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Abstract

MECP2 loss-of-function mutations cause Rett syndrome, a disorder that results from a
disrupted brain transcriptome. How these transcriptional defects are decoded into a disease
proteome remains unknown. We studied the proteome in Rett syndrome cerebrospinal fluid
(CSF) across vertebrates. We identified a consensus proteome and ontological categories shared
across Rett syndrome cerebrospinal fluid (CSF) from three species, including humans. Rett CSF
proteomes enriched proteins annotated to HDL lipoproteins, complement, mitochondria,
citrate/pyruvate metabolism, as well as synapse compartments. We used these prioritized and
shared ontologies to select analytes for orthogonal quantification. These studies independently
validated our proteome and ontologies. Ontologically selected CSF hits had genotypic
discriminatory capacity as determined by Receiver Operating Characteristic (ROC) analysis and
distinguished Rett from a related neurodevelopmental disorder, CDKL5 deficiency disorder. We
propose that Mecp2 mutant CSF proteomes and ontologies inform novel putative mechanisms
and biomarkers of disease. We suggest that Rett syndrome is a metabolic disorder impacting
synapse function.
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Introduction

The cellular and molecular understanding of neurodevelopmental disorders has been
greatly advanced by the study of single gene defects 2. Among these monogenic
neurodevelopmental disorders, Rett syndrome, caused by mutations in MECP2, stands out
because of its severity and developmental regression. The molecular function of MeCP2 as an
epigenetic chromatin regulator is well defined 3, affecting the expression of a vast number of
RNAs in the brain 3¢. The molecular complexity of Rett syndrome is compounded by the extensive
and varied modifications of coding and non-coding transcriptomes across brain cell types and
regions 711, This fact makes transcriptional prediction of Rett syndrome proteomes a complex
and uncertain endeavor. Thus, we focus on the proteome to identify biochemical and cellular
alterations in Rett syndrome brains 2. Moreover, known Rett syndrome phenotypes such as
synaptic, circuit, and behavioral alterations ultimately originate in alterations of protein
expression and function #1314, Thus, the proteome decodes Mecp2-dependent transcriptional
changes and executes a diseased phenome. Despite these advantages of the proteome to
illuminate pathogenic mechanisms and to identify disease biomarkers, few studies examine how
the proteome is modified in Rett syndrome brains >,

Our goal was to identify a Rett proteome capable of distinguishing normal and disease
brain states across neurodevelopment that is clinically accessible for sample collection,
diagnostic testing, and assessing treatment outcomes. We focused on CSF as a clinically
accessible sample whose composition is dictated by the brain and neurodevelopment 719, CSF
carries neurodevelopmental instructive signals and nutrients and accrues secretions and
metabolites that reflect functional states of diverse cell types in brain parenchyma and the
choroid 2. For example, composition of the CSF proteome in individuals with Alzheimer’s predicts
key diagnostic molecular pathology in the Alzheimer’s brain 223, Thus, the CSF proteome has the
potential to inform us about brain-wide normal and pathological states.

The study of the CSF in genetic or sporadic forms of neurodevelopmental disorders lags
behind similar studies in neurological diseases. Less than a handful of studies analyze the
proteome of this biofluid 24. The study of the CSF in neurodevelopmental disorders has mostly
been focused to targeted studies of few analytes such as cytokines, growth factors,
neuropeptides, or metabolites %°-3°, Thus, we do not know if a neurodevelopmental disorder,
such as Rett syndrome, reproducibly and distinctively modifies the CSF proteome to predict
disease mechanisms and biomarkers of disease. Here, we address this fundamental question by
comprehensively and unbiasedly exploring the CSF proteome of three species carrying mutations
in MECP2/Mecp2. We defined a consensus proteome and ontologies predictive of Rett syndrome
disease mechanisms. Analytes found in the Mecp2-sensitive proteome behaved with sufficient
sensitivity and specificity to act as Rett syndrome biomarkers and to discriminate Rett syndrome
CSF from a CDKLS5 deficiency disorder CSF, a phenotypically related syndrome 3133, This is the first
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multispecies study of the CSF proteome in a monogenic disorder of neurodevelopment. Based
on our proteomic analysis, we propose that Rett syndrome is a synaptic and metabolic
neurodevelopmental disorder. Further, our experimental strategy offers a platform for the
identification of proteomes and biomarkers in the CSF of any childhood genetic neurological
disorder and to infer putative mechanisms of disease.
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Results

The CSF proteome is composed of proteins secreted by conventional and non-
conventional secretory pathways, exosomes, and ectosomes from brain 3*. We collectively refer
to these proteins as the brain secreted proteome. We sought to identify secreted proteins
sensitive to MECP2 gene defects. To achieve this goal, we designed a multipronged strategy to
qguantify secreted proteomes from wild type and MECP2-null neuron conditioned media,
cerebrospinal fluid from Mecp2 null male rat and mouse models, and the CSF from female
individuals with Rett syndrome collected before and after recombinant IGF1 treatment (Fig. 1A)
3536 We reasoned that overlapping proteins and ontologies across diverse experimental systems
would identify robust proteins and ontologies to inform putative disease mechanisms and Rett
syndrome biomarkers. Furthermore, we designed our studies with an emphasis in replicability
across experimental sites, quantification platforms, and species to inform biomarker selection
(Fig. S1). We chose to quantify proteomes with Tandem Mass Tagging (TMT) mass spectrometry
as a high precision method 3738, TMT datasets were analyzed by fold of change/p value volcano
thresholding plus machine learning approaches (Fig. 1A).

The Secreted Proteome of a MeCP2 Deficient Neuronal Cell Line.

We began using differentiated post-mitotic human neurons, LUHMES cells, where the
MECP2 gene was edited by CRISPR-Cas9 3°. We reasoned the secreted proteome of a single cell
type would define cell autonomous protein candidates for cell-type annotation of hits obtained
in cerebrospinal fluids from individuals with Rett syndrome and rodent Mecp2-mutant models.
We characterized the culture media before and after cell conditioning (Fig. 1B, compare lanes 1
with 2-3). The protein complexity of media alone prevented the identification of proteins
contributed by differentiated neurons. The source of protein contaminants was commercial N2
supplements; thus, we customized a N2 supplement starting from high purity reagents. Our
customized N2 allowed us to distinguish proteins contributed by either wild type or mutant
neurons (Fig. 1C, compare lanes 1 with 2-3). TMT mass spectrometry of media alone identified
704 proteins (Fig. 1D and G). In contrast, cell-conditioned media revealed 958 additional proteins
contributed by wild type cells (Fig. 1D and G). Next, we used this custom media formulation to
compare the proteome of wild type and MECP2 null cells. We identified 63 upregulated and 155
downregulated proteins in MECP2 mutant cells by p value and fold-of-change volcano
thresholding (Fig. 1E and H). Prominent downregulated proteins in MECP2 mutant cells included
two apolipoproteins (APOC2 and clusterin, CLU or APQJ), the nucleoporin component AHCTF1,
the mitochondrial protein COQQ, as well as factors implicated in citrate cycle and glycolysis such
as PDHB and OGDH 4%4!, To these volcano selected hits, we added 10 additional proteins from a
total of 16 proteins whose expression was sensitive to the MECP2 mutation as defined by
machine learning (Fig. 1J, asterisks for common volcano and machine learning hits) 4. Among
these 10 new proteins were the mitochondrial proteins TOMM?22 and the E2 component of the
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pyruvate dehydrogenase complex (DLAT) as well as the apolipoprotein APOA2. The performance
of the machine learning algorithm was evaluated by Receiver Operating Characteristics (ROC)
analysis with an area under the curve of 0.97 (Fig. 1K) and confusion matrix analysis where
predicted and actual genotypic classes closely matched (Fig. 1L).

