

Environmental nucleic acids: a field-based comparison for monitoring freshwater habitats using eDNA and eRNA

Running title: Comparing eDNA and eRNA for biomonitoring

Joanne E. Littlefair^{*1, 2}, Michael D. Rennie^{3,4}, Melania E. Cristescu¹

* Corresponding author j.e.littlefair@qmul.ac.uk

Author affiliations:

¹ Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, QC, Canada

² Current affiliation: Queen Mary University of London, Mile End Road, London, UK

³ IISD Experimental Lakes Area, 111 Lombard Ave., Suite 325, Winnipeg, MB, Canada

⁴ Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada

1 Abstract

2 Nucleic acids released by organisms and isolated from environmental substrates are
3 increasingly being used for molecular biomonitoring. While environmental DNA (eDNA) has
4 received attention recently, the potential of environmental RNA as a biomonitoring tool
5 remains less explored. Several recent studies using paired DNA and RNA metabarcoding of
6 bulk samples suggest that RNA might better reflect “metabolically active” parts of the
7 community. However, such studies mainly capture organismal eDNA and eRNA. For larger
8 eukaryotes, isolation of extra-organismal RNA will be important, but viability needs to be
9 examined in a field-based setting. In this study we evaluate (a) whether extra-organismal
10 eRNA release from macroeukaryotes can be detected given its supposedly rapid
11 degradation, and (b) if the same field collection methods for eDNA can be applied to eRNA.
12 We collected eDNA and eRNA from water in lakes where fish community composition is well
13 documented, enabling a comparison between the two nucleic acids in two different seasons
14 with monitoring using conventional methods. We found that eRNA is released from
15 macroeukaryotes and can be filtered from water and metabarcoded in a similar manner as
16 eDNA to reliably provide species composition information. eRNA had a small but significantly
17 greater true positive rate than eDNA, indicating that it correctly detects more species known
18 to exist in the lakes. Given relatively small differences between the two molecules in
19 describing fish community composition, we conclude that if eRNA provides significant
20 advantages in terms of lability, it is a strong candidate to add to the suite of molecular
21 monitoring tools.

22 Keywords: environmental DNA, environmental RNA, metabarcoding, freshwater, fish,
23 seasonality

24

25 Introduction

26 Environmental nucleic acids (eNAs) such as environmental DNA (eDNA) and environmental
27 RNA (eRNA) are emerging as reliable methods for monitoring aquatic biodiversity (Cristescu
28 & Hebert, 2018; Deiner et al., 2017). One concern with the recovery of eDNA revolves
29 around the dynamics of stability and persistence of nucleic acids in the environment that can
30 lead to false detections of local species. There are several possible scenarios through which
31 false positives might result from eDNA; for example, the transport of eDNA molecules from
32 an upstream to a downstream location, or the resuspension of eDNA from a sediment layer
33 which originates from older communities (Corinaldesi, Beolchini, & Dell'Anno, 2008) to the
34 water column. Situations in which it might be difficult to distinguish transported/residual
35 eDNA signal from true signal include detections at low abundance from rare species and at
36 invasion fronts (Jerde, Mahon, Chadderton, & Lodge, 2011). The degree of transported
37 signal relies on the complex interplay among abiotic factors influencing the release,
38 degradation, and persistence of eNAs, the speed and volume of substrate flow, and biotic
39 factors such as biomass, metabolic rates, and behaviour which determine the volume of
40 eNAs released from animal populations. For this reason, it is difficult to predict the extent of
41 transported eNA in each individual scenario. Laboratory and field studies based on eDNA
42 detect signal across distances from several metres to tens of kilometres (Deiner & Altermatt,
43 2014; Deiner, Fronhofer, Mächler, & Altermatt, 2016; Jane et al., 2015; Jerde et al., 2016;
44 Shogren et al., 2017). This key property of eDNA sampling has important consequences for
45 separating the presence of active communities with molecular monitoring from residual
46 signal.

47 Recently, it has been proposed that eRNA could be more labile than eDNA and is therefore
48 a candidate molecule for reducing problems associated with transported signal (Cristescu,
49 2019). The increased lability of eRNA when compared with eDNA is thought to originate
50 from its single-stranded structure, the presence of additional hydroxyl groups allowing for

51 base catalysed hydrolysis (Y. Li & Breaker, 1999), and the ubiquitous presence of
52 exogenous and endogenous RNases (Tan & Yiap, 2009). These characteristics are thought
53 to lead to a faster rate of degradation of eRNA when compared with eDNA; for example,
54 eRNA has a 4-5 hour faster half-life when compared with eDNA (Marshall, Vanderploeg, &
55 Chaganti, 2021). Thus, it may be possible for eRNA signal to distinguish biologically active
56 communities from dead/dormant ones, and local communities from transported molecular
57 signal when eRNA is applied to species monitoring (Barnes & Turner, 2016; Deiner et al.,
58 2017; Pawlowski et al., 2018). For example, eDNA in ballast water was found to contain 57%
59 OTUs assigned to fungi which are thought to represent legacy OTUs, whereas OTUs
60 detected by eRNA included mainly active metazoa and ciliates. Pawlowski et al. (2014)
61 found that DNA recovered greater benthic taxonomic richness when compared with RNA,
62 which could be explained by the detection of previous benthic successions of DNA, as
63 opposed to solely cellularly active taxa (see also Guardiola et al., 2016 for similar findings).
64 The same study found that RNA detected benthic community responses to fish farming to a
65 greater degree than DNA (Pawlowski et al., 2014). Similarly, Dowle et al (2015) found
66 moderately stronger correlations between bacterial RNA OTU data and environmental
67 indices, when compared with DNA OTUs. Although these studies are suggestive, eRNA has
68 received much less attention than eDNA to date, particularly with respect to molecular
69 monitoring of macro-eukaryotes.

70 Before eRNA is used more commonly in biomonitoring applications, its efficiency of recovery
71 and accuracy of representation of known biological communities must be assessed.
72 Although studies based on organismal RNA are valuable, it is important to examine the
73 viability of extra-organismal RNA recovery under natural field conditions, given that factors
74 such as temperature, acidity, and microbial activity have already been shown to influence
75 eDNA persistence (Sansom & Sassoubre, 2017; Seymour et al., 2018; Strickler, Fremier, &
76 Goldberg, 2015; Tsuji, Ushio, Sakurai, Minamoto, & Yamanaka, 2017). There are many

77 practical considerations when applying molecular monitoring methods in the field, such as
78 the time between sample collection and storage, and choice of buffers used to preserve the
79 molecules until lab work can be undertaken (Deiner, Walser, Mächler, & Altermatt, 2015;
80 Dickie et al., 2018). If eRNA cannot be used in a “field” scenario in the same way that eDNA
81 is, any theoretical benefits due to increased molecule lability would be outweighed by
82 practical disadvantages. Moreover, eRNA may be too labile to be reliably sampled in the
83 field in the same way that eDNA is. The few studies that provide comparisons of community
84 recovery with DNA and RNA metabarcoding focussed on metabarcoding of bulk samples
85 (organismal RNA) which primarily includes smaller eukaryotes and bacteria in marine
86 sediment samples (Brandt et al., 2020; Guardiola et al., 2016; Laroche et al., 2018, 2017;
87 Orsi, Biddle, & Edgcomb, 2013; Pawlowski et al., 2016). Larger animals such as vertebrates
88 (e.g. fish and mammals) might be detected by considering extra-organismal molecules
89 isolated from the environment which are not the primary focus of bulk sample studies. Few
90 studies have specifically considered extra-organismal eRNA, although eRNA was compared
91 to eDNA using ddPCR from two species in laboratory aquaria (Wood et al., 2020), and
92 Miyata et al., (2021) recently used eRNA metabarcoding to detect fishes from two sites in
93 the Naka river, Japan.

94 In our study, we sampled and filtered water from multiple freshwater lakes, extracting eDNA
95 and eRNA from paired filter halves to compare the community composition of fishes
96 recovered by each molecule. We targeted extra-organismal nucleic acids (eDNA and eRNA)
97 from fish by generating amplicon libraries using the MiFish-U 12S rRNA fragment (Miya et
98 al., 2015). We compared the sampling effort required, species detection success and
99 recovered community composition of these two molecules, and compared both against long-
100 term biomonitoring data collected by conventional methods at these same sites. Sampling
101 was conducted in the summer and again in autumn to capture distinct differences in lake
102 thermal structure (stratification during summer and turnover during autumn). We expected

103 the recovered molecular-based community composition to vary between these two sampling
104 periods, due to differences in water stratification and mixing regimes which control how
105 eDNA is distributed in the lakes, and according to the changing seasonal depth preferences
106 of the fishes (Littlefair, Hrenchuk, Blanchfield, Rennie, & Cristescu, 2021).

107 **Methods**

108 **Field collection**

109 Samples of eDNA and eRNA were collected in parallel to maximize comparability. We
110 sampled a total of seven lakes (two in 2017 and five in 2018; Table S1) at the IISD
111 Experimental Lakes Area (IISD-ELA), a freshwater research facility in northwest Ontario,
112 Canada. Biomonitoring has been ongoing at IISD-ELA since the 1960s, providing a well-
113 developed knowledge of species composition in this area and in these lakes specifically
114 (Table S2).

