergence rates of main effect models will become 

slower due to the increased complexity. 

Therefore, we utilize an approach based on test statistics that improve robustness against 

such misspecifications (Vansteelandt et al., 2008). Denoting the variable 𝑈𝑖 as the interaction 

score, the general idea is to replace 𝑈𝑖 ∗ 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑 by 𝑈𝑖

′ ∗ 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑 where 𝑈𝑖

′ is a projection of 𝑈𝑖 

that is orthogonal to the environmental and genetic main effects.  

Thereby, in the presence of slight misspecifications or residual dependencies of the main 

effects, the test statistic based on 𝑈𝑖
′ ∗ 𝑌̂𝑖

𝑟𝑒𝑠𝑖𝑑 has expectation 0 under the null hypothesis of 

no gene-environment interaction. The form of the test statistic will also allow alternating the 

roles of training and testing subsamples to use the full sample size for testing. The details are 

described in the next section. 

RITSS 

We now describe the algorithm behind RITSS. The algorithm is also visualized in Figure 1.  

Algorithm 

a.) Sample splitting: First, we split the data (𝑌𝑖, 𝑋𝑖, 𝐸𝑖 , 𝑍𝑖) randomly into three 

approximately equally sized subsamples 𝐼1, 𝐼2, and 𝐼3.  

b.) Discovery step using 𝑰𝟏:  Using  𝐼1 data, we construct potential interaction scores of the 

form 𝑈𝑖𝑘 = ∑ ∑ 𝜋𝑗𝑙𝑘𝑋𝑖𝑗𝐸𝑖𝑙𝑙𝑗 , 𝑘 = 1, … , 𝐾 that aim to combine signals. Here, the number of 

scores, 𝐾 can be pre-specified or adaptively chosen. The information about which pairs of 

genetic/environmental factors are included and the determination of the corresponding 

weights 𝜋𝑗𝑙𝑘  is based on the user’s choice of statistical/machine learning-based approaches to 

model the phenotypic data. Examples include LASSO, Bayesian shrinkage, and best subset 

regressions (Tibshirani, 1996; Castillo et al., 2015; Bertsimas et al., 2016). Usage of 𝐾 > 1 and 

therefore partitioning into different scores could reflect certainty about the corresponding 
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interaction effects. An example is described in the application. It is important to note that, as 

the screening step generates scores that are tested in different parts of the data, the screening 

method can be based on arbitrary methods, and no statistical rigor is required, but suitable 

specifications will increase the overall power of our approach. 

c.) Estimation of main effects and further filtering using 𝑰𝟐: Using the first half of the 𝐼2 data, 

we fit the interaction scores 𝑈𝑖𝑘, 𝑘 = 1, … , 𝐾, derived in Step b.), as predictors in a linear 

model while incorporating flexible models for the main effects 𝜇̂(𝐸𝑖, 𝑍𝑖) and ∑ 𝜋̂0𝑗(𝑍𝑖)𝑋𝑖𝑗
𝑚
𝑗=1 . 

These flexible main effect models are modeled using linear terms with higher-order terms in 

combination with penalization (LASSO-based techniques (Tibshirani, 1996)). The motivation 

here is that we want to estimate the main effects as accurately as possible while fitting the 

proposed interaction scores to check their significance. Since 𝐼2 is an independent part of the 

data, the gene-environment interaction scores 𝑈𝑖𝑘 can be considered as fixed covariates here 

and significance of these scores in 𝐼2 provides further evidence of interaction. We select all or 

a subset of scores (for example, based on the significance of their regression coefficients) and 

combine them (potentially with estimated weights) into a single interaction score 𝑈𝑖. Then, 

the estimated main effects 𝜇̂(𝐸𝑖, 𝑍𝑖) and 𝜋̂0𝑗(𝑍𝑖) are extracted and are used to compute 

𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑 = 𝑌𝑖 − 𝜇̂(𝐸𝑖, 𝑍𝑖) − ∑ 𝜋̂0𝑗(𝑍𝑖)𝑋𝑖𝑗

𝑚
𝑗=1  in 𝐼3. 

d.) Deriving 𝑼𝒊
′ in 𝑰𝟑: As outlined above, standard interaction testing would consider a test 

statistic based on 𝑈𝑖 ∗ 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑. To obtain a robust test statistic, we replace this with  𝑈𝑖

′ ∗ 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑, 

where 𝑈𝑖
′ is a projection of 𝑈𝑖 that is orthogonal to the environmental and genetic main 

effects. This projection can be obtained by the alternating conditional expectation (ACE) 

algorithm (Breiman and Friedman, 1985; Vansteelandt et al., 2008). If gene and environment 

are independent, closed-form solutions are available. We apply this algorithm to the second 
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half of the 𝐼2 data. Finally, based on the trained model, we compute 𝑈𝑖′ in 𝐼3. The details of 

the implementation of ACE are described in Appendix B. 

e.) Computing test statistic in 𝑰𝟑: Based on these objects, we compute our interaction test 

statistic in 𝐼3: 

𝑆(𝐼3|𝐼1, 𝐼2) = ∑ 𝑈𝑖
′ ∗ 𝑌̂𝑖

𝑟𝑒𝑠𝑖𝑑

𝑖𝜖𝐼3

  

f.) Alternating subsamples: We alternate the roles of the subsamples and repeat steps b.)-

e.) twice, then compute the overall statistic 

𝑆 =  𝑆(𝐼3|𝐼1, 𝐼2) + 𝑆(𝐼2|𝐼3, 𝐼1) + 𝑆(𝐼1|𝐼2, 𝐼3) 

 

Properties of 𝑺 

The test statistic 𝑆 in combination with the described procedure a.)-f.) to obtain the underlying 

objects has several important advantages. Under mild regularity conditions, the statistic 𝑆 is 

asymptotically normal, the sub statistics are asymptotically independent, and the variance of 

𝑆 can be estimated based on a simple empirical variance estimator. By estimating a flexible 

model for the main effects in the computation of 𝑌̂𝑖
𝑟𝑒𝑠𝑖𝑑 and the application of the ACE to 

obtain 𝑈𝑖
′, the interaction test based on 𝑆 is robust against (residual) misspecifications of the 

main effect models. Due to the sample splitting approach, we do not have to assume strict 

regularity conditions for the estimation of machine learning models and still can use the full 

sample size for testing (Vansteelandt et al., 2008; Dukes et al., 2021). 

