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Abstract: 1 

T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoires 2 

composition, diversity, and dynamics and how they change during viral infection can inform the molecular 3 

specificity of viral infection such as SARS-CoV-2. To determine signatures associated with COVID-19 4 

disease severity, here we performed a large-scale analysis of over 4.7 billion sequences across 2,130 TCR 5 

repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identified 6 

and characterized convergent COVID-19 associated CDR3 gene usages, specificity groups, and sequence 7 

patterns. T cell clonal expansion was found to be associated with upregulation of T cell effector function, 8 

TCR signaling, NF-kB signaling, and Interferon-gamma signaling pathways. Machine learning approaches 9 

accurately predicted disease severity for patients based on TCR sequence features, with certain high-power 10 

models reaching near-perfect AUROC scores across various predictor permutations. These analyses 11 

provided an integrative, systems immunology view of T cell adaptive immune responses to COVID-19.  12 

 13 
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Introduction 1 

Much of the ongoing COVID-19 vaccination strategies have focused on targeting B cells for eliciting 2 

neutralizing antibodies (nAbs) against SARS-CoV-2 1,2. However, SARS-CoV-2 nAb levels after infection 3 

or vaccination have been found to decrease over time 3, and recently emerging variants of concern (VOC) 4 

have been associated with antibody escape 4. Strategies that solely focus on nAbs may not be sufficient for 5 

managing the pandemic in the long term. There has therefore been increasing interest in studying the role 6 

of T cell immunity in the response to COVID-19 infection 5,6.  7 

 8 

Functional T cell responses are crucial for control and clearance of many respiratory viral infections 7, 9 

including for SARS-CoV and MERS-CoV 8,9. Studies from transgenic mouse models suggest that T cells 10 

are also important for disease resolution after infection with SARS-CoV-2 10, and SARS-CoV-2-specific 11 

CD4 and CD8 T cells have been associated with milder disease in human patients 11, suggesting roles for 12 

coordinated adaptive immune responses in protective immunity against COVID-19. T cells contribute to 13 

viral control through numerous mechanisms, including supporting the generation of antibody-producing 14 

plasma cells (T follicular helper cells), production of effector cytokines such as IFN-gamma and TNF, and 15 

cytotoxicity against infected cells. Generation of memory T cells can provide life-long protection against 16 

pathogens 12, and a recent study showed that SARS-CoV-2-specific memory T cell responses were sustained 17 

for 10 months in COVID-19 convalescent patients 13. Moreover, there is mounting evidence that SARS-18 

CoV-2 VOCs rarely escape T reactivity 14, perhaps in part due to a wider distribution of T cell epitopes 19 

across the entire viral proteome unlike nAb target limitation to the viral surface. Due to the importance of 20 

T cells in long-term and broad immune reactivity, there has been an increase in diverse vaccine strategies 21 

to expand targets beyond the spike protein and induce T cell responses 5.  22 

 23 

T cells recognize viral antigens presented on major histocompatibility complex (MHC) molecules through 24 

an enormously diverse assembly of T cell receptors (TCRs) 15. Ligation of the TCR by peptide-loaded MHC 25 

molecules leads to T cell activation and clonal expansion, causing a shift in repertoire specificity towards 26 

the antigen. TCR repertoires therefore represent a functional signature of the adaptive immune response. 27 

The development of high-throughput DNA sequencing methods has enabled highly quantitative 28 

investigation into the diversity and composition of immune repertoires 16; for example, one study used TCR 29 

sequencing (TCR-seq) on samples from T-lineage acute lymphoblastic leukemia/lymphoma patients to 30 

reveal the receptor profiles of clonal T lymphoblast populations and then further to develop a clinical assay 31 

for diagnosis of minimal residual disease 17. Other studies have used tracking of TCR repertoires in cancer 32 

patients over time to identify correlations between clonal dynamics and clinical features such as 33 
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immunotherapy treatment response 18,19. TCR-seq data has enormous potential for gaining quantitative 1 

insight into the patterns of adaptive immune responses, which has been particularly well demonstrated in 2 

studies for cancer immunology. 3 

 4 

We sought to develop an integrative, systems immunology approach for investigating TCR repertoires from 5 

COVID-19 patients to help decode patterns of the adaptive immune response during SARS-CoV-2 6 

infection. While there have been some preliminary studies on different aspects of TCR-seq analysis for 7 

COVID-19 20–23, there have been limited studies that incorporate motif-based analysis, transcriptomics, and 8 

machine learning in a large-scale, comprehensive investigation into the immune responses during disease 9 

course of varying severity. We anticipate that our approach here can provide sets of COVID-19 associated 10 

sequences and motifs that may help guide development of prognostic and diagnostic markers and potentially 11 

help design therapeutic interventions that better harness the power of T cell immunity. 12 

 13 

Results 14 

TCR repertoires from COVID-19 patients and healthy donors reveal trends in CDR3 gene usage and 15 

diversity. 16 

To determine if there were any global patterns that distinguish the immune repertoires of COVID-19 17 

patients, we systematically compiled and analyzed TCR-seq samples (total n = 2130) from COVID-19 18 

patients and healthy donors (Figure 1A). TCR repertoire data was obtained from studies by Adaptive 19 

Biotechnologies (AB, n = 1574),  ISB-Swedish COVID-19 Biobanking Unit (ISB-S, n = 266), PLA General 20 

Hospital (PLAGH, n = 20), and Wuhan Hankou Hospital (WHH, n = 15), and then uniformly processed for 21 

downstream analysis (see Methods). Clonality analyses revealed that COVID-19 patient samples from the 22 

ISB-S CD4, ISB-S CD8, and WHH datasets had significantly fewer total unique clonotypes compared to 23 

healthy donor controls (Figure S1A). Moreover, repertoire diversity metrics including Chao1 estimators 24 

(measure of species richness), Gini-Simpson indices (probability of interspecific encounter), and inverse 25 

Simpson indices were significantly decreased for COVID-19 samples compared to healthy donor samples, 26 

notably for the AB, ISB-S CD4, and ISB-S CD8 datasets (Figures 1B-C, S1B). The decrease in clonal 27 

diversity measures is consistent with the increase in the relative abundance of the top clonotypes in the 28 

repertoire space for COVID-19 samples (Figures 1F, S3D), which suggests expansion of a small number 29 

of functional clones after antigen exposure. These results together reveal global shifts in immune repertoire 30 

clonality and diversity in patients with COVID-19 compared to healthy donors.  31 

 32 
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To determine the specific gene usage preferences and dynamics in COVID-19 patients, we performed 1 

comparative analyses of V(D)J gene and complementarity-determining region 3 (CDR3) gene usages for 2 

the AB and ISB-S datasets. While we observed some significant selective V and J gene usage differences 3 

in the AB dataset (Figures S1D-E), fewer differences were found for the ISB-S CD4 and CD8 datasets 4 

when comparing samples from different disease severities to those from healthy donors (Figures S2A-D). 5 

Moreover, there were no differences in clonotype frequencies by CDR3 length across the datasets (Figures 6 

S1C). By comparison, the top CDR3 sequences were different across conditions for both the AB and ISB-7 

S datasets (Figures 1D, S3A, S3B). In order to identify COVID-19 associated CDR3 sequences that are 8 

conserved across disease conditions and datasets, we performed a series of set analyses using sequences 9 

above a proportion threshold (0.0001 for ISB-S samples, 0.00001 for AB samples) for each condition. We 10 

found that CDR3 sequences enriched in the mild, moderate, and severe disease condition samples from the 11 

COVID-19 patients had considerable overlap while having limited overlap with healthy donor samples for 12 

both the ISB-S CD4 (Figure 1E) and ISB-S CD8 (Figure S3B) datasets. Moreover, we observe 42 13 

conserved CDR3 sequences when comparing the union set of disease-associated CDR3 sequences for ISB-14 

S CD4 samples, the union set of disease-associated CDR3 sequences for ISB-S CD8 samples, and COVID-15 

19 CDR3 sequences for the AB samples (Figure 1H). In order to determine enriched CDR3 sequences for 16 

each dataset and disease conditions, we plotted the difference in mean CDR3 proportions between samples 17 

of interest and healthy donors (Figures 1G, S3E-J). Although the identified sequences may not be 18 

definitively specific, we provide here a set of systematically processed COVID-19 associated convergent 19 

and enriched CDR3 gene usages. 20 

 21 

K-mer and motif analyses reveal patterns associated with disease conditions. 22 

Sequence convergence of immune repertoires can be also occur at the level of motifs, or sequence 23 

substrings, in addition to that of clones. One approach to decomposing CDR3 sequences into motifs is by 24 

using overlapping k-mers, or amino acid sequences of length k, which provide a functional representation 25 

of the repertoires with increased compatibility for statistical analyses and machine learning methods 24. We 26 

created 3-mer, 4-mer, 5-mer, and 6-mer frequency matrix representations of ISB-S CD4 and CD8 datasets 27 

and performed principal components analysis to see whether samples cluster by disease severity (Figures 28 

2A, 2C, S4A-F). We found that while the majority of samples clustered together, a number of mild and 29 

moderate samples were separated from the main cluster across all analysis permutations, while severe 30 

samples are generally associated with the main cluster of samples including healthy donors. These results 31 

are consistent emerging data that patients with severe COVID-19 have substantial immune dysregulation 32 

in comparison to those with less severe disease. Studies have shown that T cell polyfunctionality is 33 
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increased in patients with moderate disease but reduced in those with severe disease 25,  and there have been 1 

proposed models of TCR clonality whereby the response in mild disease includes detection of dominant 2 

clones while response in severe disease do not 26. Moreover, heatmaps of 3-mer abundances reveal some 3 

shared motifs between mild and moderate samples such as YNE, NEQ, EQF, and QFF for repertoires 4 

sampled from the ISB-S CD4 dataset and TEA, EAF, and AFF for repertoires sampled from the ISB-S CD8 5 

dataset (Figures 2B, 2D). These results in aggregate suggest that there are sequence features that distinguish 6 