115 Six 500ml water samples were collected from each lake along a depth gradient at the
116 deepest point of each lake, by dividing the water column into six even parts and using an
117 electrical pump and PVC tubing secured to a weight to collect the water at the relevant
118 depth. Collecting on a depth gradient maximises the chance of recovering cold-water fish
119 species such as lake trout (*Salvelinus namaycush*) (Littlefair et al., 2021). Water samples
120 were pumped into sterile Whirl-Pak bags and sealed within an individual large Ziplock bag.
121 Tubing was cleaned between each depth point by pumping one litre of 30% bleach, one litre
122 of distilled water, followed by lake water at the new sampling depth for a two-minute period
123 prior to sample collection. Separate tubing was used for each lake. All samples were
124 immediately transported to the field laboratory in a cooler with ice packs and stored at 4 °C
125 until filtration. Filtering of samples took place within 2-5 hours of sample collection. Water
126 samples were filtered onto 47 mm 0.7 µm pore GF/F filters using an electric vacuum pump
127 and filtering manifold (Pall Corporation, ON, Canada) in a room which was not used for

128 animal work. Each filter was cut into two using an individual pair of forceps and scissors. Half
129 of the filter was immediately frozen at -20°C for DNA analysis and half was preserved in
130 370µl RLT buffer (Qiagen) with 1% β-mercaptoethanol and then frozen at -20°C for RNA
131 analysis. One negative control of 500 ml distilled water was stored in the cooler and filtered
132 in the same way as the field samples for each lake. In total, 84 eDNA and 84 eRNA samples
133 were taken across the entire study. Filters were shipped on dry ice to McGill University,
134 Montréal for molecular analysis.

135 **Molecular analysis**

136 Extractions of eRNA were performed from the first half of the filter using the Qiagen RNEasy
137 Mini kit with some modifications to accommodate the filter. Filters were vortexed for 20
138 seconds and centrifuged in the RLT/ β-mercaptoethanol buffer for 3 minutes at 14,000rpm. A
139 total of 325µl of this buffer was mixed with 325µl ethanol and the rest of the procedure
140 followed the kit protocol intended for extracting total RNA from animal cells. The eRNA was
141 resuspended in two elutions of 30µl RNase free water to give a final volume of 60µl.

142 Extractions of eDNA from the second half of the filter were performed using the Qiagen
143 Blood and Tissue kit. We followed the manufacturer's instructions except that 370µl of ATL
144 buffer was used in an initial overnight incubation step. After extraction, both eDNA and
145 eRNA were preserved at -80°C.

146 To avoid DNA contamination in the eRNA samples, DNA was digested from 20µl eRNA
147 extracts with the DNA-free™ DNA Removal Kit (ThermoFisher Scientific) following the
148 manufacturer's instructions and using 2µl DNase I Buffer, 1µl rDNase I and 2µl DNase
149 Inactivation reagent. Samples were checked for residual contaminating DNA using PCR
150 amplification using the MiFish-U primers tagged with Illumina sequencing adapters (Miya et
151 al., 2015). These primers target a hypervariable region of the 12S rRNA locus (163-185bp in
152 length) which has previously been used to characterise the fish community in this area and

153 provides good species level discrimination of ASVs (Littlefair et al., 2021). We used the
154 following PCR chemistry: 7.4 μ l nuclease free water (Qiagen), 1.25 μ l 10X buffer (Genscript),
155 1 mM MgCl₂ (ThermoFisher Scientific), 0.2mM GeneDirex dNTPs, 0.05mg bovine serum
156 albumen (ThermoFisher Scientific), 0.25mM each primer, 1U taq (Genscript) and 2 μ l DNA in
157 a final volume of 12.5 μ l. We followed a touchdown thermocycling protocol which we have
158 found reduces the amount of non-specific amplification (bacterial taxa) at this locus: 95°C for
159 3 minutes, 12 cycles of touchdown PCR (98°C for 20 seconds, 66°C for 15 seconds
160 decreasing by 0.2°C each time, 72°C for 15 seconds) followed by 28 cycles with an
161 annealing temperature of 64°C, 72°C extension for 5 minutes. No residual contaminating
162 DNA was found in eRNA samples. A total of 10 μ l of sample was therefore reverse
163 transcribed into cDNA using the High-Capacity cDNA Reverse Transcription kit
164 (ThermoFisher Scientific) in 20 μ l reactions following the kit instructions.

165 We then amplified the cDNA and eDNA in triplicate 12.5 μ l reactions following the MiFish-U
166 PCR protocol laid out above, and checked amplification using 1% agarose gels with SYBR
167 Safe. We then combined the triplicate reactions into one sample and performed a cleanup
168 with AMPure beads. Cleaned amplicons were then dual-indexed using the Nextera v2 DNA
169 indexes, cleaned again, equimolarised to 3ng/ μ l and sent for sequencing at Génome
170 Québec, Montréal. Samples were sequenced using 2 x 250bp paired end sequencing with
171 an Illumina MiSeq.

172 To prevent contamination, we processed the samples in a clean, pre-PCR dedicated lab.
173 Before beginning any eRNA work we thoroughly cleaned benches with 10% bleach solution
174 and RNase wiper. Laboratory equipment was cleaned with 70% ethanol and RNase wiper.
175 Negative controls were included at each major step: field sampling, RNA/DNA extraction,
176 reverse transcription, and PCR amplification.

177 **Bioinformatics**

178 We used custom scripts to remove adapters, merge paired sequences, check quality and
179 generate amplicon sequencing variants (ASVs). Samples were received as demultiplexed
180 fastq files from Génome Québec. Non-biological nucleotides were removed (primers, indices
181 and adapters) using cutadapt (Martin, 2011). Paired reads were merged using PEAR
182 (Zhang, Kobert, Flouri, & Stamatakis, 2014). Quality scores for sequences were analysed
183 with FASTQC (Andrews, 2010). Reads were length filtered between 152-192 bp. Amplicon
184 sequencing variants (ASVs) were generated using the UNOISE3 package (Edgar, 2016),
185 which uses a denoising pipeline to remove sequencing error and to cluster sequences into
186 single variants (100% similarity). The full bioinformatics pipeline is available from
187 <https://github.com/CristescuLab/YAAP>. After ASVs were generated, we assigned taxonomy
188 using BLAST+ (Camacho et al., 2009) and BASTA (Kahlke & Ralph, 2019), a last common
189 ancestor algorithm. We used a custom reference database which contained only fish known
190 to exist in the Lake of the Woods region (Ontario, CA), downloaded from the NCBI database
191 on 12 August 2018. We also compared our assignments against the full NCBI database and
192 found only one additional fish ASV with the larger database. Other taxonomic groups
193 appeared at very low frequencies when our ASVs were matched against the NCBI database,
194 such as bacterial, mammalian and bird taxa.

195 **Statistical analysis**

196 All analyses were conducted in R v4.0.2.

197 *Bioinformatic filtering*

198 Differences in the final library sizes of eDNA and eRNA filter halves after bioinformatic
199 filtering were analysed by performing a paired *t*-test. We also explored the correlation
200 between library sizes in paired filter halves with a Spearman's rank correlation test.

201 *Sampling effort*

202 For these analyses, ASV count data was converted to incidence data. The number of water
203 samples required to adequately sample species richness was assessed by creating sample
204 accumulation curves using the function specaccum in the “vegan” package (Oksanen et al.,
205 2019). Dataframes were filtered to only include fish species (i.e. the small amount of non-
206 target taxa were removed) in order to draw comparisons with conventional fishing
207 techniques for surveying biodiversity. The differences between eDNA and eRNA
208 accumulation curves were assessed by plotting separate curves for each molecule within
209 each lake and season. Species richness according to conventional techniques was plotted
210 on the graphs with a grey dashed line. We also plotted species accumulation curves with the
211 full dataset (i.e. with non-target taxa included); these are presented in the supplementary
212 material. The ability of each molecule to achieve adequate sampling of species richness was
213 determined by calculating observed sample coverage for each molecule, season and lake
214 combination using iNEXT. We also looked at how species richness varied with increasing
215 sample coverage for each molecule, season and lake combination.

216 *Species detection*

217 The fish species composition of the lakes is well known as a result of decades of ongoing
218 monitoring. It was therefore possible to assess the relative performance of eDNA and eRNA
219 to determine species composition against conventional techniques. Fish species were
220 recorded as being present according to conventional techniques if they were consistently
221 detected by typical collection methods (trap netting and short-set gill netting), as part of an
222 ongoing broad scale monitoring program (using sampling procedures as outlined in Rennie
223 et al., 2019, which are typical of sampling efforts in the IISD-ELA lakes in the current study).
224 Using these techniques, we recorded 104 detections with conventional techniques across all
225 the lakes and species. A species was recorded as being present in a lake according to
226 molecular methods if it was detected in at least one of the six water samples taken from that

227 lake. The number of true positives detected by eDNA and eRNA was expressed as a fraction
228 of the total number of conventional detections possible across all lakes and seasons.

229 We then calculated the true positive rate as the number of detections made with molecular
230 methods as a proportion of true positives and false negatives (which we defined according to
231 the results of conventional sampling). We additionally calculated the false discovery rate as
232 the number of false positives (i.e. species we know are not present in the lakes according to
233 conventional sampling) as a proportion of true positives and false positives (i.e. all
234 detections). True positive and false discovery rates are positive numbers on the scale of 0 –
235 1, with a higher number indicating a larger proportion of true positives or false discovery in
236 the data. We then used a mixed effects model (fitted with glmmTMB) to examine whether the
237 true positive rate and the false discovery rates differed significantly between eDNA and
238 eRNA, using sampling season as a covariate and fitting the lake as a random effect. We
239 tested all models for overdispersion and examined model residuals using Dharma (Hartig,
240 2021), and tested the significance of each explanatory term by fitting nested models using
241 the “drop1” command with a chi-squared distribution.

