

1

2 **Distributed processing for action control by prelimbic circuits targeting**
3 **anterior-posterior dorsal striatal subregions.**

4

5 Kyuhyun Choi¹⁺, Eugenio Piasini^{2, 4+}, Luigim Cifuentes-Vargas³, Edgar Díaz-Hernández¹,
6 Nathan T. Henderson¹, Manivannan Subramaniyan¹, Charles R. Gerfen⁵, Marc V. Fuccillo^{1,*}

7 ¹Department of Neuroscience, ²Computational Neuroscience Initiative, ³Neuroscience Graduate
8 Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, ⁴Neural
9 Computation Lab, International School for Advanced Studies (SISSA), Trieste, Italy, ⁵Laboratory
10 of Systems Neuroscience, National Institute of Mental Health (NIMH), Bethesda, MD, USA

11

12 + Equal contribution

13 * Corresponding author

14

15 SUMMARY

16 • Prelimbic cortex engages A- and P-DMS via distinct circuits
17 • PL::A-DMS and PL::P-DMS pathways encode divergent aspects of a simple goal-directed
18 task
19 • PL::A-DMS pathways shape responding to negative outcomes via multiple mechanisms
20 • PL::P-DMS pathways guide engagement and choices in response to positive outcomes
21 • Afferent connectomes of PL neurons defined by A-P DMS target are distinct

22 ABSTRACT

23 Fronto-striatal circuits have been extensively implicated in the cognitive control of behavioral
24 output for both social and appetitive rewards. The functional diversity of prefrontal cortical
25 populations is strongly dependent on their synaptic targets, with control of motor output strongly
26 mediated by connectivity to the dorsal striatum. Despite evidence for functional diversity along
27 the anterior-posterior axis of the dorsomedial striatum (DMS), it is unclear how distinct fronto-
28 striatal sub-circuits support neural computations essential for action selection. Here we identify
29 prefrontal populations targeting distinct DMS subregions and characterize their functional roles.
30 We first performed neural circuit tracing to reveal segregated prefrontal populations defined by
31 anterior/posterior dorsomedial striatal target. We then probed the functional relevance of these
32 parallel circuits via *in vivo* calcium imaging and temporally precise causal manipulations during a
33 feedback-based 2-alternative choice task. Single-photon imaging revealed circuit-specific
34 representations of task-relevant information with prelimbic neurons targeting anterior DMS (PL::A-
35 DMS) uniquely encoded choices and responses to negative outcomes, while prelimbic neurons
36 targeting posterior DMS (PL::P-DMS) encoded internal representations of value and positive
37 outcomes contingent on prior choice. Consistent with this distributed coding, optogenetic inhibition
38 of PL::A-DMS circuits strongly impacted choice monitoring and behavioral control in response to
39 negative outcomes while perturbation of PL::P-DMS signals impaired task engagement and
40 strategies following positive outcomes. Di-synaptic retrograde tracing uncovered differences in
41 afferent connectivity that may underlie these pathways functional divergence. Together our data
42 uncover novel PL populations engaged in distributed processing for action control.

43

44 INTRODUCTION

45 Value-based decision-making requires a complex series of neural computations - the integration
46 of success and failure, the proper attribution of actions to temporally displaced outcomes and the
47 monitoring of context and underlying task structure. One hypothesis posits that inputs for this
48 decision-making process are represented across forebrain excitatory populations, with their
49 integration in the striatum serving as an early step in action selection¹. Consistent with a
50 topographical organization of afferent inputs²⁻⁴, striatum exhibits functional segregation along its
51 anatomical axes, with the dorsoventral direction segregating reward and motor processes and
52 medial-lateral domains supporting goal-sensitive and habitual action strategies⁵. However,
53 substantially less work has considered striatal function along the anterior-posterior (A-P) axis⁶⁻¹⁰
54 despite early retrograde studies pointing to a unique longitudinal (A-P) organization of cortical-
55 striatal inputs¹¹.

56 Seminal studies in rat provided the first evidence of functional segregation along the striatal A-P
57 axis, with posterior dorsomedial striatum (P-DMS) lesions disrupting both the initial acquisition
58 and post-training execution of instrumental conditioning, in particular modulation in responding
59 according to action-outcome association^{8,9}. In contrast, the importance of the anterior dorsomedial
60 striatum (A-DMS) in goal-directed choice remained uncertain, with opposing results for
61 pharmacological inactivation and excitotoxic lesions^{8,9,12}. Optogenetic manipulations of specific
62 spiny projection neuron subtypes within the A-DMS have implicated this subregion in supporting
63 flexible responses during reversal learning¹³, consistent with pharmacological manipulations of
64 anterior caudate in marmosets¹⁴. In contrast, the anterior dorsolateral striatum (DLS) supports a
65 protein synthesis-dependent consolidation of newly learned actions¹⁵. Finally, a growing body of
66 evidence has implicated the rodent striatal tail, the most caudal subregion, in behavioral
67 responses to aversive stimuli and psychostimulants¹⁶⁻¹⁸.

68 The prefrontal cortex exerts cognitive control over mammalian behavior via extensive afferent
69 integration and widespread downstream connectivity¹⁹. Analysis of prefrontal populations
70 accounting for downstream synaptic targets has revealed pathway-specific functional differences
71 for prefrontal control of social-spatial rewards²⁰, reward anticipation²¹, and choice directions²². The
72 prelimbic region of the prefrontal cortex has been hypothesized to support goal-directed action by
73 encoding short-term memories necessary for subsequent action-outcome associations in dorsal
74 striatum²³. Specific targeting of prelimbic-striatal pathways has extended this view, demonstrating
75 persistent neural coding of value essential for choice behavior²⁴ and the mediation of response
76 inhibition during tasks requiring sustained attention²⁵. Finally, DREADD-mediated inhibition of PL
77 neurons projecting to either anterior or posterior striatal subregions has uncovered involvement
78 in instrumental learning^{6,7,10}.

79 Here we systematically explore the function of PL pathways projecting along the A-P striatal axis
80 via integration of mono- and di-synaptic viral circuit tracing, single neuron calcium imaging,
81 statistical modeling of neural coding properties, and target-specific optogenetic manipulations.
82 Retrograde tracing from A/P-DMS subregions revealed non-overlapping PL populations which
83 exhibited unique encoding of behavioral variables over multiple time scales essential for shaping
84 efficient action selection and execution. Target- and temporally- specific optogenetic
85 manipulations confirmed the functional divergence of these fronto-striatal pathways, with PL::A-
86 DMS pathways supporting choice monitoring and responding to negative outcomes and PL::P-
87 DMS pathways supporting engagement and responding to positive outcomes. Together, our
88 results provide novel insight into the distributed nature of fronto-striatal pathways for decision
89 making.

90 **RESULTS**

91 **Anatomical architecture of fronto-striatal pathways along the anterior-posterior striatal
92 axis.**

93 To characterize prefrontal cortex connectivity along the anterior-posterior striatal axis, we injected
94 a mix of AAV5-CamKII::GFP-Cre and AAVdj-EF1a::Flex-Synaptophysin-mRuby virus into
95 prelimbic cortex (Fig. 1a), confirming that synaptic inputs from PL were widely spread along the
96 full anterior-posterior extent of DMS (Fig. 1b). To address whether these widespread projections
97 arose from *en passant* connectivity or distinct PL afferents, we utilized two orthogonal retrograde
98 circuit tracers, with EnvA G-deleted rabies virus EGFP injected in A-DMS, and Alexa647-
99 conjugated Cholera toxin subunit-B (CTB) injected in P-DMS (Fig. 1c). This design minimized
100 fiber of passage contamination of PL::P-DMS pathways while traversing A-DMS. Using CTIP2
101 immunostaining as a guide, we found cell bodies of both retrogradely labeled populations largely
102 in prelimbic layers II/III and more sparsely in layers V/VI²⁶ (Fig. 1f-i). Regardless of layer, these
103 populations were distinct (2.2±0.5% overlap) and spatially separated, forming a characteristic
104 sub-layer structure with PL::A-DMS populations localized to superficial layer II/III and PL::P-DMS
105 populations found in deeper layer II/III (Fig. 1e). These results were replicated using spectrally
106 distinct CTB tracers (Fig. S1a-c), confirming the existence of distinct PL cortical populations
107 defined by A/P-DMS subregions and revealing a similar anatomical organization for most striatal
108 afferents originating in other brain regions (Fig. S1d-j).

109 **Assessing neural activity in PL::DMS pathways during a goal-directed choice task.**

110 This unique circuit architecture could serve to either carry similar neural signals to distinct striatal
111 regions or alternatively support divergent neural processing for the control of action selection. To
112 explore these possibilities, we investigated neural coding of task-relevant information within
113 PL::A-DMS and PL::P-DMS populations during a goal-directed choice task. Mice were trained on
114 a 3-poke chamber where the center port initiated a choice period, requiring a lateral left/right

115 decision. In any given trial, choosing a predetermined side led to the delivery of a reward with 85%
116 chance and no outcome otherwise, while choosing the opposite port led to punishment tone with
117 85% chance and no outcome otherwise (Fig. 2d). The identity of the rewarded side (or
118 “contingency”) was changed whenever mice made 8 correct choices over the latest 10 trials, to
119 assess flexible responding. As previously reported, mice choices were based on previous
120 outcome feedback, with a strong influence of prior trial on current choice (Fig. S2b)²⁷. We
121 performed 1-photon (1-p) single neuron calcium (Ca^{2+}) imaging of retrogradely-labeled PL
122 neurons expressing GCaMP7f during this task. Given the minimal fiber-of-passage overlap with
123 standard retrograde tracers (Fig. S1a-c), we injected retroAAV2-EF1a::3XFLAG-Cre into either
124 A-DMS or P-DMS, together with AAV1-hSyn::FLEX-jGcamp7f into PL to gain access to both PL
125 populations in separate animals (Fig. 2a-c). Using this approach, we recorded Ca^{2+} activity of 465
126 PL::A-DMS neurons and 586 PL::P-DMS neurons.

127 To analyze neural activity, we designed a linear encoding model based upon task-relevant
128 regression predictors capturing actions, sensory input, resulting outcomes and model-based
129 estimations of internal value state (Fig. 2e). External sensorimotor variables included trial start
130 cue (CUE), self-initiation (Init), and Ipsilateral/Contralateral (Ipsi/Cont) choice. Outcomes were
131 divided into positive (O+) and negative (O-), as well as interactions of these terms with prior choice,
132 a potential neural signal for credit assignment (Ch x O+, Ch x O-). Local reward rate over the last
133 5 trials was included as a proxy for task engagement. Finally, we estimated internal value
134 representations with a standard Q-learning model, which proved strongly predictive of future
135 animal choice in our experiments (Fig. S2a,c)^{27,28}. Latent variables inferred with the Q-learning
136 scheme were included in the neural encoding model as predictors representing trial-by-trial choice
137 values (ΔQ , ΣQ) and reward prediction errors (RPE+/-). Regression parameters were fit via
138 elastic-net penalized maximum likelihood (Fig. 2e-i; see Methods for details on model design and
139 fitting).

140 We applied this encoding model to both PL::A-DMS and PL::P-DMS Ca^{2+} imaging data,
141 measuring total model fit quality by calculating the fraction of Ca^{2+} signal variance explained (FVE).
142 At a cut-off threshold of 5% FVE, our model fit ~39% of total PL::A-DMS neurons and ~30% of
143 total PL::P-DMS neurons (Fig. 3a-b). To quantify neuronal tuning to specific behavioral variables,
144 partial models lacking the related predictors were fit to Ca^{2+} data. The difference in FVE between
145 the full and the partial model defined a tuning index for the given variables. For an initial overview,
146 we grouped predictors into external (CUE, Init, Ipsi, Contra), internal (ΔQ , ΣQ , RPE+, RPE-, RR)
147 and outcome (O+, O-, Ch x O+, Ch x O-) categories (Fig. 2e),, discovering that the PL::A-DMS
148 pathway was biased towards representation of external variables, the PL::P-DMS pathway was
149 biased towards representation of internal values, and both pathways shared encoding of task
150 outcome (Fig. 3c-d).

151 **PL::A-DMS and PL::P-DMS neural populations encode distinct and complementary
152 components of value-based behavior.**

153 We initially focused on the external bias of PL::A-DMS and asked whether neuronal tuning was
154 specific to sensory or motor events preceding action selection. By breaking down our encoding
155 analysis to the level of individual predictors, we found that the majority of external event
156 modulation in the PL::A-DMS pathway was driven by choice-tuned neurons (Fig. S3a), although
157 PL::A-DMS carried more information than PL::P-DMS not only for choice (Fig. 4d,e, Fig. S3n-r)
158 but also trial start cue (center port light; Fig. S3d-h) and initiation (Fig. S3i-m). We found that
159 PL::A-DMS encoded both ipsilateral and contralateral choices (Fig.4d, Fig. S3b, q).

