

General factors of white matter microstructure from DTI and NODDI in the developing brain

4 Kadi Vaher^a, Paola Galdia^a, Manuel Blesa Cabez^a, Gemma Sullivan^a, David Q Stoye^a, Alan J Quigley^b, Michael J
5 Thrippleton^c, Debby Bogaert^d, Mark E Bastin^c, Simon R Cox^e, James P Boardman^{a,c,*}

7 Author affiliations

⁸ ^aMRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK

9 ^bDepartment of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ,
10 UK

11 ^cCentre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK

12 ^dCentre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK

13 ^eLothian Birth Cohort Studies group, Department of Psychology, University of Edinburgh , Edinburgh EH8
14 9JZ, UK

15

***Corresponding author:** James P Boardman, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK. Email: James.Boardman@ed.ac.uk

18

1 Abstract

2 Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI
3 and neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation
4 dispersion and density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two
5 methods share variance across tracts. This raises the hypothesis that dimensionality reduction approaches
6 may provide efficient whole-brain estimates of white matter microstructure that capture (dys)maturation
7 processes. To investigate the optimal model for accurate classification of generalised white matter
8 dysmaturation in preterm infants we assessed variation in DTI and NODDI metrics across 16 major white
9 matter tracts using principal component analysis and structural equation modelling, in 79 term and 141
10 preterm infants at term equivalent age. We used logistic regression models to evaluate performances of
11 single-metric and multimodality general factor frameworks for efficient classification of preterm infants
12 based on variation in white matter microstructure. Single-metric general factors from DTI and NODDI
13 capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, and two multimodality
14 factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. General factors
15 associate with preterm birth and a single model that includes all seven DTI and NODDI metrics provides the
16 most accurate prediction of microstructural variations associated with preterm birth. This suggests that
17 despite global covariance of dMRI metrics in neonates, each metric represents information about specific
18 (and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects.

19

20 **Keywords:** white matter, neonate, tract, data reduction, diffusion MRI

1 Abbreviations

2 AD = axial diffusivity, AF = arcuate fasciculus, AIC = Akaike Information Criterion, ATR = anterior thalamic
3 radiation, BIC = Bayesian Information Criterion, CC genu = corpus callosum genu/forceps minor, CC
4 splenium = corpus callosum splenium/forceps major, CCG = cingulum cingulate gyrus, CFA = confirmatory
5 factor analysis, CFI = comparative fit index, , CST = corticospinal tract, dMRI = diffusion MRI, DTI = diffusion
6 tensor imaging, FA = fractional anisotropy, FDR = false discovery rate, FOD = fibre orientation distribution,
7 GA = gestational age, IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, ISO =
8 isotropic volume fraction, MD = mean diffusivity, NDI = neurite density index, NODDI = neurite orientation
9 dispersion and density imaging, ODI = orientation dispersion index, PCA = principal component analysis,
10 RD = radial diffusivity, RMSEA = root mean square error of approximation, ROI = region of interest, SRMR
11 = standardised root mean square residual. TDI = track density image, TLI = Tucker-Lewis index, UNC =
12 uncinate fasciculus

1 Highlights

- 2 • We measured variation of 7 DTI and NODDI metrics across 16 major tracts
- 3 • General factors for DTI and NODDI capture substantial shared variance across tracts
- 4 • General factors also capture substantial shared variance between DTI and NODDI
- 5 • Single-metric and multimodality factors associate with gestational age at birth
- 6 • The best preterm prediction model contains all 7 single-metric g-factors

1 1 Introduction

2 Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) enable
3 inference about the microstructural properties (such as water content, axonal density and myelination) of
4 developing white matter from diffusion magnetic resonance imaging (dMRI) (Counsell et al., 2019; Tariq et
5 al., 2016; Zhang et al., 2012). Neonatal dMRI has been valuable in assessing the impact of preterm birth on
6 the developing brain; it reveals a preterm brain phenotype at term-equivalent age, which includes lower
7 fractional anisotropy (FA) and neurite density index (NDI) and increased mean diffusivity (MD) throughout
8 the white matter compared to term-born controls, with a dose-dependent effect of prematurity (Alexandrou
9 et al., 2014; Anjari et al., 2007; Barnett et al., 2018; Batalle et al., 2017; Blesa et al., 2020; Boardman and
10 Counsell, 2020; Hüppi et al., 1998; Partridge et al., 2004; Pogribna et al., 2013). Importantly, the
11 dysconnectivity and reduced white matter integrity associated with preterm birth is substantially a whole
12 brain phenomenon (Girault et al., 2019; Telford et al., 2017). This motivates the search for efficient whole-
13 brain estimates that would capture maturational processes in early life.

14 Studies have demonstrated that dMRI measures of white matter tracts across the brain are correlated (e.g.
15 an individual with high FA in one tract is likely to have high FA across other tracts) and that this relationship
16 is exists across the life course (Cox et al., 2016; Girault et al., 2019; Lee et al., 2017; Mishra et al., 2013;
17 Telford et al., 2017; Wahl et al., 2010). This property has allowed the derivation of general factors (g-factors)
18 of white matter microstructure (e.g. gFA), which associate with general cognitive functioning (Alloza et al.,
19 2016; Cox et al., 2019; Penke et al., 2010) and age (Cox et al., 2016). Similar diffusion properties have been
20 observed in early life and these predict cognitive abilities (Lee et al., 2017). Our group has previously
21 reported that in neonates DTI-metric-based g-factors explain around 50% of variance in eight white matter
22 tracts and associate with gestational age (GA) at birth (Telford et al., 2017).

23 The different dMRI metrics themselves as well as the derived g-factors are correlated (Chamberland et al.,
24 2019; Cox et al., 2016; De Santis et al., 2014; Girault et al., 2019; Penke et al., 2010), suggesting that dMRI
25 measures share overlapping information which can cause partial redundancies in data analysis. Recently, a
26 dimensionality reduction framework based on multimodal principal component analysis (PCA) was
27 proposed (Chamberland et al., 2019; Geeraert et al., 2020). Using this framework the authors identified a
28 small number of microstructurally informative and biologically-interpretable components/factors which
29 captured 80% of variance in dMRI and myelin-sensitive imaging metrics across the white matter tracts,
30 which associated with age in a sample of typically developing 8-18-year-old children (Chamberland et al.,
31 2019; Geeraert et al., 2020).

32 In this work, using a neonatal dataset and a neonatal white matter tract atlas based on established protocols
33 (Pecheva et al., 2017; Wakana et al., 2007), we aimed to: (1) determine g-factors for DTI and NODDI metrics

1 and evaluate whether a single factor captures substantial variance across major tracts; and (2) investigate
2 the shared variance across dMRI metrics by deriving a multimodal g-factor from DTI and NODDI, and
3 quantify its predictive utility for GA at birth beyond uni-modal models. We hypothesised that g-factors
4 would associate with GA at birth and that they would provide an efficient method for classifying generalised
5 variation in white matter microstructure associated with preterm birth.

6 **2 Materials and methods**

7 **2.1 Participants**

8 Preterm (with GA at birth < 33 weeks) and term born infants were recruited as part of a longitudinal study
9 (Theirworld Edinburgh Birth Cohort, TEBC) designed to investigate the effects of preterm birth on brain
10 structure and long term outcome (Boardman et al., 2020). Exclusion criteria were major congenital
11 malformations, chromosomal abnormalities, congenital infection, overt parenchymal lesions (cystic
12 periventricular leukomalacia, haemorrhagic parenchymal infarction) or post-haemorrhagic ventricular
13 dilatation. Ethical approval has been obtained from the National Research Ethics Service, South East
14 Scotland Research Ethics Committee (11/55/0061, 13/SS/0143 and 16/SS/0154). Informed consent was
15 obtained from a person with parental responsibility for each participant. The study was conducted
16 according to the principles of the Declaration of Helsinki.

17 **2.2 Data acquisition**

18 Infants were scanned at the Edinburgh Imaging Facility: Royal Infirmary of Edinburgh, University of
19 Edinburgh, UK using a Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Healthcare
20 Erlangen, Germany). A 16-channel phased-array paediatric head coil was used to acquire 3D T2-weighted
21 SPACE images (T2w) (voxel size = 1mm isotropic, TE = 409 ms and TR = 3200 ms) and axial dMRI data.
22 Diffusion MRI images were acquired in two separate acquisitions to reduce the time needed to re-acquire
23 any data lost to motion artifacts: the first acquisition consisted of 8 baseline volumes ($b = 0 \text{ s/mm}^2$ [b0])
24 and 64 volumes with $b = 750 \text{ s/mm}^2$; the second consisted of 8 b0, 3 volumes with $b = 200 \text{ s/mm}^2$, 6
25 volumes with $b = 500 \text{ s/mm}^2$ and 64 volumes with $b = 2500 \text{ s/mm}^2$. An optimal angular coverage for the
26 sampling scheme was applied (Caruyer et al., 2013). In addition, an acquisition of 3 b0 volumes with an
27 inverse phase encoding direction was performed. All dMRI images were acquired using single-shot spin-
28 echo echo planar imaging (EPI) with 2-fold simultaneous multislice and 2-fold in-plane parallel imaging
29 acceleration and 2 mm isotropic voxels; all three diffusion acquisitions had the same parameters (TR/TE
30 3400/78.0 ms). Images affected by motion artifacts were re-acquired as required; dMRI acquisitions were
31 repeated if signal loss was seen in 3 or more volumes. Infants were fed and wrapped and allowed to sleep
32 naturally in the scanner. Pulse oximetry, electrocardiography and temperature were monitored. Flexible

1 earplugs and neonatal earmuffs (MiniMuffs, Natus) were used for acoustic protection. All scans were
2 supervised by a doctor or nurse trained in neonatal resuscitation.

3 **2.3 Data preprocessing**

4 Diffusion MRI processing was performed as follows: for each subject the two dMRI acquisitions were first
5 concatenated and then denoised using a Marchenko-Pastur-PCA-based algorithm (Veraart et al., 2016); the
6 eddy current, head movement and EPI geometric distortions were corrected using outlier replacement and
7 slice-to-volume registration (Andersson et al., 2017, 2016, 2003; Andersson and Sotiroopoulos, 2016); bias
8 field inhomogeneity correction was performed by calculating the bias field of the mean b0 volume and
9 applying the correction to all the volumes (Tustison et al., 2010). The T2w images were processed using the
10 minimal processing pipeline of the developing human connectome project (dHCP) to obtain the bias field
11 corrected T2w and the brain mask (Makropoulos et al., 2018, 2014). Finally, the mean b0 EPI volume of
12 each subject was co-registered to their structural T2w volume using boundary-based registration (Greve
13 and Fischl, 2009).

14 NODDI and DTI maps were calculated in the dMRI processed images to obtain: fractional anisotropy (FA),
15 mean, axial and radial diffusivities (MD, AD and RD), neurite density index (NDI), isotropic volume fraction
16 (ISO) and orientation dispersion index (ODI). To calculate the tensor derived metrics, only the first shell
17 was used. NODDI metrics were calculated using the recommended values for neonatal white matter of the
18 parallel intrinsic diffusivity ($1.45 \mu\text{m}^2/\text{ms}$) (Guerrero et al., 2019; Zhang et al., 2012).

