
 1 

 

 

 

Convergent Cerebrospinal Fluid Proteomes and Metabolic 
Ontologies in Humans and Animal Models of Rett Syndrome. 

 
Stephanie A. Zlatic*1#, Duc Duong*2, Kamal K.E. Gadalla3, Brenda Murage3, Lingyan Ping2, Ruth 
Shah6, Omar Khwaja4, Lindsay C. Swanson4, Mustafa Sahin4, Sruti Rayaprolu5, Prateek Kumar5, 

Srikant Rangaraju5, Adrian Bird6, Daniel Tarquinio7, Stuart Cobb3, Victor Faundez1# 

 

Departments of Cell Biology1, Biochemistry2, and Neurology5, Emory University, Atlanta, GA, 
USA, 30322. Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, 

University of Edinburgh, Edinburgh, EH8 9XD, UK3. Department of Neurology, Rosamund Stone 
Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, 

USA4. The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, 
King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK6. Center for Rare Neurological 

Diseases. Norcross, GA 30093, USA7. 
 

#Address Correspondence to  

vfaunde@emory.edu 

szlatic@gmail.com 

* These authors contributed equally 

 

Acknowledgements 

VF was funded by the Rett Syndrome Research Trust, the Loulou Foundation, and 
1RF1AG060285. S Rangaraju was partly funded by the NIH (5R01NS114130). S Rayaprolu was 
partly supported by the NIH (F32 AG064862). SC was funded by the Rett Syndrome Research 
Trust and Simons Initiative for the Developing Brain 

 

Conflict of Interests: Mustafa Sahin reports grant support from Novartis, Biogen, Astellas, 
Aeovian, Bridgebio, and Aucta. He has served on Scientific Advisory Boards for Novartis, Roche, 
Regenxbio, SpringWorks Therapeutics, Jaguar Therapeutics and Alkermes. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.30.470580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 
MECP2 loss-of-function mutations cause Rett syndrome, a disorder that results from a 

disrupted brain transcriptome. How these transcriptional defects are decoded into a disease 
proteome remains unknown. We studied the proteome in Rett syndrome cerebrospinal fluid 
(CSF) across vertebrates. We identified a consensus proteome and ontological categories shared 
across Rett syndrome cerebrospinal fluid (CSF) from three species, including humans. Rett CSF 
proteomes enriched proteins annotated to HDL lipoproteins, complement, mitochondria, 
citrate/pyruvate metabolism, as well as synapse compartments. We used these prioritized and 
shared ontologies to select analytes for orthogonal quantification. These studies independently 
validated our proteome and ontologies. Ontologically selected CSF hits had genotypic 
discriminatory capacity as determined by Receiver Operating Characteristic (ROC) analysis and 
distinguished Rett from a related neurodevelopmental disorder, CDKL5 deficiency disorder. We 
propose that Mecp2 mutant CSF proteomes and ontologies inform novel putative mechanisms 
and biomarkers of disease. We suggest that Rett syndrome is a metabolic disorder impacting 
synapse function. 
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Introduction 
 
The cellular and molecular understanding of neurodevelopmental disorders has been 

greatly advanced by the study of single gene defects 1,2. Among these monogenic 
neurodevelopmental disorders, Rett syndrome, caused by mutations in MECP2, stands out 
because of its severity and developmental regression. The molecular function of MeCP2 as an 
epigenetic chromatin regulator is well defined 3, affecting the expression of a vast number of 
RNAs in the brain 3-6. The molecular complexity of Rett syndrome is compounded by the extensive 
and varied modifications of coding and non-coding transcriptomes across brain cell types and 
regions 7-11. This fact makes transcriptional prediction of Rett syndrome proteomes a complex 
and uncertain endeavor. Thus, we focus on the proteome to identify biochemical and cellular 
alterations in Rett syndrome brains 12. Moreover, known Rett syndrome phenotypes such as 
synaptic, circuit, and behavioral alterations ultimately originate in alterations of protein 
expression and function 4,13,14. Thus, the proteome decodes Mecp2-dependent transcriptional 
changes and executes a diseased phenome. Despite these advantages of the proteome to 
illuminate pathogenic mechanisms and to identify disease biomarkers, few studies examine how 
the proteome is modified in Rett syndrome brains 15,16. 

Our goal was to identify a Rett proteome capable of distinguishing normal and disease 
brain states across neurodevelopment that is clinically accessible for sample collection, 
diagnostic testing, and assessing treatment outcomes. We focused on CSF as a clinically 
accessible sample whose composition is dictated by the brain and neurodevelopment 17-19. CSF 
carries neurodevelopmental instructive signals and nutrients and accrues secretions and 
metabolites that reflect functional states of diverse cell types in brain parenchyma and the 
choroid 20. For example, composition of the CSF proteome in individuals with Alzheimer’s predicts 
key diagnostic molecular pathology in the Alzheimer’s brain 21-23. Thus, the CSF proteome has the 
potential to inform us about brain-wide normal and pathological states.  

The study of the CSF in genetic or sporadic forms of neurodevelopmental disorders lags 
behind similar studies in neurological diseases. Less than a handful of studies analyze the 
proteome of this biofluid 24. The study of the CSF in neurodevelopmental disorders has mostly 
been focused to targeted studies of few analytes such as cytokines, growth factors, 
neuropeptides, or metabolites 25-30. Thus, we do not know if a neurodevelopmental disorder, 
such as Rett syndrome, reproducibly and distinctively modifies the CSF proteome to predict 
disease mechanisms and biomarkers of disease. Here, we address this fundamental question by 
comprehensively and unbiasedly exploring the CSF proteome of three species carrying mutations 
in MECP2/Mecp2. We defined a consensus proteome and ontologies predictive of Rett syndrome 
disease mechanisms. Analytes found in the Mecp2-sensitive proteome behaved with sufficient 
sensitivity and specificity to act as Rett syndrome biomarkers and to discriminate Rett syndrome 
CSF from a CDKL5 deficiency disorder CSF, a phenotypically related syndrome 31-33. This is the first 
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multispecies study of the CSF proteome in a monogenic disorder of neurodevelopment. Based 
on our proteomic analysis, we propose that Rett syndrome is a synaptic and metabolic 
neurodevelopmental disorder. Further, our experimental strategy offers a platform for the 
identification of proteomes and biomarkers in the CSF of any childhood genetic neurological 
disorder and to infer putative mechanisms of disease. 
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Results 

The CSF proteome is composed of proteins secreted by conventional and non-
conventional secretory pathways, exosomes, and ectosomes from brain 34. We collectively refer 
to these proteins as the brain secreted proteome. We sought to identify secreted proteins 
sensitive to MECP2 gene defects. To achieve this goal, we designed a multipronged strategy to 
quantify secreted proteomes from wild type and MECP2-null neuron conditioned media, 
cerebrospinal fluid from Mecp2 null male rat and mouse models, and the CSF from female 
individuals with Rett syndrome collected before and after recombinant IGF1 treatment (Fig. 1A) 
35,36. We reasoned that overlapping proteins and ontologies across diverse experimental systems 
would identify robust proteins and ontologies to inform putative disease mechanisms and Rett 
syndrome biomarkers. Furthermore, we designed our studies with an emphasis in replicability 
across experimental sites, quantification platforms, and species to inform biomarker selection 
(Fig. S1). We chose to quantify proteomes with Tandem Mass Tagging (TMT) mass spectrometry 
as a high precision method 37,38. TMT datasets were analyzed by fold of change/p value volcano 
thresholding plus machine learning approaches (Fig. 1A). 

The Secreted Proteome of a MeCP2 Deficient Neuronal Cell Line. 

