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Abstract

The identification and understanding of gene-environment interactions can provide insights
into the pathways and mechanisms underlying complex diseases. However, testing for gene-
environment interaction remains a challenge since statistical power is often limited, the
specification of environmental effects is nontrivial, and such misspecifications can lead to false
positive findings. To address the lack of statistical power, recent methods aim to identify
interactions on an aggregated level using, for example, polygenic risk scores. While this
strategy increases power to detect interactions, identifying contributing key genes and
pathways is difficult based on these global results.

Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-
environment interaction testing framework for quantitative traits that is based on sample
splitting and robust test statistics. RITSS can incorporate multiple genetic variants and/or
multiple environmental factors. Using sample splitting, a screening step enables the selection
and combination of potential interactions into scores with improved interpretability, based on
the user’s unrestricted choices for statistical/machine learning approaches. In the testing step,
the application of robust test statistics minimizes the susceptibility of the results to main effect
misspecifications.

Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate
in a wide range of scenarios. In an application to lung function phenotypes and human height
in the UK Biobank, RITSS identified genome-wide significant interactions with subcomponents
of genetic risk scores. While the contributing single variant interactions are moderate, our
analysis results indicate interesting interaction patterns that result in strong aggregated

signals that provide further insights into gene-environment interaction mechanisms.
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Introduction

Genome-wide association studies (GWAS) have identified thousands of genetic variants that
are associated with complex diseases/phenotypes (MacArthur et al., 2017). However, the
effect of a genetic variant on a complex phenotype or disease can be modified by
environmental exposures (Hunter, 2005; Khoury, 2017). The knowledge about an interaction
between environmental exposure (e.g., tobacco smoke or occupational exposure) and genetic
variants can provide insights into the underlying pathways and disease mechanisms (Thomas,

2010).

Most of the methodological approaches for gene-environment interaction testing have
focused on scenarios in which a single genetic variant and a single environmental variable are
tested for potential interaction. Methods have been developed for case-control data, case-
only data, and quantitative trait studies, summarized in detail by Gauderman et al.
(Gauderman et al., 2017).

Since most gene-environment interaction effects are expected to be small and statistical
power is consequently limited (Murcray et al.,, 2011), more efficient approaches were
proposed. This includes so-called screening statistics that aim to prioritize genetic variants to
reduce the multiple testing problem (Dai et al., 2012; Gauderman et al., 2010, 2013; Hsu et
al., 2012; Kooperberg and Leblanc, 2008; Murcray et al., 2011, 2009; Paré et al., 2010; Zhang
et al., 2016). Also, researchers proposed to aggregate genetic information in a genomic region
in set-based tests to increase power (Jiao et al., 2013; Liu et al., 2016; Lin et al., 2013; Tzeng
etal.,2011; Zhao et al., 2015; Lin et al., 2016; Su et al., 2017; Jiao et al., 2015; Kim et al., 2019).
Recent approaches to increase power utilize mixed models or reaction models and

incorporate multiple environmental variables to derive a combination of environmental
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factors that modifies the genetic effect (Moore et al., 2019; Ni et al., 2019; Dahl et al., 2020;
Kerin and Marchini, 2020; Wang et al., 2020).

Also, current data analyses observed that genetic risk scores, weighted sums of genetic risk
variants, interact with specific environmental factors in psychiatric (Peyrot et al., 2018) and
cardiovascular diseases (Hindy et al., 2018). In addition, Aschard et al. observed an interaction
between a genetic risk score for FEV1/FVC and ever-smoking status (Aschard et al., 2017).
Related, Kim et al. also observed highly significant interactions between genome-wide
polygenic risk scores for lung function and smoking variables (Kim et al., 2021). While
detecting significant interactions on this aggregated level is encouraging, identification of

individual genes and pathways is challenging based on such results.

Besides the power limitation, another caveat of gene-environment interaction testing is that
the misspecification of the marginal main effect models can lead to inflated type 1 error rates
and false positive findings in interaction testing (Sun et al., 2018; Zhang et al., 2020). This is
especially problematic for non-binary and/or continuous environmental factors where the
implicit linearity assumption that is commonly used in the model might not be correct. One
example is pack-years of smoking, where it is not straightforward to assume that every

additional pack-year has the same, constant effect on the outcome.

In this communication, we propose RITSS, a robust and flexible framework for gene-
environment interaction testing with quantitative traits. The general idea is to derive an
interaction score comprised of the (weighted) sum of individual genetic variant /
environmental factor pairs, such that the combination of these signals increases the power to
detect an interaction while maintaining the biological interpretability of the results. To provide
accurate statistical results, our approach utilizes a sample splitting strategy and test statistics

that are robust against misspecifications of the main effects. The general form of RITSS allows
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the incorporation of user-specified screening/learning approaches in the construction of
candidate interaction scores while providing valid statistical inference without restrictive
assumptions. In extensive simulation studies, we demonstrate the robustness of RITSS in
various realistic scenarios. We applied RITSS to lung function phenotypes and human height
in the UK Biobank, incorporating sex and smoking exposure information. Our analyses
identified highly consistent interaction patterns across sets of genetic variants that result in
statistically significant interactions with subcomponents of genetic risk scores, while the

interaction effects at the single variant level are moderate.

