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SUMMARY  15 

• Prelimbic cortex engages A- and P-DMS via distinct circuits  16 

• PL::A-DMS and PL::P-DMS pathways encode divergent aspects of a simple goal-directed 17 

task 18 

• PL::A-DMS pathways shape responding to negative outcomes via multiple mechanisms 19 

• PL::P-DMS pathways guide engagement and choices in response to positive outcomes 20 

• Afferent connectomes of PL neurons defined by A-P DMS target are distinct   21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.469698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT 22 

Fronto-striatal circuits have been extensively implicated in the cognitive control of behavioral 23 

output for both social and appetitive rewards. The functional diversity of prefrontal cortical 24 

populations is strongly dependent on their synaptic targets, with control of motor output strongly 25 

mediated by connectivity to the dorsal striatum. Despite evidence for functional diversity along 26 

the anterior-posterior axis of the dorsomedial striatum (DMS), it is unclear how distinct fronto-27 

striatal sub-circuits support neural computations essential for action selection. Here we identify 28 

prefrontal populations targeting distinct DMS subregions and characterize their functional roles. 29 

We first performed neural circuit tracing to reveal segregated prefrontal populations defined by 30 

anterior/posterior dorsomedial striatal target. We then probed the functional relevance of these 31 

parallel circuits via in vivo calcium imaging and temporally precise causal manipulations during a 32 

feedback-based 2-alternative choice task. Single-photon imaging revealed circuit-specific 33 

representations of task-relevant information with prelimbic neurons targeting anterior DMS (PL::A-34 

DMS) uniquely encoded choices and responses to negative outcomes, while prelimbic neurons 35 

targeting posterior DMS (PL::P-DMS) encoded internal representations of value and positive 36 

outcomes contingent on prior choice. Consistent with this distributed coding, optogenetic inhibition 37 

of PL::A-DMS circuits strongly impacted choice monitoring and behavioral control in response to 38 

negative outcomes while perturbation of PL::P-DMS signals impaired task engagement and 39 

strategies following positive outcomes. Di-synaptic retrograde tracing uncovered differences in 40 

afferent connectivity that may underlie these pathways functional divergence. Together our data 41 

uncover novel PL populations engaged in distributed processing for action control.  42 

  43 
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INTRODUCTION 44 

Value-based decision-making requires a complex series of neural computations - the integration 45 

of success and failure, the proper attribution of actions to temporally displaced outcomes and the 46 

monitoring of context and underlying task structure. One hypothesis posits that inputs for this 47 

decision-making process are represented across forebrain excitatory populations, with their 48 

integration in the striatum serving as an early step in action selection1. Consistent with a 49 

topographical organization of afferent inputs2-4, striatum exhibits functional segregation along its 50 

anatomical axes, with the dorsoventral direction segregating reward and motor processes and 51 

medial-lateral domains supporting goal-sensitive and habitual action strategies5. However, 52 

substantially less work has considered striatal function along the anterior-posterior (A-P) axis6-10 53 

despite early retrograde studies pointing to a unique longitudinal (A-P) organization of cortical-54 

striatal inputs11.  55 

Seminal studies in rat provided the first evidence of functional segregation along the striatal A-P 56 

axis, with posterior dorsomedial striatum (P-DMS) lesions disrupting both the initial acquisition 57 

and post-training execution of instrumental conditioning, in particular modulation in responding 58 

according to action-outcome association8,9. In contrast, the importance of the anterior dorsomedial 59 

striatum (A-DMS) in goal-directed choice remained uncertain, with opposing results for 60 

pharmacological inactivation and excitotoxic lesions8,9,12. Optogenetic manipulations of specific 61 

spiny projection neuron subtypes within the A-DMS have implicated this subregion in supporting 62 

flexible responses during reversal learning13, consistent with pharmacological manipulations of 63 

anterior caudate in marmosets14. In contrast, the anterior dorsolateral striatum (DLS) supports a 64 

protein synthesis-dependent consolidation of newly learned actions15. Finally, a growing body of 65 

evidence has implicated the rodent striatal tail, the most caudal subregion, in behavioral 66 

responses to aversive stimuli and psychostimulants16-18. 67 
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The prefrontal cortex exerts cognitive control over mammalian behavior via extensive afferent 68 

integration and widespread downstream connectivity19. Analysis of prefrontal populations 69 

accounting for downstream synaptic targets has revealed pathway-specific functional differences 70 

for prefrontal control of social-spatial rewards20, reward anticipation21, and choice directions22. The 71 

prelimbic region of the prefrontal cortex has been hypothesized to support goal-directed action by 72 

encoding short-term memories necessary for subsequent action-outcome associations in dorsal 73 

striatum23. Specific targeting of prelimbic-striatal pathways has extended this view, demonstrating 74 

persistent neural coding of value essential for choice behavior24 and the mediation of response 75 

inhibition during tasks requiring sustained attention25. Finally, DREADD-mediated inhibition of PL 76 

neurons projecting to either anterior or posterior striatal subregions has uncovered involvement 77 

in instrumental learning6,7,10.  78 

Here we systematically explore the function of PL pathways projecting along the A-P striatal axis 79 

via integration of mono- and di-synaptic viral circuit tracing, single neuron calcium imaging, 80 

statistical modeling of neural coding properties, and target-specific optogenetic manipulations. 81 

Retrograde tracing from A/P-DMS subregions revealed non-overlapping PL populations which 82 

exhibited unique encoding of behavioral variables over multiple time scales essential for shaping 83 

efficient action selection and execution. Target- and temporally- specific optogenetic 84 

manipulations confirmed the functional divergence of these fronto-striatal pathways, with PL::A-85 

DMS pathways supporting choice monitoring and responding to negative outcomes and PL::P-86 

DMS pathways supporting engagement and responding to positive outcomes. Together, our 87 

results provide novel insight into the distributed nature of fronto-striatal pathways for decision 88 

making. 89 
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RESULTS 90 

Anatomical architecture of fronto-striatal pathways along the anterior-posterior striatal 91 

axis. 92 

To characterize prefrontal cortex connectivity along the anterior-posterior striatal axis, we injected 93 

a mix of AAV5-CamKII::GFP-Cre and AAVdj-EF1a::Flex-Synaptophysin-mRuby virus into 94 

prelimbic cortex (Fig. 1a), confirming that synaptic inputs from PL were widely spread along the 95 

full anterior-posterior extent of DMS (Fig. 1b). To address whether these widespread projections 96 

arose from en passant connectivity or distinct PL afferents, we utilized two orthogonal retrograde 97 

circuit tracers, with EnvA G-deleted rabies virus EGFP injected in A-DMS, and Alexa647-98 

conjugated Cholera toxin subunit-B (CTB) injected in P-DMS (Fig. 1c). This design minimized 99 

fiber of passage contamination of PL::P-DMS pathways while traversing A-DMS. Using CTIP2 100 

immunostaining as a guide, we found cell bodies of both retrogradely labeled populations largely 101 

in prelimbic layers II/III and more sparsely in layers V/VI 26 (Fig. 1f-i). Regardless of layer, these 102 

populations were distinct (2.2±0.5% overlap) and spatially separated, forming a characteristic 103 

sub-layer structure with PL::A-DMS populations localized to superficial layer II/III and PL::P-DMS 104 

populations found in deeper layer II/III (Fig. 1e). These results were replicated using spectrally 105 

distinct CTB tracers (Fig. S1a-c), confirming the existence of distinct PL cortical populations 106 

defined by A/P-DMS subregions and revealing a similar anatomical organization for most striatal 107 

afferents originating in other brain regions (Fig. S1d-j).  108 

Assessing neural activity in PL::DMS pathways during a goal-directed choice task. 109 

This unique circuit architecture could serve to either carry similar neural signals to distinct striatal 110 

regions or alternatively support divergent neural processing for the control of action selection. To 111 

explore these possibilities, we investigated neural coding of task-relevant information within 112 

PL::A-DMS and PL::P-DMS populations during a goal-directed choice task. Mice were trained on 113 

a 3-poke chamber where the center port initiated a choice period, requiring a lateral left/right 114 
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decision. In any given trial, choosing a predetermined side led to the delivery of a reward with 85% 115 

chance and no outcome otherwise, while choosing the opposite port led to punishment tone with 116 

85% chance and no outcome otherwise (Fig. 2d). The identity of the rewarded side (or 117 

“contingency”) was changed whenever mice made 8 correct choices over the latest 10 trials, to 118 

assess flexible responding. As previously reported, mice choices were based on previous 119 

outcome feedback, with a strong influence of prior trial on current choice (Fig. S2b)27. We 120 

performed 1-photon (1-p) single neuron calcium (Ca2+) imaging of retrogradely-labeled PL 121 

neurons expressing GCaMP7f during this task. Given the minimal fiber-of-passage overlap with 122 

standard retrograde tracers (Fig. S1a-c), we injected retroAAV2-EF1a::3XFLAG-Cre into either 123 