  We began using differentiated post-mitotic human neurons, LUHMES cells, where the 
MECP2 gene was edited by CRISPR-Cas9 39. We reasoned the secreted proteome of a single cell 
type would define cell autonomous protein candidates for cell-type annotation of hits obtained 
in cerebrospinal fluids from individuals with Rett syndrome and rodent Mecp2-mutant models. 
We characterized the culture media before and after cell conditioning (Fig. 1B, compare lanes 1 
with 2-3). The protein complexity of media alone prevented the identification of proteins 
contributed by differentiated neurons. The source of protein contaminants was commercial N2 
supplements; thus, we customized a N2 supplement starting from high purity reagents. Our 
customized N2 allowed us to distinguish proteins contributed by either wild type or mutant 
neurons (Fig. 1C, compare lanes 1 with 2-3). TMT mass spectrometry of media alone identified 
704 proteins (Fig. 1D and G). In contrast, cell-conditioned media revealed 958 additional proteins 
contributed by wild type cells (Fig. 1D and G). Next, we used this custom media formulation to 
compare the proteome of wild type and MECP2 null cells. We identified 63 upregulated and 155 
downregulated proteins in MECP2 mutant cells by p value and fold-of-change volcano 
thresholding (Fig. 1E and H). Prominent downregulated proteins in MECP2 mutant cells included 
two apolipoproteins (APOC2 and clusterin, CLU or APOJ), the nucleoporin component AHCTF1, 
the mitochondrial protein COQ9, as well as factors implicated in citrate cycle and glycolysis such 
as PDHB and OGDH 40,41. To these volcano selected hits, we added 10 additional proteins from a 
total of 16 proteins whose expression was sensitive to the MECP2 mutation as defined by 
machine learning (Fig. 1J, asterisks for common volcano and machine learning hits) 42. Among 
these 10 new proteins were the mitochondrial proteins TOMM22 and the E2 component of the 
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pyruvate dehydrogenase complex (DLAT) as well as the apolipoprotein APOA2. The performance 
of the machine learning algorithm was evaluated by Receiver Operating Characteristics (ROC) 
analysis with an area under the curve of 0.97 (Fig. 1K) and confusion matrix analysis where 
predicted and actual genotypic classes closely matched (Fig. 1L).  

We asked whether the MECP2 secreted proteome was a reflection of the MECP2 cellular 
proteome. The MECP2 cellular proteome was represented by 187 proteins (Fig. 1F and I). The 
overlap between these two MECP2 sensitive proteomes was minor and barely significant (Fig. 
1M). We found just six common hits, among them SST and IGFBPL1 (Fig. 1M). Convergence 
between these two datasets became evident in few significant ontological categories shared 
between the MECP2 secreted and cellular proteomes, one of them pyruvate metabolic process 
(GO:0006090 p= 3.96E-05 Bonferroni corrected, Fig. 1N). These data suggest that ontologies may 
be better positioned than proteomic hits to identify convergence between the secreted and 
cellular proteome in MECP2 gene mutations within a simple cellular system.  

Secreted Proteomes of MeCP2 Deficient Cerebrospinal Fluids in Three Species. 

In order to identify CSF proteomes and/or ontologies that are robust and convergent at 
the intra and inter-species level, we analyzed by TMT mass spectrometry the cerebrospinal fluid 
from wild type and Mecp2 mutants in two rodent species and Rett syndrome individuals. We 
performed studies in rats (Fig. 2A-C) as well as in a large cohort of wild type and Mecp2 null mice 
(Fig. 2D-F). We identified 70 and 64 CSF proteins whose expression was downregulated in mutant 
rat and mouse CSF, respectively (Fig. 2A, B, D, and E). These mutant CSF downregulated proteins 
prominently converged on subunits of high-density lipoprotein particles such as Apom, Apoa1, 
Apoh, and Pon1. Similarly, we identified Apoa1, Apoc1, Apoc2, and Apoe as downregulated hits 
in mouse Mecp2 mutant CSF. An additional category of proteins downregulated in both species 
were proteins belonging to the complement and coagulation cascades (Fig. 2A, B, D, and E). To 
assess intraspecies robustness, we confirmed these rat CSF hits in an independent cohort of wild 
type and mutant rats using an orthogonal label-free mass spectrometry quantification procedure 
(LFQ) 37. This analysis identified 44 proteins whose expression was affected in mutant CSF (Fig. 
S2A) and confirmed the downregulation of apolipoproteins and complement factors in Mecp2-
null CSF (Fig. S2A-C, Apoa4, Apob, Apoc3, Pon1, and C9). Rodent apolipoprotein and complement 
cascade hits could not be attributed to blood contamination of the CSF as evidenced by albumin, 
immunoglobulins, or hemoglobin species, which failed to co-cluster with apolipoproteins and 
complement (Fig. 2B and E, S2A-B, Table S2). Synaptic proteins were prominent among factors 
upregulated in the mouse Mecp2 mutant CSF (Fig. 2D-E). These synaptic proteins include, but 
were not limited to, Snap25, Stx1b, Stxbp1, Syn1, and Syn2 (Fig. 2D-E) 43. Finally, we also 
identified mitochondria proteins within both the significant up- and downregulated proteomes 
in mutant rat and mouse CSF (Fig. 2D-E).  
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We further scrutinized mouse and rat CSF datasets using machine learning algorithms. 
We sought to identify additional proteins sensitive to Mecp2 deficiency that could otherwise 
escape detection by volcano thresholding. In addition, we reasoned proteins categorized as 
apolipoproteins, synaptic, complement-related, or mitochondria-annotated should emerge as 
priority hits in non-linear decision trees segregating wild type and Mecp2 mutant CSFs. Both 
mouse and rat CSF machine learning analyses identified complement factors, mitochondrial 
proteins (Atpaf1, Clybl, Coq9, and Mrpl23), as well as synaptic proteins as priority hits (Actr2, 
Atp2b2 and Nefh, Fig. 2F and S2C-E). We validated the performance of machine learning 
approaches asking their capacity to identify Mecp2 as a priority protein hit in a proteome dataset 
of wild type and Mecp2 mutant rat cortex (Fig. S2D). We identified Myg1, a mitochondrial protein 
44, and Mecp2 as the top-two most important classifiers to discern between wild type and Mecp2 
mutant brain tissue (Fig. S2D). All these machine learning analyses performed satisfactorily as 
determined by area under the curve in ROC analysis (0.72-0.92, Fig. 2F, and S2) and/or confusion 
matrices (Fig. 2F, and S2). Thus, interrogation of CSF proteome datasets with boosting 
mathematical algorithms provides similar answers as to protein families enriched in rat and 
mouse mutant CSFs. 

The above-described changes to the Mecp2 mutant CSF could closely parallel brain 
proteome modifications. Alternatively, changes to the CSF proteome could be in proteins 
different from those in the Mecp2 brain proteome yet both Mecp2 proteomes representing 
alterations in the same compartment or pathway, a converging ontology. To address this 
question, we compared the rat Mecp2 mutant cortex proteome of animals where we 
simultaneously collected CSF. Volcano thresholding by p value and fold of change identified 83 
protein whose expression was modified in Mecp2 mutant cortex among 6752 proteins quantified 
by TMT (Fig. 2C). None of the Mecp2-sensitive cortical proteins overlapped with rat CSF hits (Fig. 
2G). We reasoned that a lack of overlap could emerge from a Mecp2-sensitive cortex proteome 
with small expression differences as compared to CSF due to the complexity of the former. Thus, 
we relaxed thresholding to include proteins whose expression was significantly different (p<0.05) 
without applying a fold-of-change cutoff. This resulted in a relaxed dataset of 543 cortical 
proteins in whose expression may be modified in Mecp2 mutants (Fig. 2C). However, this 
enlarged and relaxed cortical dataset produced only one overlapping hit with CSF (Fig. 2G, 
Ptprn2). An alternative model to account for the lack of overlap between Mecp2 cortex and CSF 
proteomes could come from sparse hits identified in mutant rat CSF. Yet comparison of a 405 
proteins pooled rat and mouse Mecp2-sensitive CSF proteome, obtained by thresholding and 
machine learning, yielded a non-significant overlap of just four hits (Fig. 2G). We expanded our 
analysis searching for CSF hits in Mecp2 mutant rats that were also quantified in rat cortices. We 
found 67 proteins shared between the rat cortical dataset and the rat CSF Mecp2-sensitive 
proteome. These 67 proteins showed no correlation in their expression levels (Fig. 2H). Finally, 
we evaluated whether the Mecp2-sensitive CSF and cortical proteomes could overlap at the 
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ontology level. To evaluate this hypothesis, we compared whether the rat Mecp2-sensitive cortex 
and CSF proteomes could converge on similar ontologies. We identified significant ontological 
categories only if the Mecp2-sensitive CSF proteome was analyzed in conjunction with the 
relaxed Mecp2 cortical proteome of 543 proteins. Under these conditions, we found overlapping 
ontologies including the synapse, which was represented by 75% of the annotated proteins 
contributed by the cortical and 25% by the CSF Mecp2-sensitive proteomes (Fig. 2I, GO:0045202, 
Bonferroni corrected group p=2.467E-22). These results argue that ontologies predicting putative 
brain disease mechanisms can be inferred from changes in the CSF proteome. However, there is 
a limited capacity to predict specific protein candidates in Mecp2 mutant CSF from brain 
proteomes and vice versa.  