Methods

We use the following notation: for study subject i, we denote the quantitative trait of interest
by Y;, the m-dimensional genotype information by X;, and the d-dimensional environmental
information by E;. Also, we define an additional p-dimensional covariate vector by Z; that
includes, for example, age, study indicators, and genetic principal components (Price et al.,
2006). We assume the following model
Yo = u(Ey, Zy) + Xt mi (B Z)Xij + &

where E|[g;|X;,Z;, E;] = 0. The unknown function u describes the main effect of the
environmental factors E; and other covariates Z;. The genetic contribution of variant j is

modeled by nj(El-,Zl-)Xi where 7; is an unknown function. The null hypothesis of no gene-

jr

environment interaction is described by E[Y;|E;, Z;, X;] = p(E;, Z;) + XL, m0j(Z;)X;j, where

jr
Ty is an unknown function only depending on Z;. Therefore, we implicitly assume the absence
of gene-gene-interactions but allow for interactions between the genetic variants and the
covariates Z; under the null hypothesis. Testing for gene-environment interaction in

quantitative traits between a single variant j and a single environmental factor [ is often

underpowered. On the other side, testing for interaction between an environmental factor [
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and a genetic risk score that combines genetic information across loci can have more power if
the directions of the interaction effects are in line with the summation in the genetic risk score.
However, the interpretation of interactions with such dense scores can be difficult. Our
approach, RITSS, therefore aims to derive interaction scores of the form U; = Y ¥, m;; X;; Ej
that combine signals while maintaining biological interpretability of the overall interaction
result by keeping the number of involved factors of moderate size. As combining potential
interaction signals into a score in a data-adaptive way and testing the score needs, in general,
to be performed in independent parts of the data, RITSS utilizes a sample splitting approach.

Another challenge in gene-environment interaction testing is the test statistic itself. The
standard interaction score test, for example, for the pair consisting of variant j and

environmental factor [, is based on the following quantity:

m
T :ZXij*Eil* Yi—ﬁ(Ei,Zi)—Zﬁoj(Zi)XU :ZXU*E”*yimsid
i = i

Under the null hypothesis of no gene-environment interaction between variant j and
environmental factor [, the test statistic T needs to have expectation 0 to provide a valid test.
This is the case if approximately ¥7¢5' ~ g;, meaning that ¥; — A(E;, Z;) — D=1 To;(Z) X
captures the main effects reasonably well. However, if, for example, the environmental main
effect of environmental factor [ is slightly mis specified, 17{65“ can have some residual
dependency on Ej;. Then, in general, T does not have expectation 0 under the null hypothesis
since the residual term can be correlated with X;; * E;;. The observation that mis specified
main effects lead to inflated interaction type 1 error rates has been described in the recent

literature (Sun et al., 2018; Zhang et al., 2020). Furthermore, when the number of genetic

variants, environmental factors, and covariates (i.e., m,d, and p) increases, residual
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dependency is more likely to occur since convergence rates of main effect models will become
slower due to the increased complexity.

Therefore, we utilize an approach based on test statistics that improve robustness against
such misspecifications (Vansteelandt et al., 2008). Denoting the variable U; as the interaction
score, the general idea is to replace U; * ¥/ by U/ * Y/*5'® where U] is a projection of U;
that is orthogonal to the environmental and genetic main effects.

Thereby, in the presence of slight misspecifications or residual dependencies of the main
effects, the test statistic based on U] * ¥*5'¢ has expectation 0 under the null hypothesis of
no gene-environment interaction. The form of the test statistic will also allow alternating the
roles of training and testing subsamples to use the full sample size for testing. The details are

described in the next section.
RITSS
We now describe the algorithm behind RITSS. The algorithm is also visualized in Figure 1.

Algorithm

a.) Sample splitting: First, we split the data (Y;, X;, E;, Z;) randomly into three
approximately equally sized subsamples I, I,, and I5.

b.) Discovery step using I;: Using I; data, we construct potential interaction scores of the
form Uy, = X; X1 mjuXijEq, k =1, ..., K that aim to combine signals. Here, the number of
scores, K can be pre-specified or adaptively chosen. The information about which pairs of
genetic/environmental factors are included and the determination of the corresponding
weights ;. is based on the user’s choice of statistical/machine learning-based approaches to
model the phenotypic data. Examples include LASSO, Bayesian shrinkage, and best subset
regressions (Tibshirani, 1996; Castillo et al., 2015; Bertsimas et al., 2016). Usage of K > 1 and

therefore partitioning into different scores could reflect certainty about the corresponding
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interaction effects. An example is described in the application. It is important to note that, as
the screening step generates scores that are tested in different parts of the data, the screening
method can be based on arbitrary methods, and no statistical rigor is required, but suitable
specifications will increase the overall power of our approach.

c.) Estimation of main effects and further filtering using I: Using the first half of the I, data,
we fit the interaction scores Uy, k = 1, ..., K, derived in Step b.), as predictors in a linear
model while incorporating flexible models for the main effects fi(E;, Z;) and Z;’Ll To; (Z1)Xij.
These flexible main effect models are modeled using linear terms with higher-order terms in
combination with penalization (LASSO-based techniques (Tibshirani, 1996)). The motivation
here is that we want to estimate the main effects as accurately as possible while fitting the
proposed interaction scores to check their significance. Since I, is an independent part of the
data, the gene-environment interaction scores U;; can be considered as fixed covariates here
and significance of these scores in I, provides further evidence of interaction. We select all or
a subset of scores (for example, based on the significance of their regression coefficients) and
combine them (potentially with estimated weights) into a single interaction score U;. Then,
the estimated main effects [i(E}, Z;) and y;(Z;) are extracted and are used to compute
Yreott =y, — i(E;, Z;) — Xy o (Z) Xy in I,