We asked whether the MECP2 secreted proteome was a reflection of the MECP2 cellular
proteome. The MECP2 cellular proteome was represented by 187 proteins (Fig. 1F and I). The
overlap between these two MECP2 sensitive proteomes was minor and barely significant (Fig.
1M). We found just six common hits, among them SST and IGFBPL1 (Fig. 1M). Convergence
between these two datasets became evident in few significant ontological categories shared
between the MECP2 secreted and cellular proteomes, one of them pyruvate metabolic process
(GO:0006090 p= 3.96E-05 Bonferroni corrected, Fig. 1N). These data suggest that ontologies may
be better positioned than proteomic hits to identify convergence between the secreted and
cellular proteome in MECP2 gene mutations within a simple cellular system.

Secreted Proteomes of MeCP2 Deficient Cerebrospinal Fluids in Three Species.

In order to identify CSF proteomes and/or ontologies that are robust and convergent at
the intra and inter-species level, we analyzed by TMT mass spectrometry the cerebrospinal fluid
from wild type and Mecp2 mutants in two rodent species and Rett syndrome individuals. We
performed studies in rats (Fig. 2A-C) as well as in a large cohort of wild type and Mecp2 null mice
(Fig. 2D-F). We identified 70 and 64 CSF proteins whose expression was downregulated in mutant
rat and mouse CSF, respectively (Fig. 2A, B, D, and E). These mutant CSF downregulated proteins
prominently converged on subunits of high-density lipoprotein particles such as Apom, Apoal,
Apoh, and Ponl. Similarly, we identified Apoal, Apocl, Apoc2, and Apoe as downregulated hits
in mouse Mecp2 mutant CSF. An additional category of proteins downregulated in both species
were proteins belonging to the complement and coagulation cascades (Fig. 2A, B, D, and E). To
assess intraspecies robustness, we confirmed these rat CSF hits in an independent cohort of wild
type and mutant rats using an orthogonal label-free mass spectrometry quantification procedure
(LFQ) ¥’. This analysis identified 44 proteins whose expression was affected in mutant CSF (Fig.
S2A) and confirmed the downregulation of apolipoproteins and complement factors in Mecp2-
null CSF (Fig. S2A-C, Apoa4, Apob, Apoc3, Pon1l, and C9). Rodent apolipoprotein and complement
cascade hits could not be attributed to blood contamination of the CSF as evidenced by albumin,
immunoglobulins, or hemoglobin species, which failed to co-cluster with apolipoproteins and
complement (Fig. 2B and E, S2A-B, Table S2). Synaptic proteins were prominent among factors
upregulated in the mouse Mecp2 mutant CSF (Fig. 2D-E). These synaptic proteins include, but
were not limited to, Snap25, Stxlb, Stxbpl, Synl, and Syn2 (Fig. 2D-E) “3. Finally, we also
identified mitochondria proteins within both the significant up- and downregulated proteomes
in mutant rat and mouse CSF (Fig. 2D-E).
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We further scrutinized mouse and rat CSF datasets using machine learning algorithms.
We sought to identify additional proteins sensitive to Mecp2 deficiency that could otherwise
escape detection by volcano thresholding. In addition, we reasoned proteins categorized as
apolipoproteins, synaptic, complement-related, or mitochondria-annotated should emerge as
priority hits in non-linear decision trees segregating wild type and Mecp2 mutant CSFs. Both
mouse and rat CSF machine learning analyses identified complement factors, mitochondrial
proteins (Atpafl, Clybl, Coq9, and Mrpl23), as well as synaptic proteins as priority hits (Actr2,
Atp2b2 and Nefh, Fig. 2F and S2C-E). We validated the performance of machine learning
approaches asking their capacity to identify Mecp2 as a priority protein hit in a proteome dataset
of wild type and Mecp2 mutant rat cortex (Fig. S2D). We identified Myg1, a mitochondrial protein
44 and Mecp2 as the top-two most important classifiers to discern between wild type and Mecp2
mutant brain tissue (Fig. S2D). All these machine learning analyses performed satisfactorily as
determined by area under the curve in ROC analysis (0.72-0.92, Fig. 2F, and S2) and/or confusion
matrices (Fig. 2F, and S2). Thus, interrogation of CSF proteome datasets with boosting
mathematical algorithms provides similar answers as to protein families enriched in rat and
mouse mutant CSFs.

The above-described changes to the Mecp2 mutant CSF could closely parallel brain
proteome modifications. Alternatively, changes to the CSF proteome could be in proteins
different from those in the Mecp2 brain proteome yet both Mecp2 proteomes representing
alterations in the same compartment or pathway, a converging ontology. To address this
question, we compared the rat Mecp2 mutant cortex proteome of animals where we
simultaneously collected CSF. Volcano thresholding by p value and fold of change identified 83
protein whose expression was modified in Mecp2 mutant cortex among 6752 proteins quantified
by TMT (Fig. 2C). None of the Mecp2-sensitive cortical proteins overlapped with rat CSF hits (Fig.
2G). We reasoned that a lack of overlap could emerge from a Mecp2-sensitive cortex proteome
with small expression differences as compared to CSF due to the complexity of the former. Thus,
we relaxed thresholding to include proteins whose expression was significantly different (p<0.05)
without applying a fold-of-change cutoff. This resulted in a relaxed dataset of 543 cortical
proteins in whose expression may be modified in Mecp2 mutants (Fig. 2C). However, this
enlarged and relaxed cortical dataset produced only one overlapping hit with CSF (Fig. 2G,
Ptprn2). An alternative model to account for the lack of overlap between Mecp2 cortex and CSF
proteomes could come from sparse hits identified in mutant rat CSF. Yet comparison of a 405
proteins pooled rat and mouse Mecp2-sensitive CSF proteome, obtained by thresholding and
machine learning, yielded a non-significant overlap of just four hits (Fig. 2G). We expanded our
analysis searching for CSF hits in Mecp2 mutant rats that were also quantified in rat cortices. We
found 67 proteins shared between the rat cortical dataset and the rat CSF Mecp2-sensitive
proteome. These 67 proteins showed no correlation in their expression levels (Fig. 2H). Finally,
we evaluated whether the Mecp2-sensitive CSF and cortical proteomes could overlap at the
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ontology level. To evaluate this hypothesis, we compared whether the rat Mecp2-sensitive cortex
and CSF proteomes could converge on similar ontologies. We identified significant ontological
categories only if the Mecp2-sensitive CSF proteome was analyzed in conjunction with the
relaxed Mecp2 cortical proteome of 543 proteins. Under these conditions, we found overlapping
ontologies including the synapse, which was represented by 75% of the annotated proteins
contributed by the cortical and 25% by the CSF Mecp2-sensitive proteomes (Fig. 21, GO:0045202,
Bonferroni corrected group p=2.467E-22). These results argue that ontologies predicting putative
brain disease mechanisms can be inferred from changes in the CSF proteome. However, there is
a limited capacity to predict specific protein candidates in Mecp2 mutant CSF from brain
proteomes and vice versa.

The Mecp2 mutant rodent CSF differs from the human Rett CSF in that the former
represents brain tissue homogenously deficient in Mecp2 protein. In contrast, the human CSF
proteome reports a genetically mosaic female brain 3°. We studied a cohort of individuals with
Rett syndrome where CSF was collected as part of a phase | clinical trial *°. These participants
were subjected to extended treatment with recombinant IGF-1 during the trial. CSFs were
collected from 12 individuals. In nine participants, fluids were collected before and after
treatment; in two participants, collections occurred only before treatment; and in three
participants, CSF was sampled only after IGF-1 treatment. The phase I clinical trial did not include
typically developing control participants due to ethical constraints . Even though IGF-1

