bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.469698; this version posted December 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

N

10

11

12

13

14

15

16

17

18

19

20

21

available under aCC-BY-NC-ND 4.0 International license.

Distributed processing for action control by prelimbic circuits targeting

anterior-posterior dorsal striatal subregions.

Kyuhyun Choi'*, Eugenio Piasini® **, Luigim Cifuentes-Vargas®, Edgar Diaz-Hernandez',

Nathan T. Henderson', Manivannan Subramaniyan’, Charles R. Gerfen®, Marc V. Fuccillo™”

'Department of Neuroscience, 2Computational Neuroscience Initiative, *Neuroscience Graduate
Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, “Neural
Computation Lab, International School for Advanced Studies (SISSA), Trieste, Italy, °Laboratory

of Systems Neuroscience, National Institute of Mental Health (NIMH), Bethesda, MD, USA

+ Equal contribution

* Corresponding author

SUMMARY

e Prelimbic cortex engages A- and P-DMS via distinct circuits

e PL::A-DMS and PL::P-DMS pathways encode divergent aspects of a simple goal-directed
task

e PL::A-DMS pathways shape responding to negative outcomes via multiple mechanisms

e PL::P-DMS pathways guide engagement and choices in response to positive outcomes

o Afferent connectomes of PL neurons defined by A-P DMS target are distinct
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ABSTRACT

Fronto-striatal circuits have been extensively implicated in the cognitive control of behavioral
output for both social and appetitive rewards. The functional diversity of prefrontal cortical
populations is strongly dependent on their synaptic targets, with control of motor output strongly
mediated by connectivity to the dorsal striatum. Despite evidence for functional diversity along
the anterior-posterior axis of the dorsomedial striatum (DMS), it is unclear how distinct fronto-
striatal sub-circuits support neural computations essential for action selection. Here we identify
prefrontal populations targeting distinct DMS subregions and characterize their functional roles.
We first performed neural circuit tracing to reveal segregated prefrontal populations defined by
anterior/posterior dorsomedial striatal target. We then probed the functional relevance of these
parallel circuits via in vivo calcium imaging and temporally precise causal manipulations during a
feedback-based 2-alternative choice task. Single-photon imaging revealed circuit-specific
representations of task-relevant information with prelimbic neurons targeting anterior DMS (PL::A-
DMS) uniquely encoded choices and responses to negative outcomes, while prelimbic neurons
targeting posterior DMS (PL::P-DMS) encoded internal representations of value and positive
outcomes contingent on prior choice. Consistent with this distributed coding, optogenetic inhibition
of PL::A-DMS circuits strongly impacted choice monitoring and behavioral control in response to
negative outcomes while perturbation of PL::P-DMS signals impaired task engagement and
strategies following positive outcomes. Di-synaptic retrograde tracing uncovered differences in
afferent connectivity that may underlie these pathways functional divergence. Together our data

uncover novel PL populations engaged in distributed processing for action control.
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INTRODUCTION

Value-based decision-making requires a complex series of neural computations - the integration
of success and failure, the proper attribution of actions to temporally displaced outcomes and the
monitoring of context and underlying task structure. One hypothesis posits that inputs for this
decision-making process are represented across forebrain excitatory populations, with their
integration in the striatum serving as an early step in action selection'. Consistent with a
topographical organization of afferent inputs®*, striatum exhibits functional segregation along its
anatomical axes, with the dorsoventral direction segregating reward and motor processes and
medial-lateral domains supporting goal-sensitive and habitual action strategies®. However,
substantially less work has considered striatal function along the anterior-posterior (A-P) axis® '
despite early retrograde studies pointing to a unique longitudinal (A-P) organization of cortical-

striatal inputs'”.

Seminal studies in rat provided the first evidence of functional segregation along the striatal A-P
axis, with posterior dorsomedial striatum (P-DMS) lesions disrupting both the initial acquisition
and post-training execution of instrumental conditioning, in particular modulation in responding
according to action-outcome association®®. In contrast, the importance of the anterior dorsomedial
striatum (A-DMS) in goal-directed choice remained uncertain, with opposing results for
pharmacological inactivation and excitotoxic lesions®®'2. Optogenetic manipulations of specific
spiny projection neuron subtypes within the A-DMS have implicated this subregion in supporting
flexible responses during reversal learning®, consistent with pharmacological manipulations of
anterior caudate in marmosets'. In contrast, the anterior dorsolateral striatum (DLS) supports a
protein synthesis-dependent consolidation of newly learned actions™. Finally, a growing body of
evidence has implicated the rodent striatal tail, the most caudal subregion, in behavioral

responses to aversive stimuli and psychostimulants'®®,
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The prefrontal cortex exerts cognitive control over mammalian behavior via extensive afferent
integration and widespread downstream connectivity'®. Analysis of prefrontal populations
accounting for downstream synaptic targets has revealed pathway-specific functional differences
for prefrontal control of social-spatial rewards?, reward anticipation®', and choice directions?. The
prelimbic region of the prefrontal cortex has been hypothesized to support goal-directed action by
encoding short-term memories necessary for subsequent action-outcome associations in dorsal
striatum?®. Specific targeting of prelimbic-striatal pathways has extended this view, demonstrating
persistent neural coding of value essential for choice behavior? and the mediation of response
inhibition during tasks requiring sustained attention®®. Finally, DREADD-mediated inhibition of PL
neurons projecting to either anterior or posterior striatal subregions has uncovered involvement

in instrumental learning®”'°.

Here we systematically explore the function of PL pathways projecting along the A-P striatal axis
via integration of mono- and di-synaptic viral circuit tracing, single neuron calcium imaging,
statistical modeling of neural coding properties, and target-specific optogenetic manipulations.
Retrograde tracing from A/P-DMS subregions revealed non-overlapping PL populations which
exhibited unique encoding of behavioral variables over multiple time scales essential for shaping
efficient action selection and execution. Target- and temporally- specific optogenetic
manipulations confirmed the functional divergence of these fronto-striatal pathways, with PL::A-
DMS pathways supporting choice monitoring and responding to negative outcomes and PL::P-
DMS pathways supporting engagement and responding to positive outcomes. Together, our
results provide novel insight into the distributed nature of fronto-striatal pathways for decision

making.
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90 RESULTS

91 Anatomical architecture of fronto-striatal pathways along the anterior-posterior striatal

92 axis.

93 To characterize prefrontal cortex connectivity along the anterior-posterior striatal axis, we injected
94 a mix of AAV5-CamKIl::GFP-Cre and AAVdj-EF1a::Flex-Synaptophysin-mRuby virus into
95 prelimbic cortex (Fig. 1a), confirming that synaptic inputs from PL were widely spread along the
96 full anterior-posterior extent of DMS (Fig. 1b). To address whether these widespread projections
97 arose from en passant connectivity or distinct PL afferents, we utilized two orthogonal retrograde
98 circuit tracers, with EnvA G-deleted rabies virus EGFP injected in A-DMS, and Alexa647-
99 conjugated Cholera toxin subunit-B (CTB) injected in P-DMS (Fig. 1c). This design minimized
100 fiber of passage contamination of PL::P-DMS pathways while traversing A-DMS. Using CTIP2
101 immunostaining as a guide, we found cell bodies of both retrogradely labeled populations largely
102 in prelimbic layers ll/lll and more sparsely in layers V/VI %° (Fig. 1f-i). Regardless of layer, these
103 populations were distinct (2.2+0.5% overlap) and spatially separated, forming a characteristic
104 sub-layer structure with PL::A-DMS populations localized to superficial layer II/lll and PL::P-DMS
105 populations found in deeper layer Il/lll (Fig. 1e). These results were replicated using spectrally
106 distinct CTB tracers (Fig. S1a-c), confirming the existence of distinct PL cortical populations
107 defined by A/P-DMS subregions and revealing a similar anatomical organization for most striatal

108 afferents originating in other brain regions (Fig. S1d-j).