d.) Deriving U; in I3: As outlined above, standard interaction testing would consider a test
statistic based on U; * ¥7¢5% To obtain a robust test statistic, we replace this with U/ * /¢4,
where Uj is a projection of U; that is orthogonal to the environmental and genetic main
effects. This projection can be obtained by the alternating conditional expectation (ACE)
algorithm (Breiman and Friedman, 1985; Vansteelandt et al., 2008). If gene and environment

are independent, closed-form solutions are available. We apply this algorithm to the second
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half of the I, data. Finally, based on the trained model, we compute U;’ in I5. The details of
the implementation of ACE are described in Appendix B.
e.) Computing test statistic in I3: Based on these objects, we compute our interaction test

statistic in I5:

5(13”1, 12) = Z Ui’ % ﬁresid

i613
f.) Alternating subsamples: We alternate the roles of the subsamples and repeat steps b.)-
e.) twice, then compute the overall statistic

S = SUsll, 1) + S|z, 1) + SU4 |15, I3)

Properties of S

The test statistic .S in combination with the described procedure a.)-f.) to obtain the underlying
objects has several important advantages. Under mild regularity conditions, the statistic S is
asymptotically normal, the sub statistics are asymptotically independent, and the variance of
S can be estimated based on a simple empirical variance estimator. By estimating a flexible
model for the main effects in the computation of /¢ and the application of the ACE to
obtain U], the interaction test based on S is robust against (residual) misspecifications of the
main effect models. Due to the sample splitting approach, we do not have to assume strict
regularity conditions for the estimation of machine learning models and still can use the full
sample size for testing (Vansteelandt et al., 2008; Dukes et al., 2021).

It is important to note that the interaction scores that are tested in the three sub statistics are
not identical in general, since they are constructed from different parts of the data. The idea

is that the overall interaction RITSS p-value provides evidence for the presence of interaction
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based on these adaptive scores. Additional insights can be obtained by examining the overlap
between the three scores.

The RITSS approach is flexible and allows for different targeted applications and the
incorporation of arbitrary statistical learning approaches in the screening step. We will
describe a specific application of RITSS in the next section and investigate its performance in

simulations and in the application to the UK Biobank.

a.) randomly split datainto 3 subsamples I3, I,, and I3

I I I3
b.) identify potential
interactionsin I; and
construct scores
Upk=1,,,.K
c.) + d.) estimate main
effects, construct U;,
andtrain ACE model for
Uiinl,
e.) compute S(I5]l;, I,)
inl;
 Z f.) alternate subsamples and repeat b.)-e.) twice, compute overall statistic S

Figure 1. Visualization of the algorithm underlying our RITSS framework.

Simulation studies and UK Biobank analysis

In this section, we discuss a specific implementation of RITSS that aims to identify interactions
between a single environment factor of interest and subcomponents of genetic risk scores. In

simulation studies, we demonstrate the validity and robustness of this approach in different
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scenarios. We also apply the approach to the UK Biobank to analyze interactions in lung

function and height.
Specific implementation of RITSS

Steps a.), d.), e.), and f.) are performed as described in the Methods section.

b.) Discovery step using I1: Using I; data, we first fit the model Y; = uo + Ef uy + Z] p +
XI'my + €. Then, we construct the matrix Xl-VjVS = f1;jX;;Ei;s where s is the index of the
environmental factor of interest. The matrix XLVJ'-/S describes genotype-environment products
weighted by the corresponding estimated genetic main effect. Next, we regress out X;, E;, and
Z; fromY; and Xi"jl-ls (for each variant j) and denote the resulting residuals by Y;" and Xi"]l-’sr.
The variant-wise variances of XL-VJVS’", denoted by v;, differ typically substantially due to the

different weights of genotypic effects and minor allele frequencies. We keep only variants
. . 1 . .
whose variance is larger than —* Zj v; and denote the resulting number of variants by Sy,

Based on these objects, we split I; randomly in two equally sized parts and perform
approximate best subset selection (Bertsimas et al., 2016) in each part with different subset
sizes, where the corresponding other part is used as testing data. Best subset here
corresponds to the best subset of variants, and we do not utilize the effect sizes per variant

inferred in the best subset regression. Instead, we use the summation over the corresponding

Wsr
ij

variants in X;7°", describing the genetic risk score multiplied by the environmental factor. The
size of the subsets is increased between 5 and S,,,,,, in steps of 5. We select the best subsets
in both parts of the data in terms of association with Y;" in the test data and check the overlap
between these subsets to create two different scores. Denote by b; the set of overlapping
variants (contained in both best subsets), and by b, the set of non-overlapping variants that
were only in one best subset. The first score is then defined by U;; = ZjeleWS and the

ij

second by U;, = Zjebz Xg-/s (and they can be computed in I, and I3 using exactly these
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weights). Overall, these two scores represent genetic risk scores multiplied by the
environmental factor of interest, identified in combination with the main effect working
model uo + E] uy + Z 'y + X! my.

c.) Estimation of main effects and further filtering using I,: Using the first half of I, data, we
fit the model V; = u(E;, Z;) + X7ty mo;(Z)X;j + mUy + moUp, + €5, where u(E;, Z;) and
Z}”zl T[Oj(Zi)Xij are realized using higher-order and product terms in combination with
penalization (LASSO) and cross-validation. Based on the fitted model, we obtain
A(E;, Z;), Xj=10;(Z)X;j and the overall interaction score U; = U;; + c,Uj, where ¢, is set
to 1, if the corresponding regression coefficient p-value is below 0.05, otherwise ¢, = 0. All
genetic variants that are included in U;, and therefore tested with the sub statistic S(I3]14, I3),

are denoted by the set m(1;|14, I,).