The Mecp2 mutant rodent CSF differs from the human Rett CSF in that the former 
represents brain tissue homogenously deficient in Mecp2 protein. In contrast, the human CSF 
proteome reports a genetically mosaic female brain 3-5.  We studied a cohort of individuals with 
Rett syndrome where CSF was collected as part of a phase I clinical trial 45. These participants 
were subjected to extended treatment with recombinant IGF-1 during the trial. CSFs were 
collected from 12 individuals. In nine participants, fluids were collected before and after 
treatment; in two participants, collections occurred only before treatment; and in three 
participants, CSF was sampled only after IGF-1 treatment. The phase I clinical trial did not include 
typically developing control participants due to ethical constraints 45. Even though IGF-1 
treatment did not improve clinical outcomes in Rett subjects 35, we reasoned that if IGF-1 
treatment were to modify some aspects of CSF proteome, it should do so by changing CSF 
proteins whose expression was Mecp2-sensitive in rodents. In addition, we hypothesized that 
any IGF-1-induced proteome modifications in individuals with Rett syndrome should be in the 
opposite direction of what we observed in Mecp2-null rodents and conditioned media from 
MECP2 null neurons. The Rett CSF proteome revealed a discrete number of proteins sensitive to 
IGF-1 (Fig. 2J-L). We identified by volcano thresholding 7 proteins whose expression was 
decreased after IGF-1 treatment and 17 proteins whose expression was increased (Fig. 2J-K). 
Importantly, the most prominent among the IGF1-upregulated proteins were the high-density 
lipoprotein proteins APOA1, APOC1 and APOM; a change precisely in the opposite direction of 
what we found in mouse and rat Mecp2 mutants. Apolipoproteins APOC1, APOC2, and APOM as 
well as the apolipoprotein regulatory factor PCSK9 were also identified by machine learning (Fig. 
2L). In fact, APOM was assigned the top priority as a discriminatory factor in a decision tree 
segregating Rett participants by their IGF-1 treatment (Fig. 2L). Our data suggest that discrete 
CSF proteome changes correlate with IGF-1 treatment in Rett female individuals. In the case of 
apolipoproteins, protein identity and the direction of change in humans can be informed from 
the study of Mecp2 mutant CSF proteomes in preclinical animal models.  
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Composite Ontologies of Mecp2 Mutant Cerebrospinal Fluids and Conditioned Media 

The secreted proteomes from human cultured neurons, rat, mouse, and human mutant 
CSFs revealed common proteins across these diverse experimental systems. These proteins 
belong to apolipoproteins, complement, or mitochondrial pathways (Fig. 3A). We asked if these 
Mecp2-sensitive hits overlapped just as isolated occurrences or, instead, secreted proteomes 
obtained from each experimental system sampled a common ontological space. We tested this 
hypothesis using ClueGO, an application that performs composite and comparative enrichment 
tests based on hypergeometric distributions 46. To test the robustness of our ontological 
predictions, we used HumanBase, a genomics data-driven Bayesian machine learning algorithm 
that identifies functional modules in tissues and cells 47. We collated proteins from each of the 
four Mecp2- and MECP2-deficient experimental systems, selected by volcano thresholding plus 
machine learning (Fig. 1A), to identify a space of shared ontologies (Fig. 3A). We simultaneous 
queried an ontological database composite with ClueGo (GO CC, REACTOME, KEGG and 
WikiPathways). Each of the four mutant proteome datasets was tagged in ClueGo to discern their 
individual contributions to each ontology. We identified a space of 87 ontologies significantly 
represented in all the Mecp2- and MECP2-sensitive proteome datasets (Bonferroni corrected p 
values <10E-3, Fig. 3B). These ontologies revealed a significant enrichment of hits in 
mitochondrial compartments and pathways, pyruvate and aminoacid metabolism, complement 
subunits, HDL lipoproteins, and synapse-related ontologies (Fig. 3B). Importantly, these 
ontologies were qualified as non-dataset specific, as each mutant proteome dataset contributed 
less than 50% of hits to each one of these ontologies (Fig. 3C-D). For example, the HDL particle 
ontology was made up by 34, 26, 16 and 25% of hits derived from mouse, rat, neuron conditioned 
media, and human Rett CSF, respectively (Fig. 3D, GO:0034364, Bonferroni corrected group p 
value=2.81E-13). We confirmed these ontological findings using HumanBase, where we identified 
lipid and cholesterol transport ontologies as the most significantly enriched functional modules 
(Fig. 3E). This outcome was similar if we performed HumanBase analyses either with astrocyte- 
or neuron-centric queries (Fig. 3E). Finally, we confirmed that Mecp2- and MECP2-sensitive 
proteomes were enriched in HDL, synaptic, and mitochondria annotated proteins interrogating 
different databases. We used the curated HDL proteomes database, the SynGo knowledge base 
of annotated synaptic proteins, and the Mitocarta 3.0 database of annotated mitochondrial 
proteins (Fig. 3F-G) 41,43,48. The collated Mecp2- and MECP2-sensitive proteome contained 80 
proteins in common with the HDL proteome (Fig. 3F). This represents a significant 7.9-fold 
enrichment above what is expected by chance (Fig. 3F, p<9.26E-49). Among these overlapping 
HDL proteins, we found diverse apolipoproteins, complement subunits, antiproteases of the 
serpin family, and factors such as clusterin (Clu), and PCSK9. All these overlapping HDL 
components formed an interconnected network of protein-protein interactions as determined 
with the Genemania application (Fig. 3F) 49. Similarly, the collated Mecp2- and MECP2-sensitive 
proteome was also significantly either enriched in interconnected synaptic or mitochondrial 
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proteins >2-fold above what is predicted by chance. These findings demonstrate that Rett 
syndrome CSF proteomes from diverse species converge on a common set of ontologies. These 
ontological findings demonstrate a varied and novel set of molecular phenotypes associated to 
Rett syndrome. These Rett syndrome molecular phenotypes offer a distinctive path for disease 
biomarkers. 

 

Ontologies Inform Putative Biomarkers of Rett Syndrome. 

We used convergent Rett molecular ontologies to inform a selection of proteins for 
confirmatory studies and to assess their potential as disease biomarkers. The HDL lipoprotein 
proteome was the most significantly enriched ontology among all the mutant secreted 
proteomes (Fig. 3B, E and F). We performed absolute quantification (AQUA) of proteins by mass 
spectrometry to confirm expression changes in HDL apolipoproteins in independent cohorts of 
rat (Fig. 4A) and mouse CSF from wild type and mutant animals (Fig. 4B-C) 50. We also confirmed 
CSF hits in Rett syndrome individuals before and after IGF1 treatment by 
electrochemiluminescent ELISA assays (Fig. 4C) 51.  

AQUA quantification of the HDL lipoprotein particle components Apoa1, Apob, Pon1, C3, 
and C9 revealed decreased levels in mutant as compared to wild type rat CSF (Fig. 4A). Levels of 
loading controls, App and A2m, were not affected by genotype in rats (Fig. 4A). These findings 
were extended to Rett mouse models (Fig. 4B-C). We used isotopolog peptide standards to 
measure proteins associated to HDL particles in mouse CSF. Diverse apoliproteins (Apoa1, Apoc1, 
Apoc2, Apoe), complement subunits (C6, C7, C8a, C8b, C8g, C9), and antiproteases (A1at5, 
Serpina3k) were reduced in Mecp2 deficient animals compared to controls (Fig. 4B-C). Similarly, 
the levels of other secreted proteins such as the neurosecretory protein VGF, proenkephalin-A 
(Penk), cathepsin Z (Ctsz), or the transmembrane epidermal growth factor receptor (Egfr) were 
robustly and significantly reduced in the CSF of mutant mice (Fig. 4C). These results 
independently validate our TMT findings in the CSF of two rodent models of Rett syndrome. 

We next focused on the nine participants where CSF samples were obtained before and 
after IGF1 treatment. We deployed principal component analysis to assess individual and group 
responses to IGF1. The main variable segregating participant CSF proteomes was their identity 
rather than treatment itself (Fig. 4D). Second, treatment modified a participants’s CSF 
composition discretely, mostly driven by changes in the levels of apolipoproteins (Fig. 4B). 
Importantly, the levels of blood proteins such as hemoglobins (HBB and HBD), albumin (ALB), and 
immunoglobulins could not account for the changes in apolipoprotein protein levels (Fig. 4B). We 
confirmed that IGF1 treatment increased the content of APOA1 in Rett participant’s CSF by ELISA 
(Fig. 4C). In contrast, two proteins whose expression was not modified by treatment in TMT mass 
spectrometry quantifications, APOE and B2M, did not change their levels after treatment in ELISA 
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assays (Fig. 4C). These results confirm protein hits and ontologies in human and rodent Rett 
syndrome models.  