COVID-19 TCR repertoires from healthy donors to various degrees based on disease condition. 7 

 8 

Recent sequence similarity approaches have been developed to determine TCR specificity clusters for 9 

motif-based prediction of antigen specificity and identification of key conserved residues that drive TCR 10 

recognition 27–29. We used the Grouping of Lymphocyte Interactions by Paratope Hotspots version 2 11 

(GLIPH2) algorithm 29 to cluster the TCR sequences based on predicted antigen specificity for significant 12 

motifs associated with different disease conditions in the ISB-S datasets. We also used the Optimized 13 

Likelihood estimate of immunoGlobulin Amino-acid sequences (OLGA) algorithm 30 to calculate the 14 

generation probability (pGen) of the clonotypes contained in the clusters identified from the GLIPH2 15 

analysis. Low pGen clonotypes are considered private and not shared widely in the population, while high 16 

pGen clonotypes are considered public and shared in a large proportion of the population due to convergent 17 

recombination 20,31. We found that the mild and moderate disease conditions had both relatively lower pGen 18 

scores and higher median frequency clusters compared to the severe disease and healthy donor conditions 19 

for both the ISB-S CD4 and CD8 datasets (Figures 2E, S4G). Visualization of individual clusters revealed 20 

that the mild and moderate disease conditions had clonotypes with the highest proportional representation, 21 

including motifs AGQGA%E, S%AAG, SL%AG, and SLQGA%YE (the % character corresponds to a 22 

wildcard amino acid) for the ISB-S CD4 dataset (Figure 2F) and motifs SEG%NTDT, SLDSGGA%E, 23 

SL%SGGANE, SLAA% for the ISB-S CD8 dataset (Figure S4H). In order to identify clusters that were 24 

exclusive to COVID-19 patients in the ISB-S CD4 dataset, we performed set analysis and found 677 clusters 25 

in the intersection of the disease conditions, 474 of which were exclusive and had no overlap with the 26 

healthy donor clusters (Figures 2G-H). For the ISB-S CD8 dataset, we found 51 consensus clusters, 35 of 27 

which were exclusive (Figures S4I-J). We provide here all identified clusters and motifs with associated 28 

CDR3 sequences, V gene usage, and J gene usages, along with clonotype pGen scores and the identified 29 

COVID-19 associated clusters. 30 

 31 

 32 

 33 
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Transcriptional signatures of clonal expansion and associations with disease severity. 1 

In order to investigate the relationship between the enriched clonotypes and their transcriptomes, we 2 

performed dimensionality reduction on 137,075 CD4 T cell single cell RNA sequencing samples that had 3 

CDR3 sequences associated with identified GLIPH2 clusters. The transcriptomes were projected to a two 4 

dimensional space by uniform manifold approximation and projection (UMAP) (Figure S5A). Clustering 5 

was performed using the Louvain algorithm, revealing 12 clusters with differentially expressed gene 6 

signatures (Figures 3A, S5C). We found that cluster 6 contained cells with high degrees of clonality 7 

(Figures 3A, S5B), suggesting phenotypic correlates of clonal expansion. Comparison with the top enriched 8 

motifs found from the GLIPH2 analysis, including AGQGA%E, S%AAG, SL%AG, SLQGA%YE, 9 

S%SGTDT, SL%GTDT, SLS%TDT, and S%AGNQP revealed high density of clusters in cluster 6 10 

(Figures 3C, 2F). Moreover, we found a correlation between clonotype expansion and disease severity, 11 

with cells from COVID-19 patients exhibiting the highest density in effector phenotype associated cluster 12 

6, while healthy donor cells exhibiting density in the naïve phenotype associated clusters (Figure 3B). We 13 

also found a higher association of lower pGen score, or private, clonotypes with cluster 6 compared to the 14 

high pGen score clonotypes (Figure 3D), suggesting that these clones may be specific. However, 15 

comparison of the proportion of cells for each disease condition in cluster 6 with healthy donors revealed 16 

statistically significant cell proportion increases only for the moderate condition (Figure 3E), despite 17 

increasing trends for all conditions. Altogether, these results demonstrate relationships between clonal 18 

expansion, disease severity, and cell phenotype, which can be extended to subsequence motifs. 19 

 20 

We extended this analysis to the CD8 dataset to see if the associations between clonal expansion and disease 21 

severity are maintained. UMAP projection of 70,237 CD8 T cell single cell transcriptomes and clustering 22 

revealed 15 clusters with differentially expressed gene signatures (Figures 4A, S6A, S6C). As with the 23 

CD4 dataset, we found clustering of cells with high degrees of clonality, distributed here across the clusters 24 

0, 2, 3, 5, 7, 9, 10, 13, and 14 (grouped together as “Expanded” for further analysis) (Figures 4A, S6B). 25 

We also found high density of top enriched GLIPH2 motifs in the Expanded group, including SEG%NTDT, 26 

SLDSGGA%E, SL%SGGANE, SLAA%, SQT%STDT, SP%SGSYE, SPGT%GYNE, and S%RQGAGGE 27 

(Figures 4C, S4H). We observe a relatively higher density of cells from COVID-19 disease conditions in 28 

the Expanded group as compared to the healthy donors (Figures 4B), with low density of disease-associated 29 

cells in the non-Expanded clusters. Likewise, we found a more exclusive association between lower pGen 30 

score clonotypes and the Expanded group, particularly cluster 9 (Figures 4D). Comparison of the 31 

proportion of cells for each disease condition in the Expanded group with healthy donors reveal statistically 32 
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significant cell proportion increases for all conditions (Figure 4E). These results highlight the relationship 1 

between clonal expansion and disease severity comparable with those from the CD4 dataset. 2 

 3 

To investigate the gene expression changes that occur with clonal expansion, we performed differential 4 

expression (DEX) analysis between cluster 6 cells versus all other cells for the CD4 dataset (Figure 3F) 5 

and the Expanded group cells versus all other cells for the CD8 dataset (Figure 4F). Using a threshold of 6 

q-value < 1e-4, we found 512 downregulated genes and 959 upregulated genes for the CD4 T cell DEX, as 7 

well as 600 downregulated genes and 859 upregulated genes for the CD8 T cell DEX. Volcano plots for 8 

both T cell types revealed upregulation of cytotoxicity associated transcripts such as granzymes and 9 

granulysin and downregulation of naïve phenotype associated markers such as TCF7 and LEF1. 10 

Comparison of UMAPs of the individual subpopulation phenotype markers also showed correlation 11 

between cluster 6 or the Expanded group clusters and effector-related markers such as GZMA, PRF1, 12 

NKG7, and GNLY, with downregulation of naïve-related markers such as TCF7 and LEF1 (Figures S5D, 13 

S6D). Functional gene annotation analysis with DAVID 32 revealed enriched pathways terms such as TCR 14 

signaling pathway, regulation of immune response, NF-kB signaling, IFN-gamma mediated signaling, and 15 

TNF-mediated signaling pathways were upregulated in clonally expanded clusters (Figures 3H, 4H) while 16 

terms such as translational initiation, viral transcription, translation, and ribosomal subunit assembly were 17 

downregulated (Figures 3G, 4G) for both CD4 and CD8 differential expression analyses. We therefore 18 

find that clonally expanded CDR3 sequences and motifs are highly associated with effector T cell 19 

phenotypes at both the individual gene and functional pathway levels, while downregulating a number of 20 

mRNA processing related programs. 21 

 22 

Machine learning models for disease severity. 23 

To determine whether the constitutive sequence motifs in the CDR3 sequence of the TCR contain sufficient 24 

information to be predictive of disease severity in COVID-19 infection, we trained several classical 25 

supervised machine learning (ML) algorithms on the repertoires from the ISB-S CD4 and CD8 datasets. 26 

We implemented Random Forests (RF), Support Vector Machines (SVM), Naïve Bayes (NB), Gradient 27 

Boosting Classifiers (GBC), and K-Nearest Neighbors (KNN) on frequency matrices of overlapping 3-mer 28 

or 6-mer amino acids adapted from the TCR repertoires. ML models were trained as binary classification 29 

tasks to predict mild, moderate, or severe COVID-19 TCR repertoires from healthy donor repertoires for 30 

either CD4 or CD8 ISB-S datasets. Training and testing partitions were created as five randomly sampled 31 

folds, with models trained on 80% of the data and tested on the remaining 20%. This process was repeated 32 

100 times for each fold (500 repetitions per model per classification permutation) for statistical power. We 33 
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found that RFs, GBCs and SVMs had particularly strong classification performance across the board, with 1 

average AUROCs greater than 0.90 for all permutations, with certain predictors approaching perfect score 2 

(AUROCs = 0.99 – 1.00) (Figure 5A, 7A), as compared to NBs or KNNs. Notably, the ML models had 3 

higher performance for classifying mild and moderate repertoires than severe repertoire regardless of k-mer 4 

or T cell type. This is consistent with the increased separation of the mild and moderate repertoires observed 5 

in the PCA analysis. Overall, these results demonstrate that ML-based methods are capable of identifying 6 

samples with high performance from COVID-19 patients of varying severity based on CDR3 sequences 7 

features, particularly for mild and moderate disease conditions. 8 

 9 

Discussion 10 

T cells are increasingly being recognized as key mediators of viral clearance and host protection in COVID-11 