A-DMS or P-DMS, together with AAV1-hSyn::FLEX-jGcamp7f into PL to gain access to both PL 124 

populations in separate animals (Fig. 2a-c). Using this approach, we recorded Ca2+ activity of 465 125 

PL::A-DMS neurons and 586 PL::P-DMS neurons.  126 

To analyze neural activity, we designed a linear encoding model based upon task-relevant 127 

regression predictors capturing actions, sensory input, resulting outcomes and model-based 128 

estimations of internal value state (Fig. 2e). External sensorimotor variables included trial start 129 

cue (CUE), self-initiation (Init), and Ipsilateral/Contralateral (Ipsi/Cont) choice. Outcomes were 130 

divided into positive (O+) and negative (O-), as well as interactions of these terms with prior choice, 131 

a potential neural signal for credit assignment (Ch x O+, Ch x O-). Local reward rate over the last 132 

5 trials was included as a proxy for task engagement. Finally, we estimated internal value 133 

representations with a standard Q-learning model, which proved strongly predictive of future 134 

animal choice in our experiments (Fig. S2a,c)27,28. Latent variables inferred with the Q-learning 135 

scheme were included in the neural encoding model as predictors representing trial-by-trial choice 136 

values (DQ, SQ) and reward prediction errors (RPE+/-). Regression parameters were fit via 137 

elastic-net penalized maximum likelihood (Fig. 2e-i; see Methods for details on model design and 138 

fitting).  139 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.469698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/


We applied this encoding model to both PL::A-DMS and PL::P-DMS Ca2+ imaging data, 140 

measuring total model fit quality by calculating the fraction of Ca2+ signal variance explained (FVE). 141 

At a cut-off threshold of 5% FVE, our model fit ~39% of total PL::A-DMS neurons and ~30% of 142 

total PL::P-DMS neurons (Fig. 3a-b). To quantify neuronal tuning to specific behavioral variables, 143 

partial models lacking the related predictors were fit to Ca2+ data. The difference in FVE between 144 

the full and the partial model defined a tuning index for the given variables. For an initial overview, 145 

we grouped predictors into external (CUE, Init, Ipsi, Contra), internal (DQ, SQ, RPE+, RPE-, RR) 146 

and outcome (O+, O-, Ch x O+, Ch x O-) categories (Fig. 2e)., discovering that the PL::A-DMS 147 

pathway was biased towards representation of external variables, the PL::P-DMS pathway was 148 

biased towards representation of internal values, and both pathways shared encoding of task 149 

outcome (Fig. 3c-d).  150 

PL::A-DMS and PL::P-DMS neural populations encode distinct and complementary 151 

components of value-based behavior. 152 

We initially focused on the external bias of PL::A-DMS and asked whether neuronal tuning was 153 

specific to sensory or motor events preceding action selection. By breaking down our encoding 154 

analysis to the level of individual predictors, we found that the majority of external event 155 

modulation in the PL::A-DMS pathway was driven by choice-tuned neurons (Fig. S3a), although 156 

PL::A-DMS carried more information than PL::P-DMS not only for choice (Fig. 4d,e, Fig. S3n-r) 157 

but also trial start cue (center port light; Fig. S3d-h) and initiation (Fig. S3i-m). We found that 158 

PL::A-DMS encoded both ipsilateral and contralateral choices (Fig.4d, Fig. S3b, q). 159 

Our tuning index is a compact measure of the degree to which task-related variables are 160 

represented in neural activity. Nonetheless, it only captures the overall coding strength and is not 161 

sensitive to the precise temporal evolution of neural responses, which could present interesting 162 

differences between pathways regardless of their relative tuning level. To address this, we 163 

analyzed the event-associated kernels inferred by our encoding model, which estimate the 164 
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average calcium activity transient elicited by specific behavioral events, after accounting for 165 

overlapping transients from other event types. Analysis of choice kernels revealed that PL::A-166 

DMS neurons exhibited robust phasic activity starting around choice execution, although the 167 

magnitude of this modulation was on average stronger for choices contralateral to the recording 168 

site (Fig. 4e, Fig. S3c, r). 169 

Next, we investigated target-specific PL differences for the representation of internal values, a 170 

key driver of decision-making in the absence of task-relevant sensory information. Our 171 

reinforcement learning model of choice behavior provides trial-by-trial estimates of the difference 172 

between choice values (ΔQ, ipsi vs. contra), the sum of choice values (SQ) as well as positive 173 

and negative reward prediction errors (+/-RPEs). Besides these metrics, we included in our 174 

encoding model a local reward rate over the last five trials (RR) to capture the strength of 175 

engagement in this self-initiated task. We found that the PL::P-DMS pathway more strongly 176 

encoded these internal value estimates (Fig. 3c,d middle), with the strongest drivers being 177 

neurons modulated by the difference in action values (ΔQ; Fig. 4j) and those whose activity 178 

strongly tracked with the local reward rate (RR; Fig. 4o). Interestingly, our encoding model 179 

robustly captured the slow shifting baseline of PL::P-DMS calcium activity that in a subset of 180 

neurons scaled with increasing Q-value difference or local reward rate (Fig. 4g,h,l,m) despite 181 

lacking clear event-related modulation (Fig. S4e,f). One exception to this dominance of PL::P-182 

DMS for value-related information was for negative RPEs, for which PL::A-DMS pathways 183 

demonstrated strong modulation of outcome signals by violated reward expectation (Fig. S4a). 184 

Overall however, these data imply that PL::P-DMS pathways more strongly represent temporally 185 

integrated internal measures of value than PL::A-DMS pathways.  186 

Finally, we examined how these distinct PL pathways responded during behavioral outcomes, 187 

uncovering three general patterns. First, we noted a brief (~1s) response immediately following 188 

all positive outcomes that was similar in calcium waveform between PL pathways but found in a 189 
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greater proportion of PL::A-DMS neurons (Fig. S5a-h). We also observed neural activity 190 

modulated by the interaction of positive outcome and prior choice (Ch x O+; Fig. 5a-c). 191 

Interestingly, we found that outcome-related neural signals that were contingent on prior choice 192 

were better represented in PL::P-DMS than in PL::A-DMS populations (Fig. 5d). Second, the 193 

temporal kinetics of these interaction-associated signals were distinct between pathways, with Ch 194 

x O+ signals in PL::P-DMS pathways persisting for several seconds beyond outcome, as 195 

compared to briefer Ch x O+ signals in PL::A-DMS neurons (Fig. 5e). Third, we observed robust 196 

neuronal responses to negative outcomes that were almost exclusively encoded by the PL::A-197 

DMS neurons (Fig. 5f-i). These signals exhibited a slow and persistent increase following the 198 

absence of reward, which occurred at contingency switches, random unrewarded trials or during 199 

brief exploratory choice periods (Fig. 5j). Together, these data reveal a distributed representation 200 

of outcomes by PL::DMS pathways, with prolonged activation of PL::A-DMS neurons encoding 201 

negative outcomes and PL::P-DMS neurons encoding positive outcomes contingent on prior 202 

choice.      203 

Thus far, our data highlight a unique fronto-striatal architecture defined by A-P striatal target that 204 

encodes complementary aspects of relevant external and internal behavioral parameters 205 

observed during our value-based task. Our neural coding analysis makes several predictions 206 

about pathway-specific behavioral functions: 1. PL::A-DMS choice activity may shape current 207 

choice selection/execution or instead provide an action-monitoring signal; 2. PL::P-DMS neurons 208 

encode temporally integrated signals for local reward rate and action value that may drive task 209 

engagement; 3. the persistent choice x positive outcome activity in PL::P-DMS could be used to 210 

drive positive reinforcement behavior; 4. PL::A-DMS negative outcome modulated neurons could 211 

be used to implement choice strategies following negative outcome.  212 
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PL::A-DMS pathways mediate future choice valuation, but not current choice execution 213 

To evaluate whether these divergent patterns of neural coding resulted in distinct functional 214 

contributions, we performed striatal subregion-specific optogenetic inhibition of PL terminals. We 215 

bilaterally injected PL cortex with AAV5-CamKII::NpHR3.0-EYFP, or AAV5-hSyn::EGFP for 216 

controls, and implanted 200µm fiber optics bilaterally in either the A-DMS or P-DMS (target sites 217 

in Fig. S6a, b). We designed two distinct light delivery protocols to assess the contribution of these 218 

fronto-striatal circuits during choice and at outcome. We predicted that PL::A-DMS choice activity 219 

might either have a role in the selection/execution of current actions or instead provide an 220 

efference copy of the selected action that could be linked to resulting outcomes, thereby 221 

influencing future action selection. We also predicted that manipulation of PL::P-DMS pathways 222 

would have no effects on choice selection or motor performance, consistent with their lack of 223 

choice modulation. To test these predictions, we activated NpHR from initiation through choice 224 

on a random 30% subset of trials (Fig. 6, Fig.S7). To analyze effects on choice selection, we took 225 

advantage of the strong dependence on prior trial outcomes27,28, analyzing win-stay and lose-stay 226 

probabilities (see Methods). We found no evidence that optogenetic inhibition of PL::A-DMS 227 

throughout the choice period had any impact upon ongoing action selection (Fig. S7a, Fig S8a,b). 228 