109 Assessing neural activity in PL::DMS pathways during a goal-directed choice task.

110 This unique circuit architecture could serve to either carry similar neural signals to distinct striatal
111 regions or alternatively support divergent neural processing for the control of action selection. To
112 explore these possibilities, we investigated neural coding of task-relevant information within
113 PL::A-DMS and PL::P-DMS populations during a goal-directed choice task. Mice were trained on

114 a 3-poke chamber where the center port initiated a choice period, requiring a lateral left/right
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115 decision. In any given trial, choosing a predetermined side led to the delivery of a reward with 85%
116 chance and no outcome otherwise, while choosing the opposite port led to punishment tone with
117 85% chance and no outcome otherwise (Fig. 2d). The identity of the rewarded side (or
118 “contingency”) was changed whenever mice made 8 correct choices over the latest 10 trials, to
119 assess flexible responding. As previously reported, mice choices were based on previous
120 outcome feedback, with a strong influence of prior trial on current choice (Fig. S2b)*. We
121 performed 1-photon (1-p) single neuron calcium (Ca®") imaging of retrogradely-labeled PL
122 neurons expressing GCaMP7f during this task. Given the minimal fiber-of-passage overlap with
123 standard retrograde tracers (Fig. S1a-c), we injected retroAAV2-EF1a::3XFLAG-Cre into either
124  A-DMS or P-DMS, together with AAV1-hSyn::FLEX-jGcamp7f into PL to gain access to both PL
125 populations in separate animals (Fig. 2a-c). Using this approach, we recorded Ca?" activity of 465

126 PL::A-DMS neurons and 586 PL::P-DMS neurons.

127 To analyze neural activity, we designed a linear encoding model based upon task-relevant
128 regression predictors capturing actions, sensory input, resulting outcomes and model-based
129 estimations of internal value state (Fig. 2e). External sensorimotor variables included trial start
130 cue (CUE), self-initiation (Init), and Ipsilateral/Contralateral (Ipsi/Cont) choice. Outcomes were
131 divided into positive (O+) and negative (O-), as well as interactions of these terms with prior choice,
132 a potential neural signal for credit assignment (Ch x O+, Ch x O-). Local reward rate over the last
133 5 trials was included as a proxy for task engagement. Finally, we estimated internal value
134 representations with a standard Q-learning model, which proved strongly predictive of future
135 animal choice in our experiments (Fig. S2a,c)?"%. Latent variables inferred with the Q-learning
136 scheme were included in the neural encoding model as predictors representing trial-by-trial choice
137 values (AQ, XQ) and reward prediction errors (RPE+/-). Regression parameters were fit via
138 elastic-net penalized maximum likelihood (Fig. 2e-i; see Methods for details on model design and

139 fitting).
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140 We applied this encoding model to both PL:A-DMS and PL::P-DMS Ca?®* imaging data,
141 measuring total model fit quality by calculating the fraction of Ca?* signal variance explained (FVE).
142 At a cut-off threshold of 5% FVE, our model fit ~39% of total PL::A-DMS neurons and ~30% of
143 total PL::P-DMS neurons (Fig. 3a-b). To quantify neuronal tuning to specific behavioral variables,
144 partial models lacking the related predictors were fit to Ca?* data. The difference in FVE between
145 the full and the partial model defined a tuning index for the given variables. For an initial overview,
146  we grouped predictors into external (CUE, Init, Ipsi, Contra), internal (AQ, £Q, RPE+, RPE-, RR)
147 and outcome (O+, O-, Ch x O+, Ch x O-) categories (Fig. 2e)., discovering that the PL::A-DMS
148 pathway was biased towards representation of external variables, the PL::P-DMS pathway was
149 biased towards representation of internal values, and both pathways shared encoding of task

150 outcome (Fig. 3c-d).

151 PL::A-DMS and PL::P-DMS neural populations encode distinct and complementary

152 components of value-based behavior.

153  We initially focused on the external bias of PL::A-DMS and asked whether neuronal tuning was
154  specific to sensory or motor events preceding action selection. By breaking down our encoding
155 analysis to the level of individual predictors, we found that the majority of external event
156 modulation in the PL::A-DMS pathway was driven by choice-tuned neurons (Fig. S3a), although
157 PL::A-DMS carried more information than PL::P-DMS not only for choice (Fig. 4d,e, Fig. S3n-r)
158 but also trial start cue (center port light; Fig. S3d-h) and initiation (Fig. S3i-m). We found that

159 PL::A-DMS encoded both ipsilateral and contralateral choices (Fig.4d, Fig. S3b, q).

160 Our tuning index is a compact measure of the degree to which task-related variables are
161 represented in neural activity. Nonetheless, it only captures the overall coding strength and is not
162 sensitive to the precise temporal evolution of neural responses, which could present interesting
163 differences between pathways regardless of their relative tuning level. To address this, we

164 analyzed the event-associated kernels inferred by our encoding model, which estimate the
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165 average calcium activity transient elicited by specific behavioral events, after accounting for
166 overlapping transients from other event types. Analysis of choice kernels revealed that PL::A-
167 DMS neurons exhibited robust phasic activity starting around choice execution, although the
168 magnitude of this modulation was on average stronger for choices contralateral to the recording

169 site (Fig. 4e, Fig. S3c, ).

170 Next, we investigated target-specific PL differences for the representation of internal values, a
171 key driver of decision-making in the absence of task-relevant sensory information. Our
172 reinforcement learning model of choice behavior provides trial-by-trial estimates of the difference
173  between choice values (AQ, ipsi vs. contra), the sum of choice values (ZQ) as well as positive
174 and negative reward prediction errors (+/-RPEs). Besides these metrics, we included in our
175 encoding model a local reward rate over the last five trials (RR) to capture the strength of
176 engagement in this self-initiated task. We found that the PL::P-DMS pathway more strongly
177 encoded these internal value estimates (Fig. 3c,d middle), with the strongest drivers being
178 neurons modulated by the difference in action values (AQ; Fig. 4j) and those whose activity
179 strongly tracked with the local reward rate (RR; Fig. 40). Interestingly, our encoding model
180 robustly captured the slow shifting baseline of PL::P-DMS calcium activity that in a subset of
181 neurons scaled with increasing Q-value difference or local reward rate (Fig. 4g,h,I,m) despite
182 lacking clear event-related modulation (Fig. S4e,f). One exception to this dominance of PL::P-
183 DMS for value-related information was for negative RPEs, for which PL::A-DMS pathways
184 demonstrated strong modulation of outcome signals by violated reward expectation (Fig. S4a).
185 Overall however, these data imply that PL::P-DMS pathways more strongly represent temporally

186 integrated internal measures of value than PL::A-DMS pathways.

187 Finally, we examined how these distinct PL pathways responded during behavioral outcomes,
188 uncovering three general patterns. First, we noted a brief (~1s) response immediately following

189 all positive outcomes that was similar in calcium waveform between PL pathways but found in a
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190 greater proportion of PL::A-DMS neurons (Fig. S5a-h). We also observed neural activity
191 modulated by the interaction of positive outcome and prior choice (Ch x O+; Fig. 5a-c).
192 Interestingly, we found that outcome-related neural signals that were contingent on prior choice
193 were better represented in PL::P-DMS than in PL::A-DMS populations (Fig. 5d). Second, the
194 temporal kinetics of these interaction-associated signals were distinct between pathways, with Ch
195 x O+ signals in PL::P-DMS pathways persisting for several seconds beyond outcome, as
196 compared to briefer Ch x O+ signals in PL::A-DMS neurons (Fig. 5e). Third, we observed robust
197 neuronal responses to negative outcomes that were almost exclusively encoded by the PL::A-
198 DMS neurons (Fig. 5f-i). These signals exhibited a slow and persistent increase following the
199 absence of reward, which occurred at contingency switches, random unrewarded trials or during
200 brief exploratory choice periods (Fig. 5j). Together, these data reveal a distributed representation
201 of outcomes by PL::DMS pathways, with prolonged activation of PL::A-DMS neurons encoding
202 negative outcomes and PL::P-DMS neurons encoding positive outcomes contingent on prior

203 choice.