35 we reasoned that if IGF-1

treatment did not improve clinical outcomes in Rett subjects
treatment were to modify some aspects of CSF proteome, it should do so by changing CSF
proteins whose expression was Mecp2-sensitive in rodents. In addition, we hypothesized that
any IGF-1-induced proteome modifications in individuals with Rett syndrome should be in the
opposite direction of what we observed in Mecp2-null rodents and conditioned media from
MECP2 null neurons. The Rett CSF proteome revealed a discrete number of proteins sensitive to
IGF-1 (Fig. 2J-L). We identified by volcano thresholding 7 proteins whose expression was
decreased after IGF-1 treatment and 17 proteins whose expression was increased (Fig. 2J-K).
Importantly, the most prominent among the IGF1-upregulated proteins were the high-density
lipoprotein proteins APOA1, APOC1 and APOM; a change precisely in the opposite direction of
what we found in mouse and rat Mecp2 mutants. Apolipoproteins APOC1, APOC2, and APOM as
well as the apolipoprotein regulatory factor PCSK9 were also identified by machine learning (Fig.
2L). In fact, APOM was assigned the top priority as a discriminatory factor in a decision tree
segregating Rett participants by their IGF-1 treatment (Fig. 2L). Our data suggest that discrete
CSF proteome changes correlate with IGF-1 treatment in Rett female individuals. In the case of
apolipoproteins, protein identity and the direction of change in humans can be informed from
the study of Mecp2 mutant CSF proteomes in preclinical animal models.
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Composite Ontologies of Mecp2 Mutant Cerebrospinal Fluids and Conditioned Media

The secreted proteomes from human cultured neurons, rat, mouse, and human mutant
CSFs revealed common proteins across these diverse experimental systems. These proteins
belong to apolipoproteins, complement, or mitochondrial pathways (Fig. 3A). We asked if these
Mecp2-sensitive hits overlapped just as isolated occurrences or, instead, secreted proteomes
obtained from each experimental system sampled a common ontological space. We tested this
hypothesis using ClueGO, an application that performs composite and comparative enrichment
tests based on hypergeometric distributions 4¢. To test the robustness of our ontological
predictions, we used HumanBase, a genomics data-driven Bayesian machine learning algorithm
that identifies functional modules in tissues and cells 4’. We collated proteins from each of the
four Mecp2- and MECP2-deficient experimental systems, selected by volcano thresholding plus
machine learning (Fig. 1A), to identify a space of shared ontologies (Fig. 3A). We simultaneous
queried an ontological database composite with ClueGo (GO CC, REACTOME, KEGG and
WikiPathways). Each of the four mutant proteome datasets was tagged in ClueGo to discern their
individual contributions to each ontology. We identified a space of 87 ontologies significantly
represented in all the Mecp2- and MECP2-sensitive proteome datasets (Bonferroni corrected p
values <10E-3, Fig. 3B). These ontologies revealed a significant enrichment of hits in
mitochondrial compartments and pathways, pyruvate and aminoacid metabolism, complement
subunits, HDL lipoproteins, and synapse-related ontologies (Fig. 3B). Importantly, these
ontologies were qualified as non-dataset specific, as each mutant proteome dataset contributed
less than 50% of hits to each one of these ontologies (Fig. 3C-D). For example, the HDL particle
ontology was made up by 34, 26, 16 and 25% of hits derived from mouse, rat, neuron conditioned
media, and human Rett CSF, respectively (Fig. 3D, GO:0034364, Bonferroni corrected group p
value=2.81E-13). We confirmed these ontological findings using HumanBase, where we identified
lipid and cholesterol transport ontologies as the most significantly enriched functional modules
(Fig. 3E). This outcome was similar if we performed HumanBase analyses either with astrocyte-
or neuron-centric queries (Fig. 3E). Finally, we confirmed that Mecp2- and MECP2-sensitive
proteomes were enriched in HDL, synaptic, and mitochondria annotated proteins interrogating
different databases. We used the curated HDL proteomes database, the SynGo knowledge base
of annotated synaptic proteins, and the Mitocarta 3.0 database of annotated mitochondrial
proteins (Fig. 3F-G) 414348 The collated Mecp2- and MECP2-sensitive proteome contained 80
proteins in common with the HDL proteome (Fig. 3F). This represents a significant 7.9-fold
enrichment above what is expected by chance (Fig. 3F, p<9.26E-49). Among these overlapping
HDL proteins, we found diverse apolipoproteins, complement subunits, antiproteases of the
serpin family, and factors such as clusterin (Clu), and PCSK9. All these overlapping HDL
components formed an interconnected network of protein-protein interactions as determined
with the Genemania application (Fig. 3F) %°. Similarly, the collated Mecp2- and MECP2-sensitive
proteome was also significantly either enriched in interconnected synaptic or mitochondrial
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proteins >2-fold above what is predicted by chance. These findings demonstrate that Rett
syndrome CSF proteomes from diverse species converge on a common set of ontologies. These
ontological findings demonstrate a varied and novel set of molecular phenotypes associated to
Rett syndrome. These Rett syndrome molecular phenotypes offer a distinctive path for disease
biomarkers.

Ontologies Inform Putative Biomarkers of Rett Syndrome.

We used convergent Rett molecular ontologies to inform a selection of proteins for
confirmatory studies and to assess their potential as disease biomarkers. The HDL lipoprotein
proteome was the most significantly enriched ontology among all the mutant secreted
proteomes (Fig. 3B, E and F). We performed absolute quantification (AQUA) of proteins by mass
spectrometry to confirm expression changes in HDL apolipoproteins in independent cohorts of
rat (Fig. 4A) and mouse CSF from wild type and mutant animals (Fig. 4B-C) °°. We also confirmed
CSF  hits in Rett syndrome individuals before and after IGF1 treatment by
electrochemiluminescent ELISA assays (Fig. 4C) °.

AQUA quantification of the HDL lipoprotein particle components Apoal, Apob, Pon1, C3,
and C9 revealed decreased levels in mutant as compared to wild type rat CSF (Fig. 4A). Levels of
loading controls, App and A2m, were not affected by genotype in rats (Fig. 4A). These findings
were extended to Rett mouse models (Fig. 4B-C). We used isotopolog peptide standards to
measure proteins associated to HDL particles in mouse CSF. Diverse apoliproteins (Apoal, Apocl,
Apoc2, Apoe), complement subunits (C6, C7, C8a, C8b, C8g, C9), and antiproteases (Alat5,
Serpina3k) were reduced in Mecp2 deficient animals compared to controls (Fig. 4B-C). Similarly,
the levels of other secreted proteins such as the neurosecretory protein VGF, proenkephalin-A
(Penk), cathepsin Z (Ctsz), or the transmembrane epidermal growth factor receptor (Egfr) were
robustly and significantly reduced in the CSF of mutant mice (Fig. 4C). These results
independently validate our TMT findings in the CSF of two rodent models of Rett syndrome.

We next focused on the nine participants where CSF samples were obtained before and
after IGF1 treatment. We deployed principal component analysis to assess individual and group
responses to IGF1. The main variable segregating participant CSF proteomes was their identity
rather than treatment itself (Fig. 4D). Second, treatment modified a participants’s CSF
composition discretely, mostly driven by changes in the levels of apolipoproteins (Fig. 4B).
Importantly, the levels of blood proteins such as hemoglobins (HBB and HBD), albumin (ALB), and
immunoglobulins could not account for the changes in apolipoprotein protein levels (Fig. 4B). We
confirmed that IGF1 treatment increased the content of APOA1 in Rett participant’s CSF by ELISA
(Fig. 4C). In contrast, two proteins whose expression was not modified by treatment in TMT mass
spectrometry quantifications, APOE and B2M, did not change their levels after treatment in ELISA
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assays (Fig. 4C). These results confirm protein hits and ontologies in human and rodent Rett
syndrome models.