To analyze effects on motor performance, we examined choice latency (the time from center port 229 

initiation to choice selection), observing no effect of optogenetic inhibition on latency distributions 230 

(Fig. S7b). We next analyzed the influence of choice-associated optogenetic suppression on 231 

subsequent action selection and performance, finding increased lose-stay behavior following 232 

choice activity suppression in prior trials for PL::A-DMS pathways (Fig. 6a, Fig S8g,h). No 233 

subsequent trial effect was found for motor performance (Fig. 6b; cf. Fig S8e, k for GFP control). 234 

Consistent with our population coding data, optogenetic inhibition of PL terminals in P-DMS had 235 

no effect on either choice selection or execution for current or subsequent trials (Fig. 6c, d; Fig. 236 

S7c, d; Fig S8c, d, I, j). Overall, these causal manipulations complement the neural coding 237 
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analysis, suggesting that choice-epoch activity in PL::A-DMS is not related to action planning or 238 

execution, but instead provides an efference copy of actions for subsequent valuation.  239 

Temporally integrated PL::P-DMS neural activity supports task engagement 240 

PL::P-DMS pathways were found to strongly encode action value differences and local reward 241 

rates, two temporally integrated measures of recent task outcome. As the slow dynamics of these 242 

neural signals precluded precise optogenetic interrogation, we used our second optogenetic 243 

paradigm, where inhibition was delivered for 6 s following outcomes (Fig. 7a-d). We assumed this 244 

manipulation would best reduce persistent activity and have broad effects on task engagement, 245 

even outside of light trials. We measured the total number of completed trials as a proxy for task 246 

engagement, finding that outcome suppression of PL::P-DMS pathways on 30% of trials caused 247 

a decrease in the total number of completed trials for sessions where light was used (Fig. 7c). 248 

This effect was not observed in subsequent light-off sessions (Fig. 7c), during shorter choice 249 

suppression sessions (data not shown) and could not be explained by other typical motivational 250 

regulators such as body weight (Fig. S9b). Task disengagement was also manifest as elongated 251 

initiation latencies in the PL::P-DMS outcome inhibition sessions (Fig. 7d) but was not on overall 252 

slowing of motor performance (note unchanged choice latencies in Fig. S9b). In contrast, the 253 

PL::A-DMS pathways, which exhibited weaker internal value coding, did not impact task 254 

engagement as measured by total trials or initiation latencies (Fig. 7a,b, Fig. S9a). These results 255 

suggest that temporally integrated task value signals in PL::P-DMS pathways are important for 256 

driving global task engagement. 257 

PL::DMS pathways divergently control response strategies to positive and negative 258 

outcomes.  259 

To directly evaluate the divergent functions of outcome-related PL::DMS activity, we 260 

optogenetically inhibited terminals in each striatal subregion following both positive and negative 261 

outcomes (Fig. 7e-h). While we did not observe any choice or performance changes from 262 
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suppression of PL::A-DMS terminals following positive outcomes (Fig.7e), we reliably observed a 263 

decrease in the win-stay probability from similar manipulations of the PL::P-DMS pathway (Fig. 264 

7g). In contrast, we found that optogenetic suppression during negative outcomes of the PL::A-265 

DMS, but not the PL::P-DMS, caused a robust decrease in lose-stay choice strategy (Fig. 7e,g). 266 

Furthermore, we observed similar behavioral effects for PL::A-DMS inhibition across a range of 267 

reward probability environments (Fig. S10a). Finally, we also noted that PL::A-DMS inhibition 268 

disrupted the natural slowing of trial initiations observed following negative outcomes (Fig. 269 

7f,h)24,27,28. These results support divergent fronto-striatal control of outcome-related strategies, 270 

with PL::P-DMS activity mediating positive reinforcement and PL::A-DMS driving choice 271 

persistence in the face of negative outcomes. 272 

Second order retrograde tracing uncovers pathway specific afferent connectomes.  273 

Our neural coding analyses and causal manipulation studies consistently indicated a functional 274 

division of PL::DMS pathways for key neural processes that generate goal directed choice 275 

behavior. As an initial step into understanding the origins of this divergence, we examined the 276 

second-order excitatory connectomes for PL neurons defined by A-/P-DMS subregion. To do this, 277 

we injected retroAAV2-EF1a::3xFLAG-Cre into either A- or P-DMS subregions and a mixture of 278 

AAV-DJ-CAG::FLEX-TVA-mCherry and AAV-DJ-CAG::DIO-RVG into PL cortex (Fig. 8a). 279 

Subsequent PL injection of EnvA-RV-EGFP permitted single synapse tracing specifically from PL 280 

neurons that projected to either DMS subregions (2nd order inputs). Consistent with these fronto-281 

striatal circuits being embedded in the same local microcircuit, we observed multiple afferent 282 

populations with similar targeting of each PL circuit, including dorsal anterior cingulate cortex 283 

(dACC) and both associative and ventral motor thalamic nuclei (Fig. 8b,c). Surprisingly though, 284 

we also noted pathway-specific distinctions in second order afferent connections, with strong 285 

PL::P-DMS biases for secondary motor cortex (M2) and significant PL::A-DMS biases for ventral 286 

anterior cingulate cortex, retrosplenial cortex and orbitofrontal cortex. These observations 287 
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suggest that the distinct coding and functional properties of PL::DMS pathways could be at least 288 

partly due to unequal strength of afferent connectivity, although other mechanisms such as 289 

divergent recurrent processing in local circuits cannot be excluded. 290 

 291 

DISCUSSION 292 

The dorsal striatum is a canonical set of circuits that interfaces much of the forebrain with 293 

downstream basal ganglia nuclei that select and modulate motor output29. Accordingly, neural 294 

processing within striatum is thought to be reflective of cortical activity30. Cortico-striatal 295 

projections are highly localized along the dorsal-ventral and medial-lateral axes4, but less so  296 

along the anterior-posterior striatal extent3,11. Here we sought to understand the implications of 297 

this architecture for cortico-striatal processing, focusing on prelimbic cortical connections to 298 

dorsomedial striatum. As for most DMS-targeting afferents, we found that PL cortex formed non-299 

overlapping circuits according to A-P target. In vivo imaging demonstrated that these two 300 

populations divided encoding of key behavioral variables for goal-directed choice. PL::A-DMS 301 

pathways strongly encoded choice and negative outcome, while PL::P-DMS pathways strongly 302 

encoded internal value representations and an integrated positive outcome/choice signal. Target- 303 

and temporally- specific optogenetic manipulations further confirmed the functional divergence of 304 

these fronto-striatal circuits, with PL::A-DMS pathways providing integrated responses to negative 305 

outcomes and PL::P-DMS pathways supporting task engagement and reinforcement by positive 306 

outcomes. 307 

Temporal and spatial distribution of goal-directed processing by PL sub-circuits  308 

Feedback-driven goal-directed behaviors require specific response strategies to positive and 309 

negative outcomes, estimation and retention of value estimates for actions, the appropriate 310 

assignment of credit for temporally displaced choice and outcome, as well as regulation of 311 

motivation, performance, and task engagement. Here we provide evidence that prefrontal 312 
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connections to the DMS supports many of these core processing functions and do so in a 313 

distributed manner across A-P striatal targets.  314 

Action Monitoring  315 

Our Ca2+ imaging data demonstrated that PL populations projecting to the A-DMS contain 316 

neurons tuned to sensorimotor components of our operant behavioral task. While task start cue 317 

and subsequent initiation approach were represented by small subpopulations (Fig. S3a), we 318 

found that a substantial number of PL::A-DMS neurons were modulated by port choice. Averaged 319 

choice-associated kernels revealed larger contralateral than ipsilateral choice signals that 320 

occurred after choice was registered (Fig. 4e, Fig. S3c). These data are consistent with previous 321 

work showing only weak neural signals for upcoming choice in medial prefrontal cortex (mPFC), 322 

suggesting activity in this region doesn’t significantly contribute to action planning in trial and error 323 

tasks31. We directly probed the functional importance of choice-associated modulation via 324 

optogenetic inhibition of PL terminals within the A-DMS, finding that while bilateral optogenetic 325 

disruption of these circuits around the choice period had no effect on current trial choice selection 326 

or performance, this manipulation specifically altered choices on trials following negative 327 

outcomes (Fig. 6a). These data suggest a model where PL::A-DMS choice signals provide an 328 

efference copy of actions that is utilized to update choice values on subsequent trials. Striatal-329 

targeting efference signals have been proposed to function together with cortical representations 330 

of environment to bind context, selected action and outcome1,32. Interestingly, our choice-331 

associated signals only seemed relevant following negative outcomes, as manipulations did not 332 

alter win-stay probabilities (Fig. 6a). These data are consistent with the biased responding of 333 