To evaluate the potential of ontologically selected Mecp2-sensitive hits to serve as 
disease biomarkers, we addressed the following questions. First, do CSF Mecp2 hits discriminate 
between genetic forms of autism spectrum disorder? We selected a null mutation in the Cdkl5 
gene, which is causative of the CDKL5 deficiency disorder, an X-linked neurodevelopmental 
disorder. The behavioral and brain anatomy phenotypes of a mouse model of this syndrome 
closely mimic those in Rett syndrome mouse models 33 (Fig. 4F-G). We found that the CSF 
proteome of Cdkl5 mutants was different from Mecp2 mutant CSF, as indicated by the 16 
different proteins selected from Mecp2 CSF whose levels remained unchanged in Cdkl5 null CSF. 
The only exception was Apoe, which was decreased in both Mecp2 and Cdkl5 mutant CSF (Fig. 
4G). These findings demonstrate that Mecp2 CSF hits discriminate between phenotypically 
related forms of neurodevelopmental disorders. Second, we interrogated whether selected 
Mecp2 CSF proteins were expressed in disease-relevant cell types (Fig. S3A-B). HDL 
apolipoproteins such as Apoa1, Apoe, Pon1, and Clu were expressed in neurons and astrocytes 
(Fig. 4A). Single cell RNAseq data showed that transcripts encoding these HDL proteins were 
expressed in diverse populations of glutamatergic and GABAergic neurons across the multiple 
layers of the cortex and hippocampus (Fig. S3B). Apoc1 mRNA or its protein were undetectable 
in neurons and glia but present in plasma (compare Fig. S3A and B). In contrast, complement 
components (C7, C8b, C8g, and C9), growth factors (Igf1 and Vgf), mitochondrial proteins (Acat1, 
Coq9, and Micu1), and synaptic annotated proteins (Snap25, Stx1b, Syn1, and Syn2) were 
expressed in diverse glial and neuronal cell populations to a different degree (Fig. S3B). For 
example, C8b and C9 mRNAs were expressed in a discrete neuronal population whereas C7 was 
broadly expressed in cortex and hippocampus (Fig. S3B). Thus, ontologically selected protein hits 
are expressed in disease-relevant neuronal and glial cell types. Finally, we determined if selected 
proteins could distinguish subjects by genotype. We performed ROC analysis focusing on the 
Mecp2 mutant mouse CSF hits as the animal cohort of the biggest size, the mouse TMT dataset 
(Fig. 4H). Each ontologically selected analyte efficiently distinguished genotypes irrespective of if 
they belonged to either the HDL lipoprotein, synapse, or mitochondrion category. In fact, all 
analytes ROC area under the curve were between 0.77 to 0.9 with significant p values (Fig. 4H). 
In other words, these analytes have a 77 to 90% chance to distinguish wild type and mutant CSF. 
The ROC performance of an analyte was similar whether TMT or AQUA datasets were analyzed 
(Fig. 4H, compare grey and purple symbols). None of these validated analytes experienced 
modifications in their mRNA expression across diverse brain regions in Mecp2 mutant mice, 
indicating that the utility of these analytes as putative biomarkers of Mecp2 gene defect is 
restricted to their protein levels in CSF (Fig. S4). These findings demonstrate that CSF analytes 
identified in rodent models of Rett syndrome are sensitive, conserved, and represent specific 
candidates for Rett biomarkers with potential for human applications. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.30.470580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Discussion 
Here we demonstrate that a X-linked neurodevelopmental disorder, Rett syndrome, 

reproducibly and distinctively impacts the composition of the CSF. We defined a consensus 
proteome and ontological categories shared by four experimental systems across three species 
deficient in Mecp2/MECP2. These proteomes converged on proteins annotated to HDL 
lipoproteins, complement cascade, mitochondrial compartments, citrate cycle/pyruvate 
metabolism, as well as synapse compartments. The robustness of our findings is founded on the 
multipronged nature of our experimental design, which includes diversified in vitro and in vivo 
systems, multiple species studied, distinct mathematical processing of datasets capturing 
similarly annotated proteins, replication across different proteomic platforms (LFQ and TMT), 
and replicability across two sites for CSF collection and mass spectrometry analysis (Fig. S1). 
Although, the different mutant CSF proteomes produced discrete overlap across individual 
analytes, they all shared significant overlap at the ontology level. We used these convergent 
ontologies to inform the selection of analytes for orthogonal confirmatory efforts. These 
confirmatory approaches independently validated our LFQ and TMT findings. Confirmed analytes 
provided a proof of principle to the use of convergent ontologies as a strategy to select analytes 
predicted to report a mutant genotype across species and quantification platforms. For example, 
even though Apoa1 was not identified as a significant hit in the mouse CSF TMT proteome, 
selection of Apoa1, based on the ontology to which it belongs, predicted and resulted in robust 
confirmation across all species studied and platforms used. Ontologically selected hits performed 
well as putative biomarkers as determined by ROC analysis and the capacity of multiple Mecp2-
sensitive hits to discriminate Mecp2 mutant CSF from another phenotypically related 
neurodevelopmental disorder, the CDKL5 deficiency disorder. We propose that Mecp2 mutant 
CSF ontologies inform robust CSF analytes to act as Rett syndrome biomarkers in humans. 

The mechanisms that account for the changes in the secreted proteome described here 
have not been explored yet. However, we reasoned that if the Mecp2 secreted proteome were 
to be caused directly by a Mecp2-dependent transcriptional defect, there should be parallel 
modifications in the cellular and secreted proteomes. We found that this is not the case. The CSF 
and brain cortex proteomes did not correlate. In fact, transcriptomic analysis of several 
ontologically selected CSF protein hits showed that none of these proteins exhibited correlated 
modifications in their mRNA levels in brain. Similarly, the neuronal cell and conditioned media 
proteomes poorly overlapped. These results argue that indirect mechanisms downstream of 
Mecp2-dependent transcription, such as network activity, likely drive the secreted proteome 
phenotypes.  

We have minimized the possibility that accidental plasma contamination of the CSF is a 
driving factor for some of the CSF expression differences observed. However, CSF protein 
composition is defined by factors that normally transcytose from the plasma to the CSF plus 
contributions from neuronal and non-neuronal cells in the brain parenchyma, the choroid plexus, 
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and ependymal cells 52,53. Therefore, our findings likely represent contributions of diverse cell 
types in brain to the Mecp2-sensitive CSF proteome. With few exceptions, many of our CSF 
Mecp2-sensitive proteins could be attributed to multiple cell types. For example, Apoe and Clu 
(Apoj) could be ascribed to secretions from astrocytes or the choroid plexus, where Apoe and Clu 
(Apoj) rank among the most expressed mRNAs; they could be ascribed to neurons, where these 
mRNAs are also expressed yet at lower levels. Importantly, Apoe brain levels are locally 
controlled without contributions from plasma 54. We directly tested the hypothesis that the 
expression of apolipoproteins is cell-autonomously controlled in neurons as demonstrated by the 
reduced levels of Clu (Apoj) in the conditioned media of human postmitotic neurons. On the 
other extreme, Vgf and Igf1 mRNAs are expressed in neurons with preferences for neuronal cell 
types. Such is the case of Igf1, which is mostly expressed in GABAergic interneurons and is 
minimally or not expressed in glia, endothelial cells, and the choroid plexus 55,56. Thus, the Mecp2 
secreted proteome offers multiple analytes to assess phenotypes in multiple brain cell types 
lacking Mecp2. 

