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Abstract

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. The apple
reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic
prediction accuracy, and studying genotype by environment interactions (GxE). Here we show
contrasting genetic architecture and genomic prediction accuracies for 30 quantitative traits across up
to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific
associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed
publications. Average genomic prediction accuracies of 0.18-0.88 were estimated using single-
environment univariate, single-environment multivariate, multi-environment univariate, and multi-
environment multivariate models. The GxE accounted for up to 24% of the phenotypic variability. This
most comprehensive genomic study in apple in terms of trait-environment combinations provided
knowledge of trait biology and prediction models that can be readily applied for marker-assisted or

genomic selection, thus facilitating increased breeding efficiency.

Introduction

Apple (Malus domestica Borkh.) is the third most produced fruit crop worldwidel. Since its
domestication in the Tian Shan mountains of Central Asia, the cultivated apple developed into a
separated near-panmictic species?. Over the centuries, thousands of apple cultivars have been raised

and conserved thanks to grafting®. Extensive relatedness among cultivars with a strong influence of a
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few founders through the history of apple breeding has been reported despite their high genetic
diversity*®. Only a fraction of the existing cultivars are grown commercialy® and they require an
intensive use of pesticides for crop protection. To diversify apple production, it is desirable to produce
new cultivars for sustainable intensive agriculture and adapted to future climate, while remaining
attractive to consumers.

Apple breeding is labor- and time-intensive, but selection efficiency can be improved by integrating
DNA-informed techniques into the breeding process’. Marker-assisted selection allows breeders to
predict the value of a target trait based on its association with a genetic marker. The method leads to
removal of inferior seedlings without phenotyping, thus reducing the labor costs when decreasing the
number of individuals passing to the next selection step’. Quantitative trait locus (QTL) mapping has
been traditionally used to investigate the genetic basis of variation in traits such as pathogen
resistance, phenology, and some fruit quality traits®'!. To bridge the gap between the discovery of
marker-trait associations and their application in breeding, protocols that transfer the knowledge
obtained by QTL analyses into DNA tests were established!?%, However, marker-assisted selection in
apple remains restricted to a limited number of traits associated with single genes or a handful of large-
effect QTL, such as pathogen resistance and fruit firmness, acidity, or color**. DNA-informed selection
is rarely deployed in apple when breeding for quantitative traits with complex genetic architecture,
though this task became feasible with the recent technological developments in apple genomics.

In the genomics era, advancements in genotyping and sequencing technologies led to a broad range
of new tools for genetic analyses. In the case of apple, several reference genomes have been
produced®™?®, single nucleotide polymorphism (SNP) genotyping arrays of different densities such as
20K or 480K SNPs have been developed®®?!, and genotyping-by-sequencing methods have been
adopted???*, Genome-wide association study (GWAS) emerged as a method for exploring the genetic
basis of quantitative traits?*. GWAS in apple have been used to identify associations between markers
and various traits such as fruit quality and phenology traits?>2*%>2%, The associations found with GWAS

can be translated into DNA tests for marker-assisted selection. Besides GWAS, genomic selection was
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78  developed to exploit the effects of genome-wide variation at loci of both large and low effect on

I*° and is sometimes called marker-assisted selection on a

79  quantitative traits using a single mode
80 genome-wide scale3l. For genomic selection, prediction models are first trained with phenotypic and
81 genomic data of a training population. In a second step, the models predict the performance of
82 breeding material based on the genomic data alone. These genomic estimated breeding values are
83 then used to make selections among the breeding material, thus increasing the breeding efficiency and
84  genetic gain. Several studies have assessed genomic prediction accuracy for apple quantitative traits
85 related to fruit quality and phenology??32°323¢  Genomic selection can double genetic gain, as
86 demonstrated by yield traits in dairy cattle®’, but the accuracy of genomic prediction for yield traits in
87 apple has not been studied. Analyses of genomic datasets beyond 100K SNPs have been limited to
88  flowering and harvest time (GWAS and genomic prediction)?®3, fruit firmness and skin color
89  (GWAS)?®%8, Marker density, trait architecture, and heritability have been shown to differentially affect

