

1 **Title: Adolescent rats extend help to outgroup members, highlighting a neural network for**
2 **group identity categorization.**

3
4 **Authors:** Jocelyn M. Breton^{1,†}, Jordan S. Eisner², Vaidehi S. Gandhi², Natalie Musick³, Aileen
5 Zhang³, Kimberly L.P. Long^{1,‡}, Olga S. Perloff³, Kelsey Y. Hu², Chau M. Pham³, Pooja
6 Lalchandani³, Matthew K. Barraza², Ben Kantor⁵, Daniela Kaufer^{1,3,4}, Inbal Ben-Ami Bartal^{*3,5}.

7
8 **Affiliations:**

9 ¹ Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA

10 ² Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA, 94720, USA

11 ³ Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA

12 ⁴ Canadian Institute for Advanced Research, Toronto, Canada, ON, M5G1M1, Canada

13 ⁵ Psychology Department, Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo,
14 Israel, 6997801

15
16 **Author List Footnotes:**

17 [†] current address: Department of Psychiatry, Columbia University, New York, NY, 10027, USA

18 [‡] current address: Department of Psychiatry and Behavioral Sciences, University of California San
19 Francisco, San Francisco, CA, 94143, USA

20
21 **Corresponding Author and Lead Contact:**

22 *Correspondence to: inbalbe@tauex.tau.ac.il.

23
24 **Summary:**

25 Prosocial behavior, in particular helping others in need, occurs preferentially in response to the
26 perceived distress of one's own group members, or ingroup. The development of neural
27 mechanisms underlying social selectivity towards ingroup members are not well established.
28 Here, we used a rat helping behavior test to explore the development and neural basis of ingroup
29 bias for prosocial behavior in adolescent rats. We previously found that adult rats selectively help
30 others from their own social group, and that this selectivity is associated with activation in reward
31 and motivation circuits. Surprisingly, we found that adolescent rats helped both ingroup and
32 outgroup members, evidence suggesting that ingroup bias emerges in adulthood. Analysis of
33 brain-wide neural activity, indexed by expression of the early-immediate gene c-Fos, revealed
34 increased activity for ingroup members across a broad set of regions, which was congruent for
35 adults and adolescents. However, adolescents showed reduced hippocampal and insular activity,
36 and increased orbitofrontal cortex activity compared to adults. Adolescent rats who did not help
37 trapped others also demonstrated increased amygdala connectivity. Together, these findings
38 demonstrate that biases for group-dependent prosocial behavior develop with age in rats and
39 suggest that specific brain regions contribute to this prosocial selectivity, overall pointing to
40 possible targets for the functional modulation of ingroup bias.

41

42 **One Sentence Summary:** Prosocial selectivity increases with age in parallel with hippocampal
43 and insular activation, providing insight into the neural classification of group membership.

44
45 **Keywords:** prosocial, brain, neural, development, empathy, adolescence, distress, helping, rats.

46

47

48

49 **Introduction**

50

51 Responding to another's distress with a prosocial action is a crucial component of life in social
52 groups[1-3]. Distress is a salient signal that can elicit empathy in the observer and recruit
53 motivational responses intended on helping the distressed individual[4]. Yet, the empathic
54 response to distressed others is largely impacted by their social identity, and prosocial behavior,
55 in humans as well as other species, is selective and preferentially extended to affiliated others [5,
56 6]. To put it simply, we are much more likely to help others we care about than those we do not.
57 For humans and other social species, affiliation expands beyond individual familiarity to
58 encompass others of the same social group, or ingroup members[7, 8]. Identifying others as
59 ingroup or outgroup members thus comprises a quick, effective heuristic for determining
60 prosocial motivation. This mechanism, ostensibly adaptive at its origin, is hugely detrimental in
61 modern society. Yet social bias, in particular with regard to prosocial motivation, is difficult to
62 influence[9]. Targeting the formation of social bias during development, when social information
63 is especially salient[10, 11] yet flexible[12], is a promising strategy for influencing behavior
64 towards outgroup members along the life span, and understanding the neural mechanisms
65 underlying the development of social bias, is thus a key question of our time.

66

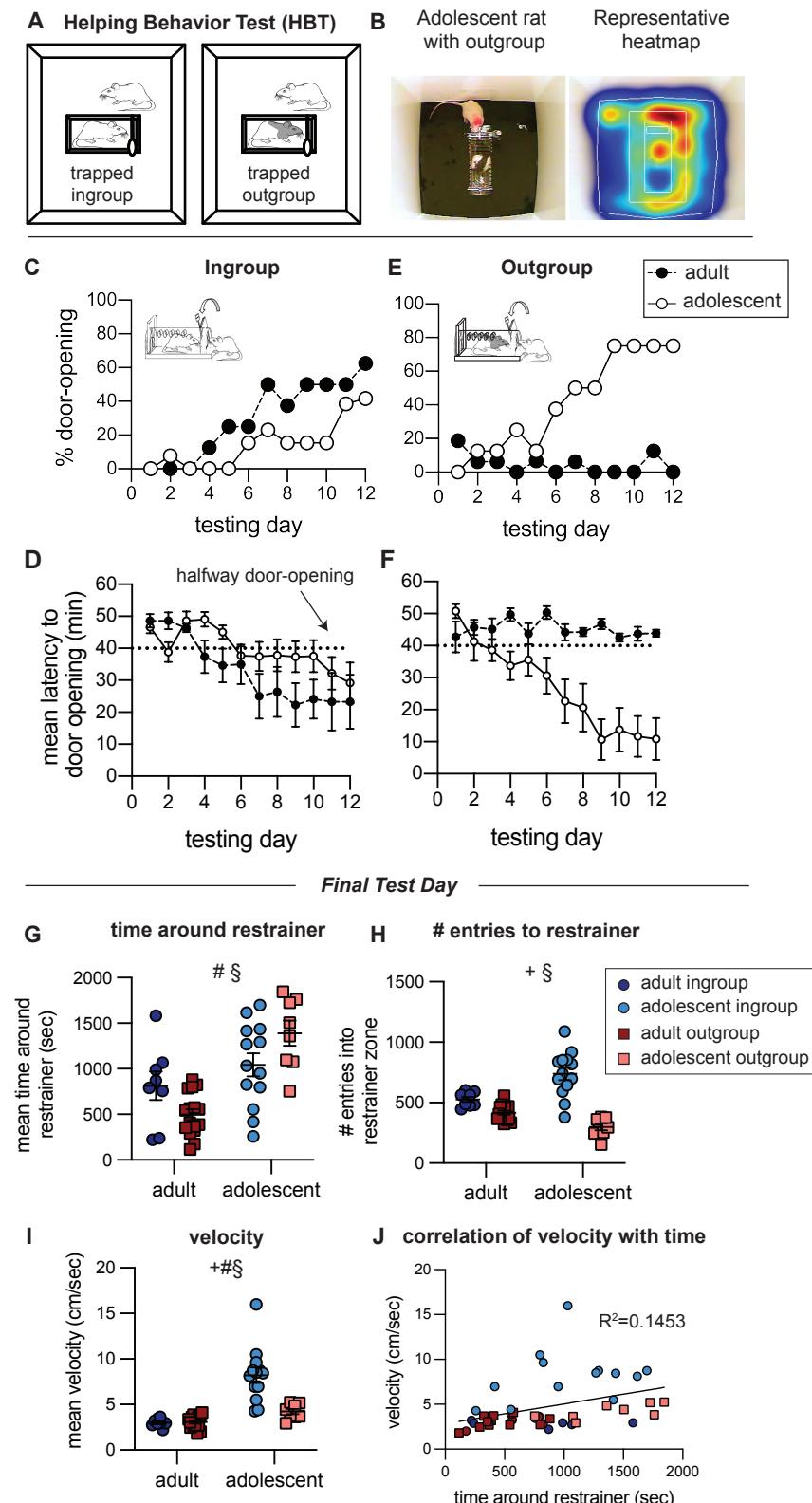
67 Evidence suggests that children categorize others into ingroup and outgroup members and
68 demonstrate social preferences very early in development [13, 14]. For instance, babies prefer
69 faces of same-race adults [15] or adults with the same accent as their caretakers [16], and use
70 group membership information to guide behavioral choices [17, 18]. By 3-4 years of age, children
71 can show ingroup favoritism [19, 20], even towards arbitrarily determined groups [21]. However,
72 distress is a unique signal, and children are highly sensitive to others' wellbeing. At 9 months of
73 age children prefer prosocial actions over harmful ones; by the end of their first year they begin to
74 comfort others; and by their second year of life, they engage in helping behavior [13, 22, 23].
75 Thus, while social identity influences social motivation in children including increased loyalty,
76 sharing, and positive attitudes towards ingroup members [21, 24], it is unclear whether empathic
77 helping is similarly prone to ingroup bias at young ages. Furthermore, encouragingly, children are
78 more malleable than adults in their biases towards outgroup members[25]. Several studies have
79 found that in humans, exposure to a diverse environment during childhood is associated with
80 reduced biases into adulthood [26-29]. For example, unlike infants raised by families of their own
81 race, infants in a multi-racial community do not prefer same-race faces [30]. Ingroup vs. outgroup
82 categorization is thus flexible during human development. Yet, critically, the neural basis of the
83 development of prosocial biases remains undefined, and could provide key insights into the
84 flexibility of this biological mechanism.