To evaluate the potential of ontologically selected Mecp2-sensitive hits to serve as
disease biomarkers, we addressed the following questions. First, do CSF Mecp2 hits discriminate
between genetic forms of autism spectrum disorder? We selected a null mutation in the Cdk/5
gene, which is causative of the CDKL5 deficiency disorder, an X-linked neurodevelopmental
disorder. The behavioral and brain anatomy phenotypes of a mouse model of this syndrome
closely mimic those in Rett syndrome mouse models 33 (Fig. 4F-G). We found that the CSF
proteome of Cdk/5 mutants was different from Mecp2 mutant CSF, as indicated by the 16
different proteins selected from Mecp2 CSF whose levels remained unchanged in Cdk/5 null CSF.
The only exception was Apoe, which was decreased in both Mecp2 and Cdkl5 mutant CSF (Fig.
4G). These findings demonstrate that Mecp2 CSF hits discriminate between phenotypically
related forms of neurodevelopmental disorders. Second, we interrogated whether selected
Mecp2 CSF proteins were expressed in disease-relevant cell types (Fig. S3A-B). HDL
apolipoproteins such as Apoal, Apoe, Ponl, and Clu were expressed in neurons and astrocytes
(Fig. 4A). Single cell RNAseq data showed that transcripts encoding these HDL proteins were
expressed in diverse populations of glutamatergic and GABAergic neurons across the multiple
layers of the cortex and hippocampus (Fig. S3B). Apocl mRNA or its protein were undetectable
in neurons and glia but present in plasma (compare Fig. S3A and B). In contrast, complement
components (C7, C8b, C8g, and C9), growth factors (Igf1 and Vgf), mitochondrial proteins (Acat1,
Coq9, and Micul), and synaptic annotated proteins (Snap25, Stxlb, Synl, and Syn2) were
expressed in diverse glial and neuronal cell populations to a different degree (Fig. S3B). For
example, C8b and C9 mRNAs were expressed in a discrete neuronal population whereas C7 was
broadly expressed in cortex and hippocampus (Fig. S3B). Thus, ontologically selected protein hits
are expressed in disease-relevant neuronal and glial cell types. Finally, we determined if selected
proteins could distinguish subjects by genotype. We performed ROC analysis focusing on the
Mecp2 mutant mouse CSF hits as the animal cohort of the biggest size, the mouse TMT dataset
(Fig. 4H). Each ontologically selected analyte efficiently distinguished genotypes irrespective of if
they belonged to either the HDL lipoprotein, synapse, or mitochondrion category. In fact, all
analytes ROC area under the curve were between 0.77 to 0.9 with significant p values (Fig. 4H).
In other words, these analytes have a 77 to 90% chance to distinguish wild type and mutant CSF.
The ROC performance of an analyte was similar whether TMT or AQUA datasets were analyzed
(Fig. 4H, compare grey and purple symbols). None of these validated analytes experienced
modifications in their mRNA expression across diverse brain regions in Mecp2 mutant mice,
indicating that the utility of these analytes as putative biomarkers of Mecp2 gene defect is
restricted to their protein levels in CSF (Fig. S4). These findings demonstrate that CSF analytes
identified in rodent models of Rett syndrome are sensitive, conserved, and represent specific
candidates for Rett biomarkers with potential for human applications.
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Discussion

Here we demonstrate that a X-linked neurodevelopmental disorder, Rett syndrome,
reproducibly and distinctively impacts the composition of the CSF. We defined a consensus
proteome and ontological categories shared by four experimental systems across three species
deficient in Mecp2/MECP2. These proteomes converged on proteins annotated to HDL
lipoproteins, complement cascade, mitochondrial compartments, citrate cycle/pyruvate
metabolism, as well as synapse compartments. The robustness of our findings is founded on the
multipronged nature of our experimental design, which includes diversified in vitro and in vivo
systems, multiple species studied, distinct mathematical processing of datasets capturing
similarly annotated proteins, replication across different proteomic platforms (LFQ and TMT),
and replicability across two sites for CSF collection and mass spectrometry analysis (Fig. S1).
Although, the different mutant CSF proteomes produced discrete overlap across individual
analytes, they all shared significant overlap at the ontology level. We used these convergent
ontologies to inform the selection of analytes for orthogonal confirmatory efforts. These
confirmatory approaches independently validated our LFQ and TMT findings. Confirmed analytes
provided a proof of principle to the use of convergent ontologies as a strategy to select analytes
predicted to report a mutant genotype across species and quantification platforms. For example,
even though Apoal was not identified as a significant hit in the mouse CSF TMT proteome,
selection of Apoal, based on the ontology to which it belongs, predicted and resulted in robust
confirmation across all species studied and platforms used. Ontologically selected hits performed
well as putative biomarkers as determined by ROC analysis and the capacity of multiple Mecp2-
sensitive hits to discriminate Mecp2 mutant CSF from another phenotypically related
neurodevelopmental disorder, the CDKL5 deficiency disorder. We propose that Mecp2 mutant
CSF ontologies inform robust CSF analytes to act as Rett syndrome biomarkers in humans.

The mechanisms that account for the changes in the secreted proteome described here
have not been explored yet. However, we reasoned that if the Mecp2 secreted proteome were
to be caused directly by a Mecp2-dependent transcriptional defect, there should be parallel
modifications in the cellular and secreted proteomes. We found that this is not the case. The CSF
and brain cortex proteomes did not correlate. In fact, transcriptomic analysis of several
ontologically selected CSF protein hits showed that none of these proteins exhibited correlated
modifications in their mRNA levels in brain. Similarly, the neuronal cell and conditioned media
proteomes poorly overlapped. These results argue that indirect mechanisms downstream of
Mecp2-dependent transcription, such as network activity, likely drive the secreted proteome
phenotypes.

We have minimized the possibility that accidental plasma contamination of the CSF is a
driving factor for some of the CSF expression differences observed. However, CSF protein
composition is defined by factors that normally transcytose from the plasma to the CSF plus
contributions from neuronal and non-neuronal cells in the brain parenchyma, the choroid plexus,
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and ependymal cells >>°3, Therefore, our findings likely represent contributions of diverse cell
types in brain to the Mecp2-sensitive CSF proteome. With few exceptions, many of our CSF
Mecp2-sensitive proteins could be attributed to multiple cell types. For example, Apoe and Clu
(Apoj) could be ascribed to secretions from astrocytes or the choroid plexus, where Apoe and Clu
(Apoj) rank among the most expressed mRNAs; they could be ascribed to neurons, where these
MRNAs are also expressed yet at lower levels. Importantly, Apoe brain levels are locally
controlled without contributions from plasma >*. We directly tested the hypothesis that the
expression of apolipoproteins is cell-autonomously controlled in neurons as demonstrated by the
reduced levels of Clu (Apoj) in the conditioned media of human postmitotic neurons. On the
other extreme, Vgf and Igf1 mRNAs are expressed in neurons with preferences for neuronal cell
types. Such is the case of Igfl, which is mostly expressed in GABAergic interneurons and is
minimally or not expressed in glia, endothelial cells, and the choroid plexus >>°. Thus, the Mecp2
secreted proteome offers multiple analytes to assess phenotypes in multiple brain cell types
lacking Mecp2.

All Mecp2 secreted proteomes converged on robust ontologies. Proteins annotated most
significantly to HDL lipoprotein, complement, synapse, mitochondria, and mitochondrial
pathways such as citrate cycle/pyruvate metabolism ontologies. These consensus ontologies
likely point to pathogenic mechanisms in Rett syndrome. For example, the effects of Mecp2
mutations on synaptic morphology, function, and plasticity have been extensively documented
457 However, HDL and mitochondrial ontologies have received less attention. HDL particles are
assembled by astrocytes and microglia. These lipoproteins transport cholesterol between glial
cells and neurons. Thus, a possible mechanism to account for the decreased levels of HDL
apolipoproteins in CSF is either a decreased production/secretion by Mecp2 deficient glial cells
or an increased clearance by cells that express HDL receptors in brain, such as neurons 5%, We
favor the decreased HDL production model as it can explain the observed increased cholesterol
content in brain at postnatal day 56, despite decreased expression of cholesterol synthesis
enzymes and decreased de novo cholesterol synthesis ©. We postulate that decreased HDL
lipoproteins levels in CSF may be a factor contributing to the accumulation of cholesterol in brain
and the concurrent inhibition by product of cholesterol synthesis. A second ontology strongly
represented in our datasets is mitochondria compartments and pathways. Pyruvate and lactate
are increased in Rett syndrome individual’ CSF, and Krebs cycle metabolites are increased in the
brain of Mecp2 mutant mice. This suggests connections between CSF glycolysis and Krebs cycle
ontologies and proteins and these metabolites 2°3°. However, there are not enough studies to tie
together our observations in CSF with potential models of mitochondrial dysfunction in Mecp2
mutant cells %1%, Our findings support the idea that Mecp2 mutant CSF ontologies predict
putative brain mechanisms disrupted by mutations in Mecp2. We propose that Rett syndrome is
a synaptic and metabolic disorder of neurodevelopment.
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Materials and Methods

