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Abstract

Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI
and neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation
dispersion and density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two
methods share variance across tracts. This raises the hypothesis that dimensionality reduction approaches
may provide efficient whole-brain estimates of white matter microstructure that capture (dys)maturational
processes. To investigate the optimal model for accurate classification of generalised white matter
dysmaturation in preterm infants we assessed variation in DTI and NODDI metrics across 16 major white
matter tracts using principal component analysis and structural equation modelling, in 79 term and 141
preterm infants at term equivalent age. We used logistic regression models to evaluate performances of
single-metric and multimodality general factor frameworks for efficient classification of preterm infants
based on variation in white matter microstructure. Single-metric general factors from DTI and NODDI
capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, and two multimodality
factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. General factors
associate with preterm birth and a single model that includes all seven DTI and NODDI metrics provides the
most accurate prediction of microstructural variations associated with preterm birth. This suggests that
despite global covariance of dMRI metrics in neonates, each metric represents information about specific

(and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects.

Keywords: white matter, neonate, tract, data reduction, diffusion MRI
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Abbreviations

AD = axial diffusivity, AF = arcuate fasciculus, AIC = Akaike Information Criterion, ATR = anterior thalamic
radiation, BIC = Bayesian Information Criterion, CC genu = corpus callosum genu/forceps minor, CC
splenium = corpus callosum splenium/forceps major, CCG = cingulum cingulate gyrus, CFA = confirmatory
factor analysis, CFI = comparative fit index, , CST = corticospinal tract, dMRI = diffusion MRI, DTI = diffusion
tensor imaging, FA = fractional anisotropy, FDR = false discovery rate, FOD = fibre orientation distribution,
GA = gestational age, IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, ISO =
isotropic volume fraction, MD = mean diffusivity, NDI = neurite density index, NODDI = neurite orientation
dispersion and density imaging, ODI = orientation dispersion index, PCA = principal component analysis,
RD = radial diffusivity, RMSEA = root mean square error of approximation, ROI = region of interest, SRMR
= standardised root mean square residual. TDI = track density image, TLI = Tucker-Lewis index, UNC =

uncinate fasciculus
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Highlights
e We measured variation of 7 DTI and NODDI metrics across 16 major tracts
e General factors for DTI and NODDI capture substantial shared variance across tracts
e General factors also capture substantial shared variance between DTI and NODDI
e Single-metric and multimodality factors associate with gestational age at birth
e The best preterm prediction model contains all 7 single-metric g-factors
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1 Introduction

Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) enable
inference about the microstructural properties (such as water content, axonal density and myelination) of
developing white matter from diffusion magnetic resonance imaging (dMRI) (Counsell et al.,, 2019; Tariq et
al,, 2016; Zhang et al., 2012). Neonatal dMRI has been valuable in assessing the impact of preterm birth on
the developing brain; it reveals a preterm brain phenotype at term-equivalent age, which includes lower
fractional anisotropy (FA) and neurite density index (NDI) and increased mean diffusivity (MD) throughout
the white matter compared to term-born controls, with a dose-dependent effect of prematurity (Alexandrou
et al,, 2014; Anjari et al., 2007; Barnett et al., 2018; Batalle et al., 2017; Blesa et al., 2020; Boardman and
Counsell, 2020; Hiippi et al, 1998; Partridge et al., 2004; Pogribna et al., 2013). Importantly, the
dysconnectivity and reduced white matter integrity associated with preterm birth is substantially a whole
brain phenomenon (Girault et al., 2019; Telford et al., 2017). This motivates the search for efficient whole-

brain estimates that would capture maturational processes in early life.

Studies have demonstrated that dMRI measures of white matter tracts across the brain are correlated (e.g.
an individual with high FA in one tract is likely to have high FA across other tracts) and that this relationship
is exists across the life course (Cox et al., 2016; Girault et al., 2019; Lee et al,, 2017; Mishra et al.,, 2013;
Telford etal., 2017; Wahl etal., 2010). This property has allowed the derivation of general factors (g-factors)
of white matter microstructure (e.g. gFA), which associate with general cognitive functioning (Alloza et al,,
2016; Cox et al., 2019; Penke et al,, 2010) and age (Cox et al., 2016). Similar diffusion properties have been
observed in early life and these predict cognitive abilities (Lee et al,, 2017). Our group has previously
reported that in neonates DTI-metric-based g-factors explain around 50% of variance in eight white matter

tracts and associate with gestational age (GA) at birth (Telford et al,, 2017).

The different dMRI metrics themselves as well as the derived g-factors are correlated (Chamberland et al,,
2019; Cox et al,, 2016; De Santis et al., 2014; Girault et al., 2019; Penke et al.,, 2010), suggesting that dMRI
measures share overlapping information which can cause partial redundancies in data analysis. Recently, a
dimensionality reduction framework based on multimodal principal component analysis (PCA) was
proposed (Chamberland et al., 2019; Geeraert et al., 2020). Using this framework the authors identified a
small number of microstructurally informative and biologically-interpretable components/factors which
captured 80% of variance in dMRI and myelin-sensitive imaging metrics across the white matter tracts,
which associated with age in a sample of typically developing 8-18-year-old children (Chamberland et al.,
2019; Geeraert et al., 2020).

In this work, using a neonatal dataset and a neonatal white matter tract atlas based on established protocols

(Pecheva etal.,, 2017; Wakana et al., 2007), we aimed to: (1) determine g-factors for DTI and NODDI metrics
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and evaluate whether a single factor captures substantial variance across major tracts; and (2) investigate
the shared variance across dMRI metrics by deriving a multimodal g-factor from DTI and NODDI, and
quantify its predictive utility for GA at birth beyond uni-modal models. We hypothesised that g-factors
would associate with GA at birth and that they would provide an efficient method for classifying generalised

variation in white matter microstructure associated with preterm birth.