343639 and their impact on genomic analyses

90 prediction performance in simulated data and for apple
91  should therefore be further empirically tested. Moreover, GWAS for the same traits measured at
92  different locations, the effect of genotype by environment interaction (GxE) on genomic prediction
93 accuracy, and predictions with multivariate genomic prediction models have not been evaluated yet
94 in apple.
95 Plants are known for their strong phenotypic response to environmental factors, a phenomenon
96 regularly tested in plant breeding using multi-environment trials. In general, when statistical models
97 are applied to measurements from multi-environment trials, the effect of environment on individuals
98 remains constant at single locations, but the GxE leads to changes in the ranking of genotypes across
99 locations. With an increasing proportion of GxE effect relative to genotypic effect, both heritability and
100  response to selection decrease®. A noticeable effect of contrasting European environments and GxE
101  on two apple phenology traits — floral emergence and harvest date — has been reported, which

102  demands testing the multi-environment modelling approaches in apple3®. A location-specific GWAS

103 may be used to identify loci with stable effects across environments and loci specific to individual
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104  locations*. Multi-environment prediction models can account for GxE by explicitly modeling
105 interactions between all available markers and environments*’. Borrowing information from other
106  genotypes across environments through markers, the GxXE method can outperform more simple
107 modelling approaches that ighore GxE***, Additionally, taking advantage of information that traits
108  provide about one another, a multivariate (also called multi-trait) genomic prediction can be applied.
109  This method may be useful in case the assessment of one trait remains costly, but another correlated
110  trait with less expensive measurement is available or can be assessed more easily*. The multivariate
111 prediction can also be extended to a multi-environment approach when treating measurements from
112  different environments as distinct traits*.

113 A population of 269 diverse apple accessions from across the globe and 265 progeny from 27 parental
114 combinations originating in recent European breeding programs constitutes our apple reference
115 population (apple REFPOP)%. The apple REFPOP has a high-density genomic dataset of 303K SNPs and
116  was deemed suitable for the application of genomics-assisted breeding®. Combined with extensive
117 phenotypic information, the apple REFPOP provides the groundwork for marker-assisted and genomic
118 selection across contrasting European environments. Hence, 30 traits related to productivity, tree
119 vigor, phenology, and fruit quality were measured in the apple REFPOP during up to three years and
120 at up to six locations with various climatic conditions of Europe (Belgium, France, Italy, Poland, Spain,
121 and Switzerland). First, GWAS was performed to dissect the genetic architecture of the studied traits,
122 identify associated loci stable across locations and location-specific loci, and to observe signs of
123 selection on loci of large effect. Second, this study aimed to measure prediction accuracy for these
124 traits using single-environment univariate, single-environment multivariate, multi-environment
125 univariate, and multi-environment multivariate genomic prediction models. Finally, a critical analysis
126  of our results provided recommendations for future implementation of genomic prediction tools in
127  apple breeding.

128

129 Results
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130  Phenotypic data analysis

131  The accession and progeny groups of the apple REFPOP were evaluated for 30 quantitative traits at up
132 to six locations. The measurements for ten traits were collected at one location, while the remaining
133 20 traits were available from at least two locations (three traits were measured in two locations, three
134  traits in four locations, eleven traits in five locations and three traits in six locations, Supplementary
135  Table 1). Most traits (25) were assessed during three seasons while five traits were measured during
136  two seasons (Supplementary Table 1). Accounting for environmental effects in the phenotypic data,
137 BLUPs of traits (best linear unbiased prediction of random effects of genotypes, see Equation 1) were
138 produced across all locations and separately for each location. The traits showed unimodal as well as
139 multimodal distributions (Supplementary Figure 1). Differences of various extent between the
140  accession and progeny groups were observed (Supplementary Figure 2). As expected, high phenotypic
141  and genotypic correlations (>0.7) between traits were observed within trait categories, namely the
142 phenology, productivity, fruit size, outer fruit, inner fruit, and vigor category (Figure 1a). A few
143 moderate positive phenotypic correlations (0.3—0.7) were found between trait categories such as
144 harvest date and fruit firmness (0.51), yellow color and russet cover (0.55), soluble solids content and
145 russet cover (0.36), or between yield (weight and number of fruits) and vigor trait category (0.36-0.51,
146 Figure 1a). High average correlations were observed between the environments (combinations of
147 location and year) for harvest date (0.82 [0.73, 0.95]) or red over color (0.80 [0.62, 0.92]) whereas low
148 average correlations (<0.3) were present between environments for flowering intensity (0.18 [-0.49,
149 0.68]) and trunk increment (0.16 [-0.31, 0.55], Supplementary Table 2, Supplementary Figure 3). A shift
150 of the progeny group compared to the accession group towards smaller, more numerous and less
151 russeted fruits was observed (Figure 1b).