242 *Community composition*

243 nMDS was applied to a Bray-Curtis dissimilarity matrix to visually explore the differences in
244 community composition between eDNA and eRNA for each lake. 95% confidence ellipses
245 were drawn around each season/molecule grouping using the ordiplot and ordiellipse
246 functions in vegan. We used the manyglm function in the mvabund package to fit
247 multispecies GLMs for hypothesis testing (Wang, Naumann, Wright, & Warton, 2012). We
248 tested the effects of environmental nucleic acid type (eDNA/eRNA) and season
249 (August/October) as predictors on the community dataset, as well as the interaction between
250 these two factors. When we tested the interaction term, it was not statistically significant, so
251 we removed it and fitted a new additive model with main effects only. We included library

252 size as a log offset to account for library size variation between samples. We tested both
253 poisson and negative binomial distributions and found that the negative binomial distribution
254 removed patterns in the model residuals, so we retained this distribution for our models. We
255 used the `anova.manyglm` function to retrieve test statistics using adjusted *p*-values to
256 account for multiple testing (i.e. the detection of multiple species). We accounted for the
257 block design of sampling multiple lakes by restricting permutations to within-lake blocks, by
258 supplying a permutation matrix to the `bootID` argument in the `anova` function designed using
259 the `permute` function in `vegan`.

260 **Results**

261 *Bioinformatic filtering*

262 Initial library sizes before bioinformatic filtering for eRNA were on average 6.22% smaller
263 than for eDNA. Similar amounts of sequences were removed for both molecule types during
264 the process of adapter removal, pair merging and final trim of primers (Table 1). However,
265 many more sequences were removed during the length filtering step for eRNA when
266 compared with eDNA (eRNA = 25.4% removed, compared with eDNA = 2.43% removed),
267 indicating that the amplification and sequencing of eRNA resulted in more sequences
268 outside the 152-192bp length filter. Despite significantly smaller average library sizes for
269 eRNA compared with eDNA after bioinformatic filtering (paired *t*-test, $t = 4.09$, $df = 97$, $p <$
270 0.001), the denoising steps produced similar amounts of ASVs for both molecules (eDNA =
271 107, eRNA = 115), and similar percentages of sequences mapped onto these ASVs (eDNA
272 = 98.5%, eRNA = 98.4%). There was a moderate but significant correlation in sequence
273 numbers of the filtered library size from paired eDNA and eRNA extracted from the same
274 water sample (Spearman's rho = 0.539, $p < 0.001$).

275 *Sampling effort*

276 Species accumulation curves were more rapid for eRNA taken in October than for eDNA or
277 eRNA in August in 4/7 lakes, but were otherwise inconsistent among lakes, within or across
278 seasons (Figure 1). Generally only a very small number of water samples (three - four) per
279 lake were needed in order to achieve a plateaued species accumulation curve. Compared
280 with conventional techniques, molecular techniques sometimes under- or over-sampled fish
281 species richness, but generally only by one or two species (see below). When considering
282 the entire dataset (i.e. fish and non-target taxa), the curves showed a higher species
283 richness than expected in the lakes based on conventional sampling (Figure S1), primarily
284 because the MiFish-U marker detects small numbers of taxonomic groups other than fish
285 (e.g. zooplankton, human DNA, birds; see below). Mean sample coverage for eDNA was
286 0.882 and for eRNA was 0.863 (Table S3). Although we did not sample sufficient lakes to
287 conduct a formal statistical analysis on the differences in sample coverage between eDNA
288 and eRNA, there were no noticeable visual trends (Figure S2).

289 *Species detection*

290 The vast majority of sequences (95.8%) in this dataset were assigned to Actinopterygii
291 ASVs. A total of 15 Actinopterygii ASVs were detected by both eDNA and eRNA, with an
292 additional four detected by eRNA only and an additional six detected by eDNA only. Non-
293 target ASVs were also generated, although only a relatively small percentage of sequences
294 in the dataset were actually assigned to these ASVs (4.23%). Non-target ASVs varied
295 between the two molecules: eRNA detected a greater incidence of bacterial, algal and
296 arthropod ASVs, and eDNA detected more mammalian and unassigned ASVs.

297 When using the database consisting of fish found in the northwest Ontario region, ASVs
298 could generally be assigned at species level. There were two fish species which were not
299 detected by either molecule (*Culaea inconstans* and *Rhinichthys cataractae*). Moreover,
300 *Chrosomus neogaeus* and *Chrosomus eos* could only be detected at genus level from a

301 single ASV: species specific identification is not possible due to the presence of
302 mitochondrial hybrids in the region (Mee & Taylor, 2012). We therefore counted detections
303 only once for the *Chrosomus* genus to avoid double counting.

304 There were very small amounts of sequences detected in negative controls after
305 bioinformatic filtering. These controls had an average library size of 178, compared with
306 eDNA/eRNA libraries which had an average size of 69,408. Of these, 91.7% of sequences in
307 the negative controls matched fish from northwest Ontario (rather than other taxa such as
308 bacteria or mammals). In almost all cases, the sequences matched the species composition
309 from the lake that the negative control originated from, indicating that contamination of the
310 negative control originated from within the lake sampled, rather than across-lake
311 contamination or tag jumping. We did not find any amplification in the eRNA after the use of
312 the DNA removal kit before conversion to cDNA.

313 Sampled eRNA had a small but significantly greater true positive rate than eDNA, indicating
314 that eRNA correctly detected more of the species known to exist in the lakes based on
315 conventional sampling (Figure 2A, eRNA true positive rate: 0.692 per sample, eDNA true
316 positive rate: 0.648 per sample, $p = 0.0043$). There was no difference in false discovery rate
317 between the two molecules; i.e., neither molecule detected more false positives as a
318 proportion of all detections (Figure 2B, eRNA: 0.052, eDNA: 0.046, $p = 0.568$). There was a
319 significantly lower false discovery rate in August samples when compared with those
320 collected in October (August: 0.030, October: 0.069, $p = 0.0004$). Usually false positive
321 detections were of a low read count (Table S2).

322 *Community composition*

323 Using NMDS as a visual technique to explore the differences in community composition as
324 explained by different predictors, the largest differences in community composition were
325 generated by the differences in species composition between lakes (Figure S3). Samples

326 collected in October were more similar to each other in terms of community composition than
327 samples collected in August (Figure S4), although these two distributions were nested within
328 each other. In the overall dataset, eDNA and eRNA samples detected largely similar
329 communities, although eRNA samples were slightly more similar to each other than eDNA
330 samples (Figure S5). Within a single lake, there was variation in whether eDNA and eRNA
331 detected similar community compositions (Figure 3). Although consistent differences
332 between the two molecules were not evident, there did seem to be a stronger seasonal
333 effect, as samples that were collected in August were often more dissimilar to each other
334 than samples collected in October. This is reflected in a larger and partially non-overlapping
335 95% confidence ellipse for these groups of samples.

336 We visually explored the proportion of sequences in each eDNA and eRNA sample which
337 belonged to each species or taxa in August (Figure 4A) and October (Figure 4B). We
338 calculated the proportion of sequences belonging to each species out of the total library size
339 per filter. In some taxa, eDNA and eRNA samples had strikingly similar proportions of
340 sequences within each library, for example white sucker (*Catostomus commersonii*),
341 finescale/northern redbelly dace (*Chrosomus spp.*), slimy sculpin (*Cottus cognatus*), and
342 fathead minnow (*Pimephales promelas*) (see also Table S2). In a few species, there were
343 differences between the proportions of nucleic acids; for example, there was always a higher
344 proportion of *Coregonus artedi* eDNA sequences compared to eRNA, and always a lower
345 proportion of *Perca flavescens* eDNA sequences compared to eRNA sequences. There
346 were also seasonal differences in the proportion of sequences belonging to each species; for
347 example, there were more sequences belonging to lake trout (*Salvelinus namaycush*) in
348 October compared with August, which reflects the spawning times and patterns of habitat
349 occupancy for this fish (Littlefair et al., 2021). Similarly, there were also seasonal effects on
350 sequence numbers of *Coregonus artedi* and *Cottus cognatus* which are both cold water fish
351 (higher concentrations in October), and much lower concentrations of *Perca flavescens*

352 sequences in October. These visual differences were reflected by the results of the
353 multispecies GLM, which retained significant effects for molecule type (df = 1, 166, deviance
354 = 284.7, p = 0.02) and season (df = 1, 165, deviance = 296.4, p = 0.005). There was no
355 significant effect of the interaction between molecule type and season on the numbers of
356 sequences, indicating that eDNA and eRNA detection of taxa did not respond differently
357 between the two seasons.

358 Discussion

359 Traditionally, RNA has been thought of as a very labile molecule, too difficult to extract and
360 preserve in a field setting. However, we have shown here that eRNA achieves similar rates
361 of macroeukaryotic species detection when compared with eDNA within the context of
362 sampling for environmental assessment, and in fact had a slightly higher rate of true positive
363 detection per sample than eDNA. The majority of RNA studies to date have focused on
364 metabarcoding of bulk samples (organismal RNA), but the choice of fish as a study organism
365 shows that it is possible to detect animals based simply on extra-organismal RNA released
366 into the environment. This is the first paper to solely focus on the release of extra-organismal
367 RNA in lakes with comparisons to both eDNA and well-documented conventional monitoring
368 techniques, and these comparisons support its application more broadly to assess species
369 presence/absence and ecosystem functioning.