85

86 Animal models have proved useful in the study of neural circuits underlying prosocial behavior.
87 During the helping behavior test (HBT), adult rats who are exposed to a distressed trapped rat are
88 motivated by that distress [31] to open a restrainer and release the trapped rat, even in the lack of
89 social contact [32], demonstrating empathic helping. However, this prosocial behavior is socially
90 selective, as rats release others from their own genetic strain, but do not help rats from unfamiliar
91 strains[33, 34]. Furthermore, 2 weeks of co-habitation with a member of an unfamiliar strain
92 caused a pro-social shift towards strangers of that strain, indicating that for rats, group
93 membership is flexibly determined by social experience [33, 34]. The HBT is thus a good model
94 for studying the neural processes involved in social bias for empathic helping in rats. Indeed, we
95 found that neural regions typically associated with empathy, as well as reward, were active in rats
96 following the HBT with trapped ingroup members [33]. In contrast, rats tested with outgroup
97 members only showed activity in empathy networks. This pattern was not observed for non-
98 trapped others, or for a non-social reward. Thus, while rats typically activate regions associated

99 with negative arousal during the HBT, activity in the reward & motivation system is selectively
100 associated with the presence of ingroup members and is predictive of helping.
101

102 While we have studied the neural bases of prosocial biases in adult animals, they have not yet
103 been explored within a developmental context. Here we turned to young rats to examine the way
104 adolescent brains respond to ingroup and outgroup members in distress during the HBT. We
105 found that adolescent rats consistently released trapped outgroup members, in stark contrast to
106 adults. Distinct patterns of movement and social interactions for ingroup and outgroup members
107 suggest adolescents distinguish between the two conditions. After a final HBT session, a neural
108 activity marker, the immediate early gene c-Fos, was analyzed to identify the neural networks
109 associated with prosocial behavior. Distinct patterns of neural activity associated with each
110 condition were observed and may underlie the generalized helping observed in adolescents
111 compared to adults. In general, adolescents activated similar regions as adults during the HBT,
112 reinforcing the participation of empathy and reward regions in this task. However, the
113 hippocampus of adolescents was less active than adults, while activity in the orbitofrontal cortex
114 was elevated. These findings suggest that the response to distress in adults may be inhibited by
115 activation of circuits that respond to social category information. Overall, our findings
116 demonstrate that adolescent rats do not show a similar ingroup bias as adults and display altered
117 activity in networks of social mapping and reward valuation
118


119 **Results**

120 **Adolescent rats, unlike adults, do not demonstrate an ingroup bias for prosocial behavior.**

121
122 Rats were tested in the helping behavior test (HBT), a simple test where rats can learn to open the
123 door to a restrainer and release a conspecific trapped inside, as previously described in [32]. For
124 hourly daily sessions over a two-week period, rats were given the opportunity to open the
125 restrainer; they were not trained beforehand or rewarded in any way other than the reward
126 afforded by door-opening and any subsequent social interaction. Here, helping behavior was
127 studied in adolescent Sprague-Dawley (SD) rats (p32 days old) tested with age-matched SD
128 cagemates ('adolescent ingroup', n=13), or with age-matched rats of the unfamiliar black-capped
129 Long-Evans (LE) strain ('adolescent outgroup' n=8 [Fig. 1A-B](#)). Adolescent helping was
130 compared to adult rats (p60-p90) tested with the same protocol ('adult ingroup', n=8 & 'adult
131 outgroup', n=16). Part of this dataset was previously published in [33].
132

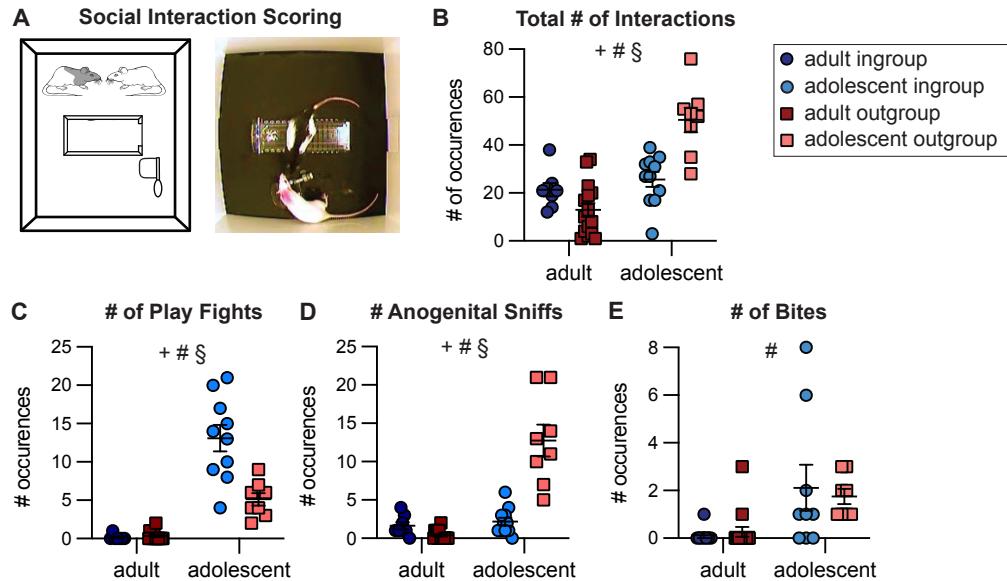
133 Like adults, adolescent rats tested with ingroup members were motivated to release their trapped
134 cagemates, as expressed by a significant increase in percent door-openings (Cochrane's Q, p<0.01)
135 and reduced latency to door-opening (Friedman, p<0.05) along the days of testing ([Fig. 1C-D](#),
136 [Movie S1](#)). Strikingly, unlike adults, adolescent rats robustly released trapped outgroup members,
137 as expressed by a significant increase in the percent of door-openings (Cochrane's Q, p<0.001) and
138 decreased latency to open the restrainer door (Friedman, p<0.01, [Fig. 1E-F](#), [Movie S2](#)). Nearly all
139 rats in this condition (n=6/8) consistently released the trapped outgroup member, as opposed to
140 0/16 in the adult condition. The percent of door-openings did not increase in the adult outgroup
141 condition, and door-opening behavior was rarely observed (Cochrane's Q, Friedman, p>0.05).
142 This unexpected finding demonstrates that the lack of prosocial motivation towards outgroup
143 members emerges after early adolescence or in adulthood.
144
145
146
147

Figure 1

Fig. 1. (above). Helping behavior for adult and adolescent rats. Adolescent rats, unlike adults, do not demonstrate an ingroup bias for prosocial behavior. (A) Diagram of the helping behavior test. (B) Representative movement pattern of an adolescent tested with an outgroup member depicted by a heatmap of the rat's location along the session. (C-F) Helping behavior is expressed by % of door-openings and latency to open for the ingroup (C-D) and outgroup (E-F) across testing sessions. The dashed line indicates the half-way door-opening by the experimenter. (G-J) Analysis of movement patterns in the final testing session, including: (G) The time rats spent near the trapped rat, (H) the number of entries into the zone around the restrainer and (I) average velocity. (J) Time around restrainer was correlated with activity levels. 2-way ANOVA: + main effect of group identity, # main effect of age, § significant interaction between age and group identity.

148 **Adolescent rats interact differently with ingroup and outgroup members**
149

150 An unexpected finding was that adolescent rats were less successful at helping trapped ingroup
151 members compared to adults. Only 4/13 adolescent rats became consistent openers by the end of
152 testing, compared to 6/8 adult rats. This could point to reduced motivation to release trapped
153 cagemates. However, both movement data and increased neural activity (described later) suggest
154 they were highly motivated to do so. On the final testing day the restrainer was latched so that all
155 rats had an objectively similar experience of being in the presence of a trapped conspecific for the
156 entire session length. On this final test day, adolescents in the ingroup condition spent a similar
157 amount of time around the trapped rat as the adolescent outgroup rats yet they entered the zone
158 around the restrainer more frequently and were more active than the outgroup condition
159 (ANOVA, $p<0.01$, Bonferroni $p<0.01$, [Fig. 1G-I](#), [Movie S3](#)). Thus, despite lower rates of door-
160 opening for adolescent ingroup than outgroup members, adolescents in the ingroup condition
161 demonstrated movement patterns reflective of high motivation to release the trapped cagemate. In
162 general, as is typically observed, adolescents in both conditions were more active than adults ([Fig](#)
163 [1I](#)). They also spent more time near the trapped rat than did adults on the final session (ANOVA,
164 $p<0.01$, Bonferroni $p<0.01$, [Fig. 1G-H](#)), suggesting that a social stimulus is more salient for
165 adolescents. Across all groups, activity was directed at the trapped rat; there was a positive
166 correlation between activity and time near the restrainer (Pearson's, $p<0.01$, [Fig 1J](#)), and rats were
167 observed circling the restrainer as demonstrated in [Fig. 1B](#) and [Movie S3](#). Combined, these data
168 suggest that adolescents tested with cagemates were motivated, but less successful at learning the
169 door-opening task than the adolescents tested with outgroup members. Future studies will be
170 needed to explore the possible processes involved in this finding.


171
172 To further explore the motivational state of adolescents with trapped ingroup and outgroup
173 members, social interactions immediately after door-opening were quantified on the day before
174 the last session (the final day where social interaction was afforded, [Fig. 2A](#), see methods). In line
175 with the movement data, adolescents interacted with the freed conspecific more than adults
176 (ANOVA, main effect of age, $p<0.05$), reinforcing the increased salience of social interaction for
177 adolescents. Adolescents in the outgroup condition also showed the greatest number of
178 interactions (Bonferroni, $p<0.001$, [Fig. 2B](#)). Yet the type of interaction was markedly different for
179 adolescent ingroup and outgroup pairs: playfighting emerged as the predominant interaction in
180 the adolescent ingroup condition (Bonferroni $p<0.001$, [Fig. 2C](#)), whereas non-play interactions,
181 including anogenital sniffs, were significantly higher in the adolescent outgroup condition
182 (Bonferroni $p<0.001$, [Fig. 2D](#)). Aggressive behaviors such as biting were rarely seen in any group
183 and did not differ across the adolescent conditions ([Fig. 2E](#)). Thus, even on the final days of
184 testing, rats behaved differently with ingroup and outgroup members, indicating they could
185 distinguish between these social identities.

186
187 Altogether, we take these data to indicate that adolescents were more motivated than adults to
188 release and interact with the trapped rat. The differing behaviors between the adolescent ingroup
189 and outgroup conditions suggest that the free rats were sensitive to the group identity of the
190 trapped rat and may point to two different motivational states in these conditions, such as
191 empathy vs. curiosity or a desire for social interaction. Importantly, even if rats of all ages
192 experience less emotional contagion with outgroup members, adolescents, in contrast with adults,
193 release the trapped rat, demonstrating prosocial motivation and lack of social bias.