PL::A-DMS pathways towards negative outcomes (see below), suggesting common valence 334 

processing in this pathway. Recently, PL neurons that project to the nucleus accumbens core 335 

were shown to exhibit choice modulation that progressed sequentially through the population, 336 

bridging choice and outcome periods33. In contrast to our results, optogenetic activation of PL-337 
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NAc throughout the trial altered subsequent responses following both positive and negative 338 

outcomes.  339 

Outcome Monitoring  340 

Outcome monitoring is thought to be a crucial function of prefrontal cortical circuitry, influencing 341 

how animals use subsequent sensory information34,35 and select future actions24,27,36. While the 342 

PL cortex has been suggested to provide both positive and negative feedback signals to shape 343 

behavior 37, our experiments reveal a distribution of these functions according to DMS target, with 344 

positive outcomes encoded by both pathways and negative outcome encoding exclusively by 345 

PL::A-DMS. The PL::A-DMS pathway exhibited stronger encoding of brief (~1s) neuronal 346 

responses to positive outcomes (Fig. S5h), while PL::P-DMS more strongly encoded positive 347 

outcomes that followed specific choices (Ch x O+ interaction; Fig. 5d). Interestingly, activity 348 

patterns for Ch x O+ coding exhibited distinct temporal patterns according to PL circuit, with a 349 

persistent (>5 s on average) activity in PL::P:DMS neurons (Fig. 5e). We hypothesized that this 350 

activity would be central to positive reinforcement behavior, either via providing an eligibility trace 351 

for plasticity or by directly influencing ensuing decision processes. To test this, we optogenetically 352 

inhibited PL::P-DMS continuously for 6 s following trial outcome, observing that stay-behavior was 353 

reduced following positive outcomes with no change in choice for manipulation following negative 354 

outcomes. These data are strongly consistent with seminal experiments showing the P-DMS to 355 

be central to outcome-driven action selection8,9. Furthermore, it seems likely that this prolonged 356 

Ch x O+ activity may explain the value-based learning deficits observed upon chronic 357 

chemogenetic-mediated suppression of PL-P::DMS pathways6.   358 

One surprising result of our work was the exclusive representation of negative outcomes by PL::A-359 

DMS pathways. Averaged negative outcome kernels in this population displayed a delayed onset 360 

(~500ms) and persistent activity lasting over 5 s, consistent with an outcome feedback signal as 361 

opposed to reward port approach (Fig. 5j). While there are numerous examples of outcome 362 
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encoding in rodent PL cortex for negative valence, most cases involved aversive stimuli such as 363 

foot-shocks or air puffs38. A gambling task in rats, where risky maze arms had lower 364 

probability/higher reward outcomes, elicited prolonged bouts of firing in PL neurons at negative 365 

outcome that supported risky choice39. Choice monitoring activity was also seen at outcome in PL 366 

neurons which supported cognitive flexibility during set-shifting tasks35. We found that specific 367 

optogenetic inhibition of negative outcome signals in PL::A-DMS pathways reliably decreased 368 

stay behaviors following a prior loss (ie. increased choice switching), while having no choice 369 

effects following prior positive outcomes (Fig. 7e). The ability of PL::A-DMS outcome activity to 370 

support choice persistence following losses was a context-independent function, as optogenetic 371 

inhibition always decreased lose-stay behavior regardless of the probability of receiving a reward 372 

(Fig. S10). Thus, this optogenetic manipulation improved overall performance in high reward 373 

probability environments, but impaired it in lower reward probability scenarios, where lose-stay 374 

behavior is adaptive (not shown). This data argues against a role for mPFC circuits in flexibly 375 

supporting behavioral strategies following negative outcome. Furthermore, these functional 376 

effects strongly contrast with negative outcome-tuned neurons in the ACC, which have been 377 

shown to implement choice switching in many species40,41. While response persistence in the face 378 

of negative outcomes is essential in sparse reward environments, left unchecked this tendency 379 

could clearly impair value-based function. This raises the question of whether mouse models of 380 

neuropsychiatric disease characterized by perseverative choice abnormalities exhibit 381 

dysregulation of PL::A-DMS pathways.   382 

Internal Representations of Value 383 

Internal representation of choice value and local reward availability are key determinants of 384 

behavior in dynamic foraging tasks24,27. Our results suggest that PL::P-DMS pathways more 385 

strongly encode these behavioral parameters as compared with PL::A-DMS pathways. We found 386 

that relative value signals tracked strongly with the baseline, but not phasic components of cellular 387 
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calcium signals (Fig. 4g,l, Fig. S4e,f). Our ΔQ-encoding PL population is consistent with a 388 

previously identified PL-DMS population that stably represented relative value via persistent 389 

baseline spiking activity24. While we also identified neural signals encoding total choice value (SQ) 390 

as in Bari et al., our inability to control trial initiation precluded investigation into the relative 391 

persistence of these distinct value signals24. Engagement in self-initiated foraging tasks is strongly 392 

modulated by local reward environment, a variable we captured with a local average of the reward 393 

rate. Again, we found that PL::P-DMS pathways more strongly encoded this feature as compared 394 

to PL::A-DMS pathways. The persistent nature of value coding in these pathways made phasic 395 

optogenetic manipulation difficult. To circumvent this, we looked at all trials in sessions where 396 

inhibition was delivered in 30% of trials for 6 s after outcome. We reasoned that prolonged 397 

inhibition should sufficiently alter persistent neural signals to impact immediately subsequent trials 398 

as well as the overall behavior of the animal in the session. Indeed, we found that post-outcome 399 

inhibition was able to both reduce the total number of initiated trials and reduce the win-stay 400 

probability in non-light trials, suggesting the involvement of reward-rate and ΔQ-encoding PL::P-401 

DMS populations, respectively. It is interesting to hypothesize that the reduction in task 402 

engagement caused by disruption of this pathway may share a common cause with the reduced 403 

responding seen in earlier P-DMS lesion studies8.   404 

What underlies the functional diversification of PL cortex? 405 

Our work adds to recent studies demonstrating a range of behavioral functions for PL cortical 406 

microcircuits defined by target area20-22,33,35. Nevertheless, the mechanisms underlying this 407 

functional diversification remain unclear, with potential candidates including circuit-specific 408 

differences in molecular composition, long-range afferent projections, or local synaptic networks. 409 

While evidence exists for target-specific transcriptional differences in PL cortex20, other analyses 410 

have shown diverse PL functions emerging from molecularly homogenous populations22. Circuit-411 

specific transcriptional profiling could reveal whether molecular diversity can account for divergent 412 
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PL-DMS pathway activity. Differences in afferent connectivity may result from circuit-specific 413 

differences in local inhibitory control42 or long-range excitatory projections. We used 2-stage 414 

retrograde tracing to map afferent populations that synapsed on PL neurons defined by A/P-DMS 415 

target (Fig. 8), finding that ACCv, RSP cortex and OFC were strongly biased towards PL::A-DMS 416 

populations while M2 connectivity favored PL::P-DMS. Upstream manipulations will be necessary 417 

to test whether prolonged choice encoding in M236 supports persistent Ch x O+ signaling in PL::P-418 

DMS neurons, while enhanced ACCv, RSP and OFC connectivity to PL::A-DMS supports 419 

negative outcome associated activity. Similar tracing approaches have highlighted the importance 420 

of ACCv connectivity to deep PL layers projecting to NAc for outcome monitoring during cognitive 421 

flexibility tasks35.      422 

Functional implications of this circuit architecture 423 

Our initial tracing data showed a surprising number of cortical and thalamic regions have distinct, 424 

yet intermingled populations projecting to A/P-DMS (Fig. S1). Future work should explore the 425 

computational advantages afforded by this arrangement. It is presently unclear whether anterior 426 

and posterior striatal subregions might work coordinately or antagonistically to control behavior, 427 

which would be an important starting point for our understanding. Either way, this organization 428 

could permit appropriate and flexible coordination of A/P-DMS targeting populations via local-429 

circuit interactions in cortex or thalamus. Alternatively, these parallel processing paths may be 430 

integrated via downstream basal ganglia components.  431 
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METHODS: 447 

Animal 448 

Animal experiment procedures were approved by the University of Pennsylvania Institutional 449 

Animal Care and Use Committee, and all experiments were conducted in accordance with the 450 

National Institutes of Health Guidelines for the Use of Animals. All animals were supplied from 451 