Simulations

We performed extensive simulations to demonstrate the validity and robustness of RITSS
based on the described implementation. The goal of the simulation studies is to show that the
approach provides controlled type 1 error rates in a variety of scenarios, under the null
hypothesis of no gene-environment interactions.

Simulation settings

Our simulations are based on different specifications of the model
Y, = u(Ey, Z;) + X[ mo + &(E;, Z))
with E[e;(E;, Z)I|X;, Z;, E;] = 0. The scenarios are based on a combination of the following
elements:
1.) Population stratification (PS): Z; influences E;, X;, and Y;

2.) Gene-environment correlation (GEC): X; influences E;
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3.) Mis specified environmental main effects (MEM): u(E;, Z;) #+ EiTul +ZiTu2 for all
vectors Uy, Uy.
4.) Non-normal errors (NNE): Error distribution of &; not normal

5.) Heteroscedasticity (HE): Variance of ¢; depends on E;.

Point 3.) impacts the construction of interaction scores in the screening step b.) where a
simple linear working model for main effects is assumed. Overall, 32 scenarios can be
generated as combinations of the presence or absence of these five factors. For the
simulations with non-normal errors, we used the mean centered and standardized FEV1/FVC
data from the UK Biobank as the random error to investigate robustness against this error
distribution. In addition, we investigated the question if the type 1 error rate is inflated in the
case where the SNPs for the analysis were selected based on GWAS results in the same
dataset, i.e., based on their GWAS association p-values (notated as SELECT yes/no).
Incorporating this factor, we, therefore, simulated a total of 64 scenarios. In all simulations,
we set a sample size of n = 30,000, m = 100 SNPs, d = 5 environmental factors E;, and p =
5 principal components Z;. All simulation results were evaluated based on 1,000 replicates.
The specific details of how the presence or absence of the six factors PS yes/no, GEC yes/no,
MEM yes/no, NNE yes/no, HE yes/no, and SELECT yes/no were implemented are described in
Appendix A.

Comparison with linear regression

To demonstrate the importance of the robust test statistic in our approach, we also included
a standard regression analysis as a comparison. Here, we use the interaction score U;, derived
by the steps a.) to d.), but instead of using the robust statistic S(I5|I;,I;) and U; to test the
interaction in I3, we incorporate U; as a covariate in the regression model

ElYi|Xi, Zi, Ei] = o + Ef iy + Z] up + X[ o + vU;
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in I3 and test for interaction based on the coefficient y. We denote this approach by REG. We
also incorporated REG-robust, where the corresponding standard errors are computed based
on a robust sandwich-variance-estimator. Since we only consider type 1 error rate studies and
not power results, the fact that REG/REG-robust use I; data only, whereas RITSS used the
whole dataset, is not crucial.

Results

We report the distribution of p-values for the three methods RITSS, REG, and REG-robust in
all 64 scenarios in Figures 2-5 and Supplementary Figures 1-4. Figures 2-5 visualize the
guantile-quantile-plots (qqg-plots) for SELECT:no, partitioned according to the four
combinations of GEC yes/no and MEM yes/no. Accordingly, Supplementary Figures 1-4 report
the corresponding qg-plots for SELECT:yes.

Figure 2 shows the qqg-plots for GEC:no and MEM:no. All methods control the type 1 error
rates, except REG in the sub scenarios with HE:yes. This is expected because the standard error
estimation in REG assumes homoscedastic errors. The results in Figure 3 (GEC:yes and
MEM:no) are similar. In the case of GEC:no and MEM:yes (Figure 4), we see that REG is inflated
in all sub scenarios since the mis specified environmental main effect introduces
heteroscedastic errors (Sun et al., 2018). REG-robust is able to provide controlled type 1 error
rates due to the robust variance estimation. RITSS also controls the type 1 error rates in these
scenarios. In Figure 5 (GEC:yes and MEM:yes), REG and REG-robust are highly inflated in all 8
sub scenarios, while RITSS still remains valid. The explanation is that the presence of GEC and
MEM leads to constructions of U; that seemingly capture interactions but are just the
implication of the misspecifications of the main effects in the screening step and the
regression test model. Therefore, whereas the robustness property of RITSS still ensures valid

results (due to the more flexible main effect estimation in step c.) and the projected score in
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step d.)), the regression-based approaches become inflated. The results for the SELECT:yes
scenarios (Supplementary Figure 1-4) are similar to the corresponding results for SELECT:no.
Overall, the simulations demonstrate the robustness of RITSS in a variety of different
scenarios.