160 Our tuning index is a compact measure of the degree to which task-related variables are
161 represented in neural activity. Nonetheless, it only captures the overall coding strength and is not
162 sensitive to the precise temporal evolution of neural responses, which could present interesting
163 differences between pathways regardless of their relative tuning level. To address this, we
164 analyzed the event-associated kernels inferred by our encoding model, which estimate the

165 average calcium activity transient elicited by specific behavioral events, after accounting for
166 overlapping transients from other event types. Analysis of choice kernels revealed that PL::A-
167 DMS neurons exhibited robust phasic activity starting around choice execution, although the
168 magnitude of this modulation was on average stronger for choices contralateral to the recording
169 site (Fig. 4e, Fig. S3c, r).

170 Next, we investigated target-specific PL differences for the representation of internal values, a
171 key driver of decision-making in the absence of task-relevant sensory information. Our
172 reinforcement learning model of choice behavior provides trial-by-trial estimates of the difference
173 between choice values (ΔQ , ipsi vs. contra), the sum of choice values (ΣQ) as well as positive
174 and negative reward prediction errors (+/-RPEs). Besides these metrics, we included in our
175 encoding model a local reward rate over the last five trials (RR) to capture the strength of
176 engagement in this self-initiated task. We found that the PL::P-DMS pathway more strongly
177 encoded these internal value estimates (Fig. 3c,d middle), with the strongest drivers being
178 neurons modulated by the difference in action values (ΔQ ; Fig. 4j) and those whose activity
179 strongly tracked with the local reward rate (RR; Fig. 4o). Interestingly, our encoding model
180 robustly captured the slow shifting baseline of PL::P-DMS calcium activity that in a subset of
181 neurons scaled with increasing Q-value difference or local reward rate (Fig. 4g,h,l,m) despite
182 lacking clear event-related modulation (Fig. S4e,f). One exception to this dominance of PL::P-
183 DMS for value-related information was for negative RPEs, for which PL::A-DMS pathways
184 demonstrated strong modulation of outcome signals by violated reward expectation (Fig. S4a).
185 Overall however, these data imply that PL::P-DMS pathways more strongly represent temporally
186 integrated internal measures of value than PL::A-DMS pathways.

187 Finally, we examined how these distinct PL pathways responded during behavioral outcomes,
188 uncovering three general patterns. First, we noted a brief (~1s) response immediately following
189 all positive outcomes that was similar in calcium waveform between PL pathways but found in a

190 greater proportion of PL::A-DMS neurons (Fig. S5a-h). We also observed neural activity
191 modulated by the interaction of positive outcome and prior choice (Ch x O+; Fig. 5a-c).
192 Interestingly, we found that outcome-related neural signals that were contingent on prior choice
193 were better represented in PL::P-DMS than in PL::A-DMS populations (Fig. 5d). Second, the
194 temporal kinetics of these interaction-associated signals were distinct between pathways, with Ch
195 x O+ signals in PL::P-DMS pathways persisting for several seconds beyond outcome, as
196 compared to briefer Ch x O+ signals in PL::A-DMS neurons (Fig. 5e). Third, we observed robust
197 neuronal responses to negative outcomes that were almost exclusively encoded by the PL::A-
198 DMS neurons (Fig. 5f-i). These signals exhibited a slow and persistent increase following the
199 absence of reward, which occurred at contingency switches, random unrewarded trials or during
200 brief exploratory choice periods (Fig. 5j). Together, these data reveal a distributed representation
201 of outcomes by PL::DMS pathways, with prolonged activation of PL::A-DMS neurons encoding
202 negative outcomes and PL::P-DMS neurons encoding positive outcomes contingent on prior
203 choice.

204 Thus far, our data highlight a unique fronto-striatal architecture defined by A-P striatal target that
205 encodes complementary aspects of relevant external and internal behavioral parameters
206 observed during our value-based task. Our neural coding analysis makes several predictions
207 about pathway-specific behavioral functions: 1. PL::A-DMS choice activity may shape current
208 choice selection/execution or instead provide an action-monitoring signal; 2. PL::P-DMS neurons
209 encode temporally integrated signals for local reward rate and action value that may drive task
210 engagement; 3. the persistent choice x positive outcome activity in PL::P-DMS could be used to
211 drive positive reinforcement behavior; 4. PL::A-DMS negative outcome modulated neurons could
212 be used to implement choice strategies following negative outcome.

213 **PL::A-DMS pathways mediate future choice valuation, but not current choice execution**

214 To evaluate whether these divergent patterns of neural coding resulted in distinct functional
215 contributions, we performed striatal subregion-specific optogenetic inhibition of PL terminals. We
216 bilaterally injected PL cortex with AAV5-CamKII::NpHR3.0-EYFP, or AAV5-hSyn::EGFP for
217 controls, and implanted 200 μ m fiber optics bilaterally in either the A-DMS or P-DMS (target sites
218 in Fig. S6a, b). We designed two distinct light delivery protocols to assess the contribution of these
219 fronto-striatal circuits during choice and at outcome. We predicted that PL::A-DMS choice activity
220 might either have a role in the selection/execution of current actions or instead provide an
221 efference copy of the selected action that could be linked to resulting outcomes, thereby
222 influencing future action selection. We also predicted that manipulation of PL::P-DMS pathways
223 would have no effects on choice selection or motor performance, consistent with their lack of
224 choice modulation. To test these predictions, we activated NpHR from initiation through choice
225 on a random 30% subset of trials (Fig. 6, Fig.S7). To analyze effects on choice selection, we took
226 advantage of the strong dependence on prior trial outcomes^{27,28}, analyzing win-stay and lose-stay
227 probabilities (see Methods). We found no evidence that optogenetic inhibition of PL::A-DMS
228 throughout the choice period had any impact upon ongoing action selection (Fig. S7a, Fig S8a,b).
229 To analyze effects on motor performance, we examined choice latency (the time from center port
230 initiation to choice selection), observing no effect of optogenetic inhibition on latency distributions
231 (Fig. S7b). We next analyzed the influence of choice-associated optogenetic suppression on
232 subsequent action selection and performance, finding increased lose-stay behavior following
233 choice activity suppression in prior trials for PL::A-DMS pathways (Fig. 6a, Fig S8g,h). No
234 subsequent trial effect was found for motor performance (Fig. 6b; cf. Fig S8e, k for GFP control).
235 Consistent with our population coding data, optogenetic inhibition of PL terminals in P-DMS had
236 no effect on either choice selection or execution for current or subsequent trials (Fig. 6c, d; Fig.
237 S7c, d; Fig S8c, d, I, j). Overall, these causal manipulations complement the neural coding

238 analysis, suggesting that choice-epoch activity in PL::A-DMS is not related to action planning or
239 execution, but instead provides an efference copy of actions for subsequent valuation.

240 **Temporally integrated PL::P-DMS neural activity supports task engagement**

241 PL::P-DMS pathways were found to strongly encode action value differences and local reward
242 rates, two temporally integrated measures of recent task outcome. As the slow dynamics of these
243 neural signals precluded precise optogenetic interrogation, we used our second optogenetic
244 paradigm, where inhibition was delivered for 6 s following outcomes (Fig. 7a-d). We assumed this
245 manipulation would best reduce persistent activity and have broad effects on task engagement,
246 even outside of light trials. We measured the total number of completed trials as a proxy for task
247 engagement, finding that outcome suppression of PL::P-DMS pathways on 30% of trials caused
248 a decrease in the total number of completed trials for sessions where light was used (Fig. 7c).
249 This effect was not observed in subsequent light-off sessions (Fig. 7c), during shorter choice
250 suppression sessions (data not shown) and could not be explained by other typical motivational
251 regulators such as body weight (Fig. S9b). Task disengagement was also manifest as elongated
252 initiation latencies in the PL::P-DMS outcome inhibition sessions (Fig. 7d) but was not on overall
253 slowing of motor performance (note unchanged choice latencies in Fig. S9b). In contrast, the
254 PL::A-DMS pathways, which exhibited weaker internal value coding, did not impact task
255 engagement as measured by total trials or initiation latencies (Fig. 7a,b, Fig. S9a). These results
256 suggest that temporally integrated task value signals in PL::P-DMS pathways are important for
257 driving global task engagement.

258 **PL::DMS pathways divergently control response strategies to positive and negative
259 outcomes.**

260 To directly evaluate the divergent functions of outcome-related PL::DMS activity, we
261 optogenetically inhibited terminals in each striatal subregion following both positive and negative
262 outcomes (Fig. 7e-h). While we did not observe any choice or performance changes from

263 suppression of PL::A-DMS terminals following positive outcomes (Fig.7e), we reliably observed a
264 decrease in the win-stay probability from similar manipulations of the PL::P-DMS pathway (Fig.
265 7g). In contrast, we found that optogenetic suppression during negative outcomes of the PL::A-
266 DMS, but not the PL::P-DMS, caused a robust decrease in lose-stay choice strategy (Fig. 7e,g).
267 Furthermore, we observed similar behavioral effects for PL::A-DMS inhibition across a range of
268 reward probability environments (Fig. S10a). Finally, we also noted that PL::A-DMS inhibition
269 disrupted the natural slowing of trial initiations observed following negative outcomes (Fig.
270 7f,h)^{24,27,28}. These results support divergent fronto-striatal control of outcome-related strategies,
271 with PL::P-DMS activity mediating positive reinforcement and PL::A-DMS driving choice
272 persistence in the face of negative outcomes.

273 **Second order retrograde tracing uncovers pathway specific afferent connectomes.**

274 Our neural coding analyses and causal manipulation studies consistently indicated a functional
275 division of PL::DMS pathways for key neural processes that generate goal directed choice
276 behavior. As an initial step into understanding the origins of this divergence, we examined the
277 second-order excitatory connectomes for PL neurons defined by A-/P-DMS subregion. To do this,
278 we injected retroAAV2-EF1a::3xFLAG-Cre into either A- or P-DMS subregions and a mixture of
279 AAV-DJ-CAG::FLEX-TVA-mCherry and AAV-DJ-CAG::DIO-RVG into PL cortex (Fig. 8a).
280 Subsequent PL injection of EnvA-RV-EGFP permitted single synapse tracing specifically from PL
281 neurons that projected to either DMS subregions (2nd order inputs). Consistent with these fronto-
282 striatal circuits being embedded in the same local microcircuit, we observed multiple afferent
283 populations with similar targeting of each PL circuit, including dorsal anterior cingulate cortex
284 (dACC) and both associative and ventral motor thalamic nuclei (Fig. 8b,c). Surprisingly though,
285 we also noted pathway-specific distinctions in second order afferent connections, with strong
286 PL::P-DMS biases for secondary motor cortex (M2) and significant PL::A-DMS biases for ventral
287 anterior cingulate cortex, retrosplenial cortex and orbitofrontal cortex. These observations

288 suggest that the distinct coding and functional properties of PL::DMS pathways could be at least
289 partly due to unequal strength of afferent connectivity, although other mechanisms such as
290 divergent recurrent processing in local circuits cannot be excluded.

291

292 **DISCUSSION**

293 The dorsal striatum is a canonical set of circuits that interfaces much of the forebrain with
294 downstream basal ganglia nuclei that select and modulate motor output²⁹. Accordingly, neural
295 processing within striatum is thought to be reflective of cortical activity³⁰. Cortico-striatal
296 projections are highly localized along the dorsal-ventral and medial-lateral axes⁴, but less so
297 along the anterior-posterior striatal extent^{3,11}. Here we sought to understand the implications of
298 this architecture for cortico-striatal processing, focusing on prelimbic cortical connections to
299 dorsomedial striatum. As for most DMS-targeting afferents, we found that PL cortex formed non-
300 overlapping circuits according to A-P target. *In vivo* imaging demonstrated that these two
301 populations divided encoding of key behavioral variables for goal-directed choice. PL::A-DMS
302 pathways strongly encoded choice and negative outcome, while PL::P-DMS pathways strongly
303 encoded internal value representations and an integrated positive outcome/choice signal. Target-
304 and temporally- specific optogenetic manipulations further confirmed the functional divergence of
305 these fronto-striatal circuits, with PL::A-DMS pathways providing integrated responses to negative
306 outcomes and PL::P-DMS pathways supporting task engagement and reinforcement by positive
307 outcomes.

308 **Temporal and spatial distribution of goal-directed processing by PL sub-circuits**

309 Feedback-driven goal-directed behaviors require specific response strategies to positive and
310 negative outcomes, estimation and retention of value estimates for actions, the appropriate
311 assignment of credit for temporally displaced choice and outcome, as well as regulation of
312 motivation, performance, and task engagement. Here we provide evidence that prefrontal

313 connections to the DMS supports many of these core processing functions and do so in a
314 distributed manner across A-P striatal targets.