2 Materials and methods

2.1 Participants

Preterm (with GA at birth < 33 weeks) and term born infants were recruited as part of a longitudinal study
(Theirworld Edinburgh Birth Cohort, TEBC) designed to investigate the effects of preterm birth on brain
structure and long term outcome (Boardman et al., 2020). Exclusion criteria were major congenital
malformations, chromosomal abnormalities, congenital infection, overt parenchymal lesions (cystic
periventricular leukomalacia, haemorrhagic parenchymal infarction) or post-haemorrhagic ventricular
dilatation. Ethical approval has been obtained from the National Research Ethics Service, South East
Scotland Research Ethics Committee (11/55/0061, 13/SS/0143 and 16/SS/0154). Informed consent was
obtained from a person with parental responsibility for each participant. The study was conducted

according to the principles of the Declaration of Helsinki.

2.2 Data acquisition

Infants were scanned at the Edinburgh Imaging Facility: Royal Infirmary of Edinburgh, University of
Edinburgh, UK using a Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Healthcare
Erlangen, Germany). A 16-channel phased-array paediatric head coil was used to acquire 3D T2-weighted
SPACE images (T2w) (voxel size = 1mm isotropic, TE = 409 ms and TR = 3200 ms) and axial dMRI data.
Diffusion MRI images were acquired in two separate acquisitions to reduce the time needed to re-acquire
any data lost to motion artifacts: the first acquisition consisted of 8 baseline volumes (b = 0 s/mm?2 [b0])
and 64 volumes with b = 750 s/mm?; the second consisted of 8 b0, 3 volumes with b = 200 s/mm?, 6
volumes with b = 500 s/mm2 and 64 volumes with b = 2500 s/mmz2. An optimal angular coverage for the
sampling scheme was applied (Caruyer et al., 2013). In addition, an acquisition of 3 b0 volumes with an
inverse phase encoding direction was performed. All dMRI images were acquired using single-shot spin-
echo echo planar imaging (EPI) with 2-fold simultaneous multislice and 2-fold in-plane parallel imaging
acceleration and 2 mm isotropic voxels; all three diffusion acquisitions had the same parameters (TR/TE
3400/78.0 ms). Images affected by motion artifacts were re-acquired as required; dMRI acquisitions were
repeated if signal loss was seen in 3 or more volumes. Infants were fed and wrapped and allowed to sleep

naturally in the scanner. Pulse oximetry, electrocardiography and temperature were monitored. Flexible
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earplugs and neonatal earmuffs (MiniMuffs, Natus) were used for acoustic protection. All scans were

supervised by a doctor or nurse trained in neonatal resuscitation.

2.3 Data preprocessing

Diffusion MRI processing was performed as follows: for each subject the two dMRI acquisitions were first
concatenated and then denoised using a Marchenko-Pastur-PCA-based algorithm (Veraart et al., 2016); the
eddy current, head movement and EPI geometric distortions were corrected using outlier replacement and
slice-to-volume registration (Andersson et al., 2017, 2016, 2003; Andersson and Sotiropoulos, 2016); bias
field inhomogeneity correction was performed by calculating the bias field of the mean b0 volume and
applying the correction to all the volumes (Tustison et al., 2010). The T2w images were processed using the
minimal processing pipeline of the developing human connectome project (dHCP) to obtain the bias field
corrected T2w and the brain mask (Makropoulos et al.,, 2018, 2014). Finally, the mean b0 EPI volume of
each subject was co-registered to their structural T2w volume using boundary-based registration (Greve

and Fischl, 2009).

NODDI and DTI maps were calculated in the dMRI processed images to obtain: fractional anisotropy (FA),
mean, axial and radial diffusivities (MD, AD and RD), neurite density index (NDI), isotropic volume fraction
(ISO) and orientation dispersion index (ODI). To calculate the tensor derived metrics, only the first shell
was used. NODDI metrics were calculated using the recommended values for neonatal white matter of the

parallel intrinsic diffusivity (1.45 pm2/ms) (Guerrero et al., 2019; Zhang et al., 2012).

2.4 Tract segmentation

Whole brain tractography was performed in the ENA50 neonatal template space (Blesa et al., 2020, 2016)
using SingleTensorFT tool within DTI-TK (Zhang et al, 2007, 2006) which generated white matter
tractography from the ENA50 atlas tensor volume. Segmentation of white matter tracts was performed
within the ENA5O atlas. Regions of interest (ROIs) used to delineate the tracts were drawn manually on the
FA image, using the protocols outlined in Wakana et al. (2007) and Pecheva et al. (2017). Placement of ROIs
is described in Supplementary Table 1 and these were drawn using the Paintbrush mode in ITK-SNAP
(Yushkevich etal., 2006) (http://www.itksnap.org/). The ROIs were used to filter whole brain tractography
either to select or to exclude tracts crossing the ROIs using TractTool within DTI-TK. The resulting tract

images were binarized and manually refined. The white matter tracts delineated are shown in Figure 1.
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B Corpus callosum genu (forceps minor) B Inferior longitudinal fasciculus Uncinate fasciculus
Il Corpus callosum splenium (forceps major) [l Inferior fronto-occipital fasciculus Cingulum cingulate gyrus
B cCorticospinal tracts Arcuate fasciculus B Anterior thalamic radiation

Figure 1: Visual representation of the generated white matter tracts in the ENA50 neonatal atlas space. Shown in

superior (left), anterior (centre) and lateral (right) views.