All Mecp2 secreted proteomes converged on robust ontologies. Proteins annotated most 
significantly to HDL lipoprotein, complement, synapse, mitochondria, and mitochondrial 
pathways such as citrate cycle/pyruvate metabolism ontologies. These consensus ontologies 
likely point to pathogenic mechanisms in Rett syndrome. For example, the effects of Mecp2 
mutations on synaptic morphology, function, and plasticity have been extensively documented 
4,57. However, HDL and mitochondrial ontologies have received less attention. HDL particles are 
assembled by astrocytes and microglia. These lipoproteins transport cholesterol between glial 
cells and neurons. Thus, a possible mechanism to account for the decreased levels of HDL 
apolipoproteins in CSF is either a decreased production/secretion by Mecp2 deficient glial cells 
or an increased clearance by cells that express HDL receptors in brain, such as neurons 58,59. We 
favor the decreased HDL production model as it can explain the observed increased cholesterol 
content in brain at postnatal day 56, despite decreased expression of cholesterol synthesis 
enzymes and decreased de novo cholesterol synthesis 60. We postulate that decreased HDL 
lipoproteins levels in CSF may be a factor contributing to the accumulation of cholesterol in brain 
and the concurrent inhibition by product of cholesterol synthesis. A second ontology strongly 
represented in our datasets is mitochondria compartments and pathways. Pyruvate and lactate 
are increased in Rett syndrome individual’ CSF, and Krebs cycle metabolites are increased in the 
brain of Mecp2 mutant mice. This suggests connections between CSF glycolysis and Krebs cycle 
ontologies and proteins and these metabolites 29,30. However, there are not enough studies to tie 
together our observations in CSF with potential models of mitochondrial dysfunction in Mecp2 
mutant cells 61-65. Our findings support the idea that Mecp2 mutant CSF ontologies predict 
putative brain mechanisms disrupted by mutations in Mecp2. We propose that Rett syndrome is 
a synaptic and metabolic disorder of neurodevelopment. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.30.470580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 
Materials and Methods 
Rat and Sample Collection 
All experiments were carried out in accordance with the European Communities Council 

Directive (86/609/EEC) and with the terms of a project license under the UK Scientific Procedures 
Act (1986). The Mecp2-/y rats were maintained by crossing Mecp2+/- females with wild type 
Sprague Dawley males. Animals were maintained on 12-hour light/dark cycles with free access 
to normal rat food. WT and Mecp2-/y rats at 25 days of postnatal age were weighed and assessed 
for the development of the RTT-like phenotypes prior to surgery. Rats were anaesthetized using 
intraperitoneal administration of an injectable cocktail of medetomidine (0.5mg/kg) and 
ketamine (75mg/kg). Once the animal was deeply anaesthetized, as indicated by the absence of 
withdrawal reflexes (tail and limbs) and the eye positioning reflex, the surgical area was shaved 
and the animal was secured in the stereotaxic frame with the head tilted at roughly 45º. The 
surgical area was then cleaned with Hibiscrub and a surgical drape was placed around the 
operating area with a hole to expose only the surgical area. A skin incision along the midline of 
the skull extending from between the eyes to 3-4 cm caudally to make sure the back of the neck 
is fully exposed. The fascia and the superficial and deep layers of the neck muscles were then 
dissected to expose the membrane of the dura mater at the atlanto-occipital joint between the 
occipital condyles and the rostral facets of atlas. The cisterna magna was then carefully pierced 
by a pulled glass pipette (1 cm long) connected to a 2.5ml syringe through 30 cm of PE-50 tubing. 
A small volume of CSF entered the glass pipette through the capillary action and the flow was 
maintained by gently pulling the plunger. The CSF was collected into cryoprotective tubes and 
snap-frozen immediately in liquid nitrogen. Animals were then given a lethal dose of anesthesia, 
decapitated and the brain was exposed and the areas of interest were dissected and snap-frozen 
in liquid nitrogen.  

 
Mice and CSF Collection 
Animal husbandry and euthanasia was carried out as approved by the Emory University 

Institutional Animal Care and Use Committees. C57BL/6J male mice (The Jackson Laboratory 
#000664). Mecp2, Mecp2tm1.1Bird, and Cdkl5-deficient mice, Cdkl5tm1.1Joez, were obtained from the 
The Jackson Laboratory stocks #003890 and 021967, respectively. All animals were of 6 weeks of 
age. Animals were maintained on 12-hour light/dark cycles with free access to mouse chow. 

Our terminal CSF collection method was adapted from a previously published protocol 66. 
Mice were deeply anaesthetized by intraperitoneal injection of a mixture of ketamine (73.5 
mg/kg; Akron, USA), xylazine (9.2 mg/kg; Bayer Pharma, Germany), and acepromazine maleate 
(2.75 mg/kg; Boehringer Ingelheim, USA) in 0.9% (v/w) NaCl. The back of the neck overlying the 
occiput were first shaved then cleaned and disinfected with 70% ethanol. Using the thumb and 
index finger, the mouse was placed prone with the neck in flexion on a 15 mL conical tube at 
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approximately 45-degree angle to access the cisterna magna using landmarks between occipital 
protuberances and the spine of the atlas. A Hamilton syringe containing 30 G needle was inserted 
through the skin at a 45-degree angle with the horizontal, to reach a depth of approximately 4 
mm into the cisterna magna for CSF collection without need for an incision. The syringe was kept 
stable without any lateral movement and 4-12 µl or clear CSF was drawn into the syringe by slow 
and smooth aspiration. The CSF was immediately spun down for 30 seconds and clear CSF was 
inspected with the naked eye and frozen immediately on dry ice. Frankly blood contaminated 
samples discarded.  
 

Human Subjects 
Clinical features of the cohort used in these studies are described by Khwaja et al.45. The 

referred study was approved by the Institutional Review Board of Boston Children's Hospital and 
informed consent was obtained from the parent of each participant. CSF samples were received 
and remained deidentified for these studies. 

 
Cell Culture and Conditioned Media Preparation. 
LUHMES wild-type control, and MECP2 knock-out 2_7 cell line were differentiated and 

conditioned media was collected. Nunclon flasks and plates were treated with a 44 µg/ml Poly-
L-Ornithine (Sigma P3655) and 1 µg/ml fibronectin (Sigma F1141) solution overnight in a 37°C 
incubator. LUHMES cells were differentiated as follows: three million cells were plated in a T75 
flask with proliferation media (Advanced DMEM/F12 (Gibco 12634-010) with N2 (Gibco 
17502048), 2mM L-glutamine (Sigma G7513), and 40ng/ml beta-FGF (R&D Systems 4114-TC-
01M). After 24 hours, media was changed to differentiation media (Advanced DMEM/F12 with 
N2, 2mM L-glutamine, 1mM DbcAMP (Sigma D0627), 1 µg /ml tetracycline (Sigma T7660), and 2 
ng/ml GDNF (R&D Systems 212-GD-050) for a pre-differentiation phase of two days. Pre-
differentiated cells were lifted with trypsin method. Trypsin activity was blocked with aprotinin 
after lifting the cells. To reduce background signal in mass spectrometry, the last phase of 
differentiation utilized high purity and BSA-free components including high purity N2 
components. A 100x high purity N2 solution was made with 10 mg/ml human holo-transferrin 
(Sigma T4132), 0.5mg/ml human recombinant insulin solution (Sigma I9278), 0.63 µg/ml 
progesterone (Sigma P6149), 1.61 mg/ml putrescine dihydrochloride (Sigma P5780), 0.52 µg/ml 
sodium selenite (Sigma S5261) and DMEM/F12 (Thermo Fisher 21331020). One million pre-
differentiated cells were plated to each well of a Nunclon 6-well dish with 2 ml of the high purity 
differentiation media: DMEM/F12 (Thermo Fisher 21331020) containing high purity N2 (above), 
2 mM L-glutamine (Sigma G7513), 1 mM DbcAMP (D0627), 1 µg/ml tetracycline (T7660), and 2 
ng/ml GDNF (R&D Systems 212-GD-050). Cells conditioned the media for 3 days at 5% CO2 in a 
37°C incubator. On the third day, the conditioned media was collected and Complete 
antiprotease (Roche 11697498001) was added. Cellular debris was pelleted at 16,000 x g in an 
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Eppendorf microcentrifuge at 4°C for 20 minutes. The supernatant was collected and flash frozen 
on dry ice. A trichloroacetic acid (TCA) precipitation was done on 750 µl of the conditioned cell 
media by adding 9.8 µ g sodium deoxycholate per 100 µl of conditioned media followed by 
trichloroacetic acid to 10%. The solution was incubated on ice for 20 minutes to precipitate out 
proteins. The solution was centrifuged at 16,000 x g for 15min at 4°C. TCA supernatant was 
aspirated out and the pellet was washed in an equal volume of ice-cold acetone and vortexed. 
Precipitate was repelleted by centrifugation at 16,000 x g at 4°C for 10minutes. Acetone was 
aspirated and the pellet was lightly air-dried, dissolved in 200 µl of 8M Urea, and flash frozen on 
dry ice. 

 
Mass Spectrometry Emory 
Sample Processing. All CSF (5μl) samples were diluted with 50 μl of 50 mM NH4HCO3 and 

treated with TCEP and CAA and heated at 90°C for 10 minutes. The samples were digested with 
1:20 (w/w) lysyl endopeptidase (Wako) at 25°C overnight.  Further overnight digestion was 
carried out with 1:20 (w/w) trypsin (Promega) at 25°C. Resulting peptides were desalted with a 
HLB microelution plate (Waters) and dried under vacuum. 