19, and are subjects of active investigation 33–35. However, the rules governing SARS-CoV-2 responsive T 12 

cell specificity are still incompletely understood. We provide here a comprehensive, systems immunology 13 

approach to analyzing COVID-19 TCR repertoires to discover these rules in an unbiased and systematic 14 

manner. By uniformly processing immune sequencing data from multiple cohorts with TCR-seq data, we 15 

found that antigen exposure during the course of COVID-19 significantly decreased the diversity of 16 

repertoires and reshaped clonal representation. We identified and characterized enriched CDR3 sequences, 17 

k-mer motifs, and patterns associated with disease severity, and found convergent CDR3 gene usages and 18 

clusters that have potential for clonal tracking studies. Comparison of COVID-19 associated motifs and 19 

single T cell transcriptomes revealed associations between clonal expansion, disease severity, and cell 20 

phenotypes such as effector T cell function. Finally, we established several ML methods for predicting 21 

disease severity from TCR repertoires, demonstrating high performance for several models and the potential 22 

of using ML for prognostication in COVID-19 patients.  23 

 24 

Recent studies have started to report on the differences between T cell responses during mild and more 25 

severe COVID-19 disease course. Notably, severe COVID-19, albeit having increases in activated effector 26 

cell populations as seen with other disease severities, is associated with lymphopenia and profound 27 

functional impairment of  CD4 and CD8 T cells 26,36–40. These results are consistent with our PCA and motif 28 

analyses, we observe a stronger signal for the mild and moderate disease repertoires distinguishing them 29 

from healthy donors as compared to severe disease repertoires. Moreover, our ML-based methods had 30 

higher performance for predicting mild and moderate repertoires, further demonstrating that CDR3 31 

sequence and subsequence features for these disease conditions have higher discriminative capacity than 32 

for severe conditions. Nevertheless, all of the disease conditions were well differentiated from healthy 33 
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donors across all analyses suggesting that consensus disease-associated features can be identified, including 1 

correlations between clonal expansion in the setting of COVID-19 with effector T cell functions at the 2 

transcriptomic level.  3 

 4 

To our knowledge this is the largest scale investigation into TCR specificity groups for COVID-19 to date, 5 

spanning 4,730,447,888 clones across 2,130 repertoires. Though many studies have sought to identify 6 

factors predictive of COVID-19 clinical course and outcomes 41,  few have leveraged TCR-seq data and 7 

adaptive immune profiles to their full capacity. We provide high confidence convergent COVID-19 8 

associated signatures with potential prognostic value, including successful implementation of machine 9 

learning models for predicting disease severity. The use of next-generation sequencing of immune 10 

repertoires provides deeper and more quantitative understanding of the adaptive immune response to 11 

COVID-19, and may guide patient risk stratification, vaccine design, and improved clinical management.  12 

 13 
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Methods 1 

Sequence data collection: 2 

TCR repertoire data was obtained from datasets published by Adaptive Biotechnologies ,  ISB-Swedish 3 

COVID-19 Biobanking Unit 25, Fifth Medical Center of PLA General Hospital 21, and Wuhan Hankou 4 

Hospital China 22. For COVID-19 patients sequenced with Adaptive Biotechnologies immunoSEQ assays, 5 

TCR-seq data were obtained from the ImmuneCODE database at 6 

https://doi.org/10.21417/ADPT2020COVID; for healthy donor patients, TCR-seq data was obtained at 7 

https://doi.org/10.21417/ADPT2020V4CD. Single cell TCR-seq and gene expression (GEX) data for CD4+ 8 

and CD8+ T cell repertoires from COVID-19 patients and healthy donors from the ISB-Swedish COVID-9 

19 Biobanking Unit 25 was obtained from the ArrayExpress database 42 (http://www.ebi.ac.uk/arrayexpress) 10 

using the accession number E-MTAB-9357. Single cell TCR-seq data from COVID-19 patients and healthy 11 

donors were also obtained from the Fifth Medical Center of PLA General Hospital, accessed through the 12 

supplementary tables of the associated publication 21; and Wuhan Hankou Hospital China, metadata 13 

accessed through the supplementary tables of the associated publication 22 and TCR-seq data obtained from 14 

the iReceptor platform 43 (http://ireceptor.irmacs.sfu.ca).   15 

 16 

Data pre-processing: 17 

All TCR-seq data was pre-processed for standardized analysis with Immunarch v0.6.6 44. Data obtained 18 

from the Adaptive Biotechnologies ImmuneCODE database were used directly as inputs for Immunarch 19 

processing, with 1,475 COVID-19 patient samples and 88 healthy donor patient samples (1,563 samples 20 

total) successfully loaded and used for further analysis. For the ISB-Swedish cohort, patients were first 21 

filtered by those were sequenced by 10X Genomics. Sequence filtering and processing was performed as 22 

follows: for cells with multiple TRA and TRB CDR3 sequences, the first instance respectively were 23 

selected; only cells with paired TRA and TRB sequences were kept (column chain_pairing = Single pair, 24 

Extra alpha, Extra beta or Two chains); sequence files were converted to VDJtools format for input into 25 

Immunarch. COVID severity scores were translated from the WHO Ordinal Scale (0-7) to four tiers: healthy 26 

donor (0), mild (1-2), moderate (3-4), and severe (5-7). After pre-processing, the CD4 and CD8 datasets 27 

were composed of 136,429 and 69,687 clones, represented in a total of 16 healthy donors, 61 mild, 42 28 

moderate, and 24 severe patients, 143 individuals total (16 healthy donors, 108 mild, 93 moderate, and 49 29 

severe repertoires when accounting for patients with samples from two time points, 266 samples total). For 30 

the PLA General Hospital and Wuhan Hankou Hospital China cohort, cells with more than one TRA or 31 

TRB sequence had the chain with the highest number of reads kept for further analysis and sequence files 32 

were converted to VDJTools format for input into Immunarch. The PLA General Hospital aggregated 33 
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patient dataset contained 31951 clones across 3 healthy donors (two healthy donors from the original study 1 

were excluded for lack of TCR CDR3 amino acid data), 7 moderate, 4 severe, and 6 convalescent patients 2 

(of which 4 were the second time point collections of moderate patients – P01, P02, P03, and P04). The 3 

Wuhan Hankou Hospital China aggregated patient dataset contained 42001 clones across 5 healthy donors, 4 

5 moderate, and 5 severe patients. Metadata was manually reformatted from supplementary tables. 5 

 6 

Immune repertoire statistics: 7 

Clonotype statistics and diversity metrics were calculated using Immunarch v0.6.6 44. For total number of 8 

unique clonotypes, the repExplore function was used with parameter .method = “volume”; for distribution 9 

of CDR3 sequence lengths, repExplore function with .method = “len” and .col = “aa”; for Chao1 estimator, 10 

repDiversity function with .method = “chao1”; for Gini-Simpson index, repDiversity function with .method 11 

= “gini.simp”; for Inverse Simpson index, repDiversity function with .method = “inv.simp”. Clonal 12 

proportion estimates were calculated with the repClonality function with .method = “top”. CDR3, V gene, 13 

and J gene usage proportions were calculated and aggregated directly from sample TCR data. Statistical 14 

significance testing comparing groups were performed using the two sided Wilcoxon rank-sum test by the 15 

wilcox.test in R.  16 

 17 

K-mer analyses: 18 

For K-mer abundance calculations, each VDJtools formatted sample was converted to a vector of CDR3 19 

sequences. The vector was converted to k-mer statistics using the getKmers function from Immunarch, then 20 

merged with k-mer statistics of other samples using the R function merge with parameter all = TRUE for 21 

full outer join. Empty cells were converted from NAs to 0 counts. The 50,000 top variance unique k-mers 22 

were selected for downstream analyses (PCA and machine learning pipelines) with the exception of 3-mers 23 

which had 6916 unique k-mers. K-mer counts were normalized to sum to 1 for each sample prior to 24 

downstream analyses. PCA was performed using the prcomp function in R with parameter center = TRUE.  25 

 26 

Motif analyses: 27 

TCR clustering and specificity group analysis was performed using GLIPH2 29. Software executable for 28 

analysis was obtained from http://50.255.35.37:8080/ and run with the human v2.0 reference on clonal data 29 

for each disease condition and T cell type. Parameters include global_convergence_cutoff=1, 30 

local_min_OVE=10, kmer_min_depth=3, simulation_depth=1000, p_depth=1000, ignored_end_length=3, 31 

cdr3_length_cutoff=8, motif_distance_cutoff=3, all_aa_interchangeable=1, kmer_sizes=2,3,4, and 32 

local_min_pvalue=0.001000.  33 
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Generation probability calculations were performed using OLGA 30. Software installation and setup was 1 

performed as described in https://github.com/statbiophys/OLGA and run on clonal data for each disease 2 

condition and T cell type. Representative calculation with parameters are as follows: olga-compute_pgen -3 

i input.tsv --humanTRB -o out_pgens.tsv --v_in 1 --j_in 2. 4 

 5 

Single cell transcriptome analyses: 6 

Single cell transcriptome data from the ISB-S dataset were processed using Seurat v4.0.4. Pipeline included 7 

log normalization with scale factor 1,000,000, scaling and centering, PCA, nearest-neighbor graph 8 

construction, clustering with the Louvain algorithm, UMAP, differential gene expression, and generation 9 

of various visualizations. Parameters included: for the FindNeighbors function, dims = 1:10; for 10 

FindClusters, resolution = 0.6; for RunUMAP, dims = 1:10; for FindAllMarkers, only.pos = TRUE, min.pct 11 

= 0.25, logfc.threshold = 0.25. Differential gene expression between clonally expanded clusters and all 12 

other cells were performed using a downsampled cell subset (5,000 cells per group) of the data and the 13 

FindMarkers function with parameters logfc.threshold = 0.01 and min.pct = 0.1. P-value adjustment was 14 

performed using Bonferroni correction. Upregulated or downregulated genes with significance q-value < 15 

1e-4 were then used for functional annotation with DAVID analysis. In addition to default Seurat outputs, 16 

custom R scripts were used to generate visualizations including UMAPs associated with CDR3 motifs and 17 

disease severity. 18 

 19 

Training and evaluation of machine learning models: 20 

Five ML-based approaches were trained on the k-mer frequency matrix generated from amino acids in the 21 

CDR3 region in the T cell repertoires of healthy donor and COVID-19 patients from the ISB-S datasets, 22 

using Python v3.8.6 and scikit-learn v0.23.1. These algorithms were: Random Forests (RF), Support Vector 23 

Machines (SVM), Naïve Bayes (NB), Gradient Boosting Classifiers (GBC) and K-Nearest Neighbors 24 