Charles River Laboratory (Wilmington, MA, strain code 027, C57BL/6NCrl). Unless otherwise 452 

noted, animals were grouped with littermates on a 12:12 light-dark cycle and provided ad libitum 453 

food and water. All experiments were conducted on naive male mice.  454 

 455 

Stereotaxic surgery 456 

Intracranial surgery was conducted on a stereotaxic surgery frame (Kopf Instrument, Model 1900) 457 

under isoflurane anesthesia (1.5-2% + oxygen 1 L/min). Animal body temperature was maintained 458 

at 30°C during surgery using a feedback thermocontroller (Harvard apparatus, #50722F). Skin 459 

was cleaned with Nair hair remover followed by application of betadine to disinfect the area. Prior 460 

to surgery, 2mg/kg bupivacaine was administered subcutaneously, and the mouse was given a 461 

single dose of meloxicam (5mg/kg). Skin was carefully opened along the anterior-posterior midline, 462 

bregma was set to zero based on skull balance. A craniotomy was performed with a drill above 463 

the target site. Virus or Tracer was loaded into mineral oil (Sigma-Aldrich, M3516)-filled glass 464 

pipette (WPI, TW100F-3) and delivered at rate 30 nl/min using a micro-infusion pump (Harvard 465 

Apparatus, #70-3007). Pipette was carefully withdrawn from the brain, and the skin was sutured. 466 

Animals were monitored up to 1 hour following regaining of consciousness, then transferred to 467 

the home cage and monitored after 24h, 48h and 72h. Injection coordinates, A-DMS: AP + 1.2 468 

mm, ML +1.35 mm, DV -2.7 mm; P-DMS: AP -0.3 mm, ML + 1.95 mm, DV -2.2 mm; PL: AP + 2.0 469 

mm, ML +0.35 mm, DV -1.7 mm 470 

 471 
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Anatomical Tracing 472 

For mapping PL synaptic terminals in DMS (anterograde tracing), a 1:1 mixture of AAV5-473 

CaMKii::Cre + AAVdj-EF1a::Flex-Synaptophysin-mRuby viruses were injected into PL. For 474 

mapping retrogradely labeled neurons, a mixture of AAV1-Syn::Cre + AAVdj-EF1a::DIO-RVG + 475 

AAVdj-EF1a::Flex-TVA-mCherry was injected into A-DMS and Alexa647-conjugated Cholera 476 

toxin subunit-B was injected into P-DMS. Seven days later, EnvA G-Deleted Rabies-eGFP was 477 

injected into A-DMS. For mapping 2nd-tier projections to PL::DMS pathway, retroAAV2-478 

hSyn::3xFlag-Cre was injected into the A- or P-DMS followed by a mixture of AAVdj-EF1a::DIO-479 

RVG + AAVdj-EF1a::Flex-TVA-mCherry into PL. Seven days later, EnvA G-Deleted Rabies-eGFP 480 

was injected into PL.  481 

 482 

After viral injection, 7 days (for Rabies virus) or 3 weeks (for AAV) were allowed for viral 483 

expression, animals were deeply anaesthetized with i.p injection of 100 uL pentobarbital sodium 484 

(Nembutal, 50 mg/mL) and transcardially perfused with PBS followed by formalin (10%). Brains 485 

were removed and post-fixed in formalin (Thermo Fisher Scientific, SF1004) overnight, then 486 

transferred to PBS. Brains were sectioned coronally at 50µm then brain slices were mounted on 487 

slide glasses and covered with fluoromount solution (SouthernBiotech, #0100-01) for imaging.  488 

Stitched large-field images were obtained with a 4x objective (Olympus, 4x, 0.16NA) on an epi-489 

fluorescent microscope (Olympus, BX63). Fluorescence-positive neurons were counted using 490 

automated object detection (NeuroInfo Suite, v2021.). Three-dimensional brain images were then  491 

reconstructed using NeuroInfo software (MBF bioscience), which registered individual slices to 492 

the Allen Institute reference brain atlas (Allen mouse common coordinate framework; CCFv3) 43.   493 

 494 
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Immunohistochemistry 495 

At room temperature, free floating brain slices were permeabilized in 0.6% Triton x-100 and 496 

blocked with 6% normal goat serum (Jackson ImmunoResearch, 005-000-121) in PBS for 1 h. 497 

Samples were incubated in primary antibody solution (Rat anti-CTIP2, 1:500, Abcam, ab18465) 498 

overnight in 0.2% Triton x-100 and 2% NGS in PBS. Slices were washed then incubated in 499 

secondary antibody solution (Goat anti-rat IgG-alexa555 conjugated, 1:500, Invitrogen, A48263) 500 

for 1h in 0.2% Triton x-100 and 2% NGS in PBS, then mounted and imaged.  501 

 502 

Behavioral equipment 503 

Behavior training was conducted utilizing a custom built 3-port operant chamber (dimensions 7.5 504 

L x 5.5 W x 5.13 H inches, Sanworks LLC, NY). Each port is controlled by a TTL signal from the 505 

state machine consisting of white LED light, infrared beam break detector and liquid outlet. The 506 

center port was designated as a reward delivery outlet using a pinch valve (225P011-21, 507 

NResearch, NJ). All behavior chambers were enclosed in sound-attenuating boxes (PSIB27, Pyle, 508 

NY). Behavior protocols were controlled by Bpod software (https://github.com/sanworks/Bpod) in 509 

MATLAB (MathWorks). All port entries and events were recorded by the Bpod State Machine 510 

during behavioral sessions.   511 

 512 

Behavioral Training 513 

To increase operant responding, total calorie consumption was reduced over 1 week to reach 514 

85~90% body weight, a level maintained throughout operant training. Animals were habituated to 515 

behavior chambers for at least 2-days prior to training. Each day, animals were given 45 min of 516 

exposure to the behavioral box with chocolate milk (Boost Original ready to drink, rich chocolate 517 

nutritional shake, Nestle) delivery from the center port spaced 20 s. apart. Following the 518 

habituation period, animals performed light-guided sessions as follows: 1) center port light 519 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.469698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/


indicated the beginning of a trial; 2) trial initiation via a center poke led to illumination of a randomly 520 

selected side port; 3) appropriate selection of the lit port within 3 s led to illumination of the center 521 

port and delivery of 12ul of Boost at this location; 4) selection of the unlit alternative led to 522 

illumination of the center port without concomitant dispensing of reward. Each trial was separated 523 

by a 5 s. ITI in which all chamber lights were extinguished. Sessions lasted 1 hour with no trial 524 

limits. Animals were considered to reach criteria with >200 completed trials per session. 525 

 526 

Two-alternative forced choice task 527 

After reaching criteria performance levels in light-guided training, mice progressed to a 2-528 

alternative forced choice task structured as follows: 1) center port light indicated the beginning of 529 

a trial; 2) a 500 ms. holding period (sequentially increased from 0ms, 100ms, 300ms) in the center 530 

port triggered the illumination of both side ports; 3) animals had a 3 s. window to register either 531 

left or right port choice. When animals failed to make a choice in this period this resulted in an 532 

omission, which was followed by a 3 s timeout and required the animal to reinitiate the trial. 4) 533 

successful registration of a choice was followed by 0.5 s delay period ending in the outcome 534 

period (𝑃!"#$!%&= 85%). Correct choice resulted in delivering 12μL Boost from the center port 535 

with 85% chance while incorrect choice resulted a in brief punishment tone (white noise) with 3 s 536 

timeouts, also with 85% chance. In the remaining 15% of trials, animals didn’t receive any 537 

outcome (reward or punishment). Each trial was separated by a 3 s. ITI in which all chamber lights 538 

were extinguished. To prevent outcome-insensitive behavior, past-reward history was monitored 539 

in a 10-trial moving window and rewarded side was switched when 8 of the last 10 choices were 540 

to the currently rewarded port. Sessions lasted for either 45 min. (1-p imaging) or 1 hr (optogenetic 541 

manipulations). We utilized a relative reward-stay value >2 to decide when to move mice on to 542 

recording sessions. Relative reward stay was defined as: 543 

   544 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑟𝑒𝑤𝑎𝑟𝑑	𝑠𝑡𝑎𝑦 = 𝑙𝑛1

𝑃(𝑊𝑖𝑛𝑆𝑡𝑎𝑦)
1 − 𝑃	(𝑊𝑖𝑛𝑆𝑡𝑎𝑦)
𝑃	(𝐿𝑜𝑠𝑒𝑆𝑡𝑎𝑦)

1 − 𝑃	(𝐿𝑜𝑠𝑒𝑆𝑡𝑎𝑦)

: 545 

 546 

1-p Imaging 547 

To record calcium signals from PL neurons targeting specific striatal subregions, 548 

retroAAV2/EF1a-3xFlag-Cre44 was unilaterally injected to A- or P-DMS, together with AAV1/hSyn-549 

Flex::GCaMP7f-WPRE45 injection into PL. Prior to relay GRIN lens (1mm x 4mm, Inscopix, 1050-550 