370 Extra-organismal RNA is stable enough to collect with comparable field techniques used with
371 extra-organismal DNA. Across the entire study, all target fish species which were detected
372 with eDNA could also be detected with eRNA. Per sample, the true positive rate of detection
373 was significantly higher with eRNA than eDNA, reflecting the results of Miyata et al., (2021),
374 although the difference in detection rate between the two molecules was small. This is
375 consistent with studies based on bulk DNA and RNA which report substantial overlap
376 between OTU or species detections by the two molecules (e.g. Pochon, Zaiko, Fletcher,

377 Laroche, & Wood, 2017). In our study, field collection involved pumping water from the lake,
378 transporting the water samples back to the field laboratory, and filtering them, which took
379 place between two and five hours after collection, a protocol typical of many eDNA studies
380 (Balasingham, Walter, Mandrak, & Heath, 2018; Bylemans, Gleeson, Hardy, & Furlan, 2018;
381 Hänfling et al., 2016; Jeunen et al., 2019; J. Li, Lawson Handley, Read, & Hänfling, 2018;
382 Stat et al., 2018; Zhang et al., 2020). Here, we have shown that extra-organismal eRNA can
383 withstand comparable field methods and can be filtered and sequenced from the water
384 column, performing comparably to eDNA for species detections when compared with
385 conventional monitoring techniques.

386 While false negatives occurred for both eDNA and eRNA in certain lakes when molecular
387 results were compared to the known species composition of the lake ascertained by
388 conventional techniques, the incidence of these false negatives seemed to be linked to the
389 ecology of these species rather than the type of nucleic acid molecule. For example, fish
390 species which could not be detected in certain lakes were almost always recorded by the
391 biomonitoring program as being at rare or moderate levels of abundance in that particular
392 lake (e.g., *Couesius plumbeus* in lake 626). Moreover, species which favoured a littoral
393 habitat or which live in small inlets around the lakes (e.g., *Chrosomus* spp, *Catostomus*
394 *commersoni*, and *Esox lucius*) were also recorded as false negatives in some lakes. This is
395 perhaps not surprising given that sampling took place at the centre point of the lakes, well
396 away from the shoreline. The two fish which were reported as being present by conventional
397 techniques but not detected by molecular sampling in any lake habitat (*Culaea inconstans*
398 and *Rhinichthys cataractae*) were likewise recorded as being at “rare” levels of abundance
399 and were also species which favoured littoral or inlet habitats around the periphery of the
400 lakes. For example, only one *Rhinichthys cataractae* was caught in the survey in 2017, and
401 none have been caught in subsequent years.

402 There was no significant difference in the false discovery rate between eDNA and eRNA.

403 False discovery rate is defined as the number of false positives as a proportion of the sum of

404 true positives and false positives. Some studies have proposed that eRNA might detect

405 cellurally active taxa only, as opposed to dead and dormant taxa or resuspended

406 sedimentary DNA, and thus minimise the false discovery rate when compared with eDNA

407 (Dowle et al., 2015; Pawlowski et al., 2014; Pochon et al., 2017; Visco et al., 2015, although

408 see Brandt et al., 2020), although to date laboratory degradation experiments indicate that

409 eRNA might not degrade significantly faster than eDNA (Wood et al., 2020). Further studies

410 in a field setting will be needed to determine the advantages of eRNA of overcoming false

411 positives detected by eDNA sampling, should they exist. In semi-natural settings,

412 experiments have been performed using caged animals or artificial spikes of DNA to assess

413 the effects of time or distance on the degradation of the DNA signal (Harper, Anucha,

414 Turnbull, Bean, & Leaver, 2018; Jane et al., 2015; Pilliod, Goldberg, Arkle, & Waits, 2014).

415 Observational field studies have also provided evidence that DNA flows downstream from

416 populations (Deiner & Altermatt, 2014; Deiner et al., 2016). These methodologies could be

417 performed in parallel with eRNA to analyse whether the use of eRNA improves the false

418 positives currently detected by eDNA. Some of the lakes that we examined in this study are

419 headwater lakes (Table S1), meaning that there is no opportunity for water and nucleic acids

420 to flow from upstream populations, so the lack of difference in false discovery rate between

421 eDNA and eRNA is perhaps unsurprising in this context.

422 We did not specifically analyse the degradation time of eRNA in our study, but it is

423 noteworthy that a reliable signal from this nucleic acid could still be detected two to five

424 hours after collection in the field and storage in refrigerated conditions. This and several

425 other lines of evidence point to extra-organismal RNA being more stable than previously

426 thought (Cristescu, 2019; Torti, Lever, & Jørgensen, 2015). It may be that the eRNA is

427 temporarily stable inside cells, organelles or vesicles; a study of long noncoding RNA

428 (lncRNA) found that its half-life within cells ranged from <2 to >16 hours (Clark et al., 2012).
429 Although Marshall et al., (2021) found that eRNA had a 4-5hour faster half-life than eDNA,
430 the half-life was still within 8.84 – 13.54 hours (depending on marker selection and RNA
431 type), which was within the collection window of our study. Alternatively, eRNA could be
432 combined with organic or inorganic particles within the water column which aids with stability
433 as with eDNA; for example, Wood et al., (2020) found that eRNA could still be detected in
434 biofilms from 4/15 aquaria at the end of a 21-day experiment. There have also been
435 suggestions that RNA might preserved for long time periods in sediments by binding to
436 sedimentary particles (Cristescu, 2019; Orsi et al., 2013; Torti et al., 2015). For eRNA to be
437 a successful complement to eDNA to resolve spatial-temporal issues in species detection it
438 must be stable enough to be detected, but ideally degrade faster than eDNA, in order to
439 provide a detection signal which is in closer geographic proximity to the population in
440 question.

441 We found strong effects of season and molecule type on the proportion of sequences
442 assigned to different fish species in the libraries. In many (but not all) cases, this seems to
443 correspond to aspects of species biology and abundance in the lakes. We found higher
444 proportions of sequences for both molecule types in October for cold water species such as
445 lake herring (*Coregonus artedii*), slimy sculpin (*Cottus cognatus*), and lake trout (*Salvelinus*
446 *namaycush*) (Figure 4B). The October sampling corresponded to the spawning time of lake
447 trout, an event which has been linked to the creation of eNAs (Tillotson et al., 2018), and
448 although the other two species were not spawning during October, their activity expands
449 from deep, hypolimnetic waters to the entire lake as lake surface temperatures fall below
450 thermal maxima and towards optimum temperatures for these species (Hasnain, Escobar, &
451 Shuter, 2018). Across both seasons, there were high levels of yellow perch (*Perca*
452 *flavescens*) sequences, with some libraries containing >90% reads assigned to yellow perch.
453 This may reflect the greater abundance of yellow perch in these lakes relative to other

454 species. The numbers of yellow perch sequences in August were particularly high; this may
455 be due to the relative inactivity of other species in warmer parts of the lake during the
456 summer, as the proportion of sequences from one species affects the proportion of
457 sequences from others in the sequencing libraries. There were also consistent effects of
458 molecule type on the proportions of sequences which was largely consistent across
459 seasons; for example, high levels of lake herring eDNA relative to eRNA, and high levels of
460 yellow perch eRNA relative to eDNA in both August and October. However, for many
461 species, the consistency of the relative levels of eDNA and eRNA was surprisingly strong,
462 across both seasons. The reasons for these patterns are, as yet, unknown.

463 Comparing workflows will be important when assessing the relative strengths of these two
464 molecules. Surprisingly, eRNA was robust to a typical eDNA field protocol, which involved a
465 time lag of 2-5 hours between collection and the filtering and storage of filters (typical of
466 many eDNA studies). Possible increases in yield could be achieved by adapting or applying
467 recent innovations which involve the capture and storage of molecules *in situ* or direct
468 sequencing in the field (Truelove, Andruszkiewicz, & Block, 2019). We applied equivalent
469 levels of care to preserving the stability of both molecules after collection; for example,
470 keeping filters frozen at all times, shipping on dry ice, use of diluted bleach and RNase in the
471 laboratory to clean surfaces and equipment, and working with samples on ice. Inherently, the
472 molecular workflow involves some differences between the two molecules. We chose to use
473 spin column based kits for extractions (Blood and Tissue kit for DNA, RNeasy kit for RNA,
474 both manufactured by Qiagen), as these methods have been shown to yield some of the
475 highest quantities of RNA (Tavares, Alves, Ferreira, & Santos, 2011). Alternative options are
476 provided by kits which co-extract the two molecules together such as the ZR-Duet DNA/RNA
477 MiniPrep kit from Zymo Research (as used in Pochon, Zaiko, Fletcher, Laroche, & Wood,
478 2017). Sampled eRNA then requires additional steps to convert the molecule into cDNA for
479 sequencing, involving DNA digestion and reverse transcription, before performing an

480 equivalent PCR amplification as in traditional DNA metabarcoding. These additional steps
481 might involve the loss of molecule yield. We found that the final recovered sequence counts
482 were lower for eRNA libraries – given that an equimolar amount was added to the
483 metabarcoding libraries, this loss of molecules possibly occurred through the removal of low-
484 quality reads during the bioinformatics pipeline. As a final note, these additional molecular
485 steps mean that the extraction and processing of eRNA is more costly per sample in terms
486 of kits and personnel time in comparison to eDNA, which may be an important consideration
487 currently when deciding the relative benefits between eDNA and eRNA in field studies.