(KNN). The k-mer frequency matrix dataset was partitioned into subsets to perform binary classification 25 

between the healthy donor and the specified disease phenotype, such that models were trained for distinct 26 

classification tasks: healthy donor vs. mild disease, healthy donor vs. moderate disease, and healthy donor 27 

vs. severe disease. To address imbalanced datasets, healthy donor samples were upsampled to be equal to 28 

the number of COVID-19 samples represented in the dataset, prior to training. RFs were trained with 100 29 

estimators, gini impurity criterion for measuring the quality of splits, minimum samples required to split an 30 

internal node of 2, minimum number of samples required to be a leaf node of 1, and bootstrapping to build 31 

trees. SVCs were trained with polynomial kernel and parameters C=20, degree=5, and probability=True. 32 

NBs were trained with default settings. GBCs were trained with 100 estimators, learning rate of 1.0 and 33 
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maximum depth of 1. KNNs were trained with leaf size of 30 and the minkowski distance metric. Estimators 1 

were trained and evaluated with stratified 5-fold cross-validation, using 80% of the data for training and 2 

20% of the data for validation, which was performed with 100 repetitions using the 3 

RepeatedStratifiedKFold function from sklearn. Plotly v5.1.0 was used to generate ROC plots from 4 

performance results. 5 

 6 

Statistical information summary 7 

Comprehensive information on the statistical analyses used are included in various places, including 8 

the figures, figure legends and results, where the methods, significance, p-values and/or tails are described. 9 

All error bars have been defined in the figure legends or methods. Standard statistical calculations such as 10 

Spearman’s rho were performed in R with functions such as “cor”. 11 

 12 

Code availability 13 

Key codes used for data analysis or generation of the figures related to this study has been included 14 

in this article and its supplementary information files, and have been deposited to GitHub at 15 

https://github.com/parkjj/tcrcov. Additional scripts used are also available upon request to the 16 

corresponding author. 17 

 18 

Data and resource availability 19 

The authors are committed to freely share all COVID-19 related data, knowledge and resources to 20 

the community to facilitate the development of new treatment or prevention approaches against SARS-21 

CoV-2 / COVID-19 as soon as possible. All relevant processed data generated during this study are included 22 

in this article and its supplementary information files or are currently being deposited into publicly 23 

accessible repositories. Raw data are from various sources as described above. All data and resources related 24 

to this study are freely available upon request to the corresponding author. 25 

 26 

Graphical illustrations  27 

Certain graphical illustrations were made with BioRender (biorender.com). 28 

  29 
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Figure Legends 1 

Figure 1.  Analysis of TCR repertoires from COVID-19 patients and healthy donors reveal trends in 2 

CDR3 gene usage and diversity. 3 

(A) Schematic detailing curation and analysis of TCR repertoire datasets from healthy donors and 4 

COVID-19 patients. Sequencing data was obtained from Adaptive Biotechnologies (AB, n = 1574), ISB-5 

Swedish COVID-19 Biobanking Unit (ISB-S, n = 266, CD4 and CD8 repertoires), PLA General Hospital 6 

(PLAGH, n = 20), and Wuhan Hankou Hospital (WHH, n = 15). 7 

(B) Boxplot of Chao1 indices for COVID-19 patients and healthy donors for each repertoire dataset. P-8 

values were obtained using the two-sided Wilcoxon rank sum test. 9 

(C) Boxplot of Gini-Simpson indices for COVID-19 patients and healthy donors for each repertoire 10 

dataset. P-values were obtained using the two-sided Wilcoxon rank sum test. 11 

(D) Bar plots showing the top 15 mean CDR3 usages for patients in the ISB-S CD4 dataset grouped by 12 

disease severity (healthy donor = 16, mild = 108, moderate = 93, severe = 49). 13 

(E) Venn diagram showing overlap of top mean CDR3 usages (proportion threshold = 0.0001) for 14 

patients in the ISB-S CD4 dataset grouped by disease severity. 15 

(F) Bar plot depicting relative abundance for groups of top clonotypes for sampled repertoires (healthy 16 

donors = 32, COVID-19 = 32) from AB dataset. 17 

(G) Dotted waterfall plot of CDR3 gene usage differentials between COVID-19 patients and healthy 18 

donors (delta mean proportion) in AB dataset. Purple dots are CDR3 sequences enriched in COVID-19; 19 

light blue dots are CDR3 sequences enriched in healthy donors; grey dots are all other CDR3 sequences.  20 

(H) Venn diagram showing overlap of COVID-19 enriched CDR3 sequences for patients in the ISB-S 21 

CD4, ISB-S CD8, and AB datasets (thresholds 0.0001 for ISB-S samples, 0.00001 for AB samples). P-22 

values for overlap significance calculated using hypergeometric test. 23 

 24 

Figure 2.  K-mer and motif analyses reveal patterns associated with disease condition. 25 

(A) Principal components analysis of 3-mer representations of TCR repertoires from the ISB-S CD4 26 

dataset (n = 266). 27 

(B) Heatmaps of 3-mer abundances of repertoires sampled from the ISB-S CD4 dataset by disease 28 

condition (healthy donor = 16, mild = 16, moderate = 16, severe = 16). 29 

(C) Principal components analysis of 3-mer representations of TCR repertoires from the ISB-S CD8 30 

dataset (healthy donor = 16, mild = 108, moderate = 93, severe = 49). 31 

(D) Heatmaps of 3-mer abundances of repertoires sampled from the ISB-S CD8 dataset by disease 32 

condition (n = 266). 33 
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(E) Median frequency and pGen scores of COVID-19 and healthy donor associated T cell clusters from 1 

GLIPH2 analysis of the ISB-S CD4 dataset, grouped by disease condition. 2 

(F) Detailed view of frequencies and pGen scores of specific clonotypes associated with high frequency 3 

T cell clusters from CD4 dataset. Clonotypes are colored by patient disease condition. 4 

(G) Venn diagram showing overlap of COVID-19 associated T cell clusters for patients in the ISB-S 5 

CD4 dataset grouped by disease condition. 6 

(H) Venn diagram showing overlap between consensus COVID-19 associated T cell clusters (taken 7 

from intersection of disease conditions) and healthy donors for repertoires in the ISB-S CD4 dataset. 8 

 9 

Figure 3.  Single cell transcriptional signatures of clonal expansion of CD4 T cells. 10 

(A) UMAP visualization of 137,075 CD4 T cell single cell transcriptomes from the ISB-S CD4 dataset 11 

pooled across samples and conditions. 12 clusters identified using the Louvain algorithm. 12 

(B) Two dimensional density plot of cells from each disease condition (healthy donor, mild, moderate, 13 

severe) by UMAP coordinates. Red represents areas of high density of cells of a given condition; blue 14 

represents areas of low density. 15 

(C) UMAP visualization with cells labelled by top eight most frequent CD4 TCR clusters identified by 16 

the GLIPH2 analysis. 17 

(D) Two dimensional density plot of cells with high or low pGen score clonotypes by UMAP 18 

coordinates. Yellow represents areas of high density of cells; black represents areas of low density. 19 

(E) Boxplots of clonally expanded cell proportions (in cluster 6) for each disease condition (cell count 20 

healthy donor = 544, mild = 3,568, moderate = 5,012, severe = 2,336). Comparison between groups 21 

performed with two-sided Wilcoxon rank-sum test. 22 

(F) Volcano plot of differentially expressed genes between clonally expanded cells and all other cells  23 

in the ISB-S CD4 dataset (Cluster 6 cells = 5,000, all other cells = 5,000). Differential gene expression was 24 

performed with Seurat using the two-sided Wilcoxon rank-sum test; the Bonferroni corrected adjusted p-25 

values and log fold-change of the average expression were used for visualization. 26 

(G) Bar plot of biological processes (BP) pathway terms associated with downregulated genes (clonally 27 

expanded cells vs all other cells , q-value < 1e-4) by DAVID analysis. 28 

(H) Bar plot of biological processes (BP) pathway terms associated with upregulated genes (clonally 29 

expanded cells vs all other cells , q-value < 1e-4) by DAVID analysis. 30 

 31 

 32 

 33 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
TCR COVID 

 
17 

Figure 4.  Single cell transcriptional signatures of clonal expansion of CD8 T cells. 1 

(A) UMAP visualization of 70,237 CD8 T cell single cell transcriptomes from the ISB-S CD8 dataset 2 

pooled across samples and conditions. 15 clusters identified using the Louvain algorithm. 3 

(B) Two dimensional density plot of cells from each disease condition (healthy donor, mild, moderate, 4 

severe) by UMAP coordinates. Red represents areas of high density of cells of a given condition; blue 5 

represents areas of low density. 6 

(C) UMAP visualization with cells labelled by top eight most frequent CD8 TCR clusters identified by 7 

the GLIPH2 analysis. 8 

(D) Two dimensional density plot of cells with high or low pGen score clonotypes by UMAP 9 

coordinates. Yellow represents areas of high density of cells; black represents areas of low density. 10 

(E) Boxplots of clonally expanded cell proportions (in Expanded group) for each disease condition (cell 11 

count healthy donor = 2,579, mild = 18,622 , moderate = 15,743, severe = 7,159). Comparison between 12 

groups performed with two-sided Wilcoxon rank-sum test. 13 

(F) Volcano plot of differentially expressed genes between clonally expanded cells and all other cells  14 

in the ISB-S CD8 dataset (Expanded group cells = 5,000, all other cells = 5,000). Differential gene 15 

expression was performed with Seurat using the two-sided Wilcoxon rank-sum test; the Bonferroni 16 

corrected adjusted p-values and log fold-change of the average expression were used for visualization. 17 

(G) Bar plot of biological processes (BP) pathway terms associated with downregulated genes (clonally 18 

expanded cells vs all other cells , q-value < 1e-4) by DAVID analysis. 19 

(H) Bar plot of biological processes (BP) pathway terms associated with upregulated genes (clonally 20 

expanded cells vs all other cells , q-value < 1e-4) by DAVID analysis. 21 

 22 

Figure 5.  Predictive performance of machine learning models for disease severity.  23 