194

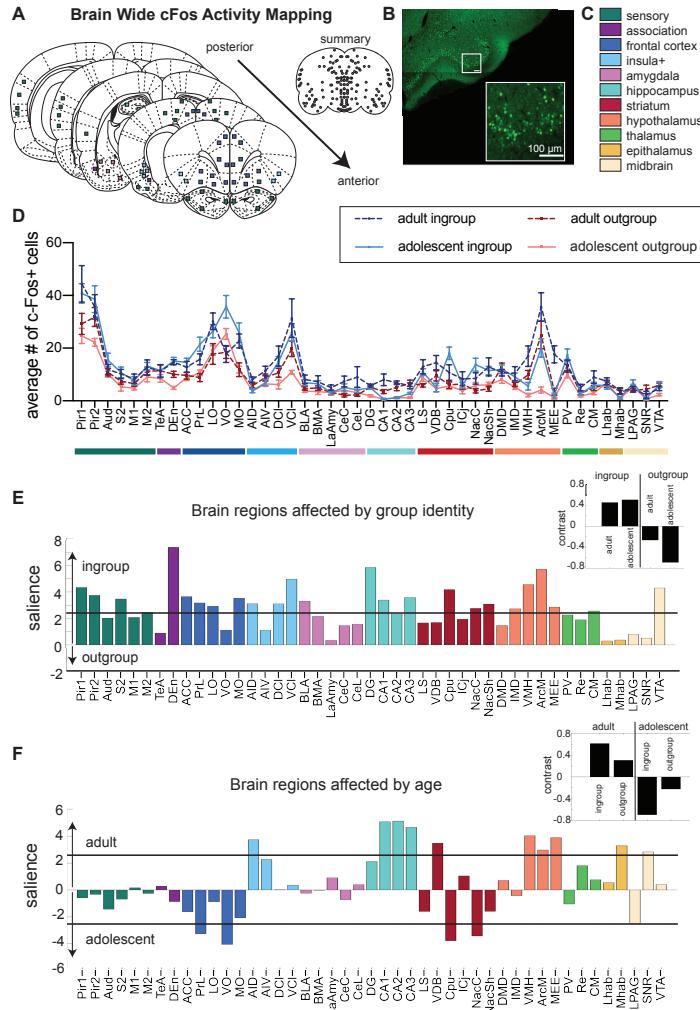
195

196

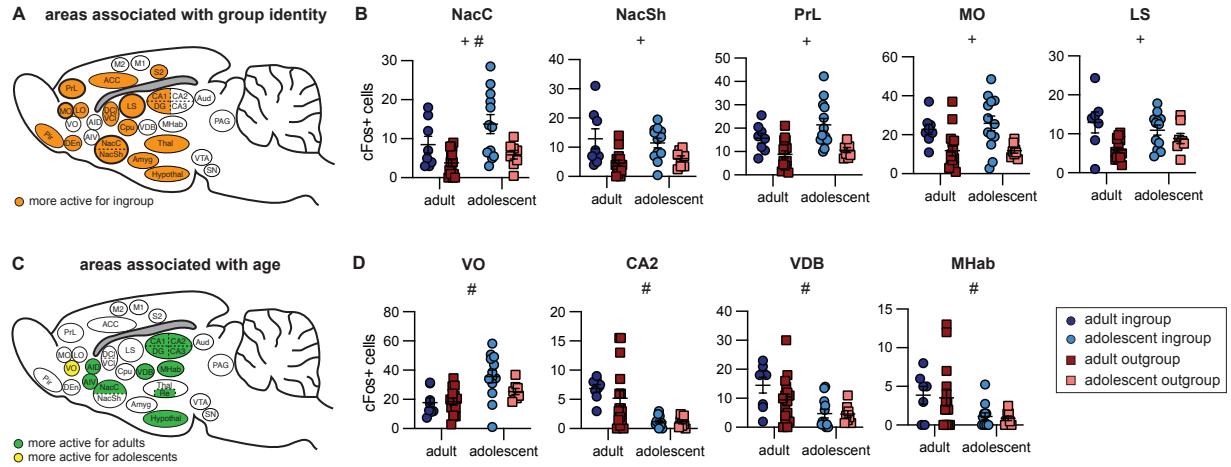
Fig. 2. Adolescent rats display different types of social interaction depending on group identity. (A) Diagram and representative image of social interaction between an adolescent SD and LE rat. (B) Compared to adults, adolescents had a higher number of total social interactions scored within the 5-minute period. This includes all types of interactions, including play fighting, touching and investigations. (C) The number of play fights was highest in adolescents tested with cagemates. (D) The number of investigative anogenital sniffs was highest in adolescents tested with strangers. (E) The number of bites did *not* differ between adolescent groups. 2-way ANOVA: + main effect of group identity, # main effect of age, § significant interaction between age and group identity.

197 **Neural activity patterns in the helping behavior test correspond with age and group**
198 **membership.**

200 In order to map brain-wide activation associated with the HBT across development, the
201 immediate early-gene c-Fos was quantified as an index of neural activity. c-Fos was measured
202 immediately following the final testing session during which the restrainer was latched shut,
203 reflecting neural activity of rats in the presence of a trapped ingroup or outgroup member (n=84
204 sampled brain regions per rat, [Fig. 3A-D](#), see detailed methods in: [33].


205
206 Two overarching patterns of neural activity were identified for the four HBT conditions using
207 multivariate task partial least-square (PLS) analysis as previously described [33, 35, 36]. This
208 analysis aims to identify patterns associated with each condition by maximizing the contrast
209 between the tasks in a non-biased way. Two significant latent variables (LVs) emerged from data
210 based on these four conditions, each one associated with a different pattern of neural activity,
211 identified by permutation bootstrapping tests. One LV was associated with group identity
212 (ingroup vs. outgroup, LV1, p<0.001, [Fig. 3E](#)), and the other was associated with age (adolescent
213 vs. adult, LV2, p<0.001, [Fig. 3F](#)).

214 For both adolescent and adult rats, a distinct pattern of c-Fos activity emerged that was dependent
215 on group identity. Specifically, exposure to a trapped ingroup member led to increased neural
216 activity in a large number of brain regions, including in key regions previously observed to be
217 uniquely active for ingroup relative to outgroup members in adults such as the nucleus accumbens
218 (Nac), lateral septum (LS), prelimbic cortex (PrL), and medial orbitofrontal cortex (MO)[33].
219 Thus, regardless of age, the presence of trapped ingroup members recruits broad neural activity,
220 indicating this is a more salient stimulus than a trapped outgroup member.


221 Whereas the first LV suggests most neural activity can be explained by group identity, the second
222 LV emphasized overarching effects of age on neural activity, regardless of group identity. This
223 LV can thus point to brain regions that are affected by development rather than social context; it
224 revealed that adolescents displayed significantly reduced activity in the hippocampus,
225 hypothalamus and dorsal anterior insula, as well as increased frontal activity compared to adults.
226 Effects in the striatum were mixed, with reduced activity in the vertical limb of the diagonal band
227 of Broca (VDB) and increased activity in the caudate putamen (Cpu) and nucleus accumbens
228 shell (NacSh) for adolescents compared to adults ([Fig. 3F](#)).

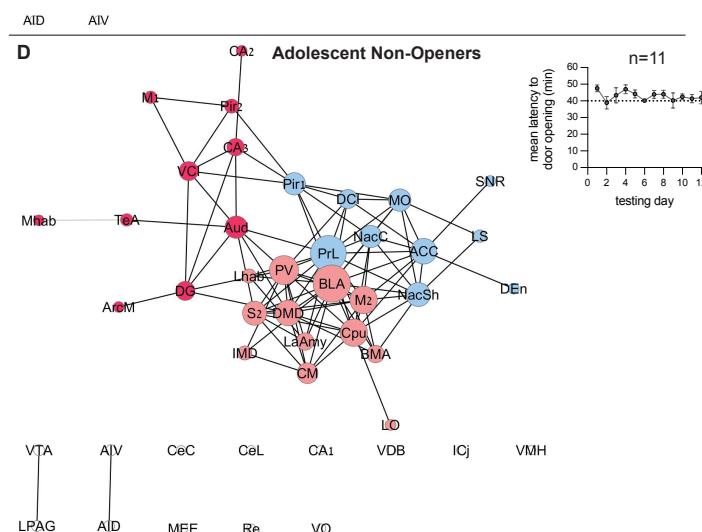
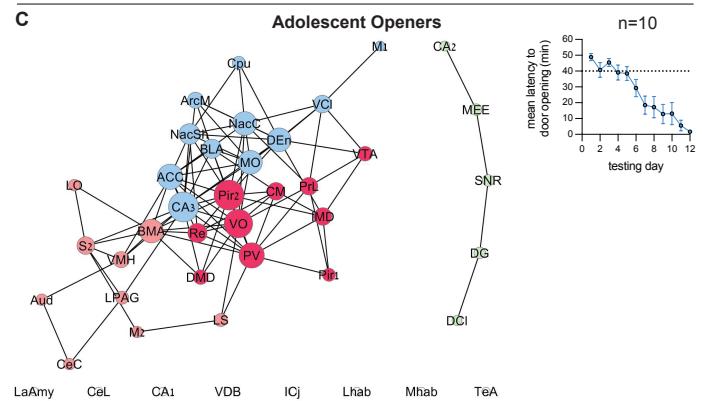
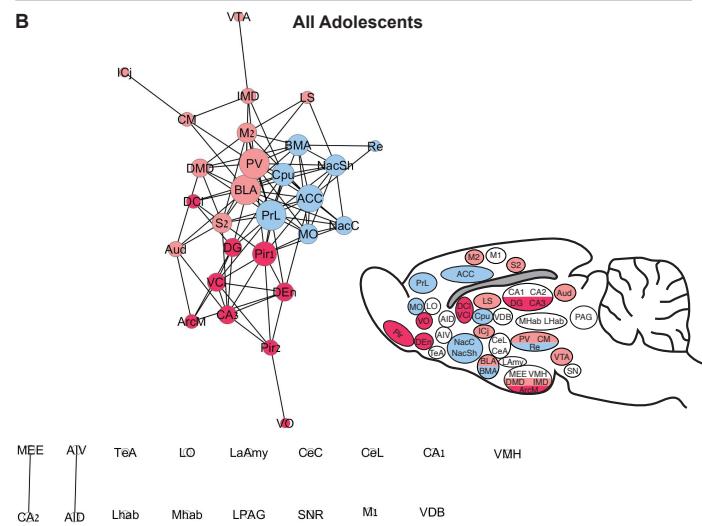
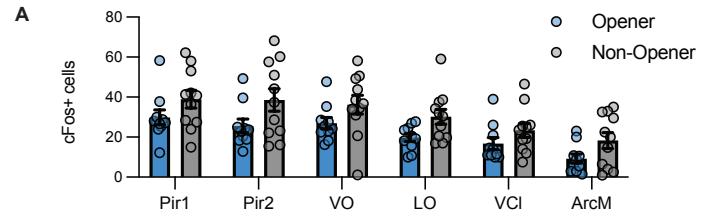
229
230 To gain a better understanding of the interactions between group identity and age for each brain
231 region, two-way ANOVAs with Bonferroni-corrected post-hoc tests were used to compare cFos+
232 cell numbers across the four HBT conditions ([Fig 4](#), [Table S1](#)). As expected from the LVs above,
233 some regions showed group-identity effects, others showed age effects, and some regions were
234 impacted by both. Based on the significant LVs, results are presented for group identity ([Fig 4A-B](#))
235 and age ([Fig 4C-D](#)) separately; a full display of scatterplots is available in [Fig. S1](#).