It is important to note that the interaction scores that are tested in the three sub statistics are 

not identical in general, since they are constructed from different parts of the data. The idea 

is that the overall interaction RITSS p-value provides evidence for the presence of interaction 
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based on these adaptive scores. Additional insights can be obtained by examining the overlap 

between the three scores. 

The RITSS approach is flexible and allows for different targeted applications and the 

incorporation of arbitrary statistical learning approaches in the screening step. We will 

describe a specific application of RITSS in the next section and investigate its performance in 

simulations and in the application to the UK Biobank. 

 

Figure 1. Visualization of the algorithm underlying our RITSS framework. 

 
Simulation studies and UK Biobank analysis 
 
In this section, we discuss a specific implementation of RITSS that aims to identify interactions 

between a single environment factor of interest and subcomponents of genetic risk scores. In 

simulation studies, we demonstrate the validity and robustness of this approach in different 
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scenarios. We also apply the approach to the UK Biobank to analyze interactions in lung 

function and height. 

Specific implementation of RITSS 

Steps a.), d.), e.), and f.) are performed as described in the Methods section. 

b.) Discovery step using 𝑰𝟏:  Using  𝐼1 data, we first fit the model 𝑌𝑖 = 𝜇0 + 𝐸𝑖
𝑇𝜇1 + 𝑍𝑖

𝑇𝜇2 +

𝑋𝑖
𝑇𝜋0 + 𝜀𝑖. Then, we construct the matrix 𝑋𝑖𝑗

𝑊𝑠 = 𝜋̂0𝑗𝑋𝑖𝑗𝐸𝑖𝑠 where 𝑠 is the index of the 

environmental factor of interest. The matrix 𝑋𝑖𝑗
𝑊𝑠 describes genotype-environment products 

weighted by the corresponding estimated genetic main effect. Next, we regress out 𝑋𝑖, 𝐸𝑖, and 

𝑍𝑖  from 𝑌𝑖 and 𝑋𝑖𝑗
𝑊𝑠 (for each variant 𝑗) and denote the resulting residuals by 𝑌𝑖

𝑟 and 𝑋𝑖𝑗
𝑊𝑠𝑟. 

The variant-wise variances of 𝑋𝑖𝑗
𝑊𝑠𝑟, denoted by 𝑣𝑗 , differ typically substantially due to the 

different weights of genotypic effects and minor allele frequencies. We keep only variants 

whose variance is larger than 
1

𝑚
∗ ∑ 𝑣𝑗𝑗  and denote the resulting number of variants by 𝑆𝑚𝑎𝑥. 

Based on these objects, we split 𝐼1 randomly in two equally sized parts and perform 

approximate best subset selection (Bertsimas et al., 2016) in each part with different subset 

sizes, where the corresponding other part is used as testing data. Best subset here 

corresponds to the best subset of variants, and we do not utilize the effect sizes per variant 

inferred in the best subset regression. Instead, we use the summation over the corresponding 

variants in 𝑋𝑖𝑗
𝑊𝑠𝑟, describing the genetic risk score multiplied by the environmental factor. The 

size of the subsets is increased between 5 and 𝑆𝑚𝑎𝑥, in steps of 5. We select the best subsets 

in both parts of the data in terms of association with  𝑌𝑖
𝑟 in the test data and check the overlap 

between these subsets to create two different scores. Denote by 𝑏1 the set of overlapping 

variants (contained in both best subsets), and by 𝑏2 the set of non-overlapping variants that 

were only in one best subset. The first score is then defined by 𝑈𝑖1 = ∑ 𝑋𝑖𝑗
𝑊𝑠

𝑗𝜖𝑏1
, and the 

second by 𝑈𝑖2 = ∑ 𝑋𝑖𝑗
𝑊𝑠

𝑗𝜖𝑏2
 (and they can be computed in 𝐼2 and 𝐼3 using exactly these 
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weights).  Overall, these two scores represent genetic risk scores multiplied by the 

environmental factor of interest, identified in combination with the main effect working 

model 𝜇0 + 𝐸𝑖
𝑇𝜇1 + 𝑍𝑖

𝑇𝜇2 + 𝑋𝑖
𝑇𝜋0. 

c.) Estimation of main effects and further filtering using 𝑰𝟐: Using the first half of 𝐼2 data, we 

fit the model 𝑌𝑖 = 𝜇(𝐸𝑖, 𝑍𝑖) + ∑ 𝜋0𝑗(𝑍𝑖)𝑋𝑖𝑗
𝑚
𝑗=1 + 𝜋1𝑈𝑖1 + 𝜋2𝑈𝑖2 + 𝜀𝑖, where 𝜇(𝐸𝑖, 𝑍𝑖) and 

∑ 𝜋0𝑗(𝑍𝑖)𝑋𝑖𝑗
𝑚
𝑗=1  are realized using higher-order and product terms in combination with 

penalization (LASSO) and cross-validation. Based on the fitted model, we obtain 

𝜇̂(𝐸𝑖, 𝑍𝑖), ∑ 𝜋̂0𝑗(𝑍𝑖)𝑋𝑖𝑗
𝑚
𝑗=1  and the overall interaction score 𝑈𝑖 = 𝑈𝑖1 + 𝑐2𝑈𝑖2, where 𝑐2 is set 

to 1, if the corresponding regression coefficient p-value is below 0.05, otherwise 𝑐2 = 0. All 

genetic variants that are included in 𝑈𝑖, and therefore tested with the sub statistic 𝑆(𝐼3|𝐼1, 𝐼2), 

are denoted by the set 𝑚(𝐼3|𝐼1, 𝐼2). 