(A) AUROC curves for five machine learning models (gradient boosting trees, support vector machines, 24 

random forests, Naïve Bayes, and k-nearest neighbors) using 3-mer representations of TCR repertoire data. 25 

Models were trained to predict disease severity (mild, moderate, severe) vs healthy donors for CD4 (top 26 

row) and CD8 (bottom row) samples. Training and evaluation was performed using 100 repetitions of 5-27 

fold cross-validations per model, average performance +/- 1 standard deviation shown on individual plots. 28 

 29 

 30 

 31 

 32 

 33 
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Supplemental Figure Legends 1 

Figure S1.  Diversity metrics and gene usages for TCR repertoire datasets. 2 

(A) Boxplot of total unique clonotypes for COVID-19 patients and healthy donors for each repertoire 3 

dataset. P-values were obtained using the two-sided Wilcoxon rank-sum test. 4 

(B) Boxplot of inverse Simpson indices for COVID-19 patients and healthy donors for each repertoire 5 

dataset. P-values were obtained using the two-sided Wilcoxon rank-sum test. 6 

(C) Boxplot of clonotype frequencies by CDR3 length for COVID-19 patients and healthy donors for 7 

each repertoire dataset. 8 

(D) Boxplot of J gene usages for samples from the AB dataset. Gray dots represent healthy donor 9 

samples; red dots represent COVID-19 samples. Statistical significance determined using the two-sided 10 

Wilcoxon rank-sum test and adjusted using the Benjamini & Hochberg method. * adj. P < 0.05, ** adj. P < 11 

1e-4, *** adj. P < 1e-6. 12 

(E) Boxplot of V gene usages for samples from the AB dataset. Gray dots represent healthy donor 13 

samples; red dots represent COVID-19 samples. Statistical significance determined using the two-sided 14 

Wilcoxon rank-sum test and adjusted using the Benjamini & Hochberg method. * adj. P < 0.05, ** adj. P < 15 

1e-4, *** adj. P < 1e-6. 16 

 17 

Figure S2.  V and J gene usages by disease severity for ISB-S datasets. 18 

(A) Boxplot of V gene usages for CD4 samples from the ISB-S dataset. Red dots represent healthy donor 19 

samples; green dots represent mild; blue dots represent moderate; purples dots represent severe. Statistical 20 

significance determined using the two-sided Wilcoxon rank-sum test and adjusted using the Benjamini & 21 

Hochberg method. Adj. P < 0.05 labelled on plot.  22 

(B) Boxplot of V gene usages for CD8 samples from the ISB-S dataset.  23 

(C) Boxplot of J gene usages for CD4 samples from the ISB-S dataset.  24 

(D) Boxplot of J gene usages for CD8 samples from the ISB-S dataset.  25 

 26 

Figure S3.  Additional CDR3 gene usage statistics. 27 

(A) Bar plots showing the top 15 mean CDR3 usages for patients in the ISB-S CD8 dataset grouped by 28 

disease severity (healthy donor = 16, mild = 108, moderate = 93, severe = 49). 29 

(B) Venn diagram showing overlap of top mean CDR3 usages (proportion threshold = 0.0001) for 30 

patients in the ISB-S CD8 dataset grouped by disease severity. 31 

(C) Bar plots showing the top 15 mean CDR3 usages for patients in the AB dataset grouped by disease 32 

status (healthy donor = 88, COVID-19 = 1,475). 33 
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(D) Bar plot depicting relative abundance for groups of top clonotypes by disease condition for sampled 1 

repertoires (n = 16 per condition) from ISB-S datasets. 2 

(E) Dotted waterfall plot of CDR3 gene usage differentials between mild disease COVID-19 patients 3 

and healthy donors (delta mean proportion) in the ISB-S CD4 dataset. Yellow dots are CDR3 sequences 4 

enriched in moderate disease repertoires; light blue dots are CDR3 sequences enriched in healthy donors; 5 

grey dots are all other CDR3 sequences. 6 

(F) Dotted waterfall plot of CDR3 gene usage differentials between moderate disease COVID-19 7 

patients and healthy donors in the ISB-S CD4 dataset. Orange dots are CDR3 sequences enriched in 8 

moderate disease repertoires. 9 

(G) Dotted waterfall plot of CDR3 gene usage differentials between severe disease COVID-19 patients 10 

and healthy donors in the ISB-S CD4 dataset. Red dots are CDR3 sequences enriched in severe disease 11 

repertoires. 12 

(H) Dotted waterfall plot of CDR3 gene usage differentials between mild disease COVID-19 patients 13 

and healthy donors in the ISB-S CD8 dataset. Yellow dots are CDR3 sequences enriched in mild disease 14 

repertoires. 15 

(I) Dotted waterfall plot of CDR3 gene usage differentials between moderate disease COVID-19 16 

patients and healthy donors in the ISB-S CD8 dataset. Orange dots are CDR3 sequences enriched in 17 

moderate disease repertoires. 18 

(J) Dotted waterfall plot of CDR3 gene usage differentials between severe disease COVID-19 patients 19 

and healthy donors in the ISB-S CD8 dataset. Red dots are CDR3 sequences enriched in severe disease 20 

repertoires. 21 

 22 

Figure S4.  Additional k-mer and motif analyses. 23 

(A) PCA of 4-mer representations of TCR repertoires from the ISB-S CD4 dataset. 24 

(B) PCA of 5-mer representations of TCR repertoires from the ISB-S CD4 dataset. 25 

(C) PCA of 6-mer representations of TCR repertoires from the ISB-S CD4 dataset. 26 

(D) PCA of 4-mer representations of TCR repertoires from the ISB-S CD8 dataset. 27 

(E) PCA of 5-mer representations of TCR repertoires from the ISB-S CD8 dataset. 28 

(F) PCA of 6-mer representations of TCR repertoires from the ISB-S CD8 dataset. 29 

(G) Median frequency and pGen scores of COVID-19 and healthy donor associated T cell clusters from 30 

GLIPH2 analysis of the ISB-S CD8 dataset, grouped by disease condition. 31 

(H) Detailed view of frequencies and pGen scores of specific clonotypes associated with high frequency 32 

T cell clusters from CD8 dataset. Clonotypes are colored by patient disease condition. 33 
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(I) Venn diagram showing overlap of COVID-19 associated T cell clusters for patients in the ISB-S 1 

CD8 dataset grouped by disease condition. 2 

(J) Venn diagram showing overlap between consensus COVID-19 associated T cell clusters (taken 3 

from intersection of disease conditions) and healthy donors for repertoires in the ISB-S CD8 dataset. 4 

 5 

Figure S5.  Additional single cell transcriptional analyses for CD4 T cells. 6 

(A) UMAP visualization of 137,075 CD4 T cell single cell transcriptomes from the ISB-S CD4 dataset 7 

labelled by disease condition. 8 

(B) UMAP visualization of CD4 T cell single cell transcriptomes labelled by clonal expansion. 9 

(C) Heatmap of differentially expressed markers for all identified clusters (n = 12). 10 

(D) UMAP visualizations highlighting expression levels of individual genes for cell phenotyping. 11 

 12 

Figure S6.  Additional single cell transcriptional analyses for CD8 T cells. 13 

(A) UMAP visualization of 70,237 CD8 T cell single cell transcriptomes from the ISB-S CD8 dataset 14 

labelled by disease condition. 15 

(B) UMAP visualization of CD8 T cell single cell transcriptomes labelled by clonal expansion. 16 

(C) Heatmap of differentially expressed markers for all identified clusters (n = 15). 17 

(D) UMAP visualizations highlighting expression levels of individual genes for cell phenotyping. 18 

 19 

Figure S7.  Additional machine learning analyses for disease severity.  20 

(A) AUROC curves for five machine learning models using 6-mer representations of TCR repertoire 21 

data. Models were trained to predict disease severity (mild, moderate, severe) vs healthy donors for CD4 22 

(top row) and CD8 (bottom row) samples. Training and evaluation was performed using 100 repetitions of 23 

5-fold cross-validations per model, average performance +/- 1 standard deviation shown on individual plots. 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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Supplementary Datasets 1 

Supplementary Dataset 2 

Dataset S1. Metadata for TCR repertoire samples obtained for all datasets used in study. 3 

Dataset S2. Number of clones and unique clonotypes for each sample across datasets. 4 

Dataset S3. CDR3 length statistics for each sample across datasets. 5 

Dataset S4. Diversity statistics including Chao1 estimators, Gini-Simpson indices, and inverse Simpson 6 

indices for each sample across datasets. 7 

Dataset S5. V and J gene usage statistics for each sample in Adaptive Biotechnologies datasets. 8 

Dataset S6. V and J gene usage statistics for each sample in ISB-Swedish datasets. 9 

Dataset S7. Principal components analysis results for 3-mer, 4-mer, 5-mer, and 6-mer representations of 10 

each sample in ISB-Swedish datasets. 11 

Dataset S8. GLIPH clustering analysis patterns, scores, and statistics for ISB-Swedish datasets by T cell 12 

type and disease condition. 13 

Dataset S9. OLGA analysis inputs of structured ISB-Swedish datasets by T cell type and disease condition. 14 

Dataset S10. OLGA analysis output pGen scores of ISB-Swedish datasets by T cell type and disease 15 

condition. 16 

Dataset S11. COVID-19 associated clusters in ISB-Swedish datasets by T cell type. 17 

Dataset S12. UMAP coordinates for CD4 and CD8 T cell single cell transcriptome analyses. 18 

Dataset S13. Cell proportions and counts for clonally expanded groups from CD4 and CD8 T cell single 19 

cell transcriptome analyses. 20 

Dataset S14. Differential gene expression for Cluster 6 vs all other cells in CD4 T cell transcriptome analysis 21 

and Expanded group cells vs all other cells in CD8 T cell transcriptome analysis. 22 

Dataset S15. Upregulated and downregulated genes for CD4 and CD8 T cell clonal expansion differential 23 

gene expression analysis using threshold q-value < 1e-4. 24 

Dataset S16. DAVID gene ontology biological process annotations for CD4 and CD8 T cell clonal 25 

expansion differential gene expression analysis using threshold q-value < 1e-4. 26 