236
237 First, we focused on regions of interest previously found to be more active for adult ingroup than
238 outgroup members (based on: [33], ([Fig 4A-B](#)). These regions, the nucleus accumbens core
239 (NacC), NacSh PrL, MO, and LS, all displayed main effects of condition ([Table S1](#)). Similar to
240 adults, adolescents tested with ingroup members demonstrated increased c-Fos+ cell numbers in
241 the nucleus accumbens core (NacC), PrL and MO (Bonferroni, p<0.05) relative to adolescents
242 tested with outgroup members. In contrast, c-Fos numbers within the NacSh and LS were not
243 significantly different across adolescent groups despite a main effect for group identity, pointing
244 to developed sensitivity to group-identity in these regions. In addition, four of these five regions
245 (all except the NacC) did not show a main effect of age, further indication that group identity
246 rather than age drives these observed patterns of c-Fos activity. Conversely, to highlight age-

Fig. 3. Neural activity associated with the helping behavior test. The brain-wide pattern of neural activity was determined by age and group identity. (A) Diagram of brain regions sampled for c-Fos expression. (B) A representative image of c-Fos signal sampled in the piriform cortex. (C) Legend of brain region categories coded by color. (D) Number of c-Fos+ cells per region (mean \pm SEM). Significant latent variables reveal that group identity (E) and age (F) determine neural activity patterns. The salience represents the z-score of boot-strapping tests, with regions crossing the black threshold lines significantly ($p < 0.01$) contributing to the contrast depicted in the inset (black bars). The directionality of the bars is congruent with the contrast graphs, as demonstrated by the arrows along the y-axis. All regions were more active for ingroup than outgroup members, but several regions (e.g. VO) were more active for adolescent than adult rats.

Fig. 4. Neural activity of each condition, with main effects of group identity and age. Brain activity associated with group identity (A-B) and age (C-D) assessed by 2-way ANOVAs. (A) Brain diagram of all regions associated with group identity. All regions shown were more active for the ingroup than outgroup. (B) Scatterplots of five regions previously found to be uniquely active for adult ingroup compared to outgroup rats. Each region shows a main effect of group identity and adolescents display similar patterns as adults. (C) Brain diagram of all regions associated with age. Colored regions on the diagram represent areas more active for adults (green) or for adolescents (yellow). (D) Scatterplots of five of the seven brain regions that uniquely had a main effect of age but not group identity (not shown: AIV and CA3). All scatterplots can be found in Figure S1. 2-way ANOVA: + main effect of group identity, # main effect of age, § significant interaction between age and group identity.

247 associated effects, we examined regions contributing to the age LV but not the group LV in the
248 PLS analysis, meaning these regions did not pass the significance threshold in the group identity
249 salience plot (Fig 4C-D). We found that ventral orbitofrontal cortex (VO), medial habenula
250 (MHab), VDB and CA2 of the hippocampus were more active for adults, whereas the VO was
251 more active for adolescents (Fig. 4D). Thus, developmentally dependent increases in activity in
252 these regions could indirectly explain the social selectivity in helping behavior observed in adults.
253





254 **Increased amygdala connectivity for adolescent non-openers**

255
256 While adolescents in general were motivated to release the trapped rat, not all of them became
257 successful helpers; these rats were classified as “non-openers” (see methods). When c-Fos levels
258 were compared between openers and non-openers, a significant interaction emerged between
259 opening and brain region (ANOVA, $p < 0.05$), stemming from significantly more activity for non-
260 openers in the ventral and lateral orbitofrontal cortex (OFC), piriform cortex, ventral claustrum
261 (VCl) and medial arcuate hypothalamus (ArcM) (Bonferroni, $p < 0.05$, Fig 5A). The increased
262 activity in these regions for non-openers may stem from an increased motivation in the non-
263 openers if, as posited above, adolescents in both groups were typically motivated to release the
264 trapped rat. Further experiments will be needed to understand whether activity in these regions
265 inhibits helping or reflects continued motivation.

266
267 To gain insight into the way different adolescent brain regions interact during the HBT, network
268 graph theory was used to generate functional connectivity maps based on c-Fos quantification.
269 The networks present the top 10% correlated regions, based on a Pearson’s pair-wise correlation
270 matrices (Fig. S2) and clustered using a Louvain algorithm, as previously reported in detail [33].
271 Note that this analysis highlights areas that are highly correlated with other brain regions; it does
272 not describe overall activity levels. Using this method, a network map for all adolescent rats
273 revealed 3 central clusters. Brain regions such as the PrL, MO and NAc, areas previously
274 observed to be uniquely active in adult rats tested with cagemates, were also highly connected in
275 one cluster of the network, alongside regions associated with empathy[4] such as the anterior
276 cingulate cortex (ACC), suggesting that this network may be involved in the motivation to help in
277 adolescents as well as in adults (Fig. 5B). Interestingly, mirroring the PLS and ANOVA findings,
278 both the insula and the CA2 were not part of the adolescent network, and neither were areas
279 associated with aversive responses (lateral and central amygdala, habenula, and others), indicating
280 that these brain regions are not central to the adolescent response to a trapped cagemate.

281
282 We next examined the brain-wide patterns of functional connectivity by graphing the network
283 maps for adolescent openers and non-openers. This analysis revealed that the main “motivational”
284 cluster described above was largely conserved in both openers and non-opener networks,
285 including connectivity between the MO, ACC and Nac (Fig. 5C-D). However, for non-openers a
286 cluster containing amygdala regions emerged, including the basomedial, basolateral and lateral
287 amygdala (BMA, BLA, LaAmy), and the habenula, indicating that connectivity in the amygdala
288 may be detrimental to helping (Fig. 5D). Together, these findings demonstrate that common brain
289 networks involved in reward and motivation were active in all adolescent rats, regardless of door
290 opening behavior.

291
292
293
294
295
296

Fig. 5. (above). Different neural patterns for opener and non-opener adolescent rats. (A) Brain regions with significantly higher levels of c-Fos for adolescent openers vs. non-openers are presented. (B-D) Network maps for adolescents tested in the HBT. (B) Network map for all adolescents, including rats in both the ingroup and outgroup condition. Inset: brain diagram colored by network clusters. (C) Network map for adolescent rats that became consistent openers. Inset: mean latency to door opening. (D) Network map for adolescent rats that did not consistently open across testing days. Inset: mean latency to door opening.

297 **Discussion**

298

299 This study aimed to examine the neural development of social bias for prosocial behavior in
300 adolescent rats. We found that in contrast with adults, adolescent rats did not show an ingroup
301 bias, and instead helped trapped outgroup members, indicating that ingroup bias in rats emerges
302 along development. One way to interpret the generalized helping in adolescent rats is a lack of
303 sensitivity to group identity information due to later development of the neural circuits described
304 above. However, the differences in movement patterns and social interactions provide behavioral
305 evidence that rats do in fact distinguish between these social groups. An alternative explanation is
306 that adolescents extend prosocial motivation to outgroup members, perhaps due to increased
307 salience of social stimuli compared to adults, or a lack of threat arousal towards these adolescent
308 outgroup conspecifics. In support of this explanation, we found increased exploratory interactions
309 in the adolescent outgroup condition, compared to adults tested with outgroup members. As more
310 affiliative interactions, such as playfighting, was observed for adolescent ingroup members, it is
311 also possible that a different affective response was associated with each condition. While it is
312 impossible to determine from these experiments if social reward, social investigation or empathic
313 arousal was the main motivator for helping, the difference between adults and adolescents
314 towards outgroup members is striking.

315

316 Adolescents tested in the HBT showed activation in a broadly dispersed neural network that
317 responded preferentially to distressed ingroup members and was highly similar to that reported in
318 adult rats[33, 37], as well as in humans[4]. This network includes regions in the sensory cortex,
319 frontal cortex, ACC, anterior insula (AI), and reward and motivation areas like the claustrum,
320 Cpu, Nac, hippocampus and hypothalamus. A different pattern of neural activity for adolescents
321 relative to adult rats may indirectly explain the lack of social selectivity in prosocial motivation in
322 adolescents. Adolescent rats showed decreased activation in several regions compared to adults.
323 Specifically, CA2, VDB and Mhab were significantly less active for adolescents and were not
324 modulated by group identity. Furthermore, the LS, an area identified as more active for adults
325 tested with ingroup than outgroup members, was similarly active for adolescent rats in both
326 conditions. This suggests that the discrimination that occurs in the LS for group membership in
327 adulthood is not apparent during adolescence. Interestingly, in newborn rat pups, specific layers
328 of the LS have been shown to be active in response to the pup's own mother and siblings, while
329 other layers respond to another mother and her litter [38]. This suggests that at least some social
330 identity information is represented in the LS in early life. It is possible then that the increased LS
331 activity we see in adult ingroup vs. outgroup rats tested in the HBT represents a separate
332 subpopulation that is specifically important for prosocial responding.

333

334 In general, sensitivity to social identity information has been observed in several brain regions
335 including sensory cortex, dorsal medial PFC, LS, amygdala, and CA2 [39-44]. However, the
336 source of social identity information as well as the directionality of information flow between
337 these regions is unclear. Thus, selective responding based on social group could be represented in
338 these regions due to downstream incorporation of social identity, which drives differential
339 affective and motivational responses. Our results join with findings from other research groups
340 and point to neural sensitivity to social information across multiple brain regions, including the
341 hippocampus, amygdala, and striatum. [40, 45] The regions we and others have identified may be
342 part of a neural circuit that connects information about social identity with motivated behavior.
343 Both the VDB, a cholinergic basal forebrain region inhibiting magnocellular cells, and the LS are
344 structurally connected to the hippocampus, and may be modulated by the CA2, a hippocampal
345 region key to social mapping [46].

346

347 In particular, reduced hippocampal activation in adolescents may indicate a role for this region in
348 the ingroup bias that emerges in adulthood. For instance, it is possible that social mapping is not
349 distinctly defined in the adolescent brain. This idea is in line with research showing that
350 discrimination based on social identity emerges in the amygdala in adulthood in humans [26] and
351 mice [40]. Specifically, the CA2 is a possible target for future investigations. Indeed, in
352 adolescents, the networks for differentiating social stimuli may not be well formed yet. Here, we
353 examined functional networks in all adolescent rats and found that both the CA2 and insula
354 regions were not functionally connected to the main network, reinforcing the finding that these
355 regions are not centrally involved in the task before adulthood. Together, these findings support
356 the hypothesis that CA2 becomes both more active and functionally connected to the rest of the
357 brain in adulthood and participates in suppression of helping behavior towards non-affiliated
358 others.