In addition, in Figure 6, we plotted the qg-plot based on 3*64 pairwise correlation p-values
between the z-scores of the sub statistics S(I3|1;, 1), S(I,|15,1;), and S(I;|I,,13) across all
simulated scenarios. The results show that the sub statistics are indeed asymptotically
independent, which is also reflected in the controlled type 1 error rates of the p-values that

are based on the variance estimator that exploits the independence.
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Figure 2: Quantile-quantile-plots for RITSS, REG, and REG-robust in the 8 scenarios with SELECT:no, GEC:no, and
MEM:no. All results based on 1,000 replicates. GEC: gene-environment correlation, MEM: mis specified
environmental main effect, PS: population stratification, NNE: non-normal errors, HE: heteroscedasticity.
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Figure 3: Quantile-quantile-plots for RITSS, REG, and REG-robust in the 8 scenarios with SELECT:no, GEC:yes, and
MEM:no. All results based on 1,000 replicates. GEC: gene-environment correlation, MEM: mis specified
environmental main effect, PS: population stratification, NNE: non-normal errors, HE: heteroscedasticity
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MEM:yes. All results based on 1,000 replicates. GEC: gene-environment correlation, MEM: mis specified
environmental main effect, PS: population stratification, NNE: non-normal errors, HE: heteroscedasticity
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Figure 6: Quantile-quantile-plots of the 3*64 pairwise correlation p-values between the z-scores of the
corresponding three sub statistics in the 64 simulated scenarios. The results are based on 1,000 replicates
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UK Biobank analysis

We applied RITSS to the UK Biobank data to analyze gene-environment interactions for lung
function (measured by forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC)
and the ratio FEV1/FVC) and height. Details about the study population as well as the

extraction of genetic, environmental, and phenotypic data are described in Appendix C.
Analysis setup

Table 1 contains the configurations of Y;, X;, E;, and Z; for the four different analyses. Age and
pack-years of smoking (P-Y-S) were mean centered before computing the squared variable.
Sex was coded as male=1 and female=0. For the lung function traits, we also included height
as an interacting variable. We note that, given this specific sex coding, height and sex are
(strongly) positively correlated. The lung function measurements were analyzed on the
original scale and not transformed, as robustness of the approach against non-normal errors
was demonstrated in the simulations. After quality control, we split the 254,053 samples
(European ancestry) in two parts: 180,000 randomly selected samples for the main analysis
using RITSS and 74,053 samples that are not analyzed by RITSS and serve as an independent
set to validate the analysis results of RITSS. For the analysis, we applied the RITSS as described
above. Each of the factors in E; was tested for interaction, resulting in a total of 16 tests. In
Supplementary Figure 5, we plotted the estimated densities of the standardized residuals
after adjusting for X;, E;, and Z; for the selected traits. The density plots are based on the

180,000 samples in the main analysis.
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Y; Xi E; Z;
FEV1 383 SNPs sex, height, P-Y-S, E-S, P-Y-S? age, age?, PCs 1-10, genotyping-array
FVC 638 SNPs sex, height, P-Y-S, E-S, P-Y-S? age, age?, PCs 1-10, genotyping-array
FEV1/FVC 885 SNPs sex, height, P-Y-S, E-S, P-Y-S? age, age?, PCs 1-10, genotyping-array
height 3368 SNPs sex age, age?, PCs 1-10, genotyping-array

Table 1. Analysis configurations and number of genetic variants incorporated. P-Y-S: pack-years of smoking, E-S:
ever-smoking, PCs: genetic principal components. FEV1: forced expiratory volume in 1 second, FVC: forced vital
capacity (FVC). Pack-years of smoking and age were centered before computing the squared variable.

Results

Table 2 contains the results of our UK Biobank RITSS analysis using 180,000 samples. For each
of the four traits, we observed a significant interaction between sex and subcomponents of
the geneticrisk score. For the lung function traits, we also observed similar interaction findings
with height. We investigated this in more detail in the validation analysis below.
Furthermore, in line with previous results in the literature, we observed a significant
interaction with ever-smoking and pack-years of smoking for FEV1/FVC (Kim et al., 2021;
Aschard et al., 2017).

As outlined above, the three interaction scores tested in each of the three sub-statistics can
consist of different genetic variants, due to the independent screening in different parts of the
data. These sets of genetic variants are denoted by m(I5|1;, I,), m(I,|I5, 1), and m(I;|1,, I5).
Furthermore, we denote the set of genetic variants that are shared by all three or exactly two
sub statistics by ms and m,, respectively. Table 2 reports the number of genetic variants in
these sets.

Based on the genetic variants in m, and m3, we performed an additional validation analysis
using the remaining and independent 74,053 samples. We considered all interactions in Table

2 that were significant after Bonferroni correction adjusting for 16 tests at an overall
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significance level of @ = 0.05. For this validation analysis, we used a standard regression
interaction test while fitting X;, E;, and Z;. We tested two interaction scores, the first based
on the variants in the corresponding ms set and the second based on m,. The interaction p-
values were evaluated based on the model-based standard errors as well as standard errors
obtained from robust sandwich estimators. Here, the genotype main effect estimates for the
genetic risk scores were estimated based on the 180,000 samples in the main analysis.

The results of our validation analysis are described in Table 3. The results show that almost all
findings replicate except the m; based E-S interaction for FEV1/FVC. We also note that the
effect directions were consistent between the main analysis and validation analysis.