Dataset S17. Average AUROC scores for machine learning models trained to predict disease severity from 27 

healthy donors using different k-mer representations of TCR repertoires. 28 

 29 

 30 

 31 

 32 

 33 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
TCR COVID 

 
22 

References: 1 

1. Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020). 2 

2. Jeyanathan, M. et al. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. 3 

Immunol. 20, 615–632 (2020). 4 

3. Chia, W. N. et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: 5 

a longitudinal study. Lancet Microbe 2, e240–e249 (2021). 6 

4. Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 7 

596, 276–280 (2021). 8 

5. Noh, J. Y., Jeong, H. W., Kim, J. H. & Shin, E.-C. T cell-oriented strategies for controlling the COVID-19 9 

pandemic. Nat. Rev. Immunol. 21, 687–688 (2021). 10 

6. Karlsson, A. C., Humbert, M. & Buggert, M. The known unknowns of T cell immunity to COVID-19. Sci. 11 

Immunol. 5, eabe8063 (2020). 12 

7. Schmidt, M. E. & Varga, S. M. The CD8 T Cell Response to Respiratory Virus Infections. Front. Immunol. 13 

9, 678 (2018). 14 

8. Zhao, J. et al. Airway Memory CD4+ T Cells Mediate Protective Immunity against Emerging Respiratory 15 

Coronaviruses. Immunity 44, 1379–1391 (2016). 16 

9. Zhao, J., Zhao, J. & Perlman, S. T Cell Responses Are Required for Protection from Clinical Disease and 17 

for Virus Clearance in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice. J. Virol. 84, 18 

9318–9325 (2010). 19 

10. Sun, J. et al. Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and 20 

Treatment. Cell 182, 734-743.e5 (2020). 21 

11. Rydyznski Moderbacher, C. et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-22 

19 and Associations with Age and Disease Severity. Cell 183, 996-1012.e19 (2020). 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
TCR COVID 

 
23 

12. Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, 1 

compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014). 2 

13. Jung, J. H. et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients 3 

for 10 months with successful development of stem cell-like memory T cells. Nat. Commun. 12, 4043 4 

(2021). 5 

14. Tarke, A. et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected 6 

or vaccinated individuals. Cell Rep. Med. 2, 100355 (2021). 7 

15. Reddy, S. T. The patterns of T-cell target recognition. Nature 547, 36–38 (2017). 8 

16. Friedensohn, S., Khan, T. A. & Reddy, S. T. Advanced Methodologies in High-Throughput Sequencing 9 

of Immune Repertoires. Trends Biotechnol. 35, 203–214 (2017). 10 

17. Wu, D. et al. High-Throughput Sequencing Detects Minimal Residual Disease in Acute T 11 

Lymphoblastic Leukemia. Sci. Transl. Med. 4, 134ra63-134ra63 (2012). 12 

18. Riaz, N. et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 13 

171, 934-949.e16 (2017). 14 

19. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 15 

1251–1259 (2019). 16 

20. Schultheiß, C. et al. Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-17 

19 Patients Showed Signatures Associated with Severity of Disease. Immunity 53, 442-455.e4 (2020). 18 

21. Zhang, J.-Y. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat. 19 

Immunol. 21, 1107–1118 (2020). 20 

22. Wen, W. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell 21 

sequencing. Cell Discov. 6, 1–18 (2020). 22 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
TCR COVID 

 
24 

23. Shoukat, M. S. et al. Use of machine learning to identify a T cell response to SARS-CoV-2. Cell Rep. 1 

Med. 2, 100192 (2021). 2 

24. Miho, E. et al. Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive 3 

Immune Repertoires. Front. Immunol. 9, 224 (2018). 4 

25. Su, Y. et al. Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. 5 

Cell 183, 1479-1495.e20 (2020). 6 

26. Chen, Z. & John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 20, 529–7 

536 (2020). 8 

27. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. 9 

Nature 547, 89–93 (2017). 10 

28. Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 11 

(2017). 12 

29. Huang, H., Wang, C., Rubelt, F., Scriba, T. J. & Davis, M. M. Analyzing the Mycobacterium 13 

tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen 14 

screening. Nat. Biotechnol. 38, 1194–1202 (2020). 15 

30. Sethna, Z., Elhanati, Y., Callan, C. G., Jr, Walczak, A. M. & Mora, T. OLGA: fast computation of 16 

generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics 17 

35, 2974–2981 (2019). 18 

31. Elhanati, Y., Sethna, Z., Callan, C. G., Mora, T. & Walczak, A. M. Predicting the spectrum of TCR 19 

repertoire sharing with a data-driven model of recombination. Immunol. Rev. 284, 167–179 (2018). 20 

32. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists 21 

using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009). 22 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
TCR COVID 

 
25 

33. Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 1 

Disease and Unexposed Individuals. Cell 181, 1489-1501.e15 (2020). 2 

34. Ni, L. et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 3 

Convalescent Individuals. Immunity 52, 971-977.e3 (2020). 4 

35. Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected 5 

controls. Nature 584, 457–462 (2020). 6 

36. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 7 

infection in humans. Science 369, 1210–1220 (2020). 8 

37. Bergamaschi, L. et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and 9 

early immune pathology distinguish severe COVID-19 from mild disease. Immunity 54, 1257-1275.e8 10 

(2021). 11 

38. Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. 12 

Nat. Med. 26, 1623–1635 (2020). 13 

39. Adamo, S. et al. Profound dysregulation of T cell homeostasis and function in patients with severe 14 

COVID-19. Allergy 76, 2866–2881 (2021). 15 

40. Neidleman, J. et al. Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe 16 

COVID-19. Cell Rep. 36, 109414 (2021). 17 

41. Marin, B. G. et al. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 31, 1–10 18 

(2021). 19 

42. Athar, A. et al. ArrayExpress update – from bulk to single-cell expression data. Nucleic Acids Res. 47, 20 

D711–D715 (2019). 21 

43. Corrie, B. D. et al. iReceptor: A platform for querying and analyzing antibody/B-cell and T-cell 22 

receptor repertoire data across federated repositories. Immunol. Rev. 284, 24–41 (2018). 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
TCR COVID 

 
26 

44. Nazarov, V., immunarch.bot & Rumynskiy, E. immunomind/immunarch: 0.6.5: Basic single-cell 1 

support. (Zenodo, 2020). doi:10.5281/zenodo.3893991. 2 

 3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.70 0.75 0.80 0.85 0.90 0.95 1.00
Gini−Simpson index

2 3 4 5 6
log10( Chao1 Estimator )

370

34

681

1

0

0

4

24

2141

1
0 0

14

1858

3

HD Severe

Mild Moderate

A

B C

Figure 1

TCR repertoire and gene
expression sequencing

Curation and uniform
processing of datasets

Transcriptomic and
statistical analyses

p =1.46E-5

p = 8.07E-4

p = 6.33E-3

p = 0.0193

p = 0.371Healthy
Donor
COVID-19

AB

ISB-S
CD4

ISB-S
CD8

WHH

PLAGH

CA
ST

PF
G

TG
EL

FF
CA

SS
IA

G
NQ

PQ
HF

CS
AG

RQ
G

RP
YE

Q
YF

CA
SS

ED
RR

EP
Q

HF
CA

SS
SS

G
PA

DT
Q

YF
CA

SS
DD

LS
G

NT
IY

F
CA

SN
IQ

G
ST

EA
FF

CA
SS

RG
TG

NA
G

EL
FF

CA
SS

LR
G

LL
G

G
YT

F
CA

SS
LA

AG
YN

TG
EL

FF
CA

SS
PE

G
Q

G
RE

TQ
YF

CA
SS

FS
NS

YR
Q

ET
Q

YF
CA

SS
PL

DR
G

NS
PL

HF
CA

SS
Q

G
SF

G
PA

NR
YF

CA
SS

LG
G

G
Q

DE
Q

YV

CA
SS

LA
AG

YT
F

CA
SA

AS
DG

TD
TQ

YF
CA

SS
LQ

G
AT

YE
Q

YF
CA

SS
LE

G
EP

YN
EQ

FF
CA

SS
LS

G
TD

TQ
YF

CS
AA

G
Q

G
AL

EA
FF

CA
SS

PP
M

EF
YE

Q
YF

CS
AS

PV
EF

EQ
FF

CS
VI

SY
NY

G
YT

F
CS

AS
G

G
AG

G
YT

F
CA

SN
IQ

G
ST

EA
FF

CA
SS

PS
Q

G
Q

G
FS

DT
Q

YF
CA

SS
IT

SG
RA

RE
TQ

YF
CA

SS
G

SV
PA

YE
Q

YF
CA

SS
PT

G
M

NT
EA

FF

CA
SS

YS
RS

AG
TN

TE
AF

F
CS

AA
G

Q
G

AL
EA

FF
CA

SS
Q

DR
G

G
TI

SY
EQ

YF
CA

SS
LS

G
TD

TQ
YF

CA
ST

NR
TY

NS
PL

HF
CA

SS
RG

G
Q

G
SN

Q
PQ

HF
CA

SS
LA

AG
AN

EQ
FF

CA
SS

TA
G

TG
G

YN
EQ

FF
CS

AG
AG

G
YN

EQ
FF

CA
SS

LG
G

TV
NT

EA
FF

CS
AS

EG
LG

EG
TG

EL
FF

CA
SS

LS
LN

RG
G

G
NQ

PQ
HF

CA
SN

IQ
G

ST
EA

FF
CA

SG
LG

G
TG

G
EQ

ET
Q

YF
CA

SR
RT

G
TG

EQ
YF

0.0

0.1

0.2

0.3

0.4

0.5

CT
SS

SG
YG

YT
F

CA
SS

LG
G

HG
DT

Q
YF

CA
SS

PE
G

Q
PR

ET
Q

YF
CS

ER
DK

RG
Q

ET
Q

YF
CS

AS
SG

DG
YT

F
CS

AP
TG

EG
YT

F
CA

SS
PA

AS
G

NT
IY

F
CA

SS
PG

PH
YG

YT
F

CA
SS

LS
M

AD
TQ

YF
CA

SS
PQ

Q
G

YN
EQ

FF
CA

SS
PG

G
DP

RE
TQ

YF
CA

SS
FK

AG
VL

FN
EQ

FF
CA

SS
PG

TG
YG

YT
F

CA
SS

RA
G

LQ
NT

G
EL

FF
CA

SS
SQ

ET
Q

YF

M
ea

n
CD

R3
us

ag
e

(%
)