204 Thus far, our data highlight a unique fronto-striatal architecture defined by A-P striatal target that
205 encodes complementary aspects of relevant external and internal behavioral parameters
206 observed during our value-based task. Our neural coding analysis makes several predictions
207 about pathway-specific behavioral functions: 1. PL::A-DMS choice activity may shape current
208 choice selection/execution or instead provide an action-monitoring signal; 2. PL::P-DMS neurons
209 encode temporally integrated signals for local reward rate and action value that may drive task
210 engagement; 3. the persistent choice x positive outcome activity in PL::P-DMS could be used to
211 drive positive reinforcement behavior; 4. PL::A-DMS negative outcome modulated neurons could

212 be used to implement choice strategies following negative outcome.


https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.469698; this version posted December 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

213 PL::A-DMS pathways mediate future choice valuation, but not current choice execution

214 To evaluate whether these divergent patterns of neural coding resulted in distinct functional
215 contributions, we performed striatal subregion-specific optogenetic inhibition of PL terminals. We
216 bilaterally injected PL cortex with AAV5-CamKIl::NpHR3.0-EYFP, or AAV5-hSyn::EGFP for
217  controls, and implanted 200um fiber optics bilaterally in either the A-DMS or P-DMS (target sites
218 in Fig. S6a, b). We designed two distinct light delivery protocols to assess the contribution of these
219 fronto-striatal circuits during choice and at outcome. We predicted that PL::A-DMS choice activity
220 might either have a role in the selection/execution of current actions or instead provide an
221 efference copy of the selected action that could be linked to resulting outcomes, thereby
222 influencing future action selection. We also predicted that manipulation of PL::P-DMS pathways
223  would have no effects on choice selection or motor performance, consistent with their lack of
224  choice modulation. To test these predictions, we activated NpHR from initiation through choice
225 onarandom 30% subset of trials (Fig. 6, Fig.S7). To analyze effects on choice selection, we took

226 advantage of the strong dependence on prior trial outcomes?’+?®

, analyzing win-stay and lose-stay
227 probabilities (see Methods). We found no evidence that optogenetic inhibition of PL::A-DMS
228 throughout the choice period had any impact upon ongoing action selection (Fig. S7a, Fig S8a,b).
229 To analyze effects on motor performance, we examined choice latency (the time from center port
230 initiation to choice selection), observing no effect of optogenetic inhibition on latency distributions
231 (Fig. S7b). We next analyzed the influence of choice-associated optogenetic suppression on
232 subsequent action selection and performance, finding increased lose-stay behavior following
233 choice activity suppression in prior trials for PL::A-DMS pathways (Fig. 6a, Fig S8g,h). No
234  subsequent trial effect was found for motor performance (Fig. 6b; cf. Fig S8e, k for GFP control).
235 Consistent with our population coding data, optogenetic inhibition of PL terminals in P-DMS had

236  no effect on either choice selection or execution for current or subsequent trials (Fig. 6¢c, d; Fig.

237 S7c, d; Fig S8c, d, |, j). Overall, these causal manipulations complement the neural coding
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238 analysis, suggesting that choice-epoch activity in PL::A-DMS is not related to action planning or

239 execution, but instead provides an efference copy of actions for subsequent valuation.

240 Temporally integrated PL::P-DMS neural activity supports task engagement

241 PL::P-DMS pathways were found to strongly encode action value differences and local reward
242  rates, two temporally integrated measures of recent task outcome. As the slow dynamics of these
243 neural signals precluded precise optogenetic interrogation, we used our second optogenetic
244  paradigm, where inhibition was delivered for 6 s following outcomes (Fig. 7a-d). We assumed this
245 manipulation would best reduce persistent activity and have broad effects on task engagement,
246  even outside of light trials. We measured the total number of completed trials as a proxy for task
247 engagement, finding that outcome suppression of PL::P-DMS pathways on 30% of trials caused
248 a decrease in the total number of completed trials for sessions where light was used (Fig. 7c).
249 This effect was not observed in subsequent light-off sessions (Fig. 7c), during shorter choice
250 suppression sessions (data not shown) and could not be explained by other typical motivational
251 regulators such as body weight (Fig. S9b). Task disengagement was also manifest as elongated
252 initiation latencies in the PL::P-DMS outcome inhibition sessions (Fig. 7d) but was not on overall
253 slowing of motor performance (note unchanged choice latencies in Fig. S9b). In contrast, the
254 PL::A-DMS pathways, which exhibited weaker internal value coding, did not impact task
255 engagement as measured by total trials or initiation latencies (Fig. 7a,b, Fig. S9a). These results
256  suggest that temporally integrated task value signals in PL::P-DMS pathways are important for

257  driving global task engagement.

258 PL::DMS pathways divergently control response strategies to positive and negative

259 outcomes.

260 To directly evaluate the divergent functions of outcome-related PL::DMS activity, we
261 optogenetically inhibited terminals in each striatal subregion following both positive and negative

262 outcomes (Fig. 7e-h). While we did not observe any choice or performance changes from
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263 suppression of PL::A-DMS terminals following positive outcomes (Fig.7e), we reliably observed a
264 decrease in the win-stay probability from similar manipulations of the PL::P-DMS pathway (Fig.
265 7g). In contrast, we found that optogenetic suppression during negative outcomes of the PL::A-
266 DMS, but not the PL::P-DMS, caused a robust decrease in lose-stay choice strategy (Fig. 7e,9).
267 Furthermore, we observed similar behavioral effects for PL::A-DMS inhibition across a range of
268 reward probability environments (Fig. S10a). Finally, we also noted that PL::A-DMS inhibition
269 disrupted the natural slowing of trial initiations observed following negative outcomes (Fig.
270 7f,h)**?728 These results support divergent fronto-striatal control of outcome-related strategies,
271  with PL::P-DMS activity mediating positive reinforcement and PL::A-DMS driving choice

272 persistence in the face of negative outcomes.

273 Second order retrograde tracing uncovers pathway specific afferent connectomes.

274 Our neural coding analyses and causal manipulation studies consistently indicated a functional
275 division of PL::DMS pathways for key neural processes that generate goal directed choice
276 behavior. As an initial step into understanding the origins of this divergence, we examined the
277 second-order excitatory connectomes for PL neurons defined by A-/P-DMS subregion. To do this,
278 we injected retroAAV2-EF1a::3xFLAG-Cre into either A- or P-DMS subregions and a mixture of
279 AAV-DJ-CAG::FLEX-TVA-mCherry and AAV-DJ-CAG::DIO-RVG into PL cortex (Fig. 8a).
280 Subsequent PL injection of EnvA-RV-EGFP permitted single synapse tracing specifically from PL
281 neurons that projected to either DMS subregions (2™ order inputs). Consistent with these fronto-
282 striatal circuits being embedded in the same local microcircuit, we observed multiple afferent
283 populations with similar targeting of each PL circuit, including dorsal anterior cingulate cortex
284 (dACC) and both associative and ventral motor thalamic nuclei (Fig. 8b,c). Surprisingly though,
285 we also noted pathway-specific distinctions in second order afferent connections, with strong
286 PL::P-DMS biases for secondary motor cortex (M2) and significant PL::A-DMS biases for ventral

287 anterior cingulate cortex, retrosplenial cortex and orbitofrontal cortex. These observations
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288 suggest that the distinct coding and functional properties of PL::DMS pathways could be at least
289 partly due to unequal strength of afferent connectivity, although other mechanisms such as

290 divergent recurrent processing in local circuits cannot be excluded.

291

292 DISCUSSION

293 The dorsal striatum is a canonical set of circuits that interfaces much of the forebrain with

294 downstream basal ganglia nuclei that select and modulate motor output®

. Accordingly, neural
295 processing within striatum is thought to be reflective of cortical activity®. Cortico-striatal
296 projections are highly localized along the dorsal-ventral and medial-lateral axes®, but less so
297 along the anterior-posterior striatal extent>'". Here we sought to understand the implications of
298 this architecture for cortico-striatal processing, focusing on prelimbic cortical connections to
299 dorsomedial striatum. As for most DMS-targeting afferents, we found that PL cortex formed non-
300 overlapping circuits according to A-P target. In vivo imaging demonstrated that these two
301 populations divided encoding of key behavioral variables for goal-directed choice. PL::A-DMS
302 pathways strongly encoded choice and negative outcome, while PL::P-DMS pathways strongly
303 encoded internal value representations and an integrated positive outcome/choice signal. Target-
304 and temporally- specific optogenetic manipulations further confirmed the functional divergence of
305 these fronto-striatal circuits, with PL::A-DMS pathways providing integrated responses to negative

306 outcomes and PL::P-DMS pathways supporting task engagement and reinforcement by positive

307 outcomes.

308 Temporal and spatial distribution of goal-directed processing by PL sub-circuits

309 Feedback-driven goal-directed behaviors require specific response strategies to positive and
310 negative outcomes, estimation and retention of value estimates for actions, the appropriate
311 assignment of credit for temporally displaced choice and outcome, as well as regulation of

312 motivation, performance, and task engagement. Here we provide evidence that prefrontal


https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.469698; this version posted December 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

313 connections to the DMS supports many of these core processing functions and do so in a

314 distributed manner across A-P striatal targets.