19 **2.4 Tract segmentation**

20 Whole brain tractography was performed in the ENA50 neonatal template space (Blesa et al., 2020, 2016)
21 using SingleTensorFT tool within DTI-TK (Zhang et al., 2007, 2006) which generated white matter
22 tractography from the ENA50 atlas tensor volume. Segmentation of white matter tracts was performed
23 within the ENA50 atlas. Regions of interest (ROIs) used to delineate the tracts were drawn manually on the
24 FA image, using the protocols outlined in Wakana et al. (2007) and Pecheva et al. (2017). Placement of ROIs
25 is described in Supplementary Table 1 and these were drawn using the Paintbrush mode in ITK-SNAP
26 (Yushkevich et al., 2006) (<http://www.itksnap.org/>). The ROIs were used to filter whole brain tractography
27 either to select or to exclude tracts crossing the ROIs using TractTool within DTI-TK. The resulting tract
28 images were binarized and manually refined. The white matter tracts delineated are shown in Figure 1.

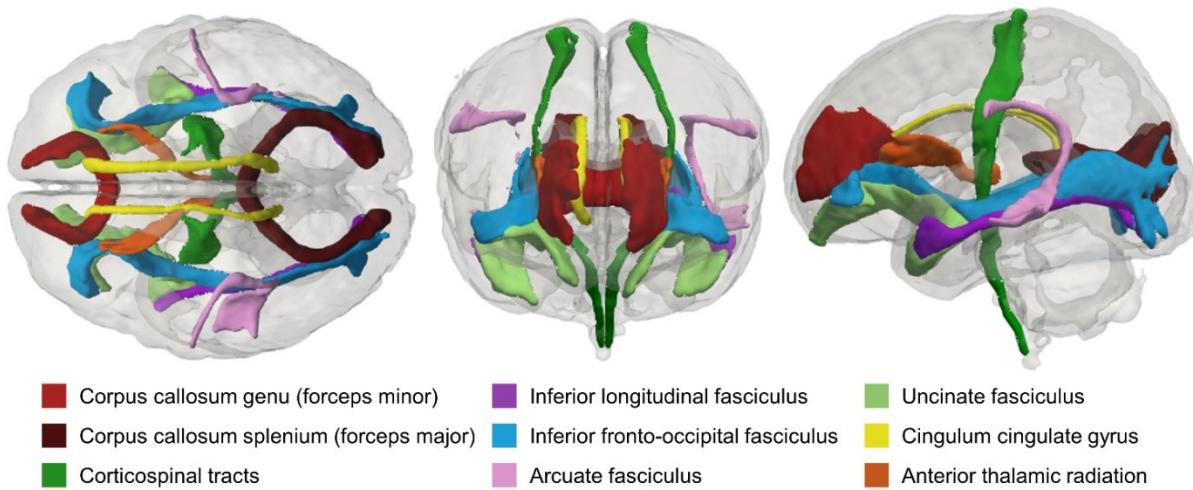


Figure 1: Visual representation of the generated white matter tracts in the ENA50 neonatal atlas space. Shown in superior (left), anterior (centre) and lateral (right) views.

2.5 Tract segmentation in subjects' native space and extraction of tract-averaged dMRI metrics

T2w processed images were registered to the ENA50 T2w structural template using rigid, affine and symmetric normalization (SyN) (Avants et al., 2008). The resulting transformation was concatenated with the previously computed transformation from B0 to T2w and used to bring the tract ROIs defined in the ENA50 space to each subject's native space in a single step.

The average multi-tissue response function was calculated across the full population (Dhollander et al., 2019, 2016; Smith et al., 2020), with a FA threshold of 0.1. Then, the multi-tissue fibre orientation distribution (FOD) was calculated (Jeurissen et al., 2014) with the average response function using a spherical harmonic order (L_{max}) of 8. Only two (white matter and cerebrospinal fluid) response functions were used. Finally, a joint bias field correction and multi-tissue informed log-domain intensity normalisation on the FODs images was performed (Raffelt et al., 2017).

The tracts in native space were created using the iFOD2 algorithm (Tournier et al., 2010). The propagated tract ROIs were dilated and the original tract ROIs were used as seed images for the tractography, while the dilated tract ROIs were used as masks to constrain the tracts. The length of the fibres was set with a minimum length of 20 mm and a maximum of 250 mm. Finally, for each tract, a track density image (TDI) map (number of tracts per voxel) was created and normalized between 0 and 1 (Calamante et al., 2010). For each tract, the TDI map was multiplied by each of the DTI and NODDI maps, summed and divided by the average of the TDI map to calculate the weighted tract-averages for each of the DTI and NODDI metrics.

1 2.6 Statistical analysis

2 All statistical analyses were performed in R (version 4.0.5) (R Core Team, 2020).

3 2.6.1 *Effect of preterm birth on tract-averaged dMRI metrics*

4 The tract-averaged dMRI parameters were adjusted for GA at scan by fitting a linear model of each scaled
5 (z-transformed) metric on GA at scan and retaining the residuals. The distributions of the residualised dMRI
6 metrics in each tract were assessed for normality using the Shapiro-Wilk test. Student's t-test or Mann-
7 Whitney U-test as a non-parametric alternative was used to compare the tract-averaged values between
8 term and preterm groups; Spearman's rho was used to investigate correlations between tract-averaged
9 values and GA at birth. Reported p-values were adjusted for the false discovery rate (FDR) using the
10 Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

11 2.6.2 *Single-metric g-factors*

12 The average Pearson's correlation coefficient for the inter- and intra-hemispheric associations between the
13 tracts was calculated by first transforming the Pearson's r values to Fisher's Z, taking the average, and then
14 back-transforming the value to Pearson's correlation coefficient (Corey et al., 1998).

15 One PCA was conducted for each of the seven DTI (FA, MD, AD, RD) and NODDI (NDI, ODI, ISO) parameters
16 across the 16 tracts to quantify the proportion of shared variance between them. Thus, in each analysis,
17 each subject was described by 16 features, computed as the tract-averaged values of a given metric across
18 each tract. The first unrotated principal component (PC) scores were extracted as the single-metric g-
19 factors. The g-factors were adjusted for GA at scan by fitting a linear model of each g-factor on GA at scan
20 and retaining the residuals. We report regression coefficients for linear models fitting a linear each of the
21 residualised g-factors and GA at scan. All values were scaled (z-transformed) before fitting the models, thus,
22 the regression coefficients are in the units of standard deviations. Reported p-values were adjusted for the
23 FDR using the Benjamini-Hochberg procedure.

24 Structural equation modelling was used to investigate the extent that differences in GA at birth explain the
25 shared variance across tracts (a common pathway model where GA has associations with only the latent g-
26 factor), and the extent that GA at birth conveys unique information about individual tracts that is not
27 conveyed via shared variance. First, we evaluated the similarities between the g-factors obtained using PCA
28 with the measurement model (confirmatory factor analysis [CFA] within the structural equation model)
29 that was conducted for each metric using the R package *lavaan* (Rosseel, 2012). We used full information
30 maximum likelihood estimation. Model fit was assessed according to standard fit indices: χ^2 test, root mean
31 square error of approximation (RMSEA), comparative fit index (CFI), Tucker-Lewis index (TLI), and
32 standardised root mean square residual (SRMR). Residual covariance paths (paths linking specific tracts to
33 one another to account for the specific similarities between related tracts beyond their shared covariance
34 across all tracts) were added between each of the bilateral tracts, the genu and splenium of the corpus

1 callosum, as well as anatomically overlapping tracts (Dice Coefficient > 0.1 based on the dilated tract masks
2 in template: ILF and IFOF in the same hemisphere, IFOF and UNC in the same hemisphere, ILF and UNC in
3 the same hemisphere, and splenium of the corpus callosum and bilateral IFOF). Pearson's correlation
4 coefficients were calculated for the g-factors derived using PCA and CFA.

5 Thereafter, we tested three models where 1) GA has associations with only the latent g-factor – a common
6 pathway model; 2) GA has associations with each of the individual tracts separately and not with the latent
7 factor – an independent pathways model; and 3) GA is associated with the latent factor and also with some
8 specific factors – a common + independent pathways model (Cox et al., 2016; Tucker-Drob, 2013). To
9 estimate the common + independent pathways model, we first included a path from GA to the latent g-
10 factor, and then, in an iterative fashion, used modification indices (with a minimum value of 10) to include
11 any additional paths from GA to specific tracts that substantially improved model fit. All models were
12 adjusted for GA at scan at g-factor level. See Supplementary Figure 1 for graphical representation of the
13 structural equation models. We used the χ^2 difference test (*aov* function within *lavaan*) and model fit indices
14 (Akaike Information Criterion [AIC], Bayesian Information Criterion [BIC], and sample size adjusted
15 Bayesian Information Criterion [saBIC]) to examine the fit differences between the models.

16 2.6.3 *Multimodal g-factor*

17 A multimodal PCA was conducted by pooling all tracts and metrics using a modification of an established
18 framework (Chamberland et al., 2019; Geeraert et al., 2020). In summary, all metrics were analysed
19 together in a single PCA, so that each observation was an individual tract described by the 7 dMRI metrics,
20 for a total of $n \times t$ observations, where n is the number of subjects and t is the number of tracts. The first and
21 second PC were extracted as the multimodal g-factors which were averaged across the 16 tracts for each
22 participant. To study the effect of GA at birth on the multimodal g-factors, we first adjusted the g-factors for
23 GA at scan by fitting a linear model of each g-factor on GA at scan and retaining the residuals; then, linear
24 regression models were fitted for each of the residualised multimodal g-factors and GA at birth. All values
25 were scaled (z-transformed) before fitting the models, thus, the regression coefficients are in the units of
26 standard deviations. Reported p-values were adjusted for the FDR using the Benjamini-Hochberg
27 procedure.

28 2.6.4 *Prediction modelling*

29 We used the single- and multimodal g-factors as predictors in logistic regression models to discriminate
30 between preterm and full-term infants. We measured classification accuracy using a 10-repeated 10-fold
31 cross-validation scheme. In each of 10 repetitions data were randomly split in 10-folds of which 9-folds
32 were used as training set to compute the PCs, adjust these for GA at scan, and train the prediction of preterm
33 vs term subjects. The g-factors in the test set were computed and adjusted for GA at scan using the models
34 retained from the training set. Then, the generalisation ability of the logistic regression model to predict

1 term vs preterm group trained on the training set was assessed in the test set. Folds were stratified to
2 preserve the proportion of term and preterm subjects of the whole sample. Accuracy was computed as the
3 percentage of correctly classified subjects across folds and repetitions. We estimated the empirical
4 distribution of chance by repeating the prediction analysis 1000 times after randomly assigning each
5 subject to either the preterm or term group; permutation p-values were calculated by counting how many
6 times the null models obtained an accuracy equal or greater than the original model.

7 **2.7 Data and code availability**

8 Reasonable requests for original image and anonymised data will be considered through the BRAINS
9 governance process (www.brainsimagebank.ac.uk) (Job et al., 2017). The segmented tracts in the ENA50
10 template space are available here: <https://git.ecdf.ed.ac.uk/jbirl/ena>. The code for tract propagation and
11 average calculation, as well as scripts for the data analysis in this paper are available here:
12 <https://git.ecdf.ed.ac.uk/jbirl/neonatal-gfactors>.

13 **3 Results**

14 **3.1 Study sample**

15 The study group consisted of 220 neonates: 141 participants were preterm and 79 were term-born controls.
16 Demographic details for participant characteristics are provided in Table 1. Among the preterm infants, 30
17 (21.3%) had bronchopulmonary dysplasia (defined as need for supplementary oxygen ≥ 36 weeks GA), 7
18 (5%) developed necrotising enterocolitis requiring medical or surgical treatment, and 27 (19.1%) had an
19 episode of postnatal sepsis defined as either blood culture positivity with a pathogenic organism, or
20 physician decision to treat for ≥ 5 days in the context of growth of coagulase negative staphylococcus from
21 blood or a negative culture.