315 **Action Monitoring**

316 Our Ca^{2+} imaging data demonstrated that PL populations projecting to the A-DMS contain
317 neurons tuned to sensorimotor components of our operant behavioral task. While task start cue
318 and subsequent initiation approach were represented by small subpopulations (Fig. S3a), we
319 found that a substantial number of PL::A-DMS neurons were modulated by port choice. Averaged
320 choice-associated kernels revealed larger contralateral than ipsilateral choice signals that
321 occurred after choice was registered (Fig. 4e, Fig. S3c). These data are consistent with previous
322 work showing only weak neural signals for upcoming choice in medial prefrontal cortex (mPFC),
323 suggesting activity in this region doesn't significantly contribute to action planning in trial and error
324 tasks³¹. We directly probed the functional importance of choice-associated modulation via
325 optogenetic inhibition of PL terminals within the A-DMS, finding that while bilateral optogenetic
326 disruption of these circuits around the choice period had no effect on current trial choice selection
327 or performance, this manipulation specifically altered choices on trials following negative
328 outcomes (Fig. 6a). These data suggest a model where PL::A-DMS choice signals provide an
329 efference copy of actions that is utilized to update choice values on subsequent trials. Striatal-
330 targeting efference signals have been proposed to function together with cortical representations
331 of environment to bind context, selected action and outcome^{1,32}. Interestingly, our choice-
332 associated signals only seemed relevant following negative outcomes, as manipulations did not
333 alter win-stay probabilities (Fig. 6a). These data are consistent with the biased responding of
334 PL::A-DMS pathways towards negative outcomes (see below), suggesting common valence
335 processing in this pathway. Recently, PL neurons that project to the nucleus accumbens core
336 were shown to exhibit choice modulation that progressed sequentially through the population,
337 bridging choice and outcome periods³³. In contrast to our results, optogenetic activation of PL-

338 NAc throughout the trial altered subsequent responses following both positive and negative
339 outcomes.

340 **Outcome Monitoring**

341 Outcome monitoring is thought to be a crucial function of prefrontal cortical circuitry, influencing
342 how animals use subsequent sensory information^{34,35} and select future actions^{24,27,36}. While the
343 PL cortex has been suggested to provide both positive and negative feedback signals to shape
344 behavior³⁷, our experiments reveal a distribution of these functions according to DMS target, with
345 positive outcomes encoded by both pathways and negative outcome encoding exclusively by
346 PL::A-DMS. The PL::A-DMS pathway exhibited stronger encoding of brief (~1s) neuronal
347 responses to positive outcomes (Fig. S5h), while PL::P-DMS more strongly encoded positive
348 outcomes that followed specific choices (Ch x O+ interaction; Fig. 5d). Interestingly, activity
349 patterns for Ch x O+ coding exhibited distinct temporal patterns according to PL circuit, with a
350 persistent (>5 s on average) activity in PL::P:DMS neurons (Fig. 5e). We hypothesized that this
351 activity would be central to positive reinforcement behavior, either via providing an eligibility trace
352 for plasticity or by directly influencing ensuing decision processes. To test this, we optogenetically
353 inhibited PL::P-DMS continuously for 6 s following trial outcome, observing that stay-behavior was
354 reduced following positive outcomes with no change in choice for manipulation following negative
355 outcomes. These data are strongly consistent with seminal experiments showing the P-DMS to
356 be central to outcome-driven action selection^{8,9}. Furthermore, it seems likely that this prolonged
357 Ch x O+ activity may explain the value-based learning deficits observed upon chronic
358 chemogenetic-mediated suppression of PL-P::DMS pathways⁶.

359 One surprising result of our work was the exclusive representation of negative outcomes by PL::A-
360 DMS pathways. Averaged negative outcome kernels in this population displayed a delayed onset
361 (~500ms) and persistent activity lasting over 5 s, consistent with an outcome feedback signal as
362 opposed to reward port approach (Fig. 5j). While there are numerous examples of outcome

363 encoding in rodent PL cortex for negative valence, most cases involved aversive stimuli such as
364 foot-shocks or air puffs³⁸. A gambling task in rats, where risky maze arms had lower
365 probability/higher reward outcomes, elicited prolonged bouts of firing in PL neurons at negative
366 outcome that supported risky choice³⁹. Choice monitoring activity was also seen at outcome in PL
367 neurons which supported cognitive flexibility during set-shifting tasks³⁵. We found that specific
368 optogenetic inhibition of negative outcome signals in PL::A-DMS pathways reliably decreased
369 stay behaviors following a prior loss (ie. increased choice switching), while having no choice
370 effects following prior positive outcomes (Fig. 7e). The ability of PL::A-DMS outcome activity to
371 support choice persistence following losses was a context-independent function, as optogenetic
372 inhibition always decreased lose-stay behavior regardless of the probability of receiving a reward
373 (Fig. S10). Thus, this optogenetic manipulation improved overall performance in high reward
374 probability environments, but impaired it in lower reward probability scenarios, where lose-stay
375 behavior is adaptive (not shown). This data argues against a role for mPFC circuits in flexibly
376 supporting behavioral strategies following negative outcome. Furthermore, these functional
377 effects strongly contrast with negative outcome-tuned neurons in the ACC, which have been
378 shown to implement choice switching in many species^{40,41}. While response persistence in the face
379 of negative outcomes is essential in sparse reward environments, left unchecked this tendency
380 could clearly impair value-based function. This raises the question of whether mouse models of
381 neuropsychiatric disease characterized by perseverative choice abnormalities exhibit
382 dysregulation of PL::A-DMS pathways.

383 **Internal Representations of Value**

384 Internal representation of choice value and local reward availability are key determinants of
385 behavior in dynamic foraging tasks^{24,27}. Our results suggest that PL::P-DMS pathways more
386 strongly encode these behavioral parameters as compared with PL::A-DMS pathways. We found
387 that relative value signals tracked strongly with the baseline, but not phasic components of cellular

388 calcium signals (Fig. 4g,l, Fig. S4e,f). Our ΔQ -encoding PL population is consistent with a
389 previously identified PL-DMS population that stably represented relative value via persistent
390 baseline spiking activity²⁴. While we also identified neural signals encoding total choice value (ΣQ)
391 as in Bari et al., our inability to control trial initiation precluded investigation into the relative
392 persistence of these distinct value signals²⁴. Engagement in self-initiated foraging tasks is strongly
393 modulated by local reward environment, a variable we captured with a local average of the reward
394 rate. Again, we found that PL::P-DMS pathways more strongly encoded this feature as compared
395 to PL::A-DMS pathways. The persistent nature of value coding in these pathways made phasic
396 optogenetic manipulation difficult. To circumvent this, we looked at all trials in sessions where
397 inhibition was delivered in 30% of trials for 6 s after outcome. We reasoned that prolonged
398 inhibition should sufficiently alter persistent neural signals to impact immediately subsequent trials
399 as well as the overall behavior of the animal in the session. Indeed, we found that post-outcome
400 inhibition was able to both reduce the total number of initiated trials and reduce the win-stay
401 probability in non-light trials, suggesting the involvement of reward-rate and ΔQ -encoding PL::P-
402 DMS populations, respectively. It is interesting to hypothesize that the reduction in task
403 engagement caused by disruption of this pathway may share a common cause with the reduced
404 responding seen in earlier P-DMS lesion studies⁸.

405 **What underlies the functional diversification of PL cortex?**

406 Our work adds to recent studies demonstrating a range of behavioral functions for PL cortical
407 microcircuits defined by target area^{20-22,33,35}. Nevertheless, the mechanisms underlying this
408 functional diversification remain unclear, with potential candidates including circuit-specific
409 differences in molecular composition, long-range afferent projections, or local synaptic networks.
410 While evidence exists for target-specific transcriptional differences in PL cortex²⁰, other analyses
411 have shown diverse PL functions emerging from molecularly homogenous populations²². Circuit-
412 specific transcriptional profiling could reveal whether molecular diversity can account for divergent

413 PL-DMS pathway activity. Differences in afferent connectivity may result from circuit-specific
414 differences in local inhibitory control⁴² or long-range excitatory projections. We used 2-stage
415 retrograde tracing to map afferent populations that synapsed on PL neurons defined by A/P-DMS
416 target (Fig. 8), finding that ACCv, RSP cortex and OFC were strongly biased towards PL::A-DMS
417 populations while M2 connectivity favored PL::P-DMS. Upstream manipulations will be necessary
418 to test whether prolonged choice encoding in M2³⁶ supports persistent Ch x O+ signaling in PL::P-
419 DMS neurons, while enhanced ACCv, RSP and OFC connectivity to PL::A-DMS supports
420 negative outcome associated activity. Similar tracing approaches have highlighted the importance
421 of ACCv connectivity to deep PL layers projecting to NAc for outcome monitoring during cognitive
422 flexibility tasks³⁵.

423 **Functional implications of this circuit architecture**

424 Our initial tracing data showed a surprising number of cortical and thalamic regions have distinct,
425 yet intermingled populations projecting to A/P-DMS (Fig. S1). Future work should explore the
426 computational advantages afforded by this arrangement. It is presently unclear whether anterior
427 and posterior striatal subregions might work coordinately or antagonistically to control behavior,
428 which would be an important starting point for our understanding. Either way, this organization
429 could permit appropriate and flexible coordination of A/P-DMS targeting populations via local-
430 circuit interactions in cortex or thalamus. Alternatively, these parallel processing paths may be
431 integrated via downstream basal ganglia components.

432

433 **Acknowledgement**

434 This work was supported by R01MH115030 to M.V.F and Whitehall Foundation grant to M.V.F.
435 We thank Dr. Long Ding, Dr. Elizabeth N. Holly, Dr. Mariexcel F. Davatolhagh for useful feedback

436 on the manuscript. We also thank Alexandria J. Cowell, Alessandro Jean-Louis, Sara
437 Seyedroudbari, Michaela Glass, John Talley, Aaron Uy for providing assist.

438

439 **Author Contributions Statement**

440 Conceptualization, K. C. and M.V.F.; methodology, K.C., E.P. and M.V.F.; formal analysis, K.C.,
441 E.P., L.V., N.T.H. and E.D.; investigation, K.C., writing – original draft, K.C. and M.V.F.; writing –
442 review and editing, K.C., E.P., and M.V.F.; visualization, K.C.; supervision, K.C., E.P., C.R.G.
443 and M.V.F.; Funding Acquisition, M.V.F.

444

445 **Competing Interests Statement**

446 The authors declare no competing interests.

447 **METHODS:**

448 **Animal**

449 Animal experiment procedures were approved by the *University of Pennsylvania Institutional*
450 *Animal Care and Use Committee*, and all experiments were conducted in accordance with the
451 *National Institutes of Health Guidelines for the Use of Animals*. All animals were supplied from
452 Charles River Laboratory (Wilmington, MA, strain code 027, C57BL/6NCrl). Unless otherwise
453 noted, animals were grouped with littermates on a 12:12 light-dark cycle and provided *ad libitum*
454 food and water. All experiments were conducted on naive male mice.

455

456 **Stereotaxic surgery**

457 Intracranial surgery was conducted on a stereotaxic surgery frame (Kopf Instrument, Model 1900)
458 under isoflurane anesthesia (1.5-2% + oxygen 1 L/min). Animal body temperature was maintained
459 at 30°C during surgery using a feedback thermocontroller (Harvard apparatus, #50722F). Skin
460 was cleaned with Nair hair remover followed by application of betadine to disinfect the area. Prior
461 to surgery, 2mg/kg bupivacaine was administered subcutaneously, and the mouse was given a
462 single dose of meloxicam (5mg/kg). Skin was carefully opened along the anterior-posterior midline,
463 bregma was set to zero based on skull balance. A craniotomy was performed with a drill above
464 the target site. Virus or Tracer was loaded into mineral oil (Sigma-Aldrich, M3516)-filled glass
465 pipette (WPI, TW100F-3) and delivered at rate 30 nl/min using a micro-infusion pump (Harvard
466 Apparatus, #70-3007). Pipette was carefully withdrawn from the brain, and the skin was sutured.
467 Animals were monitored up to 1 hour following regaining of consciousness, then transferred to
468 the home cage and monitored after 24h, 48h and 72h. Injection coordinates, A-DMS: AP + 1.2
469 mm, ML +1.35 mm, DV -2.7 mm; P-DMS: AP -0.3 mm, ML + 1.95 mm, DV -2.2 mm; PL: AP + 2.0
470 mm, ML +0.35 mm, DV -1.7 mm

471

472 **Anatomical Tracing**

473 For mapping PL synaptic terminals in DMS (anterograde tracing), a 1:1 mixture of AAV5-
474 CaMKii::Cre + AAVdj-EF1a::Flex-Synaptophysin-mRuby viruses were injected into PL. For
475 mapping retrogradely labeled neurons, a mixture of AAV1-Syn::Cre + AAVdj-EF1a::DIO-RVG +
476 AAVdj-EF1a::Flex-TVA-mCherry was injected into A-DMS and Alexa647-conjugated Cholera
477 toxin subunit-B was injected into P-DMS. Seven days later, EnvA G-Deleted Rabies-eGFP was
478 injected into A-DMS. For mapping 2nd-tier projections to PL::DMS pathway, retroAAV2-
479 hSyn::3xFlag-Cre was injected into the A- or P-DMS followed by a mixture of AAVdj-EF1a::DIO-
480 RVG + AAVdj-EF1a::Flex-TVA-mCherry into PL. Seven days later, EnvA G-Deleted Rabies-eGFP
481 was injected into PL.