315 Action Monitoring

316 Our Ca* imaging data demonstrated that PL populations projecting to the A-DMS contain
317 neurons tuned to sensorimotor components of our operant behavioral task. While task start cue
318 and subsequent initiation approach were represented by small subpopulations (Fig. S3a), we
319 found that a substantial number of PL::A-DMS neurons were modulated by port choice. Averaged
320 choice-associated kernels revealed larger contralateral than ipsilateral choice signals that
321 occurred after choice was registered (Fig. 4e, Fig. S3c). These data are consistent with previous
322 work showing only weak neural signals for upcoming choice in medial prefrontal cortex (MPFC),
323 suggesting activity in this region doesn’t significantly contribute to action planning in trial and error
324 tasks®'. We directly probed the functional importance of choice-associated modulation via
325 optogenetic inhibition of PL terminals within the A-DMS, finding that while bilateral optogenetic
326 disruption of these circuits around the choice period had no effect on current trial choice selection
327 or performance, this manipulation specifically altered choices on trials following negative
328 outcomes (Fig. 6a). These data suggest a model where PL::A-DMS choice signals provide an
329 efference copy of actions that is utilized to update choice values on subsequent trials. Striatal-
330 targeting efference signals have been proposed to function together with cortical representations

331 of environment to bind context, selected action and outcome'®2.

Interestingly, our choice-
332 associated signals only seemed relevant following negative outcomes, as manipulations did not
333 alter win-stay probabilities (Fig. 6a). These data are consistent with the biased responding of
334 PL:A-DMS pathways towards negative outcomes (see below), suggesting common valence
335 processing in this pathway. Recently, PL neurons that project to the nucleus accumbens core

336 were shown to exhibit choice modulation that progressed sequentially through the population,

337 bridging choice and outcome periods®. In contrast to our results, optogenetic activation of PL-
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338 NAc throughout the trial altered subsequent responses following both positive and negative

339 outcomes.

340 Outcome Monitoring
341 Outcome monitoring is thought to be a crucial function of prefrontal cortical circuitry, influencing

3435 and select future actions®?7:%¢, While the

342 how animals use subsequent sensory information
343 PL cortex has been suggested to provide both positive and negative feedback signals to shape
344  behavior ¥, our experiments reveal a distribution of these functions according to DMS target, with
345 positive outcomes encoded by both pathways and negative outcome encoding exclusively by
346 PL:A-DMS. The PL::A-DMS pathway exhibited stronger encoding of brief (~1s) neuronal
347 responses to positive outcomes (Fig. S5h), while PL::P-DMS more strongly encoded positive
348 outcomes that followed specific choices (Ch x O+ interaction; Fig. 5d). Interestingly, activity
349 patterns for Ch x O+ coding exhibited distinct temporal patterns according to PL circuit, with a
350 persistent (>5 s on average) activity in PL::P:DMS neurons (Fig. 5e). We hypothesized that this
351 activity would be central to positive reinforcement behavior, either via providing an eligibility trace
352 for plasticity or by directly influencing ensuing decision processes. To test this, we optogenetically
353 inhibited PL::P-DMS continuously for 6 s following trial outcome, observing that stay-behavior was
354 reduced following positive outcomes with no change in choice for manipulation following negative
355 outcomes. These data are strongly consistent with seminal experiments showing the P-DMS to
356 be central to outcome-driven action selection®°. Furthermore, it seems likely that this prolonged
357 Ch x O+ activity may explain the value-based learning deficits observed upon chronic

358 chemogenetic-mediated suppression of PL-P::DMS pathways?®.

359 One surprising result of our work was the exclusive representation of negative outcomes by PL::A-
360 DMS pathways. Averaged negative outcome kernels in this population displayed a delayed onset
361 (~500ms) and persistent activity lasting over 5 s, consistent with an outcome feedback signal as

362 opposed to reward port approach (Fig. 5j). While there are numerous examples of outcome
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363 encoding in rodent PL cortex for negative valence, most cases involved aversive stimuli such as
364 foot-shocks or air puffs®. A gambling task in rats, where risky maze arms had lower
365 probability/higher reward outcomes, elicited prolonged bouts of firing in PL neurons at negative
366 outcome that supported risky choice®. Choice monitoring activity was also seen at outcome in PL
367 neurons which supported cognitive flexibility during set-shifting tasks®. We found that specific
368 optogenetic inhibition of negative outcome signals in PL::A-DMS pathways reliably decreased
369 stay behaviors following a prior loss (ie. increased choice switching), while having no choice
370 effects following prior positive outcomes (Fig. 7e). The ability of PL::A-DMS outcome activity to
371 support choice persistence following losses was a context-independent function, as optogenetic
372 inhibition always decreased lose-stay behavior regardless of the probability of receiving a reward
373 (Fig. S10). Thus, this optogenetic manipulation improved overall performance in high reward
374 probability environments, but impaired it in lower reward probability scenarios, where lose-stay
375 behavior is adaptive (not shown). This data argues against a role for mPFC circuits in flexibly
376 supporting behavioral strategies following negative outcome. Furthermore, these functional
377 effects strongly contrast with negative outcome-tuned neurons in the ACC, which have been
378 shown to implement choice switching in many species*®*!. While response persistence in the face
379 of negative outcomes is essential in sparse reward environments, left unchecked this tendency
380 could clearly impair value-based function. This raises the question of whether mouse models of
381 neuropsychiatric disease characterized by perseverative choice abnormalities exhibit

382 dysregulation of PL::A-DMS pathways.

383 Internal Representations of Value

384 Internal representation of choice value and local reward availability are key determinants of
385 behavior in dynamic foraging tasks®*?’. Our results suggest that PL::P-DMS pathways more
386 strongly encode these behavioral parameters as compared with PL::A-DMS pathways. We found

387 thatrelative value signals tracked strongly with the baseline, but not phasic components of cellular
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388 calcium signals (Fig. 4g,l, Fig. S4e,f). Our AQ-encoding PL population is consistent with a
389 previously identified PL-DMS population that stably represented relative value via persistent
390 baseline spiking activity?*. While we also identified neural signals encoding total choice value (2Q)
391 as in Bari et al., our inability to control trial initiation precluded investigation into the relative
392 persistence of these distinct value signals®*. Engagement in self-initiated foraging tasks is strongly
393 modulated by local reward environment, a variable we captured with a local average of the reward
394 rate. Again, we found that PL::P-DMS pathways more strongly encoded this feature as compared
395 to PL::A-DMS pathways. The persistent nature of value coding in these pathways made phasic
396 optogenetic manipulation difficult. To circumvent this, we looked at all trials in sessions where
397 inhibition was delivered in 30% of trials for 6 s after outcome. We reasoned that prolonged
398 inhibition should sufficiently alter persistent neural signals to impact immediately subsequent trials
399 as well as the overall behavior of the animal in the session. Indeed, we found that post-outcome
400 inhibition was able to both reduce the total number of initiated trials and reduce the win-stay
401 probability in non-light trials, suggesting the involvement of reward-rate and AQ-encoding PL::P-
402 DMS populations, respectively. It is interesting to hypothesize that the reduction in task
403 engagement caused by disruption of this pathway may share a common cause with the reduced

404 responding seen in earlier P-DMS lesion studies®.

405 What underlies the functional diversification of PL cortex?
406 Our work adds to recent studies demonstrating a range of behavioral functions for PL cortical

407 microcircuits defined by target area?*?2333°

. Nevertheless, the mechanisms underlying this
408 functional diversification remain unclear, with potential candidates including circuit-specific
409 differences in molecular composition, long-range afferent projections, or local synaptic networks.
410 While evidence exists for target-specific transcriptional differences in PL cortex?, other analyses

411 have shown diverse PL functions emerging from molecularly homogenous populations?. Circuit-

412  specific transcriptional profiling could reveal whether molecular diversity can account for divergent
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413 PL-DMS pathway activity. Differences in afferent connectivity may result from circuit-specific

414 differences in local inhibitory control*?

or long-range excitatory projections. We used 2-stage
415 retrograde tracing to map afferent populations that synapsed on PL neurons defined by A/P-DMS
416 target (Fig. 8), finding that ACCv, RSP cortex and OFC were strongly biased towards PL::A-DMS
417 populations while M2 connectivity favored PL::P-DMS. Upstream manipulations will be necessary
418 to test whether prolonged choice encoding in M23¢ supports persistent Ch x O+ signaling in PL::P-
419 DMS neurons, while enhanced ACCv, RSP and OFC connectivity to PL::A-DMS supports
420 negative outcome associated activity. Similar tracing approaches have highlighted the importance

421 of ACCyv connectivity to deep PL layers projecting to NAc for outcome monitoring during cognitive

422 flexibility tasks®°.