359
360 The OFC also emerged as an area of interest in this study. We previously found increased activity
361 in the OFC for adult rats tested with both ingroup and outgroup members compared to baseline,
362 with MO being significantly more active for the ingroup condition [33]. Here we found a similar
363 trend, where MO and LO were significantly more active for adolescent ingroup members.
364 Conversely, activity in the VO was not modulated by group identity, but it was impacted by age;
365 the VO was the only region that was significantly more active for adolescents than adults.
366 Interestingly, the VO was even more active in adolescent non-openers. As the OFC participates in
367 processing rewards and evaluating outcomes[47], its specific modulation by group identity and
368 success at helping may reflect involvement of the OFC in placing a value on the outcome of the
369 trapped rat.

370
371 The current study faces several methodological limitations. First, there are limitations with using
372 c-Fos staining; these have been extensively described in prior work [33]. Critically, c-Fos staining
373 results in low temporal resolution, and thus, future work can expand upon the current study by
374 using technology such as fiber photometry or activity targeted viral vectors to assess neural
375 activity in adolescent rats undergoing the HBT. Higher temporal resolution will provide insight
376 into neural activity during learning across the task, during door opening behavior and during
377 subsequent social interactions, which we found differed according to group identity in
378 adolescents. Here, our methodology using whole brain c-Fos adds to the growing validation of
379 this type of unbiased approach in looking at brain activity in complex behaviors [48]. Our data
380 suggest several key brain regions that may be responsible for helping behavior in adolescent rats.
381 Future work will be able to expand on our findings to target specific regions and circuits, with the
382 goal of artificially manipulating prosocial motivation across development. It is also important to
383 note that the behavioral and neural findings here are from male rats. We are currently collecting
384 data from both adult and adolescent female rats; how sex interacts with prosocial motivation will
385 be critical to provide a more complete understanding of factors contributing to biases in helping
386 behavior.

387 Our finding that adolescents help non-affiliated others opens up new areas for future
388 investigation. Behaviorally, one hypothesis is that exposure to an outgroup member early in
389 development may be sufficient to reduce biases in prosocial behavior. It will be worth exploring
390 the bounds of this hypothesis; for example, is there a developmental window in which social
391 context contributes to bias? Further, would a brief exposure of adolescent SD rats to LE strangers
392 drive prosocial helping when tested as adults? Alternatively, adolescent rats may be driven to
393 open for outgroup members due to social novelty or a desire for social investigation, as suggested
394 from our social interaction data. Future studies will be able to directly address these hypotheses
395 through manipulation of the early social environment and through manipulation of social
396 interaction following door-opening. On a neural level, our findings suggest there may be a

397 developmental trajectory of circuits that are not yet active in adolescents, including in the
398 hippocampus and insula. Future work can test exactly when in development these brain regions
399 become engaged in the larger network. In addition, future work could test the hypothesis that
400 activation of hippocampal and/or insula regions are responsible for inhibition of helping outgroup
401 members.

402 In conclusion, this study sheds light on the developmental basis of prosocial motivation and in-
403 group bias. We demonstrate for the first time that adolescent rats are capable of helping behavior
404 and help distressed others regardless of group identity. Further, we provide a window into the
405 neural circuits associated with helping across development. Adolescent rats show a different
406 pattern of neural activity during the HBT than adults; these differences may indirectly explain the
407 lack of ingroup bias in adolescent rats. In particular, our results put a spotlight on the
408 hippocampus and its role in group categorization, and suggest that in adults, CA2 activity may
409 inhibit indiscriminate helping behavior. Overall, this study provides evidence for a developmental
410 basis of prosocial helping across mammalian species and highlights a distinct neural response to
411 the distress of affiliated others depending on age and group identity.

412
413 **Acknowledgments:**

414
415 **General:** We thank the following people for their help with this manuscript: Huanjie
416 Sheng, Dominique Cajanding, Estherina Trachtenberg, Keren Ruzal and Einat Bigelman.
417 **Funding:** This manuscript was supported by the Azrieli foundation (IBB), Israel Science
418 Foundation (IBB), a Greater Good Science Center Graduate Research Fellowship (KL),
419 and CIFAr (DK).

420
421 **Author contributions:** Conceptualization IBB, JB, Investigation: IBB, JB, KL, JE, VG, NM, AZ,
422 OP, KH, CP, PL, SC, CS, JC. Analysis: IBB, JB, HS, JE, VG, MB, AZ, OP, BK.
423 Visualization & Writing: IBB, JB. Methodology: IBB. Resources & Funding: IBB, KL,
424 DK. Supervision: IBB, DK.

425
426 **Declaration of Interests:** The authors declare no conflicts of interest.

427
428 **Data and materials availability:** All data needed to evaluate the conclusions in the paper are
429 present in the paper and/or the Supplementary Materials.

430
431 **STAR Methods**

432
433 **Resource Availability:**

434
435 **Lead Contact**

436 Further information and requests for resources and reagents should be directed to and will be
437 fulfilled by the lead contact, Inbal Ben-Ami Bartal (inbalbe@tauex.tau.ac.il).

438
439 **Materials Availability**

440 This study did not generate any new reagents or animal lines.

441
442 **Data and Code Availability**

443 All data have been uploaded in the following Open Science Framework
444 depository (<https://osf.io/6b2qc/>) which is publicly available as of the date of this publication.
445 DOIs are listed in the key resources table. This paper does not report original code. Any
446

447 additional information required to reanalyze the data reported in this paper is available from the
448 lead contact upon request.

449 **Experimental Model and Subject Details:**

450 **Animals**

451 Rat studies were performed in accordance with protocols approved by the Institutional Animal
452 Care and Use Committee at the University of California, Berkeley. Rats were socially housed in
453 cages of two same sex individuals, in a temperature (22-24C) and humidity controlled (55%
454 relative humidity) animal facility, on a 12:12 light:dark cycle (lights on at 07:00). Food and Water
455 was provided *ad libitum*. All testing was done in the rat's light cycle. In total, 45 rats were tested
456 across all experiments. For experiments with adults, male Sprague-Dawley rats (age postnatal day
457 (p) 60-p90 days) were used as the free & trapped ingroup rats (Charles River, Portage, MI). Adult
458 male Long-Evans rats were used as trapped outgroup rats (Envigo, CA). For experiments with
459 adolescents, Sprague-Dawley (Charles River) rats were born in-house at UC Berkeley. Animals
460 were separated by sex and weaned at p21, then were housed in pairs one week later at p28. Male
461 Long-Evans rats (p28) housed in pairs were purchased from Charles River, as our Long-Evans
462 breeders did not get pregnant as expected. All rats that were ordered were allowed a minimum of
463 5 days to acclimate to the facility prior to beginning testing. Trapped and free rats were of the
464 same sex and age. Sprague Dawley animals were assigned to one of two experimental groups:
465 they were either tested with cagemates (ingroup) or with Long-Evans strangers (outgroup).

466

467 **Method Details**

468

469 **Helping Behavior Test (HBT)**

470 The helping behavior test (HBT) was performed as described previously [32]. Briefly, animals
471 underwent five days of handling prior to starting the HBT. In addition to handling, on days 2-4,
472 animals were given 30-minute habituation sessions where they were placed in an empty arena
473 with their cagemate. On day 5, animals underwent a 15-minute open field task in the same arenas,
474 one animal at a time. For the HBT, rats were tested in 60-minute sessions over a 12-day period.
475 On each day, rats were placed into arenas with either a trapped Sprague-Dawley rat ('ingroup') or
476 Long-Evans rat ('outgroup') inside a restrainer located at the center of the arena. As in prior
477 work, if the free rat did not open the restrainer after 40 minutes, the door was opened half-way by
478 the experimenter. Both rats remained in the arena for the full hour. If the free rat opened the door
479 before the half-way opening it was counted as a door-opening. After the initial 12 days, following
480 a delay of typically one week, rats underwent three more test days. On the last day of testing, the
481 restrainer was latched shut throughout the 60-minute session and rats were perfused within 30
482 minutes of completing behavioral testing. 'Openers' were defined as rats who opened the
483 restrainer on at least two of the last three sessions (prior to the final day where the restrainers
484 were latched shut). Sessions were video recorded with a CCD color camera (KT&C Co, Seoul,
485 Korea) connected to a video card (Geovision, Irvine, CA) that linked to a PC. Movement data
486 were analyzed using Ethovision video tracking software (Noldus Information Technology, Inc.
487 Leesburg, VA). All adolescents began the first day of restrainer testing at approximately p32,
488 while adults began the HBT between ages p60-p90.

489

490 **Social Interaction Scoring**

491 Five minutes of behavior was analyzed immediately upon release using BORIS software (see Key
492 Resources Table). For rats that did not open the restrainer after 40 minutes, these interactions
493 occurred in the final 20 minutes of the session once the trapped rat released himself. Two major
494 categories of social behavior were scored: 1) play fighting interactions, including pinning and

495 wrestling, and 2) non-play interactions, including nose to nose and nose to body touching and
496 anogenital sniffs. Several videos could not be scored to do video encoding and export errors.
497

498 **Immunohistochemistry**

499 On the last day of testing, animals were sacrificed within 90 minutes from the beginning of the
500 session, at the peak expression of the early immediate gene product c-Fos. Rats were
501 transcardially perfused with 0.9% saline and freshly made 4% paraformaldehyde in phosphate
502 buffered saline (PBS). Brains were then sunk in 30% sucrose as a cryoprotectant and frozen at -
503 80°C. They were later sliced at 40 μ m and stained for c-Fos, as has been previously reported.[33]
504 Sections were washed with 0.1M tris-buffered saline (TBS; 3x5'), incubated in 3% normal
505 donkey serum (NDS) in 0.3% TritonX-100 in TBS (TxTBS), then transferred to rabbit anti-c-Fos
506 antiserum (ABE457; Millipore, 1:1000; 1% NDS; 0.3% TxTBS) overnight. Sections were then
507 washed in 0.1M TBS (3x5'), and incubated in Alexa Fluor 488-conjugated donkey anti-rabbit
508 antiserum (AF488; Jackson, 1:500; 1% NDS; 0.3% TxTBS). Sections were then briefly washed in
509 0.1M TBS again (3x5'). Sections were further stained in DAPI (1:40,000), then washed for an
510 additional 15 minutes (3x5'). Lastly, all slides were coverslipped with DABCO, dried overnight
511 and stored at 4°C until imaged.