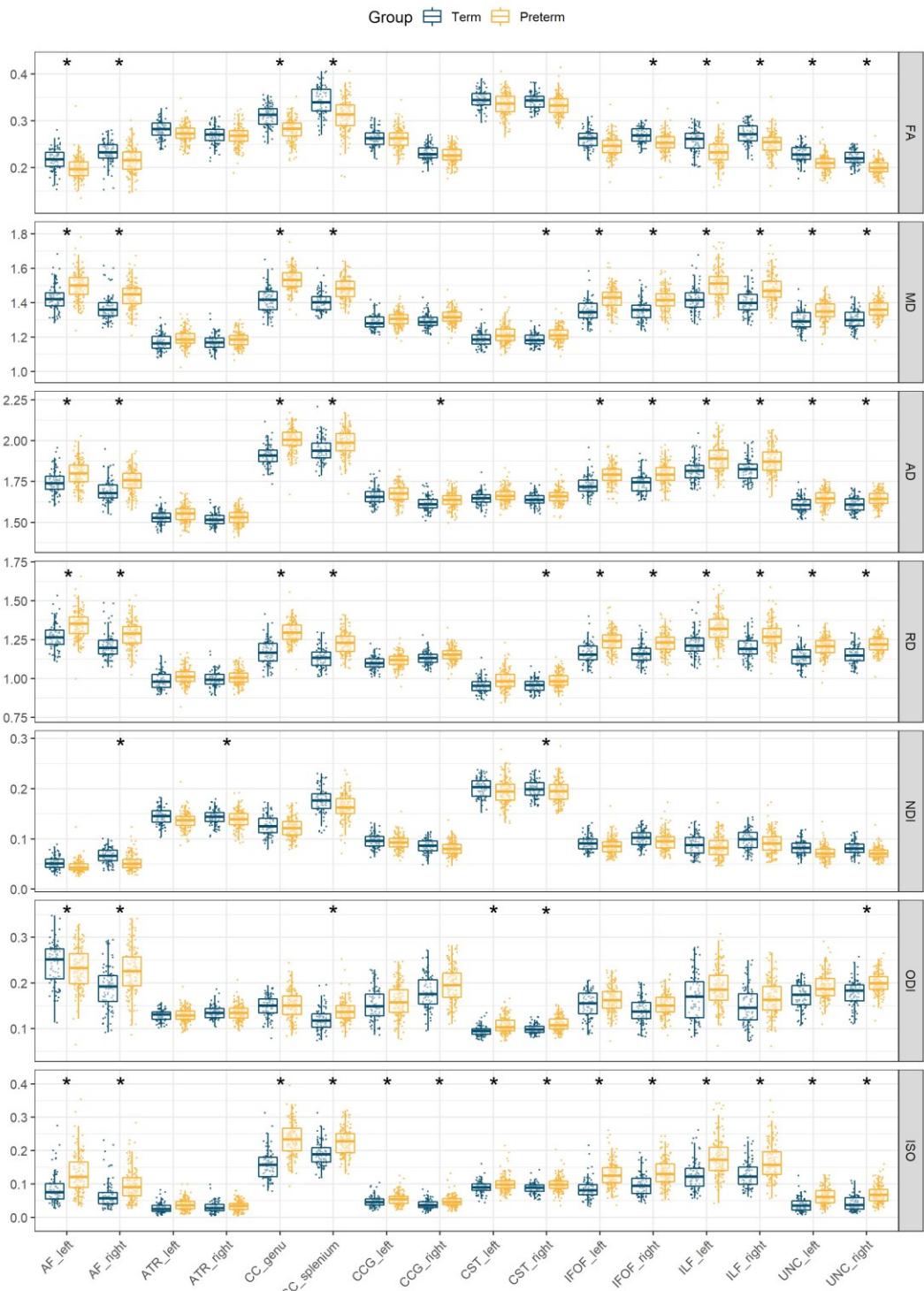
22 **Table 1:** Neonatal participant characteristics. The last column reports the p-values of the group differences computed
23 with t-test for continuous variables and Fisher's exact test for categorical variables.

	term (n=79)	preterm (n=141)	term vs. preterm
GA at birth (weeks)	39.65 (36.42 - 42.14)	29.48 (23.42 - 32.94)	n/a
Birth weight (grams)	3482 (2410 - 4560)	1334 (500 - 2510)	n/a
Birth weight z-score	0.48 (-2.30 - 2.57)	-0.02 (-3.13 - 2.14)	$p < 0.001$
GA at scan (weeks)	42.07 (38.28 - 46.14)	40.78 (36.56 - 45.84)	$p < 0.001$
M:F ratio	43:36	83:58	$p = 0.571$

24 GA = Gestational age, M = male, F = female.

1 3.2 Associations between preterm birth and tract-averaged dMRI metrics

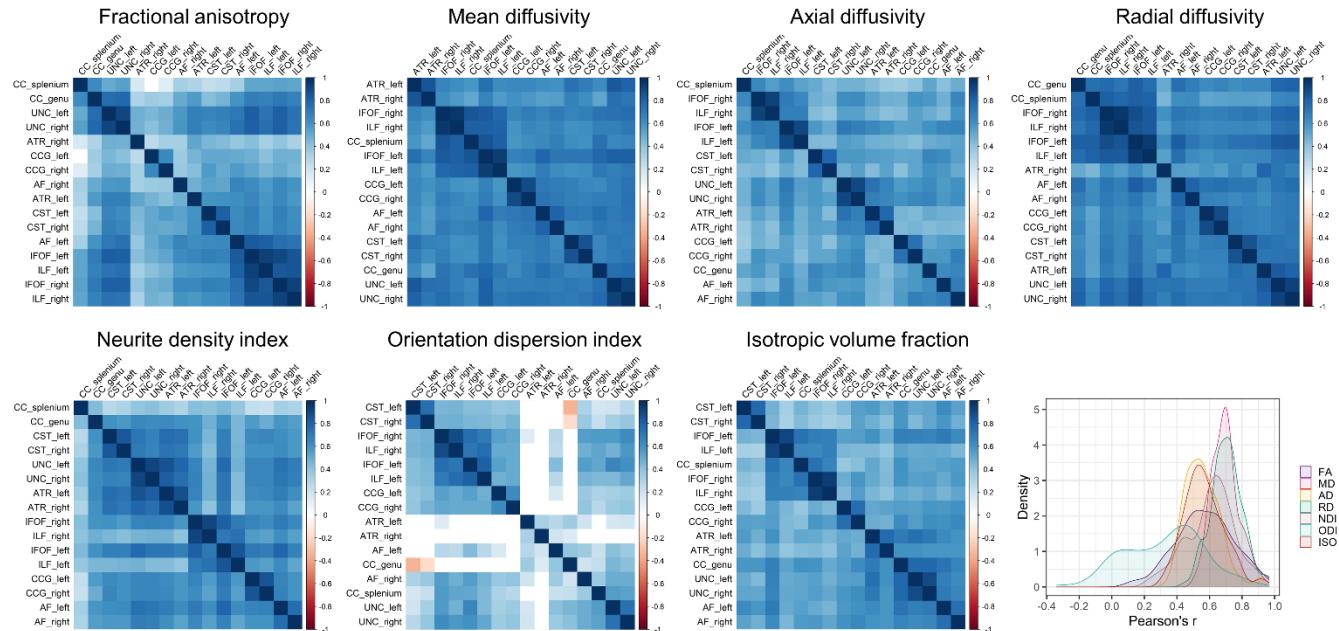
2 Figure 2 and Supplementary Table 2 show tract-averaged dMRI parameter values for each of the 16 tracts
3 for the term and preterm neonates. After adjusting for GA at MRI, in the majority of tracts FA was lower and
4 MD, RD, AD and ISO were higher in preterm infants compared to term-born controls. However, ATR, CCG
5 and CST showed only minimal or no differences in the DTI metrics between the two groups. There were
6 groupwise differences in tract-averaged NDI and ODI values in a minority of the tracts (Figure 2).



1 **Figure 2:** Tract-averaged diffusion characteristics of brain white matter tracts. Asterisks (*) indicate statistically
 2 significant (FDR-corrected $p < 0.05$) differences in tract-averaged values between term and preterm infants after
 3 adjusting for age at scan. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity,
 4 NDI = neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction, CC genu = corpus
 5 callosum genu/forceps minor, CC splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, IFOF
 6 = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate
 7 fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation

8 3.3 Single-metric general factors of white matter microstructure

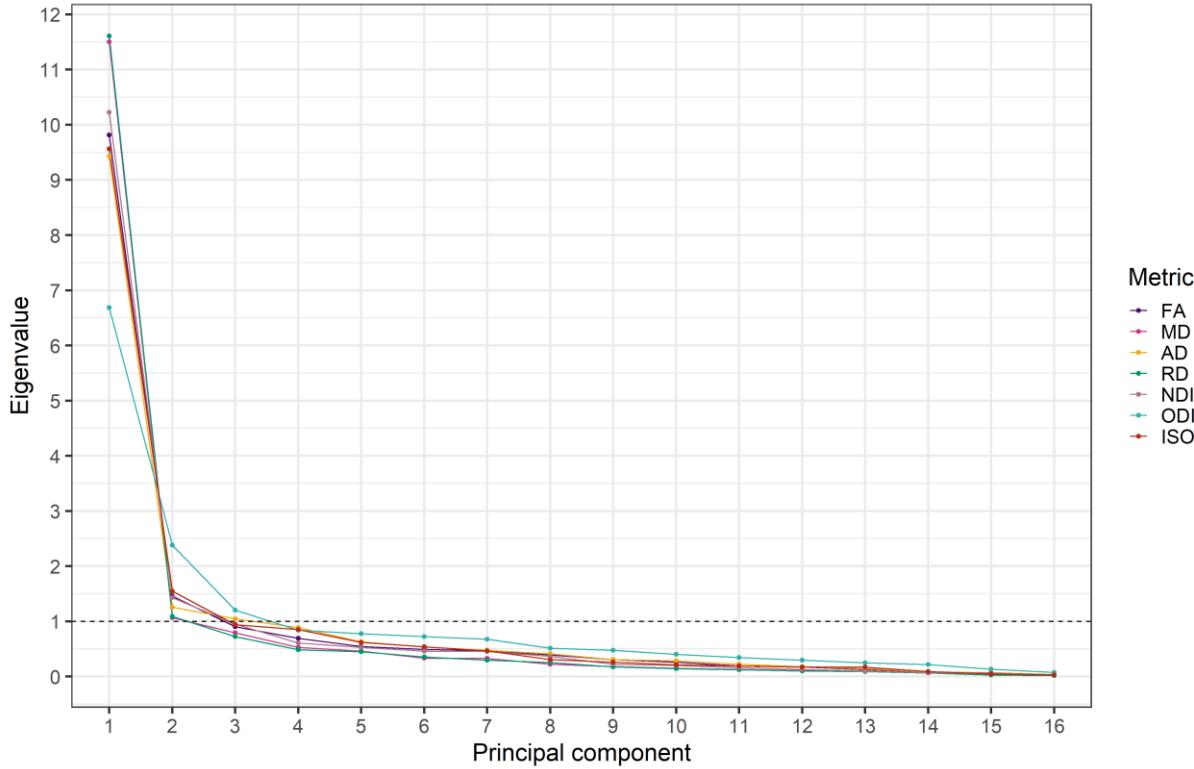
9 For all DTI and NODDI metrics, with the exception of ODI, metrics across tracts correlate positively (Figure
 10 3). The mean ($\pm SD$) of the correlations was 0.601 (± 0.294) for FA, 0.713 (± 0.217) for MD, 0.573 (± 0.199)
 11 for AD, 0.721 (± 0.234) for RD, 0.628 (± 0.250) for NDI, 0.351 (± 0.287) for ODI, and 0.584 (± 0.221) for ISO.