152
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Figure 1: Exploratory phenotypic data analysis of the studied quantitative apple traits. a Pairwise
correlations between traits with the phenotypic and genomic correlations in the lower and upper
triangular part, respectively. Phenotypic correlation was assessed as Pearson correlation between

pairs of across-location BLUPs, the genomic correlation as Pearson correlation between pairs of
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158  genomic BLUPs estimated from a G-BLUP model. Trait categories are outlined along the vertical axis.
159 b Principal component analysis biplot based on across-location BLUPs of apple traits with the addition
160  of location-specific BLUPs for traits measured at a single location.

161

162  Genome-wide association studies

163 Across-location GWAS for 20 traits measured at more than one location (Supplementary Table 1) and
164 location-specific GWAS for all 30 traits were used to explore the genetic basis of the assessed traits.
165 The quantile-quantile plots showed that the observed and expected distributions of p-values
166 corresponded well and no apparent inflation of p-values was found (Supplementary Figure 4 and 5).
167  Across-location GWAS revealed 59 significant (—log1o(p) > 6.74) marker-trait associations in 18 traits
168  (Figure 2a, Supplementary Table 3). No significant associations were observed for trunk diameter and
169 russet cover in the across-location GWAS. In the location-specific GWAS, 309 significant marker-trait
170  associations for all 30 traits were discovered (Figure 2b, Supplementary Table 3). Of these 309 marker-
171 trait associations, 32 associations for twelve traits were shared between the location-specific GWAS
172 and the across-location GWAS (Supplementary Table 3). The coefficient of determination (R?) of
173 significant associations was the largest for red over color (0.71), green color (0.55) and harvest date
174  (0.42, Figure 2c, Supplementary Table 3).

175 Significant associations with different traits co-localized at identical positions or occurred very close in
176 some genomic regions (distance between marker positions below 100 kb, Figure 2c, Supplementary
177  Table 3). In the across-location GWAS, a marker significantly associated with harvest date on
178 chromosome 3 (position 30,681,581 bp) was located next to two markers associated with fruit firmness
179 (positions 30,587,378 and 30,590,166 bp). The same marker on the position 30,681,581 bp was also
180  associated with harvest date, ground color, overall russet frequency and soluble solids content
181 measured at several different locations (location-specific GWAS). Similarly, the association with
182 harvest date on chromosome 16 (position 9,023,861 bp) was closely located to a marker associated

183 with fruit firmness (position 8,985,888 bp) in the across-location GWAS. The traits related to bitter pit
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184  analyzed in the across-location GWAS, i.e., bitter pit frequency and grade, showed significant
185 associations on chromosome 16, position 7,681,416 bp. Several associations with traits measuring fruit
186 skin russet in the across-location GWAS co-localized on chromosome 12 (position 23,013,281 bp,
187 russet frequency on cheek and in the eye) and 17 (position 27,249,890 bp, overall russet frequency
188  and russet frequency at stalk). A marker at position 18,679,105 bp on chromosome 1 was associated
189 with both single fruit weight from the across-location GWAS and fruit diameter from Switzerland
190 (found with the location-specific GWAS). The association with marker at position 2,005,502 bp on
191 chromosome 8 was shared between fruit diameter and fruit volume from Switzerland and single fruit
192 weight from Belgium. On chromosome 11, fruit diameter, fruit volume and single fruit weight from
193 Switzerland, as well as single fruit weight from Belgium, shared the association at position 18,521,895
194  bp. Additionally, position 3,622,193 bp on chromosome 11 was shared between the associations of
195  fruitlength and single fruit weight from Switzerland. For red over color and green color, the association
196 with a marker on chromosome 9 (position 33,799,120 bp) occurred in across-location and four
197 location-specific GWAS, while a close marker (position 33,801,013 bp, less than 2kb away) was
198  associated in the two other location-specific GWAS. Additional significant marker-trait associations
199 occurred in the same genomic regions among the location-specific GWAS and between the across-
200 location and location-specific GWAS (Supplementary Table 3).