423  Functional implications of this circuit architecture

424  Our initial tracing data showed a surprising number of cortical and thalamic regions have distinct,
425 yet intermingled populations projecting to A/P-DMS (Fig. S1). Future work should explore the
426 computational advantages afforded by this arrangement. It is presently unclear whether anterior
427 and posterior striatal subregions might work coordinately or antagonistically to control behavior,
428 which would be an important starting point for our understanding. Either way, this organization
429 could permit appropriate and flexible coordination of A/P-DMS targeting populations via local-
430 circuit interactions in cortex or thalamus. Alternatively, these parallel processing paths may be

431 integrated via downstream basal ganglia components.

432
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447 METHODS:

448 Animal

449  Animal experiment procedures were approved by the University of Pennsylvania Institutional
450 Animal Care and Use Committee, and all experiments were conducted in accordance with the
451 National Institutes of Health Guidelines for the Use of Animals. All animals were supplied from
452 Charles River Laboratory (Wilmington, MA, strain code 027, C57BL/6NCrl). Unless otherwise
453 noted, animals were grouped with littermates on a 12:12 light-dark cycle and provided ad libitum
454 food and water. All experiments were conducted on naive male mice.

455

456 Stereotaxic surgery

457 Intracranial surgery was conducted on a stereotaxic surgery frame (Kopf Instrument, Model 1900)
458 under isoflurane anesthesia (1.5-2% + oxygen 1 L/min). Animal body temperature was maintained
459 at 30°C during surgery using a feedback thermocontroller (Harvard apparatus, #50722F). Skin
460 was cleaned with Nair hair remover followed by application of betadine to disinfect the area. Prior
461 to surgery, 2mg/kg bupivacaine was administered subcutaneously, and the mouse was given a
462 single dose of meloxicam (5mg/kg). Skin was carefully opened along the anterior-posterior midline,
463 bregma was set to zero based on skull balance. A craniotomy was performed with a drill above
464 the target site. Virus or Tracer was loaded into mineral oil (Sigma-Aldrich, M3516)-filled glass
465 pipette (WPI, TW100F-3) and delivered at rate 30 nl/min using a micro-infusion pump (Harvard
466 Apparatus, #70-3007). Pipette was carefully withdrawn from the brain, and the skin was sutured.
467 Animals were monitored up to 1 hour following regaining of consciousness, then transferred to
468 the home cage and monitored after 24h, 48h and 72h. Injection coordinates, A-DMS: AP + 1.2
469 mm, ML +1.35 mm, DV -2.7 mm; P-DMS: AP -0.3 mm, ML + 1.95 mm, DV -2.2 mm; PL: AP + 2.0
470 mm, ML +0.35 mm, DV -1.7 mm

471
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472  Anatomical Tracing

473  For mapping PL synaptic terminals in DMS (anterograde tracing), a 1:1 mixture of AAV5-
474 CaMKii::Cre + AAVdj-EF1a::Flex-Synaptophysin-mRuby viruses were injected into PL. For
475 mapping retrogradely labeled neurons, a mixture of AAV1-Syn::Cre + AAVdj-EF1a::DIO-RVG +
476  AAVdj-EF1a::Flex-TVA-mCherry was injected into A-DMS and Alexa647-conjugated Cholera
477  toxin subunit-B was injected into P-DMS. Seven days later, EnvA G-Deleted Rabies-eGFP was
478 injected into A-DMS. For mapping 2nd-tier projections to PL::DMS pathway, retroAAV2-
479 hSyn::3xFlag-Cre was injected into the A- or P-DMS followed by a mixture of AAVdj-EF1a::DIO-
480 RVG + AAVdj-EF1a::Flex-TVA-mCherry into PL. Seven days later, EnvA G-Deleted Rabies-eGFP
481 was injected into PL.

482

483 After viral injection, 7 days (for Rabies virus) or 3 weeks (for AAV) were allowed for viral
484  expression, animals were deeply anaesthetized with i.p injection of 100 uL pentobarbital sodium
485 (Nembutal, 50 mg/mL) and transcardially perfused with PBS followed by formalin (10%). Brains
486 were removed and post-fixed in formalin (Thermo Fisher Scientific, SF1004) overnight, then
487 transferred to PBS. Brains were sectioned coronally at 50pm then brain slices were mounted on
488 slide glasses and covered with fluoromount solution (SouthernBiotech, #0100-01) for imaging.
489  Stitched large-field images were obtained with a 4x objective (Olympus, 4x, 0.16NA) on an epi-
490 fluorescent microscope (Olympus, BX63). Fluorescence-positive neurons were counted using
491 automated object detection (Neurolnfo Suite, v2021.). Three-dimensional brain images were then
492 reconstructed using Neurolnfo software (MBF bioscience), which registered individual slices to
493 the Allen Institute reference brain atlas (Allen mouse common coordinate framework; CCFv3) 4.

494
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495 Immunohistochemistry

496 At room temperature, free floating brain slices were permeabilized in 0.6% Triton x-100 and
497 blocked with 6% normal goat serum (Jackson ImmunoResearch, 005-000-121) in PBS for 1 h.
498 Samples were incubated in primary antibody solution (Rat anti-CTIP2, 1:500, Abcam, ab18465)
499 overnight in 0.2% Triton x-100 and 2% NGS in PBS. Slices were washed then incubated in
500 secondary antibody solution (Goat anti-rat IgG-alexa555 conjugated, 1:500, Invitrogen, A48263)
501 for 1hin 0.2% Triton x-100 and 2% NGS in PBS, then mounted and imaged.

502

503 Behavioral equipment

504 Behavior training was conducted utilizing a custom built 3-port operant chamber (dimensions 7.5
505 L x5.5W x5.13 Hinches, Sanworks LLC, NY). Each port is controlled by a TTL signal from the
506 state machine consisting of white LED light, infrared beam break detector and liquid outlet. The
507 center port was designated as a reward delivery outlet using a pinch valve (225P011-21,
508 NResearch, NJ). All behavior chambers were enclosed in sound-attenuating boxes (PSIB27, Pyle,
509 NY). Behavior protocols were controlled by Bpod software (https://github.com/sanworks/Bpod) in
510 MATLAB (MathWorks). All port entries and events were recorded by the Bpod State Machine
511 during behavioral sessions.

512

513 Behavioral Training

514 To increase operant responding, total calorie consumption was reduced over 1 week to reach
515 85~90% body weight, a level maintained throughout operant training. Animals were habituated to
516 behavior chambers for at least 2-days prior to training. Each day, animals were given 45 min of
517 exposure to the behavioral box with chocolate milk (Boost Original ready to drink, rich chocolate
518 nutritional shake, Nestle) delivery from the center port spaced 20 s. apart. Following the

519 habituation period, animals performed light-guided sessions as follows: 1) center port light
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520 indicated the beginning of a trial; 2) trial initiation via a center poke led to illumination of a randomly
521 selected side port; 3) appropriate selection of the lit port within 3 s led to illumination of the center
522 port and delivery of 12ul of Boost at this location; 4) selection of the unlit alternative led to
523 illumination of the center port without concomitant dispensing of reward. Each trial was separated
524 by a 5 s. ITl in which all chamber lights were extinguished. Sessions lasted 1 hour with no trial
525 limits. Animals were considered to reach criteria with >200 completed trials per session.