12 **Figure 3:** Heatmaps of inter- and intra-hemispheric associations (Pearson's r) for tract-averaged DTI (top row) and
 13 NODDI (bottom row) metrics. In each case, the heatmaps are arranged by grouping highly correlated tracts around
 14 the diagonal. Blank squares represent correlations that were not nominally statistically significant ($p > 0.05$). The plot
 15 on the bottom right represents the density of the correlation magnitudes. CC genu = corpus callosum genu/forceps
 16 minor, CC splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, IFOF = inferior fronto-
 17 occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate fasciculus, CCG =
 18 cingulum cingulate gyrus, ATR = anterior thalamic radiation.

20 We conducted separate PCAs for each of the 7 DTI and NODDI metrics on 16 white matter tracts to derive
 21 single-metric g-factors. For each metric, the scree plot provided evidence for a strong single factor capturing
 22 common variance across the tracts indicated by the comparatively large eigenvalue (Fig. 4). This was less
 23 clear for ODI, which had a weaker first component and stronger second component compared to other dMRI

1 metrics. The first PC is the g-factor for each of the white matter diffusion measures and this explained 61.3%
2 variance in FA, 71.9% in MD, 59.9% in AD, 72.6% in RD, 63.9% in NDI, 41.8% in ODI, and 59.8% in ISO
3 across the tracts. The tract loadings for the single-metric g-factors are presented in Table 2.



4

5 **Figure 4:** Scree plot for the principal component analysis, showing the eigenvalue against the number of components
6 for each white matter tract dMRI metric. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD =
7 radial diffusivity, NDI = neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction.

8 **Table 2:** Tract loadings (correlation between the manifest variable and extracted component score) and explained
9 variance for the first unrotated principal component (g-factor) for the seven dMRI metrics.

Tract	FA	MD	AD	RD	NDI	ODI	ISO
AF left	0.860	0.846	0.754	0.868	0.852	0.414	0.833
AF right	0.704	0.825	0.797	0.813	0.781	0.681	0.807
ATR left	0.758	0.834	0.748	0.839	0.871	0.192	0.794
ATR right	0.518	0.761	0.715	0.727	0.811	0.063	0.718
CC genu	0.772	0.846	0.782	0.853	0.740	0.184	0.860
CC splenium	0.539	0.832	0.668	0.785	0.467	0.637	0.746
CCG left	0.589	0.813	0.703	0.812	0.808	0.646	0.713
CCG right	0.618	0.834	0.758	0.824	0.797	0.645	0.760

CST left	0.779	0.832	0.760	0.833	0.818	0.544	0.695
CST right	0.784	0.825	0.699	0.835	0.800	0.616	0.649
IFOF left	0.936	0.933	0.871	0.945	0.913	0.882	0.856
IFOF right	0.928	0.890	0.810	0.911	0.853	0.883	0.778
ILF left	0.880	0.842	0.746	0.868	0.705	0.808	0.715
ILF right	0.877	0.844	0.750	0.868	0.718	0.853	0.729
UNC left	0.899	0.891	0.842	0.905	0.887	0.733	0.830
UNC right	0.899	0.905	0.848	0.916	0.866	0.765	0.846
Variance explained (%)	61.341	71.899	58.938	72.562	63.917	41.785	59.775

1 CC genu = corpus callosum genu/forceps minor, CC splenium = corpus callosum splenium/forceps major, CST =
2 corticospinal tract, IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate
3 fasciculus, UNC = uncinate fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation, FA =
4 fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index,
5 ODI = orientation dispersion index, ISO = isotropic volume fraction.

6 After adjustment for GA at scan, there were significant associations between GA at birth and general factors
7 of FA, MD, AD, RD and ISO (Figure 5). The strongest relationship was seen between GA at birth and gISO
8 (GA at birth explained 11.06% of variance in gISO). Interestingly, GA at birth did not significantly associate
9 with the g-factors of biophysical measures of white matter microstructure (NDI and ODI), mirroring the
10 single-tract results described above.



1

2 **Figure 5:** Associations between GA at birth and the g-factors of the seven dMRI metrics. Regression lines and 95%
 3 confidence intervals (shaded) are shown for linear regression models between GA at birth and the g-factor scores,
 4 adjusted for GA at scan. The β coefficients are in standardised units so represent a standard deviation change in the
 5 residualised g-factor scores per standard deviation increase in GA at birth; variance explained in the model is shown
 6 in adjusted R^2 . Reported p-values are adjusted for the false discovery rate (FDR) using the Benjamini-Hochberg
 7 procedure. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI =
 8 neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction.

9 To investigate the extent to which shared variance across all tracts explains differences in GA at birth, or
 10 whether specific tracts carry further information beyond generalised covariance, we used structural
 11 equation modelling. We observed that the measurement model (CFA) for each DTI and NODDI metric is
 12 highly collinear with the PCA results indicated by the similarities between the factor loadings
 13 (Supplementary Table 3; see Supplementary Table 4 for fit indices; all CFI > 0.93 (except ODI, CFI = 0.891))
 14 and high positive correlations between the g-factors derived using PCA and CFA (all $r > 0.98$; Supplementary
 15 Table 5).

16 The structural equation modelling results showed that for the general factors of FA, MD, AD, RD and ISO
 17 there was evidence that GA at birth significantly associated with the g-factor (common model). The
 18 independent pathway model (where GA at birth associates with the tract-specific values) fit significantly
 19 better than the model that only included the common pathway of GA at birth associations (Table 3; for factor

1 loadings and regression coefficients see Supplementary Table 6), although it included the highest number
2 of paths. We inspected the modification indices of the common pathway model to determine whether there
3 are incremental, unique tract-specific effects of GA at birth which are not conveyed by the effect of GA at
4 birth on the shared variance. The modification indices did not indicate additional tract-specific paths
5 associated with GA at birth for any metric, thus, we were unable to construct models with both common
6 and independent pathways and this suggests that the common model provides sufficient refinement of the
7 properties of white matter microstructure that are affected by GA at birth.

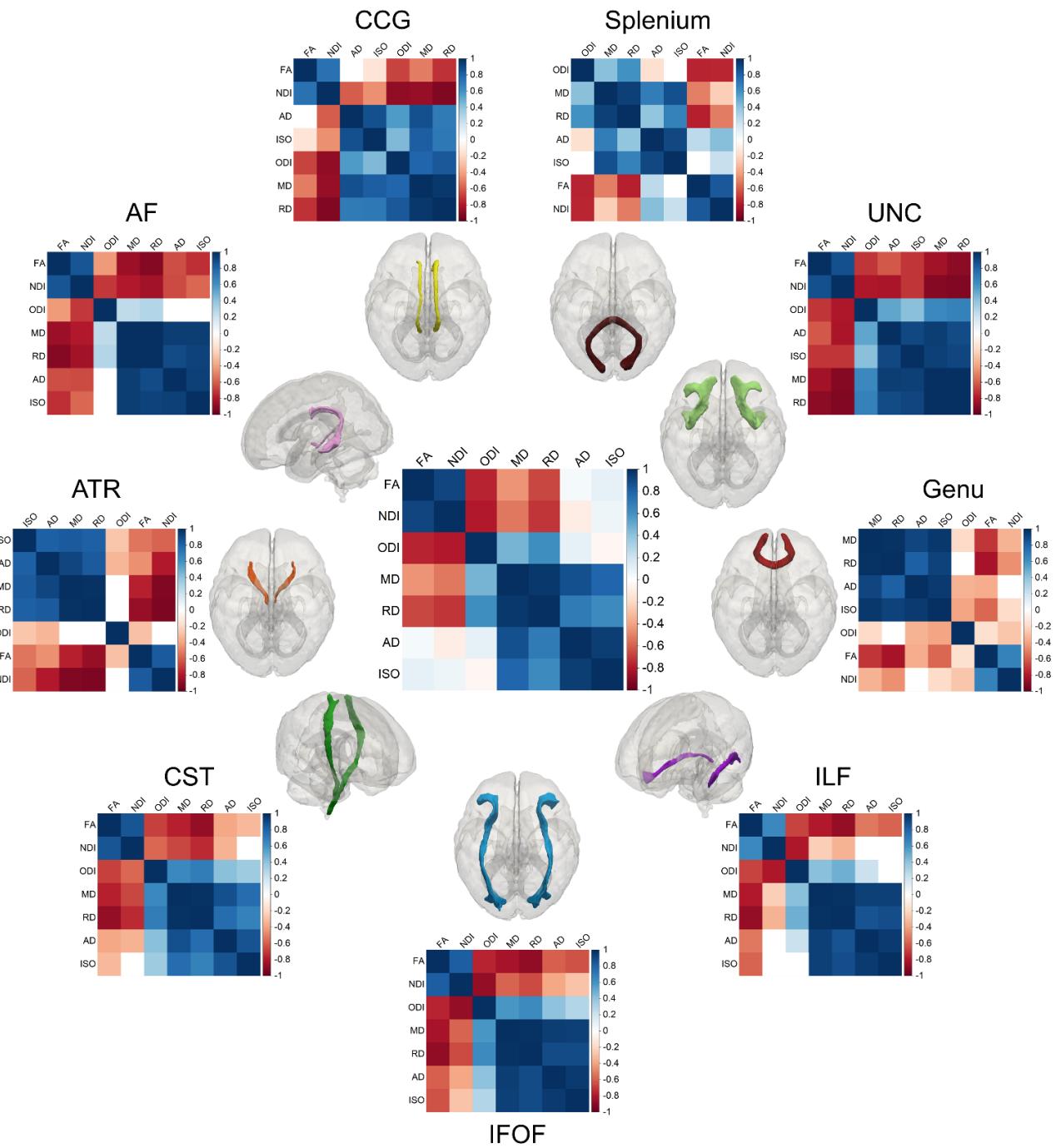
8 **Table 3:** Model fit indices for each of the structural equation models linking GA at birth with the g-factors or individual
9 white matter tracts. P-values refer to the difference (χ^2 difference test) between the common and the independent
10 pathway models. For full parameter estimates in these models see Supplementary Table 6.

Metric	Model	χ^2	df	χ^2 diff	p	AIC	BIC	saBIC
FA	Common	489.530	118	-	-	-449688	-449518	-449676.324
	Independent	313.520	103	176.010	$<2.2 \times 10^{-16}$	-449834	-449613	-449818.963
MD	Common	691.410	118	-	-	-450877	-450707	-450865.709
	Independent	491.110	103	200.290	$<2.2 \times 10^{-16}$	-451047	-450827	-451032.635
AD	Common	528.500	118	-	-	-449345	-449175	-449333.485
	Independent	421.360	103	107.140	5.70×10^{-16}	-449422	-449201	-449407.254
RD	Common	664.165	118	-	-	-450988	-450818	-450976.446
	Independent	441.838	103	222.330	$<2.2 \times 10^{-16}$	-451180	-450959	-451165.403
NDI	Common	455.697	118	-	-	-450056	-449887	-450045.040
	Independent	356.985	103	98.711	2.29×10^{-14}	-450125	-449904	-450110.382
ODI	Common	438.010	118	-	-	-448008	-447839	-447996.961
	Independent	363.457	103	74.553	6.82×10^{-10}	-448053	-447832	-448038.145
ISO	Common	543.819	118	-	-	-449594	-449424	-449582.735
	Independent	420.362	103	123.460	$<2.2 \times 10^{-16}$	-449687	-449467	-449672.822

11 FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density
12 index, ODI = orientation dispersion index, ISO = isotropic volume fraction, AIC = Akaike Information Criterion, BIC =
13 Bayesian Information Criterion, CFI = comparative fit index, TLI = Tucker-Lewis index, saBIC = sample size adjusted
14 Bayesian Information Criterion.