201 Previous reports on QTL mapping and GWAS in apple were extensively reviewed and 41 publications
202 reporting on traits measured similarly to our own were found and taken for comparison
203 (Supplementary Table 4). The QTL positions from literature and the marker-trait associations found in
204  this study were assigned to chromosome segments (top, center, and bottom of a chromosome).
205 Unique segment-trait combinations were discovered in the literature (166), in the across-location
206 GWAS (52) and in the location-specific GWAS (172,

207 Figure 3a). Out of all segment-trait combinations across our GWAS, 30.8% overlapped with the
208  previously published results of QTL mapping or GWAS and the rest (69.2%) were novel. All previously

209 published segment-trait combinations for the trait groups bitter pit and trunk were also detected in
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Figure 2: Significant marker-trait associations found by GWAS. a Distribution of the significant
associations and corresponding p-values from across-location GWAS over the 17 apple chromosomes.
b Distribution of the significant associations and corresponding p-values from location-specific GWAS
over the 17 apple chromosomes. Locations are labeled as BEL (Belgium), CHE (Switzerland), ESP
(Spain), FRA (France) and ITA (Italy). a-b Size of the symbols indicate the —log;¢(p). The x-axis shows
chromosome numbers. ¢ Physical positions (in bp) of the significant associations on chromosomes with
their respective coefficients of determination (R?) from the across-location GWAS complemented with

the location-specific GWAS for traits measured at a single location. Size of the symbols indicate the R?.
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225 Figure 3: Comparison of the significant marker-trait associations with previously published
226 associations. a Venn diagram comparing the unique associations, which were either previously
227 published (former), reported in the across-location GWAS (present) or the location-specific GWAS
228  (present per location). Color intensity and the values reflect the number of associations per diagram
229  area. b Scatterplot of unique associations comparing published associations (former) with the merged
230  across-location and location-specific GWAS (present). The traits were assembled into trait groups
231 based on their similarity. Symbol size reflects the number of markers used in the studies. In case more
232 than one publication reported an association in the same chromosome segment, only the report with
233 the largest number of markers is shown (see Supplementary Table 4 for the complete list of previously
234 published associations). a-b Positions of associations were assigned to three chromosome segments:
235 top, center and bottom. Only the unique combinations of trait groups with segments and type of study
236  (former or present) are shown.

237

238  Allele frequency dynamics over generations

239 Eleven major significant marker-trait associations (R?>0.1) were identified in the global GWAS results
240  (across-location GWAS with the addition of location-specific GWAS for traits measured at a single
241 location only, Figure 4). Among these major associations, changes in the frequency of alleles with an
242 increasing effect on trait phenotypes were quantified in 30 ancestral accessions (five ancestor
243 generations of the progeny group, Supplementary Table 5) and all 265 progenies included in the apple

244 REFPOP (Figure 4a). Compared to the ancestral accessions, the frequency of the allele with an
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245 increasing effect on phenotype (Figure 4c) was higher in the progeny for the alleles associated with
246  later harvest date and increased flowering intensity, titratable acidity, fruit firmness and trunk
247 increment (Figure 4a). For the marker associated with green color and red over color, the allele
248  frequencies were equivalent for ancestors and progeny, which reflected the minor allele frequency of
249 nearly 0.5 for both traits (Figure 4b,d). Noticeably, at the markers closely associated with harvest date
250 and fruit firmness on chromosome 3, the allele associated with later harvest date and firmer fruits was
251 fixed in all progeny, while the allele with a decreasing effect on the phenotype was present with a
252 frequency below 0.1 in the whole apple REFPOP (Figure 4a-d). The allele associated with larger trunk
253 increment on chromosome 1 was found in progeny known to segregate for Rvi6, and it was present in
254 only two accessions (‘Prima’ and X6398) that are also known to carry the apple scab resistance gene
255 Rvi6, which is located about 1.8 Mb from the SNP associated with trunk increment (Figure 4b-c). The
256  remaining associations (R%<0.1) reported by the global GWAS showed various trends in allele
257  frequencies across generations such as increased frequency of alleles associated with increased weight
258  of fruits in the progeny (Supplementary Figure 7). The individual parental combinations of the progeny
259 group were often fixed for single alleles (Figure 4b, Supplementary Figure 8). Boxplots of the across-
260 location BLUPs against the dosage of the reference allele (0, 1, 2) for the eleven major significant
261 marker-trait associations showed additive effects of the alleles on phenotypes (Supplementary Figure
262 9). Squared Pearson’s correlations in a window of ~3,000 markers surrounding each of the major
263 significant marker-trait associations showed that markers in linkage disequilibrium extended over
264  larger distances around some marker-trait associations (Supplementary Figure 10). When visually
265 compared with other loci, the associations with harvest date and fruit firmness on chromosome 3 as
266  well as red over color and green color on chromosome 9 were found in genomic regions of the highest
267 linkage disequilibrium between markers (Supplementary Figure 10). The markers associated with trunk
268 increment and Rvi6 also showed signs of linkage disequilibrium (Supplementary Figure 10).