526

527 Two-alternative forced choice task

528 After reaching criteria performance levels in light-guided training, mice progressed to a 2-
529 alternative forced choice task structured as follows: 1) center port light indicated the beginning of
530 atrial; 2) a 500 ms. holding period (sequentially increased from Oms, 100ms, 300ms) in the center
531 port triggered the illumination of both side ports; 3) animals had a 3 s. window to register either
532 left or right port choice. When animals failed to make a choice in this period this resulted in an
533 omission, which was followed by a 3 s timeout and required the animal to reinitiate the trial. 4)
534 successful registration of a choice was followed by 0.5 s delay period ending in the outcome

535 period (P,y,tcome= 85%). Correct choice resulted in delivering 12uL Boost from the center port

536 with 85% chance while incorrect choice resulted a in brief punishment tone (white noise) with 3 s
537 timeouts, also with 85% chance. In the remaining 15% of trials, animals didn’t receive any
538 outcome (reward or punishment). Each trial was separated by a 3 s. ITl in which all chamber lights
539 were extinguished. To prevent outcome-insensitive behavior, past-reward history was monitored
540 in a 10-trial moving window and rewarded side was switched when 8 of the last 10 choices were
541 tothe currently rewarded port. Sessions lasted for either 45 min. (1-p imaging) or 1 hr (optogenetic
542 manipulations). We utilized a relative reward-stay value >2 to decide when to move mice on to
543 recording sessions. Relative reward stay was defined as:

544
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P(WinStay)
_ B 1— P (WinStay)
545 Relative reward stay = In P (LoseStay)
1— P (LoseStay)
546

547 1-p Imaging

548 To record calcium signals from PL neurons targeting specific striatal subregions,
549 retroAAV2/EF1a-3xFlag-Cre** was unilaterally injected to A- or P-DMS, together with AAV1/hSyn-
550 Flex::GCaMP7{-WPRE* injection into PL. Prior to relay GRIN lens (1mm x 4mm, Inscopix, 1050-
551 002176) implantation in PL, upper prefrontal tissue was gently aspirated using a glass pipette
552 until reaching 0.5 mm above target site. Following tissue aspiration, the GRIN lens was slowly
553 lowered (100um/min) until 0.3 mm above from the target site. Dental cement (Geristore™) was
554 used to create a foundation around the GRIN lens, and the remaining exposed GRIN lens was
555 covered with silicone paste to prevent scratches. After surgery, animals were transferred to a
556 single housed cage, where their status was monitored untii movement recovery. The anti-
557 inflammatory Meloxicam (5 mg/kg) was applied subcutaneously daily for >1 week, and animals
558 were carefully monitored. Four to six weeks following GRIN lens implantation, the miniscope
559 baseplate was installed under 1-p imaging (UCLA miniscope v3.0)* to locate fields of view (FOV)
560 with robust GCaMP7f expression. Once a FOV was selected, the baseplate was fixed with dental
561 cement to make a crown. Baseplates were covered with a cap, and animals were subsequently
562 returned to the home cage.

563

564 Signal processing
565 To extract calcium traces from imaging videos, we utilized MIN1PIPE (v2 alpha,

566 https://github.com/JinghaoLu/MIN1PIPE/tree/v2-alpha) for motion correction (Hierarchical non-

567 rigid movement correction), segmentation (GMM, LSTM classifier), and signal deconvolution


https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.469698; this version posted December 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

568 (CNMF identifier)*’. Each ROI selected by MIN1PIPE was individually reviewed to ensure somatic
569 morphology and remove repeated selection of the same neuron’s proximal dendrites.

570

571 Neural Encoding Model

572 To analyze task-relevant neural activity we designed a neural encoding model based upon a linear
573 combination of event-based and continuous predictors. We included episodic external variables,
574 including trial start cue, self-initiation, choice and outcome, which were represented by spline-
575 based, temporally expanded kernels (Fig. 2d). In addition, we sought to identify neural signals
576 encoding relevant internal value information likely guiding choice*®. To do this we fit our choice
577 data with a Q-learning reinforcement model and used Q values and reward prediction errors as
578 internal behavioral variables. Specifically, we included trial-by-trial ZQ (Qiert + Qright) and AQ (Quest-
579  Qignt) values (as continuous predictors that changed their value at outcome, consistent with the
580 RL model) and reward prediction errors (kernels tethered to the outcome). Finally, we included a
581 local reward rate averaged over the prior 5 trials as a continuous behavioral variable. We fit these
582 regression parameters using a generalized linear model with near-lasso (elastic net, alpha=0.95)
583 regularization to achieve sparse regression weights, using the glmnet library*® (wrapped for
584 MATLAB usage with custom software available at doi:10.5281/zenodo.3568314). Details on the
585 representation of each predictor in the design matrix of the model are given in Table 1. For each
586 fitted trace, the shrinkage hyperparameter A controlling the strength of the elastic net
587 regularization was selected by 50-fold cross-validation. Following established practice (Hastie,
588 2008), given the maximum value of the (cross-validated) fraction of variance explained (FVE) over
589 possible values of A and its standard deviation across folds, we selected the largest value of A
590 such that its associated FVE was larger than the maximum minus one standard deviation, thus
591 selecting the “simplest” model in the neighborhood of the best-fitting one. The cross-validation folds

592 were stratified by experimental trial, so that each trial was represented roughly equally in each
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593 fold, and the data was grouped in 200ms-long temporal chunks (typically corresponding to about
594 4 imaging frames) for the purpose of cross-validation, to reduce the number of temporally adjacent
595 data samples in different cross-validation folds®.

596

597 We fitted an independent model to each recorded neuron. Using the model, the fraction of
598 variance explained (FVE) was calculated by comparing the full model and actual calcium signal
599 trace as an indicator of the accuracy of model prediction. To exclude non-task relevant neurons,
600 we limited further analyses to those with at least 5% FVE. To assess contribution from a certain
601 predictor, we calculated a tuning index defined as FVE(Full) — FVE (reduced), where FVE
602 (reduced) is the FVE of the reduced model obtained by removing the predictor of interest from
603 the full model. Tuning to a group of predictors was quantified in the same way. This tuning index
604 gives a lower bound on the amount of variability in the data that can be explained by the predictor
605 (or group of predictors) of interest. Whenever a dichotomous “tuned”/“not Tuned” characterization
606 was needed, such as in the donut plots in Fig 3, we classified as “tuned” neurons that met a 5%
607 tuning threshold for grouped predictors (Fig 3d).

608

609 Each neuron’s fitted model provided tuning estimates for all predictors, as well as neuron-level
610 estimates of the model kernels such as those in Fig 4a, 5a, f. The pathway-level kernels in Fig 4e,
611 5e,j were defined as the root-mean-square of the kernels of task-relevant neurons in each
612 pathway, and their confidence intervals were determined by bootstrapping over the set of neurons
613 (10,000 bootstrap samples). The pathway kernel for a certain predictor can be given an intuitive
614 geometrical interpretation as follows: if we consider the pseudo-population vector describing the
615 activity of all recorded (and task-relevant) neurons within a pathway, the pathway kernel for a
616 predictor at lag t is an estimate of the distance at lag t of the population vector from its time-
617 averaged value, after accounting for the effect of the other predictors. By construction, then, the

618 pathway kernels can never be negative, as they capture the overall magnitude of the effect of the
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619 predictor on the neural population, rather than a specific modulation direction. The statistical
620 significance of the difference of pathway kernels in Fig 4c, 5dh was assessed with a bootstrap
621 test °' performed with the Bias-Corrected and accelerated(BCa) technique and bootstrapping
622 over the set of neurons belonging to the two pathways (10,000 bootstrap samples).

623

624 Reinforcement Learning Model

625 We adapted a Q-learning Reinforcement Learning Model with two basic parameters that fit the
626 behavioral data produced by the serial reversal task. Mouse choice and outcome history were the
627 primary inputs of the model. The values of the choice alternatives were initiated at 0 and updated
628 as follows:

629 Qe+1 = Q¢ + ar(R: — Q)

630

631 Qtis the value of the action taken on trial t of each choice and R is the actual reward received in
632 trial t. Learning rate was controlled by the parameter a. Softmax rule was employed to infer trial-

633 by-trial Q-values for each choice, which relates choice probability to differences in choice value:

634 P,(t) = Ti-z , Where

635 z=B(Qa(®) — Qz(D))

636

637 B is the inverse temperature parameter and controls the degree to which choices are biased by
638 perceived value. High values for § indicate mice more readily exploit differences in action values
639 between the alternatives, while lower values suggest that mice exhibit more exploratory behavior.
640 To fit this model to our choice data, we used the fmincon function in MATLAB to minimize the

641 negative log likelihood of models using our parameters (a, f3).