Tandem Mass Tag (TMT) Labeling. For each sample, labeling was performed as previously 
described 22,67.  Briefly, each was re-suspended in 100 mM TEAB buffer (100 μL). The TMT and 
TMTPro labeling reagents were equilibrated to room temperature, and anhydrous ACN (256 μL) 
was added to each reagent channel. Each channel was gently vortexed for 5 min, and then 41 μL 
from each TMT channel was transferred to the peptide solutions and allowed to incubate for 1 h 
at room temperature. The reaction was quenched with 5% (vol/vol) hydroxylamine (8 μl) (Pierce). 
All channels were then combined and dried by SpeedVac (LabConco) to approximately 150 μL 
and diluted with 1 mL of 0.1% (vol/vol) TFA, then acidified to a final concentration of 1% (vol/vol) 
FA and 0.1% (vol/vol) TFA. Peptides were desalted with a 30 mg C18 Sep-Pak column (Waters). 
Each Sep-Pak column was activated with 1 mL of methanol, washed with 1 mL of 50% (vol/vol) 
ACN, and equilibrated with 2×1 mL of 0.1% TFA. The samples were then loaded and each column 
was washed with 2×1 mL 0.1% (vol/vol) TFA, followed by 1 mL of 1% (vol/vol) FA. Elution was 
performed with 2 volumes of 0.5 mL 50% (vol/vol) ACN. The eluates were then dried to 
completeness. 

High pH Fractionation. High pH fractionation was performed essentially as described 68,69 
with slight modification. Dried samples were re-suspended in high pH loading buffer (0.07% 
vol/vol NH4OH, 0.045% vol/vol FA, 2% vol/vol ACN) and loaded onto Water’s BEH C18 column 
(2.1mm x 150 mm with 1.7 µm beads). An Thermo Vanquish system was used to carry out the 
fractionation. Solvent A consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 2% 
(vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 90% 
(vol/vol) ACN. The sample elution was performed over a 22 min gradient with a flow rate of 0.6 
mL/min from 0 to 50% solvent B. A total of 96 individual equal volume fractions were collected 
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across the gradient and subsequently pooled by concatenation into 48 fractions for the Mecp2 
TMT batches.  For the Cdlk5 batch, 192 fractions were collected and combined into 96 fractions.  
All fractions were dried to completeness using a vacuum centrifugation. 

Liquid Chromatography Tandem Mass Spectrometry for TMT. Each of the peptide 
fractions was resuspended in loading buffer (0.1% FA, 0.03% TFA, 1% ACN). Peptide eluents were 
either separated on a self-packed C18 (1.9 µm Dr. Maisch, Germany) fused silica column (15 cm 
× 100μM internal diameter (ID), New Objective, Woburn, MA) or a Water’s 1.7 µm CSH C18 
column (15 cm × 150μM internal diameter ). An Easy nLC 1200 (ThermoFisher Scientific)  or 
Ultimate U300 RSLCnano (Thermo Scientific) was used to elute the peptide ion.  Mass spectra 
were collected either on a Fusion Lumos or Fusion Eclipse mass spectrometer.  Both mass 
spectrometers were outfitted with the FAIMS Pro ion mobility source.   

Liquid Chromatography Tandem Mass Spectrometry for Parallel Reaction Monitoring 
(PRM). AQUA standard peptides (ThermoFisher Scientific) were spiked into digested mouse CSF 
samples.  For each sample and equivalent of 1 ul of CSF was loaded onto a Water’s 1.7 µm CSH 
C18 column (15 cm × 150μM internal diameter).  Peptides were eluted using a Ultimate 3000 
RSLCnano and PRM spectra were collected using an Orbitrap HFX mass spectrometer.   

Data Processing Protocol. All TMT raw files were searched using Thermo's Proteome 
Discoverer suite (version 2.4.1) with Sequest HT. The spectra were searched against rat or mouse 
uniprot database.  Search parameters included 20ppm precursor mass window, 0.05 Da product 
mass window, dynamic modifications methione (+15.995 Da), deamidated asparagine and 
glutamine (+0.984 Da), phosphorylated serine, threonine and tyrosine (+79.966 Da), and static 
modifications for carbamidomethyl cysteines (+57.021 Da) and N-terminal and Lysine-tagged 
TMT (+229.26340 Da or +304.207 Da). Percolator was used filter PSMs to 0.1%. Peptides were 
grouped using strict parsimony and only razor and unique peptides were used for protein level 
quantitation. Reporter ions were quantified from MS2 scans using an integration tolerance of 20 
ppm with the most confident centroid setting. Only unique and razor (i.e., parsimonious) 
peptides were considered for quantification.  PRM spectra were processed using the Skyline 
quantitation suite 70.  

 
Mass Spectrometry Ann Arbor 
Sample Preparation. For tissues, samples were washed twice in 1X PBS and lysed in 8M 

urea, 50mM Tris HCl, pH 8.0, 1X Roche Complete Protease Inhibitor and 1X Roche PhosStop. 
Other samples were processed directly for protein quantification using Qubit fluorometry 
following by digestion overnight with trypsin. Briefly, samples were reduced for 1h at RT in 12mM 
DTT followed by alkylation for 1h at RT in 15mM iodoacetamide. Trypsin was added to an 
enzyme:substrate ratio of 1:20. Each sample was acidified in formic acid and subjected to SPE on 
an Empore SD C18 plate. For TMT labeling, after trypsin digestion ach sample was acidified in 
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formic acid and subjected to SPE on an Empore SD C18 plate (3M catalogue# 6015 SD). Each 
sample was lyophilized and reconstituted in 140mM HEPES, pH 8.0, 30% acetonitrile. 

Label Free Quantification Mass Spectrometry. A 2μg aliquot was analyzed by nano 
LC/MS/MS with a Waters NanoAcquity HPLC system interfaced to a ThermoFisher Fusion Lumos. 
Peptides were loaded on a trapping column and eluted over a 75μm analytical column at 
350nL/min; both columns were packed with Luna C18 resin (Phenomenex). A 4h gradient was 
employed. The mass spectrometer was operated in data-dependent mode, with MS and MS/MS 
performed in the Orbitrap at 60,000 FWHM resolution and 15,000 FWHM resolution, 
respectively. APD was turned on. The instrument was run with a 3s cycle for MS and MS/MS. The 
acquisition order was randomized. Data Processing Data were processed through the MaxQuant 
software v1.6.2.3 (www.maxquant.org). Data were searched using Andromeda with the 
following parameters: Enzyme: Trypsin, Database: Uniprot Rat, Fixed modification: 
Carbamidomethyl (C), Variable modifications: Oxidation (M), Acetyl (Protein N-term), Fragment 
Mass Tolerance: 20ppm Pertinent. MaxQuant settings were: Peptide FDR 0.01 Protein FDR 0.01 
Min. peptide Length 7 Min. razor + unique peptides 1 Min. unique peptides 0 Min. ratio count for 
LFQ 1 Second Peptides^ TRUE Match Between Runs* TRUE 

TMT Quantification Mass Spectrometry. 40μL of acetonitrile was added to each TMT tag 
tube and mixed aggressively. Tags were incubated at RT for 15min. 30μL of label was added to 
each peptide sample and mixed aggressively. Samples were incubated in an Eppendorf 
Thermomixer at 300rpm 25°C for 1.5h. Reactions were terminated with the addition of 8μL of 
fresh 5% hydroxylamine solution and 15min incubation at room temperature. Samples were 
subjected to high pH reverse phase fractionation as follows; Buffers: Buffer A: 10mM NaOH, pH 
10.5, in water Buffer B: 10mM NaOH, pH 10.5, in acetonitrile. We used XBridge C18 colums, 
2.1mm ID x 150mm length, 3.5μm particle size (Waters, part #186003023) attached to a Agilent 
1100 HPLC system equipped with a 150μL sample loop operating at 0.3mL/min, detector set at 
214 nm wavelength. Dried peptides were resolubilized in 150μL of Buffer A and injected 
manually. Fractions were collected every 30s from 1-49min (96 fractions total, 150μL/fraction). 
We analyzed by mass spectrometry 10% per pool for the full proteome in a nano LC/MS/MS with 
a Waters NanoAcquity HPLC system interfaced to a ThermoFisher Fusion Lumos mass 
spectrometer. Peptides were loaded on a trapping column and eluted over a 75μm analytical 
column at 350nL/min; both columns were packed with Luna C18 resin (Phenomenex). Each high 
pH RP fraction was separated over a 2h gradient (24h instrument time total). The mass 
spectrometer was operated in data-dependent mode, with MS and MS/MS performed in the 
Orbitrap at 60,000 FWHM resolution and 50,000 FWHM resolution, respectively. A 3s cycle time 
was employed for all steps. Data Processing Data were processed through the MaxQuant 
software v1.6.2.3 (www.maxquant.org). Data were searched using Andromeda with the 
following parameters: Enzyme: Trypsin Database: Uniprot Rat, Fixed modification: 
Carbamidomethyl (C) Variable modifications: Oxidation (M), Acetyl (Protein N-term), Phopho 
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(STY; PO4 data only). Fragment Mass Tolerance: 20ppm. Pertinent MaxQuant settings were: 
Peptide FDR 0.01 Protein FDR 0.01 Min. peptide Length 7 Min. razor + unique peptides 1 Min. 
unique peptides 0 Second Peptides FALSE Match Between Runs FALSE The protein Groups.txt 
files were uploaded to Perseus v1.5.5.3 for data processing and analysis. 