To examine these findings in more detail, we examined the single variant interaction p-values
for the genetic variants in the combined set m5/m, with the respective environmental factor
in the validation dataset. This analysis was also based on a linear regression that fits X;, Ej,
and Z;, and the respective interaction term. Table 4 lists the number of genome-wide
significant single variant interactions, i.e., p < 5 * 1078, as well as the number of significant
single variant interactions using a Bonferroni correction adjusting for the number of variants
in the combined set m3/m, at a significance level of @ = 0.05. Both numbers are either 0 or
very small, for all trait/environmental factor combinations. This suggests that the interaction
effects at the single variant level are small. However, we make an interesting observation by
investigating the empirical distribution of effect directions across the single variant interaction
tests. Table 4 provides these empirical distributions of effect direction for a.) the unweighted
interaction terms X;; * E;; and b.) the weighted terms ﬁj * X;j * Ey, where [?j is the estimated
genetic effect based on the main analysis dataset. In addition, we compared the interaction
p-value distributions according to the effect direction of the weighted interaction terms. As

we can see by the enrichment of positive effects, the weighting by the genetic main effect, as
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it is applied in the computation of the genetic risk score, “aligns” the interaction effect
directions across the genetic variants. Furthermore, the p-values for weighted interaction
terms with positive effect show higher inflation. This indicates that RITSS identified genetic
variants whose interaction signals are weak at the single variant level but when summed up
in the genetic risk score align to a significant interaction. Since we used a sex coding of male=1
and female=0, this suggests that the genetic effects in males and females across these variants
have the same direction, but the magnitudes of effects in males are slightly larger. Related,
we note that the genetic variants in m3/m, between the sex and height interactions with lung
functions highly overlap, which is in line with the observation that height and sex are strongly
positively correlated. However, if we test the height interaction separately in males and
females in the validation dataset, the signal is strongly diminished. Therefore, we hypothesize
that the observed interactions are a result of sex-differential effects, but further analyses are
required to disentangle the exact mechanisms. In this context, we also note that, related to
recent results regarding so-called participation biases and their impact on sex-related analyses
(Pirastu et al., 2021), the genetic variants in m5/m, across the three lung function phenotypes
and height were not associated with sex. Detailed information about the selected variants in
the gene-by-sex interactions for lung function and height and the corresponding closest genes

(obtained by the GWAS catalogue data) can be found in Supplementary Tables 1-4.


https://doi.org/10.1101/2021.12.01.469907
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.469907; this version posted December 3, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Y; Eis RITSS p-value | |m| Im(11, )| | ImUalls, )| | Im(L L, IB)| | [ms] [ma|
FEV1 sex 5.834e-34 383 145 130 137 72 67
FEV1 height 9.121e-14 383 145 131 132 68 70
FEV1 P-Y-S 3.012e-01 383 7 12 6 0 1
FEV1 E-S 4.220e-01 383 8 5 25 0 4
FEV1 P-Y-S2 3.853e-01 383 10 23 9 0 6
FVC sex 2.670e-22 638 248 215 243 61 137
FVC height 5.241e-18 638 248 249 221 56 152
FVC P-Y-S 9.923e-03 638 9 6 149 0 5
FvVC E-S 2.945e-01 638 61 10 202 1 24
FVC P-Y-$2 6.344e-01 638 39 15 61 0 6
FEV./FVC sex 3.392e-24 885 300 303 288 110 156
FEV1/FVC height 4.112e-17 885 294 171 262 70 119
FEV1/FVC P-Y-S 4.687e-05 885 291 295 232 89 143
FEV1/FVC E-S 1.232e-05 885 287 23 288 10 151
FEV1/FVC P-Y-$2 6.809e-01 885 297 175 98 32 107
height sex 2.619e-14 3368 1013 895 618 275 427

Table 2. Results of the interaction testing using RITSS in the UK Biobank. The tested environmental factor is denoted by E;;. |m| is the number
of total SNPs in the analysis, |m(I5|1;, I,)|, |m(l,|I5,1;)| and |m(l;|I,, I3)| denote the number of SNPs in the three sub statistics. |m5| and
|m,| are the number of SNPs that are shared by all three and exactly two interaction scores, respectively.

Y; Ejs p-value my robust p-value ms |m3| p-value m, robust p-value m, |m;|
FEV, sex 8.161e-22 5.072e-11 72 9.625e-05 1.961e-04 67
FEV4 height 5.162e-10 4.431e-09 68 2.593e-06 9.029e-06 70
FvC sex 1.732e-05 2.962e-05 61 1.149e-09 6.074e-09 137
FvC height  3.938e-06 1.142e-05 56 3.686e-09 6.702e-08 152
FEV./FVC sex 9.325e-11 2.510e-10 110 2.660e-04 3.178e-04 156
FEV./FVC height  4.754e-03 4.912e-03 70 7.130e-06 1.076e-05 119
FEV1/FVC P-Y-S 4.995e-07 8.929e-05 89 2.197e-02 8.743e-02 143
FEV./FVC E-S 7.570e-01 7.648e-01 10 1.374e-03 2.403e-03 151
height sex 8.720e-05 1.051e-04 275 8.327e-07 1.108e-06 427

Table 3. Results of the validation analysis in the 74,053 remaining samples in the UK Biobank. The two sets m; and m, were identified in the
corresponding main analysis (Table 2). The interaction p-values are based on a standard regression analysis, the robust p-values are based
on standard errors obtained by a robust sandwich variance estimator.
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Y; Es |ms|+|m,| No. gws | No. bfs. | Distribution effect | Distribution 5% quantile
interactions interactions directions unweighted | effect directions | interaction p-values in
-+ weighted -/+ weighted -/+
FEV1 sex 139 0 1 0.57/0.43 0.30/0.70 1.304e-01/2.437e-03
FEV1 height 138 0 1 0.54/0.46 0.29/0.71 1.061e-01/9.810e-03
FvC sex 198 0 1 0.51/0.49 0.30/0.70 1.037e-01/8.514e-03
FvC height 208 0 1 0.52/0.48 0.33/0.67 8.071e-01/1.449e-02
FEV1/FVC sex 266 0 0 0.47/0.53 0.40/0.60 1.404e-01/9.763e-03
FEV1/FVC height 189 0 1 0.47/0.53 0.39/0.61 1.215e-01/1.297e-02
FEV1/FVC P-Y-S 232 0 3 0.53/0.47 0.44/0.56 2.352e-02/1.283e-03
FEV1/FVC E-S 161 0 1 0.55/0.45 0.40/0.60 3.771e-02/4.095e-02
height sex 702 0 0 0.48/0.52 0.42/0.58 5.042e-02/3.558e-02