642
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643 To quantify the goodness of fit of the RL model in an easily interpretable way, we computed the
644 fraction of deviance of the choice data explained by the model (FDE) *2. The deviance of the RL

645 modelis
646 dRL = _ZLRL

647 where L is the log-likelihood of the fitted model:

648 L= Z[Cnlogpn + (1 - Cn)log(l - pn)]

649 where ¢, is the choice on trial n (c,=0 for left choice, ¢,=1 for right choice), and p, is the probability
650 that the model assigns to choosing right on trial n. The FDE is defined as

dpan — dgy,

651 FDE = —
dnull - dsat

652 where dn is the deviance for a null model that assigns the same probability p,=p on each trial
653 (equal to the average probability of choosing right over the session), and dsa: is the deviance of
654 the “saturated” model, which assigns p,=1 on trials where the mouse chose right, and vice versa
655 pn=0 on trials where the mouse chose left. By inspection of the definition of L we find that dsat is

656 always zero, and therefore

d.n—d
657 FDE = 2l 7RL
dnull

658 We note that FDE<1, with FDE=0 for a model that doesn’t do better than chance (i.e., making
659 always the same prediction for each trial) and FDE=1 for a model that explains all variability in
660 the data (this is in general unachievable on unseen data, unless the process generating the data
661 is deterministic). Applying this metric showed that the reinforcement learning model successfully
662 captured the main behavioral patterns exhibited by the animals, explaining overall 23.4% of the

663 deviance (as measured on the training data; Fig. S2c).
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664

665 As a further check on the performance of the RL model, we compared its goodness of fit and
666 predictive power with that of a logistic regression model that predicted the upcoming choice based
667 on the choices and outcomes of the previous 5 trials. The two models had largely comparable
668 performance (Fig S2c). The logistic regression model tended to have slightly higher FDE on the
669 training data (Fig S2c), but this was likely an overfitting effect due to the larger number of
670 parameters available to that model (11 parameters for the logistic regression vs 2 parameters for
671 the RL model), as evidenced by the similar values of the Akaike Information Criterion between

672 the two models (FigS2c).

673

674 Optogenetics

675 To evaluate the behavioral role of each pathway (PL::A-DMS or PL::P-DMS), we used a
676 Halorhodopsin-induced terminal suppression strategy (Felix-Ortiz et al., 2013). AAV5/CaMKii-
677 NpHR3.0-eYFP (UNC vector core) or AAV5/Syn-GFP (Penn vector core) was injected bilaterally
678 tothe PL followed by bilateral implantation of custom-made optic cannulas (Thorlabs, FT200EMP,
679 SFLC230) for pathway-specific light delivery into either A-DMS and P-DMS. To ensure full
680 expression of NpHR in the axonal terminal, a recovery period of at least 5 weeks was allowed
681 after viral injection. Animals were acclimated to the fiber optic tethers for at least 5 days before
682 any behavioral sessions. Once animals performed >200 trials/day with a relative reward stay >2
683 we proceeded to the optogenetic manipulation phase, the training proceeded to the light delivery
684 stage. In the behavior task, two light delivery protocols (~530nm light from either PrizmatixFC-
685 LED-535-TR or Shanghai DPSS, SDL-532-100T) were used to assess temporally distinct
686 contributions from each pathway. To prevent light-induced non-specific effect, light intensity was

687 adjusted to 0.8~2 mW at the fiber end®®. Choice epoch manipulations were continuous illumination
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688 from initiation poke to the end of the reward delivery delay following choice. Outcome epoch
689 manipulations were continuous illumination from outcome delivery until next trial center light
690 on. Either AWin-Stay or ALose-Stay was calculated as:

691 AWinStay(ON — OFF) = P(Stay | Win, Light ON ) — P(Stay | Win, Light OFF)

692 ALoseStay(ON — OFF) = P(Stay | Lose,Light ON ) — P(Stay | Lose, Light OFF)

693 where Win or Lose indicates reward history on prior trial. Light On/Off refers to presence or
694 absence of light illumination on previous choice epoch (Fig. 6, Fig. S8), current choice epoch (Fig.
695 S8) and previous outcome epoch (Fig. 7, Fig. S9). Behavioral data were collected for multiple
696 days to obtain enough trials (3351 £ 143 trials, mean * s.e.m. across animals). Unless otherwise
697 noted, probability of reward was 85%. For Fig. S10, some PL::A-DMS outcome optogenetic
698 sessions were performed with reward probabilities of 1.0 or 0.4, applied to both ports.

699

700 Quantification and statistical analysis

701 All data were analyzed with prism8.0 and custom MATLAB code, available upon request.
702 Repeated measures ANOVA t-test (paired and unpaired) were performed using Prism 8.0 built-
703 in-function. K-S tests were performed as indicated in results using kstest2 functions in MATLAB.
704 Kernel density estimates were performed as indicated in results using ksdensity functions in