002176) implantation in PL, upper prefrontal tissue was gently aspirated using a glass pipette 551 

until reaching 0.5 mm above target site. Following tissue aspiration, the GRIN lens was slowly 552 

lowered (100μm/min) until 0.3 mm above from the target site. Dental cement (Geristore™) was 553 

used to create a foundation around the GRIN lens, and the remaining exposed GRIN lens was 554 

covered with silicone paste to prevent scratches. After surgery, animals were transferred to a 555 

single housed cage, where their status was monitored until movement recovery. The anti-556 

inflammatory Meloxicam (5 mg/kg) was applied subcutaneously daily for >1 week, and animals 557 

were carefully monitored. Four to six weeks following GRIN lens implantation, the miniscope 558 

baseplate was installed under 1-p imaging (UCLA miniscope v3.0)46 to locate fields of view (FOV) 559 

with robust GCaMP7f expression. Once a FOV was selected, the baseplate was fixed with dental 560 

cement to make a crown. Baseplates were covered with a cap, and animals were subsequently 561 

returned to the home cage.  562 

 563 

Signal processing 564 

To extract calcium traces from imaging videos, we utilized MIN1PIPE (v2 alpha, 565 

https://github.com/JinghaoLu/MIN1PIPE/tree/v2-alpha) for motion correction (Hierarchical non-566 

rigid movement correction), segmentation (GMM, LSTM classifier), and signal deconvolution 567 
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(CNMF identifier)47. Each ROI selected by MIN1PIPE was individually reviewed to ensure somatic 568 

morphology and remove repeated selection of the same neuron’s proximal dendrites.  569 

 570 

Neural Encoding Model 571 

To analyze task-relevant neural activity we designed a neural encoding model based upon a linear 572 

combination of event-based and continuous predictors. We included episodic external variables, 573 

including trial start cue, self-initiation, choice and outcome, which were represented by spline-574 

based, temporally expanded kernels (Fig. 2d). In addition, we sought to identify neural signals 575 

encoding relevant internal value information likely guiding choice48. To do this we fit our choice 576 

data with a Q-learning reinforcement model and used Q values and reward prediction errors as 577 

internal behavioral variables. Specifically, we included trial-by-trial ΣQ (Qleft + Qright) and ΔQ (Qleft-578 

Qright) values (as continuous predictors that changed their value at outcome, consistent with the 579 

RL model) and reward prediction errors (kernels tethered to the outcome). Finally, we included a 580 

local reward rate averaged over the prior 5 trials as a continuous behavioral variable. We fit these 581 

regression parameters using a generalized linear model with near-lasso (elastic net, alpha=0.95) 582 

regularization to achieve sparse regression weights, using the glmnet library49 (wrapped for 583 

MATLAB usage with custom software available at doi:10.5281/zenodo.3568314). Details on the 584 

representation of each predictor in the design matrix of the model are given in Table 1. For each 585 

fitted trace, the shrinkage hyperparameter λ controlling the strength of the elastic net 586 

regularization was selected by 50-fold cross-validation. Following established practice (Hastie, 587 

2008), given the maximum value of the (cross-validated) fraction of variance explained (FVE) over 588 

possible values of λ and its standard deviation across folds, we selected the largest value of λ 589 

such that its associated FVE was larger than the maximum minus one standard deviation, thus 590 

selecting the “simplest” model in the neighborhood of the best-fitting one. The cross-validation folds 591 

were stratified by experimental trial, so that each trial was represented roughly equally in each 592 
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fold, and the data was grouped in 200ms-long temporal chunks (typically corresponding to about 593 

4 imaging frames) for the purpose of cross-validation, to reduce the number of temporally adjacent 594 

data samples in different cross-validation folds50.  595 

 596 

We fitted an independent model to each recorded neuron. Using the model, the fraction of 597 

variance explained (FVE) was calculated by comparing the full model and actual calcium signal 598 

trace as an indicator of the accuracy of model prediction. To exclude non-task relevant neurons, 599 

we limited further analyses to those with at least 5% FVE. To assess contribution from a certain 600 

predictor, we calculated a tuning index defined as FVE(Full) – FVE (reduced), where FVE 601 

(reduced) is the FVE of the reduced model obtained by removing the predictor of interest from 602 

the full model. Tuning to a group of predictors was quantified in the same way. This tuning index 603 

gives a lower bound on the amount of variability in the data that can be explained by the predictor 604 

(or group of predictors) of interest. Whenever a dichotomous “tuned”/“not Tuned” characterization 605 

was needed, such as in the donut plots in Fig 3, we classified as “tuned” neurons that met a 5% 606 

tuning threshold for grouped predictors (Fig 3d).  607 

 608 

Each neuron’s fitted model provided tuning estimates for all predictors, as well as neuron-level 609 

estimates of the model kernels such as those in Fig 4a, 5a, f. The pathway-level kernels in Fig 4e, 610 

5e,j were defined as the root-mean-square of the kernels of task-relevant neurons in each 611 

pathway, and their confidence intervals were determined by bootstrapping over the set of neurons 612 

(10,000 bootstrap samples). The pathway kernel for a certain predictor can be given an intuitive 613 

geometrical interpretation as follows: if we consider the pseudo-population vector describing the 614 

activity of all recorded (and task-relevant) neurons within a pathway, the pathway kernel for a 615 

predictor at lag t is an estimate of the distance at lag t of the population vector from its time-616 

averaged value, after accounting for the effect of the other predictors. By construction, then, the 617 

pathway kernels can never be negative, as they capture the overall magnitude of the effect of the 618 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.469698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/


predictor on the neural population, rather than a specific modulation direction. The statistical 619 

significance of the difference of pathway kernels in Fig 4c, 5dh was assessed with a bootstrap 620 

test 51, performed with the Bias-Corrected and accelerated(BCa) technique and bootstrapping 621 

over the set of neurons belonging to the two pathways (10,000 bootstrap samples). 622 

 623 

Reinforcement Learning Model 624 

We adapted a Q-learning Reinforcement Learning Model with two basic parameters that fit the 625 

behavioral data produced by the serial reversal task. Mouse choice and outcome history were the 626 

primary inputs of the model. The values of the choice alternatives were initiated at 0 and updated 627 

as follows:  628 

𝑄#'( = 𝑄# + 𝛼#(𝑅# − 𝑄#) 629 

 630 

Qt is the value of the action taken on trial t of each choice and R is the actual reward received in 631 

trial t. Learning rate was controlled by the parameter α. Softmax rule was employed to infer trial-632 

by-trial Q-values for each choice, which relates choice probability to differences in choice value:  633 

𝑃)(𝑡) =
(

('&!"
 , where 634 

𝑧 = 𝛽@𝑄)(𝑡) − 𝑄*(𝑡)A 635 

 636 

 β is the inverse temperature parameter and controls the degree to which choices are biased by 637 

perceived value. High values for β indicate mice more readily exploit differences in action values 638 

between the alternatives, while lower values suggest that mice exhibit more exploratory behavior. 639 

To fit this model to our choice data, we used the fmincon function in MATLAB to minimize the 640 

negative log likelihood of models using our parameters (𝛼, 𝛽).  641 

 642 
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To quantify the goodness of fit of the RL model in an easily interpretable way, we computed the 643 

fraction of deviance of the choice data explained by the model (FDE) 52. The deviance of the RL 644 

model is  645 

𝑑+, = −2𝐿+, 646 

where L is the log-likelihood of the fitted model: 647 

𝐿 =D[𝑐-𝑙𝑜𝑔𝑝- + (1 − 𝑐-)𝑙𝑜𝑔(1 − 𝑝-)] 648 

where cn is the choice on trial n (cn=0 for left choice, cn=1 for right choice), and pn is the probability 649 

that the model assigns to choosing right on trial n. The FDE is defined as 650 

𝐹𝐷𝐸 =
𝑑null − 𝑑+,
𝑑null − 𝑑sat

 651 

where dnull is the deviance for a null model that assigns the same probability pn=p on each trial 652 

(equal to the average probability of choosing right over the session), and dsat is the deviance of 653 

the “saturated” model, which assigns pn=1 on trials where the mouse chose right, and vice versa 654 

pn=0 on trials where the mouse chose left. By inspection of the definition of L we find that dsat is 655 

always zero, and therefore 656 

𝐹𝐷𝐸 =
𝑑null − 𝑑+,

𝑑null
 657 

We note that FDE≤1, with FDE=0 for a model that doesn’t do better than chance (i.e., making 658 

always the same prediction for each trial) and FDE=1 for a model that explains all variability in 659 

the data (this is in general unachievable on unseen data, unless the process generating the data 660 

is deterministic). Applying this metric showed that the reinforcement learning model successfully 661 

captured the main behavioral patterns exhibited by the animals, explaining overall 23.4% of the 662 

deviance (as measured on the training data; Fig. S2c). 663 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.469698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.469698
http://creativecommons.org/licenses/by-nc-nd/4.0/