2.5 Tract segmentation in subjects’ native space and extraction of tract-averaged dMRI
metrics

T2w processed images were registered to the ENA50 T2w structural template using rigid, affine and

symmetric normalization (SyN) (Avants et al., 2008). The resulting transformation was concatenated with

the previously computed transformation from B0 to T2w and used to bring the tract ROIs defined in the

ENAS5O space to each subject’s native space in a single step.

The average multi-tissue response function was calculated across the full population (Dhollander et al,,
2019, 2016; Smith et al, 2020), with a FA threshold of 0.1. Then, the multi-tissue fibre orientation
distribution (FOD) was calculated (Jeurissen et al., 2014) with the average response function using a
spherical harmonic order (Lmax) of 8. Only two (white matter and cerebrospinal fluid) response functions
were used. Finally, a joint bias field correction and multi-tissue informed log-domain intensity

normalisation on the FODs images was performed (Raffelt et al., 2017).

The tracts in native space were created using the iFOD2 algorithm (Tournier et al., 2010). The propagated
tract ROIs were dilated and the original tract ROIs were used as seed images for the tractography, while the
dilated tract ROIs were used as masks to constrain the tracts. The length of the fibres was set with a
minimum length of 20 mm and a maximum of 250 mm. Finally, for each tract, a track density image (TDI)
map (number of tracts per voxel) was created and normalized between 0 and 1 (Calamante et al., 2010).
For each tract, the TDI map was multiplied by each of the DTI and NODDI maps, summed and divided by the

average of the TDI map to calculate the weighted tract-averages for each of the DTI and NODDI metrics.
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2.6 Statistical analysis

All statistical analyses were performed in R (version 4.0.5) (R Core Team, 2020).

2.6.1 Effect of preterm birth on tract-averaged dMRI metrics

The tract-averaged dMRI parameters were adjusted for GA at scan by fitting a linear model of each scaled
(z-transformed) metric on GA at scan and retaining the residuals. The distributions of the residualised dMRI
metrics in each tract were assessed for normality using the Shapiro-Wilk test. Student’s t-test or Mann-
Whitney U-test as a non-parametric alternative was used to compare the tract-averaged values between
term and preterm groups; Spearman’s rho was used to investigate correlations between tract-averaged
values and GA at birth. Reported p-values were adjusted for the false discovery rate (FDR) using the

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

2.6.2 Single-metric g-factors
The average Pearson’s correlation coefficient for the inter- and intra-hemispheric associations between the
tracts was calculated by first transforming the Pearson’s r values to Fisher’s Z, taking the average, and then

back-transforming the value to Pearson’s correlation coefficient (Corey et al., 1998).

One PCA was conducted for each of the seven DTI (FA, MD, AD, RD) and NODDI (NDI, ODI, ISO) parameters
across the 16 tracts to quantify the proportion of shared variance between them. Thus, in each analysis,
each subject was described by 16 features, computed as the tract-averaged values of a given metric across
each tract. The first unrotated principal component (PC) scores were extracted as the single-metric g-
factors. The g-factors were adjusted for GA at scan by fitting a linear model of each g-factor on GA at scan
and retaining the residuals. We report regression coefficients for linear models fitting a linear each of the
residualised g-factors and GA at scan. All values were scaled (z-transformed) before fitting the models, thus,
the regression coefficients are in the units of standard deviations. Reported p-values were adjusted for the

FDR using the Benjamini-Hochberg procedure.

Structural equation modelling was used to investigate the extent that differences in GA at birth explain the
shared variance across tracts (a common pathway model where GA has associations with only the latent g-
factor), and the extent that GA at birth conveys unique information about individual tracts that is not
conveyed via shared variance. First, we evaluated the similarities between the g-factors obtained using PCA
with the measurement model (confirmatory factor analysis [CFA] within the structural equation model)
that was conducted for each metric using the R package lavaan (Rosseel, 2012). We used full information
maximum likelihood estimation. Model fit was assessed according to standard fit indices: x?2 test, root mean
square error of approximation (RMSEA), comparative fit index (CFI), Tucker-Lewis index (TLI), and
standardised root mean square residual (SRMR). Residual covariance paths (paths linking specific tracts to
one another to account for the specific similarities between related tracts beyond their shared covariance

across all tracts) were added between each of the bilateral tracts, the genu and splenium of the corpus

9
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callosum, as well as anatomically overlapping tracts (Dice Coefficient > 0.1 based on the dilated tract masks
in template: ILF and IFOF in the same hemisphere, IFOF and UNC in the same hemisphere, ILF and UNC in
the same hemisphere, and splenium of the corpus callosum and bilateral IFOF). Pearson’s correlation

coefficients were calculated for the g-factors derived using PCA and CFA.

Thereafter, we tested three models where 1) GA has associations with only the latent g-factor - a common
pathway model; 2) GA has associations with each of the individual tracts separately and not with the latent
factor - an independent pathways model; and 3) GA is associated with the latent factor and also with some
specific factors - a common + independent pathways model (Cox et al., 2016; Tucker-Drob, 2013). To
estimate the common + independent pathways model, we first included a path from GA to the latent g-
factor, and then, in an iterative fashion, used modification indices (with a minimum value of 10) to include
any additional paths from GA to specific tracts that substantially improved model fit. All models were
adjusted for GA at scan at g-factor level. See Supplementary Figure 1 for graphical representation of the
structural equation models. We used the y2difference test (aov function within Iavaan) and model fit indices
(Akaike Information Criterion [AIC], Bayesian Information Criterion [BIC], and sample size adjusted

Bayesian Information Criterion [saBIC]) to examine the fit differences between the models.