705 MATLAB. Significant effects and p-values are indicated in the figures and legends.

706
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Figure 1. Distinct PL neuron populations defined by anterior/posterior dorsomedial striatal
(DMS) target. a) Approach for anterograde tracing of PL-DMS excitatory projections with synaptic
terminal marker Synaptophysin-mRuby (inset shows GFP-Cre expression at PL target site. b)
Superimposed striatum images (top: A-DMS, bottom: P-DMS, left to right increasingly posterior)
showing averaged fluorescent intensity of Synaptophysin-mRuby inputs from PL along anterior-
posterior axis (n= 4). ¢) Schematic demonstrating dual-color retrograde tracing strategy using
trans-synaptic rabies virus (A-DMS) and Alexa647-conjugated CTB (P-DMS). d) Coronal sections
showing injection sites (top: A-DMS, Bottom: P-DMS). scale bar, 500 ym. Number in upper left
corner indicates A/P coordinate from bregma. €) Representative image of dorsomedial prefrontal
cortex (top) and quantification (kernel density estimate) of neuronal density from the pia (bottom),
with relative proportion of overlapping double-labeled neurons (inset). scale bar, 100 uym (n= 4).
ACAd, dorsal part of anterior cingulate cortex. f) Example image showing prelimbic area from
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EnvA-AG-rabies virus tracing of A-DMS (top) co-stained with CTIP2 (bottom). Scale bar 100 pm.
g) Quantification of neuronal density from pia of PL::A-DMS and CTIP2+ populations (n= 3). h)
Quantification of neuronal density from pia of PL::P-DMS and CTIP2+ populations (n= 3). Pink
line in g,h represents average layer IlI-V transition as visualized by compact CTIP2 staining. i)
Fraction of GFP labeled neurons located in compact CTIP2+ deep cortical layers.
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Figure 2. Quantifying neural coding of a value-based operant task. a) Schematic showing
viral injection strategy to label pathway specific PL neurons for 1-photon calcium imaging (top)
and representative image for GRIN lens location (bottom). scale bar, 500um. b) MIN1PIPE
workflow for extraction of calcium signal from identified ROIs (bottom). scale bar, 50 pixels. c)
Representative raw Ca?* traces from 10 PL::A-DMS neurons. Scale bar, 1min. d) Schematic of
trial structure showing mice initiating trials via sustained (500 ms) center port entry, followed by
left/right choice within 3 sec. Subsequent reward is delivered from center port. €) Schematic
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drawing of design matrix for neural encoding model showing behavioral predictors for
sensorimotor components, outcomes and internal representations of value (top, see table 1).
Reinforcement learning model for estimating internal value predictors (bottom). f) Example raw
Ca?* trace (top, black) and output of encoding model (bottom, gray). g) Temporally expanded
predictors (kernels) from example neuron exhibiting strong O+ modulation. h) Tuning plot of same
neuron. i) Peri-event time histogram (PETH, top) and trial-by-trial neuronal activity (bottom)
aligned by O+.
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Figure 3. Divergence of neural coding for PL pathways defined by A/P DMS target. a,b)
Histogram of binned total FVE distribution for all neurons from (a) PL::A-DMS or (b) PL::P-DMS.
Grey bars denote non-task tuned population (<5% FVE); colored bars (blue, PL::A-DMS; orange,
PL::P-DMS) denote task-tuned neurons. Pie charts showing the proportion of task tuned neurons
for both PL::DMS pathways (insets). ¢) Cumulative distribution of tuning indices for grouped
behavioral variables (see text): external (top), internal (middle), outcome (bottom). Plots are
restricted to task-tuned neurons. d) Proportion of highly tuned neurons (>5% FVE) for each
behavioral category from each pathway, external (top), internal (middle), outcome (bottom).
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Figure 4. Preferential encoding of choice in PL::A-DMS, internal value signals in PL::P-
DMS. a) Tuning plot showing representative contralateral choice tuned neuron from PL::A-DMS.
b) Representative kernels corresponding to ipsi (top) and contra (bottom) choices. c¢) z-scored
PETH (top) and trial-by-trial neuronal activity (bottom) from Ipsi (left)/Contra (right) choice. d)
Cumulative distribution of contra choice tuned neurons in both PL-DMS pathways. e) Averaged
contralateral choice kernels for both PL-DMS pathways. Solid line denotes root-mean-squared;
shaded area denotes 95% confidence interval. Colored-bar on top indicates significant mean-
displacement on each timepoint between pathways. f) Tuning plot for representative AQ tuned
neuron from PL::P-DMS. g) Raw Ca?** trace (black, top), model prediction (gray, middle) and trial-
by-trial AQ (orange, bottom). Choices and outcomes at top (direction of triangle, left/right choice;
filled/blanked, O+/O-). h) Trial-by-trial transient Ca?* signals (middle, trial average; right, outcome
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aligned) ranked by AQ (left). scale bar, 2 sec. i) Scatter plot showing linear correlation between
AQ and trial average of Ca?* waveform. j) Cumulative distribution for AQ tuned neurons in both
PL-DMS pathways. k) Tuning plot showing representative RR tuned neuron from PL::P-DMS. I)
Raw Ca?* trace (black, top), model prediction (gray, middle) and RR (5-prior trial average, orange,
bottom) with choice/outcome information at top. m) Trial-by-trial transient Ca?* signals (middle,
averaged; right, outcome aligned) ranked by RR (left, averaged). scale bar, 2 sec. n) Scatter plot
showing linear correlation between local RR and trial average of Ca?* transients. o) Cumulative
distribution for RR tuned neurons in both PL-DMS pathways.
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Figure 5. Divergent encoding of outcome by PL::DMS pathways. a) Representative tuning
plot of Ch x O+ tuned neuron from PL::P-DMS. b) Inferred kernels corresponding to Ch x O+ (fop),
Ch x O- (bottom). c) z-scored PETH (top in each panel) and trial-by-trial neuronal activity (bottom
in each panel) to 4 possible choice outcomes, aligned to outcome delivery. d) Cumulative
distribution for Ch x O+ tuning from task-tuned neurons of both PL::DMS pathways. e€) Averaged
Ch x O+ kernels show pathway-distinct temporal properties. Solid line denotes root-mean-
squared; shaded area denotes 95% confidence interval. Colored-bar on top indicates significant
mean-displacement on each timepoint between pathways. f) Representative tuning plot for O-
tuned neuron from PL::A-DMS. g) Inferred kernels corresponding to O+ (top), O- (bottom). h) z-
scored PETH (top) and trial-by-trial neuronal activity (bottom) corresponding to types of outcomes
(feft, O+; right, O-). i) Cumulative distribution for O- tuning from task-tuned neurons of both
PL::DMS pathways. j) Averaged O- kernels for both PL::DMS pathways.
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Figure 6. Optogenetic suppression of choice-associated PL::A-DMS activity impairs
subsequent choice selection without impacting current trials. (fop, left) Representative
section of PL injection site. (fop, right) schematic of optogenetic manipulation (yellow bar) with
respect to behavioral measures (blue). a) Comparison of AWin-Stay (left) and ALose-Stay (right)
between NpHR and GFP (control) groups, when light was delivered in the previous choice epoch
to PL terminals in A-DMS. b) Cumulative distribution of choice latencies and average of choice
latency (inset) following light ON versus OFF trials from NpHR inhibition of PL::A-DMS. c)
Comparison of AWin-Stay (left) and ALose-Stay (right) between NpHR and GFP (control) groups,
when light was delivered in the previous choice epoch to PL terminals in P-DMS. d) Cumulative
distribution of choice latencies and average of choice latency (inset) following light ON versus
OFF trials from NpHR inhibition of PL::P-DMS.
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Figure 7. PL:: Optogenetic suppression of outcome-associated signals causes pathway-
specific effects on task engagement and responses to positive and negative outcomes. a)
Normalized number of total trials per session in sessions without and with random 30% outcome
optogenetic inhibition of PL::A-DMS pathway (yellow bars). b) Comparison of initiation latency
between sessions with (ON) or without (OFF) outcome epoch illumination of PL::A-DMS circuits
from either GFP or NpHR group. ¢) Normalized number of total trials per session in sessions
without and with random 30% outcome optogenetic inhibition of PL::P-DMS pathway (yellow bars).
d) Comparison of initiation latency between sessions with (ON) or without (OFF) outcome epoch
illumination of PL::P-DMS circuits from either GFP or NpHR group. €) Comparison of AWin-
Stay(left) and ALose-Stay(right) between GFP and NpHR groups when light was delivered during
prior trial outcomes to PL terminals in A-DMS. f) Cumulative distribution of initiation latencies and
average of initiation latency (inset) following outcome light ON versus OFF trials from NpHR
inhibition of PL::A-DMS. g) Comparison of AWin-Stay(/eft) and ALose-Stay(right) between GFP
and NpHR groups when light was delivered during prior trial outcomes to PL terminals in P-DMS.
h) Cumulative distribution of initiation latencies and average of initiation latency (inset) following
outcome light ON versus OFF trials from NpHR inhibition of PL::P-DMS.
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Figure 8. Second-order circuit tracing reveals preferential innervation of PL neurons
according to A/P DMS target. a) Schematic of tracing approach to label 2" order projection to
PL circuits defined by DMS target. RetroAAV2-Cre virus was injected into either A/P-DMS with
Cre-sensitive TVA receptor and G-prot in PL, followed by EnvA pseudotyped-AG-Rabies virus
one week later. b) Brain-wide innervation preferences of PL::A/P DMS pathways. Abscissa shows
relative proportion (out of total labeled neurons) for each brain region and ordinate shows the ratio
between pathways (PL::P-DMS/PL::A-DMS). Green and blue circles represent ipsilateral and
contralateral sites relative to injectrion. Asterisks indicates statistical significance (unpaired t-test,
significance *p<0.05, **p<0.01). c) Comparison of second-order innervation from major afferent
brain areas.
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Predictor Window Window Number of
extent PRE extent POST | splines
(s) (s)

start cue (CUE) 0 2 12

Self-initiation (Init) 3 1 12

Choice LEFT (Lf) 3 3 20

Choice RIGHT (Rt) 3 3 20

Outcome NEGATIVE (O-) 0 6 20

Outcome POSITIVE (O+) 0 6 20

Choice RIGHT x Outcome NEGATIVE |0 6 20

(Rtx O-)

Choice RIGHT x Outcome POSITIVE (0 6 20

(Rt x O+)

Reward prediction error (RPE), 0 6 20

positive

(RPE+)

Reward prediction error (RPE), 0 6 20

negative

(RPE-)

Reward rate (RR) (continuous predictor)

Q(LEFT) + Q(RIGHT) (ZQ), (continuous predictor)

Q(LEFT) - Q(RIGHT) (AQ) (continuous predictor)

Table 1. Details on model predictors. Window extent PRE/POST indicates the extent
of the kernel window before/after the event to which the predictor is tethered. N of splines
is the size of the spline basis used for the predictor. The basis functions are cubic B-
splines. The spline knots are placed at regular intervals within the kernel window;
additionally, four knots are placed at each end of the window to enable flexibility in the
value of the kernel and all its derivatives at the endpoints. The degree of the splines and
the number of the knots determines the number of elements in the basis spline set,
reported in the fourth column.]
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Abbreviation

Agranular insular area Al Lateral amygdalar nucleus LA
Anterior cingulate area ACC Lateral group of the dorsal thalamus LAT
Anterior cingulate area/ dorsal part ACCd | Medial group of the dorsal thalamus MD
Anterior cingulate area/ ventral part | ACCv | Midline group of the dorsal thalamus C™M
Anterior group of the dorsal
thalamus AD Orbital area OFC
Auditory areas AUD Paraventricular nucleus of the thalamus PVT
Basolateral amygdalar nucleus BLA Peripeduncular nucleus PP
Basolateral amygdalar nucleus/
anterior part BLAa | Posterior amygdalar nucleus AMYp
Basolateral amygdalar nucleus/
posterior part BLAp Posterior parietal association areas PTLp
Basolateral amygdalar nucleus/
ventral part BLAv | Prelimbic area PL
Basomedial amygdalar nucleus BMA | Primary motor area M1
Basomedial amygdalar nucleus/
anterior part BMAa | Primary somatosensory area S1
Basomedial amygdalar nucleus/
posterior part BMAp | Reticular nucleus of the thalamus RT
Claustrum CLA Retrosplenial area RSP
Epithalamus EPI Secondary motor area M2
Geniculate group/ dorsal thalamus GENd | Subparafascicular area SPA
Geniculate group/ ventral thalamus | GENv | Subparafascicular nucleus SPF
Globus pallidus/ external segment GPe Substantia nigra/ compact part SNc
Globus pallidus/ internal segment GPi Substantia nigra/ reticular part SNr
Gustatory areas GU Supplemental somatosensory area S2
Hippocampal formation HPF Temporal association areas TEa
Infralimbic area IL Ventral group of the dorsal thalamus VM
Intralaminar nuclei of the dorsal
thalamus ILM Ventral tegmental area VTA
Visceral area VIC
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