482

483 After viral injection, 7 days (for Rabies virus) or 3 weeks (for AAV) were allowed for viral
484 expression, animals were deeply anaesthetized with i.p injection of 100 uL pentobarbital sodium
485 (Nembutal, 50 mg/mL) and transcardially perfused with PBS followed by formalin (10%). Brains
486 were removed and post-fixed in formalin (Thermo Fisher Scientific, SF1004) overnight, then
487 transferred to PBS. Brains were sectioned coronally at 50µm then brain slices were mounted on
488 slide glasses and covered with fluoromount solution (SouthernBiotech, #0100-01) for imaging.
489 Stitched large-field images were obtained with a 4x objective (Olympus, 4x, 0.16NA) on an epi-
490 fluorescent microscope (Olympus, BX63). Fluorescence-positive neurons were counted using
491 automated object detection (NeuroInfo Suite, v2021.). Three-dimensional brain images were then
492 reconstructed using NeuroInfo software (MBF bioscience), which registered individual slices to
493 the Allen Institute reference brain atlas (Allen mouse common coordinate framework; CCFv3) ⁴³.

494

495 **Immunohistochemistry**

496 At room temperature, free floating brain slices were permeabilized in 0.6% Triton x-100 and
497 blocked with 6% normal goat serum (Jackson ImmunoResearch, 005-000-121) in PBS for 1 h.
498 Samples were incubated in primary antibody solution (Rat anti-CTIP2, 1:500, Abcam, ab18465)
499 overnight in 0.2% Triton x-100 and 2% NGS in PBS. Slices were washed then incubated in
500 secondary antibody solution (Goat anti-rat IgG-alexa555 conjugated, 1:500, Invitrogen, A48263)
501 for 1h in 0.2% Triton x-100 and 2% NGS in PBS, then mounted and imaged.

502

503 **Behavioral equipment**

504 Behavior training was conducted utilizing a custom built 3-port operant chamber (dimensions 7.5
505 L x 5.5 W x 5.13 H inches, Sanworks LLC, NY). Each port is controlled by a TTL signal from the
506 state machine consisting of white LED light, infrared beam break detector and liquid outlet. The
507 center port was designated as a reward delivery outlet using a pinch valve (225P011-21,
508 NResearch, NJ). All behavior chambers were enclosed in sound-attenuating boxes (PSIB27, Pyle,
509 NY). Behavior protocols were controlled by Bpod software (<https://github.com/sanworks/Bpod>) in
510 MATLAB (MathWorks). All port entries and events were recorded by the Bpod State Machine
511 during behavioral sessions.

512

513 **Behavioral Training**

514 To increase operant responding, total calorie consumption was reduced over 1 week to reach
515 85~90% body weight, a level maintained throughout operant training. Animals were habituated to
516 behavior chambers for at least 2-days prior to training. Each day, animals were given 45 min of
517 exposure to the behavioral box with chocolate milk (Boost Original ready to drink, rich chocolate
518 nutritional shake, Nestle) delivery from the center port spaced 20 s. apart. Following the
519 habituation period, animals performed light-guided sessions as follows: 1) center port light

520 indicated the beginning of a trial; 2) trial initiation via a center poke led to illumination of a randomly
521 selected side port; 3) appropriate selection of the lit port within 3 s led to illumination of the center
522 port and delivery of 12ul of Boost at this location; 4) selection of the unlit alternative led to
523 illumination of the center port without concomitant dispensing of reward. Each trial was separated
524 by a 5 s. ITI in which all chamber lights were extinguished. Sessions lasted 1 hour with no trial
525 limits. Animals were considered to reach criteria with >200 completed trials per session.

526

527 **Two-alternative forced choice task**

528 After reaching criteria performance levels in light-guided training, mice progressed to a 2-
529 alternative forced choice task structured as follows: 1) center port light indicated the beginning of
530 a trial; 2) a 500 ms. holding period (sequentially increased from 0ms, 100ms, 300ms) in the center
531 port triggered the illumination of both side ports; 3) animals had a 3 s. window to register either
532 left or right port choice. When animals failed to make a choice in this period this resulted in an
533 omission, which was followed by a 3 s timeout and required the animal to reinitiate the trial. 4)
534 successful registration of a choice was followed by 0.5 s delay period ending in the outcome
535 period ($P_{outcome} = 85\%$). Correct choice resulted in delivering 12 μ L Boost from the center port
536 with 85% chance while incorrect choice resulted in a brief punishment tone (white noise) with 3 s
537 timeouts, also with 85% chance. In the remaining 15% of trials, animals didn't receive any
538 outcome (reward or punishment). Each trial was separated by a 3 s. ITI in which all chamber lights
539 were extinguished. To prevent outcome-insensitive behavior, past-reward history was monitored
540 in a 10-trial moving window and rewarded side was switched when 8 of the last 10 choices were
541 to the currently rewarded port. Sessions lasted for either 45 min. (1-p imaging) or 1 hr (optogenetic
542 manipulations). We utilized a relative reward-stay value >2 to decide when to move mice on to
543 recording sessions. Relative reward stay was defined as:

544

545

$$Relative\ reward\ stay = \ln \left(\frac{\frac{P(Stay)}{1 - P(Stay)}}{\frac{P(LoseStay)}{1 - P(LoseStay)}} \right)$$

546

547 **1-p Imaging**

548 To record calcium signals from PL neurons targeting specific striatal subregions,
549 retroAAV2/EF1a-3xFlag-Cre⁴⁴ was unilaterally injected to A- or P-DMS, together with AAV1/hSyn-
550 Flex::GCaMP7f-WPRE⁴⁵ injection into PL. Prior to relay GRIN lens (1mm x 4mm, Inscopix, 1050-
551 002176) implantation in PL, upper prefrontal tissue was gently aspirated using a glass pipette
552 until reaching 0.5 mm above target site. Following tissue aspiration, the GRIN lens was slowly
553 lowered (100μm/min) until 0.3 mm above from the target site. Dental cement (GeristoreTM) was
554 used to create a foundation around the GRIN lens, and the remaining exposed GRIN lens was
555 covered with silicone paste to prevent scratches. After surgery, animals were transferred to a
556 single housed cage, where their status was monitored until movement recovery. The anti-
557 inflammatory Meloxicam (5 mg/kg) was applied subcutaneously daily for >1 week, and animals
558 were carefully monitored. Four to six weeks following GRIN lens implantation, the miniscope
559 baseplate was installed under 1-p imaging (UCLA miniscope v3.0)⁴⁶ to locate fields of view (FOV)
560 with robust GCaMP7f expression. Once a FOV was selected, the baseplate was fixed with dental
561 cement to make a crown. Baseplates were covered with a cap, and animals were subsequently
562 returned to the home cage.

563

564 **Signal processing**

565 To extract calcium traces from imaging videos, we utilized MIN1PIPE (v2 alpha,
566 <https://github.com/JinghaoLu/MIN1PIPE/tree/v2-alpha>) for motion correction (Hierarchical non-
567 rigid movement correction), segmentation (GMM, LSTM classifier), and signal deconvolution

568 (CNMF identifier)⁴⁷. Each ROI selected by MIN1PIPE was individually reviewed to ensure somatic
569 morphology and remove repeated selection of the same neuron's proximal dendrites.

570

571 **Neural Encoding Model**

572 To analyze task-relevant neural activity we designed a neural encoding model based upon a linear
573 combination of event-based and continuous predictors. We included episodic external variables,
574 including trial start cue, self-initiation, choice and outcome, which were represented by spline-
575 based, temporally expanded kernels (Fig. 2d). In addition, we sought to identify neural signals
576 encoding relevant internal value information likely guiding choice⁴⁸. To do this we fit our choice
577 data with a Q-learning reinforcement model and used Q values and reward prediction errors as
578 internal behavioral variables. Specifically, we included trial-by-trial ΣQ ($Q_{\text{left}} + Q_{\text{right}}$) and ΔQ ($Q_{\text{left}} - Q_{\text{right}}$) values (as continuous predictors that changed their value at outcome, consistent with the
579 RL model) and reward prediction errors (kernels tethered to the outcome). Finally, we included a
580 local reward rate averaged over the prior 5 trials as a continuous behavioral variable. We fit these
581 regression parameters using a generalized linear model with near-lasso (elastic net, alpha=0.95)
582 regularization to achieve sparse regression weights, using the *glmnet* library⁴⁹ (wrapped for
583 MATLAB usage with custom software available at doi:10.5281/zenodo.3568314). Details on the
584 representation of each predictor in the design matrix of the model are given in Table 1. For each
585 fitted trace, the shrinkage hyperparameter λ controlling the strength of the elastic net
586 regularization was selected by 50-fold cross-validation. Following established practice (Hastie,
587 2008), given the maximum value of the (cross-validated) fraction of variance explained (FVE) over
588 possible values of λ and its standard deviation across folds, we selected the largest value of λ
589 such that its associated FVE was larger than the maximum minus one standard deviation, thus
590 selecting the “simplest” model in the neighborhood of the best-fitting one. The cross-validation folds
591 were stratified by experimental trial, so that each trial was represented roughly equally in each

593 fold, and the data was grouped in 200ms-long temporal chunks (typically corresponding to about
594 4 imaging frames) for the purpose of cross-validation, to reduce the number of temporally adjacent
595 data samples in different cross-validation folds⁵⁰.

596

597 We fitted an independent model to each recorded neuron. Using the model, the fraction of
598 variance explained (FVE) was calculated by comparing the full model and actual calcium signal
599 trace as an indicator of the accuracy of model prediction. To exclude non-task relevant neurons,
600 we limited further analyses to those with at least 5% FVE. To assess contribution from a certain
601 predictor, we calculated a tuning index defined as FVE(Full) – FVE (reduced), where FVE
602 (reduced) is the FVE of the reduced model obtained by removing the predictor of interest from
603 the full model. Tuning to a group of predictors was quantified in the same way. This tuning index
604 gives a lower bound on the amount of variability in the data that can be explained by the predictor
605 (or group of predictors) of interest. Whenever a dichotomous “tuned”/“not Tuned” characterization
606 was needed, such as in the donut plots in Fig 3, we classified as “tuned” neurons that met a 5%
607 tuning threshold for grouped predictors (Fig 3d).

608

609 Each neuron’s fitted model provided tuning estimates for all predictors, as well as neuron-level
610 estimates of the model kernels such as those in Fig 4a, 5a, f. The pathway-level kernels in Fig 4e,
611 5e,j were defined as the root-mean-square of the kernels of task-relevant neurons in each
612 pathway, and their confidence intervals were determined by bootstrapping over the set of neurons
613 (10,000 bootstrap samples). The pathway kernel for a certain predictor can be given an intuitive
614 geometrical interpretation as follows: if we consider the pseudo-population vector describing the
615 activity of all recorded (and task-relevant) neurons within a pathway, the pathway kernel for a
616 predictor at lag t is an estimate of the distance at lag t of the population vector from its time-
617 averaged value, after accounting for the effect of the other predictors. By construction, then, the
618 pathway kernels can never be negative, as they capture the overall magnitude of the effect of the

619 predictor on the neural population, rather than a specific modulation direction. The statistical
620 significance of the difference of pathway kernels in Fig 4c, 5dh was assessed with a bootstrap
621 test ⁵¹, performed with the Bias-Corrected and accelerated(BCa) technique and bootstrapping
622 over the set of neurons belonging to the two pathways (10,000 bootstrap samples).

623

624 **Reinforcement Learning Model**

625 We adapted a Q-learning Reinforcement Learning Model with two basic parameters that fit the
626 behavioral data produced by the serial reversal task. Mouse choice and outcome history were the
627 primary inputs of the model. The values of the choice alternatives were initiated at 0 and updated
628 as follows:

629
$$Q_{t+1} = Q_t + \alpha_t (R_t - Q_t)$$

630

631 Q_t is the value of the action taken on trial t of each choice and R is the actual reward received in
632 trial t . Learning rate was controlled by the parameter α . Softmax rule was employed to infer trial-
633 by-trial Q-values for each choice, which relates choice probability to differences in choice value:

634
$$P_A(t) = \frac{1}{1+e^{-z}}, \text{ where}$$

635
$$z = \beta(Q_A(t) - Q_B(t))$$

636

637 β is the inverse temperature parameter and controls the degree to which choices are biased by
638 perceived value. High values for β indicate mice more readily exploit differences in action values
639 between the alternatives, while lower values suggest that mice exhibit more exploratory behavior.
640 To fit this model to our choice data, we used the *fmincon* function in MATLAB to minimize the
641 negative log likelihood of models using our parameters (α, β) .

642

643 To quantify the goodness of fit of the RL model in an easily interpretable way, we computed the
644 fraction of deviance of the choice data explained by the model (FDE)⁵². The deviance of the RL
645 model is

646

$$d_{RL} = -2L_{RL}$$

647 where L is the log-likelihood of the fitted model:

648

$$L = \sum [c_n \log p_n + (1 - c_n) \log(1 - p_n)]$$

649 where c_n is the choice on trial n ($c_n=0$ for left choice, $c_n=1$ for right choice), and p_n is the probability
650 that the model assigns to choosing right on trial n . The FDE is defined as

651

$$FDE = \frac{d_{null} - d_{RL}}{d_{null} - d_{sat}}$$

652 where d_{null} is the deviance for a null model that assigns the same probability $p_n=p$ on each trial
653 (equal to the average probability of choosing right over the session), and d_{sat} is the deviance of
654 the “saturated” model, which assigns $p_n=1$ on trials where the mouse chose right, and vice versa
655 $p_n=0$ on trials where the mouse chose left. By inspection of the definition of L we find that d_{sat} is
656 always zero, and therefore

657

$$FDE = \frac{d_{null} - d_{RL}}{d_{null}}$$

658 We note that $FDE \leq 1$, with $FDE=0$ for a model that doesn’t do better than chance (i.e., making
659 always the same prediction for each trial) and $FDE=1$ for a model that explains all variability in
660 the data (this is in general unachievable on unseen data, unless the process generating the data
661 is deterministic). Applying this metric showed that the reinforcement learning model successfully
662 captured the main behavioral patterns exhibited by the animals, explaining overall 23.4% of the
663 deviance (as measured on the training data; Fig. S2c).