269
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271 Figure 4: Allele frequency dynamics of the major significant marker-trait associations. a-d The
272 associations were chosen based on the coefficient of determination (R%>0.1) from the global GWAS. a
273 For each association, frequency of the allele with increasing effect on trait phenotypes in the apple
274 REFPOP is shown. For the progeny group (progeny) and its five ancestor generations (ancestors), the
275  allele frequencies are shown as points connected with a line. Out of all known ancestors, the allele
276  frequency was estimated for 30 accessions included in the apple REFPOP. Colors of the points and lines
277 correspond to chromosome locations of the associated SNPs. b Allelic combinations carried by the
278 apple REFPOP genotypes, sorted according to geographic origin of accessions and affiliation of progeny
279 to parental combinations (the x-axis was labeled according to Supplementary Table 1 and 2 in Jung et
280 al.?®). ¢ Phenotypic BLUPs of traits and their standard error for each allelic combination, centered to
281 mean 0 and scaled to standard deviation of 1. d Frequency of the minor allele in the whole apple
282 REFPOP. b-d The legend and y-axis are shared between plots. In d, the color of an allele corresponds
283  to the color of the homozygous allelic combination of the same allele in b and c.

284

285  Genomic prediction

286 Four single-environment univariate prediction models — random forest (RF), BayesCm, Bayesian
287 reproducing kernel Hilbert spaces regression (RKHS) and genomic-BLUP (G-BLUP) — and a single-
288  environment multivariate model with an unstructured covariance matrix of the random marker effect
289 (MTM.UN) were compared using across-location BLUPs and location-specific BLUPs as phenotypes

290 from a single environment. Among these models, the average prediction accuracies per trait (7})
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291 ranged between 0.18 for russet cover and 0.88 for red over color, both extreme values observed with
292 RF (Supplementary Table 6). The prediction accuracies estimated for G-BLUP were further used as
293 reference for model comparisons due to its widespread use in genomic prediction. When the
294  prediction accuracy of the G-BLUP model was averaged over all traits (), the obtained 7 was equal to
295  0.50. The RF showed an 7; higher than G-BLUP for 9 out of 30 traits and an 7 of 0.49. BayesCmn, RKHS
296 and MTM.UN showed an 7 of 0.50, 0.51 and 0.50 and exceeded 7; of G-BLUP in one, twelve and ten
297 traits, respectively. Generally, a similar performance of all five models was observed (Figure 5a).

298 When compared with the baseline model G-BLUP, the single-environment multivariate model
299 MTM.UN showed an improved prediction accuracy for several traits when they were modelled in
300 combination with a correlated trait (genomic correlation larger than 0.3, Figure 5a, Supplementary
301  Table 6). The inclusion of floral emergence as correlated trait improved 7; of full flowering and end of
302 flowering. A combination with weight of fruits improved 7; of flowering intensity. Fitting the model
303 using fruit length showed an increased 7; of single fruit weight and using single fruit weight led to an
304 increase in 7 for fruit diameter, fruit length, maximum fruit size and fruit volume. Using soluble solids
305 content resulted in an increase of 1; for russet cover, while using russet frequency at cheek led to an
306 improved 1 of russet frequency at stalk. Prediction accuracies for all possible combinations of
307 correlated traits can be found in Supplementary Table 7.

308 Two multi-environment univariate models — across-environment G-BLUP (G-BLUP.E) and marker by
309 environment interaction G-BLUP (G-BLUP.E.GxE) — and the multi-environment multivariate factor-
310 analytic model (MTM.FA) were compared using two cross-validation scenarios corresponding to
311  different experimental scenarios. In the first cross-validation scenario (CV1), traits were predicted for
312 20% of genotypes in each environment (i.e., their phenotypes were masked in all environments for
313 model training). In the second cross-validation scenario (CV2), traits were predicted for 20% of
314  genotypes in all but the Swiss environments (i.e., for these genotypes the environments “CHE.2018”,
315 “CHE.2019” and “CHE.2020” were retained for model training). For the models applied with CV1, the