2.6.3 Multimodal g-factor

A multimodal PCA was conducted by pooling all tracts and metrics using a modification of an established
framework (Chamberland et al.,, 2019; Geeraert et al., 2020). In summary, all metrics were analysed
together in a single PCA, so that each observation was an individual tract described by the 7 dMRI metrics,
for a total of nxt observations, where n is the number of subjects and ¢t is the number of tracts. The first and
second PC were extracted as the multimodal g-factors which were averaged across the 16 tracts for each
participant. To study the effect of GA at birth on the multimodal g-factors, we first adjusted the g-factors for
GA at scan by fitting a linear model of each g-factor on GA at scan and retaining the residuals; then, linear
regression models were fitted for each of the residualised multimodal g-factors and GA at birth. All values
were scaled (z-transformed) before fitting the models, thus, the regression coefficients are in the units of
standard deviations. Reported p-values were adjusted for the FDR using the Benjamini-Hochberg

procedure.

2.6.4 Prediction modelling

We used the single- and multimodal g-factors as predictors in logistic regression models to discriminate
between preterm and full-term infants. We measured classification accuracy using a 10-repeated 10-fold
cross-validation scheme. In each of 10 repetitions data were randomly split in 10-folds of which 9-folds
were used as training set to compute the PCs, adjust these for GA at scan, and train the prediction of preterm
vs term subjects. The g-factors in the test set were computed and adjusted for GA at scan using the models

retained from the training set. Then, the generalisation ability of the logistic regression model to predict

10
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term vs preterm group trained on the training set was assessed in the test set. Folds were stratified to
preserve the proportion of term and preterm subjects of the whole sample. Accuracy was computed as the
percentage of correctly classified subjects across folds and repetitions. We estimated the empirical
distribution of chance by repeating the prediction analysis 1000 times after randomly assigning each
subject to either the preterm or term group; permutation p-values were calculated by counting how many

times the null models obtained an accuracy equal or greater than the original model.

2.7 Data and code availability

Reasonable requests for original image and anonymised data will be considered through the BRAINS
governance process (www.brainsimagebank.ac.uk) (Job et al.,, 2017). The segmented tracts in the ENA50
template space are available here: https://git.ecdf.ed.ac.uk/jbrl/ena. The code for tract propagation and
average calculation, as well as scripts for the data analysis in this paper are available here:

https://git.ecdf.ed.ac.uk/jbrl/neonatal-gfactors.

3 Results

3.1 Study sample

The study group consisted of 220 neonates: 141 participants were preterm and 79 were term-born controls.
Demographic details for participant characteristics are provided in Table 1. Among the preterm infants, 30
(21.3%) had bronchopulmonary dysplasia (defined as need for supplementary oxygen =36 weeks GA), 7
(5%) developed necrotising enterocolitis requiring medical or surgical treatment, and 27 (19.1%) had an
episode of postnatal sepsis defined as either blood culture positivity with a pathogenic organism, or
physician decision to treat for =5 days in the context of growth of coagulase negative staphylococcus from

blood or a negative culture.

Table 1: Neonatal participant characteristics. The last column reports the p-values of the group differences computed

with t-test for continuous variables and Fisher’s exact test for categorical variables.

term (n=79) preterm (n=141) term vs. preterm

GA at birth (weeks) 39.65 (36.42 -42.14) 29.48 (23.42-32.94) n/a
Birth weight (grams) 3482 (2410-4560) 1334 (500-2510) n/a
Birth weight z-score 0.48 (-2.30 - 2.57) -0.02 (-3.13-2.14) p<0.001
GA at scan (weeks) 42.07 (38.28-46.14) 40.78 (36.56 - 45.84) p <0.001
M:F ratio 43:36 83:58 p=0.571

GA = Gestational age, M = male, F = female.
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3.2 Associations between preterm birth and tract-averaged dMRI metrics

Figure 2 and Supplementary Table 2 show tract-averaged dMRI parameter values for each of the 16 tracts
for the term and preterm neonates. After adjusting for GA at MR, in the majority of tracts FA was lower and
MD, RD, AD and ISO were higher in preterm infants compared to term-born controls. However, ATR, CCG
and CST showed only minimal or no differences in the DTI metrics between the two groups. There were

groupwise differences in tract-averaged NDI and ODI values in a minority of the tracts (Figure 2).
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Figure 2: Tract-averaged diffusion characteristics of brain white matter tracts. Asterisks (*) indicate statistically
significant (FDR-corrected p<0.05) differences in tract-averaged values between term and preterm infants after
adjusting for age at scan. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity,
NDI = neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction, CC genu = corpus
callosum genu/forceps minor, CC splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, IFOF
= inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate

fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation

3.3 Single-metric general factors of white matter microstructure

For all DTI and NODDI metrics, with the exception of ODI, metrics across tracts correlate positively (Figure
3). The mean (+SD) of the correlations was 0.601 (+0.294) for FA, 0.713 (+0.217) for MD, 0.573 (¥0.199)
for AD, 0.721 (+0.234) for RD, 0.628 (+0.250) for NDI, 0.351 (+0.287) for ODI, and 0.584 (+0.221) for ISO.
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Figure 3: Heatmaps of inter- and intra-hemispheric associations (Pearson’s r) for tract-averaged DTI (top row) and
NODDI (bottom row) metrics. In each case, the heatmaps are arranged by grouping highly correlated tracts around
the diagonal. Blank squares represent correlations that were not nominally statistically significant (p>0.05). The plot
on the bottom right represents the density of the correlation magnitudes. CC genu = corpus callosum genu/forceps
minor, CC splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, IFOF = inferior fronto-
occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate fasciculus, CCG =

cingulum cingulate gyrus, ATR = anterior thalamic radiation.