664

665 As a further check on the performance of the RL model, we compared its goodness of fit and
666 predictive power with that of a logistic regression model that predicted the upcoming choice based
667 on the choices and outcomes of the previous 5 trials. The two models had largely comparable
668 performance (Fig S2c). The logistic regression model tended to have slightly higher FDE on the
669 training data (Fig S2c), but this was likely an overfitting effect due to the larger number of
670 parameters available to that model (11 parameters for the logistic regression vs 2 parameters for
671 the RL model), as evidenced by the similar values of the Akaike Information Criterion between
672 the two models (FigS2c).

673

674 **Optogenetics**

675 To evaluate the behavioral role of each pathway (PL::A-DMS or PL::P-DMS), we used a
676 Halorhodopsin-induced terminal suppression strategy (Felix-Ortiz et al., 2013). AAV5/CaMKii-
677 NpHR3.0-eYFP (UNC vector core) or AAV5/Syn-GFP (Penn vector core) was injected bilaterally
678 to the PL followed by bilateral implantation of custom-made optic cannulas (Thorlabs, FT200EMP,
679 SFLC230) for pathway-specific light delivery into either A-DMS and P-DMS. To ensure full
680 expression of NpHR in the axonal terminal, a recovery period of at least 5 weeks was allowed
681 after viral injection. Animals were acclimated to the fiber optic tethers for at least 5 days before
682 any behavioral sessions. Once animals performed >200 trials/day with a relative reward stay >2
683 we proceeded to the optogenetic manipulation phase, the training proceeded to the light delivery
684 stage. In the behavior task, two light delivery protocols (~530nm light from either PrizmatixFC-
685 LED-535-TR or Shanghai DPSS, SDL-532-100T) were used to assess temporally distinct
686 contributions from each pathway. To prevent light-induced non-specific effect, light intensity was
687 adjusted to 0.8~2 mW at the fiber end⁵³. Choice epoch manipulations were continuous illumination

688 from initiation poke to the end of the reward delivery delay following choice. Outcome epoch
689 manipulations were continuous illumination from outcome delivery until next trial center light
690 on. Either Δ Win-Stay or Δ Lose-Stay was calculated as:

691
$$\Delta WinStay(ON - OFF) = P(Stay | Win, Light ON) - P(Stay | Win, Light OFF)$$

692
$$\Delta LoseStay(ON - OFF) = P(Stay | Lose, Light ON) - P(Stay | Lose, Light OFF)$$

693 where Win or Lose indicates reward history on prior trial. Light On/Off refers to presence or
694 absence of light illumination on previous choice epoch (Fig. 6, Fig. S8), current choice epoch (Fig.
695 S8) and previous outcome epoch (Fig. 7, Fig. S9). Behavioral data were collected for multiple
696 days to obtain enough trials (3351 ± 143 trials, mean \pm s.e.m. across animals). Unless otherwise
697 noted, probability of reward was 85%. For Fig. S10, some PL::A-DMS outcome optogenetic
698 sessions were performed with reward probabilities of 1.0 or 0.4, applied to both ports.

699

700 **Quantification and statistical analysis**

701 All data were analyzed with prism8.0 and custom MATLAB code, available upon request.
702 Repeated measures ANOVA t-test (paired and unpaired) were performed using Prism 8.0 built-
703 in-function. K-S tests were performed as indicated in results using *kstest2* functions in MATLAB.
704 Kernel density estimates were performed as indicated in results using *ksdensity* functions in
705 MATLAB. Significant effects and p-values are indicated in the figures and legends.

706

707 REFERENCES

708 1 Frank, M. J. Computational models of motivated action selection in corticostriatal circuits. *Current*
709 *opinion in neurobiology* **21**, 381-386 (2011).

710 2 Hintiryan, H. *et al.* The mouse cortico-striatal projectome. *Nat Neurosci* **19**, 1100-1114,
711 doi:10.1038/nn.4332 (2016).

712 3 Hunnicutt, B. J. *et al.* A comprehensive excitatory input map of the striatum reveals novel
713 functional organization. *Elife* **5**, doi:10.7554/eLife.19103 (2016).

714 4 Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. Putting a
715 spin on the dorsal-ventral divide of the striatum. *Trends Neurosci* **27**, 468-474,
716 doi:10.1016/j.tins.2004.06.006 (2004).

717 5 Burton, A. C., Nakamura, K. & Roesch, M. R. From ventral-medial to dorsal-lateral striatum: neural
718 correlates of reward-guided decision-making. *Neurobiol Learn Mem* **117**, 51-59,
719 doi:10.1016/j.nlm.2014.05.003 (2015).

720 6 Hart, G., Bradfield, L. A., Fok, S. Y., Chieng, B. & Balleine, B. W. The Bilateral Prefronto-striatal
721 Pathway Is Necessary for Learning New Goal-Directed Actions. *Curr Biol* **28**, 2218-2229 e2217,
722 doi:10.1016/j.cub.2018.05.028 (2018).

723 7 Hart, G., Bradfield, L. A. & Balleine, B. W. Prefrontal Corticostriatal Disconnection Blocks the
724 Acquisition of Goal-Directed Action. *J Neurosci* **38**, 1311-1322, doi:10.1523/JNEUROSCI.2850-
725 17.2017 (2018).

726 8 Yin, H. H., Ostlund, S. B., Knowlton, B. J. & Balleine, B. W. The role of the dorsomedial striatum in
727 instrumental conditioning. *Eur J Neurosci* **22**, 513-523, doi:10.1111/j.1460-9568.2005.04218.x
728 (2005).

729 9 Yin, H. H., Knowlton, B. J. & Balleine, B. W. Blockade of NMDA receptors in the dorsomedial
730 striatum prevents action-outcome learning in instrumental conditioning. *Eur J Neurosci* **22**, 505-
731 512, doi:10.1111/j.1460-9568.2005.04219.x (2005).

732 10 Shipman, M. L., Johnson, G. C., Bouton, M. E. & Green, J. T. Chemogenetic Silencing of Prelimbic
733 Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding. *eNeuro* **6**,
734 doi:10.1523/ENEURO.0125-19.2019 (2019).

735 11 McGeorge, A. J. & Faull, R. L. The organization of the projection from the cerebral cortex to the
736 striatum in the rat. *Neuroscience* **29**, 503-537, doi:10.1016/0306-4522(89)90128-0 (1989).

737 12 Corbit, L. H. & Janak, P. H. Posterior dorsomedial striatum is critical for both selective instrumental
738 and Pavlovian reward learning. *Eur J Neurosci* **31**, 1312-1321, doi:10.1111/j.1460-
739 9568.2010.07153.x (2010).

740 13 Wang, X. *et al.* Medium spiny neurons of the anterior dorsomedial striatum mediate reversal
741 learning in a cell-type-dependent manner. *Brain Struct Funct* **224**, 419-434, doi:10.1007/s00429-
742 018-1780-4 (2019).

743 14 Castañé, A., Theobald, D. E. & Robbins, T. W. Selective lesions of the dorsomedial striatum impair
744 serial spatial reversal learning in rats. *Behavioural brain research* **210**, 74-83 (2010).

745 15 Smith, A. C. W. *et al.* Opposing roles for striatonigral and striatopallidal neurons in dorsolateral
746 striatum in consolidating new instrumental actions. *Nat Commun* **12**, 5121, doi:10.1038/s41467-
747 021-25460-3 (2021).

748 16 Valjent, E. & Gangarossa, G. The tail of the striatum: from anatomy to connectivity and function.
749 *Trends in Neurosciences* (2020).

750 17 Gangarossa, G. *et al.* Contrasting patterns of ERK activation in the tail of the striatum in response
751 to aversive and rewarding signals. *J Neurochem* **151**, 204-226, doi:10.1111/jnc.14804 (2019).

752 18 Menegas, W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting
753 to the posterior striatum reinforce avoidance of threatening stimuli. *Nat Neurosci* **21**, 1421-1430,
754 doi:10.1038/s41593-018-0222-1 (2018).

755 19 Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. *Annu Rev Neurosci*
756 **24**, 167-202, doi:10.1146/annurev.neuro.24.1.167 (2001).

757 20 Murugan, M. *et al.* Combined Social and Spatial Coding in a Descending Projection from the
758 Prefrontal Cortex. *Cell* **171**, 1663-1677 e1616, doi:10.1016/j.cell.2017.11.002 (2017).

759 21 Otis, J. M. *et al.* Prefrontal cortex output circuits guide reward seeking through divergent cue
760 encoding. *Nature* **543**, 103-107, doi:10.1038/nature21376 (2017).

761 22 Lui, J. H. *et al.* Differential encoding in prefrontal cortex projection neuron classes across cognitive
762 tasks. *Cell* **184**, 489-506 e426, doi:10.1016/j.cell.2020.11.046 (2021).

763 23 Balleine, B. W., Peak, J., Matamales, M., Bertran-Gonzalez, J. & Hart, G. The dorsomedial striatum:
764 an optimal cellular environment for encoding and updating goal-directed learning. *Current
765 Opinion in Behavioral Sciences* **41**, 38-44, doi:10.1016/j.cobeha.2021.03.004 (2021).

766 24 Bari, B. A. *et al.* Stable Representations of Decision Variables for Flexible Behavior. *Neuron* **103**,
767 922-933 e927, doi:10.1016/j.neuron.2019.06.001 (2019).

768 25 Terra, H. *et al.* Prefrontal Cortical Projection Neurons Targeting Dorsomedial Striatum Control
769 Behavioral Inhibition. *Curr Biol* **30**, 4188-4200 e4185, doi:10.1016/j.cub.2020.08.031 (2020).

770 26 Arlotta, P. *et al.* Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron
771 Development In Vivo. *Neuron* **45**, 207-221, doi:10.1016/j.neuron.2004.12.036 (2005).

772 27 Alabi, O. O., Fortunato, M. P. & Fuccillo, M. V. Behavioral Paradigms to Probe Individual Mouse
773 Differences in Value-Based Decision Making. *Front Neurosci* **13**, 50, doi:10.3389/fnins.2019.00050
774 (2019).

775 28 Alabi, O. O. *et al.* Disruption of Nrxn1alpha within excitatory forebrain circuits drives value-based
776 dysfunction. *eLife* **9**, doi:10.7554/eLife.54838 (2020).

777 29 Stephenson-Jones, M. *et al.* A basal ganglia circuit for evaluating action outcomes. *Nature* **539**,
778 289-293 (2016).

779 30 Peters, A. J., Fabre, J. M., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity
780 topographically reflects cortical activity. *Nature* **591**, 420-425 (2021).

781 31 Sul, J. H., Kim, H., Huh, N., Lee, D. & Jung, M. W. Distinct roles of rodent orbitofrontal and medial
782 prefrontal cortex in decision making. *Neuron* **66**, 449-460 (2010).

783 32 Fee, M. S. The role of efference copy in striatal learning. *Current opinion in neurobiology* **25**, 194-
784 200 (2014).

785 33 Parker, N. F. *et al.* Choice-selective sequences dominate in cortical relative to thalamic inputs to
786 nucleus accumbens, providing a potential substrate for credit assignment. *bioRxiv*, 725382 (2020).

787 34 Lak, A. *et al.* Dopaminergic and prefrontal basis of learning from sensory confidence and reward
788 value. *Neuron* **105**, 700-711. e706 (2020).

789 35 Spellman, T., Svei, M., Kaminsky, J., Manzano-Nieves, G. & Liston, C. Prefrontal deep projection
790 neurons enable cognitive flexibility via persistent feedback monitoring. *Cell* **184**, 2750-2766.
791 e2717 (2021).

792 36 Siniscalchi, M. J., Wang, H. & Kwan, A. C. Enhanced population coding for rewarded choices in the
793 medial frontal cortex of the mouse. *Cerebral Cortex* **29**, 4090-4106 (2019).

794 37 Verharen, J. P., den Ouden, H. E., Adan, R. A. & Vanderschuren, L. J. Modulation of value-based
795 decision making behavior by subregions of the rat prefrontal cortex. *Psychopharmacology*, 1-14
796 (2020).

797 38 Kim, C. K. *et al.* Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms
798 for Restraint of Reward Seeking. *Cell* **170**, 1013-1027 e1014, doi:10.1016/j.cell.2017.07.020
799 (2017).

800 39 Passecker, J. *et al.* Activity of prefrontal neurons predict future choices during gambling. *Neuron*
801 **101**, 152-164. e157 (2019).