316 1 ranged between 0.13 (for russet frequency in the eye obtained with MTM.FA) and 0.70 (for harvest
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317  date estimated with G-BLUP.E.GxE, Supplementary Table 6). With CV2, the lowest #; of 0.29 was
318  measured for trunk increment with G-BLUP.E.GxE and the maximum 7; of 0.86 was found for harvest
319 date with both G-BLUP.E and G-BLUP.E.GXE models (Supplementary Table 6). The prediction
320 performance of G-BLUP.E, G-BLUP.E.GxE and MTM.FA was generally lower under CV1 than under CV2
321 (Figure 5b, Supplementary Table 6). For all traits, the G-BLUP.E.CV1, G-BLUP.E.GxE.CV1 and
322 MTM.FA.CV1 showed lower 7; than the single-environment G-BLUP, the 7 being equal to 0.40, 0.40
323 and 0.36, respectively. The G-BLUP.E.GxE.CV1 performed better than G-BLUP.E.CV1 for 14 out of 30
324  traits. The G-BLUP.E.CV2 and G-BLUP.E.GXE.CV2 outperformed G-BLUP for 13 out of 20 traits. The G-
325  BLUP.E.CV2 and G-BLUP.E.GxE.CV2 both showed 7 equal to 0.57. The increase in 7; from G-BLUP to G-
326 BLUP.E.CV2 (0.35) as well as from G-BLUP to G-BLUP.E.GxE.CV2 (0.36) was the most pronounced for
327 russet cover. The performance of G-BLUP.E.CV2 and G-BLUP.E.GxE.CV2 remained below the level of
328  G-BLUP predictions for productivity traits (flowering intensity, weight and number of fruits), ground
329 color, soluble solids content, fruit firmness and trunk increment. The G-BLUP.E.GxE.CV2 performed
330  better than G-BLUP.E.CV2 for 8 out of 20 traits. The ¥ of MTM.FA.CV2 was equal to 0.52 and therefore
331 similar to G-BLUP, however, the model outperformed G-BLUP for nine out of 20 predicted traits
332 (Supplementary Table 6). The MTM.FA showed higher prediction accuracy than both G-BLUP.E and G-
333 BLUP.E.GxE for two traits under CV1 and five traits under CV2 (Supplementary Table 6).

334  Across all model groups, the best prediction performance was found for harvest date, green color and
335 red over color (Figure 5, Supplementary Table 6). The lowest prediction accuracy was found for traits
336 related to bitter pit and russet as well as yellow color. Additionally, the prediction accuracy for
337  flowering intensity and trunk increment with the multi-environment models remained strongly below
338  the 1; of the corresponding single-environment models.

339
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Figure 5: Genomic prediction accuracy in apple quantitative traits using eight genomic prediction
models and two cross-validation scenarios. a Prediction accuracy of four single-environment
univariate models, i.e., random forest (RF), BayesCm, Bayesian reproducing kernel Hilbert spaces
regression (RKHS) and genomic-BLUP (G-BLUP), and one single-environment multivariate model with

an unstructured covariance matrix of the random marker effect (MTM.UN). The models were applied
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346  with afive-fold cross-validation where 20% of the genotypes were masked in each of the five runs. The
347 MTM.UN was used in case a trait showed genomic correlation larger than 0.3 with at least one other
348 trait. b Prediction accuracy of two multi-environment univariate models, i.e., across-environment G-
349 BLUP (G-BLUP.E) and marker by environment interaction G-BLUP (G-BLUP.E.GxE), and the multi-
350 environment multivariate factor-analytic model (MTM.FA). The models were applied under two five-
351 fold cross-validation scenarios CV1 and CV2. The CV1 was applied for all traits using G-BLUP.E and G-
352 BLUP.E.GxE and for traits measured in at least three environments using MTM.FA. The CV2 was applied
353 for traits measured in Switzerland and in at least a one other location. a-b Prediction accuracy was
354 estimated as a Pearson correlation coefficient between the observed and the predicted values of
355 genotypes whose phenotypes were masked in a five-fold cross-validation. For the multi-environment
356  models, the correlation coefficients were estimated for each environment separately. In the box plot,
357 the bottom and top line of the boxes indicate the 25th percentile and 75th percentile quartiles (the
358 interquartile range), the center line indicates the median (50th percentile). The whiskers extend from
359  the bottom and top line up to 1.5-times the interquartile range. The points beyond the 1.5-times the
360 interquartile range from the bottom and top line are labeled as dots.