We conducted separate PCAs for each of the 7 DTI and NODDI metrics on 16 white matter tracts to derive
single-metric g-factors. For each metric, the scree plot provided evidence for a strong single factor capturing
common variance across the tracts indicated by the comparatively large eigenvalue (Fig. 4). This was less

clear for ODI, which had a weaker first component and stronger second component compared to other dMRI
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1  metrics. The first PC is the g-factor for each of the white matter diffusion measures and this explained 61.3%
2 variance in FA, 71.9% in MD, 59.9% in AD, 72.6% in RD, 63.9% in NDI, 41.8% in ODI, and 59.8% in ISO

3 across the tracts. The tract loadings for the single-metric g-factors are presented in Table 2.

12 1

111

101

Metric

~ FA
- MD

AD
~ RD
- NDI
- ol
- IS0

Eigenvalue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 Principal component
5 Figure 4: Scree plot for the principal component analysis, showing the eigenvalue against the number of components
6 for each white matter tract dMRI metric. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD =
7 radial diffusivity, NDI = neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction.
8 Table 2: Tract loadings (correlation between the manifest variable and extracted component score) and explained
9 variance for the first unrotated principal component (g-factor) for the seven dMRI metrics.

Tract FA MD AD RD NDI ODI ISO

AF left 0.860 0.846 0.754 0.868 0.852 0.414 0.833

AF right 0.704 0.825 0.797 0813 0.781 0.681 0.807

ATR left 0.758 0.834 0.748 0.839 0.871 0.192 0.794

ATR right 0.518 0.761 0.715 0.727 0.811 0.063 0.718

CC genu 0.772 0.846 0.782 0.853 0.740 0.184 0.860

CC splenium 0.539 0.832 0.668 0.785 0.467 0.637 0.746

CCQG left 0.589 0.813 0.703 0.812 0.808 0.646 0.713

CCG right 0.618 0.834 0.758 0.824 0.797 0.645 0.760
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CST left 0.779 0.832 0.760 0.833 0.818 0.544 0.695
CST right 0.784 0.825 0.699 0.835 0.800 0.616 0.649
[FOF left 0936 0933 0871 0945 0913 0.882 0.856
[FOF right 0928 0.890 0.810 0911 0.853 0.883 0.778
ILF left 0.880 0.842 0.746 0.868 0.705 0.808 0.715
ILF right 0.877 0.844 0.750 0.868 0.718 0.853 0.729
UNC left 0.899 0.891 0.842 0.905 0.887 0.733 0.830
UNC right 0.899 0905 0.848 0916 0.866 0.765 0.846

Variance explained (%) 61.341 71.899 58.938 72.562 63.917 41.785 59.775

CC genu = corpus callosum genu/forceps minor, CC splenium = corpus callosum splenium/forceps major, CST =
corticospinal tract, IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate
fasciculus, UNC = uncinate fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation, FA =
fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index,

ODI = orientation dispersion index, ISO = isotropic volume fraction.

After adjustment for GA at scan, there were significant associations between GA at birth and general factors
of FA, MD, AD, RD and ISO (Figure 5). The strongest relationship was seen between GA at birth and gISO
(GA at birth explained 11.06% of variance in gISO). Interestingly, GA at birth did not significantly associate
with the g-factors of biophysical measures of white matter microstructure (NDI and ODI), mirroring the

single-tract results described above.
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Figure 5: Associations between GA at birth and the g-factors of the seven dMRI metrics. Regression lines and 95%
confidence intervals (shaded) are shown for linear regression models between GA at birth and the g-factor scores,
adjusted for GA at scan. The f§ coefficients are in standardised units so represent a standard deviation change in the
residualised g-factor scores per standard deviation increase in GA at birth; variance explained in the model is shown
in adjusted R2 Reported p-values are adjusted for the false discovery rate (FDR) using the Benjamini-Hochberg
procedure. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI =

neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction.

To investigate the extent to which shared variance across all tracts explains differences in GA at birth, or
whether specific tracts carry further information beyond generalised covariance, we used structural
equation modelling. We observed that the measurement model (CFA) for each DTI and NODDI metric is
highly collinear with the PCA results indicated by the similarities between the factor loadings
(Supplementary Table 3; see Supplementary Table 4 for fit indices; all CFI > 0.93 (except ODI, CFI = 0.891))
and high positive correlations between the g-factors derived using PCA and CFA (all r>0.98; Supplementary
Table 5).

The structural equation modelling results showed that for the general factors of FA, MD, AD, RD and ISO

there was evidence that GA at birth significantly associated with the g-factor (common model). The

independent pathway model (where GA at birth associates with the tract-specific values) fit significantly

better than the model that only included the common pathway of GA at birth associations (Table 3; for factor
16
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loadings and regression coefficients see Supplementary Table 6), although it included the highest number
of paths. We inspected the modification indices of the common pathway model to determine whether there
are incremental, unique tract-specific effects of GA at birth which are not conveyed by the effect of GA at
birth on the shared variance. The modification indices did not indicate additional tract-specific paths
associated with GA at birth for any metric, thus, we were unable to construct models with both common

and independent pathways and this suggests that the common model provides sufficient refinement of the

N O oW N e

(ee]

10

11
12
13
14

properties of white matter microstructure that are affected by GA at birth.