802 40 Kawai, T., Yamada, H., Sato, N., Takada, M. & Matsumoto, M. Roles of the lateral habenula and
803 anterior cingulate cortex in negative outcome monitoring and behavioral adjustment in
804 nonhuman primates. *Neuron* **88**, 792-804 (2015).

805 41 Quilodran, R., Rothe, M. & Procyk, E. Behavioral shifts and action valuation in the anterior
806 cingulate cortex. *Neuron* **57**, 314-325 (2008).

807 42 Pinto, L. & Dan, Y. Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior.
808 *Neuron* **87**, 437-450, doi:10.1016/j.neuron.2015.06.021 (2015).

809 43 Wang, Q. *et al.* The Allen mouse brain common coordinate framework: a 3D reference atlas. *Cell*
810 **181**, 936-953. e920 (2020).

811 44 Tervo, D. G. *et al.* A Designer AAV Variant Permits Efficient Retrograde Access to Projection
812 Neurons. *Neuron* **92**, 372-382, doi:10.1016/j.neuron.2016.09.021 (2016).

813 45 Dana, H. *et al.* High-performance calcium sensors for imaging activity in neuronal populations and
814 microcompartments. *Nat Methods* **16**, 649-657, doi:10.1038/s41592-019-0435-6 (2019).

815 46 Cai, D. J. *et al.* A shared neural ensemble links distinct contextual memories encoded close in time.
816 *Nature* **534**, 115-118, doi:10.1038/nature17955 (2016).

817 47 Lu, J. *et al.* MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline.
818 *Cell Rep* **23**, 3673-3684, doi:10.1016/j.celrep.2018.05.062 (2018).

819 48 Dayan, P. & Abbott, L. F. *Theoretical neuroscience: computational and mathematical modeling of
820 neural systems.* (Computational Neuroscience Series, 2001).

821 49 Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via
822 Coordinate Descent. *J Stat Softw* **33**, 1-22 (2010).

823 50 Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across
824 cortex. *Nature* **548**, 92-96, doi:10.1038/nature23020 (2017).

825 51 Efron, B. & Tibshirani, R. An Introduction to the Bootstrap/by Bradley Efron, Robert J. Tibshirani.
826 (1993).

827 52 Agresti, A. *An introduction to categorical data analysis.* (John Wiley & Sons, 2018).

828 53 Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations.
829 *Nature neuroscience* **22**, 1061-1065 (2019).

830

Figure 1

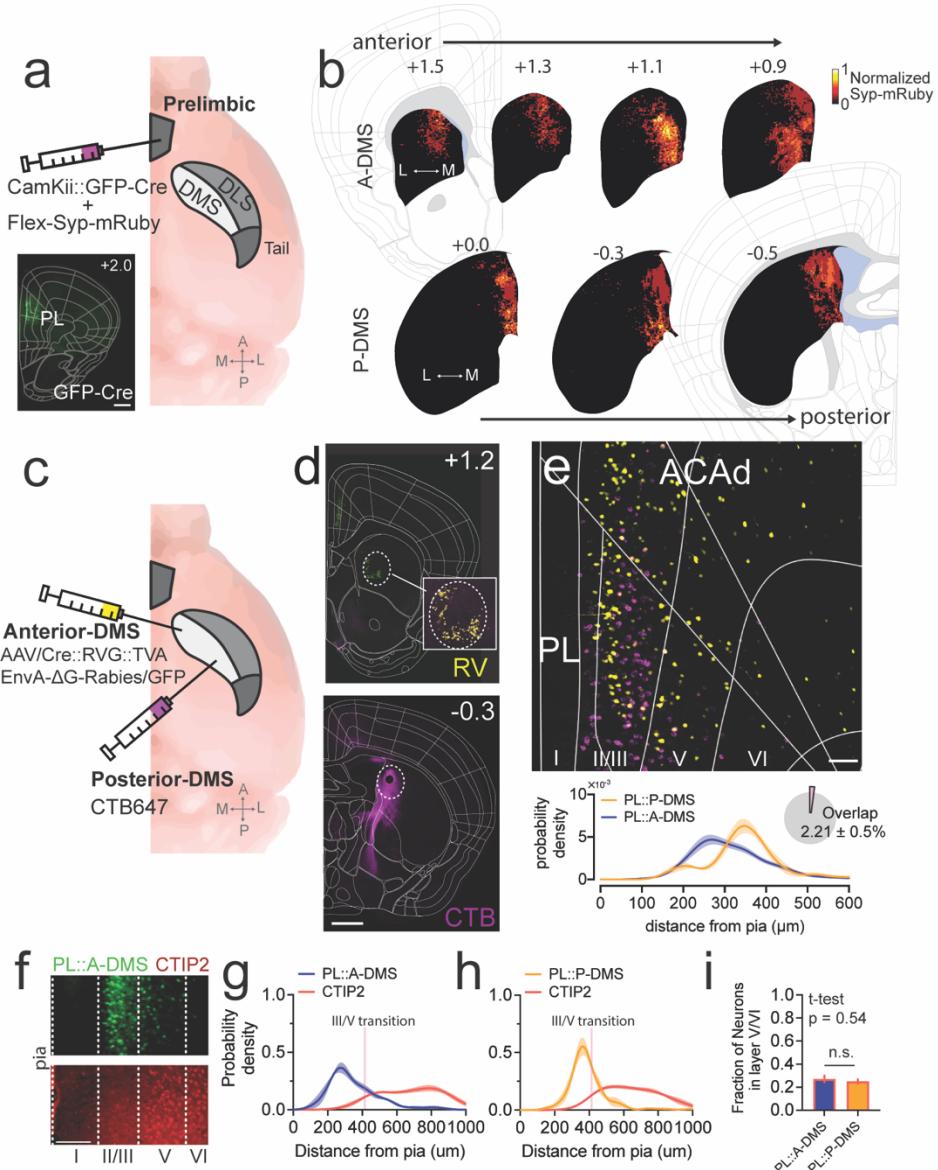


Figure 1. Distinct PL neuron populations defined by anterior/posterior dorsomedial striatal (DMS) target. a) Approach for anterograde tracing of PL-DMS excitatory projections with synaptic terminal marker Synaptophysin-mRuby (inset shows GFP-Cre expression at PL target site). b) Superimposed striatum images (top: A-DMS, bottom: P-DMS, left to right increasingly posterior) showing averaged fluorescent intensity of Synaptophysin-mRuby inputs from PL along anterior-posterior axis (n= 4). c) Schematic demonstrating dual-color retrograde tracing strategy using trans-synaptic rabies virus (A-DMS) and Alexa647-conjugated CTB (P-DMS). d) Coronal sections showing injection sites (top: A-DMS, Bottom: P-DMS). scale bar, 500 μ m. Number in upper left corner indicates A/P coordinate from bregma. e) Representative image of dorsomedial prefrontal cortex (top) and quantification (kernel density estimate) of neuronal density from the pia (bottom), with relative proportion of overlapping double-labeled neurons (inset). scale bar, 100 μ m (n= 4). ACAd, dorsal part of anterior cingulate cortex. f) Example image showing prelimbic area from PL:A-DMS. g) Probability density distribution of PL:A-DMS and CTIP2 neurons. h) Probability density distribution of PL:P-DMS and CTIP2 neurons. i) Bar chart showing the fraction of neurons in layer V/VI for PL:A-DMS and PL:P-DMS. t-test, p = 0.54. n.s., not significant.

EnvA-ΔG-rabies virus tracing of A-DMS (top) co-stained with CTIP2 (bottom). Scale bar 100 μ m.
g) Quantification of neuronal density from pia of PL::A-DMS and CTIP2+ populations (n= 3). h) Quantification of neuronal density from pia of PL::P-DMS and CTIP2+ populations (n= 3). Pink line in g,h represents average layer III-V transition as visualized by compact CTIP2 staining. i) Fraction of GFP labeled neurons located in compact CTIP2+ deep cortical layers.

Figure 2.

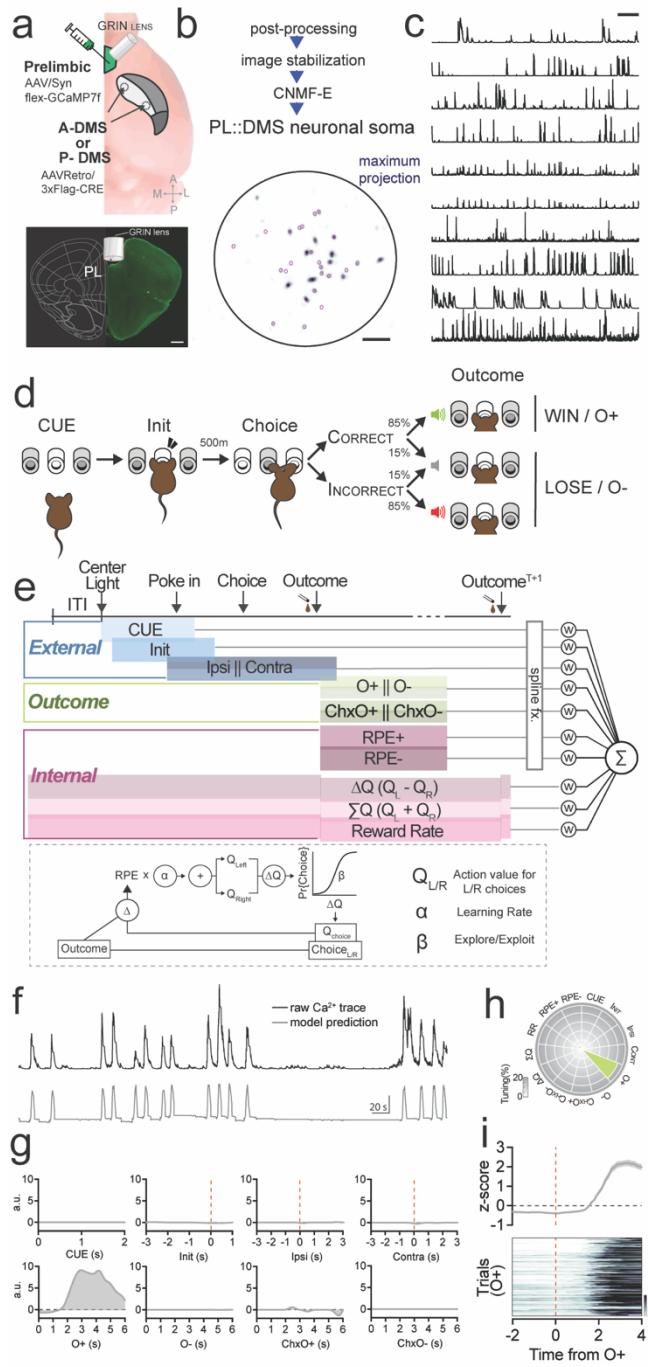


Figure 2. Quantifying neural coding of a value-based operant task. a) Schematic showing viral injection strategy to label pathway specific PL neurons for 1-photon calcium imaging (top) and representative image for GRIN lens location (bottom). scale bar, 500 μ m. b) MIN1PIPE workflow for extraction of calcium signal from identified ROIs (bottom). scale bar, 50 pixels. c) Representative raw Ca^{2+} traces from 10 PL::A-DMS neurons. Scale bar, 1min. d) Schematic of trial structure showing mice initiating trials via sustained (500 ms) center port entry, followed by left/right choice within 3 sec. Subsequent reward is delivered from center port. e) Schematic

drawing of design matrix for neural encoding model showing behavioral predictors for sensorimotor components, outcomes and internal representations of value (top, see table 1). Reinforcement learning model for estimating internal value predictors (*bottom*). f) Example raw Ca^{2+} trace (*top, black*) and output of encoding model (*bottom, gray*). g) Temporally expanded predictors (kernels) from example neuron exhibiting strong O+ modulation. h) Tuning plot of same neuron. i) Peri-event time histogram (PETH, *top*) and trial-by-trial neuronal activity (*bottom*) aligned by O+.

Figure 3.