 664 

As a further check on the performance of the RL model, we compared its goodness of fit and 665 

predictive power with that of a logistic regression model that predicted the upcoming choice based 666 

on the choices and outcomes of the previous 5 trials. The two models had largely comparable 667 

performance (Fig S2c). The logistic regression model tended to have slightly higher FDE on the 668 

training data (Fig S2c), but this was likely an overfitting effect due to the larger number of 669 

parameters available to that model (11 parameters for the logistic regression vs 2 parameters for 670 

the RL model), as evidenced by the similar values of the Akaike Information Criterion between 671 

the two models (FigS2c). 672 

 673 

Optogenetics  674 

To evaluate the behavioral role of each pathway (PL::A-DMS or PL::P-DMS), we used a 675 

Halorhodopsin-induced terminal suppression strategy (Felix-Ortiz et al., 2013). AAV5/CaMKii-676 

NpHR3.0-eYFP (UNC vector core) or AAV5/Syn-GFP (Penn vector core) was injected bilaterally 677 

to the PL followed by bilateral implantation of custom-made optic cannulas (Thorlabs, FT200EMP, 678 

SFLC230) for pathway-specific light delivery into either A-DMS and P-DMS. To ensure full 679 

expression of NpHR in the axonal terminal, a recovery period of at least 5 weeks was allowed 680 

after viral injection. Animals were acclimated to the fiber optic tethers for at least 5 days before 681 

any behavioral sessions. Once animals performed >200 trials/day with a relative reward stay >2 682 

we proceeded to the optogenetic manipulation phase, the training proceeded to the light delivery 683 

stage. In the behavior task, two light delivery protocols (~530nm light from either PrizmatixFC-684 

LED-535-TR or Shanghai DPSS, SDL-532-100T) were used to assess temporally distinct 685 

contributions from each pathway. To prevent light-induced non-specific effect, light intensity was 686 

adjusted to 0.8~2 mW at the fiber end53. Choice epoch manipulations were continuous illumination 687 
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from initiation poke to the end of the reward delivery delay following choice. Outcome epoch 688 

manipulations were continuous illumination from outcome delivery until next trial center light 689 

on.  Either DWin-Stay or DLose-Stay was calculated as:  690 

∆𝑊𝑖𝑛𝑆𝑡𝑎𝑦(𝑂𝑁 − 𝑂𝐹𝐹) = P(𝑆𝑡𝑎𝑦	| 	𝑊𝑖𝑛, 𝐿𝑖𝑔ℎ𝑡	𝑂𝑁	) − P(𝑆𝑡𝑎𝑦	|𝑊𝑖𝑛, 𝐿𝑖𝑔ℎ𝑡	𝑂𝐹𝐹) 691 

∆𝐿𝑜𝑠𝑒𝑆𝑡𝑎𝑦(𝑂𝑁 − 𝑂𝐹𝐹) = P(𝑆𝑡𝑎𝑦	| 	𝐿𝑜𝑠𝑒, 𝐿𝑖𝑔ℎ𝑡	𝑂𝑁	) − P(𝑆𝑡𝑎𝑦	| 𝐿𝑜𝑠𝑒, 𝐿𝑖𝑔ℎ𝑡	𝑂𝐹𝐹) 692 

where Win or Lose indicates reward history on prior trial. Light On/Off refers to presence or 693 

absence of light illumination on previous choice epoch (Fig. 6, Fig. S8), current choice epoch (Fig. 694 

S8) and previous outcome epoch (Fig. 7, Fig. S9).  Behavioral data were collected for multiple 695 

days to obtain enough trials (3351 ± 143 trials, mean ± s.e.m. across animals). Unless otherwise 696 

noted, probability of reward was 85%. For Fig. S10, some PL::A-DMS outcome optogenetic 697 

sessions were performed with reward probabilities of 1.0 or 0.4, applied to both ports. 698 

 699 

Quantification and statistical analysis 700 

All data were analyzed with prism8.0 and custom MATLAB code, available upon request. 701 

Repeated measures ANOVA t-test (paired and unpaired) were performed using Prism 8.0 built-702 

in-function. K-S tests were performed as indicated in results using kstest2 functions in MATLAB. 703 

Kernel density estimates were performed as indicated in results using ksdensity functions in 704 

MATLAB. Significant effects and p-values are indicated in the figures and legends.  705 