Rat and Sample Collection

All experiments were carried out in accordance with the European Communities Council
Directive (86/609/EEC) and with the terms of a project license under the UK Scientific Procedures
Act (1986). The Mecp2”¥ rats were maintained by crossing Mecp2*~ females with wild type
Sprague Dawley males. Animals were maintained on 12-hour light/dark cycles with free access
to normal rat food. WT and Mecp2” rats at 25 days of postnatal age were weighed and assessed
for the development of the RTT-like phenotypes prior to surgery. Rats were anaesthetized using
intraperitoneal administration of an injectable cocktail of medetomidine (0.5mg/kg) and
ketamine (75mg/kg). Once the animal was deeply anaesthetized, as indicated by the absence of
withdrawal reflexes (tail and limbs) and the eye positioning reflex, the surgical area was shaved
and the animal was secured in the stereotaxic frame with the head tilted at roughly 452. The
surgical area was then cleaned with Hibiscrub and a surgical drape was placed around the
operating area with a hole to expose only the surgical area. A skin incision along the midline of
the skull extending from between the eyes to 3-4 cm caudally to make sure the back of the neck
is fully exposed. The fascia and the superficial and deep layers of the neck muscles were then
dissected to expose the membrane of the dura mater at the atlanto-occipital joint between the
occipital condyles and the rostral facets of atlas. The cisterna magna was then carefully pierced
by a pulled glass pipette (1 cm long) connected to a 2.5ml syringe through 30 cm of PE-50 tubing.
A small volume of CSF entered the glass pipette through the capillary action and the flow was
maintained by gently pulling the plunger. The CSF was collected into cryoprotective tubes and
snap-frozen immediately in liquid nitrogen. Animals were then given a lethal dose of anesthesia,
decapitated and the brain was exposed and the areas of interest were dissected and snap-frozen
in liquid nitrogen.

Mice and CSF Collection

Animal husbandry and euthanasia was carried out as approved by the Emory University
Institutional Animal Care and Use Committees. C57BL/6J male mice (The Jackson Laboratory
#000664). Mecp2, Mecp2i™1-18id and Cdkl5-deficient mice, Cdk/5t™1-1/°¢z were obtained from the
The Jackson Laboratory stocks #003890 and 021967, respectively. All animals were of 6 weeks of
age. Animals were maintained on 12-hour light/dark cycles with free access to mouse chow.

Our terminal CSF collection method was adapted from a previously published protocol °.
Mice were deeply anaesthetized by intraperitoneal injection of a mixture of ketamine (73.5
mg/kg; Akron, USA), xylazine (9.2 mg/kg; Bayer Pharma, Germany), and acepromazine maleate
(2.75 mg/kg; Boehringer Ingelheim, USA) in 0.9% (v/w) NaCl. The back of the neck overlying the
occiput were first shaved then cleaned and disinfected with 70% ethanol. Using the thumb and
index finger, the mouse was placed prone with the neck in flexion on a 15 mL conical tube at
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approximately 45-degree angle to access the cisterna magna using landmarks between occipital
protuberances and the spine of the atlas. A Hamilton syringe containing 30 G needle was inserted
through the skin at a 45-degree angle with the horizontal, to reach a depth of approximately 4
mm into the cisterna magna for CSF collection without need for an incision. The syringe was kept
stable without any lateral movement and 4-12 ul or clear CSF was drawn into the syringe by slow
and smooth aspiration. The CSF was immediately spun down for 30 seconds and clear CSF was
inspected with the naked eye and frozen immediately on dry ice. Frankly blood contaminated
samples discarded.

Human Subjects

Clinical features of the cohort used in these studies are described by Khwaja et al.**. The
referred study was approved by the Institutional Review Board of Boston Children's Hospital and
informed consent was obtained from the parent of each participant. CSF samples were received
and remained deidentified for these studies.

Cell Culture and Conditioned Media Preparation.

LUHMES wild-type control, and MECP2 knock-out 2_7 cell line were differentiated and
conditioned media was collected. Nunclon flasks and plates were treated with a 44 ug/ml Poly-
L-Ornithine (Sigma P3655) and 1 pg/ml fibronectin (Sigma F1141) solution overnight in a 37°C
incubator. LUHMES cells were differentiated as follows: three million cells were plated in a T75
flask with proliferation media (Advanced DMEM/F12 (Gibco 12634-010) with N2 (Gibco
17502048), 2mM L-glutamine (Sigma G7513), and 40ng/ml beta-FGF (R&D Systems 4114-TC-
01M). After 24 hours, media was changed to differentiation media (Advanced DMEM/F12 with
N2, 2mM L-glutamine, 1ImM DbcAMP (Sigma D0627), 1 ug /ml tetracycline (Sigma T7660), and 2
ng/ml GDNF (R&D Systems 212-GD-050) for a pre-differentiation phase of two days. Pre-
differentiated cells were lifted with trypsin method. Trypsin activity was blocked with aprotinin
after lifting the cells. To reduce background signal in mass spectrometry, the last phase of
differentiation utilized high purity and BSA-free components including high purity N2
components. A 100x high purity N2 solution was made with 10 mg/ml human holo-transferrin
(Sigma T4132), 0.5mg/ml human recombinant insulin solution (Sigma 19278), 0.63 pg/ml
progesterone (Sigma P6149), 1.61 mg/ml putrescine dihydrochloride (Sigma P5780), 0.52 pg/ml
sodium selenite (Sigma S5261) and DMEM/F12 (Thermo Fisher 21331020). One million pre-
differentiated cells were plated to each well of a Nunclon 6-well dish with 2 ml of the high purity
differentiation media: DMEM/F12 (Thermo Fisher 21331020) containing high purity N2 (above),
2 mM L-glutamine (Sigma G7513), 1 mM DbcAMP (D0627), 1 pug/ml tetracycline (T7660), and 2
ng/ml GDNF (R&D Systems 212-GD-050). Cells conditioned the media for 3 days at 5% CO2 in a
37°C incubator. On the third day, the conditioned media was collected and Complete
antiprotease (Roche 11697498001) was added. Cellular debris was pelleted at 16,000 x g in an
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Eppendorf microcentrifuge at 4°C for 20 minutes. The supernatant was collected and flash frozen
on dry ice. A trichloroacetic acid (TCA) precipitation was done on 750 pl of the conditioned cell
media by adding 9.8 p g sodium deoxycholate per 100 pl of conditioned media followed by
trichloroacetic acid to 10%. The solution was incubated on ice for 20 minutes to precipitate out
proteins. The solution was centrifuged at 16,000 x g for 15min at 4°C. TCA supernatant was
aspirated out and the pellet was washed in an equal volume of ice-cold acetone and vortexed.
Precipitate was repelleted by centrifugation at 16,000 x g at 4°C for 10minutes. Acetone was
aspirated and the pellet was lightly air-dried, dissolved in 200 pl of 8M Urea, and flash frozen on
dryice.

Mass Spectrometry Emory

Sample Processing. All CSF (5ul) samples were diluted with 50 pl of 50 mM NH4HCO3 and
treated with TCEP and CAA and heated at 90°C for 10 minutes. The samples were digested with
1:20 (w/w) lysyl endopeptidase (Wako) at 25°C overnight. Further overnight digestion was
carried out with 1:20 (w/w) trypsin (Promega) at 25°C. Resulting peptides were desalted with a
HLB microelution plate (Waters) and dried under vacuum.