512 Immunostained tissue was imaged at 10x using a wide field fluorescence microscope (Zeiss
513 AxioScan) and was processed in Zen software. Regions of interest (250 x 250 μ m squares) were
514 placed across the whole brain, as described in[33]. A custom written script in ImageJ V2.0.0
515 (National Institute of Health, Bethesda, MD) was used to quantify immunoreactive nuclei,
516 followed by manual checks and counting by multiple individuals who were blind to condition;
517 consistency for counts across individuals was verified by a subset of samples. The threshold for
518 detection of positive nuclei was set at a consistent level for each brain region, and only targets
519 within the size range of 25–125 mm² in area were counted as cells. Manual verification was
520 targeted at identifying gross errors in the ImageJ scripts. For instance, in some cases the script
521 falsely identified > 100 cells within the counting square; this usually occurred when there was
522 high background staining. This type of error occurred in ~15% of the samples, which were then
523 manually corrected. 39 values for cell counts were removed from the dataset as outliers. Outliers
524 were defined as those that were more than two standard deviations higher or lower than the group
525 mean and further fell outside of the observed range for all conditions.

526 **Quantification and Statistical Analyses**

527 Statistical details can be found within the Results section. In all written description and figures, n
528 represents the number of animals in each condition. All means are reported as mean \pm SEM.
529 Statistical analyses described below were performed using MATLAB, SPSS, and Graphpad
530 Prism.

531 **Task Partial Least Square (PLS) analysis**

532 Task PLS is a multivariate statistical technique that has been used to identify optimal patterns of
533 activity that differentiate conditions [49, 50]. Task PLS is used in the analysis of brain region
534 activity to describe the relationship between experimental conditions and correlated activity. PLS
535 identifies similarities and differences between groups by locating regions where activation varies
536 with the experimental condition. Through singular value decomposition, PLS produces a set of
537 mutually orthogonal latent variable (LV) pairs. One element of the LV depicts the contrast, which
538 reflects a commonality or difference between conditions. The other element of the LV, the brain
539 region salience, identifies brain regions that show the activation profile across tasks, indicating
540 which brain areas are maximally expressed in a particular LV.
541

542 Statistical assessment of PLS was performed by using permutation testing for latent variables
543 (LVs) and bootstrap estimation of standard error for the brain region saliences. For the LV,
544 significance was assessed by permutation testing: resampling without replacement by shuffling
545 the test condition. Following each resampling, the PLS was recalculated. This was done 500 times
546 in order to determine whether the effects represented in a given LV were significantly different
547 than random noise. For brain region salience, reliability was assessed using bootstrap estimation
548 of standard error. Bootstrap tests were performed by resampling 500 times with replacement,
549 while keeping the subjects assigned to their conditions. This reflects the reliability of the
550 contribution of that brain region to the LV. Brain regions with a bootstrap ratio greater than 2.55
551 (roughly corresponding to a confidence interval of 99%) were considered as reliably contributing
552 to the pattern. Missing values were interpolated by the average for the test condition. An
553 advantage to using this approach over univariate methods is that no corrections for multiple
554 comparisons are necessary because the brain region saliences are calculated on all brain regions in
555 a single mathematical step.

556

557 Network analysis

558 Network graphs were generated by first obtaining a correlation matrix of c-Fos activity between
559 all brain regions (using pairwise Pearson correlation coefficients). The top 10% of correlations
560 were presented in a graphic form. This cutoff threshold of 10% was determined based on scale-
561 free network characteristics in prior work [33] and used here for comparability. Correlation values
562 higher than the cutoff were set to one and the corresponding brain regions greater than 1 were
563 considered connected to the network.

564

565 Other Statistical Tests

566 In addition to the PLS analysis described above, two-way ANOVAs were conducted on the c-Fos
567 data to compare the four HBT conditions and to assess main effects of age (adult vs. adolescent)
568 and group identity (ingroup vs outgroup). 2-way ANOVAs were also used to compare the pattern
569 of animals' movements during testing. Bonferroni post hoc corrections were used following all
570 ANOVAs. Changes across days to helping behavior, including % door-opening and latency to
571 door-opening, were examined using the non-parametric Cochran's Q test and Friedman test
572 respectively.

573

574 Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit anti-cFos primary antibody	Millipore Sigma	Millipore: ABE457; RRID: AB_2631318
Donkey anti-rabbit IgG Alexa Fluor 488 secondary antibody	Jackson ImmunoResearch Labs	Cat#: 711-545-152; RRID: AB_2313584
Deposited data		
https://osf.io/6b2qc/		
Experimental models: Organisms/strains		
Sprague-Dawley Rat	Charles River Labs	Charles River 001; RRID: RGD_10395233
Long-Evans Rat	Envigo	Envigo: HsdBlue:LE; RRID: RGD_5508398
Software and algorithms		
MATLAB	Mathworks (https://www.mathworks.com)	RRID: SCR_001622

SPSS	IBM	RRID:SCR_019096
Zeiss ZEN 2 (Blue)	Zeiss	RRID: SCR_013672
Fiji ImageJ	NIH (https://imagej.net/Fiji/Downloads); Schneider et al., 2012	RRID: SCR_002285
Behavioral Observation Research Interactive Software Project (BORIS)	https://edspace.american.edu/openbehavior/project/boris/	RRID:SCR_021434
GraphPad Prism	http://www.graphpad.com/	RRID: SCR_002798

576 **References**

577

578 1. van Schaik, C.P., and Burkart, J.M. (2011). Social learning and evolution: the cultural
579 intelligence hypothesis. *Philos Trans R Soc Lond B Biol Sci* 366, 1008-1016.

580 2. Wilson, E.O. (2012). *The Social Conquest of Earth*, (New-York: Liveright Publishing
581 Corporation).

582 3. Dugatkin, L.A. (1997). *Cooperation among animals: an evolutionary perspective*, (New
583 York: Oxford University Press).

584 4. Decety, J., Bartal, I.B., Uzefovsky, F., and Knafo-Noam, A. (2016). Empathy as a driver
585 of prosocial behaviour: highly conserved neurobehavioural mechanisms across species. *Philos.
586 Trans. R. Soc Lond B Biol. Sci* 371.

587 5. Hamilton, W.D. (1964). The genetical evolution of social behaviour. I. *J Theor. Biol* 7, 1-
588 16.

589 6. Hackel, L.M., Zaki, J., and Van Bavel, J.J. (2017). Social identity shapes social valuation:
590 evidence from prosocial behavior and vicarious reward. *Soc Cogn Affect Neurosci* 12, 1219-
591 1228.

592 7. Bernhard, H., Fischbacher, U., and Fehr, E. (2006). Parochial altruism in humans. *Nature*
593 442, 912-915.

594 8. Kavaliers, M., and Choleris, E. (2017). Out-Group Threat Responses, In-Group Bias, and
595 Nonapeptide Involvement Are Conserved across Vertebrates: (A Comment on Bruintjes et al.,
596 "Out-Group Threat Promotes Within-Group Affiliation in a Cooperative Fish"). *Am Nat* 189,
597 453-458.

598 9. Fiske, S.T. (2002). What We Know Now About Bias and
599 Intergroup Conflict, the Problem of
600 the Century. *Current directions in psychological science : a journal of the American
601 Psychological Society* 11, 123-128.

602 10. Andrews, J.L., Ahmed, S.P., and Blakemore, S.J. (2021). Navigating the Social
603 Environment in Adolescence: The Role of Social Brain Development. *Biol Psychiatry* 89, 109-
604 118.

605 11. Kilford, E.J., Garrett, E., and Blakemore, S.J. (2016). The development of social cognition
606 in adolescence: An integrated perspective. *Neurosci Biobehav Rev* 70, 106-120.

607 12. Fuhrmann, D., Knoll, L.J., and Blakemore, S.J. (2015). Adolescence as a Sensitive Period
608 of Brain Development. *Trends Cogn Sci* 19, 558-566.

609 13. Decety, J., Steinbeis, N., and Cowell, J.M. (2021). The neurodevelopment of social
610 preferences in early childhood. *Curr Opin Neurobiol* 68, 23-28.

611 14. Charlesworth, T.E.S.B., M.R. (2021). The development of social group cognition: what
612 infants and young children can teach us. , 2nd Edition Edition, (Oxford Handbook of Social
613 Congition).

614 15. Xiao, N.G., Wu, R., Quinn, P.C., Liu, S., Tummeltshammer, K.S., Kirkham, N.Z., Ge, L.,
615 Pascalis, O., and Lee, K. (2018). Infants Rely More on Gaze Cues From Own-Race Than Other-
616 Race Adults for Learning Under Uncertainty. *Child Dev* 89, e229-e244.

617 16. Kinzler, K.D., Dupoux, E., and Spelke, E.S. (2007). The native language of social
618 cognition. *Proc Natl Acad Sci U S A* 104, 12577-12580.

619 17. Shutts, K., Banaji, M.R., and Spelke, E.S. (2010). Social categories guide young children's
620 preferences for novel objects. *Dev Sci* 13, 599-610.

621 18. Shutts, K., Kinzler, K.D., McKee, C.B., and Spelke, E.S. (2009). Social information
622 guides infants' selection of foods. *J Cogn Dev* 10, 1-17.

623 19. Aboud, F.E. (2003). The formation of in-group favoritism and out-group prejudice in
624 young children: are they distinct attitudes? *Dev Psychol* 39, 48-60.

625 20. Hailey, S.E.O., K. R. (2013). A social psychologist's guide to the

626 development of racial attitudes. *Social and Personality Psychology*
627 *Compass* 7, 457-469.

628 21. Bigler, R.S., Jones, L.C., and Lobliner, D.B. (1997). Social categorization and the
629 formation of intergroup attitudes in children. *Child Dev* 68, 530-543.

630 22. Gross, R.L., Drummond, J., Satlof-Bedrick, E., Waugh, W.E., Svetlova, M., and Brownell,
631 C.A. (2015). Individual differences in toddlers' social understanding and prosocial behavior:
632 disposition or socialization? *Front Psychol* 6, 600.

633 23. Svetlova, M., Nichols, S.R., and Brownell, C.A. (2010). Toddlers' prosocial behavior:
634 from instrumental to empathic to altruistic helping. *Child Dev* 81, 1814-1827.

635 24. Over, H. (2018). The influence of group membership on young children's prosocial
636 behaviour. *Curr Opin Psychol* 20, 17-20.