Healthy Donor Mild Moderate Severe

p = 4.53E-4

p = 4.93E-4

p = 6.56E-4

p = 0.689

p = 0.0992Healthy
Donor
COVID-19

2815
65

5395

68

42

293

3366

ISB-S CD4

p = 4.4E-25

p = 9.8E-187p = 1.2E-42

ISB-S CD8

AB

0.00

0.25

0.50

0.75

1.00

Cl
on

al
pr

op
or

tio
n

1:10
11:100
101:1K
1K:3K
3K:10K
10K:30K
30K:1e6

CASSRFGAGDNQPQHF

CASSLFGTGGNTEAFF
CASSEHLNQPQHF
CASSFSTNTEAFF
CASSLRGADYEQYF
CSARSGELFF
CASRNDGTGLGYTF

CASSAGGVQPQHF
CASSPPTGSYEQYF

CAISGLFNSPLHF
CASSLTAGAYTGELFF

CASSFSTGELFF
CASSYSSGNNSPLHF
CASSLGLAGPDTQYF

−0.002

−0.001

0.000

0.001

0.002

CDR3

∆
M

ea
n

Pr
op

or
tio

n

COVID-19 patients

Top N
clones

Healthy donors

Enrichment:
COVID-19
Healthy
Donor

F G H

D E

AB

ISB-S
CD4

ISB-S
CD8

WHH

PLAGH

UMAP - 1 

UM
AP

 - 
2 

-10 

-10 

10 

10 

pseudotime 

10 

5 

0 

Linear Discriminant 
Analysis 

UMAP - 1 

UM
AP

 - 
2 

-10 

-10 

10 

10 

pseudotime 

10 

5 

0 

High positive 
correlation 

Volcano plot 

 Log2 FC 

-lo
g1

0(
p v

al
ue

 ) 

0 

5 

10 

15 

20 

25 

-5 -10 0 5 10 x axis 

y 
ax

is
 

0 

5 

10 

15 

20 

25 

A B C D 

Title 

UMAP - 1 

UM
AP

 - 
2 

-10 

-10 

10 

10 

pseudotime 

10 

5 

0 

High positive 
correlation 

Volcano plot 

 Log2 FC 

-lo
g1

0(
p v

al
ue

 ) 

0 

5 

10 

15 

20 

25 

-5 -10 0 5 10 x axis 

y 
ax

is
 

0 

5 

10 

15 

20 

25 

A B C D 

Title 

UMAP - 1 

UM
AP

 - 
2 

-10 

-10 

10 

10 

pseudotime 

10 

5 

0 

High positive 
correlation 

Volcano plot 

 Log2 FC 

-lo
g1

0(
p v

al
ue

 ) 

0 

5 

10 

15 

20 

25 

-5 -10 0 5 10 x axis 

y 
ax

is
 

0 

5 

10 

15 

20 

25 

A B C D 

Title 

1563

# of
Samples

Adaptive
Biotechnologies

ISB-Swedish
COVID-19

Biobanking Unit*

*CD4 and CD8 repertoires provided and therefore analyzed separately.

PLA General
Hospital

Wuhan Hankou
Hospital

Data
Types

Metadata Data
Source

532

20

15

COVID-19
and HD

Disease
severity

COVID-19
and HD

WHO
Ordinal
Scale

Citation

Bulk
TCR-seq

Single cell
TCR-seq
& GEX

Single cell
TCR-seq

Single cell
TCR-seq

ImmuneCODE
database

ArrayExpress
E-MTAB-9357

Supplemental
Files

Supplemental
Files and
iReceptor
platform

Su et al.,
2020

Zhang
et al.,
2020

Wen et al.,
2020

Nolan
et al.,
2020

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

SSS
QPQ
PQH
QHF
ETQ
TQY
QYF
TDT
DTQ
SSY
ASS
CAS
TEA
EAF
AFF
LFF
GEL
ELF
YTF
GYT
SSP
SSL
EQF
QFF
SYN
NEQ
YNE
AGG
SSH
RAG
GAG
AGA
GGE
HRA
SHR
TSG
SGR
SSQ
YEQ
EQY

−2

0

2

4

6

SP%GQGSNTE SIQG%GNT SL%AGANE RRTG%GE RRTGT%E RR%GTGE SL%GDT SLQG%T

S%VSGE SLVSG% SLV%GE SLVS%E GA%GYNE GAGGY%E %AGGYNE G%GGYNE

SSG%G S%GSG SRGG%GSNQPS%TSGRARET S%GAGG SGGA%G S%GYG SL%SGE

SLSG%DT SLEG%PYNE SL%GTVNTE SR%GQGSNQPS%GGQGSNQP SPTG%NTE SPT%MNTE S%TGMNTE

AGQGA%E S%AAG SL%AG SLQGA%YE S%SGTDT SL%GTDT SLS%TDT S%AGNQP

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

25
30
35
40

25
30
35
40

25
30
35
40

25
30
35
40

25
30
35
40

Clonotype frequency

−l
og

2(
 C

lo
no

ty
pe

 p
G

en
 s

co
re

 )

condition
HD
mild
moderate
severe

DTQ
TDT
CSA
SAR
ETQ
QYF
TQY
SSL
SLG
LAG
EQY
YEQ
YNE
NEQ
EQF
QFF
TGE
LFF
ELF
GEL
ASR
GTG
SSP
YGY
YTF
GYT
SSG
SSS
SSY
NTE
TEA
AFF
EAF
QPQ
QHF
PQH
SSQ
SSR
ASS
CAS

−2

0

2

4

6

0.000

0.025

0.050

−0.02 0.00 0.02 0.04
PC1 (9.5% variance)

PC
2
(8
%

va
ria

nc
e)

HD
Mild
Moderate
Severe

PCA ISB−S CD4 dataset, 3−mers
Healthy Donor

Mild
Moderate
Severe

−0.05

0.00

0.05

−0.10 −0.05 0.00
PC1 (8.4% variance)

PC
2
(6
%

va
ria

nc
e)

HD
Mild
Moderate
Severe

PCA ISB−S CD8 dataset, 3−mers

Healthy Donor
Mild
Moderate
Severe

SLS%ADT
SS%DG

SSGD%

SSG%G

20

30

40

50

60

0.00 0.01 0.02 0.03
Median cluster frequency

−l
og

2(
 M

ed
ia

n 
cl

us
te

r p
G

en
 s

co
re

 )

nsub
1
2
3

4

5

WTAW

S%LGGL
SLVGGAG%GE

SR%GQGSNQP

S%GGQGSNQP
RRTG%GE

RRTGT%E
RR%GTGE

20

30

40

50

60

0.00 0.01 0.02 0.03 0.04
Median cluster frequency

−l
og

2(
M
ed

ia
n
clu

st
er

pG
en

sc
or
e
)

1
2
3
4
5

S%AAGSGGA%G
SLEG%PYNE

%GGQG

SLSG%DT

SL%AG

R%QGYE

20

30

40

50

60

0.00 0.05 0.10 0.15
Median cluster frequency

−l
og

2(
 M

ed
ia

n 
cl

us
te

r p
G

en
 s

co
re

 )

nsub
1
2
3
4
5

SLG%QNTGE

%RGTAYE

SL%AGGGYESI%NTGE SL%GVDYG

20

30

40

50

60

0.000 0.005 0.010 0.015 0.020
Median cluster frequency

−l
og

2(
M
ed

ia
n
clu

st
er

pG
en

sc
or
e
)

1
2
3
4

5

SevereModerateMildHealthy
Donor

SevereModerateMildHealthy
Donor

Number
of subjects

Number
of subjects

Healthy Donor Mild

Moderate Severe

1314 474203

7855
1615

6509

424

677

357

1845

A B

C D

E F

G H Healthy
Donor

Consensus
COVID-19

Mild Moderate

Severe

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
D

M
ild

M
od

er
at

e

Se
ve

re

C
el

l p
ro

po
rti

on

HD
Mild
Moderate
Severe

Figure 3

−4

0

4

−5 0 5 10
UMAP 1

U
M

AP
 2 AGQGA%E

S%AAG
SL%AG
SLQGA%YE
S%SGTDT
SLS%TDT
S%AGNQP

−4

0

4

−5 0 5 10
UMAP 1

U
M

AP
 2

0
1
2
3
4
5
6
7
8
9
10
11

−4

0

4

−5 0 5
UMAP 1

U
M

AP
 2

0.01
0.02
0.03
0.04

−4

0

4

−5 0 5
UMAP 1

U
M

AP
 2

0.01
0.02
0.03

−4

0

4

−5 0 5
UMAP 1

U
M

AP
 2

0.01

0.02

0.03

−4

0

4

−5 0 5
UMAP 1

U
M

AP
 2

0.01

0.02

−6

−3

0

3

6

−5 0 5
UMAP 1

U
M

AP
 2

0.01
0.02
0.03
0.04

−4

0

4

−5 0 5
UMAP 1

U
M

AP
 2

0.005
0.010
0.015
0.020
0.025

0
1
2
3
4
5
6
7
8
9
10
11

AGQGA%E
S%AAG
SL%AG
SLQGA%YE
S%SGTDT
SL%GTDT
SLS%TDT
S%AGNQP

ADGRG1 FGFBP2

GNLY GZMB
GZMH

NKG7
FCRL6 ZNF683

AQP3CCR7

CD27
LEF1

LTB

MAL

NOSIP
RCAN3

TCF7

0

100

200

300

−4 0 4 8
lnFC

−l
og

10
( a

dj
. p
−v

al
ue

 )