Tandem Mass Tag (TMT) Labeling. For each sample, labeling was performed as previously
described 227, Briefly, each was re-suspended in 100 mM TEAB buffer (100 uL). The TMT and
TMTPro labeling reagents were equilibrated to room temperature, and anhydrous ACN (256 pL)
was added to each reagent channel. Each channel was gently vortexed for 5 min, and then 41 ulL
from each TMT channel was transferred to the peptide solutions and allowed to incubate for 1 h
at room temperature. The reaction was quenched with 5% (vol/vol) hydroxylamine (8 pl) (Pierce).
All channels were then combined and dried by SpeedVac (LabConco) to approximately 150 uL
and diluted with 1 mL of 0.1% (vol/vol) TFA, then acidified to a final concentration of 1% (vol/vol)
FA and 0.1% (vol/vol) TFA. Peptides were desalted with a 30 mg C18 Sep-Pak column (Waters).
Each Sep-Pak column was activated with 1 mL of methanol, washed with 1 mL of 50% (vol/vol)
ACN, and equilibrated with 2x1 mL of 0.1% TFA. The samples were then loaded and each column
was washed with 2x1 mL 0.1% (vol/vol) TFA, followed by 1 mL of 1% (vol/vol) FA. Elution was
performed with 2 volumes of 0.5 mL 50% (vol/vol) ACN. The eluates were then dried to
completeness.

High pH Fractionation. High pH fractionation was performed essentially as described 685°
with slight modification. Dried samples were re-suspended in high pH loading buffer (0.07%
vol/vol NH40H, 0.045% vol/vol FA, 2% vol/vol ACN) and loaded onto Water’s BEH C18 column
(2.1mm x 150 mm with 1.7 um beads). An Thermo Vanquish system was used to carry out the
fractionation. Solvent A consisted of 0.0175% (vol/vol) NH40OH, 0.01125% (vol/vol) FA, and 2%
(vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) NH40H, 0.01125% (vol/vol) FA, and 90%
(vol/vol) ACN. The sample elution was performed over a 22 min gradient with a flow rate of 0.6
mL/min from 0 to 50% solvent B. A total of 96 individual equal volume fractions were collected
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across the gradient and subsequently pooled by concatenation into 48 fractions for the Mecp2
TMT batches. For the Cdlk5 batch, 192 fractions were collected and combined into 96 fractions.
All fractions were dried to completeness using a vacuum centrifugation.

Liquid Chromatography Tandem Mass Spectrometry for TMT. Each of the peptide
fractions was resuspended in loading buffer (0.1% FA, 0.03% TFA, 1% ACN). Peptide eluents were
either separated on a self-packed C18 (1.9 um Dr. Maisch, Germany) fused silica column (15 cm
x 100uM internal diameter (ID), New Objective, Woburn, MA) or a Water’s 1.7 um CSH C18
column (15 cm x 150uM internal diameter ). An Easy nLC 1200 (ThermoFisher Scientific) or
Ultimate U300 RSLCnano (Thermo Scientific) was used to elute the peptide ion. Mass spectra
were collected either on a Fusion Lumos or Fusion Eclipse mass spectrometer. Both mass
spectrometers were outfitted with the FAIMS Pro ion mobility source.

Liquid Chromatography Tandem Mass Spectrometry for Parallel Reaction Monitoring
(PRM). AQUA standard peptides (ThermoFisher Scientific) were spiked into digested mouse CSF
samples. For each sample and equivalent of 1 ul of CSF was loaded onto a Water’s 1.7 um CSH
C18 column (15 cm x 150uM internal diameter). Peptides were eluted using a Ultimate 3000
RSLCnano and PRM spectra were collected using an Orbitrap HFX mass spectrometer.

Data Processing Protocol. All TMT raw files were searched using Thermo's Proteome
Discoverer suite (version 2.4.1) with Sequest HT. The spectra were searched against rat or mouse
uniprot database. Search parameters included 20ppm precursor mass window, 0.05 Da product
mass window, dynamic modifications methione (+15.995 Da), deamidated asparagine and
glutamine (+0.984 Da), phosphorylated serine, threonine and tyrosine (+79.966 Da), and static
modifications for carbamidomethyl cysteines (+57.021 Da) and N-terminal and Lysine-tagged
TMT (+229.26340 Da or +304.207 Da). Percolator was used filter PSMs to 0.1%. Peptides were
grouped using strict parsimony and only razor and unique peptides were used for protein level
guantitation. Reporter ions were quantified from MS2 scans using an integration tolerance of 20
ppm with the most confident centroid setting. Only unique and razor (i.e., parsimonious)
peptides were considered for quantification. PRM spectra were processed using the Skyline
quantitation suite 7°.

Mass Spectrometry Ann Arbor

Sample Preparation. For tissues, samples were washed twice in 1X PBS and lysed in 8M
urea, 50mM Tris HCI, pH 8.0, 1X Roche Complete Protease Inhibitor and 1X Roche PhosStop.
Other samples were processed directly for protein quantification using Qubit fluorometry
following by digestion overnight with trypsin. Briefly, samples were reduced for 1h at RT in 12mM
DTT followed by alkylation for 1h at RT in 15mM iodoacetamide. Trypsin was added to an
enzyme:substrate ratio of 1:20. Each sample was acidified in formic acid and subjected to SPE on
an Empore SD C18 plate. For TMT labeling, after trypsin digestion ach sample was acidified in
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formic acid and subjected to SPE on an Empore SD C18 plate (3M catalogue# 6015 SD). Each
sample was lyophilized and reconstituted in 140mM HEPES, pH 8.0, 30% acetonitrile.

Label Free Quantification Mass Spectrometry. A 2ug aliquot was analyzed by nano
LC/MS/MS with a Waters NanoAcquity HPLC system interfaced to a ThermoFisher Fusion Lumos.
Peptides were loaded on a trapping column and eluted over a 75um analytical column at
350nL/min; both columns were packed with Luna C18 resin (Phenomenex). A 4h gradient was
employed. The mass spectrometer was operated in data-dependent mode, with MS and MS/MS
performed in the Orbitrap at 60,000 FWHM resolution and 15,000 FWHM resolution,
respectively. APD was turned on. The instrument was run with a 3s cycle for MS and MS/MS. The
acquisition order was randomized. Data Processing Data were processed through the MaxQuant
software v1.6.2.3 (www.maxquant.org). Data were searched using Andromeda with the
following parameters: Enzyme: Trypsin, Database: Uniprot Rat, Fixed modification:
Carbamidomethyl (C), Variable modifications: Oxidation (M), Acetyl (Protein N-term), Fragment
Mass Tolerance: 20ppm Pertinent. MaxQuant settings were: Peptide FDR 0.01 Protein FDR 0.01
Min. peptide Length 7 Min. razor + unique peptides 1 Min. unique peptides 0 Min. ratio count for
LFQ 1 Second Peptides® TRUE Match Between Runs* TRUE

TMT Quantification Mass Spectrometry. 40l of acetonitrile was added to each TMT tag
tube and mixed aggressively. Tags were incubated at RT for 15min. 30uL of label was added to
each peptide sample and mixed aggressively. Samples were incubated in an Eppendorf
Thermomixer at 300rpm 25°C for 1.5h. Reactions were terminated with the addition of 8uL of
fresh 5% hydroxylamine solution and 15min incubation at room temperature. Samples were
subjected to high pH reverse phase fractionation as follows; Buffers: Buffer A: 10mM NaOH, pH
10.5, in water Buffer B: 10mM NaOH, pH 10.5, in acetonitrile. We used XBridge C18 colums,
2.1mm ID x 150mm length, 3.5um particle size (Waters, part #186003023) attached to a Agilent
1100 HPLC system equipped with a 150uL sample loop operating at 0.3mL/min, detector set at
214 nm wavelength. Dried peptides were resolubilized in 150uL of Buffer A and injected
manually. Fractions were collected every 30s from 1-49min (96 fractions total, 150uL/fraction).
We analyzed by mass spectrometry 10% per pool for the full proteome in a nano LC/MS/MS with
a Waters NanoAcquity HPLC system interfaced to a ThermoFisher Fusion Lumos mass
spectrometer. Peptides were loaded on a trapping column and eluted over a 75um analytical
column at 350nL/min; both columns were packed with Luna C18 resin (Phenomenex). Each high
pH RP fraction was separated over a 2h gradient (24h instrument time total). The mass
spectrometer was operated in data-dependent mode, with MS and MS/MS performed in the
Orbitrap at 60,000 FWHM resolution and 50,000 FWHM resolution, respectively. A 3s cycle time
was employed for all steps. Data Processing Data were processed through the MaxQuant
software v1.6.2.3 (www.maxquant.org). Data were searched using Andromeda with the

following parameters: Enzyme: Trypsin Database: Uniprot Rat, Fixed modification:
Carbamidomethyl (C) Variable modifications: Oxidation (M), Acetyl (Protein N-term), Phopho
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(STY; PO4 data only). Fragment Mass Tolerance: 20ppm. Pertinent MaxQuant settings were:
Peptide FDR 0.01 Protein FDR 0.01 Min. peptide Length 7 Min. razor + unique peptides 1 Min.
unique peptides 0 Second Peptides FALSE Match Between Runs FALSE The protein Groups.txt
files were uploaded to Perseus v1.5.5.3 for data processing and analysis.