637 25. Nelson, E.E., Jarcho, J.M., and Guyer, A.E. (2016). Social re-orientation and brain
638 development: An expanded and updated view. *Dev Cogn Neurosci* 17, 118-127.

639 26. Telzer, E.H., Humphreys, K.L., Shapiro, M., and Tottenham, N. (2013). Amygdala
640 sensitivity to race is not present in childhood but emerges over adolescence. *J. Cogn Neurosci* 25,
641 234-244.

642 27. X., Z., and S., H. (2013). Cultural experiences reduce racial bias in neural responses to
643 others' suffering. *Cult. Brain* 1, 34-46.

644 28. Heron-Delaney, M., Anzures, G., Herbert, J.S., Quinn, P.C., Slater, A.M., Tanaka, J.W.,
645 Lee, K., and Pascalis, O. (2011). Perceptual training prevents the emergence of the other race
646 effect during infancy. *PLoS One* 6, e19858.

647 29. Anzures, G., Wheeler, A., Quinn, P.C., Pascalis, O., Slater, A.M., Heron-Delaney, M.,
648 Tanaka, J.W., and Lee, K. (2012). Brief daily exposures to Asian females reverses perceptual
649 narrowing for Asian faces in Caucasian infants. *J Exp Child Psychol* 112, 484-495.

650 30. Bar-Haim, Y., Ziv, T., Lamy, D., and Hodes, R.M. (2006). Nature and nurture in own-race
651 face processing. *Psychol Sci* 17, 159-163.

652 31. Ben-Ami, B., I, Shan, H., Molasky, N., Murray, T., Williams, J., Decety, J., and Mason, P.
653 (2016). Pro-Social Behavior In Rats Requires An Affective Motivation. In *BioRxiv*.

654 32. Ben-Ami, B., I, Decety, J., and Mason, P. (2011). Empathy and pro-social behavior in rats.
655 *Science* 334, 1427-1430.

656 33. Ben-Ami Bartal, I., Breton, J.M., Sheng, H., Long, K.L., Chen, S., Halliday, A., Kenney,
657 J.W., Wheeler, A.L., Frankland, P., Shilyansky, C., et al. (2021). Neural correlates of ingroup bias
658 for prosociality in rats. *Elife* 10.

659 34. Ben-Ami, B., I, Rodgers, D.A., Bernardz Sarria, M.S., Decety, J., and Mason, P. (2014).
660 Pro-social behavior in rats is modulated by social experience. *Elife* 3, e01385.

661 35. Wheeler, A.L., Teixeira, C.M., Wang, A.H., Xiong, X., Kovacevic, N., Lerch, J.P.,
662 McIntosh, A.R., Parkinson, J., and Frankland, P.W. (2013). Identification of a functional
663 connectome for long-term fear memory in mice. *PLoS Comput Biol* 9, e1002853.

664 36. Vetere, G., Kenney, J.W., Tran, L.M., Xia, F., Steadman, P.E., Parkinson, J., Josselyn,
665 S.A., and Frankland, P.W. (2017). Chemogenetic Interrogation of a Brain-wide Fear Memory
666 Network in Mice. *Neuron* 94, 363-374 e364.

667 37. Meyza, K.Z., Bartal, I.B., Monfils, M.H., Panksepp, J.B., and Knapska, E. (2017). The
668 roots of empathy: Through the lens of rodent models. *Neurosci Biobehav Rev* 76, 216-234.

669 38. Clemens, A.M., Wang, H., and Brecht, M. (2020). The lateral septum mediates kinship
670 behavior in the rat. *Nat Commun* 11, 3161.

671 39. Kohl, J., Babayan, B.M., Rubinstein, N.D., Autry, A.E., Marin-Rodriguez, B., Kapoor, V.,
672 Miyamishi, K., Zweifel, L.S., Luo, L., Uchida, N., et al. (2018). Functional circuit architecture
673 underlying parental behaviour. *Nature* 556, 326-331.

674 40. Bergan, J.F., Ben-Shaul, Y., and Dulac, C. (2014). Sex-specific processing of social cues
675 in the medial amygdala. *Elife* 3, e02743.

676 41. Raam, T., and Hong, W. (2021). Organization of neural circuits underlying social
677 behavior: A consideration of the medial amygdala. *Curr Opin Neurobiol* 68, 124-136.

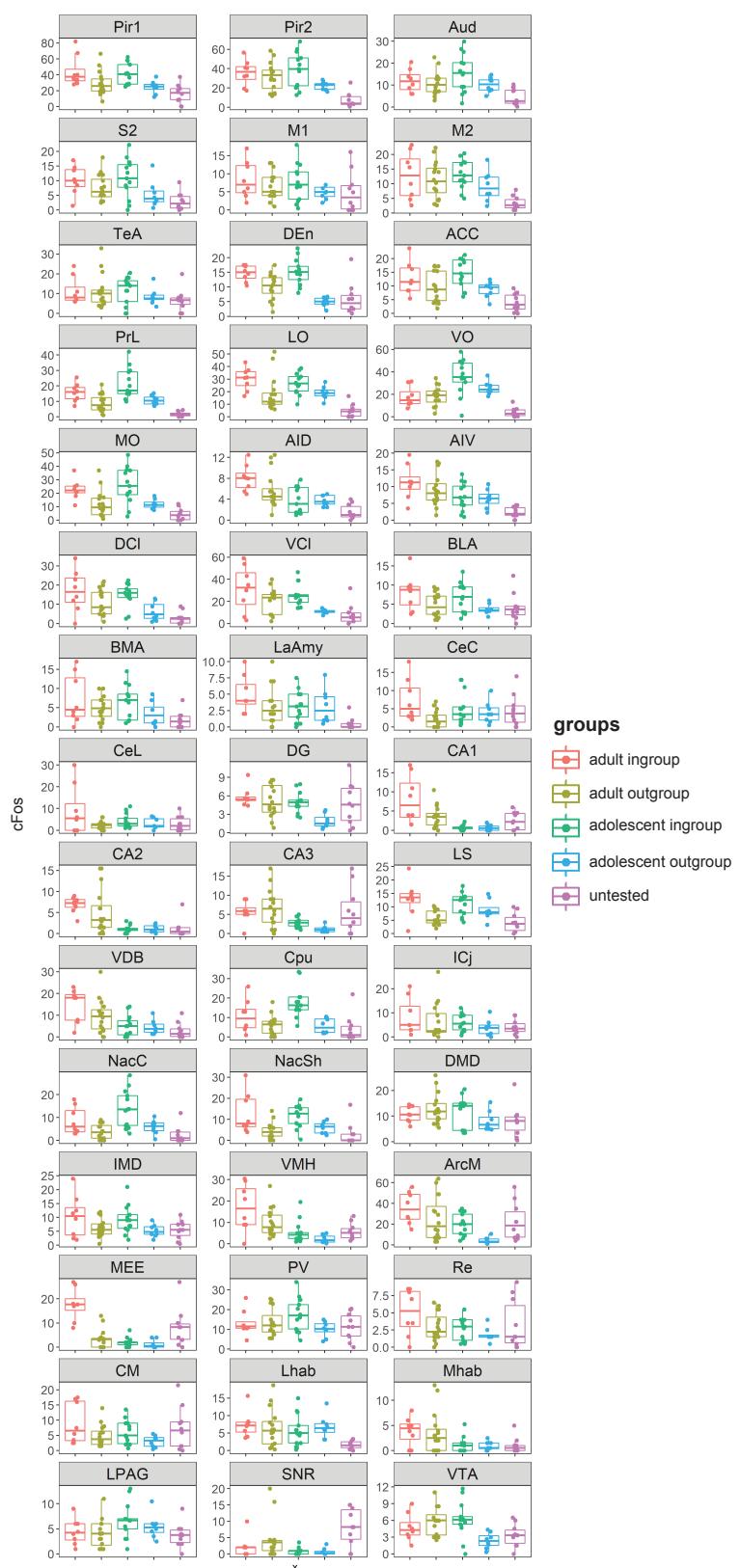
678 42. Kingsbury, L., Huang, S., Raam, T., Ye, L.S., Wei, D., Hu, R.K., Ye, L., and Hong, W.
679 (2020). Cortical Representations of Conspecific Sex Shape Social Behavior. *Neuron* 107, 941-953
680 e947.

681 43. Baez-Mendoza, R., Mastrobattista, E.P., Wang, A.J., and Williams, Z.M. (2021). Social
682 agent identity cells in the prefrontal cortex of interacting groups of primates. *Science* 374,
683 eabb4149.