Upregulated
Downregulated
Gene

Volcano plot for Cluster 6 vs others, CD4 T cells

Upregulated (n = 959)
Downregulated (n = 512)

p = 0.1152

p = 0.0166

p = 0.1315

A B

D

C

E F G H

Healthy Donor Mild

Moderate

Cluster

Pattern

Severe

High pGen score Low pGen score

Alpha−beta T cell differentiation

Ribosome biogenesis

Negative regulation of apoptotic process

Ribosomal large subunit assembly

Ribosomal small subunit assembly

Cell−cell adhesion

Translation

RRNA processing

Viral transcription

Nuclear−transcribed mRNA catabolic
process, nonsense−mediated decay

SRP−dependent cotranslational
protein targeting to membrane

Translational initiation

0 30 60 90
−log10( adj. p−value )

Regulation of mRNA stability

Antigen processing and presentation

Negative regulation of viral genome replication

Tumor necrosis factor−mediated signaling pathway

T cell costimulation

Proteolysis involved in cellular protein catabolic process

Negative regulation of ubiquitin−protein
ligase activity involved in mitotic cell cycle

Regulation of cellular amino acid metabolic process

NIK/NF−kappaB signaling

Wnt signaling pathway, planar cell polarity pathway

Type I interferon signaling pathway

Regulation of immune response

Interferon−gamma−mediated signaling pathway

Movement of cell or subcellular component

T cell receptor signaling pathway

0 5 10 15 20
−log10( adj. p−value )

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
Figure 4

−4

0

4

−10 −5 0 5
UMAP 1

U
M

AP
 2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

−3

0

3

6

−8 −4 0 4
UMAP 1

U
M

AP
 2

0.02
0.04
0.06
0.08

−3

0

3

6

−5 0 5
UMAP 1

U
M

AP
 2

0.005
0.010
0.015
0.020

−2.5

0.0

2.5

5.0

−5 0 5
UMAP 1

U
M

AP
 2

0.005
0.010
0.015
0.020

−3

0

3

6

−5 0 5
UMAP 1

U
M

AP
 2

0.01

0.02

0.03

−3

0

3

6

−5 0 5
UMAP 1

U
M

AP
 2

0.01

0.02

−3

0

3

6

−5 0 5
UMAP 1

U
M

AP
 2

0.02
0.04
0.06
0.08

−4

0

4

−10 −5 0 5
UMAP 1

U
M

AP
 2

SEG%NTDT
SLDSGGA%E
SL%SGGANE
SLAA%
SQT%STDT
SP%SGSYE
SPGT%GYNE
S%RQGAGGE

SEG%NTDT
SLDSGGA%E
SL%SGGANE
SLAA%
SQT%STDT
SP%SGSYE
SPGT%GYNE
S%RQGAGGE

Pattern

Healthy Donor Mild

Moderate Severe

High pGen score Low pGen score

Cluster

FGFBP2
GZMHADGRG1 GZMB

CX3CR1
PRSS23

CCR7 LEF1 LTB
MAL

NOSIP
RCAN3 TCF7

NELL2

AQP3ACTN1

0

100

200

300

−5.0 −2.5 0.0 2.5 5.0 7.5
lnFC

−l
og

10
(a

dj
.p

−v
al
ue

)

Upregulated
Downregulated
Gene

Volcano plot for Expanded vs others, CD8 T cells

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
D

M
ild

M
od

er
at

e

Se
ve

re

C
el

l p
ro

po
rti

on

HD
Mild
Moderate
Severe

Translational elongation

Ribosome biogenesis

Cellular response to interleukin−4

Regulation of translational initiation

Negative regulation of apoptotic process

Ribosomal large subunit assembly

Ribosomal small subunit assembly

Formation of translation
preinitiation complex

Cell−cell adhesion

Translation

RRNA processing

Nuclear−transcribed mRNA catabolic
process, nonsense−mediated decay

Viral transcription

SRP−dependent cotranslational
protein targeting to membrane

Translational initiation

0 25 50 75 100
−log10( adj. p−value )

Fc−gamma receptor signaling
pathway involved in phagocytosis

Apoptotic process
T cell activation

Regulation of mRNA stability
Immune response

MAPK cascade
Tumor necrosis factor−mediated signaling pathway

Stimulatory C−type lectin receptor signaling pathway
Leukocyte migration

Type I interferon signaling pathway
Interferon−gamma−mediated signaling pathway

Antigen processing and presentation
T cell costimulation

Proteolysis involved in cellular
protein catabolic process

NIK/NF−kappaB signaling
Regulation of immune response

Wnt signaling pathway, planar cell polarity pathway
Movement of cell or subcellular component

T cell receptor signaling pathway

0 10 20
−log10( adj. p−value )

B

D

C

E F G H
p = 8.24E-03

p = 2.26E-05

p = 6.64E-05

Upregulated (n = 859)
Downregulated (n = 600)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Figure 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gradient Boosting AUROC: 1.00
SVM AUROC: 0.98
Random Forest AUROC: 1.00
Naive Bayes AUROC: 0.99
KNN AUROC: 0.82

CD4 HD vs. Mild 3mer

1 - Specificity

S
en
si
ti
vi
ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gradient Boosting AUROC: 0.99
SVM AUROC: 0.96
Random Forest AUROC: 1.00
Naive Bayes AUROC: 0.99
KNN AUROC: 0.78

CD4 HD vs. Moderate 3mer

1 - Specificity

S
en

si
tiv

ity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gradient Boosting AUROC: 0.94
SVM AUROC: 0.92
Random Forest AUROC: 0.95
Naive Bayes AUROC: 0.86
KNN AUROC: 0.65

CD4 HD vs. Severe 3mer

1 - Specificity

S
en
si
ti
vi
ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gradient Boosting AUROC: 1.00
SVM AUROC: 0.97
Random Forest AUROC: 1.00
Naive Bayes AUROC: 0.99
KNN AUROC: 0.70

CD8 HD vs. Mild 3mer

1 - Specificity

S
en

si
ti
vi

ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gradient Boosting AUROC: 0.99
SVM AUROC: 0.97
Random Forest AUROC: 1.00
Naive Bayes AUROC: 0.95
KNN AUROC: 0.72

CD8 HD vs. Moderate 4mer

1 - Specificity

S
en

si
ti
vi

ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gradient Boosting AUROC: 0.93
SVM AUROC: 0.91
Random Forest AUROC: 0.96
Naive Bayes AUROC: 0.82
KNN AUROC: 0.70

CD8 HD vs. Severe 3mer

1 - Specificity

S
en
si
ti
vi
ty

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

10

20

30

40

50

60

70
TR

BJ
1−
1

TR
BJ
1−
2

TR
BJ
1−
3

TR
BJ
1−
4

TR
BJ
1−
5

TR
BJ
1−
6

TR
BJ
2−
1

TR
BJ
2−
2

TR
BJ
2−
3

TR
BJ
2−
4

TR
BJ
2−
5

TR
BJ
2−
6

TR
BJ
2−
7

Pe
rc
en
ta
ge

0

10

20

30

40

50

60

TR
BV

1−
1

TR
BV

2−
1

TR
BV

4−
1

TR
BV

4−
2

TR
BV

4−
3

TR
BV

5−
1

TR
BV

5−
2

TR
BV

5−
3

TR
BV

5−
4

TR
BV

5−
5

TR
BV

5−
6

TR
BV

5−
7

TR
BV

5−
8

TR
BV

6−
1

TR
BV

6−
2

TR
BV

6−
4

TR
BV

6−
5

TR
BV

6−
6

TR
BV

6−
7

TR
BV

6−
8

TR
BV

6−
9

TR
BV

7−
1

TR
BV

7−
2

TR
BV

7−
3

TR
BV

7−
4

TR
BV

7−
5

TR
BV

7−
6

TR
BV

7−
7

TR
BV

7−
8

TR
BV

7−
9

TR
BV

8−
1

TR
BV

8−
2

TR
BV

9−
1

TR
BV

10
−1

TR
BV

10
−2

TR
BV

10
−3

TR
BV

11
−1

TR
BV

11
−2

TR
BV

11
−3

TR
BV

12
−1

TR
BV

12
−2

TR
BV

12
−4

TR
BV

12
−5

TR
BV

13
−1

TR
BV

14
−1

TR
BV

15
−1

TR
BV

16
−1

TR
BV

17
−1

TR
BV

18
−1

TR
BV

19
−1

TR
BV

20
−1

TR
BV

21
−1

TR
BV

22
−1

TR
BV

23
−1

TR
BV

24
−1

TR
BV

25
−1

TR
BV

26
−1

TR
BV

27
−1

TR
BV

28
−1

TR
BV

29
−1

TR
BV

30
−1

Pe
rc
en
ta
ge

15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

CDR3 length (NT)

C
lo
no

ty
pe

fre
qu

en
cy

BA
Figure S1

1 2 3 4 5 6
log10( Total unique clonotypes )

p = 0.334

p = 1.01E-3

p = 1.2E-3

p = 0.765

p = 4.66E-3Healthy
Donor
COVID-19

AB

ISB-S
CD4

ISB-S
CD8

WHH

PLAGH

AB

ISB-S
CD4

ISB-S
CD8

WHH

PLAGH

1 2 3 4 5
log10( Inverse Simpson index )

p = 1.46E-5

p = 8.07E-4

p = 6.33E-3

p = 0.0193

p = 0.371Healthy
Donor

COVID-19

q = 6.3E-8 q = 1.0E-7 q = 7.1E-7

* *** *** * *** ** * * *** * ** **** * * * * *

* * * * * * *

q = 7.1E-7

AB

ISB-S
CD4

ISB-S
CD8

WHH

PLAGH

Healthy
Donor
COVID-19

Healthy
Donor
COVID-19

Healthy
Donor
COVID-19

AB J gene usage

AB V gene usage
* * *

DC

E

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.470640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470640
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Figure S2
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Figure S4
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Figure S5
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Figure S7
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