Simulations 

We performed extensive simulations to demonstrate the validity and robustness of RITSS 

based on the described implementation. The goal of the simulation studies is to show that the 

approach provides controlled type 1 error rates in a variety of scenarios, under the null 

hypothesis of no gene-environment interactions.  

Simulation settings 

Our simulations are based on different specifications of the model 

𝑌𝑖 = 𝜇(𝐸𝑖, 𝑍𝑖) + 𝑋𝑖
𝑇𝜋0 + 𝜀𝑖(𝐸𝑖, 𝑍𝑖) 

with  𝐸[𝜀𝑖(𝐸𝑖, 𝑍𝑖)|𝑋𝑖, 𝑍𝑖 , 𝐸𝑖] = 0. The scenarios are based on a combination of the following 

elements: 

1.) Population stratification (PS): 𝑍𝑖  influences 𝐸𝑖, 𝑋𝑖, and 𝑌𝑖 

2.) Gene-environment correlation (GEC): 𝑋𝑖 influences 𝐸𝑖 
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3.) Mis specified environmental main effects (MEM): 𝜇(𝐸𝑖, 𝑍𝑖) ≠ 𝐸𝑖
𝑇𝜇1 + 𝑍𝑖

𝑇𝜇2 for all 

vectors 𝜇1, 𝜇2. 

4.) Non-normal errors (NNE): Error distribution of 𝜀𝑖 not normal 

5.) Heteroscedasticity (HE): Variance of 𝜀𝑖 depends on 𝐸𝑖. 

Point 3.) impacts the construction of interaction scores in the screening step b.) where a 

simple linear working model for main effects is assumed. Overall, 32 scenarios can be 

generated as combinations of the presence or absence of these five factors. For the 

simulations with non-normal errors, we used the mean centered and standardized FEV1/FVC 

data from the UK Biobank as the random error to investigate robustness against this error 

distribution. In addition, we investigated the question if the type 1 error rate is inflated in the 

case where the SNPs for the analysis were selected based on GWAS results in the same 

dataset, i.e., based on their GWAS association p-values (notated as SELECT yes/no). 

Incorporating this factor, we, therefore, simulated a total of 64 scenarios. In all simulations, 

we set a sample size of 𝑛 = 30,000, 𝑚 = 100 SNPs, 𝑑 = 5 environmental factors 𝐸𝑖, and 𝑝 =

5 principal components 𝑍𝑖. All simulation results were evaluated based on 1,000 replicates. 

The specific details of how the presence or absence of the six factors PS yes/no, GEC yes/no, 

MEM yes/no, NNE yes/no, HE yes/no, and SELECT yes/no were implemented are described in 

Appendix A.  

Comparison with linear regression 

To demonstrate the importance of the robust test statistic in our approach, we also included 

a standard regression analysis as a comparison. Here, we use the interaction score 𝑈𝑖, derived 

by the steps a.) to d.), but instead of using the robust statistic 𝑆(𝐼3|𝐼1, 𝐼2) and 𝑈𝑖
′ to test the 

interaction in 𝐼3, we incorporate 𝑈𝑖 as a covariate in the regression model  

𝐸[𝑌𝑖|𝑋𝑖, 𝑍𝑖 , 𝐸𝑖] = 𝜇0 + 𝐸𝑖
𝑇𝜇1 + 𝑍𝑖

𝑇𝜇2 + 𝑋𝑖
𝑇𝜋0 + 𝛾𝑈𝑖 
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in 𝐼3 and test for interaction based on the coefficient 𝛾. We denote this approach by REG. We 

also incorporated REG-robust, where the corresponding standard errors are computed based 

on a robust sandwich-variance-estimator. Since we only consider type 1 error rate studies and 

not power results, the fact that REG/REG-robust use 𝐼3 data only, whereas RITSS used the 

whole dataset, is not crucial. 

Results 

We report the distribution of p-values for the three methods RITSS, REG, and REG-robust in 

all 64 scenarios in Figures 2-5 and Supplementary Figures 1-4. Figures 2-5 visualize the 

quantile-quantile-plots (qq-plots) for SELECT:no, partitioned according to the four 

combinations of GEC yes/no and MEM yes/no. Accordingly, Supplementary Figures 1-4 report 

the corresponding qq-plots for SELECT:yes.  

Figure 2 shows the qq-plots for GEC:no and MEM:no. All methods control the type 1 error 

rates, except REG in the sub scenarios with HE:yes. This is expected because the standard error 

estimation in REG assumes homoscedastic errors. The results in Figure 3 (GEC:yes and 

MEM:no) are similar. In the case of GEC:no and MEM:yes (Figure 4), we see that REG is inflated 

in all sub scenarios since the mis specified environmental main effect introduces 

heteroscedastic errors (Sun et al., 2018). REG-robust is able to provide controlled type 1 error 

rates due to the robust variance estimation. RITSS also controls the type 1 error rates in these 

scenarios. In Figure 5 (GEC:yes and MEM:yes), REG and REG-robust are highly inflated in all 8 

sub scenarios, while RITSS still remains valid. The explanation is that the presence of GEC and 

MEM leads to constructions of 𝑈𝑖 that seemingly capture interactions but are just the 

implication of the misspecifications of the main effects in the screening step and the 

regression test model. Therefore, whereas the robustness property of RITSS still ensures valid 

results (due to the more flexible main effect estimation in step c.) and the projected score in 
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step d.)), the regression-based approaches become inflated. The results for the SELECT:yes 

scenarios (Supplementary Figure 1-4) are similar to the corresponding results for SELECT:no. 