361

362 Synthesis of phenotypic and genomic analyses

363  The across-environment clonal mean heritability was generally very high in the evaluated traits, the
364  value being close to one for harvest date and red over color and not lower than 0.80 for all the other
365 traits with the exception of full flowering (0.74), end of flowering (0.79) and water core grade (0.79,
366 Figure 6, Supplementary Table 6). The genomic heritability, which is the proportion of phenotypic
367  variance explained by the markers, was larger than 0.80 for harvest date, floral emergence, green color
368 and red over color, the value was not lower than 0.40 for all the other traits with the exception of
369 bitter bit frequency (0.33) and grade (0.39, Figure 6, Supplementary Table 6).

370 The effects of genotype and significantly associated markers together explained a substantial part of

371 the phenotypic variance of traits, the largest sums of these genotypic effects were observed for harvest
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372  date (82.8%) and red over color (74.6%, Figure 6, Supplementary Table 6). Altogether, the sum of the
373  genotypic effects explained a very low proportion of the total variance for floral emergence (13.1%),
374  flowering intensity (11.4%), trunk diameter (10.9%) and trunk increment (8.7%). The major proportion
375  of the phenotypic variance was explained by the effect of environment for floral emergence (73.9%)
376  and trunk diameter (66.3%). The lowest impact of environment was found for traits measured at only
377 one location over two or three years such as fruit diameter or water core frequency, both showing an
378 effect of environment (i.e., year) below 1%. The effect of GXE was the most pronounced for
379 productivity traits, i.e., flowering intensity (23.7%), weight of fruits (20.8%) and number of fruits
380 (21.6%).. The proportion of the GxE effect was the lowest for harvest date (4.7%), floral emergence
381 (5.2%), red over color (5.9%) and trunk diameter (4.2%) among the traits measured at more than one
382 location and for end of flowering (5.7%), fruit volume (5.9%) and green color (3.9%) among the traits
383 measured at one location. A high proportion of the phenotypic variance remained unexplained by the
384  model parameters for flowering intensity (47.5%), bitter pit grade (53.4%) and trunk increment
385  (55.1%).

386 Hierarchical clustering of the phenotypic variance components revealed three clusters of traits (Figure
387 6). A strong genotypic effect and a comparably low effect of environment and GxE was observed for
388 13 traits assigned to the cluster one. Most of the phenotypic variance was explained by the effect of
389 environment in floral emergence and trunk diameter, which were grouped in cluster two. Finally, 15

390 traits with a pronounced effect of environment and/or GXE were grouped in cluster three.
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Figure 6: Synthesis of phenotypic and genomic analyses. Across-environment clonal mean heritability,
genomic heritability, average prediction accuracy () for the single-environment G-BLUP and the
proportion of phenotypic variance explained by the effect of each significantly associated marker (SNP
1-8), genotype (G), environment (E) and genotype by environment interaction (GxE). The significantly
associated markers corresponded to results of the global GWAS. Phenotypic variance components
were used to estimate clusters of traits outlined along the vertical axis. Within each cluster, the traits

were sorted according to 7.
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400  Discussion

401  Discovered loci overlap between association studies and traits. Our GWAS permitted to enlighten the
402  architecture of analyzed traits as well as the identification of numerous marker-trait associations stable
403  across, and specific to, the locations of the apple REFPOP. The particular design of the experiment,
404  including the diversity of the plant material used (accessions and small progeny groups), multiple
405 locations, and multiple years of evaluation, resulted in about two thirds of the discovered associations
406  being novel when compared with the loci published in studies spanning more than two decades. Our
407 study design also allowed us to replicate the identification of many previously known loci associated
408  with the studied traits.

409  The association of one locus with two or more seemingly independent traits (i.e., caused by pleiotropy)
410 and linkage disequilibrium between loci associated with different traits are frequent for complex
411 traits*’. The GWAS performed in this study showed several marker-trait associations at identical or
412  close positions for different traits. The interdependency between harvest date and fruit firmness,
413  which can be also observed empirically for early cultivars that soften more, may be an example of
414  pleiotropy or linkage disequilibrium between loci. Harvest date and fruit firmness are known to be
415 regulated by ethylene production*® and associated with loci present on chromosomes 3 (NAC18.1), 10
416  (Md-ACO1, Md-PG1), 15 (Md-ACS1) and 1624952,

417 In this work, closely located (distance <100 kb) associations with both harvest date and fruit firmness
418  were found on chromosome 3. Migicovsky et al.?? reported an overlap between associations with
419 harvest time and fruit firmness on chromosome 3 falling within the coding region of NAC18.1. The
420 authors hypothesized that the lack of associations on other chromosomes was likely due to low SNP
421  density around the causal loci (the study used a GBS-derived 8K SNP dataset). The larger number of
422  associations reported here might be a result of the high SNP density (303K SNPs) deployed in GWAS,
423 however, not all previously reported loci were re-discovered.