Table 3: Model fit indices for each of the structural equation models linking GA at birth with the g-factors or individual

white matter tracts. P-values refer to the difference (y? difference test) between the common and the independent

pathway models. For full parameter estimates in these models see Supplementary Table 6.

Metric Model X2 df yzdiff p AIC BIC saBIC
FA Common 489.530 118 - - -449688 -449518 -449676.324
Independent 313.520 103 176.010 <2.2 x 10-16 -449834 -449613 -449818.963
MD Common 691.410 118 - - -450877 -450707 -450865.709
Independent 491.110 103 200.290 <2.2 x 10-16 -451047 -450827 -451032.635
AD Common 528.500 118 - - -449345 -449175 -449333.485
Independent 421.360 103 107.140 5.70 x 10-16 -449422 -449201 -449407.254
RD Common 664.165 118 - - -450988 -450818 -450976.446
Independent 441.838 103 222.330 <2.2 x 10-16 -451180 -450959 -451165.403
NDI Common 455.697 118 - - -450056 -449887 -450045.040
Independent 356.985 103 98.711 2.29 x 10-14 -450125 -449904 -450110.382
ODI Common 438.010 118 - - -448008 -447839 -447996.961
Independent 363.457 103 74.553 6.82 x 10-10 -448053 -447832 -448038.145
ISO Common 543.819 118 - - -449594 -449424 -449582.735
Independent 420.362 103 123.460 <2.2 x 10-16 -449687 -449467 -449672.822

FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density
index, ODI = orientation dispersion index, ISO = isotropic volume fraction, AIC = Akaike Information Criterion, BIC =

Bayesian Information Criterion, CFI = comparative fit index, TLI = Tucker-Lewis index, saBIC = sample size adjusted

Bayesian Information Criterion.
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3.4 Multimodal general factors of white matter microstructure

Next, we studied the shared variance of DTI and NODDI metrics across white matter tracts. The correlation
matrices in Figure 5 show that the metrics form two clusters of positively correlated metrics: the first
cluster represents positive correlations between FA and NDI, and the second cluster of positive correlations
is formed of MD, RD, AD and ISO, while ODI appears to be a weaker member of the second cluster. These
two clusters are negatively correlated with each other. However, there is also variability in between-metric
correlations between the different tracts. Nevertheless, the correlation matrix in the middle panel of Figure
6 highlights the similarity between the microstructural measures, which is consistent with them

representing shared information about tract microstructure.
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Figure 6: Correlation matrices of the seven diffusion measures. The middle image represents the average of all white
matter tracts. Matrices are re-organised using hierarchical clustering, grouping measures that have similar
correlations together. Note that for bilateral tracts, the left and right values were averaged prior to performing the
correlation. Genu = corpus callosum genu/forceps minor, splenium = corpus callosum splenium/forceps major, CST =
corticospinal tract, [FOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate
fasciculus, UNC = uncinate fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation, FA =
fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index,

ODI = orientation dispersion index, ISO = isotropic volume fraction.
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A PCA including all seven DTI and NODDI metrics revealed that 93.9% of the variability in dMRI metrics
across white matter tracts is accounted by the first two PCs (Figure 6). The first PC (proportion of variance
explained 60.0%, A = 4.20) is mostly composed of RD and MD (both contributing negatively, 23.4% and
21.4%, respectively), and the second PC which captures 33.9% of variance in the data (A = 2.38) is mostly
driven by ISO (26.8%), AD (21.3%) and FA (18.9%). The loadings and contributions of the dMRI metrics to
the first two PCs are presented in Table 4. RD and MD appear to be solely loading onto the PC1 (together
contribute <5% to the PC2), while the other dMRI metrics have more similar contributions to PC1 and PC2.
The variability of between-tract correlations of dMRI metrics as mentioned above is also reflected in the

clustering of tracts on the PC axes (Figure 7).

Table 4: dMRI metric loadings to the multimodal principal components.

Metric PC1 PC2

loading contribution loading contribution
FA 0.686 11.207 0.670 18.893
MD -0.949 21.412 0.313 4.119
AD -0.682 11.068 0.712 21.320
RD -0.992 23.438 0.057 0.138
NDI 0.750 13.402 0.608 15.565
ODI -0.693 11.412 -0.559 13.163
ISO -0.582 8.062 0.798 26.803

FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density

index, ODI = orientation dispersion index, ISO = isotropic volume fraction.
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Figure 6: Multimodal PCA. (A) Scree plot of the eigenvalues, (B) PCA variable contribution plot; the colours
represent the contribution of the dMRI metric to the components. FA = fractional anisotropy, MD = mean diffusivity,
AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index, ODI = orientation dispersion index, ISO =

isotropic volume fraction.
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Figure 7: Visualisation of individual tract coordinates on the multimodal principal component axes. CC genu = corpus
callosum genu/forceps minor, CC splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, IFOF
= inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate

fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation

21


https://doi.org/10.1101/2021.11.29.470344
http://creativecommons.org/licenses/by-nc/4.0/

Ul B W N

O© 00 N O

10

12
13

14
15
16
17
18
19

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470344; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

GA at birth was significantly associated with both multimodal g-factors (Figure 8): the first multimodal g-
factor that has high negative contributions from RD and MD was positively, and the second multimodal g-
factor with high positive contributions from ISO and AD was negatively associated with GA at birth. It is
possible that individual tracts may contribute to varying degrees to the relationship with age

(Supplementary Table 2).