AQUA Mass Spectrometry. Synthetic peptides labeled with Arginine (13C6,15N4) or 
Lysine (13C6,15N2) at >95% purity were made by New England Peptide MA 01440 USA. The 
following peptides were used: Myh9 AGVLAHLEEER; IAQLEEQLDNETK. Pon1 IFFYDSENPPGSEVLR; 
LLIGTVFHR. App TEEISEVK; THTHIVIPYR. A2m AIAYLNTGYQR; LPSDVVEESAR.  Apoa1 
DYVSQFESSTLGK; WNEEVEAYR.  Apob TEVIPPLIENR; GFEPTLEALFGK.  C3 GLEVSITAR; 
SSVAVPYVIVPLK.  C9 SIEVFGQFQGK; TTSFNANLALK. Thbs1 FVFGTTPEDILR; IENANLIPPVPDDK. A 3-
4 μg aliquot of each CSF tryptic peptide digests was spiked with isotopologe peptides at a 
concentration of 100 or 133 fmol/μg peptide digest. Peptides mixes were analyzed in analytical 
duplicate by nano LC/PRM using a Waters NanoAcquity HPLC system interfaced to a 
ThermoFisher Fusion Lumos mass spectrometer. 1.5μg per sample was loaded on a trapping 
column and eluted over a 75μm analytical column at 350nL/min; both columns were packed with 
Luna C18 resin (Phenomenex). A 1h gradient was employed. The mass spectrometer was 
operated in PRM mode without scheduling; instrument settings included 15,000 FWHM 
resolution, NCE 30, AGC target value 5e4, and maximum IT of 22ms. Data were processed using 
Skyline v4.2. 

Data Processing 
Proteomics data were log2 converted. Data analysis was performed with two methods. 

We used Qlucore Omics Explorer Version 3.6(33) normalizing data to a mean of 0 and a variance 
of 1. No filtering by standard deviation was applied. All data were thresholded by a log2 fold of 
change of 0.5 and a non-corrected p value of 0.05.  

A second method used was OmicLearn (v1.0.0) for performing the data analysis, model 
execution, and generating the plots and charts 42. Machine learning was done in Python (3.8.8). 
Feature tables were imported via the Pandas package (1.0.1) and manipulated using the Numpy 
package (1.18.1). The machine learning pipeline was employed using the scikit-learn package 
(0.22.1). For generating the plots and charts, Plotly (4.9.0) library was used. No normalization on 
the data was performed. To impute missing values, a Mean-imputation strategy is used. Features 
were selected using a ExtraTrees (n_trees=100) strategy with the maximum number of 20 
features. Normalization and feature selection was individually performed using the training data 
of each split. For classification, we used either a XGBoost-Classifier (random_state = 23 
learning_rate = 0.3 min_split_loss = 0 max_depth = 6 min_child_weight = 1), a AdaBoost-Classifier 
(random_state = 23 n_estimators = 100 learning_rate = 1.0), or RandomForest-Classifier 
(random_state = 23 n_estimators = 100 criterion = gini max_features = auto). Clasifiers were 
chosen based on the proximity of ROC curves to a value of 1. When using 
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(RepeatedStratifiedKFold) a repeated (n_repeats=10), stratified cross-validation (n_splits=5) 
approach to classify datasets based on their genotype. 

RNAseq and Single Cell RNAseq 
RNAseq data analysis was described in Wynne et al. 71.  Single cell RNA seq data were 

described in 72. Gene expression data matrix (matrix.csv) and cell metadata (metadata.csv) data 
were downloaded from the Allen Institute Portal and processed as described 71 with the Qlucore 
Omics Explorer Version 3.6(33). Data were log2 converted and normalized to a mean of 0 and a 
variance of 1. 2D t-SNE plots were generated using a perplexity of 40 and default settings. 

Bioinformatic Analyses  
Gene ontology analyses were performed with Cluego and HumanBase 47. ClueGo v2.58 

run on Cytoscape v3.8.2 46,73. ClueGo was run querying GO CC, REACTOME, KEGG and 
WikiPathways considering all evidence at a Medium Level of Network Specificity and selecting 
pathways with a Bonferroni corrected p value <10E-3. ClueGo was run with Go Term Fusion. 
HumanBase was run using default webased parameters47. In silico interactome data were 
downloaded from Genemania predicted and physical interactions and processed in Cytoscape 
v3.8.2 73. Interactome connectivity graph parameters were generated in Cytoscape. 

Statistical Analyses 
Volcano plot p values were calculated using Qlucore Omics Explorer Version 3.6(33) 

without multiple corrections. Experiments in Figure 4A-B and G statistical analyses were 
performed with the engine https://www.estimationstats.com/#/ with a two-sided permutation 
t-test and alpha of 0.05 74. ROC analysis and paired t-test were performed with Prism v9.2.0(283). 

Data Availability 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE 75 partner repository with dataset identifiers: PXD029808, PXD029809, 
PXD029811, PXD029835 
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Figure Legends 
 
Figure 1. The Secreted Proteome of Post-Mitotic MECP2 Mutant Human Neurons 
A. Experimental strategy to define a consensus Rett syndrome secreted proteome and infer 
conserved ontologies. B and C. Silver stain of two formulations of media conditioned by wild type 
and MECP2-null differentiated LUHMES cells, a post-mitotic human neuron line 76. Lane 1 in B 
and C represent naïve non-conditioned media. Lanes 2 and 3 depict conditioned media by wild 
type and mutant cells. B presents experiments performed with commercial N2 supplement. C 
shows experiments where the N2 supplement was custom generated from high grade purity 
reagents. D to F, present volcano plots of TMT mass spectrometry experiments with thresholds 
at log2 of 0.5-fold of change in protein abundance and a p value <0.05. Symbol color represents 
fold of change in linear scale (see insert). D presents a comparison between protein hits obtained 
by comparing media conditioned by wild type neurons and non-conditioned media. All hits to the 
right of the X axis correspond to proteins secreted by neurons (n=5). E shows a comparison of 
the wild type and MECP2 mutant secreted proteome. All hits to the right correspond to proteins 
whose expression is higher in wild type than in mutant cells (n=5). F shows the total cellular 
proteome of wild type and MECP2-null cells used in E, n=3. G to I show clustered heat maps of 
hits selected in D to F. Arrows mark some cardinal hits. Rows are depicted as minimum and 
maximum intensities (blue-yellow scale) and annotated by log2 fold of change (rainbow scale, 
see table S1). J to L analysis of TMT data in panel E using an XGBoost machine learning algorithm. 
J presents main hits discriminating wild type and MECP2 conditioned media in the decision tree. 
Asterisks mark proteins identified both by volcano thresholding and machine learning. K-L, 
performance of the machine learning protocol estimated by ROC analysis, J, and confusion matrix 
in I. Area under the curve in J =0.97±12. M, Venn diagram of the overlap between hits found in 
conditioned media in panel E and cellular hits in F, p value calculated with exact hypergeometric 
probability. N, shows the % overlap between the cellular proteome ontologies inferred from the 
datasets shown in E and F calculated with the ClueGo application (see table S1). P value estimated 
with exact hypergeometric probability Bonferroni corrected.  
 