488 However, the development of newer sequencing technologies mean that the simplification of
489 this workflow is on the horizon. Future sequencing technologies will mean that RNA can be
490 sequenced directly without conversion to cDNA or with PCR bias which results from
491 amplification steps. The possibility of starting with low-input amounts means that this might
492 be particularly suitable for eRNA applications, and this technology has already been applied
493 to microbial mock communities (Nicholls, Quick, Tang, & Loman, 2019). Some features
494 which will be of interest to eDNA/eRNA scientists are still in development at the time of
495 writing, such as the ability to multiplex samples with direct RNA sequencing kits, but further
496 advances will be anticipated with interest.

497 Acknowledgements

498 We are indebted to many IISD Experimental Lakes Area students and staff for maintaining
499 records of field data and for logistical assistance with this project. S Michaleski, R
500 Henderson, P Bulloch, M Haust, C Jackson and A McLeod contributed specific field
501 assistance to this project, and L Hrenchuk oversaw fieldwork. K Sandilands provided the
502 pumping equipment used in this project. Dr JS Hleap provided bioinformatics support to this
503 project. M Harris provided training on the eRNA extraction and reverse transcription
504 protocols used in this work. This work was funded by a Mitacs Accelerate Industrial

505 Fellowship (JEL), an NSERC Collaborative Research and Development award (MEC),
506 Canada Research Chair and NSERC Discovery awards to MEC and MDR, Québec Centre
507 for Biodiversity Science Excellence award (JEL), the WSP Montréal Environment
508 Department and in-kind support from the IISD Experimental Lakes Area and Fisheries &
509 Oceans Canada. We thank Jean Carreau and Patrick LaFrance of WSP Montréal for useful
510 discussions on the topics of eDNA and biomonitoring.

511 Animal permits

512 Scientific collection permits to facilitate fish collections were authorised through the Ontario
513 Ministry of Natural Resources and Forestry. Handling of fish was carried out under the
514 authority of the Government of Canada through Fisheries and Oceans Canada (prior to and
515 including 2013), and with the approval of Animal Care Committees through the University of
516 Manitoba (2014; permit #F14-007) and Lakehead University (2015–present, permit #s
517 1464656 and 1466997).

518 Word count: 6576 without references

519

520

521

522

523

524

525

526

527 References

528 Balasingham, K. D., Walter, R. P., Mandrak, N. E., & Heath, D. D. (2018). Environmental
529 DNA detection of rare and invasive fish species in two Great Lakes tributaries.
530 *Molecular Ecology*, 27(1), 112–127. <https://doi.org/10.1111/mec.14395>

531 Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications
532 for conservation genetics. *Conservation Genetics*, 17, 1–17.
533 <https://doi.org/10.1007/s10592-015-0775-4>

534 Brandt, M. I., Trouche, B., Henry, N., Liautard-Haag, C., Maignien, L., de Vargas, C., ...
535 Arnaud-Haond, S. (2020). An Assessment of Environmental Metabarcoding Protocols
536 Aiming at Favoring Contemporary Biodiversity in Inventories of Deep-Sea
537 Communities. *Frontiers in Marine Science*, 7, 234.
538 <https://doi.org/10.3389/fmars.2020.00234>

539 Bylmans, J., Gleeson, D. M., Hardy, C. M., & Furlan, E. (2018). Toward an ecoregion scale
540 evaluation of eDNA metabarcoding primers: A case study for the freshwater fish
541 biodiversity of the Murray-Darling Basin (Australia). *Ecology and Evolution*, 8, 8697–
542 8712. <https://doi.org/10.1002/ece3.4387>

543 Clark, M. B., Johnston, R. L., Inostroza-Ponta, M., Fox, A. H., Fortini, E., Moscato, P., ...
544 Mattick, J. S. (2012). Genome-wide analysis of long noncoding RNA turnover. *Genome
545 Research*, 22, 885–898. https://doi.org/10.1007/978-1-4939-2253-6_19

546 Corinaldesi, C., Beolchini, F., & Dell'Anno, A. (2008). Damage and degradation rates of
547 extracellular DNA in marine sediments: Implications for the preservation of gene
548 sequences. *Molecular Ecology*, 17(17), 3939–3951. [https://doi.org/10.1111/j.1365-294X.2008.03880.x](https://doi.org/10.1111/j.1365-
549 294X.2008.03880.x)

550 Cristescu, M. E. (2019). Can Environmental RNA Revolutionize Biodiversity Science?
551 *Trends in Ecology and Evolution*, 34(8), 694–697.
552 <https://doi.org/10.1016/j.tree.2019.05.003>

553 Cristescu, M. E., & Hebert, P. D. N. (2018). Uses and Misuses of Environmental DNA in
554 Biodiversity Science and Conservation. *Annual Review of Ecology, Evolution, and
555 Systematics*, 49(1), 209–230. <https://doi.org/10.1146/annurev-ecolsys-110617-062306>

556 Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a
557 natural river. *PLoS ONE*, 9(2), e88786. <https://doi.org/10.1371/journal.pone.0088786>

558 Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., ...
559 Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we
560 survey animal and plant communities. *Molecular Ecology*, 26(21), 5872–5895.
561 <https://doi.org/10.1111/mec.14350>

562 Deiner, K., Fronhofer, E. A., Mächler, E., & Altermatt, F. (2016). Environmental DNA reveals
563 that rivers are conveyer belts of biodiversity information. *Nature Communications*, 7,
564 12544. <https://doi.org/10.1101/020800>

565 Deiner, K., Walser, J. C., Mächler, E., & Altermatt, F. (2015). Choice of capture and
566 extraction methods affect detection of freshwater biodiversity from environmental DNA.
567 *Biological Conservation*, 183, 53–63. <https://doi.org/10.1016/j.biocon.2014.11.018>

568 Dickie, I. A., Boyer, S., Buckley, H. L., Duncan, R. P., Gardner, P. P., Hogg, I. D., ...

569 Gardner, P. P. (2018). Towards robust and repeatable sampling methods in eDNA-
570 based studies. *Molecular Ecology Resources*, 18(5), 940–952.
571 <https://doi.org/10.1111/1755-0998.12907>

572 Dowle, E., Pochon, X., Keeley, N., & Wood, S. A. (2015). Assessing the effects of salmon
573 farming seabed enrichment using bacterial community diversity and high-throughput
574 sequencing. *FEMS Microbiology Ecology*, 91(8), fiv089.
575 <https://doi.org/10.1093/femsec/fiv089>

576 Guardiola, M., Wangensteen, O. S., Taberlet, P., Coissac, E., Uriz, M. J., & Turon, X. (2016).
577 Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment
578 DNA and RNA. *PeerJ*, 4, e2807. <https://doi.org/10.7717/peerj.2807>

579 Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J., Nichols, P., ... Winfield, I. J.
580 (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term
581 data from established survey methods. *Molecular Ecology*, 25(13), 3101–3119.
582 <https://doi.org/10.1111/mec.13660>

583 Harper, K. J., Anucha, N. P., Turnbull, J. F., Bean, C. W., & Leaver, M. J. (2018). Searching
584 for a signal: Environmental DNA (eDNA) for the detection of invasive signal crayfish,
585 *Pacifastacus leniusculus* (Dana, 1852). *Management of Biological Invasions*, 9(2), 137–
586 148.

587 Hartig, F. (2021). DHARMA: Residual Diagnostics for Hierarchical (Multi-Level / Mixed)
588 Regression Models. Retrieved from <http://florianhartig.github.io/DHARMA/>

589 Hasnain, S. S., Escobar, M. D., & Shuter, B. J. (2018). Estimating thermal response metrics
590 for North American freshwater fish using Bayesian phylogenetic regression. *Canadian*
591 *Journal of Fisheries and Aquatic Sciences*, 75(11), 1878–1885.
592 <https://doi.org/10.1139/cjfas-2017-0278>

593 Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., ...
594 Whiteley, A. R. (2015). Distance, flow and PCR inhibition: eDNA dynamics in two
595 headwater streams. *Molecular Ecology Resources*, 15(1), 216–227.
596 <https://doi.org/10.1111/1755-0998.12285>

597 Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen”
598 detection of rare aquatic species using environmental DNA. *Conservation Letters*, 4(2),
599 150–157. <https://doi.org/10.1111/j.1755-263X.2010.00158.x>

600 Jerde, C. L., Olds, B. P., Shogren, A. J., Andruszkiewicz, E. A., Mahon, A. R., Bolster, D., &
601 Tank, J. L. (2016). Influence of Stream Bottom Substrate on Retention and Transport of
602 Vertebrate Environmental DNA. *Environmental Science and Technology*, 50(16), 8770–
603 8779. <https://doi.org/10.1021/acs.est.6b01761>

604 Jeunen, G. J., Knapp, M., Spencer, H. G., Lamare, M. D., Taylor, H. R., Stat, M., ...
605 Gemmell, N. J. (2019). Environmental DNA (eDNA) metabarcoding reveals strong
606 discrimination among diverse marine habitats connected by water movement.
607 *Molecular Ecology Resources*, 19(2), 426–438. <https://doi.org/10.1111/1755-0998.12982>

609 Laroche, O., Wood, S. A., Tremblay, L. A., Ellis, J. I., Lear, G., & Pochon, X. (2018). A cross-
610 taxa study using environmental DNA / RNA metabarcoding to measure biological
611 impacts of offshore oil and gas drilling and production operations. *Marine Pollution*
612 *Bulletin*, 127, 97–107. <https://doi.org/10.1016/j.marpolbul.2017.11.042>

613 Laroche, O., Wood, S. A., Tremblay, L. A., Lear, G., Ellis, J. I., & Pochon, X. (2017).
614 Metabarcoding monitoring analysis: the pros and cons of using co-extracted
615 environmental DNA and RNA data to assess offshore oil production impacts on benthic
616 communities. *PeerJ*, 5, e3347. <https://doi.org/10.7717/peerj.3347>

617 Li, J., Lawson Handley, L. J., Read, D. S., & Häneling, B. (2018). The effect of filtration
618 method on the efficiency of environmental DNA capture and quantification via
619 metabarcoding. *Molecular Ecology Resources*, 18(5), 1102–1114.
620 <https://doi.org/10.1111/1755-0998.12899>

621 Li, Y., & Breaker, R. R. (1999). Kinetics of RNA Degradation by Specific Base Catalysis of
622 Transesterification Involving the 2'-Hydroxyl Group. *Journal of the American Chemical
623 Society*, 121(4), 5364–5372.