PC1 PC2

p=0.287; R?=7.8% p=-0.269; R2=6.8%
p=2.§9x10° p=5.30%10"

Multimodal g-factor score (residualised against GA at MRI)

25 30 35 40 25 30 35 40
GA at birth (weeks)

Figure 8: Associations between GA at birth and the multimodal g-factors. The extracted multimodal principal
components were averaged across the 16 tracts for each participant which resulted in a single estimate for the
multimodal g-factors for each subject. Regression lines and 95% confidence intervals (shaded) are shown for linear
regression models between GA at birth and the g-factor scores, adjusted for GA at scan. The g coefficients are in
standardised units so represent a standard deviation change in the residualised g-factor scores per standard deviation
increase in GA at birth; variance explained in the model is shown in adjusted R2. Reported p-values are adjusted for

the false discovery rate (FDR) using the Benjamini-Hochberg procedure.

3.5 Utility of g-factors to classify infants based on gestational age

Given the high shared variance within and between the dMRI metrics across major white matter tracts and
the significant associations between GA at birth and the derived g-factors, we asked whether g-factors are
able to classify infants based on GA at birth (preterm vs term classification) (Table 5). Overall, the prediction
accuracy for the single metric and multimodal g-factors only marginally exceeded chance (64.1%). The

highest prediction accuracy (75.2%) was achieved when incorporating all single metric g-factors in one
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model, however, it has to be noted that this is the least parsimonious model with seven predictors compared

to one and two in the other models.

Table 7: Prediction model results based on 10-repeated 10-fold cross validated logistic regression models using the
single-metric g-factors and multimodal g-factors. Reported values are mean and standard deviations computed across
cross-validation folds and repetitions. Permutation p-values are computed over 1000 random permutations of the

group variable.

Accuracy Permutation p-value

gFA 64.915.0 0.005
gMD 67.316.4 0
gRD 67.617.1 0
gAD 65.516.6 0
gNDI 64.1£1.0 0.210
gODI 64.0£3.2 0.703
gISo 67.7£8.0 0
All DTI 65.5£7.6 0.002
All NODDI 71.3+8.3 0
All single-metric 75.2+8.4 0
Multimodal PC1 67.9+6.9 0
Multimodal PC2 64.3+7.8 0.010
Multimodal PC1 and PC2  67.5£8.5 0

FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density
index, ODI = orientation dispersion index, ISO = isotropic volume fraction, DTI = diffusion tensor imaging, NODDI=

neurite orientation dispersion and density imaging.

4 Discussion

In this study, utilising the substantial shared variance within and between DTI and NODDI metrics across
16 major white matter tracts, we derive single- and multimetric g-factors which covary with GA at birth.
Using structural equation modelling, we show that whilst the shared variance among tracts carries much of
the white matter microstructural information about GA-based differences, there is modest additional
unique information at the level of individual pathways that enhances term/preterm differentiation, though
larger samples are required to reliably estimate the precise magnitudes and loci of the most informative
white matter pathways. We demonstrate that combining single-metric g-factors from DTI and NODDI

together in one prediction model offered the most efficient method for characterising variation in white
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matter microstructure associated with preterm birth, suggesting each metric carries additive information.
These results add to the body of literature suggesting generalised dysmaturation of the white matter in the

preterm neonates.

Variance in measures derived from dMRI is shared among white matter tracts in both neonates and adults,
and previous studies have suggested that generalised measures to capture global white matter
microstructure can be derived (Cox et al,, 2016; Lee et al,, 2017; Penke et al,, 2010; Telford et al., 2017).
Here, we report that the g-factors capture 58.9-72.6% of variance in DTI metrics, thus replicating our
previous results in an independent, larger sample of neonates and different tract segmentation protocol
(Telford etal., 2017). We additionally expand on the previous work and report that similarly to DTI metrics,
in neonates there is substantial shared variance of NODDI metrics across white matter tracts (41.8-62.9%)
as was previously reported in adult population (Cox etal., 2016). We observed the largest variance captured
by a single g-factor for RD, while there was least evidence for a single latent factor for ODI, indicated by the
comparably smaller eigenvalue for the first component, suggesting that this measure of white matter

microstructure may be capturing tract-specific rather than global effects.

The correlations between different DTI and NODDI metrics themselves indicate that they share overlapping
information in the brain (Chamberland et al.,, 2019; De Santis et al., 2014), but less is known about the
covariance of dMRI measures in early development when water diffusion properties are different. By
examining the covariance of dMRI metrics averaged over 16 white matter tracts, we observed that there
are two clusters of positively correlated metrics: the first cluster includes measures of microstructural
complexity/integrity of FA and NDI while the second cluster includes measures related to water diffusivity
(MD, RD, AD and ISO); the metrics in these two clusters are in turn negatively correlated with one another.
The highest positive correlations are between the pairs of FA-NDI (microstructural complexity/integrity),
RD-MD (hindrance and degree of diffusivity) and AD-ISO (free/diffuse water). Importantly, the dMRI metric
covariance structures vary slightly between tracts, confirming the tract-specific variability highlighted by
the CFA. For example, the splenium of the corpus callosum appears to have weaker between-metric
correlations overall although high correlations between MD-RD, FA-NDI and AD-ISO are still present.
Interestingly, ODI, on average, appears to have weaker correlations with other dMRI metrics, which may
further suggest between-tract variability of this measure of fibre orientation. Indeed, in the uncinate,
inferior fronto-occipital fasciculi, cingulum cingulate gyri and corticospinal tracts, ODI is a part of the second
cluster of positively correlated metrics, while it has very low correlations with other metrics in the inferior
longitudinal fasciculi and the anterior thalamic radiation and is negatively associated with all other dMRI
metrics in the genu of the corpus callosum. AD and ISO correlations with NDI, FA and ODI appear
considerably weaker on average, possibly also due to variations in the dMRI metric covariance structure

between tracts. Together, our results suggest that similarly to what is observed in adults and children
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(Chamberland et al,, 2019; Geeraert et al., 2020), the interdependence of dMRI measures is already present
at birth.