1 **3.4 Multimodal general factors of white matter microstructure**

2 Next, we studied the shared variance of DTI and NODDI metrics across white matter tracts. The correlation
3 matrices in Figure 5 show that the metrics form two clusters of positively correlated metrics: the first
4 cluster represents positive correlations between FA and NDI, and the second cluster of positive correlations
5 is formed of MD, RD, AD and ISO, while ODI appears to be a weaker member of the second cluster. These
6 two clusters are negatively correlated with each other. However, there is also variability in between-metric
7 correlations between the different tracts. Nevertheless, the correlation matrix in the middle panel of Figure
8 6 highlights the similarity between the microstructural measures, which is consistent with them
9 representing shared information about tract microstructure.



1

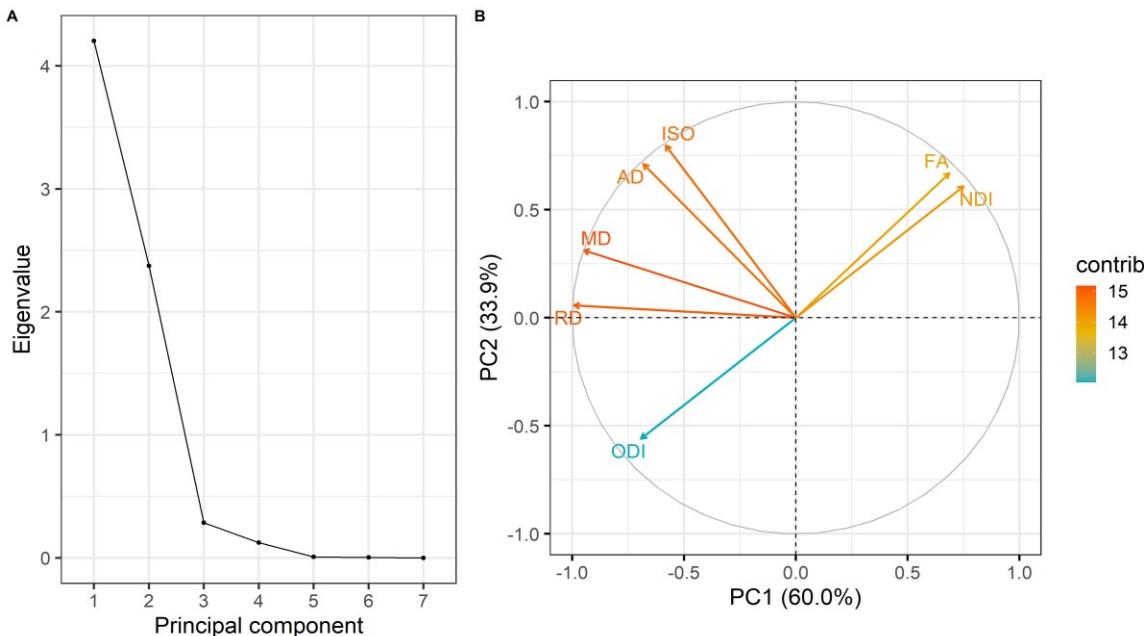
2 **Figure 6:** Correlation matrices of the seven diffusion measures. The middle image represents the average of all white
 3 matter tracts. Matrices are re-organised using hierarchical clustering, grouping measures that have similar
 4 correlations together. Note that for bilateral tracts, the left and right values were averaged prior to performing the
 5 correlation. Genu = corpus callosum genu/forceps minor, splenium = corpus callosum splenium/forceps major, CST =
 6 corticospinal tract, IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF =
 7 arcuate fasciculus, UNC = uncinate fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation, FA =
 8 fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index,
 9 ODI = orientation dispersion index, ISO = isotropic volume fraction.

1 A PCA including all seven DTI and NODDI metrics revealed that 93.9% of the variability in dMRI metrics
2 across white matter tracts is accounted by the first two PCs (Figure 6). The first PC (proportion of variance
3 explained 60.0%, $\lambda = 4.20$) is mostly composed of RD and MD (both contributing negatively, 23.4% and
4 21.4%, respectively), and the second PC which captures 33.9% of variance in the data ($\lambda = 2.38$) is mostly
5 driven by ISO (26.8%), AD (21.3%) and FA (18.9%). The loadings and contributions of the dMRI metrics to
6 the first two PCs are presented in Table 4. RD and MD appear to be solely loading onto the PC1 (together
7 contribute <5% to the PC2), while the other dMRI metrics have more similar contributions to PC1 and PC2.
8 The variability of between-tract correlations of dMRI metrics as mentioned above is also reflected in the
9 clustering of tracts on the PC axes (Figure 7).

10 **Table 4:** dMRI metric loadings to the multimodal principal components.

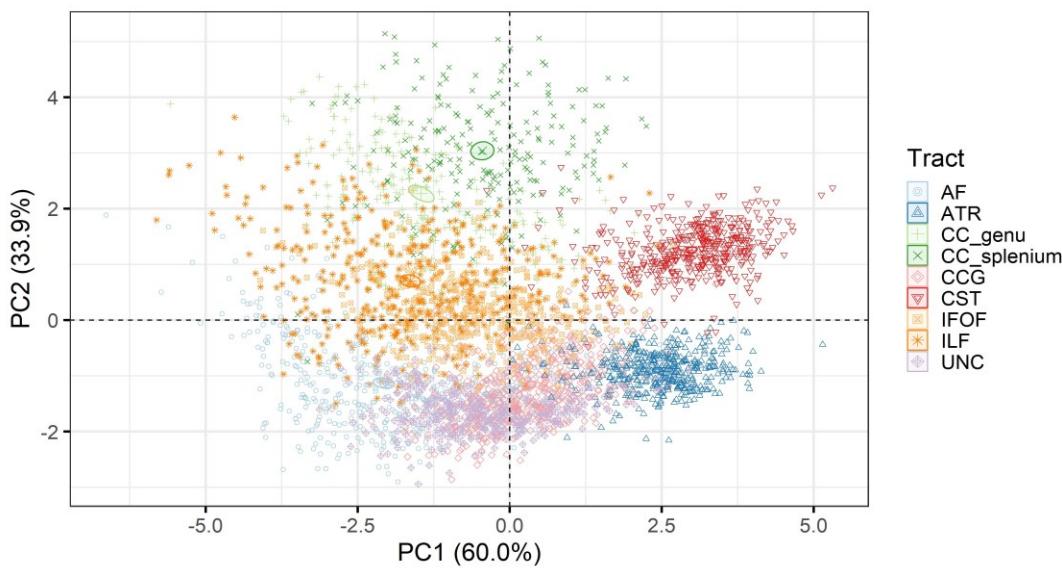
Metric	PC1		PC2	
	loading	contribution	loading	contribution
FA	0.686	11.207	0.670	18.893
MD	-0.949	21.412	0.313	4.119
AD	-0.682	11.068	0.712	21.320
RD	-0.992	23.438	0.057	0.138
NDI	0.750	13.402	0.608	15.565
ODI	-0.693	11.412	-0.559	13.163
ISO	-0.582	8.062	0.798	26.803

11 FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density
12 index, ODI = orientation dispersion index, ISO = isotropic volume fraction.



1

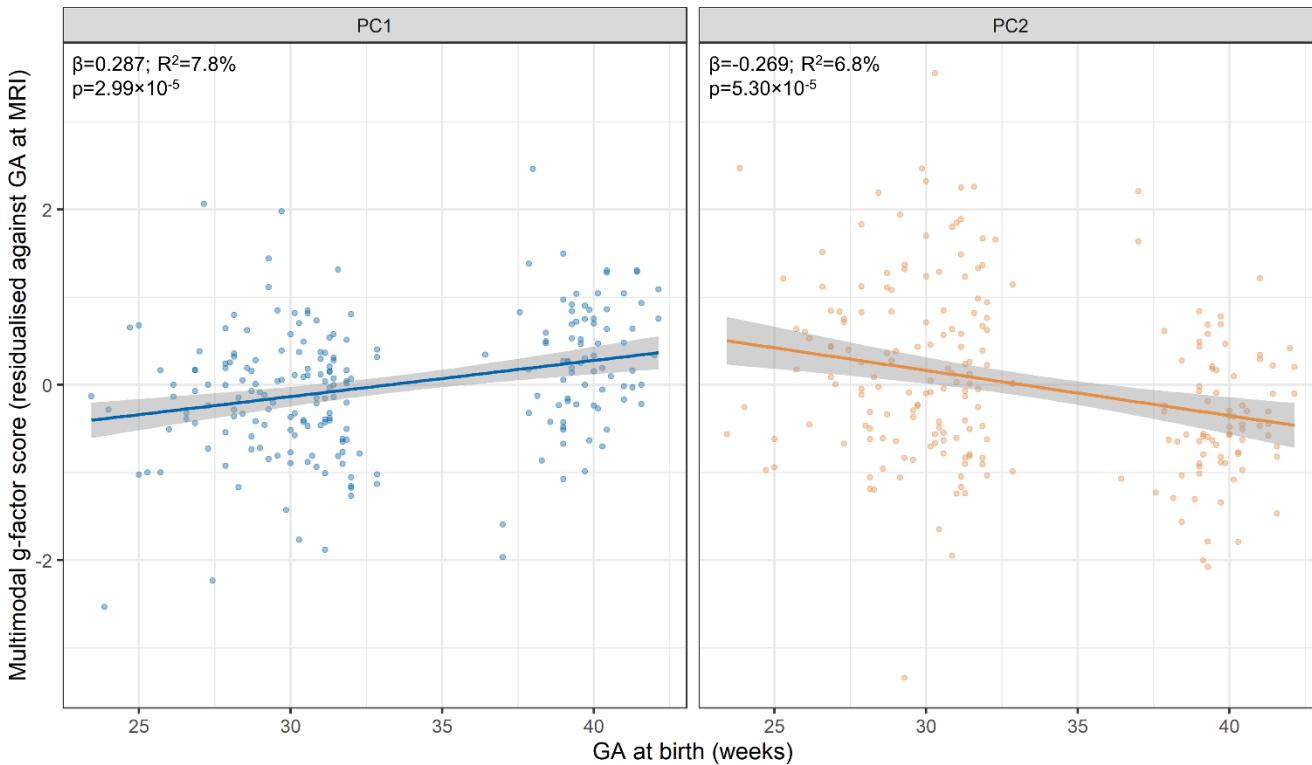
2 **Figure 6:** Multimodal PCA. (A) Scree plot of the eigenvalues, (B) PCA variable contribution plot; the colours
3 represent the contribution of the dMRI metric to the components. FA = fractional anisotropy, MD = mean diffusivity,
4 AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index, ODI = orientation dispersion index, ISO =
5 isotropic volume fraction.



6

7 **Figure 7:** Visualisation of individual tract coordinates on the multimodal principal component axes. CC genu = corpus
8 callosum genu/forceps minor, CC splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, IFOF
9 = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate
10 fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation

1 GA at birth was significantly associated with both multimodal g-factors (Figure 8): the first multimodal g-
2 factor that has high negative contributions from RD and MD was positively, and the second multimodal g-
3 factor with high positive contributions from ISO and AD was negatively associated with GA at birth. It is
4 possible that individual tracts may contribute to varying degrees to the relationship with age
5 (Supplementary Table 2).