AQUA Mass Spectrometry. Synthetic peptides labeled with Arginine (13C6,15N4) or
Lysine (13C6,15N2) at >95% purity were made by New England Peptide MA 01440 USA. The
following peptides were used: Myh9 AGVLAHLEEER; IAQLEEQLDNETK. Pon1 IFFYDSENPPGSEVLR;
LLIGTVFHR. App TEEISEVK; THTHIVIPYR. A2m AIAYLNTGYQR; LPSDVVEESAR. Apoal
DYVSQFESSTLGK; WNEEVEAYR. Apob TEVIPPLIENR; GFEPTLEALFGK. C3 GLEVSITAR;
SSVAVPYVIVPLK. C9 SIEVFGQFQGK; TTSFNANLALK. Thbs1 FVFGTTPEDILR; IENANLIPPVPDDK. A 3-
4 pg aliquot of each CSF tryptic peptide digests was spiked with isotopologe peptides at a
concentration of 100 or 133 fmol/ug peptide digest. Peptides mixes were analyzed in analytical
duplicate by nano LC/PRM using a Waters NanoAcquity HPLC system interfaced to a
ThermoFisher Fusion Lumos mass spectrometer. 1.5ug per sample was loaded on a trapping
column and eluted over a 75um analytical column at 350nL/min; both columns were packed with
Luna C18 resin (Phenomenex). A 1h gradient was employed. The mass spectrometer was
operated in PRM mode without scheduling; instrument settings included 15,000 FWHM
resolution, NCE 30, AGC target value 5e4, and maximum IT of 22ms. Data were processed using
Skyline v4.2.

Data Processing

Proteomics data were log2 converted. Data analysis was performed with two methods.
We used Qlucore Omics Explorer Version 3.6(33) normalizing data to a mean of 0 and a variance
of 1. No filtering by standard deviation was applied. All data were thresholded by a log2 fold of
change of 0.5 and a non-corrected p value of 0.05.

A second method used was OmicLearn (v1.0.0) for performing the data analysis, model
execution, and generating the plots and charts 2. Machine learning was done in Python (3.8.8).
Feature tables were imported via the Pandas package (1.0.1) and manipulated using the Numpy
package (1.18.1). The machine learning pipeline was employed using the scikit-learn package
(0.22.1). For generating the plots and charts, Plotly (4.9.0) library was used. No normalization on
the data was performed. To impute missing values, a Mean-imputation strategy is used. Features
were selected using a ExtraTrees (n_trees=100) strategy with the maximum number of 20
features. Normalization and feature selection was individually performed using the training data
of each split. For classification, we used either a XGBoost-Classifier (random_state = 23
learning_rate = 0.3 min_split_loss =0 max_depth =6 min_child_weight = 1), a AdaBoost-Classifier
(random_state = 23 n_estimators = 100 learning_rate = 1.0), or RandomForest-Classifier
(random_state = 23 n_estimators = 100 criterion = gini max_features = auto). Clasifiers were
chosen based on the proximity of ROC curves to a value of 1. When using
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(RepeatedStratifiedKFold) a repeated (n_repeats=10), stratified cross-validation (n_splits=5)
approach to classify datasets based on their genotype.

RNAseq and Single Cell RNAseq

RNAseq data analysis was described in Wynne et al. 7. Single cell RNA seq data were
described in 2. Gene expression data matrix (matrix.csv) and cell metadata (metadata.csv) data
were downloaded from the Allen Institute Portal and processed as described 7* with the Qlucore
Omics Explorer Version 3.6(33). Data were log2 converted and normalized to a mean of 0 and a
variance of 1. 2D t-SNE plots were generated using a perplexity of 40 and default settings.

Bioinformatic Analyses

Gene ontology analyses were performed with Cluego and HumanBase #’. ClueGo v2.58
run on Cytoscape v3.8.2 %®73, ClueGo was run querying GO CC, REACTOME, KEGG and
WikiPathways considering all evidence at a Medium Level of Network Specificity and selecting
pathways with a Bonferroni corrected p value <10E-3. ClueGo was run with Go Term Fusion.
HumanBase was run using default webased parameters®’. In silico interactome data were
downloaded from Genemania predicted and physical interactions and processed in Cytoscape
v3.8.2 3. Interactome connectivity graph parameters were generated in Cytoscape.

Statistical Analyses

Volcano plot p values were calculated using Qlucore Omics Explorer Version 3.6(33)
without multiple corrections. Experiments in Figure 4A-B and G statistical analyses were
performed with the engine https://www.estimationstats.com/#/ with a two-sided permutation
t-test and alpha of 0.05 7%. ROC analysis and paired t-test were performed with Prism v9.2.0(283).

Data Availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE ’® partner repository with dataset identifiers: PXD029808, PXD029809,
PXD029811, PXD029835
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Figure Legends

Figure 1. The Secreted Proteome of Post-Mitotic MECP2 Mutant Human Neurons

A. Experimental strategy to define a consensus Rett syndrome secreted proteome and infer
conserved ontologies. B and C. Silver stain of two formulations of media conditioned by wild type
and MECP2-null differentiated LUHMES cells, a post-mitotic human neuron line 7. Lane 1 in B
and C represent naive non-conditioned media. Lanes 2 and 3 depict conditioned media by wild
type and mutant cells. B presents experiments performed with commercial N2 supplement. C
shows experiments where the N2 supplement was custom generated from high grade purity
reagents. D to F, present volcano plots of TMT mass spectrometry experiments with thresholds
at log2 of 0.5-fold of change in protein abundance and a p value <0.05. Symbol color represents
fold of change in linear scale (see insert). D presents a comparison between protein hits obtained
by comparing media conditioned by wild type neurons and non-conditioned media. All hits to the
right of the X axis correspond to proteins secreted by neurons (n=5). E shows a comparison of
the wild type and MECP2 mutant secreted proteome. All hits to the right correspond to proteins
whose expression is higher in wild type than in mutant cells (n=5). F shows the total cellular
proteome of wild type and MECP2-null cells used in E, n=3. G to | show clustered heat maps of
hits selected in D to F. Arrows mark some cardinal hits. Rows are depicted as minimum and
maximum intensities (blue-yellow scale) and annotated by log2 fold of change (rainbow scale,
see table S1).J to L analysis of TMT data in panel E using an XGBoost machine learning algorithm.
J presents main hits discriminating wild type and MECP2 conditioned media in the decision tree.
Asterisks mark proteins identified both by volcano thresholding and machine learning. K-L,
performance of the machine learning protocol estimated by ROC analysis, J, and confusion matrix
in I. Area under the curve in J =0.97+12. M, Venn diagram of the overlap between hits found in
conditioned media in panel E and cellular hits in F, p value calculated with exact hypergeometric
probability. N, shows the % overlap between the cellular proteome ontologies inferred from the
datasets shown in E and F calculated with the ClueGo application (see table S1). P value estimated
with exact hypergeometric probability Bonferroni corrected.

Figure 2. The Rett Syndrome CSF Proteome Across Three Species.