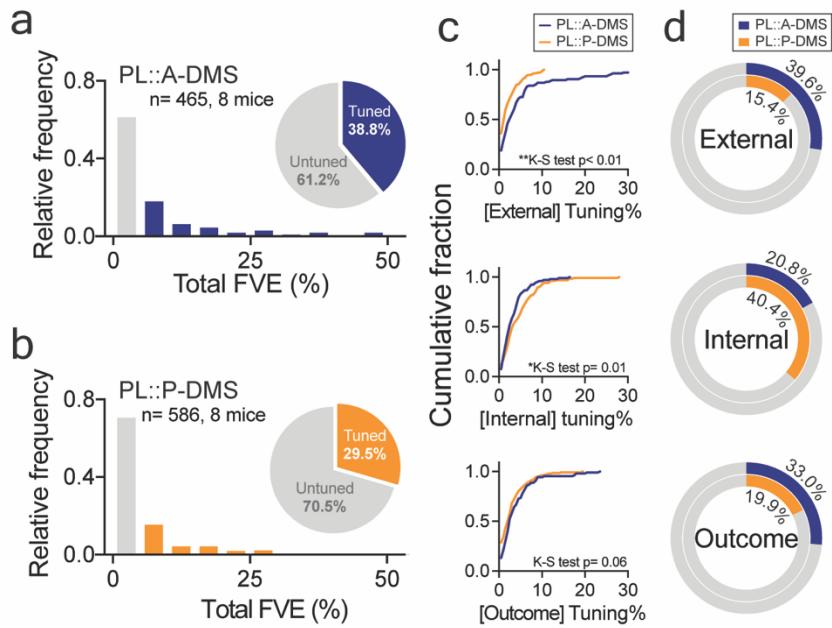


Figure 3. Divergence of neural coding for PL pathways defined by A/P DMS target. a,b) Histogram of binned total FVE distribution for all neurons from (a) PL::A-DMS or (b) PL::P-DMS. Grey bars denote non-task tuned population (<5% FVE); colored bars (blue, PL::A-DMS; orange, PL::P-DMS) denote task-tuned neurons. Pie charts showing the proportion of task tuned neurons for both PL::DMS pathways (insets). c) Cumulative distribution of tuning indices for grouped behavioral variables (see text): external (top), internal (middle), outcome (bottom). Plots are restricted to task-tuned neurons. d) Proportion of highly tuned neurons (>5% FVE) for each behavioral category from each pathway, external (top), internal (middle), outcome (bottom).

Figure 4

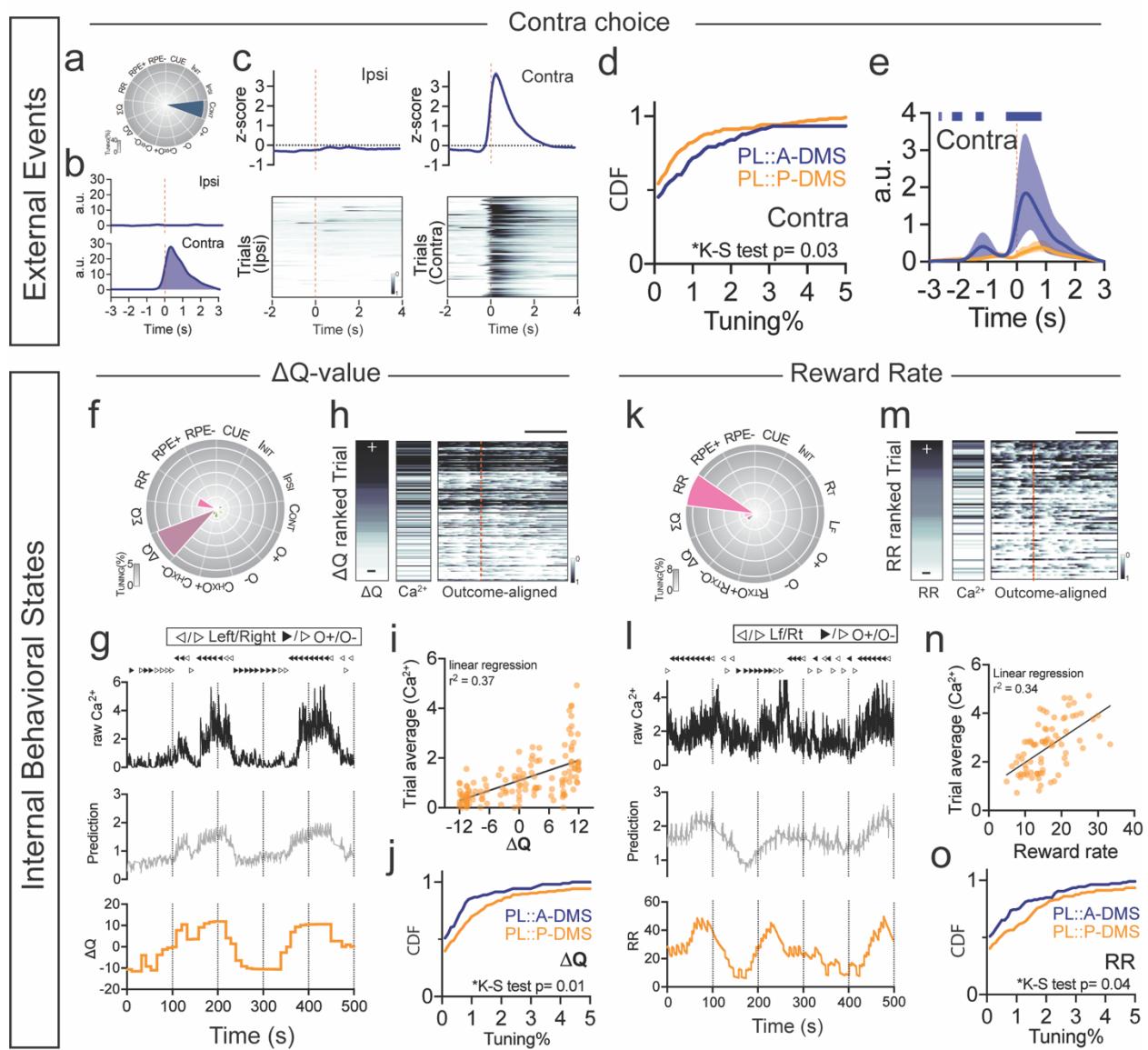


Figure 4. Preferential encoding of choice in PL::A-DMS, internal value signals in PL::P-DMS. a) Tuning plot showing representative contralateral choice tuned neuron from PL::A-DMS. b) Representative kernels corresponding to ipsi (top) and contra (bottom) choices. c) z-scored PETH (top) and trial-by-trial neuronal activity (bottom) from Ipsi (left)/Contra (right) choice. d) Cumulative distribution of contra choice tuned neurons in both PL-DMS pathways. e) Averaged contralateral choice kernels for both PL-DMS pathways. Solid line denotes root-mean-squared; shaded area denotes 95% confidence interval. Colored-bar on top indicates significant mean-displacement on each timepoint between pathways. f) Tuning plot for representative ΔQ tuned neuron from PL::P-DMS. g) Raw Ca^{2+} trace (black, top), model prediction (gray, middle) and trial-by-trial ΔQ (orange, bottom). Choices and outcomes at top (direction of triangle, left/right choice; filled/blanked, O+/O-). h) Trial-by-trial transient Ca^{2+} signals (middle, trial average; right, outcome

aligned) ranked by ΔQ (left). scale bar, 2 sec. i) Scatter plot showing linear correlation between ΔQ and trial average of Ca^{2+} waveform. j) Cumulative distribution for ΔQ tuned neurons in both PL-DMS pathways. k) Tuning plot showing representative RR tuned neuron from PL::P-DMS. l) Raw Ca^{2+} trace (black, *top*), model prediction (gray, *middle*) and RR (5-prior trial average, orange, *bottom*) with choice/outcome information at top. m) Trial-by-trial transient Ca^{2+} signals (middle, averaged; right, outcome aligned) ranked by RR (left, averaged). scale bar, 2 sec. n) Scatter plot showing linear correlation between local RR and trial average of Ca^{2+} transients. o) Cumulative distribution for RR tuned neurons in both PL-DMS pathways.

Figure 5.

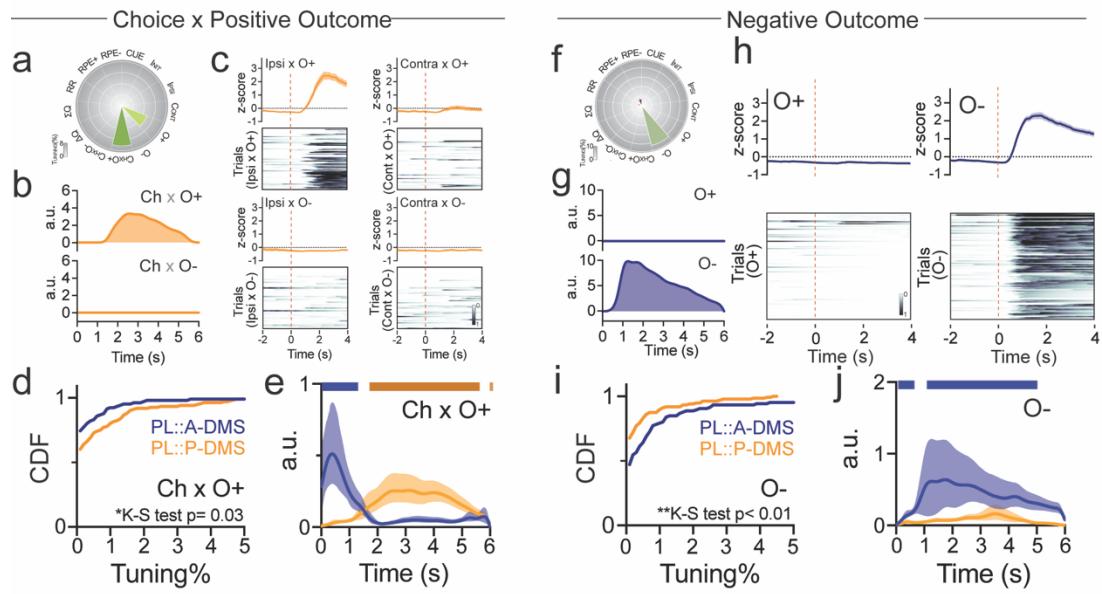


Figure 5. Divergent encoding of outcome by PL::DMS pathways. a) Representative tuning plot of Ch x O+ tuned neuron from PL::P-DMS. b) Inferred kernels corresponding to Ch x O+ (top), Ch x O- (bottom). c) z-scored PETH (top in each panel) and trial-by-trial neuronal activity (bottom in each panel) to 4 possible choice outcomes, aligned to outcome delivery. d) Cumulative distribution for Ch x O+ tuning from task-tuned neurons of both PL::DMS pathways. e) Averaged Ch x O+ kernels show pathway-distinct temporal properties. Solid line denotes root-mean-squared; shaded area denotes 95% confidence interval. Colored-bar on top indicates significant mean-displacement on each timepoint between pathways. f) Representative tuning plot for O- tuned neuron from PL::A-DMS. g) Inferred kernels corresponding to O+ (top), O- (bottom). h) z-scored PETH (top) and trial-by-trial neuronal activity (bottom) corresponding to types of outcomes (left, O+; right, O-). i) Cumulative distribution for O- tuning from task-tuned neurons of both PL::DMS pathways. j) Averaged O- kernels for both PL::DMS pathways.

Figure 6

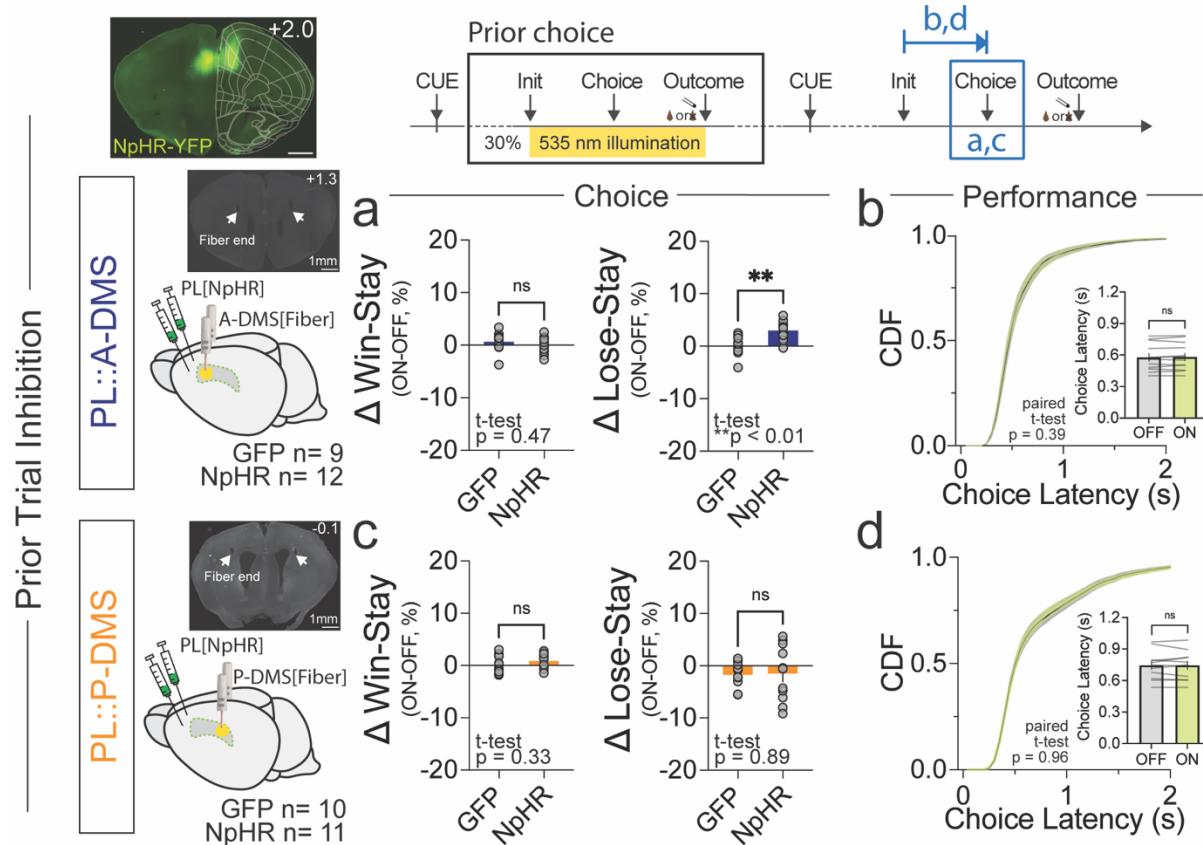


Figure 6. Optogenetic suppression of choice-associated PL::A-DMS activity impairs subsequent choice selection without impacting current trials. (top, left) Representative section of PL injection site. (top, right) schematic of optogenetic manipulation (yellow bar) with respect to behavioral measures (blue). a) Comparison of Δ Win-Stay (left) and Δ Lose-Stay (right) between NpHR and GFP (control) groups, when light was delivered in the previous choice epoch to PL terminals in A-DMS. b) Cumulative distribution of choice latencies and average of choice latency (inset) following light ON versus OFF trials from NpHR inhibition of PL::A-DMS. c) Comparison of Δ Win-Stay (left) and Δ Lose-Stay (right) between NpHR and GFP (control) groups, when light was delivered in the previous choice epoch to PL terminals in P-DMS. d) Cumulative distribution of choice latencies and average of choice latency (inset) following light ON versus OFF trials from NpHR inhibition of PL::P-DMS.