6

7 **Figure 8:** Associations between GA at birth and the multimodal g-factors. The extracted multimodal principal
8 components were averaged across the 16 tracts for each participant which resulted in a single estimate for the
9 multimodal g-factors for each subject. Regression lines and 95% confidence intervals (shaded) are shown for linear
10 regression models between GA at birth and the g-factor scores, adjusted for GA at scan. The β coefficients are in
11 standardised units so represent a standard deviation change in the residualised g-factor scores per standard deviation
12 increase in GA at birth; variance explained in the model is shown in adjusted R^2 . Reported p-values are adjusted for
13 the false discovery rate (FDR) using the Benjamini-Hochberg procedure.

14 3.5 Utility of g-factors to classify infants based on gestational age

15 Given the high shared variance within and between the dMRI metrics across major white matter tracts and
16 the significant associations between GA at birth and the derived g-factors, we asked whether g-factors are
17 able to classify infants based on GA at birth (preterm vs term classification) (Table 5). Overall, the prediction
18 accuracy for the single metric and multimodal g-factors only marginally exceeded chance (64.1%). The
19 highest prediction accuracy (75.2%) was achieved when incorporating all single metric g-factors in one

1 model, however, it has to be noted that this is the least parsimonious model with seven predictors compared
2 to one and two in the other models.

3 **Table 7:** Prediction model results based on 10-repeated 10-fold cross validated logistic regression models using the
4 single-metric g-factors and multimodal g-factors. Reported values are mean and standard deviations computed across
5 cross-validation folds and repetitions. Permutation p-values are computed over 1000 random permutations of the
6 group variable.

	Accuracy	Permutation p-value
gFA	64.9±5.0	0.005
gMD	67.3±6.4	0
gRD	67.6±7.1	0
gAD	65.5±6.6	0
gNDI	64.1±1.0	0.210
gODI	64.0±3.2	0.703
gISO	67.7±8.0	0
All DTI	65.5±7.6	0.002
All NODDI	71.3±8.3	0
All single-metric	75.2±8.4	0
Multimodal PC1	67.9±6.9	0
Multimodal PC2	64.3±7.8	0.010
Multimodal PC1 and PC2	67.5±8.5	0

7 FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density
8 index, ODI = orientation dispersion index, ISO = isotropic volume fraction, DTI = diffusion tensor imaging, NODDI=

9 neurite orientation dispersion and density imaging.

10 4 Discussion

11 In this study, utilising the substantial shared variance within and between DTI and NODDI metrics across
12 16 major white matter tracts, we derive single- and multimetric g-factors which covary with GA at birth.
13 Using structural equation modelling, we show that whilst the shared variance among tracts carries much of
14 the white matter microstructural information about GA-based differences, there is modest additional
15 unique information at the level of individual pathways that enhances term/preterm differentiation, though
16 larger samples are required to reliably estimate the precise magnitudes and loci of the most informative
17 white matter pathways. We demonstrate that combining single-metric g-factors from DTI and NODDI
18 together in one prediction model offered the most efficient method for characterising variation in white

1 matter microstructure associated with preterm birth, suggesting each metric carries additive information.
2 These results add to the body of literature suggesting generalised dysmaturation of the white matter in the
3 preterm neonates.

4 Variance in measures derived from dMRI is shared among white matter tracts in both neonates and adults,
5 and previous studies have suggested that generalised measures to capture global white matter
6 microstructure can be derived (Cox et al., 2016; Lee et al., 2017; Penke et al., 2010; Telford et al., 2017).
7 Here, we report that the g-factors capture 58.9-72.6% of variance in DTI metrics, thus replicating our
8 previous results in an independent, larger sample of neonates and different tract segmentation protocol
9 (Telford et al., 2017). We additionally expand on the previous work and report that similarly to DTI metrics,
10 in neonates there is substantial shared variance of NODDI metrics across white matter tracts (41.8-62.9%)
11 as was previously reported in adult population (Cox et al., 2016). We observed the largest variance captured
12 by a single g-factor for RD, while there was least evidence for a single latent factor for ODI, indicated by the
13 comparably smaller eigenvalue for the first component, suggesting that this measure of white matter
14 microstructure may be capturing tract-specific rather than global effects.

15 The correlations between different DTI and NODDI metrics themselves indicate that they share overlapping
16 information in the brain (Chamberland et al., 2019; De Santis et al., 2014), but less is known about the
17 covariance of dMRI measures in early development when water diffusion properties are different. By
18 examining the covariance of dMRI metrics averaged over 16 white matter tracts, we observed that there
19 are two clusters of positively correlated metrics: the first cluster includes measures of microstructural
20 complexity/integrity of FA and NDI while the second cluster includes measures related to water diffusivity
21 (MD, RD, AD and ISO); the metrics in these two clusters are in turn negatively correlated with one another.
22 The highest positive correlations are between the pairs of FA-NDI (microstructural complexity/integrity),
23 RD-MD (hindrance and degree of diffusivity) and AD-ISO (free/diffuse water). Importantly, the dMRI metric
24 covariance structures vary slightly between tracts, confirming the tract-specific variability highlighted by
25 the CFA. For example, the splenium of the corpus callosum appears to have weaker between-metric
26 correlations overall although high correlations between MD-RD, FA-NDI and AD-ISO are still present.
27 Interestingly, ODI, on average, appears to have weaker correlations with other dMRI metrics, which may
28 further suggest between-tract variability of this measure of fibre orientation. Indeed, in the uncinate,
29 inferior fronto-occipital fasciculi, cingulum cingulate gyri and corticospinal tracts, ODI is a part of the second
30 cluster of positively correlated metrics, while it has very low correlations with other metrics in the inferior
31 longitudinal fasciculi and the anterior thalamic radiation and is negatively associated with all other dMRI
32 metrics in the genu of the corpus callosum. AD and ISO correlations with NDI, FA and ODI appear
33 considerably weaker on average, possibly also due to variations in the dMRI metric covariance structure
34 between tracts. Together, our results suggest that similarly to what is observed in adults and children

1 (Chamberland et al., 2019; Geeraert et al., 2020), the interdependence of dMRI measures is already present
2 at birth.

3 We found that a considerable proportion of variance is shared across the dMRI metrics in neonates, which
4 confirms previous observations in children and adolescents (Chamberland et al., 2019; Geeraert et al.,
5 2020). We used this shared variance to derive multimodal g-factors of white matter microstructure using
6 PCA as a data reduction technique. The two extracted multimodal g-factors together explained almost 94%
7 of variance in the seven DTI and NODDI metrics across 16 white matter tracts. Due to the different MRI
8 measures used in the current work compared to those profiled by Chamberland et al. (2019) and Geeraert
9 et al. (2020), we are unable to make direct comparisons in the interpretation of the multimodal g-factors.
10 However, similarly to these previous papers, we also observed that the multimodal PCs generally consist of
11 dMRI metrics that share similarities in their sensitivity to different tissue properties. The multimodal PC1
12 that accounts for the largest proportion of variance in the data (60%) consists of measures sensitive to
13 hindrance/restricted water diffusion and magnitude of diffusivity (RD and MD). The multimodal PC2
14 accounting for 34% of variance in the data consists of measures of free water (ISO) as well as axonal
15 integrity (AD, FA).

16 We were then interested in testing whether the derived g-factors can be used to characterise atypical white
17 matter development associated with low GA. After adjusting for age at scan, we report that gFA was
18 positively and gMD, gAD and gRD negatively associated with GA at birth. Thus, we replicate previous results
19 in a larger independent cohort and across more tracts (Telford et al., 2017). In addition, here we report
20 significant negative association between GA at birth and gISO, which had the strongest correlation with GA
21 at birth among the DTI and NODDI g-factors. Thus, those infants born preterm exhibit less coherent, but a
22 greater magnitude of water diffusion across the major white matter tracts in the brain compared to term-
23 born controls. Interestingly, despite the substantial variance reported in NDI and ODI across white matter
24 tracts, gNDI and gODI are not significantly associated with GA at birth. This could indicate that these two
25 metrics capture more specific aspects of tract composition, which may be less meaningful at a global level.

26 These results together suggest generally lower white matter integrity and higher water diffusivity in infants
27 born preterm compared to term, and are in line with findings obtained using other analysis approaches
28 such as tract-based spatial statistics (Barnett et al., 2018; Thompson et al., 2019) or tract-specific analyses
29 (Pecheva et al., 2017). We used structural equation modelling to test whether the common variance shared
30 among all tracts is sufficient to explain differences between infants born at varying GA. We found that the
31 tract-specific (independent pathways) model is significantly better than the common model, suggesting
32 there is incrementally valid, low level information for GA at birth contained in the unique tract-specific
33 microstructural properties. However, it has to be noted that this model included the highest number of
34 paths, and the residual variance that cannot be accounted for by the common factor constitutes both tract-

1 specific aspects of microstructure and measurement error. We could not reliably detect any additional tract-
2 specific pathways to be substantially more informative for GA at birth compared to the general/common
3 factor, suggesting that the most parsimonious model, in which GA at birth affects the global/shared variance
4 of the tracts, offers valuable distillation of the between-person differences in white matter microstructure
5 that are pertinent for GA variability.

6 The prediction modelling results revealed that the single-metric g-factors (except for gNDI and gODI)
7 achieved preterm vs term classification accuracy significantly higher than chance, but the classification
8 accuracy was relatively low. It could be hypothesised that preterm birth has a diffuse effect on white matter
9 microstructure, which is better captured by methods that do not rely on anatomically constrained regions
10 (e.g. peak width of skeletonised metrics (Baykara et al., 2016; Blesa et al., 2020)). Nevertheless, the g-factors
11 could carry information beyond the simple dichotomy of term vs preterm birth and could be useful for
12 investigating other environmental or genetic/epigenetic exposures that are hypothesised to affect global
13 white development (Boardman et al., 2014; Boardman and Counsell, 2020; Krishnan et al., 2017; Wheater
14 et al., 2021), or for predicting neurocognitive outcomes as previously reported in adults and children (Cox
15 et al., 2019, 2016; Lee et al., 2017; Penke et al., 2010).

16 We also report that the multimodal g-factors associate with GA at birth, which, given the correlations of the
17 dMRI metrics with the multimodal g-factors, give a similar interpretation of the effect of GA at birth on dMRI
18 metrics. However, despite the significant association, the preterm vs term classification accuracy achieved
19 using the multimodal g-factors was, similarly to single-metric g-factors, relatively low. Interestingly,
20 however, we achieved the greatest classification accuracy when combining all single metric g-factors
21 together in one prediction model. These results may imply that despite global covariance of dMRI metrics
22 in neonates, each one carries information on specific (and additive) aspects of the underlying
23 microstructure that differ in preterm compared to term subjects. It is important to acknowledge that the
24 model combining all single metric g-factors is by far the least parsimonious model tested, and increasing
25 the number of predictors could artificially inflate the estimation of prediction accuracy. However, the
26 combined single g-factor prediction model is by far the most successful one and we have used cross-
27 validation with the aim to minimise bias and militate against the artificial inflation.

28 5 Conclusion

29 In this work, we extracted tract-averaged DTI and NODDI metrics from 16 major white matter tracts in 220
30 neonates of wide-ranging GA at birth. We then applied PCA as a data reduction technique to derive single-
31 and multimodal general factors of white matter microstructure. These g-factors explained substantial
32 variance within and between DTI and NODDI metrics across white matter tracts and associated with GA at
33 birth. Combining single-metric g-factors together in one prediction model achieved discriminating power

1 between term and preterm infants. This framework may be useful for investigating the upstream
2 determinants and neurocognitive consequences of diseases characterised by atypical white matter
3 development.