We found that a considerable proportion of variance is shared across the dMRI metrics in neonates, which
confirms previous observations in children and adolescents (Chamberland et al., 2019; Geeraert et al,,
2020). We used this shared variance to derive multimodal g-factors of white matter microstructure using
PCA as a data reduction technique. The two extracted multimodal g-factors together explained almost 94%
of variance in the seven DTI and NODDI metrics across 16 white matter tracts. Due to the different MRI
measures used in the current work compared to those profiled by Chamberland et al. (2019) and Geeraert
et al. (2020), we are unable to make direct comparisons in the interpretation of the multimodal g-factors.
However, similarly to these previous papers, we also observed that the multimodal PCs generally consist of
dMRI metrics that share similarities in their sensitivity to different tissue properties. The multimodal PC1
that accounts for the largest proportion of variance in the data (60%) consists of measures sensitive to
hindrance/restricted water diffusion and magnitude of diffusivity (RD and MD). The multimodal PC2
accounting for 34% of variance in the data consists of measures of free water (ISO) as well as axonal

integrity (AD, FA).

We were then interested in testing whether the derived g-factors can be used to characterise atypical white
matter development associated with low GA. After adjusting for age at scan, we report that gFA was
positively and gMD, gAD and gRD negatively associated with GA at birth. Thus, we replicate previous results
in a larger independent cohort and across more tracts (Telford et al.,, 2017). In addition, here we report
significant negative association between GA at birth and gISO, which had the strongest correlation with GA
at birth among the DTI and NODDI g-factors. Thus, those infants born preterm exhibit less coherent, but a
greater magnitude of water diffusion across the major white matter tracts in the brain compared to term-
born controls. Interestingly, despite the substantial variance reported in NDI and ODI across white matter
tracts, gNDI and gODI are not significantly associated with GA at birth. This could indicate that these two

metrics capture more specific aspects of tract composition, which may be less meaningful at a global level.

These results together suggest generally lower white matter integrity and higher water diffusivity in infants
born preterm compared to term, and are in line with findings obtained using other analysis approaches
such as tract-based spatial statistics (Barnett et al., 2018; Thompson et al., 2019) or tract-specific analyses
(Pecheva et al,, 2017). We used structural equation modelling to test whether the common variance shared
among all tracts is sufficient to explain differences between infants born at varying GA. We found that the
tract-specific (independent pathways) model is significantly better than the common model, suggesting
there is incrementally valid, low level information for GA at birth contained in the unique tract-specific
microstructural properties. However, it has to be noted that this model included the highest number of

paths, and the residual variance that cannot be accounted for by the common factor constitutes both tract-
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specific aspects of microstructure and measurement error. We could not reliably detect any additional tract-
specific pathways to be substantially more informative for GA at birth compared to the general/common
factor, suggesting that the most parsimonious model, in which GA at birth affects the global/shared variance
of the tracts, offers valuable distillation of the between-person differences in white matter microstructure

that are pertinent for GA variability.

The prediction modelling results revealed that the single-metric g-factors (except for gNDI and gODI)
achieved preterm vs term classification accuracy significantly higher than chance, but the classification
accuracy was relatively low. It could be hypothesised that preterm birth has a diffuse effect on white matter
microstructure, which is better captured by methods that do not rely on anatomically constrained regions
(e.g. peak width of skeletonised metrics (Baykara et al., 2016; Blesa et al,, 2020)). Nevertheless, the g-factors
could carry information beyond the simple dichotomy of term vs preterm birth and could be useful for
investigating other environmental or genetic/epigenetic exposures that are hypothesised to affect global
white development (Boardman et al,, 2014; Boardman and Counsell, 2020; Krishnan et al., 2017; Wheater
etal, 2021), or for predicting neurocognitive outcomes as previously reported in adults and children (Cox

etal, 2019, 2016; Lee et al., 2017; Penke et al,, 2010).

We also report that the multimodal g-factors associate with GA at birth, which, given the correlations of the
dMRI metrics with the multimodal g-factors, give a similar interpretation of the effect of GA at birth on dMRI
metrics. However, despite the significant association, the preterm vs term classification accuracy achieved
using the multimodal g-factors was, similarly to single-metric g-factors, relatively low. Interestingly,
however, we achieved the greatest classification accuracy when combining all single metric g-factors
together in one prediction model. These results may imply that despite global covariance of dMRI metrics
in neonates, each one carries information on specific (and additive) aspects of the underlying
microstructure that differ in preterm compared to term subjects. It is important to acknowledge that the
model combining all single metric g-factors is by far the least parsimonious model tested, and increasing
the number of predictors could artificially inflate the estimation of prediction accuracy. However, the
combined single g-factor prediction model is by far the most successful one and we have used cross-

validation with the aim to minimise bias and militate against the artificial inflation.

5 Conclusion

In this work, we extracted tract-averaged DTI and NODDI metrics from 16 major white matter tracts in 220
neonates of wide-ranging GA at birth. We then applied PCA as a data reduction technique to derive single-
and multimodal general factors of white matter microstructure. These g-factors explained substantial
variance within and between DTI and NODDI metrics across white matter tracts and associated with GA at

birth. Combining single-metric g-factors together in one prediction model achieved discriminating power
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between term and preterm infants. This framework may be useful for investigating the upstream
determinants and neurocognitive consequences of diseases characterised by atypical white matter

development.
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