Overall, the simulations demonstrate the robustness of RITSS in a variety of different 

scenarios. 

In addition, in Figure 6, we plotted the qq-plot based on 3*64 pairwise correlation p-values 

between the z-scores of the sub statistics 𝑆(𝐼3|𝐼1, 𝐼2), 𝑆(𝐼2|𝐼3, 𝐼1), and 𝑆(𝐼1|𝐼2, 𝐼3)  across all 

simulated scenarios. The results show that the sub statistics are indeed asymptotically 

independent, which is also reflected in the controlled type 1 error rates of the p-values that 

are based on the variance estimator that exploits the independence. 

 
 
 

 
 
 
Figure 2: Quantile-quantile-plots for RITSS, REG, and REG-robust in the 8 scenarios with SELECT:no, GEC:no, and 
MEM:no. All results based on 1,000 replicates. GEC: gene-environment correlation, MEM: mis specified 
environmental main effect, PS: population stratification, NNE: non-normal errors, HE: heteroscedasticity. 
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Figure 3: Quantile-quantile-plots for RITSS, REG, and REG-robust in the 8 scenarios with SELECT:no, GEC:yes, and 
MEM:no. All results based on 1,000 replicates. GEC: gene-environment correlation, MEM: mis specified 
environmental main effect, PS: population stratification, NNE: non-normal errors, HE: heteroscedasticity. 
 
 
 

 
 
Figure 4: Quantile-quantile-plots for RITSS, REG, and REG-robust in the 8 scenarios with SELECT:no, GEC:no, and 
MEM:yes. All results based on 1,000 replicates. GEC: gene-environment correlation, MEM: mis specified 
environmental main effect, PS: population stratification, NNE: non-normal errors, HE: heteroscedasticity. 
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Figure 5: Quantile-quantile-plots for RITSS, REG, and REG-robust in the 8 scenarios with SELECT:no, GEC:yes, and 
MEM:yes. All results based on 1,000 replicates. GEC: gene-environment correlation, MEM: mis specified 
environmental main effect, PS: population stratification, NNE: non-normal errors, HE: heteroscedasticity. 
 
 
 

 
 

 
Figure 6: Quantile-quantile-plots of the 3*64 pairwise correlation p-values between the z-scores of the 
corresponding three sub statistics in the 64 simulated scenarios. The results are based on 1,000 replicates. 
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UK Biobank analysis 

We applied RITSS to the UK Biobank data to analyze gene-environment interactions for lung 

function (measured by forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC) 

and the ratio FEV1/FVC) and height. Details about the study population as well as the 

extraction of genetic, environmental, and phenotypic data are described in Appendix C. 

Analysis setup 

Table 1 contains the configurations of 𝑌𝑖, 𝑋𝑖, 𝐸𝑖 , and 𝑍𝑖  for the four different analyses. Age and 

pack-years of smoking (P-Y-S) were mean centered before computing the squared variable. 

Sex was coded as male=1 and female=0. For the lung function traits, we also included height 

as an interacting variable. We note that, given this specific sex coding, height and sex are 

(strongly) positively correlated. The lung function measurements were analyzed on the 

original scale and not transformed, as robustness of the approach against non-normal errors 

was demonstrated in the simulations. After quality control, we split the 254,053 samples 

(European ancestry) in two parts: 180,000 randomly selected samples for the main analysis 

using RITSS and 74,053 samples that are not analyzed by RITSS and serve as an independent 

set to validate the analysis results of RITSS. For the analysis, we applied the RITSS as described 

above. Each of the factors in 𝐸𝑖 was tested for interaction, resulting in a total of 16 tests. In 

Supplementary Figure 5, we plotted the estimated densities of the standardized residuals 

after adjusting for 𝑋𝑖, 𝐸𝑖 , and 𝑍𝑖  for the selected traits. The density plots are based on the 

180,000 samples in the main analysis. 
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𝑌𝑖 𝑋𝑖  𝐸𝑖  𝑍𝑖  

FEV1 383 SNPs sex, height, P-Y-S, E-S, P-Y-S2 age, age2, PCs 1-10, genotyping-array 

FVC 638 SNPs sex, height, P-Y-S, E-S, P-Y-S2 age, age2, PCs 1-10, genotyping-array 

FEV1/FVC 885 SNPs sex, height, P-Y-S, E-S, P-Y-S2 age, age2, PCs 1-10, genotyping-array 

height 3368 SNPs sex age, age2, PCs 1-10, genotyping-array 

Table 1. Analysis configurations and number of genetic variants incorporated. P-Y-S: pack-years of smoking, E-S: 
ever-smoking, PCs: genetic principal components. FEV1: forced expiratory volume in 1 second, FVC: forced vital 
capacity (FVC). Pack-years of smoking and age were centered before computing the squared variable. 

 

Results 

Table 2 contains the results of our UK Biobank RITSS analysis using 180,000 samples. For each 

of the four traits, we observed a significant interaction between sex and subcomponents of 

the genetic risk score. For the lung function traits, we also observed similar interaction findings 

with height. We investigated this in more detail in the validation analysis below. 

Furthermore, in line with previous results in the literature, we observed a significant 

interaction with ever-smoking and pack-years of smoking for FEV1/FVC (Kim et al., 2021; 

Aschard et al., 2017).  

As outlined above, the three interaction scores tested in each of the three sub-statistics can 

consist of different genetic variants, due to the independent screening in different parts of the 

data. These sets of genetic variants are denoted by 𝑚(𝐼3|𝐼1, 𝐼2), 𝑚(𝐼2|𝐼3, 𝐼1), and 𝑚(𝐼1|𝐼2, 𝐼3). 