4 **6 CRediT author statement**

5 **Kadi Vaher:** Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Writing
6 Original Draft, Visualization, Funding acquisition; **Paola Galdi:** Conceptualization, Methodology, Formal
7 analysis, Writing - Original Draft; **Manuel Blesa Cabez:** Methodology, Software, Writing - Original Draft;
8 **Gemma Sullivan:** Investigation, Resources, Writing - Review & Editing; **David Q Stoye:** Investigation,
9 Resources, Writing - Review & Editing; **Alan J Quigley:** Investigation, Resources; **Michael J Thrippleton:**
10 Methodology, Software, Resources, Writing - Review & Editing; **Debby Bogaert:** Conceptualization,
11 Supervision, Writing - Review & Editing; **Mark E Bastin:** Methodology, Software, Validation, Writing -
12 Review & Editing; **Simon R Cox:** Conceptualization, Methodology, Writing - Review & Editing; **James P**
13 **Boardman:** Conceptualization, Methodology, Writing - Original Draft, Supervision, Funding acquisition.

14 **7 Funding**

15 This work was supported by Theirworld (www.theirworld.org) and by Health Data Research UK (MRC ref
16 Mr/S004122/1), which is funded by the UK Medical Research Council, Engineering and Physical Sciences
17 Research Council, Economic and Social Research Council, National Institute for Health Research (England),
18 Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care
19 Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British
20 Heart Foundation and Wellcome. The work was undertaken in the MRC Centre for Reproductive Health,
21 which is funded by MRC Centre Grant (MRC G1002033). KV is funded by the Wellcome Translational
22 Neuroscience PhD Programme at the University of Edinburgh (108890/Z/15/Z). PG is partly supported by
23 the Wellcome-University of Edinburgh ISSF3 (IS3-R1.1320/21). MJT is supported by NHS Lothian Research
24 and Development Office. SRC is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome
25 Trust, the Royal Society (Grant Number 221890/Z/20/Z).

26 **8 Acknowledgments**

27 We are grateful to the families who consented to take part in the study. Neonatal participants were scanned
28 in the University of Edinburgh Imaging Research MRI Facility at the Royal Infirmary of Edinburgh which
29 was established with funding from The Wellcome Trust, Dunhill Medical Trust, Edinburgh and Lothians
30 Research Foundation, Theirworld, The Muir Maxwell Trust and many other sources. We are thankful to all
31 the University's imaging research staff for providing the infant scanning.

1 9 Declaration of interest

2 None.

3 10 References

4 Alexandrou, G., Mårtensson, G., Skiöld, B., Blennow, M., Ådén, U., Vollmer, B., 2014. White matter
5 microstructure is influenced by extremely preterm birth and neonatal respiratory factors. *Acta
6 Paediatr.* 103, 48–56. <https://doi.org/10.1111/apa.12445>

7 Alloza, C., Cox, S.R., Duff, B., Semple, S.I., Bastin, M.E., Whalley, H.C., Lawrie, S.M., 2016. Information
8 processing speed mediates the relationship between white matter and general intelligence in
9 schizophrenia. *Psychiatry Res. Neuroimaging* 254, 26–33.
10 <https://doi.org/10.1016/J.PSYCHRESNS.2016.05.008>

11 Andersson, J.L.R., Graham, M.S., Drobniak, I., Zhang, H., Filippini, N., Bastiani, M., 2017. Towards a
12 comprehensive framework for movement and distortion correction of diffusion MR images: Within
13 volume movement. *Neuroimage* 152, 450–466. <https://doi.org/10.1016/j.neuroimage.2017.02.085>

14 Andersson, J.L.R., Graham, M.S., Zsoldos, E., Sotiropoulos, S.N., 2016. Incorporating outlier detection and
15 replacement into a non-parametric framework for movement and distortion correction of diffusion
16 MR images. *Neuroimage* 141, 556–572. <https://doi.org/10.1016/j.neuroimage.2016.06.058>

17 Andersson, J.L.R., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in spin-echo echo-
18 planar images: Application to diffusion tensor imaging. *Neuroimage* 20, 870–888.
19 [https://doi.org/10.1016/S1053-8119\(03\)00336-7](https://doi.org/10.1016/S1053-8119(03)00336-7)

20 Andersson, J.L.R., Sotiropoulos, S.N., 2016. An integrated approach to correction for off-resonance effects
21 and subject movement in diffusion MR imaging. *Neuroimage* 125, 1063–1078.
22 <https://doi.org/10.1016/j.neuroimage.2015.10.019>

23 Anjari, M., Srinivasan, L., Allsop, J.M., Hajnal, J. V., Rutherford, M.A., Edwards, A.D., Counsell, S.J., 2007.
24 Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in
25 preterm infants. *Neuroimage* 35, 1021–1027. <https://doi.org/10.1016/j.neuroimage.2007.01.035>

26 Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., 2008. Symmetric diffeomorphic image registration with
27 cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. *Med. Image
28 Anal.* 12, 26–41. <https://doi.org/10.1016/J.MEDIA.2007.06.004>

29 Barnett, M.L., Tusor, N., Ball, G., Chew, A., Falconer, S., Aljabar, P., Kimpton, J.A., Kennea, N., Rutherford, M.,
30 David Edwards, A., Counsell, S.J., 2018. Exploring the multiple-hit hypothesis of preterm white matter
31 damage using diffusion MRI. *NeuroImage Clin.* 17, 596–606.
32 <https://doi.org/10.1016/j.nicl.2017.11.017>

33 Bataille, D., Hughes, E.J., Zhang, H., Tournier, J.D., Tusor, N., Aljabar, P., Wali, L., Alexander, D.C., Hajnal, J. V.,
34 Nosarti, C., Edwards, A.D., Counsell, S.J., 2017. Early development of structural networks and the
35 impact of prematurity on brain connectivity. *Neuroimage* 149, 379–392.
36 <https://doi.org/10.1016/j.neuroimage.2017.01.065>

37 Baykara, E., Gesierich, B., Adam, R., Tuladhar, A.M., Biesbroek, J.M., Koek, H.L., Ropele, S., Jouvent, E.,
38 Chabriat, H., Ertl-Wagner, B., Ewers, M., Schmidt, R., de Leeuw, F.-E., Biessels, G.J., Dichgans, M., Duering,
39 M., 2016. A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter
40 Tracts and Diffusion Histograms. *Ann. Neurol.* 80, 581–592. <https://doi.org/10.1002/ana.24758>

41 Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach

1 to Multiple Testing. *Source J. R. Stat. Soc. Ser. B* 57, 289–300.

2 Blesa, M., Galdi, P., Sullivan, G., Wheater, E.N., Stoye, D.Q., Lamb, G.J., Quigley, A.J., Thrippleton, M.J., Bastin, M.E., Boardman, J.P., 2020. Peak Width of Skeletonized Water Diffusion MRI in the Neonatal Brain. *Front. Neurol.* 11, 235. <https://doi.org/10.3389/fneur.2020.00235>

3 Blesa, M., Serag, A., Wilkinson, A.G., Anblagan, D., Telford, E.J., Pataky, R., Sparrow, S.A., Macnaught, G., Semple, S.I., Bastin, M.E., Boardman, J.P., 2016. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood. *Front. Neurosci.* 10, 220. <https://doi.org/10.3389/fnins.2016.00220>

4 Boardman, J.P., Counsell, S.J., 2020. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. *Neuropathol. Appl. Neurobiol.* 46, 413–421. <https://doi.org/10.1111/nan.12589>

5 Boardman, J.P., Hall, J., Thrippleton, M.J., Reynolds, R.M., Bogaert, D., Davidson, D.J., Schwarze, J., Drake, A.J., Chandran, S., Bastin, M.E., Fletcher-Watson, S., 2020. Impact of preterm birth on brain development and long-term outcome: protocol for a cohort study in Scotland. *BMJ Open* 10, 35854. <https://doi.org/10.1136/bmjopen-2019-035854>

6 Boardman, J.P., Walley, A., Ball, G., Takousis, P., Krishnan, M.L., Hughes-Carre, L., Aljabar, P., Serag, A., King, C., Merchant, N., Srinivasan, L., Froguel, P., Hajnal, J., Rueckert, D., Counsell, S., Edwards, A.D., 2014. Common genetic variants and risk of brain injury after preterm birth. *Pediatrics* 133. <https://doi.org/10.1542/peds.2013-3011>

7 Calamante, F., Tournier, J.D., Jackson, G.D., Connelly, A., 2010. Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping. *Neuroimage* 53, 1233–1243. <https://doi.org/10.1016/J.NEUROIMAGE.2010.07.024>

8 Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R., 2013. Design of multishell sampling schemes with uniform coverage in diffusion MRI. *Magn. Reson. Med.* 69, 1534–1540. <https://doi.org/10.1002/mrm.24736>

9 Chamberland, M., Raven, E.P., Genc, S., Duffy, K., Descoteaux, M., Parker, G.D., Tax, C.M.W., Jones, D.K., 2019. Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. *Neuroimage* 200, 89–100. <https://doi.org/10.1016/j.neuroimage.2019.06.020>

10 Corey, D.M., Dunlap & Michael, W.P., Burke, J.J., 1998. Averaging Correlations: Expected Values and Bias in Combined Pearson rs and Fisher's z Transformations. *J. Gen. Psychol.* 125, 245–261. <https://doi.org/10.1080/00221309809595548>

11 Counsell, S.J., Arichi, T., Arulkumaran, S., Rutherford, M.A., 2019. Fetal and neonatal neuroimaging, in: *Handbook of Clinical Neurology*. Elsevier B.V., pp. 67–103. <https://doi.org/10.1016/B978-0-444-64029-1.00004-7>

12 Cox, S.R., Ritchie, S.J., Fawns-Ritchie, C., Tucker-Drob, E.M., Deary, I.J., 2019. Structural brain imaging correlates of general intelligence in UK Biobank. *Intelligence* 76, 101376. <https://doi.org/10.1016/J.INTELL.2019.101376>

13 Cox, S.R., Ritchie, S.J., Tucker-Drob, E.M., Liewald, D.C., Hagaars, S.P., Davies, G., Wardlaw, J.M., Gale, C.R., Bastin, M.E., Deary, I.J., 2016. Ageing and brain white matter structure in 3,513 UK Biobank participants. *Nat. Commun.* 7, 13629. <https://doi.org/10.1038/ncomms13629>

14 De Santis, S., Drakesmith, M., Bells, S., Assaf, Y., Jones, D.K., 2014. Why diffusion tensor MRI does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain. *Neuroimage* 89, 35–44. <https://doi.org/10.1016/j.neuroimage.2013.12.003>

15 Dhollander, T., Mito, R., Raffelt, D., Connelly, A., 2019. Improved white matter response function estimation

1 for 3-tissue constrained spherical deconvolution. Proc. Int. Soc. Magn. Reson. Med.

2 Dhollander, T., Raffelt, D., Connelly, A., 2016. Unsupervised 3-tissue response function estimation from
3 single-shell or multi-shell diffusion MR data without a co-registered T1 image, in: ISMRM Workshop
4 on Breaking the Barriers of Diffusion MRI. p. 5.