A volcano plot of TMT mass spectrometry determinations in rat cerebrospinal fluid. Cutoffs at
log2 of 0.5 fold of change in protein abundance and a p value <0.05 n=5. B shows clustered heat
maps of hits selected in A. For A and B, see legend to Figure 1 for additional details. C depicts
volcano plot of rat cortices analyzed by TMT mass spectrometry. Shown are hits selected by p
value <0.05 see table S2 for hit lists at p<0.01. n=5. D and E show mouse CSF TMT volcano plot
and heat map of selected hits at cutoffs of log2 0.5 fold of change in protein abundance and a
p<0.05. n=16 wild type and 14 Mecp2-null mice. F analysis of TMT data presented in panel D using
an XGBoost machine learning algorithm. Main hits discriminating wild type and Mecp2 mutant
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CSF proteomes in decision tree are shown. Inserts show performance of the machine learning
protocol estimated by ROC analysis and confusion matrix. Area under the curve in J =0.92+11. G,
Top Venn diagram shows the overlap between Mecp2-sensitive rat CSF and rat cortex hits using
two thresholding criteria p<0.05 and p<0.01. Bottom Venn diagram compares Mecp2-sensitive
hits in rat and mouse CSF pooled together with Mecp2-sensitive rat cortex hits. H depict the
correlation in expression of Mecp2-sensitive hits in rat CSF and rat cortex. I, shows the % overlap
between the cellular proteome ontologies inferred from the datasets shown in A and C calculated
with the ClueGo application (see table S2). J and K show Rett syndrome female individual CSF
TMT volcano plot and heat map of selected hits at log2 of 0.5 fold of change in protein abundance
and a p<0.05 comparing before and after IGF-1 treatment. n=10 before treatment and 9 after
treatment. L analysis of TMT data presented in panel J using an AdaBoost machine learning
algorithm. Main hits discriminating CSF before and after treatment in decision tree are shown.
Inserts show performance of the machine learning protocol estimated by ROC analysis and
confusion matrix. Area under the curve in insert ROC analysis 0.70+0.26.

Figure 3. Convergent Ontologies Inferred from Rett Syndrome CSF and CSF-mimic Proteomes.
A, Venn diagram depicted hit overlaps among the four experimental systems studied. Hits
represent the sum of volcano thresholding- and machine learning-selected hits. B and C.
Integrated gene ontology analysis of the four datasets in A annotated with the experimental
system that originated the dataset. Nodes represent individual ontologies.
GO_CellularComponent, KEGG, Reactome, and WikiPathways were queried with the ClueGo
application. All ontologies have p<0.001. Exact hypergeometric probability Bonferroni corrected.
C, shows the percent of contribution of each experimental system to each ontology. Grey denotes
ontologies represented by all four experimental systems. D, pie charts of the percent
contribution of each experimental system to the top ontologies identified in B-C, p values
hypergeometric probability Bonferroni corrected for the ontology. E, shows ontology analysis
using the same datasets in B-C but using the Bayesian engine HumanBase. Analyses were
performed either with astrocyte- or neuron-centric queries. Nodes correspond to genes and their
functional interrelationships. Nodes are grouped into clusters M(n), prioritized by q value
calculated using one-sided Fisher’s exact tests and Benjamini—-Hochberg corrections. Most
significant cluster is M1. F-H, show Venn diagrams and protein-protein interaction networks of
the sum of datasets presented in A overlapping with the curated HDL proteome in F, the Synapse
knowledge database of annotated genes in G, and the Mitocarta 3.0 annotated mitochondrial
proteins in H. Venn diagram p values calculated with exact hypergeometric probability and the
representation factor (RP) estimates overlap beyond what is expected by chance. See Table S3
for all ontological data.
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Figure 4. Ontologically Selected and Confirmed Rett Syndrome CSF Proteome Hits Perform as
Putative Biomarkers of Disease.

A and B shown independent confirmatory analyses using isotopologue peptides mapping the
primary sequence of the indicated proteins using AQUA mass spectrometry in rat CSF (A) or a
modified AQUA approach in mouse CSF (B). In A, femtomoles of the endogenous CSF peptide
were normalized to a randomly chosen control sample. In B, the ratio of the CSF endogenous
peptide to the isotopologue peptide were used to quantify relative analyte abundance. Gray bars
correspond to wild type CSF and blue bars Mecp2 null CSF. All analytes were measured
independently with 2-3 isotopologue peptides as standards. In A two batches of 5 rats of each
genotype were used while in B, one batch of 10 mice of each genotype were analyzed. C depicts
a heat map of all the modified AQUA determinations performed in mouse CSF samples that
showed significant differences between genotypes. Every isotopologue peptide correspond to a
row. Data are depicted as row median divided by the row median absolute deviation both as heat
map and by symbol size. D, principal component analysis of Rett syndrome participants before
and after treatment (gray and blue symbols, respectively), every subject is color coded and the
after-treatment PCl coordinates are indicated by a callout triangle. Analyte expression levels from
a TMT mass spectrometry quantification were mapped to the PCI coordinates as a heat map.
Apoliproteins increased expression after IGF-1 treatment. Note controls do not experience
changes (B2M, HBB, HBD, ALB). E, MesoScale ELISA confirmation of APOA1 levels in Rett
individuals CSF before and after IGF-1 treatment. F and G, a heat map of ontology selected and
confirmed analytes in B-C tested in the CSF of Cdk/5-null mice. Data correspond to the normalized
abundance measured by TMT mass spectrometry. G shows APOE, the only analyte whose
expression was modified in Cdk/5-null CSF, shown by the gray box in F. H, ROC analysis of selected
mouse CSF Mepc2-sensitive hits either quantified by TMT mass spectrometry (grey symbols) or
by modified AQUA (purple symbols). Number represents p value that tests the null hypothesis
that the area under the curve=0.50 (non-discriminatory). P values in A, B, E and G were calculated
with a two-sided permutation t-test. See table S4 for data to panels B-C and F-G.

Fig. S1. Design of a Robust Strategy to Identify Consensus Rett Syndrome Proteomes for
Ontology Inference and Biomarker Selection.

Diagram shows three species and experimental systems. Cohorts represent independent
collections of samples with the strategy used for analyte quantification, the place of sample
collection, and sample measurement location. Isotopol refers to AQUA and modified AQUA
strategies, LFQ corresponds to label free quantification, and TMT denotes Tandem Mass Tagging.

Fig. S2. Orthogonal Approaches to Identify Rett Syndrome CSF Proteomes.
A volcano plot of LFQ mass spectrometry determinations in rat cerebrospinal fluid. Cutoffs at
log2 0.5 fold of change in protein abundance and a p value <0.05, n=5. See table SS2. B shows
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clustered heat maps of hits selected in A. For A and B, see legend to Figure 1 for additional details.
C to E, depict analysis of the indicated mass spectrometry datasets using a Random Forest
machine learning algorithm. Bar graph showing main hits discriminating wild type and Mecp2
mutant CSF in the decision tree. Inserts show performance of the machine learning protocol
estimated by ROC analysis and confusion matrix.

Fig. S3. Expression Patterns of Ontology Selected Analytes in Brain Cells and Plasma.

A. Fold enrichment and rank order of mRNAs most expressed in neurons and astrocytes according
to Zhang 7®’7 or abundance in the plasma proteome according to Geyer et al ’8. Superimposed
are CSF hits. Venn diagrams present overlaps with each cell type gene expression category or
plasma proteome. B depicts a t-SNE cell atlas generated with the expression levels of all
transcripts encoding selected hits from the mouse CSF Mecp2-sensitive proteome. The t-SNE
atlas encompasses >20 areas of mouse cortex and hippocampus, totaling 76,307 cells 7°. Color
codes denote neuronal subclasses described by Yao et al. . Neurotransmitter annotation is
depicted as well as the expression levels of Mecp2 mRNA across brain regions and cell types.
Each atlas depicts the mRNA expression of the indicated analyte. Note analytes such as Apocl
whose mRNA is not detectable in this dataset. t-SNE cell atlases were assembled using the Allen
single-cell RNAseq dataset as describe by Wynne et al .

Fig. S4. Brain Parenchyma Transcripts Levels of Analytes Selected by Ontology and with
Biomarker Potential.

RNAseq analysis of transcript expression of indicated analytes in three microdissected brain
regions from wild type and Mecp2 mutant brains. Mecp2 mRNA are presented as a control. N=5
animals per each phenotype. Only Mecp2 mRNA is differentially expressed p for three brain
regions p< 1.40E-236, Benjamini and Hochberg corrected Wald test. See table SS4.
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