Furthermore, we denote the set of genetic variants that are shared by all three or exactly two 

sub statistics by 𝑚3 and 𝑚2, respectively. Table 2 reports the number of genetic variants in 

these sets.  

Based on the genetic variants in 𝑚2 and 𝑚3, we performed an additional validation analysis 

using the remaining and independent 74,053 samples. We considered all interactions in Table 

2 that were significant after Bonferroni correction adjusting for 16 tests at an overall 
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significance level of 𝛼 = 0.05. For this validation analysis, we used a standard regression 

interaction test while fitting 𝑋𝑖, 𝐸𝑖, and 𝑍𝑖. We tested two interaction scores, the first based 

on the variants in the corresponding 𝑚3 set and the second based on 𝑚2. The interaction p-

values were evaluated based on the model-based standard errors as well as standard errors 

obtained from robust sandwich estimators. Here, the genotype main effect estimates for the 

genetic risk scores were estimated based on the 180,000 samples in the main analysis. 

The results of our validation analysis are described in Table 3. The results show that almost all 

findings replicate except the 𝑚3 based E-S interaction for FEV1/FVC. We also note that the 

effect directions were consistent between the main analysis and validation analysis.  

To examine these findings in more detail, we examined the single variant interaction p-values 

for the genetic variants in the combined set 𝑚3/𝑚2 with the respective environmental factor 

in the validation dataset. This analysis was also based on a linear regression that fits 𝑋𝑖, 𝐸𝑖, 

and 𝑍𝑖, and the respective interaction term. Table 4 lists the number of genome-wide 

significant single variant interactions, i.e., 𝑝 < 5 ∗ 10−8, as well as the number of significant 

single variant interactions using a Bonferroni correction adjusting for the number of variants 

in the combined set 𝑚3/𝑚2 at a significance level of 𝛼 = 0.05. Both numbers are either 0 or 

very small, for all trait/environmental factor combinations. This suggests that the interaction 

effects at the single variant level are small. However, we make an interesting observation by 

investigating the empirical distribution of effect directions across the single variant interaction 

tests. Table 4 provides these empirical distributions of effect direction for a.) the unweighted 

interaction terms 𝑋𝑖𝑗 ∗ 𝐸𝑖𝑙  and b.) the weighted terms 𝛽̂𝑗 ∗ 𝑋𝑖𝑗 ∗ 𝐸𝑖𝑙, where 𝛽̂𝑗 is the estimated 

genetic effect based on the main analysis dataset. In addition, we compared the interaction 

p-value distributions according to the effect direction of the weighted interaction terms. As 

we can see by the enrichment of positive effects, the weighting by the genetic main effect, as 
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it is applied in the computation of the genetic risk score, “aligns” the interaction effect 

directions across the genetic variants. Furthermore, the p-values for weighted interaction 

terms with positive effect show higher inflation. This indicates that RITSS identified genetic 

variants whose interaction signals are weak at the single variant level but when summed up 

in the genetic risk score align to a significant interaction. Since we used a sex coding of male=1 

and female=0, this suggests that the genetic effects in males and females across these variants 

have the same direction, but the magnitudes of effects in males are slightly larger. Related, 

we note that the genetic variants in 𝑚3/𝑚2 between the sex and height interactions with lung 

functions highly overlap, which is in line with the observation that height and sex are strongly 

positively correlated. However, if we test the height interaction separately in males and 

females in the validation dataset, the signal is strongly diminished. Therefore, we hypothesize 

that the observed interactions are a result of sex-differential effects, but further analyses are 

required to disentangle the exact mechanisms. In this context, we also note that, related to 

recent results regarding so-called participation biases and their impact on sex-related analyses 

(Pirastu et al., 2021), the genetic variants in 𝑚3/𝑚2 across the three lung function phenotypes 

and height were not associated with sex. Detailed information about the selected variants in 

the gene-by-sex interactions for lung function and height and the corresponding closest genes 

(obtained by the GWAS catalogue data) can be found in Supplementary Tables 1-4. 
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𝑌𝑖 𝐸𝑖𝑠 RITSS p-value |𝑚| |𝑚(𝐼3|𝐼1, 𝐼2)| |𝑚(𝐼2|𝐼3, 𝐼1)| |𝑚(𝐼1|𝐼2, 𝐼3)| |𝑚3| |𝑚2| 

FEV1 sex 5.834e-34 383 145 130 137 72 67 

FEV1 height 9.121e-14 383 145 131 132 68 70 

FEV1 P-Y-S 3.012e-01 383 7 12 6 0 1 

FEV1 E-S 4.220e-01 383 8 5 25 0 4 

FEV1 P-Y-S2 3.853e-01 383 10 23 9 0 6 

FVC sex 2.670e-22 638 248 215 243 61 137 

FVC height 5.241e-18 638 248 249 221 56 152 

FVC P-Y-S 9.923e-03 638 9 6 149 0 5 

FVC E-S 2.945e-01 638 61 10 202 1 24 

FVC P-Y-S2 6.344e-01 638 39 15 61 0 6 

FEV1/FVC sex 3.392e-24 885 300 303 288 110 156 

FEV1/FVC height 4.112e-17 885 294 171 262 70 119 

FEV1/FVC P-Y-S 4.687e-05 885 291 295 232 89 143 

FEV1/FVC E-S 1.232e-05 885 287 23 288 10 151 

FEV1/FVC P-Y-S2 6.809e-01 885 297 175 98 32 107 

height sex 2.619e-14 3368 1013 895 618 275 427 

Table 2. Results of the interaction testing using RITSS in the UK Biobank. The tested environmental factor is denoted by 𝐸𝑖𝑠. |𝑚| is the number 
of total SNPs in the analysis, |𝑚(𝐼3|𝐼1, 𝐼2)|, |𝑚(𝐼2|𝐼3, 𝐼1)| and |𝑚(𝐼1|𝐼2, 𝐼3)| denote the number of SNPs in the three sub statistics. |𝑚3| and 
|𝑚2| are the number of SNPs that are shared by all three and exactly two interaction scores, respectively. 