624 Littlefair, J. E., Hrenchuk, L. E., Blanchfield, P. J., Rennie, M. D., & Cristescu, M. E. (2021).
625 Thermal stratification and fish thermal preference explain vertical eDNA distributions in
626 lakes. *Molecular Ecology*, 30(13), 3083–3096. <https://doi.org/10.1111/mec.15623>

627 [dataset] Littlefair, J. E., Rennie, M. D., & Cristescu, M. E.; (2021); Environmental nucleic
628 acids: a field-based comparison for monitoring freshwater habitats using eDNA and
629 eRNA; Dryad; Version 1; DOI upon article acceptance

630 Marshall, N. T., Vanderploeg, H. A., & Chaganti, S. R. (2021). Environmental (e)RNA
631 advances the reliability of eDNA by predicting its age. *Scientific Reports*, 11, 2769.
632 <https://doi.org/10.1038/s41598-021-82205-4>

633 Mee, J. A., & Taylor, E. B. (2012). The cybrid invasion: widespread postglacial dispersal by
634 *Phoxinus* (Pisces: Cyprinidae) cytoplasmic hybrids. *Canadian Journal of Zoology*,
635 90(5), 577–584. <https://doi.org/10.1139/z2012-023>

636 Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., ... Iwasaki, W. (2015).
637 MiFish, a set of universal PCR primers for metabarcoding environmental DNA from
638 fishes: detection of more than 230 subtropical marine species. *Royal Society Open
639 Science*, 2(7), 150088. <https://doi.org/10.1098/rsos.150088>

640 Miyata, K., Inoue, Y., Amano, Y., Nishioka, T., Yamane, M., Kawaguchi, T., ... Honda, H.
641 (2021). Fish environmental RNA enables precise ecological surveys with high positive
642 predictivity. *Ecological Indicators*, 128, 107796.
643 <https://doi.org/10.1016/j.ecolind.2021.107796>

644 Nicholls, S. M., Quick, J. C., Tang, S., & Loman, N. J. (2019). Ultra-deep, long-read
645 nanopore sequencing of mock microbial community standards. *GigaScience*, 8(5),
646 giz043. <https://doi.org/10.1093/gigascience/giz043>

647 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... Helene,
648 W. (2019). vegan: Community Ecology Package. R package version 2.5-6. Retrieved
649 from <https://cran.r-project.org/package=vegan>

650 Orsi, W., Biddle, J. F., & Edgcomb, V. (2013). Deep Sequencing of Subseafloor Eukaryotic
651 rRNA Reveals Active Fungi across Marine Subsurface Provinces. *PLoS One*, 8(2),
652 e56335. <https://doi.org/10.1371/journal.pone.0056335>

653 Pawłowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T., & Wilding, T. A. (2014).
654 Environmental monitoring through protist next-generation sequencing metabarcoding:
655 Assessing the impact of fish farming on benthic foraminifera communities. *Molecular*

656 *Ecology Resources*, 14(6), 1129–1140. <https://doi.org/10.1111/1755-0998.12261>

657 Pawłowski, J., Esling, P., Lejzerowicz, F., Cordier, T., Visco, J. A., Martins, C. I. M., ...
658 Cedhagen, T. (2016). Benthic monitoring of salmon farms in Norway using foraminiferal
659 metabarcoding. *Aquaculture Environment Interactions*, 8, 371–386.
660 <https://doi.org/10.3354/AEI00182>

661 Pawłowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero,
662 A., ... Kahlert, M. (2018). The future of biotic indices in the ecogenomic era: Integrating
663 (e)DNA metabarcoding in biological assessment of aquatic ecosystems. *Science of the
664 Total Environment*, 637–638, 1295–1310.
665 <https://doi.org/10.1016/j.scitotenv.2018.05.002>

666 Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2014). Factors influencing
667 detection of eDNA from a stream-dwelling amphibian. *Molecular Ecology Resources*,
668 14(1), 109–116. <https://doi.org/10.1111/1755-0998.12159>

669 Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O., & Wood, S. A. (2017). Wanted dead or
670 alive? Using metabarcoding of environmental DNA and RNA to distinguish living
671 assemblages for biosecurity applications. *PLoS ONE*, 12(11), e0187636.
672 <https://doi.org/10.1371/journal.pone.0187636>

673 Rennie, M. D., Kennedy, P. J., Mills, K. H., Podemski, C. L., Rodgers, C. M. C., Charles, C.,
674 ... Paterson, M. J. (2019). Impacts of freshwater aquaculture on fish communities: A
675 whole-ecosystem experimental approach. *Freshwater Biology*, 64(5), 870–885.
676 <https://doi.org/10.1111/fwb.13269>

677 Sansom, B. J., & Sassoubre, L. M. (2017). Environmental DNA (eDNA) Shedding and Decay
678 Rates to Model Freshwater Mussel eDNA Transport in a River. *Environmental Science
679 and Technology*, 51(24), 14244–14253. <https://doi.org/10.1021/acs.est.7b05199>

680 Seymour, M., Durance, I., Cosby, B. J., Deiner, K., Ormerod, S. J., Colbourne, J. K., ...
681 Biology, E. (2018). Acidity promotes degradation of multi-species eDNA in lotic
682 mesocosms. *Communications Biology*, 1, 4. <https://doi.org/10.1038/s42003-017-0005-3>

683 Shogren, A. J., Tank, J. L., Andruszkiewicz, E., Olds, B., Mahon, A. R., Jerde, C. L., &
684 Bolster, D. (2017). Controls on eDNA movement in streams: Transport, Retention, and
685 Resuspension. *Scientific Reports*, 7, 5065. <https://doi.org/10.1038/s41598-017-05223-1>

686 Stat, M., John, J., DiBattista, J. D., Newman, S. J., Bunce, M., & Harvey, E. S. (2018).
687 Combined use of eDNA metabarcoding and video surveillance for the assessment of
688 fish biodiversity. *Conservation Biology*, 33(1), 196–205.
689 <https://doi.org/10.1111/cobi.13183>

690 Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B,
691 temperature, and pH on eDNA degradation in aquatic microcosms. *Biological
692 Conservation*, 183, 85–92. <https://doi.org/10.1016/j.biocon.2014.11.038>

693 Tan, S. C., & Yiap, B. C. (2009). DNA, RNA, and Protein Extraction: The Past and The
694 Present. *Journal of Biomedicine and Biotechnology*, 2009, 574398.
695 <https://doi.org/10.1155/2009/574398>

696 Tavares, L., Alves, P. M., Ferreira, R. B., & Santos, C. N. (2011). Comparison of different
697 methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. *BMC Research
698 Notes*, 4, 3. <https://doi.org/10.1186/1756-0500-4-3>

699 Tillotson, M. D., Kelly, R. P., Duda, J. J., Hoy, M., Kralj, J., & Quinn, T. P. (2018).
700 Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at
701 fine spatial and temporal scales. *Biological Conservation*, 220(July 2017), 1–11.
702 <https://doi.org/10.1016/j.biocon.2018.01.030>

703 Torti, A., Lever, M. A., & Jørgensen, B. B. (2015). Origin, dynamics, and implications of
704 extracellular DNA pools in marine sediments. *Marine Genomics*, 24(3), 185–196.
705 <https://doi.org/10.1016/j.margen.2015.08.007>

706 Truelove, N. K., Andruszkiewicz, E. A., & Block, B. A. (2019). A rapid environmental DNA
707 method for detecting white sharks in the open ocean. *Methods in Ecology and*
708 *Evolution*, 10(8), 1128–1135. <https://doi.org/10.1111/2041-210X.13201>

709 Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T., & Yamanaka, H. (2017). Water temperature-
710 dependent degradation of environmental DNA and its relation to bacterial abundance.
711 *PLoS ONE*, 12(4), e0176608. <https://doi.org/10.1371/journal.pone.0176608>

712 Visco, J. A., Apothéloz-Perret-Gentil, L., Cordonier, A., Esling, P., Pillet, L., & Pawlowski, J.
713 (2015). Environmental Monitoring: Inferring the Diatom Index from Next-Generation
714 Sequencing Data. *Environmental Science and Technology*, 49(13), 7597–7605.
715 <https://doi.org/10.1021/es506158m>