Figure 7

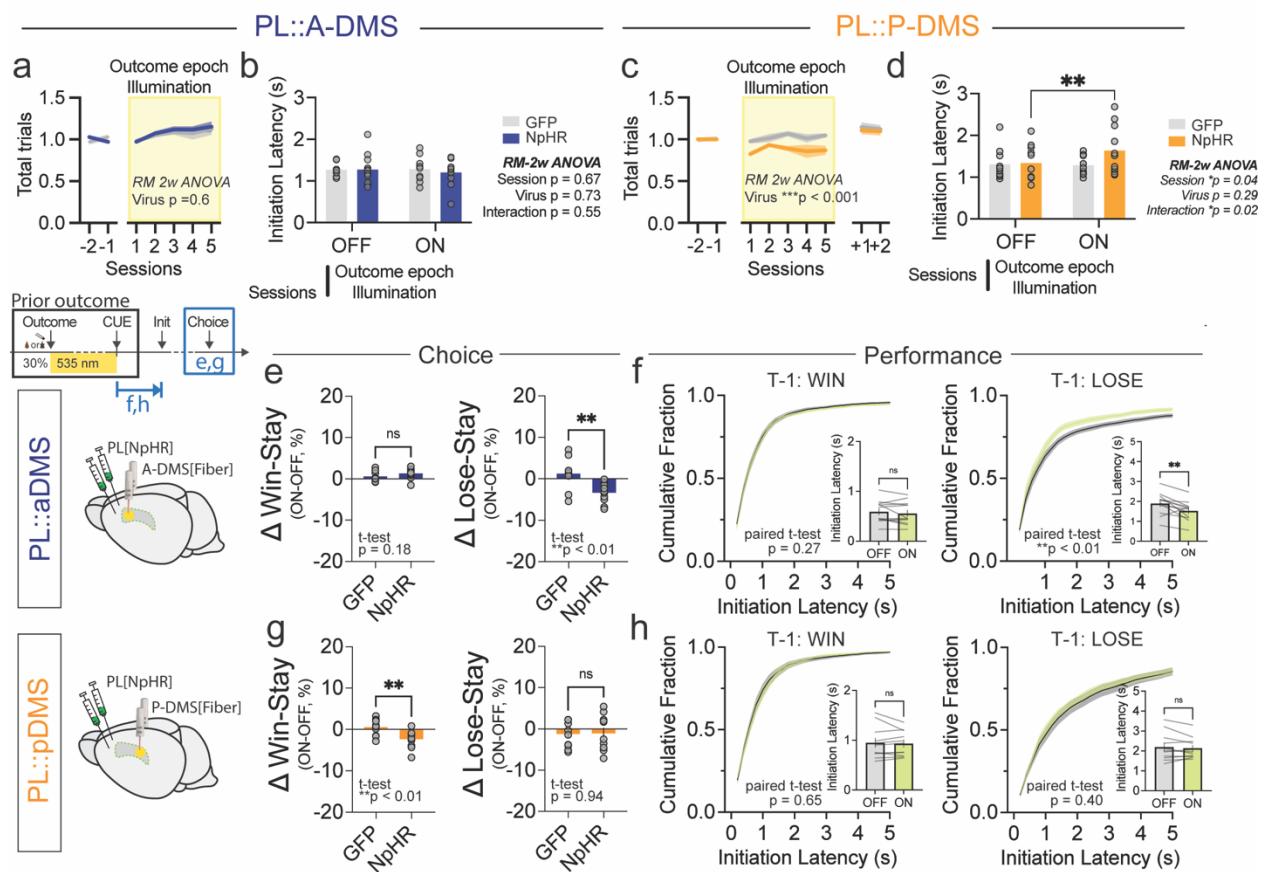


Figure 7. PL:: Optogenetic suppression of outcome-associated signals causes pathway-specific effects on task engagement and responses to positive and negative outcomes. a) Normalized number of total trials per session in sessions without and with random 30% outcome optogenetic inhibition of PL::A-DMS pathway (yellow bars). b) Comparison of initiation latency between sessions with (ON) or without (OFF) outcome epoch illumination of PL::A-DMS circuits from either GFP or NpHR group. c) Normalized number of total trials per session in sessions without and with random 30% outcome optogenetic inhibition of PL::P-DMS pathway (yellow bars). d) Comparison of initiation latency between sessions with (ON) or without (OFF) outcome epoch illumination of PL::P-DMS circuits from either GFP or NpHR group. e) Comparison of Δ Win-Stay(left) and Δ Lose-Stay(right) between GFP and NpHR groups when light was delivered during prior trial outcomes to PL terminals in A-DMS. f) Cumulative distribution of initiation latencies and average of initiation latency (inset) following outcome light ON versus OFF trials from NpHR inhibition of PL::A-DMS. g) Comparison of Δ Win-Stay(left) and Δ Lose-Stay(right) between GFP and NpHR groups when light was delivered during prior trial outcomes to PL terminals in P-DMS. h) Cumulative distribution of initiation latencies and average of initiation latency (inset) following outcome light ON versus OFF trials from NpHR inhibition of PL::P-DMS.

Figure 8

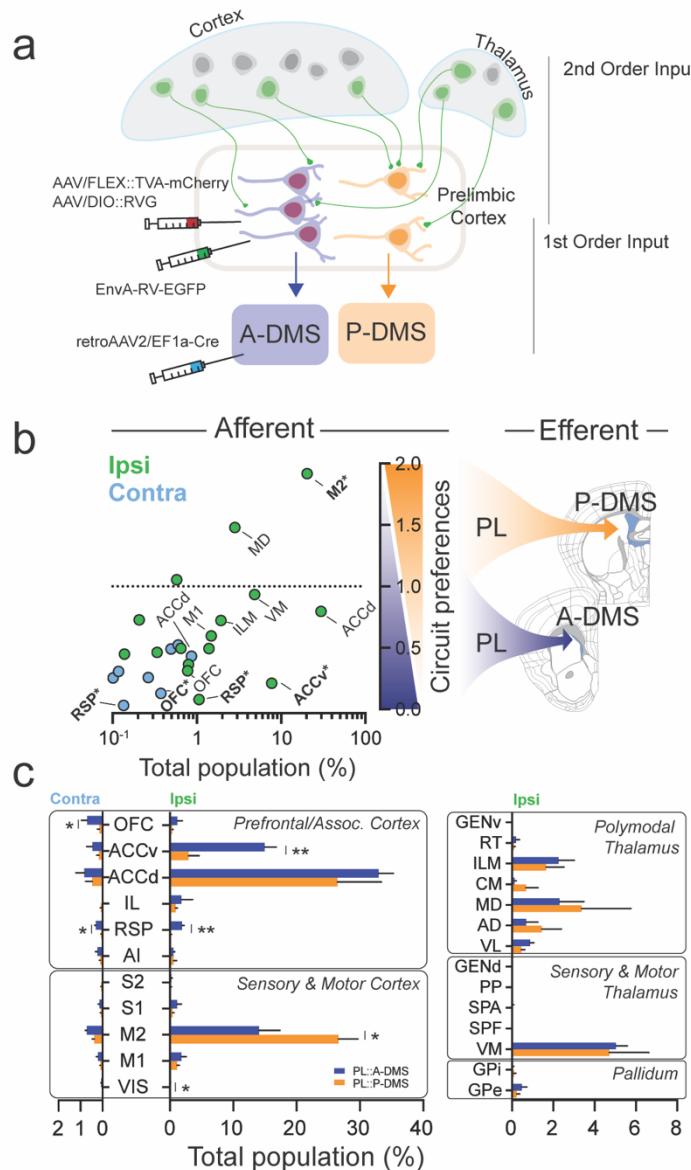


Figure 8. Second-order circuit tracing reveals preferential innervation of PL neurons according to A/P DMS target. a) Schematic of tracing approach to label 2nd order projection to PL circuits defined by DMS target. RetroAAV2-Cre virus was injected into either A/P-DMS with Cre-sensitive TVA receptor and G-prot in PL, followed by EnvA pseudotyped-ΔG-Rabies virus one week later. b) Brain-wide innervation preferences of PL::A/P DMS pathways. Abscissa shows relative proportion (out of total labeled neurons) for each brain region and ordinate shows the ratio between pathways (PL::P-DMS/PL::A-DMS). Green and blue circles represent ipsilateral and contralateral sites relative to injection. Asterisks indicates statistical significance (unpaired t-test, significance *p<0.05, **p<0.01). c) Comparison of second-order innervation from major afferent brain areas.

Predictor	Window extent PRE (s)	Window extent POST (s)	Number of splines
start cue (CUE)	0	2	12
Self-initiation (Init)	3	1	12
Choice LEFT (Lf)	3	3	20
Choice RIGHT (Rt)	3	3	20
Outcome NEGATIVE (O-)	0	6	20
Outcome POSITIVE (O+)	0	6	20
Choice RIGHT x Outcome NEGATIVE (Rt x O-)	0	6	20
Choice RIGHT x Outcome POSITIVE (Rt x O+)	0	6	20
Reward prediction error (RPE), positive (RPE+)	0	6	20
Reward prediction error (RPE), negative (RPE-)	0	6	20
Reward rate (RR)	(continuous predictor)		
$Q(\text{LEFT}) + Q(\text{RIGHT}) (\Sigma Q)$,	(continuous predictor)		
$Q(\text{LEFT}) - Q(\text{RIGHT}) (\Delta Q)$	(continuous predictor)		

Table 1. Details on model predictors. Window extent PRE/POST indicates the extent of the kernel window before/after the event to which the predictor is tethered. N of splines is the size of the spline basis used for the predictor. The basis functions are cubic B-splines. The spline knots are placed at regular intervals within the kernel window; additionally, four knots are placed at each end of the window to enable flexibility in the value of the kernel and all its derivatives at the endpoints. The degree of the splines and the number of the knots determines the number of elements in the basis spline set, reported in the fourth column.]

Abbreviation

Agranular insular area	AI	Lateral amygdalar nucleus	LA
Anterior cingulate area	ACC	Lateral group of the dorsal thalamus	LAT
Anterior cingulate area/ dorsal part	ACCd	Medial group of the dorsal thalamus	MD
Anterior cingulate area/ ventral part	ACCv	Midline group of the dorsal thalamus	CM
Anterior group of the dorsal thalamus	AD	Orbital area	OFC
Auditory areas	AUD	Paraventricular nucleus of the thalamus	PVT
Basolateral amygdalar nucleus	BLA	Peripeduncular nucleus	PP
Basolateral amygdalar nucleus/ anterior part	BLAa	Posterior amygdalar nucleus	AMYp
Basolateral amygdalar nucleus/ posterior part	BLAp	Posterior parietal association areas	PTLp
Basolateral amygdalar nucleus/ ventral part	BLAv	Prelimbic area	PL
Basomedial amygdalar nucleus	BMA	Primary motor area	M1
Basomedial amygdalar nucleus/ anterior part	BMAa	Primary somatosensory area	S1
Basomedial amygdalar nucleus/ posterior part	BMAp	Reticular nucleus of the thalamus	RT
Clastrum	CLA	Retrosplenial area	RSP
Epithalamus	EPI	Secondary motor area	M2
Geniculate group/ dorsal thalamus	GENd	Subparafascicular area	SPA
Geniculate group/ ventral thalamus	GENv	Subparafascicular nucleus	SPF
Globus pallidus/ external segment	GPe	Substantia nigra/ compact part	SNC
Globus pallidus/ internal segment	GPi	Substantia nigra/ reticular part	SNr
Gustatory areas	GU	Supplemental somatosensory area	S2
Hippocampal formation	HPF	Temporal association areas	TEa
Infralimbic area	IL	Ventral group of the dorsal thalamus	VM
Intralaminar nuclei of the dorsal thalamus	ILM	Ventral tegmental area	VTA
		Visceral area	VIC