Table 4. Results of the validation analysis in the 74,053 remaining samples in the UK Biobank. The two sets m; and m, were identified in the
corresponding main analysis (Table 2). All variants in m3 /m, were tested for interaction with the respective environmental factor Ejq. In this
context, gws. interaction refers to a single variant interaction p-value p <5 * 1078, Similar, bfs. Interaction corresponds to p <
0.05/(|ms|+|m;]). The last columns report the empirical distribution of effect directions in these tests and the corresponding 5% quantile
of p-values. In the weighted analysis, the genotype/env.factor product term was multiplied by the estimated genetic main effect (obtained
from independent data).

Discussion

In this communication, we propose RITSS, a robust and flexible interaction testing framework
for quantitative traits. Our framework aims to identify aggregated interaction signals and tests
them using sample splitting and robust test statistics. Since interactions at the single genetic
variant level are hard to detect due to small effect sizes, we hypothesize that strategies that
aggregate signals across a limited number of factors/loci have higher statistical detection
power while the limited number of factors/loci in the score still permit an interpretation of

the aggregated signals.

In extensive simulations, we demonstrated that RITSS controls the type 1 error rates well
across different scenarios, including population stratification, gene-environment correlation,
mis specified environmental main effects, non-normal error distributions, and

heteroscedasticity. We also applied our approach to the UK Biobank and observed potential


https://doi.org/10.1101/2021.12.01.469907
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.469907; this version posted December 3, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

interactions between subcomponents of risk scores and sex in lung function and height. Since
interactions for complex traits at the single genetic variant level were rarely detected in recent
large-scale analyses, we suggest that our approach will be an important tool for the

identification of genetic interactions and the underlying mechanisms.

For example, in the context of gene-by-sex interactions, Fawcett et al. performed a genome-
wide interaction analysis with sex for FEV1 in the UK Biobank, using more than 300,000
samples (Fawcett et al., 2021). Although they found five genome-wide significant interactions,
only one interaction was replicated in an independent study. In a different study, Bernabeu et
al. utilized the UK Biobank to analyze genotype by sex interaction for 530 complex traits. This
analysis revealed several genome-wide significant (p < 1078) findings, but heritability and
genetic correlation analyses suggest that substantial proportions of the sex-differential
genetic architecture are yet to be discovered (Bernabeu et al., 2021). Our results are in line
with these findings since our interaction signals are not driven by strong effects on a single

variant level but aggregations across a limited number of variants.

Our approach has the following limitations. A significant interaction p-value of the aggregated
score does not imply that all included pairs of genetic variants/environmental factors
necessarily truly contribute to this interaction. Depending on the specific implementation of
the screening step, our approach can be computationally demanding and the size of the input
set of genetic variants is restricted in size. Finally, a significant interaction p-value does not
imply that causal mechanisms are detected. RITSS aims to identify deviations from the null
hypothesis model E[Y;|X;, Z;, E;] = u(E;, Z;) + XL, mo;(Z;)X;; in the form of environment-
dependent genetic effects m(E;). However, the interpretation of significant findings depends
on the assumption that there is no unmeasured variable omitted that is involved in this

mechanism (Dudbridge and Fletcher, 2014; VanderWeele, 2009).
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Future directions include more detailed follow-up analyses, the extension to dichotomous
traits, the incorporation of other screening techniques, such as for example LASSO (Tibshirani,
1996) or RaSE (Tian and Feng, 2021), and the improvement of the computational efficiency.
We note that RITSS can also be used to analyze gene-gene-interactions and interaction models
can be based on more general, non-linear approaches. In addition, RITSS can be applied to
other omics data layers, such as for example, DNA methylation, transcriptomics, or
metabolomics. An R package implementing RITSS and providing the framework for extensions,

as well as the simulation study code, is available at https://github.com/julianhecker/RITSS.
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Appendix A: Simulation details

The covariates Z;; are simulated based on a uniform distribution Z;j~Unif (a, b),j = 1, ..., p.
They are used to simulate population stratification (PS) and can be considered as the principal
components (although not orthogonal). The parameters a and b are settoa = 0.0 and b =
0.1. The genotypes X;; are generated based on a binomial distribution with
X;j~Binom(2,p = 0.3 + fps * Zyp,),j = 1,..,m, where fps=1 in the presence of
population stratification (PS:yes) and Sps = 0 if not (PS:no). The index v is chosen based on a
varying sequence that depends on m and p, to ensure approximate coverage of all
components. The environmental factors Ej; follow Ej; = X[ Bexj+ Z{ Pezj + Wijj =
1, .., d, with W;j~N(0,1). The vectors Bgx; and fgz; control gene-environment correlations
(GEC) and population differences in the environment. The residual error ¢g;; is simulated by
&ij = bij * (1 + B¢ * Eiy), where b;;~N(0,1) in the case of normal errors. In the scenario of
non-normal errors (NNE), b;; is sampled from the mean-centered and standardized lung
function ratio in the UK Biobank (Bycroft et al., 2018). The parameter Sz controls the

presence of heteroscedastic errors (HE). The phenotype Y; is then constructed by:
Y; = X! Bx + E5Ber + EiaBrz + -+ + EiaBra + Z] Bz + &

The exponent 9 is introduced to simulate mis specified environmental main effects (MEM).