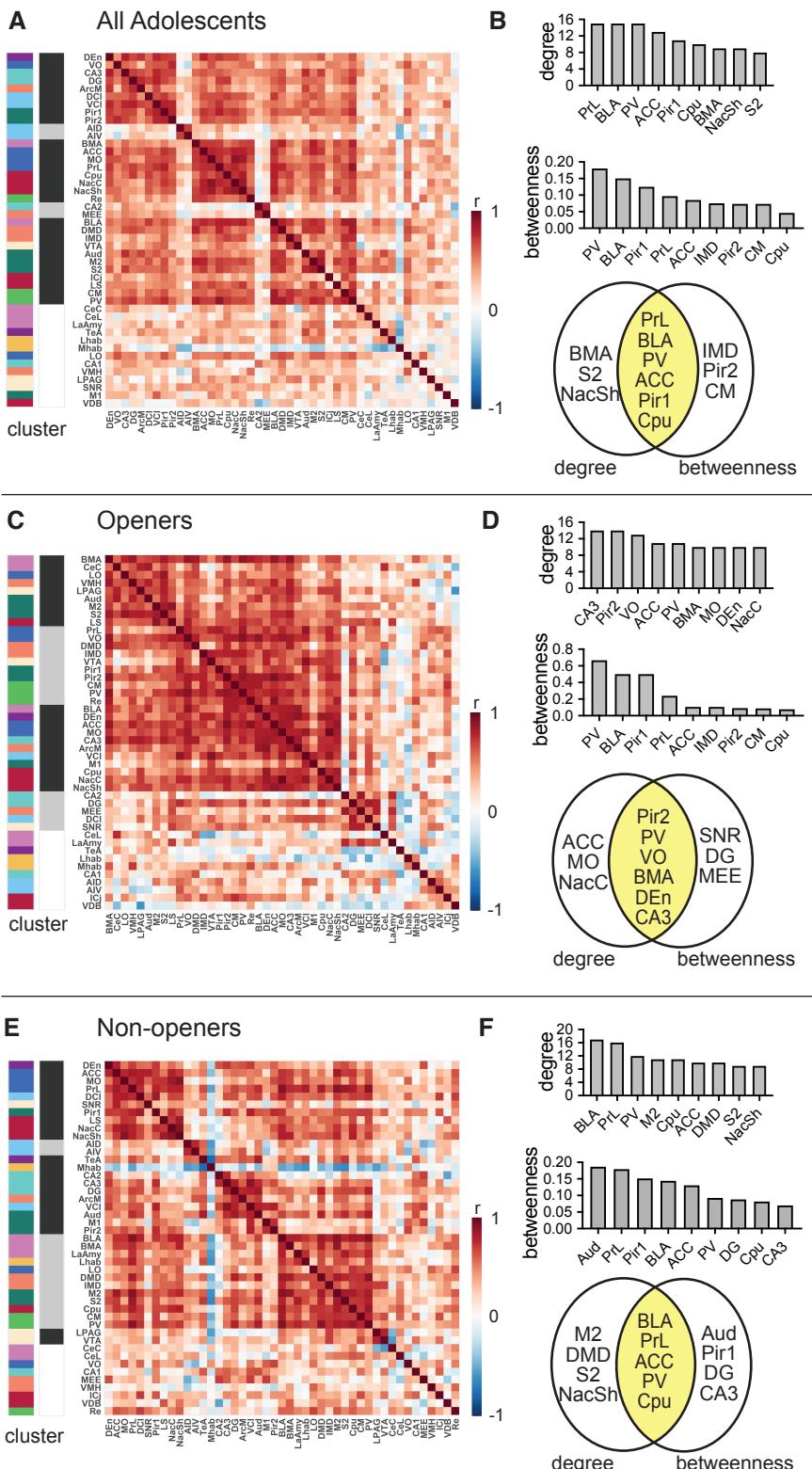
684 44. Carcea, I., Caraballo, N.L., Marlin, B.J., Ooyama, R., Riceberg, J.S., Mendoza Navarro,
685 J.M., Opendak, M., Diaz, V.E., Schuster, L., Alvarado Torres, M.I., et al. (2021). Oxytocin
686 neurons enable social transmission of maternal behaviour. *Nature* 596, 553-557.

687 45. Yao, S., Bergan, J., Lanjuin, A., and Dulac, C. (2017). Oxytocin signaling in the medial
688 amygdala is required for sex discrimination of social cues. *Elife* 6.

689 46. Hitti, F.L., and Siegelbaum, S.A. (2014). The hippocampal CA2 region is essential for
690 social memory. *Nature* 508, 88-92.


691 47. Simon, N.W., and Moghaddam, B. (2015). Neural processing of reward in adolescent
692 rodents. *Dev Cogn Neurosci* 11, 145-154.

693 48. Turkheimer, F.E., Rosas, F.E., Dipasquale, O., Martins, D., Fagerholm, E.D., Expert, P.,
694 Vasa, F., Lord, L.D., and Leech, R. (2021). A Complex Systems Perspective on Neuroimaging
695 Studies of Behavior and Its Disorders. *Neuroscientist*, 1073858421994784.


696 49. McIntosh, A.R., Bookstein, F.L., Haxby, J.V., and Grady, C.L. (1996). Spatial pattern
697 analysis of functional brain images using partial least squares. *Neuroimage* 3, 143-157.

698 50. McIntosh, A.R. (1999). Mapping cognition to the brain through neural interactions.
699 *Memory* 7, 523-548.

Supplemental Figures & Tables.

Fig S1. (above). Individual c-Fos expression for all regions and conditions. Box plots of c-Fos data in all brain regions across all test groups. Center bars mark the median. Lower and upper edges correspond to the 25th and 75th percentiles. Descriptions of the brain region abbreviations can be found in Table S1. Data points are jittered along the x-axis to avoid overlaps. X: experimental groups; Y: c-Fos⁺ cell numbers.

Fig S2. Correlation matrices. Pearson's correlations across all brain regions in adolescent rats tested in the HBT. Correlation matrices (A,C,E) and central hubs (B,D,F) for (A-B): All adolescent rats, (C-D): Adolescent openers, and (E-F) Adolescent non-openers.

Brain Region	Group Identity	Age	Interaction
Pir1	$F(1, 40) = 11.63$ ** p=0.0015	$F(1, 40) = 0.8078$	$F(1, 40) = 0.01069$
Pir2	$F(1, 41) = 1.946$ * p=0.0303	$F(1, 41) = 0.5543$	$F(1, 41) = 5.036$
Aud	$F(1, 39) = 2.566$	$F(1, 39) = 0.4879$	$F(1, 39) = 1.104$
S2	$F(1, 39) = 5.648$ * p=0.0225	$F(1, 39) = 0.2088$	$F(1, 39) = 0.6472$
M1	$F(1, 38) = 2.608$	$F(1, 38) = 0.7417$	$F(1, 38) = 0.1015$
M2	$F(1, 42) = 2.593$	$F(1, 42) = 0.3220$	$F(1, 42) = 0.6461$
TeA	$F(1, 38) = 0.4533$	$F(1, 38) = 0.3985$	$F(1, 38) = 0.5176$
DEn	$F(1, 40) = 37.94$ **** p<0.0001	$F(1, 40) = 3.677$	$F(1, 40) = 5.219$ * p=0.0277
ACC	$F(1, 41) = 8.533$ ** p=0.0056	$F(1, 41) = 0.03591$	$F(1, 41) = 0.8141$
PrL	$F(1, 40) = 16.43$ *** p=0.0002	$F(1, 40) = 2.943$	$F(1, 40) = 0.8072$
LO	$F(1, 39) = 9.985$ ** p=0.0030	$F(1, 39) = 0.3394$	$F(1, 39) = 0.2903$
VO	$F(1, 40) = 2.031$	$F(1, 40) = 13.20$ ***p=0.0008	$F(1, 40) = 2.549$
MO	$F(1, 40) = 15.36$ *** p=0.0003	$F(1, 40) = 0.2487$	$F(1, 40) = 0.2257$
AID	$F(1, 40) = 1.922$	$F(1, 40) = 13.55$ *** p=0.0007	$F(1, 40) = 1.732$
AIV	$F(1, 41) = 1.470$	$F(1, 41) = 5.303$ * p=0.0264	$F(1, 41) = 0.7340$
DC1	$F(1, 41) = 12.14$ ** p=0.0012	$F(1, 41) = 1.939$	$F(1, 41) = 0.4127$
VCl	$F(1, 41) = 12.52$ ** p=0.0010	$F(1, 41) = 3.991$	$F(1, 41) = 0.2145$
BLA	$F(1, 41) = 8.897$ ** p=0.0048	$F(1, 41) = 0.8785$	$F(1, 41) = 0.03535$

BMA	F (1, 39) = 3.372	F (1, 39) = 0.5021	F (1, 39) = 0.006811
LaAmy	F (1, 40) = 0.7826	F (1, 40) = 0.9492	F (1, 40) = 1.604
CeC	F (1, 40) = 6.181 * p=0.0172	F (1, 40) = 0.008356	F (1, 40) = 3.237
CeL	F (1, 39) = 5.056 * p=0.0303	F (1, 39) = 1.232	F (1, 39) = 3.135
DG	F (1, 40) = 8.677 ** p=0.0053	F (1, 40) = 10.97 ** p=0.0020	F (1, 40) = 3.633
CA1	F (1, 39) = 4.987 * p=0.0314	F (1, 39) = 25.58 **** p<0.0001	F (1, 39) = 4.846 * p=0.0337
CA2	F (1, 40) = 0.6554 ns	F (1, 40) = 20.93 **** p<0.0001	F (1, 40) = 0.6074 ns
CA3	F (1, 38) = 0.09875	F (1, 38) = 14.97 *** p=0.0004	F (1, 38) = 1.473
LS	F (1, 39) = 11.24 ** p=0.0018	F (1, 39) = 0.1116 ns	F (1, 39) = 3.227 ns
VDB	F (1, 40) = 1.589	F (1, 40) = 13.02 *** p=0.0008	F (1, 40) = 1.414
Cpu	F (1, 40) = 17.59 *** p=0.0001	F (1, 40) = 2.950	F (1, 40) = 3.499
ICj	F (1, 39) = 1.060	F (1, 39) = 1.727	F (1, 39) = 1.178e-006
NAcC	F (1, 40) = 12.52 ** p=0.0010	F (1, 40) = 4.243 * p=0.0460	F (1, 40) = 0.8062 ns
NAcSh	F (1, 40) = 14.73 *** p=0.0004	F (1, 40) = 0.001683 ns	F (1, 40) = 0.7023 ns
DMD	F (1, 40) = 0.8251	F (1, 40) = 1.978	F (1, 40) = 1.890
IMD	F (1, 41) = 7.645 ** p=0.0085	F (1, 41) = 0.5442	F (1, 41) = 0.002939
VMH	F (1, 41) = 6.212 * p=0.0168	F (1, 41) = 20.74 **** p<0.0001	F (1, 41) = 0.7902
ArcM	F (1, 39) = 7.110 * p=0.0111	F (1, 39) = 13.41 *** p=0.0007	F (1, 39) = 0.2829
MEE	F (1, 31) = 18.03 *** p=0.0002	F (1, 31) = 31.75 **** p<0.0001	F (1, 31) = 14.40 *** p=0.0006

PV	F (1, 39) = 2.405	F (1, 39) = 0.03630	F (1, 39) = 2.802
Re	F (1, 40) = 5.066 * p=0.0300	F (1, 40) = 6.502 * p=0.0147	F (1, 40) = 0.7999
CM	F (1, 41) = 7.399 ** p=0.0095	F (1, 41) = 3.557	F (1, 41) = 0.1994
Lhab	F (1, 39) = 0.002036	F (1, 39) = 0.1812	F (1, 39) = 0.4681
Mhab	F (1, 38) = 0.08974	F (1, 38) = 7.920 ** p=0.0077	F (1, 38) = 0.001485
LPAG	F (1, 35) = 0.5708	F (1, 35) = 2.982	F (1, 35) = 0.1695
SNR	F (1, 36) = 0.5972	F (1, 36) = 3.947	F (1, 36) = 0.8727
VTA	F (1, 36) = 1.913	F (1, 36) = 1.437	F (1, 36) = 7.306 * p=0.0104

Table S1. 2-way ANOVA results. Main effects of group identity, age, and/or interaction between the two. The F statistic is shown, as well as statistically significant p-values in bold. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$.