  706 
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Figure 1. Distinct PL neuron populations defined by anterior/posterior dorsomedial striatal 
(DMS) target. a) Approach for anterograde tracing of PL-DMS excitatory projections with synaptic 
terminal marker Synaptophysin-mRuby (inset shows GFP-Cre expression at PL target site. b) 
Superimposed striatum images (top: A-DMS, bottom: P-DMS, left to right increasingly posterior) 
showing averaged fluorescent intensity of Synaptophysin-mRuby inputs from PL along anterior-
posterior axis (n= 4). c) Schematic demonstrating dual-color retrograde tracing strategy using 
trans-synaptic rabies virus (A-DMS) and Alexa647-conjugated CTB (P-DMS). d) Coronal sections 
showing injection sites (top: A-DMS, Bottom: P-DMS). scale bar, 500 μm. Number in upper left 
corner indicates A/P coordinate from bregma. e) Representative image of dorsomedial prefrontal 
cortex (top) and quantification (kernel density estimate) of neuronal density from the pia (bottom), 
with relative proportion of overlapping double-labeled neurons (inset). scale bar, 100 μm (n= 4). 
ACAd, dorsal part of anterior cingulate cortex. f) Example image showing prelimbic area from 
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EnvA-∆G-rabies virus tracing of A-DMS (top) co-stained with CTIP2 (bottom). Scale bar 100 μm. 
g) Quantification of neuronal density from pia of PL::A-DMS and CTIP2+ populations (n= 3). h) 
Quantification of neuronal density from pia of PL::P-DMS and CTIP2+ populations (n= 3). Pink 
line in g,h represents average layer III-V transition as visualized by compact CTIP2 staining. i) 
Fraction of GFP labeled neurons located in compact CTIP2+ deep cortical layers.  
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Figure 2. Quantifying neural coding of a value-based operant task. a) Schematic showing 
viral injection strategy to label pathway specific PL neurons for 1-photon calcium imaging (top) 
and representative image for GRIN lens location (bottom). scale bar, 500μm. b) MIN1PIPE 
workflow for extraction of calcium signal from identified ROIs (bottom). scale bar, 50 pixels. c) 
Representative raw Ca2+ traces from 10 PL::A-DMS neurons. Scale bar, 1min. d) Schematic of 
trial structure showing mice initiating trials via sustained (500 ms) center port entry, followed by 
left/right choice within 3 sec. Subsequent reward is delivered from center port. e) Schematic 
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drawing of design matrix for neural encoding model showing behavioral predictors for 
sensorimotor components, outcomes and internal representations of value (top, see table 1). 
Reinforcement learning model for estimating internal value predictors (bottom). f) Example raw 
Ca2+ trace (top, black) and output of encoding model (bottom, gray). g) Temporally expanded 
predictors (kernels) from example neuron exhibiting strong O+ modulation. h) Tuning plot of same 
neuron. i) Peri-event time histogram (PETH, top) and trial-by-trial neuronal activity (bottom) 
aligned by O+. 
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Figure 3. Divergence of neural coding for PL pathways defined by A/P DMS target. a,b) 
Histogram of binned total FVE distribution for all neurons from (a) PL::A-DMS or (b) PL::P-DMS. 
Grey bars denote non-task tuned population (<5% FVE); colored bars (blue, PL::A-DMS; orange, 
PL::P-DMS) denote task-tuned neurons. Pie charts showing the proportion of task tuned neurons 
for both PL::DMS pathways (insets). c) Cumulative distribution of tuning indices for grouped 
behavioral variables (see text): external (top), internal (middle), outcome (bottom). Plots are 
restricted to task-tuned neurons. d) Proportion of highly tuned neurons (>5% FVE) for each 
behavioral category from each pathway, external (top), internal (middle), outcome (bottom). 
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Figure 4. Preferential encoding of choice in PL::A-DMS, internal value signals in PL::P-
DMS. a) Tuning plot showing representative contralateral choice tuned neuron from PL::A-DMS.  
b) Representative kernels corresponding to ipsi (top) and contra (bottom) choices. c) z-scored 
PETH (top) and trial-by-trial neuronal activity (bottom) from Ipsi (left)/Contra (right) choice. d) 
Cumulative distribution of contra choice tuned neurons in both PL-DMS pathways. e) Averaged 
contralateral choice kernels for both PL-DMS pathways. Solid line denotes root-mean-squared; 
shaded area denotes 95% confidence interval. Colored-bar on top indicates significant mean-
displacement on each timepoint between pathways. f) Tuning plot for representative ∆Q tuned 
neuron from PL::P-DMS. g) Raw Ca2+ trace (black, top), model prediction (gray, middle) and trial-
by-trial ∆Q (orange, bottom). Choices and outcomes at top (direction of triangle, left/right choice; 
filled/blanked, O+/O-). h) Trial-by-trial transient Ca2+ signals (middle, trial average; right, outcome 
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aligned) ranked by ∆Q (left). scale bar, 2 sec. i) Scatter plot showing linear correlation between 
∆Q and trial average of Ca2+ waveform. j) Cumulative distribution for ∆Q tuned neurons in both 
PL-DMS pathways. k) Tuning plot showing representative RR tuned neuron from PL::P-DMS. l) 
Raw Ca2+ trace (black, top), model prediction (gray, middle) and RR (5-prior trial average, orange, 
bottom) with choice/outcome information at top. m) Trial-by-trial transient Ca2+ signals (middle, 
averaged; right, outcome aligned) ranked by RR (left, averaged). scale bar, 2 sec. n) Scatter plot 
showing linear correlation between local RR and trial average of Ca2+ transients. o) Cumulative 
distribution for RR tuned neurons in both PL-DMS pathways.   
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Figure 5. Divergent encoding of outcome by PL::DMS pathways. a) Representative tuning 
plot of Ch x O+ tuned neuron from PL::P-DMS. b) Inferred kernels corresponding to Ch x O+ (top), 
Ch x O- (bottom). c) z-scored PETH (top in each panel) and trial-by-trial neuronal activity (bottom 
in each panel) to 4 possible choice outcomes, aligned to outcome delivery. d) Cumulative 
distribution for Ch x O+ tuning from task-tuned neurons of both PL::DMS pathways. e) Averaged 
Ch x O+ kernels show pathway-distinct temporal properties. Solid line denotes root-mean-
squared; shaded area denotes 95% confidence interval. Colored-bar on top indicates significant 
mean-displacement on each timepoint between pathways. f) Representative tuning plot for O- 
tuned neuron from PL::A-DMS. g) Inferred kernels corresponding to O+ (top), O- (bottom). h) z-
scored PETH (top) and trial-by-trial neuronal activity (bottom) corresponding to types of outcomes 
(left, O+; right, O-). i) Cumulative distribution for O- tuning from task-tuned neurons of both 
PL::DMS pathways. j) Averaged O- kernels for both PL::DMS pathways. 
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Figure 6. Optogenetic suppression of choice-associated PL::A-DMS activity impairs 
subsequent choice selection without impacting current trials. (top, left) Representative 
section of PL injection site. (top, right) schematic of optogenetic manipulation (yellow bar) with 
respect to behavioral measures (blue). a)  Comparison of ∆Win-Stay (left) and ∆Lose-Stay (right) 
between NpHR and GFP (control) groups, when light was delivered in the previous choice epoch 
to PL terminals in A-DMS. b) Cumulative distribution of choice latencies and average of choice 
latency (inset) following light ON versus OFF trials from NpHR inhibition of PL::A-DMS. c) 
Comparison of ∆Win-Stay (left) and ∆Lose-Stay (right) between NpHR and GFP (control) groups, 
when light was delivered in the previous choice epoch to PL terminals in P-DMS. d) Cumulative 
distribution of choice latencies and average of choice latency (inset) following light ON versus 
OFF trials from NpHR inhibition of PL::P-DMS. 
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Figure 7. PL:: Optogenetic suppression of outcome-associated signals causes pathway-
specific effects on task engagement and responses to positive and negative outcomes. a) 
Normalized number of total trials per session in sessions without and with random 30% outcome 
optogenetic inhibition of PL::A-DMS pathway (yellow bars). b) Comparison of initiation latency 
between sessions with (ON) or without (OFF) outcome epoch illumination of PL::A-DMS circuits 
from either GFP or NpHR group. c) Normalized number of total trials per session in sessions 
without and with random 30% outcome optogenetic inhibition of PL::P-DMS pathway (yellow bars). 
d) Comparison of initiation latency between sessions with (ON) or without (OFF) outcome epoch 
illumination of PL::P-DMS circuits from either GFP or NpHR group. e) Comparison of ∆Win-
Stay(left) and ∆Lose-Stay(right) between GFP and NpHR groups when light was delivered during 
prior trial outcomes to PL terminals in A-DMS. f) Cumulative distribution of initiation latencies and 
average of initiation latency (inset) following outcome light ON versus OFF trials from NpHR 
inhibition of PL::A-DMS. g) Comparison of ∆Win-Stay(left) and ∆Lose-Stay(right) between GFP 
and NpHR groups when light was delivered during prior trial outcomes to PL terminals in P-DMS. 
h) Cumulative distribution of initiation latencies and average of initiation latency (inset) following 
outcome light ON versus OFF trials from NpHR inhibition of PL::P-DMS. 
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Figure 8. Second-order circuit tracing reveals preferential innervation of PL neurons 
according to A/P DMS target. a) Schematic of tracing approach to label 2nd order projection to 
PL circuits defined by DMS target. RetroAAV2-Cre virus was injected into either A/P-DMS with 
Cre-sensitive TVA receptor and G-prot in PL, followed by EnvA pseudotyped-∆G-Rabies virus 
one week later. b) Brain-wide innervation preferences of PL::A/P DMS pathways. Abscissa shows 
relative proportion (out of total labeled neurons) for each brain region and ordinate shows the ratio 
between pathways (PL::P-DMS/PL::A-DMS). Green and blue circles represent ipsilateral and 
contralateral sites relative to injectrion. Asterisks indicates statistical significance (unpaired t-test, 
significance *p<0.05, **p<0.01). c) Comparison of second-order innervation from major afferent 
brain areas.  
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Predictor Window 
extent PRE 
(s) 

Window 
extent POST 
(s) 

Number of 
splines 

start cue (CUE) 0 2 12 

Self-initiation (Init) 3 1 12 

Choice LEFT (Lf) 3 3 20 

Choice RIGHT (Rt) 3 3 20 

Outcome NEGATIVE (O-) 0 6 20 

Outcome POSITIVE (O+) 0 6 20 

Choice RIGHT x Outcome NEGATIVE  
(Rt x O-) 

0 6 20 

Choice RIGHT x Outcome POSITIVE 
(Rt x O+) 

0 6 20 

Reward prediction error (RPE), 
positive 
(RPE+) 

0 6 20 

Reward prediction error (RPE), 
negative 
(RPE-) 

0 6 20 

Reward rate (RR) (continuous predictor) 

Q(LEFT) + Q(RIGHT) (SQ), (continuous predictor) 

Q(LEFT) - Q(RIGHT) (DQ) (continuous predictor) 

 

Table 1. Details on model predictors. Window extent PRE/POST indicates the extent 
of the kernel window before/after the event to which the predictor is tethered. N of splines 
is the size of the spline basis used for the predictor. The basis functions are cubic B-
splines. The spline knots are placed at regular intervals within the kernel window; 
additionally, four knots are placed at each end of the window to enable flexibility in the 
value of the kernel and all its derivatives at the endpoints. The degree of the splines and 
the number of the knots determines the number of elements in the basis spline set, 
reported in the fourth column.] 
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Abbreviation 
Agranular insular area AI Lateral amygdalar nucleus LA 
Anterior cingulate area ACC Lateral group of the dorsal thalamus LAT 
Anterior cingulate area/ dorsal part ACCd Medial group of the dorsal thalamus MD 
Anterior cingulate area/ ventral part ACCv Midline group of the dorsal thalamus CM 
Anterior group of the dorsal 
thalamus AD Orbital area OFC 
Auditory areas AUD Paraventricular nucleus of the thalamus PVT 
Basolateral amygdalar nucleus BLA Peripeduncular nucleus PP 
Basolateral amygdalar nucleus/ 
anterior part BLAa Posterior amygdalar nucleus AMYp 
Basolateral amygdalar nucleus/ 
posterior part BLAp Posterior parietal association areas PTLp 
Basolateral amygdalar nucleus/ 
ventral part BLAv Prelimbic area PL 
Basomedial amygdalar nucleus BMA Primary motor area M1 
Basomedial amygdalar nucleus/ 
anterior part BMAa Primary somatosensory area S1 
Basomedial amygdalar nucleus/ 
posterior part BMAp Reticular nucleus of the thalamus RT 
Claustrum CLA Retrosplenial area RSP 
Epithalamus EPI Secondary motor area M2 
Geniculate group/ dorsal thalamus GENd Subparafascicular area SPA 
Geniculate group/ ventral thalamus GENv Subparafascicular nucleus SPF 
Globus pallidus/ external segment GPe Substantia nigra/ compact part SNc 
Globus pallidus/ internal segment GPi Substantia nigra/ reticular part SNr 
Gustatory areas GU Supplemental somatosensory area S2 
Hippocampal formation HPF Temporal association areas TEa 
Infralimbic area IL Ventral group of the dorsal thalamus VM 
Intralaminar nuclei of the dorsal 
thalamus ILM Ventral tegmental area VTA 
  Visceral area VIC 
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