 

𝑌𝑖 𝐸𝑖𝑠 p-value 𝑚3 robust p-value 𝑚3 |𝑚3| p-value 𝑚2 robust p-value 𝑚2 |𝑚2| 

FEV1 sex 8.161e-22 5.072e-11 72 9.625e-05 1.961e-04 67 

FEV1 height 5.162e-10 4.431e-09 68 2.593e-06 9.029e-06 70 

FVC sex 1.732e-05 2.962e-05 61 1.149e-09 6.074e-09 137 

FVC height 3.938e-06 1.142e-05 56 3.686e-09 6.702e-08 152 

FEV1/FVC sex 9.325e-11 2.510e-10 110 2.660e-04 3.178e-04 156 

FEV1/FVC height 4.754e-03 4.912e-03 70 7.130e-06 1.076e-05 119 

FEV1/FVC P-Y-S 4.995e-07 8.929e-05 89 2.197e-02 8.743e-02 143 

FEV1/FVC E-S 7.570e-01 7.648e-01 10 1.374e-03 2.403e-03 151 

height sex 8.720e-05 1.051e-04 275 8.327e-07 1.108e-06 427 

Table 3. Results of the validation analysis in the 74,053 remaining samples in the UK Biobank. The two sets 𝑚3 and 𝑚2 were identified in the 
corresponding main analysis (Table 2). The interaction p-values are based on a standard regression analysis, the robust p-values are based 
on standard errors obtained by a robust sandwich variance estimator. 
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𝑌𝑖  𝐸𝑖𝑠 |𝑚3|+|𝑚2| No. gws 

interactions  

No. bfs. 

interactions 

Distribution effect 

directions unweighted 

-/+ 

Distribution 

effect directions 

weighted -/+ 

5% quantile 

interaction p-values in 

weighted -/+ 

FEV1 sex 139 0 1 0.57/0.43 0.30/0.70 1.304e-01/2.437e-03 

FEV1 height 138 0 1 0.54/0.46 0.29/0.71 1.061e-01/9.810e-03 

FVC sex 198 0 1 0.51/0.49 0.30/0.70 1.037e-01/8.514e-03 

FVC height 208 0 1 0.52/0.48 0.33/0.67 8.071e-01/1.449e-02 

FEV1/FVC sex 266 0 0 0.47/0.53 0.40/0.60 1.404e-01/9.763e-03 

FEV1/FVC height 189 0 1 0.47/0.53 0.39/0.61 1.215e-01/1.297e-02 

FEV1/FVC P-Y-S 232 0 3 0.53/0.47 0.44/0.56 2.352e-02/1.283e-03 

FEV1/FVC E-S 161 0 1 0.55/0.45 0.40/0.60 3.771e-02/4.095e-02 

height sex 702 0 0 0.48/0.52 0.42/0.58 5.042e-02/3.558e-02 

Table 4. Results of the validation analysis in the 74,053 remaining samples in the UK Biobank. The two sets 𝑚3 and 𝑚2 were identified in the 
corresponding main analysis (Table 2). All variants in 𝑚3/𝑚2 were tested for interaction with the respective environmental factor 𝐸𝑖𝑠. In this 
context, gws. interaction refers to a single variant interaction p-value 𝑝 < 5 ∗ 10−8. Similar, bfs. Interaction corresponds to 𝑝 <
0.05/(|𝑚3|+|𝑚2|). The last columns report the empirical distribution of effect directions in these tests and the corresponding 5% quantile 
of p-values. In the weighted analysis, the genotype/env.factor product term was multiplied by the estimated genetic main effect (obtained 
from independent data). 

 

Discussion 

In this communication, we propose RITSS, a robust and flexible interaction testing framework 

for quantitative traits. Our framework aims to identify aggregated interaction signals and tests 

them using sample splitting and robust test statistics. Since interactions at the single genetic 

variant level are hard to detect due to small effect sizes, we hypothesize that strategies that 

aggregate signals across a limited number of factors/loci have higher statistical detection 

power while the limited number of factors/loci in the score still permit an interpretation of 

the aggregated signals.  

In extensive simulations, we demonstrated that RITSS controls the type 1 error rates well 

across different scenarios, including population stratification, gene-environment correlation, 

mis specified environmental main effects, non-normal error distributions, and 

heteroscedasticity. We also applied our approach to the UK Biobank and observed potential 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.469907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.469907
http://creativecommons.org/licenses/by-nc-nd/4.0/


interactions between subcomponents of risk scores and sex in lung function and height. Since 

interactions for complex traits at the single genetic variant level were rarely detected in recent 

large-scale analyses, we suggest that our approach will be an important tool for the 

identification of genetic interactions and the underlying mechanisms. 

For example, in the context of gene-by-sex interactions, Fawcett et al. performed a genome-

wide interaction analysis with sex for FEV1 in the UK Biobank, using more than 300,000 

samples (Fawcett et al., 2021). Although they found five genome-wide significant interactions, 

only one interaction was replicated in an independent study. In a different study, Bernabeu et 

al. utilized the UK Biobank to analyze genotype by sex interaction for 530 complex traits. This 

analysis revealed several genome-wide significant (𝑝 < 10−8) findings, but heritability and 

genetic correlation analyses suggest that substantial proportions of the sex-differential 

genetic architecture are yet to be discovered (Bernabeu et al., 2021). Our results are in line 

with these findings since our interaction signals are not driven by strong effects on a single 

variant level but aggregations across a limited number of variants. 