The effects Bx, Bg, Bz, Bezj, Bexj, and Beg are generated as follows:
Bx~N(0,0¢1y), Bz~N (0,07 1), Ber~N(0,0%),
Br = |ag|, where ag~N(0,5Z1,).
and,

Bex;j = Bjlagxj| where agx;j~N (0, oL, j =1,...,d and Bj~Bernoulli(0.2)


https://doi.org/10.1101/2021.12.01.469907
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.469907; this version posted December 3, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

as well as

Bezj = B'jagz; where agzj~N(0,0¢,1,), j=1,..,p and B';~Bernoulli(0.5). The
parameters By, Bg, Bz, Bezj: Bexj, and Pgg are freshly drawn in each replication of the
simulation study. We set ¢ = 0.12 and 62 = 0.42. In the following Table S1, we report

scenario-dependent parameter values/implementations.

yes No
PS Bps =1, 0%, = 0.12, 6% = 0.12 Bps =0, 0%, = 0.0,0Z = 0.0
GEC o2y = 0.12 oy = 0.0
MEM Y =2 9=1
NNE b;j~FEV,/FVC UKB b;j~N(0,1)
HE 0% = 0.52 o2 = 0.0
SELECT % variants with smallest association | keep all variants

p-value selected for analysis (based

onalln = 30,000 samples)

Table S1: Scenario-dependent parameter values for the simulation studies. PS: population stratification, GEC:
gene-environment correlation, MEM: mis specified environmental main effect, NNE : non-normal errors, HE :
heteroscedasticity.
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Appendix B: ACE algorithm

The input for the ACE algorithm (Breiman and Friedman, 1985; Vansteelandt et al., 2008)
consists of the score U;, genotype data X;, environmental factors E;, and the covariates Z;.
The goal is to derive a projection of U; that is orthogonal to functions u(E;, Z;) (i.e.,

E[U{|E;, Z;] = 0) and orthogonal to the genetic main effects .7, 70 (Z;) X;.
Starting from an input score of the form U; = }.; ¥, mj; X, Ey;, we

1. estimate E[U;|X;, Z;] = Xy mj,E[E;|X;, Z;] Xj X;ij using a flexible LASSO-based linear
model in combination with cross-validation and replace U; by the corresponding
residuals.

2. Use a machine learning approach to estimate E[U;|E;, Z;] and replace U; by the
corresponding residuals.

3. Use a machine learning approach to estimate E[U;|X;,Z;] and replace U; by the
corresponding residuals.

4. Repeat steps 2.) and 3.) until a sufficient criterion is reached.

For step 2.), we applied a regression forest approach, implemented in the grf R package (Athey
et al., 2019). For step 3.), we used a LASSO-based linear model with X; and Z; as covariates, in

combination with cross validation. In practice, 2-3 repetitions of 2.) + 3.) are often sufficient.
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Appendix C: UK Biobank data

Study population

Our data analysis utilized participants from the UK Biobank (Bycroft et al., 2018). All
participants in the analysis provided written informed consent and study protocols were
approved by local institutional review boards/research ethics committees. We selected
participants of European ancestry only, whereas ancestry was derived based on a combination
of self-reported ethnicity and k-means clustering of principal components of genetic ancestry,
as previously described (Shrine et al., 2019). Additional quality control included the exclusion
of related pairs (keeping one sample), samples with low quality lung function (Shrine et al.,
2019; Sakornsakolpat et al., 2019) as well as missing phenotype or covariate data. Overall, we

kept 254,053 participants for the analysis.
Phenotype and covariate data

We incorporated lung function data as measured by forced expiratory volume in 1 second
(FEV1), forced vital capacity (FVC), and the ratio FEV1/FVC. We also extracted age, sex, height,
smoking exposure variables, genotyping array, and the first ten principal components of
genetic ancestry. Smoking exposure was based on self-reports and included the variables
pack-years of smoking (P-Y-S) and ever- versus never-smoking status (E-S). ‘Ever-smokers’
included individuals reporting current smoking, smoking most days, or smoking occasionally.

‘Never smokers’ included those who smoked less than 100 cigarettes in their lifetime.
Genetic data
Genotyping and imputation for the UK Biobank were performed as described in the

corresponding publications (Shrine et al., 2019; Bycroft et al., 2018) and this genetic data was

available for our analyses. For each of the four phenotypes FEV1, FVC, FEV1/FVC, and height,
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we downloaded all reported genetic associations from the GWAS catalog (MacArthur et al.,
2017) (February-August, 2021). We extracted the corresponding genetic variants with a minor
allele frequency above 1% (estimated in the analysis dataset) and performed LD pruning
(indep-pairwise command with parameters 500, 50, and 0.2) using PLINK2 (Version
v2.00a2.3LM) (Chang et al., 2015) to avoid reported genetic associations that are in high LD.
We also excluded multi-allelic variants. Our analyses are based on expected minor allele count
information, as computed by PLINK2. The final number of variants for the analysis of the

respective phenotypes is described in Table 1.
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