716 Wang, Y., Naumann, U., Wright, S. T., & Warton, D. I. (2012). Mvabund- an R package for
717 model-based analysis of multivariate abundance data. *Methods in Ecology and*
718 *Evolution*, 3(3), 471–474. <https://doi.org/10.1111/j.2041-210X.2012.00190.x>

719 Wood, S. A., Biessy, L., Latchford, J. L., Zaiko, A., Ammon, U. Von, Audrezet, F., ... Pochon,
720 X. (2020). Release and degradation of environmental DNA and RNA in a marine
721 system. *Science of the Total Environment*, 704, 135314.
722 <https://doi.org/10.1016/j.scitotenv.2019.135314>

723 Yates, M. C., Derry, A. M., & Cristescu, M. E. (2021). Environmental RNA: A Revolution in
724 Ecological Resolution? *Trends in Ecology & Evolution*, 36(7), 601–609.
725 <https://doi.org/10.1016/j.tree.2021.03.001>

726 Zhang, S., Lu, Q., Wang, Y., Wang, X., Zhao, J., & Yao, M. (2020). Assessment of fish
727 communities using environmental DNA: Effect of spatial sampling design in lentic
728 systems of different sizes. *Molecular Ecology Resources*, 20(1), 242–255.
729 <https://doi.org/10.1111/1755-0998.13105>

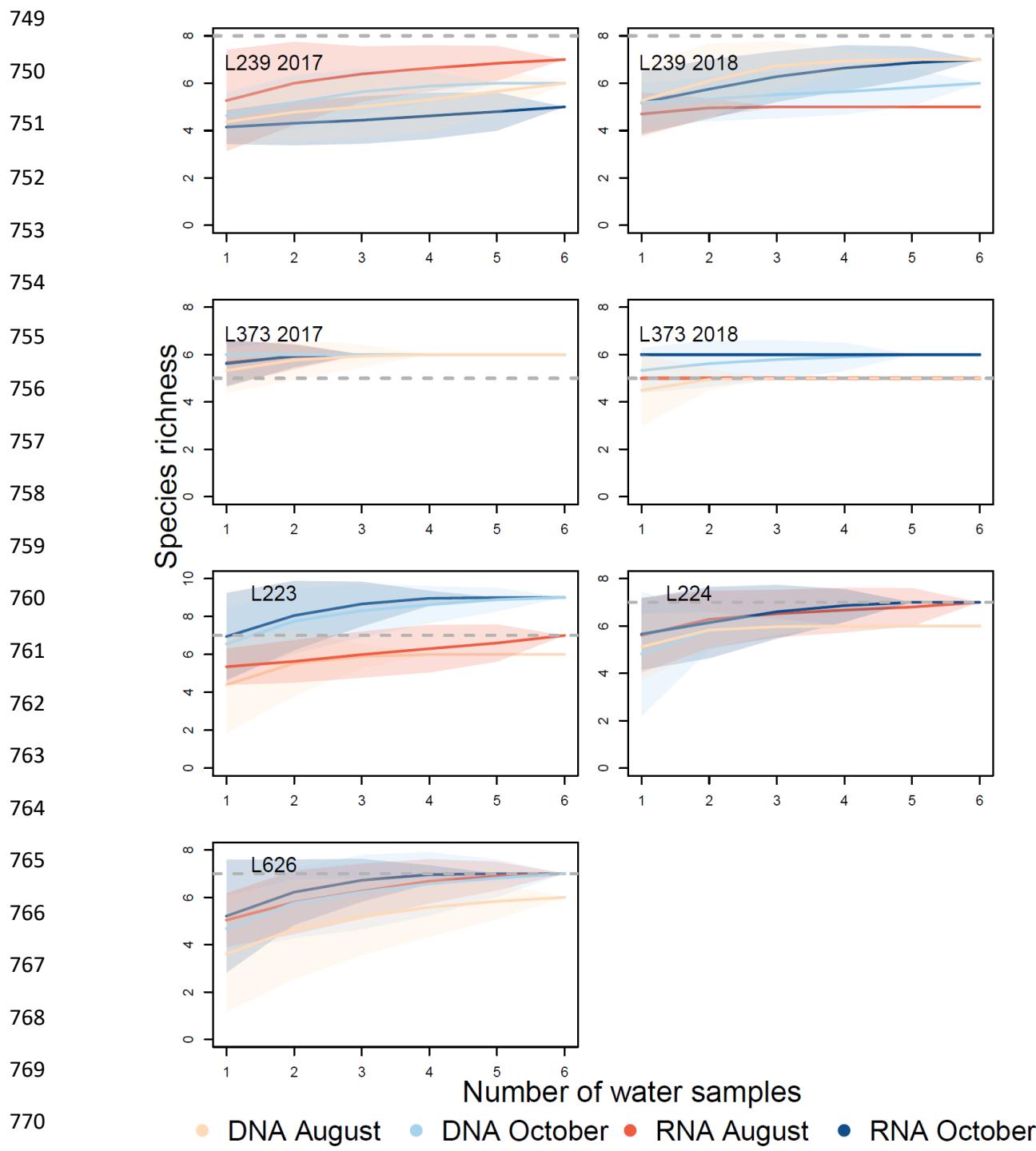
730

731 Data Accessibility statement:

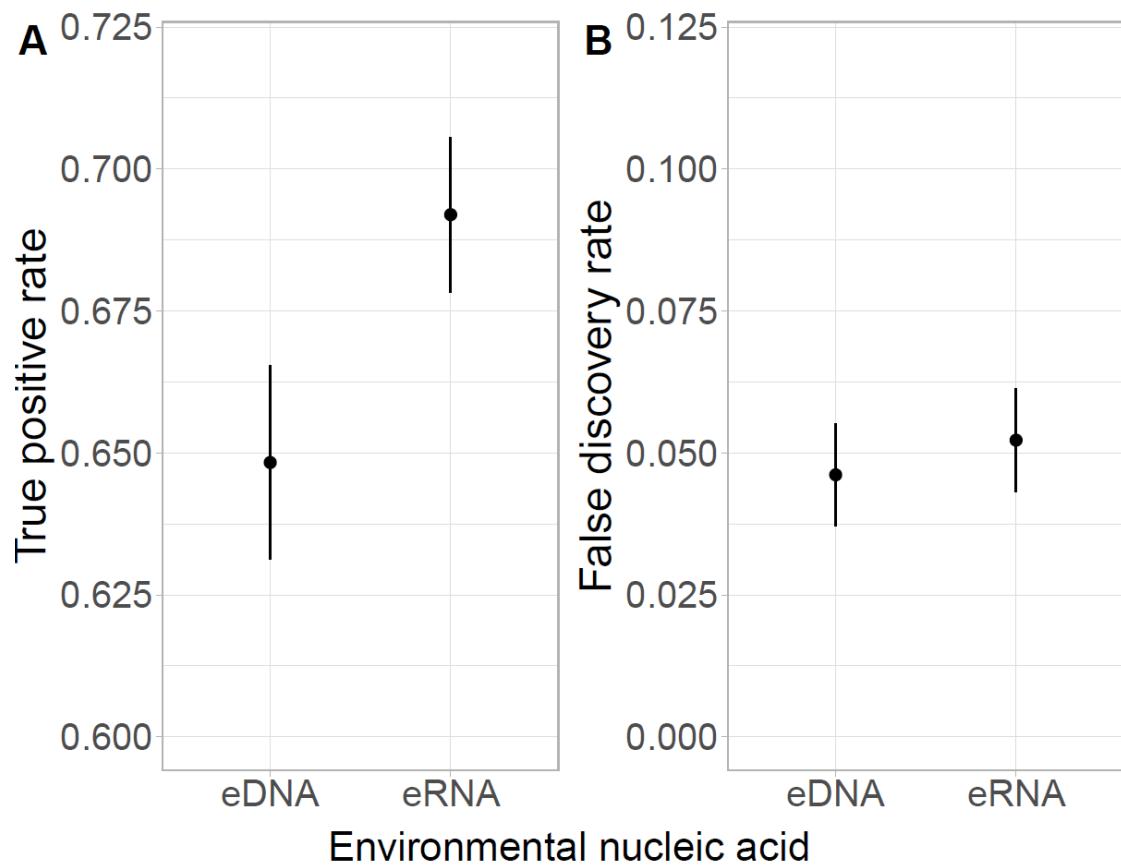
732 Raw fastq files, sample x ASV tables, and the sequence composition of the ASVs are openly
733 available at Dryad (xxx). Scripts to process bioinformatic data are available from
734 <https://github.com/CristescuLab/YAAP>.

735 Author contributions:

736 JEL and MEC designed the research, all authors contributed to funding the research, JEL
737 performed the molecular work and analysis, MDR contributed field data, JEL wrote the first
738 draft of the manuscript and all authors contributed the writing and editing of the manuscript.