Figure 2. The Rett Syndrome CSF Proteome Across Three Species.  
A volcano plot of TMT mass spectrometry determinations in rat cerebrospinal fluid. Cutoffs at 
log2 of 0.5 fold of change in protein abundance and a p value <0.05 n=5. B shows clustered heat 
maps of hits selected in A. For A and B, see legend to Figure 1 for additional details. C depicts 
volcano plot of rat cortices analyzed by TMT mass spectrometry. Shown are hits selected by p 
value <0.05 see table S2 for hit lists at p<0.01. n=5. D and E show mouse CSF TMT volcano plot 
and heat map of selected hits at cutoffs of log2 0.5 fold of change in protein abundance and a 
p<0.05. n=16 wild type and 14 Mecp2-null mice. F analysis of TMT data presented in panel D using 
an XGBoost machine learning algorithm. Main hits discriminating wild type and Mecp2 mutant 
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CSF proteomes in decision tree are shown. Inserts show performance of the machine learning 
protocol estimated by ROC analysis and confusion matrix. Area under the curve in J =0.92±11. G, 
Top Venn diagram shows the overlap between Mecp2-sensitive rat CSF and rat cortex hits using 
two thresholding criteria p<0.05 and p<0.01. Bottom Venn diagram compares Mecp2-sensitive 
hits in rat and mouse CSF pooled together with Mecp2-sensitive rat cortex hits. H depict the 
correlation in expression of Mecp2-sensitive hits in rat CSF and rat cortex. I, shows the % overlap 
between the cellular proteome ontologies inferred from the datasets shown in A and C calculated 
with the ClueGo application (see table S2). J and K show Rett syndrome female individual CSF 
TMT volcano plot and heat map of selected hits at log2 of 0.5 fold of change in protein abundance 
and a p<0.05 comparing before and after IGF-1 treatment. n=10 before treatment and 9 after 
treatment. L analysis of TMT data presented in panel J using an AdaBoost machine learning 
algorithm. Main hits discriminating CSF before and after treatment in decision tree are shown. 
Inserts show performance of the machine learning protocol estimated by ROC analysis and 
confusion matrix. Area under the curve in insert ROC analysis 0.70±0.26.  
 
Figure 3. Convergent Ontologies Inferred from Rett Syndrome CSF and CSF-mimic Proteomes. 
A, Venn diagram depicted hit overlaps among the four experimental systems studied. Hits 
represent the sum of volcano thresholding- and machine learning-selected hits. B and C. 
Integrated gene ontology analysis of the four datasets in A annotated with the experimental 
system that originated the dataset. Nodes represent individual ontologies. 
GO_CellularComponent, KEGG, Reactome, and WikiPathways were queried with the ClueGo 
application. All ontologies have p<0.001. Exact hypergeometric probability Bonferroni corrected. 
C, shows the percent of contribution of each experimental system to each ontology. Grey denotes 
ontologies represented by all four experimental systems. D, pie charts of the percent 
contribution of each experimental system to the top ontologies identified in B-C, p values 
hypergeometric probability Bonferroni corrected for the ontology. E, shows ontology analysis 
using the same datasets in B-C but using the Bayesian engine HumanBase. Analyses were 
performed either with astrocyte- or neuron-centric queries. Nodes correspond to genes and their 
functional interrelationships. Nodes are grouped into clusters M(n), prioritized by q value 
calculated using one-sided Fisher’s exact tests and Benjamini–Hochberg corrections. Most 
significant cluster is M1. F-H, show Venn diagrams and protein-protein interaction networks of 
the sum of datasets presented in A overlapping with the curated HDL proteome in F, the Synapse 
knowledge database of annotated genes in G, and the Mitocarta 3.0 annotated mitochondrial 
proteins in H. Venn diagram p values calculated with exact hypergeometric probability and the 
representation factor (RP) estimates overlap beyond what is expected by chance. See Table S3 
for all ontological data. 
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Figure 4. Ontologically Selected and Confirmed Rett Syndrome CSF Proteome Hits Perform as 
Putative Biomarkers of Disease.  
A and B shown independent confirmatory analyses using isotopologue peptides mapping the 
primary sequence of the indicated proteins using AQUA mass spectrometry in rat CSF (A) or a 
modified AQUA approach in mouse CSF (B). In A, femtomoles of the endogenous CSF peptide 
were normalized to a randomly chosen control sample. In B, the ratio of the CSF endogenous 
peptide to the isotopologue peptide were used to quantify relative analyte abundance. Gray bars 
correspond to wild type CSF and blue bars Mecp2 null CSF. All analytes were measured 
independently with 2-3 isotopologue peptides as standards. In A two batches of 5 rats of each 
genotype were used while in B, one batch of 10 mice of each genotype were analyzed. C depicts 
a heat map of all the modified AQUA determinations performed in mouse CSF samples that 
showed significant differences between genotypes. Every isotopologue peptide correspond to a 
row. Data are depicted as row median divided by the row median absolute deviation both as heat 
map and by symbol size. D, principal component analysis of Rett syndrome participants before 
and after treatment (gray and blue symbols, respectively), every subject is color coded and the 
after-treatment PCI coordinates are indicated by a callout triangle. Analyte expression levels from 
a TMT mass spectrometry quantification were mapped to the PCI coordinates as a heat map. 
Apoliproteins increased expression after IGF-1 treatment. Note controls do not experience 
changes (B2M, HBB, HBD, ALB). E, MesoScale ELISA confirmation of APOA1 levels in Rett 
individuals CSF before and after IGF-1 treatment. F and G, a heat map of ontology selected and 
confirmed analytes in B-C tested in the CSF of Cdkl5-null mice. Data correspond to the normalized 
abundance measured by TMT mass spectrometry. G shows APOE, the only analyte whose 
expression was modified in Cdkl5-null CSF, shown by the gray box in F. H, ROC analysis of selected 
mouse CSF Mepc2-sensitive hits either quantified by TMT mass spectrometry (grey symbols) or 
by modified AQUA (purple symbols). Number represents p value that tests the null hypothesis 
that the area under the curve=0.50 (non-discriminatory). P values in A, B, E and G were calculated 
with a two-sided permutation t-test. See table S4 for data to panels B-C and F-G. 
 
Fig. S1. Design of a Robust Strategy to Identify Consensus Rett Syndrome Proteomes for 
Ontology Inference and Biomarker Selection. 
Diagram shows three species and experimental systems. Cohorts represent independent 
collections of samples with the strategy used for analyte quantification, the place of sample 
collection, and sample measurement location. Isotopol refers to AQUA and modified AQUA 
strategies, LFQ corresponds to label free quantification, and TMT denotes Tandem Mass Tagging.  
 
Fig. S2. Orthogonal Approaches to Identify Rett Syndrome CSF Proteomes. 
A volcano plot of LFQ mass spectrometry determinations in rat cerebrospinal fluid. Cutoffs at 
log2 0.5 fold of change in protein abundance and a p value <0.05, n=5. See table SS2. B shows 
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clustered heat maps of hits selected in A. For A and B, see legend to Figure 1 for additional details. 
C to E, depict analysis of the indicated mass spectrometry datasets using a Random Forest 
machine learning algorithm. Bar graph showing main hits discriminating wild type and Mecp2 
mutant CSF in the decision tree. Inserts show performance of the machine learning protocol 
estimated by ROC analysis and confusion matrix.  
 
Fig. S3. Expression Patterns of Ontology Selected Analytes in Brain Cells and Plasma. 
A. Fold enrichment and rank order of mRNAs most expressed in neurons and astrocytes according 
to Zhang 76,77 or abundance in the plasma proteome according to Geyer et al 78. Superimposed 
are CSF hits. Venn diagrams present overlaps with each cell type gene expression category or 
plasma proteome. B depicts a t-SNE cell atlas generated with the expression levels of all 
transcripts encoding selected hits from the mouse CSF Mecp2-sensitive proteome. The t-SNE 
atlas encompasses >20 areas of mouse cortex and hippocampus, totaling 76,307 cells 79. Color 
codes denote neuronal subclasses described by Yao et al. 79. Neurotransmitter annotation is 
depicted as well as the expression levels of Mecp2 mRNA across brain regions and cell types. 
Each atlas depicts the mRNA expression of the indicated analyte. Note analytes such as Apoc1 
whose mRNA is not detectable in this dataset. t-SNE cell atlases were assembled using the Allen 
single-cell RNAseq dataset as describe by Wynne et al 80. 
 
Fig. S4. Brain Parenchyma Transcripts Levels of Analytes Selected by Ontology and with 
Biomarker Potential. 
RNAseq analysis of transcript expression of indicated analytes in three microdissected brain 
regions from wild type and Mecp2 mutant brains. Mecp2 mRNA are presented as a control. N=5 
animals per each phenotype. Only Mecp2 mRNA is differentially expressed p for three brain 
regions p< 1.40E-236, Benjamini and Hochberg corrected Wald test. See table SS4. 
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