Our approach has the following limitations. A significant interaction p-value of the aggregated 

score does not imply that all included pairs of genetic variants/environmental factors 

necessarily truly contribute to this interaction. Depending on the specific implementation of 

the screening step, our approach can be computationally demanding and the size of the input 

set of genetic variants is restricted in size. Finally, a significant interaction p-value does not 

imply that causal mechanisms are detected. RITSS aims to identify deviations from the null 

hypothesis model 𝐸[𝑌𝑖|𝑋𝑖, 𝑍𝑖 , 𝐸𝑖] = 𝜇(𝐸𝑖, 𝑍𝑖) + ∑ 𝜋0𝑗(𝑍𝑖)𝑋𝑖𝑗
𝑚
𝑗=1  in the form of environment-

dependent genetic effects 𝜋(𝐸𝑖). However, the interpretation of significant findings depends 

on the assumption that there is no unmeasured variable omitted that is involved in this 

mechanism (Dudbridge and Fletcher, 2014; VanderWeele, 2009).  
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Future directions include more detailed follow-up analyses, the extension to dichotomous 

traits, the incorporation of other screening techniques, such as for example LASSO (Tibshirani, 

1996) or RaSE (Tian and Feng, 2021), and the improvement of the computational efficiency. 

We note that RITSS can also be used to analyze gene-gene-interactions and interaction models 

can be based on more general, non-linear approaches. In addition, RITSS can be applied to 

other omics data layers, such as for example, DNA methylation, transcriptomics, or 

metabolomics. An R package implementing RITSS and providing the framework for extensions, 

as well as the simulation study code, is available at https://github.com/julianhecker/RITSS.  
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Appendix A: Simulation details 

The covariates 𝑍𝑖𝑗 are simulated based on a uniform distribution 𝑍𝑖𝑗~𝑈𝑛𝑖𝑓(𝑎, 𝑏), 𝑗 = 1, … , 𝑝. 

They are used to simulate population stratification (PS) and can be considered as the principal 

components (although not orthogonal). The parameters 𝑎 and 𝑏 are set to 𝑎 = 0.0 and 𝑏 =

0.1. The genotypes 𝑋𝑖𝑗 are generated based on a binomial distribution with 

𝑋𝑖𝑗~𝐵𝑖𝑛𝑜𝑚(2, 𝑝 = 0.3 + 𝛽𝑃𝑆 ∗ 𝑍𝑖𝑣), 𝑗 = 1, … , 𝑚, where 𝛽𝑃𝑆 = 1 in the presence of 

population stratification (PS:yes) and 𝛽𝑃𝑆 = 0 if not (PS:no). The index 𝑣 is chosen based on a 

varying sequence that depends on 𝑚 and 𝑝, to ensure approximate coverage of all 

components. The environmental factors 𝐸𝑖𝑗 follow 𝐸𝑖𝑗 = 𝑋𝑖
𝑇𝛽𝐸𝑋𝑗 + 𝑍𝑖

𝑇𝛽𝐸𝑍𝑗 + 𝑊𝑖𝑗 , 𝑗 =

1, … , 𝑑, with 𝑊𝑖𝑗~𝑁(0,1). The vectors 𝛽𝐸𝑋𝑗 and 𝛽𝐸𝑍𝑗 control gene-environment correlations 

(GEC) and population differences in the environment. The residual error 𝜀𝑖𝑗 is simulated by 

𝜀𝑖𝑗 = 𝑏𝑖𝑗 ∗ (1 + 𝛽𝜀𝐸 ∗ 𝐸𝑖1), where 𝑏𝑖𝑗~𝑁(0,1) in the case of normal errors. In the scenario of 

non-normal errors (NNE), 𝑏𝑖𝑗 is sampled from the mean-centered and standardized lung 

function ratio in the UK Biobank (Bycroft et al., 2018). The parameter 𝛽𝜀𝐸 controls the 

presence of heteroscedastic errors (HE). The phenotype 𝑌𝑖 is then constructed by: 

𝑌𝑖 = 𝑋𝑖
𝑇𝛽𝑋 + 𝐸𝑖1

𝜗 𝛽𝐸1 + 𝐸𝑖2𝛽𝐸2 + ⋯ + 𝐸𝑖𝑑𝛽𝐸𝑑 + 𝑍𝑖
𝑇𝛽𝑍 + 𝜀𝑖  

The exponent 𝜗 is introduced to simulate mis specified environmental main effects (MEM). 

The effects 𝛽𝑋, 𝛽𝐸 , 𝛽𝑍, 𝛽𝐸𝑍𝑗 , 𝛽𝐸𝑋𝑗, and 𝛽𝜀𝐸 are generated as follows: 

𝛽𝑋~𝑁(0, 𝜎𝑋
2𝐼𝑚), 𝛽𝑍~𝑁(0, 𝜎𝑍

2𝐼𝑝), 𝛽𝜀𝐸~𝑁(0, 𝜎𝜀𝐸
2 ), 

𝛽𝐸 = |𝛼𝐸|, where 𝛼𝐸~𝑁(0, 𝜎𝐸
2𝐼𝑑). 

and, 

𝛽𝐸𝑋𝑗 = 𝐵𝑗|𝛼𝐸𝑋𝑗| where 𝛼𝐸𝑋𝑗~𝑁(0, 𝜎𝐸𝑋
2 𝐼𝑚), 𝑗 = 1, … , 𝑑 and 𝐵𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.2) 
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as well as 

𝛽𝐸𝑍𝑗 = 𝐵′𝑗𝛼𝐸𝑍𝑗 where 𝛼𝐸𝑍𝑗~𝑁(0, 𝜎𝐸𝑍
2 𝐼𝑝), 𝑗 = 1, … , 𝑝 and 𝐵′𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5). The 

parameters 𝛽𝑋, 𝛽𝐸 , 𝛽𝑍, 𝛽𝐸𝑍𝑗 , 𝛽𝐸𝑋𝑗, and 𝛽𝜀𝐸 are freshly drawn in each replication of the 

simulation study. We set 𝜎𝑋
2 = 0.12 and 𝜎𝐸

2 = 0.42.  In the following Table S1, we report 

scenario-dependent parameter values/implementations. 