739 Table 1: Sequences present at each step of bioinformatic filtering.

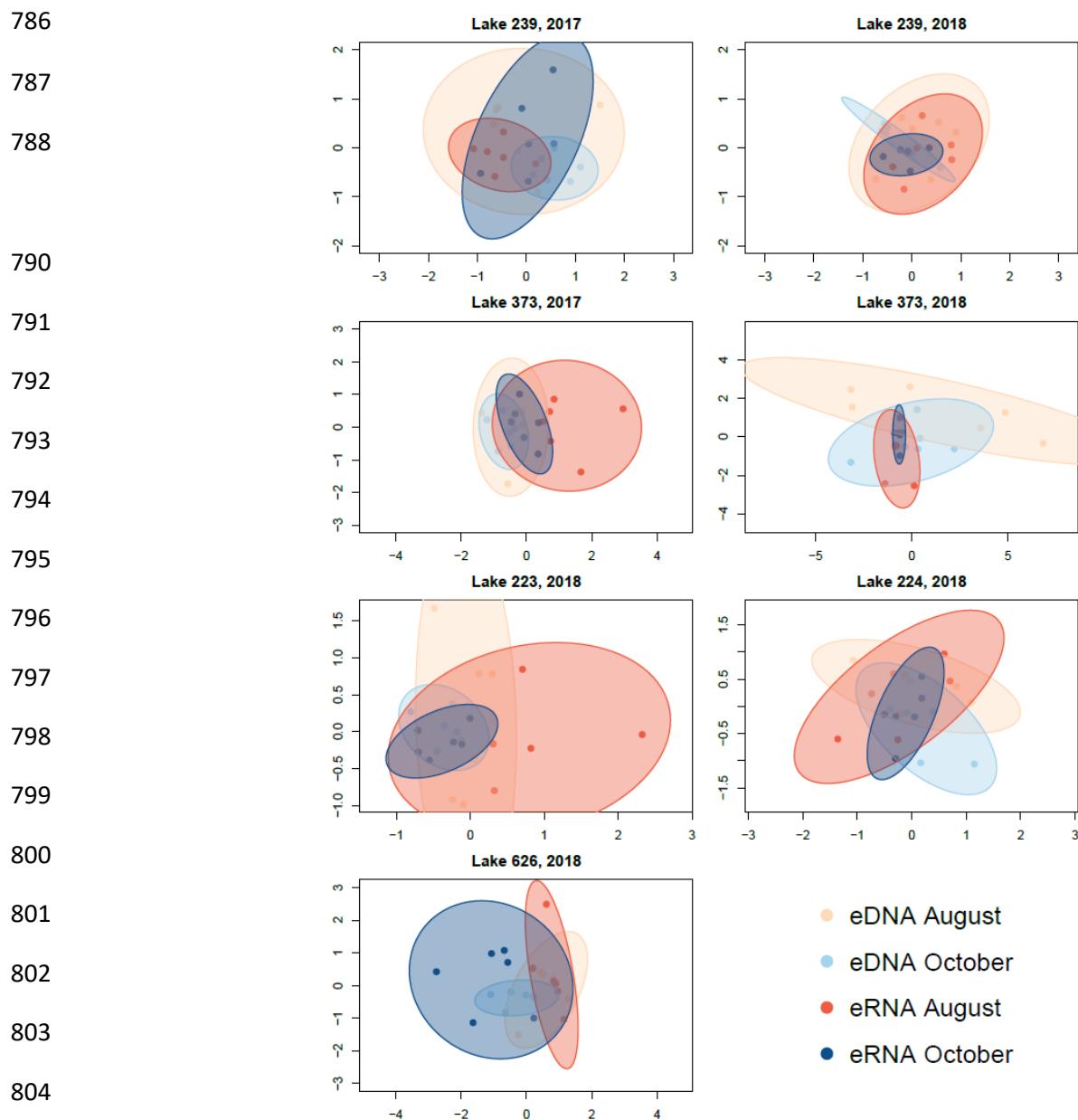
740


741

Bioinformatics step	Mean \pm 95% confidence error (per sample)	
	DNA	RNA
Initial sequence number	$83,972 \pm 11,995$	$78,751 \pm 12,075$
Initial sequence quality score	32.5 ± 0.61	32.0 ± 0.61
Adapter trim (Cutadapt)	$74,493 \pm 11134$	$68,107 \pm 11,326$
Merge reads (Pear)	$74,450 \pm 11131$	$67,169 \pm 11,397$
Trim of remaining reads (Cutadapt)	$74,444 \pm 11130$	$68,018 \pm 11,318$
Length filter	$72,636 \pm 11112$	$50,735 \pm 9,932$
Denoising pipeline	Mean \pm 95% confidence error (all samples)	
Total sequences after length filtering	7,118,369	4,971,983
Number of non-chimeric ASVs	107	115
Number of reads mapped onto ASVs	7,012,122 of 7,118,369 = 98.5%	4,890,593 of 4,971,983 = 98.4%

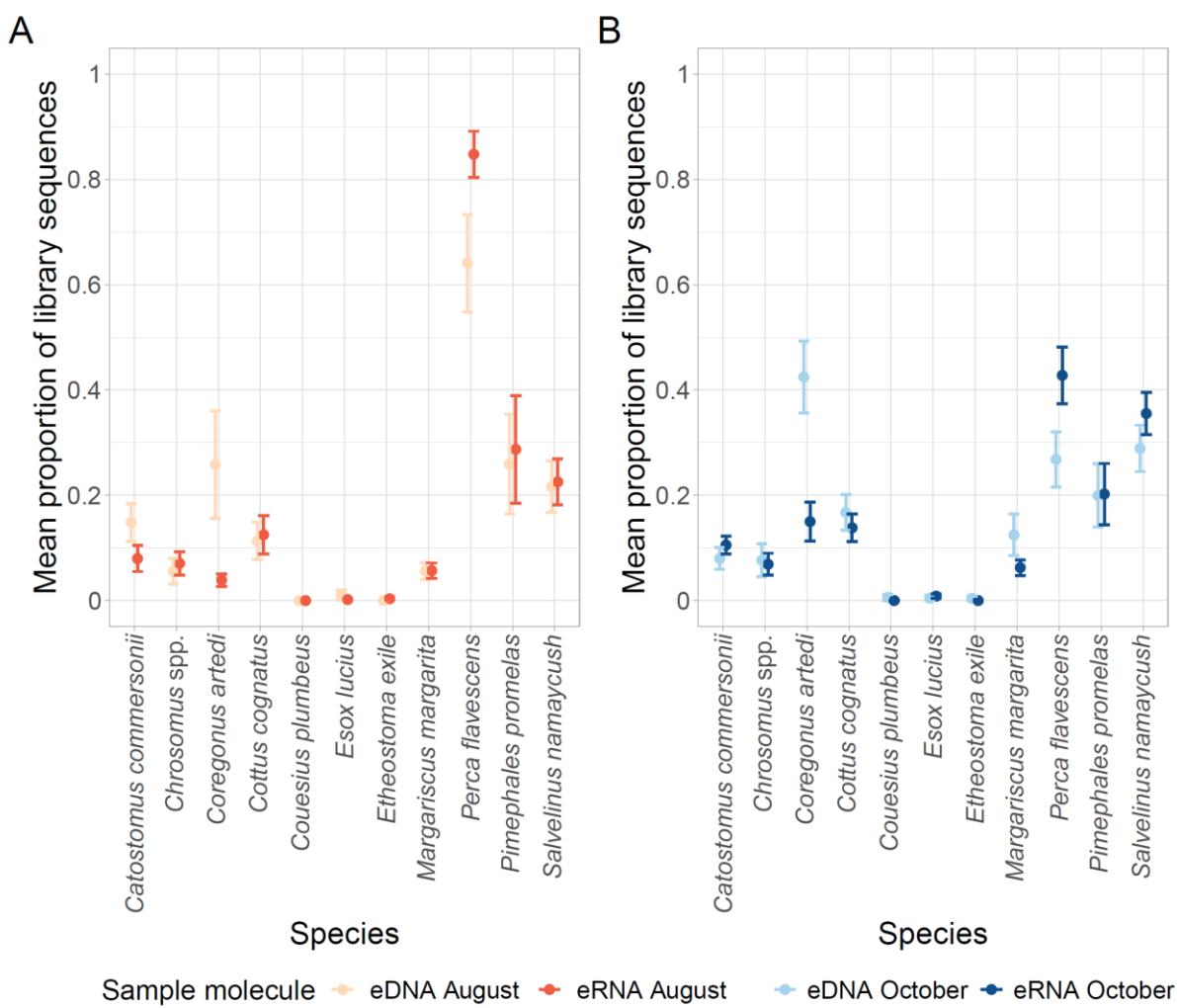
743 Figure 1: Species accumulation curves for each lake habitat in the study, based on incidence
744 data. The dataframe was filtered to include only fish species present in the northwest Ontario
745 region (i.e. removing non-target ASVs). Separate curves are drawn for ASVs detected with
746 DNA and RNA molecules in the two sampling seasons (August and October), created with
747 random sampling of sites in function specaccum in “vegan”. The grey dashed line indicates
748 the expected number of fish species in that lake according to conventional fishing methods.

772 Figure 2: A) True positive rate and B) false discovery rate as measured by eDNA and eRNA.
773 eRNA had a significantly higher true positive rate than eDNA. True positive rate is defined as
774 the proportion of true positives out of true positives and false negatives combined. There
775 was no significant difference in false discovery rate between eDNA and eRNA. False
776 discovery rate is defined as the proportion of false positives out of all detections (i.e. true
777 positives and false positives together). Error bars are standard errors of the mean.


778

779

780


781 Figure 3: nMDS plots for each lake showing community dissimilarities for both eDNA and
782 eRNA in August and October. New nMDS are run for each lake; thus, scaling varies for each
783 image. Ellipses are 95% confidence intervals coloured according to environmental nucleic
784 acid and season.

785

807 Figure 4: Proportional composition of ASVs per filter for each fish species for A) August and
808 B) October. Where there is more than one ASV per species, these are grouped together
809 under the species name. Error bars are standard errors of the mean.

810

811

812

813

814