5 Geeraert, B.L., Chamberland, M., Lebel, R.M., Lebel, C., 2020. Multimodal principal component analysis to
6 identify major features of white matter structure and links to reading. PLoS One 15, e0233244.
7 <https://doi.org/10.1371/journal.pone.0233244>

8 Girault, J.B., Munsell, B.C., Puechmaille, D., Goldman, B.D., Prieto, J.C., Styner, M., Gilmore, J.H., 2019. White
9 matter connectomes at birth accurately predict cognitive abilities at age 2. Neuroimage 192, 145–155.
10 <https://doi.org/10.1016/j.neuroimage.2019.02.060>

11 Greve, D.N., Fischl, B., 2009. Accurate and robust brain image alignment using boundary-based registration.
12 Neuroimage 48, 63–72. <https://doi.org/10.1016/J.NEUROIMAGE.2009.06.060>

13 Guerrero, J.M., Adluru, N., Bendlin, B.B., Goldsmith, H.H., Schaefer, S.M., Davidson, R.J., Kecskemeti, S.R.,
14 Zhang, H., Alexander, A.L., 2019. Optimizing the intrinsic parallel diffusivity in NODDI: An extensive
15 empirical evaluation. PLoS One 14, e0217118. <https://doi.org/10.1371/JOURNAL.PONE.0217118>

16 Hüppi, P.S., Maier, S.E., Peled, S., Zientara, G.P., Barnes, P.D., Jolesz, F.A., Volpe, J.J., 1998. Microstructural
17 development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic
18 resonance imaging. Pediatr. Res. 44, 584–590. <https://doi.org/10.1203/00006450-199810000-00019>

20 Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J., 2014. Multi-tissue constrained spherical
21 deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426.
22 <https://doi.org/10.1016/J.NEUROIMAGE.2014.07.061>

23 Job, D.E., Dickie, D.A., Rodriguez, D., Robson, A., Danso, S., Pernet, C., Bastin, M.E., Boardman, J.P., Murray,
24 A.D., Ahearn, T., Waiter, G.D., Staff, R.T., Deary, I.J., Shenkin, S.D., Wardlaw, J.M., 2017. A brain imaging
25 repository of normal structural MRI across the life course: Brain Images of Normal Subjects (BRAINS).
26 Neuroimage 144, 299–304. <https://doi.org/10.1016/j.neuroimage.2016.01.027>

27 Krishnan, M.L., Van Steenwinckel, J., Schang, A.-L., Yan, J., Arnadottir, J., Le Charpentier, T., Csaba, Z.,
28 Dournaud, P., Cipriani, S., Auvynet, C., Titomanlio, L., Pansiot, J., Ball, G., Boardman, J.P., Walley, A.J.,
29 Saxena, A., Mirza, G., Fleiss, B., David Edwards, A., Petretto, E., Gressens, P., 2017. Integrative genomics
30 of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat.
31 Commun. 8, 428. <https://doi.org/10.1038/s41467-017-00422-w>

32 Lee, S.J., Steiner, R.J., Yang, Y., Sarah, J.S., Michael, C.N., Martin, A.S., Hongtu, Z., John, H.G., 2017. Common and
33 heritable components of white matter microstructure predict cognitive function at 1 and 2 y. Proc.
34 Natl. Acad. Sci. U. S. A. 114, 148–153. <https://doi.org/10.1073/pnas.1604658114>

35 Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J. V., Edwards, A.D., Counsell, S.J.,
36 Rueckert, D., 2014. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE
37 Trans. Med. Imaging 33, 1818–1831. <https://doi.org/10.1109/TMI.2014.2322280>

38 Makropoulos, A., Robinson, E.C., Schuh, A., Wright, R., Fitzgibbon, S., Bozek, J., Counsell, S.J., Steinweg, J.,
39 Vecchiato, K., Passerat-Palmbach, J., Lenz, G., Mortari, F., Tenev, T., Duff, E.P., Bastiani, M., Cordero-
40 Grande, L., Hughes, E., Tusor, N., Tournier, J.D., Hutter, J., Price, A.N., Teixeira, R.P.A.G., Murgasova, M.,
41 Victor, S., Kelly, C., Rutherford, M.A., Smith, S.M., Edwards, A.D., Hajnal, J. V., Jenkinson, M., Rueckert, D.,
42 2018. The developing human connectome project: A minimal processing pipeline for neonatal cortical
43 surface reconstruction. Neuroimage 173, 88–112.
44 <https://doi.org/10.1016/j.neuroimage.2018.01.054>

1 Mishra, V., Cheng, H., Gong, G., He, Y., Dong, Q., Huang, H., 2013. Differences of inter-tract correlations
2 between neonates and children around puberty: a study based on microstructural measurements with
3 DTI. *Front. Hum. Neurosci.* 7, 721. <https://doi.org/10.3389/fnhum.2013.00721>

4 Partridge, S.C., Mukherjee, P., Henry, R.G., Miller, S.P., Berman, J.I., Jin, H., Lu, Y., Glenn, O.A., Ferriero, D.M.,
5 Barkovich, A.J., Vigneron, D.B., 2004. Diffusion tensor imaging: Serial quantitation of white matter tract
6 maturity in premature newborns. *Neuroimage* 22, 1302–1314.
7 <https://doi.org/10.1016/j.neuroimage.2004.02.038>

8 Pecheva, D., Yushkevich, P., Batalle, D., Hughes, E., Aljabar, P., Wurie, J., Hajnal, J. V., Edwards, A.D., Alexander,
9 D.C., Counsell, S.J., Zhang, H., 2017. A tract-specific approach to assessing white matter in preterm
10 infants. *Neuroimage* 157, 675–694. <https://doi.org/10.1016/j.neuroimage.2017.04.057>

11 Penke, L., Maniega, S.M., Murray, C., Gow, A.J., Valdés Hernández, M.C., Clayden, J.D., Starr, J.M., Wardlaw, J.M.,
12 Bastin, M.E., Deary, I.J., 2010. A general factor of brain white matter integrity predicts information
13 processing speed in healthy older people. *J. Neurosci.* 30, 7569–7574.
14 <https://doi.org/10.1523/JNEUROSCI.1553-10.2010>

15 Pogribna, U., Yu, X., Burson, K., Zhou, Y., Lasky, R.E., 2013. Perinatal Clinical Antecedents of White Matter
16 Microstructural Abnormalities on Diffusion Tensor Imaging in Extremely Preterm Infants. *PLoS One* 8,
17 72974. <https://doi.org/10.1371/journal.pone.0072974>

18 R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical
19 Computing [WWW Document]. URL <https://www.r-project.org/>

20 Raffelt, D., Dhollander, T., Tournier, J.-D., Tabbara, R., Smithm R. E., Pierre, E., Connelly, A., 2017. Bias Field
21 Correction and Intensity Normalisation for Quantitative Analysis of Apparent Fibre Density, in:
22 Proceedings of the International Society for Magnetic Resonance in Medicine. p. 3541.

23 Rosseel, Y., 2012. lavaan: An R Package for Structural Equation Modeling. *J. Stat. Softw.* 48, 1–36.
24 <https://doi.org/10.18637/JSS.V048.I02>

25 Smith, R., Raffelt, D., Tournier, J.-D., Connelly, A., 2020. Quantitative streamlines tractography: methods and
26 inter-subject normalisation. OSF Prepr. <https://doi.org/10.31219/OSF.IO/C67KN>

27 Tariq, M., Schneider, T., Alexander, D.C., Gandini Wheeler-Kingshott, C.A., Zhang, H., 2016. Bingham-NODDI:
28 Mapping anisotropic orientation dispersion of neurites using diffusion MRI. *Neuroimage* 133, 207–
29 223. <https://doi.org/10.1016/j.neuroimage.2016.01.046>

30 Telford, E.J., Cox, S.R., Fletcher-Watson, S., Anblagan, D., Sparrow, S., Pataky, R., Quigley, A., Scott, S.I., Mark,
31 B.E., Boardman, J.P., 2017. A latent measure explains substantial variance in white matter
32 microstructure across the newborn human brain. *Brain Struct. Funct.* 222, 4023–4033.
33 <https://doi.org/10.1007/s00429-017-1455-6>

34 Thompson, D.K., Kelly, C.E., Chen, J., Beare, R., Alexander, B., Seal, M.L., Lee, K.J., Matthews, L.G., Anderson,
35 P.J., Doyle, L.W., Cheong, J.L.Y., Spittle, A.J., 2019. Characterisation of brain volume and microstructure
36 at term-equivalent age in infants born across the gestational age spectrum. *NeuroImage Clin.* 21,
37 101630. <https://doi.org/10.1016/j.nicl.2018.101630>

38 Tournier, J.-D., Calamante, F., Connelly, A., 2010. Improved probabilistic streamlines tractography by 2nd
39 order integration over fibre orientation distributions, in: Proceedings of the International Society for
40 Magnetic Resonance in Medicine. p. 1670.

41 Tucker-Drob, E.M., 2013. How many pathways underlie socioeconomic differences in the development of
42 cognition and achievement? *Learn. Individ. Differ.* 25, 12–20.
43 <https://doi.org/10.1016/J.LINDIF.2013.01.015>

1 Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C., 2010. N4ITK: Improved
2 N3 bias correction. *IEEE Trans. Med. Imaging* 29, 1310–1320.
3 <https://doi.org/10.1109/TMI.2010.2046908>

4 Veraart, J., Novikov, D.S., Christiaens, D., Ades-aron, B., Sijbers, J., Fieremans, E., 2016. Denoising of diffusion
5 MRI using random matrix theory. *Neuroimage* 142, 394–406.
6 <https://doi.org/10.1016/j.neuroimage.2016.08.016>

7 Wahl, M., Li, Y.O., Ng, J., LaHue, S.C., Cooper, S.R., Sherr, E.H., Mukherjee, P., 2010. Microstructural
8 correlations of white matter tracts in the human brain. *Neuroimage* 51, 531–541.
9 <https://doi.org/10.1016/j.neuroimage.2010.02.072>

10 Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H.,
11 Dubey, P., Blitz, A., van Zijl, P., Mori, S., 2007. Reproducibility of quantitative tractography methods
12 applied to cerebral white matter. *Neuroimage* 36, 630–644.
13 <https://doi.org/10.1016/j.neuroimage.2007.02.049>

14 Wheater, E.N.W., Galdi, P., Mccartney, D.L., Blesa, M., Sullivan, G., Stoye, D.Q., Lamb, G., Sparrow, S., Murphy,
15 L., Wrobel, N., Quigley, A.J., Semple, S., Thrippleton, M.J., Wardlaw, J.M., Bastin, M.E., Marioni, R.E., Cox,
16 S.R., Boardman, J.P., 2021. DNA methylation and brain dysmaturity in preterm infants. *medRxiv*.
17 <https://doi.org/10.1101/2021.04.08.21255064>

18 Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G., 2006. User-guided 3D active
19 contour segmentation of anatomical structures: Significantly improved efficiency and reliability.
20 *Neuroimage* 31, 1116–1128. <https://doi.org/10.1016/j.neuroimage.2006.01.015>

21 Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: Practical in vivo neurite
22 orientation dispersion and density imaging of the human brain. *Neuroimage* 61, 1000–1016.
23 <https://doi.org/10.1016/j.neuroimage.2012.03.072>

24 Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C., 2006. Deformable registration of diffusion tensor MR
25 images with explicit orientation optimization. *Med. Image Anal.* 10, 764–785.
26 <https://doi.org/10.1016/j.media.2006.06.004>

27 Zhang, H., Yushkevich, P.A., Rueckert, D., Gee, J.C., 2007. Unbiased White Matter Atlas Construction Using
28 Diffusion Tensor Images, in: *Medical Image Computing and Computer-Assisted Intervention – MICCAI*
29 2007. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 211–218. https://doi.org/10.1007/978-3-540-75759-7_26

31