 yes No 

PS 𝛽𝑃𝑆 = 1, 𝜎𝐸𝑍
2 = 0.12, 𝜎𝑍

2 = 0.12 𝛽𝑃𝑆 = 0, 𝜎𝐸𝑍
2 = 0.0, 𝜎𝑍

2 = 0.0 

GEC 𝜎𝐸𝑋
2 = 0.12 𝜎𝐸𝑋

2 = 0.0 

MEM 𝜗 = 2 𝜗 = 1 

NNE 𝑏𝑖𝑗~𝐹𝐸𝑉1/𝐹𝑉𝐶 𝑈𝐾𝐵 𝑏𝑖𝑗~𝑁(0,1) 

HE 𝜎𝜀𝐸
2 = 0.52 𝜎𝜀𝐸

2 = 0.0 

SELECT 𝑚

2
 variants with smallest association 

p-value selected for analysis (based 

on all 𝑛 = 30,000 samples)  

keep all variants 

Table S1: Scenario-dependent parameter values for the simulation studies. PS: population stratification, GEC: 
gene-environment correlation, MEM: mis specified environmental main effect, NNE : non-normal errors, HE : 
heteroscedasticity. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.469907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.469907
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix B: ACE algorithm 

The input for the ACE algorithm (Breiman and Friedman, 1985; Vansteelandt et al., 2008) 

consists of the score 𝑈𝑖, genotype data 𝑋𝑖, environmental factors 𝐸𝑖, and the covariates 𝑍𝑖. 

The goal is to derive a projection of 𝑈𝑖 that is orthogonal to functions 𝜇(𝐸𝑖, 𝑍𝑖) (i.e., 

𝐸[𝑈𝑖
′|𝐸𝑖, 𝑍𝑖] = 0) and orthogonal to the genetic main effects ∑ 𝜋0𝑗(𝑍𝑖)𝑋𝑖𝑗

𝑚
𝑗=1 .  

Starting from an input score of the form 𝑈𝑖 = ∑ ∑ 𝜋𝑗𝑙𝑋𝑖𝑗𝐸𝑖𝑙𝑙𝑗 , we  

1. estimate 𝐸[𝑈𝑖|𝑋𝑖, 𝑍𝑖] = ∑ 𝜋𝑗𝑙𝐸[𝐸𝑖𝑙|𝑋𝑖, 𝑍𝑖] ∑ 𝑋𝑖𝑗𝑗𝑙  using a flexible LASSO-based linear 

model in combination with cross-validation and replace 𝑈𝑖 by the corresponding 

residuals. 

2. Use a machine learning approach to estimate 𝐸[𝑈𝑖|𝐸𝑖, 𝑍𝑖] and replace 𝑈𝑖 by the 

corresponding residuals. 

3. Use a machine learning approach to estimate 𝐸[𝑈𝑖|𝑋𝑖, 𝑍𝑖] and replace 𝑈𝑖 by the 

corresponding residuals. 

4. Repeat steps 2.) and 3.) until a sufficient criterion is reached. 

For step 2.), we applied a regression forest approach, implemented in the grf R package (Athey 

et al., 2019). For step 3.), we used a LASSO-based linear model with 𝑋𝑖 and 𝑍𝑖  as covariates, in 

combination with cross validation. In practice, 2-3 repetitions of 2.) + 3.) are often sufficient. 
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Appendix C: UK Biobank data 

Study population  

Our data analysis utilized participants from the UK Biobank (Bycroft et al., 2018). All 

participants in the analysis provided written informed consent and study protocols were 

approved by local institutional review boards/research ethics committees. We selected 

participants of European ancestry only, whereas ancestry was derived based on a combination 

of self-reported ethnicity and k-means clustering of principal components of genetic ancestry, 

as previously described (Shrine et al., 2019). Additional quality control included the exclusion 

of related pairs (keeping one sample), samples with low quality lung function (Shrine et al., 

2019; Sakornsakolpat et al., 2019) as well as missing phenotype or covariate data. Overall, we 

kept 254,053 participants for the analysis.   

Phenotype and covariate data 

We incorporated lung function data as measured by forced expiratory volume in 1 second 

(FEV1), forced vital capacity (FVC), and the ratio FEV1/FVC. We also extracted age, sex, height, 

smoking exposure variables, genotyping array, and the first ten principal components of 

genetic ancestry. Smoking exposure was based on self-reports and included the variables 

pack-years of smoking (P-Y-S) and ever- versus never-smoking status (E-S). ‘Ever-smokers’ 

included individuals reporting current smoking, smoking most days, or smoking occasionally. 

‘Never smokers’ included those who smoked less than 100 cigarettes in their lifetime.  

Genetic data 

Genotyping and imputation for the UK Biobank were performed as described in the 

corresponding publications (Shrine et al., 2019; Bycroft et al., 2018) and this genetic data was 

available for our analyses. For each of the four phenotypes FEV1, FVC, FEV1/FVC, and height, 
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we downloaded all reported genetic associations from the GWAS catalog (MacArthur et al., 

2017) (February-August, 2021). We extracted the corresponding genetic variants with a minor 

allele frequency above 1% (estimated in the analysis dataset) and performed LD pruning 

(indep-pairwise command with parameters 500, 50, and 0.2) using PLINK2 (Version 

v2.00a2.3LM) (Chang et al., 2015) to avoid reported genetic associations that are in high LD. 

We also excluded multi-allelic variants. Our analyses are based on expected minor allele count 

information, as computed by PLINK2. The final number of variants for the analysis of the 

respective phenotypes is described in Table 1. 
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