424  The SNPs associated with harvest date and fruit firmness on chromosome 10 were further apart (~6

425 Mb). For harvest date, one of the associations on chromosome 10 was stable across locations and
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426 several associations were location specific. However, the association on chromosome 10 with fruit
427  firmness was found for the Italian location only. It has been shown that chromosome 10 contains more
428 than one QTL controlling fruit firmness*-%, but stable across-location association with fruit firmness
429  on chromosome 10 was missing in our study. One of the known loci on chromosome 10, the Md-PG1
430  gene, is responsible for the loss of fruit firmness after storage®3. In apple REFPOP, fruit firmness was
431 measured within one week after the harvest date and this very short storage period might have
432 contributed to the less pronounced effect of the locus Md-PG1 in our GWAS.

433  Two associations with harvest date measured in Italy but no association with fruit firmness were found
434 on chromosome 15. Although a marker for Md-ACS1 related to ethylene production was previously
435 mapped on chromosome 15°°, and QTL for fruit firmness was discovered on the same chromosome®,
436  these markers did not co-locate, but rather, mapped at the opposite extremes of chromosome 15%9°°,
437 Likewise, the connection between harvest date and fruit firmness on chromosome 15 could not be
438  confirmed here.

439 Our GWAS showed associations with harvest date and fruit firmness on chromosome 16, which were
440  located 38 kb apart. In the past, loci associated with harvest date and fruit firmness have been reported
441 in the same region on chromosome 16%%%°, The role of this locus in the regulation of harvest date and
442 fruit firmness remains unknown and requires further research.

443 In practice, ripeness of fruit (harvest date) is decided based on ground color and starch content. The
444 GWAS results showed that the association on chromosome 3 was not only found for harvest date and
445 nearby markers associated with fruit firmness, but also corresponded to associations with ground color
446  and soluble solids content. This might be explained by the fact that these traits are used to define
447 ripeness and thus harvest date. Further, the association of the NAC18.1 locus on chromosome 3 with
448  overall russet frequency would support the known enhanced expression of NAC transcription factors
449  in russet skin>®.

450 Co-localizations between associations found for different measures of bitter pit on chromosome 16,

451 russet on chromosomes 12 and 17, fruit size on chromosomes 1, 8 and 11, and skin color on
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452  chromosome 9 are likely the result of relatedness among trait measurements. The measures that are
453  easiest to score can be used in future to phenotype these traits.

454  Signs of selection in marker-trait associations of large effect. The design of apple REFPOP allowed for
455  the discovery of major marker-trait associations and for the analysis of changes in allele frequency
456  between 30 ancestral accessions and 265 progeny included in the apple REFPOP. Comparing ancestors
457 with the progeny, higher frequencies of the alleles associated with later harvest date and increased
458  flowering intensity, titratable acidity, fruit firmness and trunk increment were found for the progeny.
459 Of these traits, harvest date and fruit firmness are correlated, probably due to pleiotropy or linkage
460 disequilibrium of causal loci, as it was shown in this and previous studies?’.. Consequently, the
461 consistently higher frequency of alleles contributing to later harvest and firmer apples in the progeny
462 is because the softening of harvested apples is undesirable and likely selected against®. Signs of
463  selection for increased firmness were also recently found in USDA germplasm collection®. Our study
464  also showed fixation of the late-harvest and high-firmness alleles on chromosome 3 in the whole
465 progeny group, which suggests a loss of genetic diversity in the modern breeding material at this locus.
466 For flowering intensity, a trait positively correlated with apple yield, a new locus was discovered on
467 chromosome 14. The increased frequency of the allele contributing to higher flowering intensity in the
468 progeny, its presence in all parental genotypes, and fixation in some parental combinations may be
469 the result of breeding for high yield. The major locus found for acidity on chromosome 16 was
470 consistent with the Ma locus frequently detected in various germplasm®!. The total number of the
471 high-acidity alleles for Ma and Ma3, which is another regularly detected acidity locus, was shown to
472 be higher in parents of a European breeding program (Better3fruit, Belgium) than in parents used in
473  the USDA breeding program®*®, The desired acidity level might depend on local climate of the
474  breeding program and market preferences®. The increase in frequency of the allele contributing to
475 higher acidity in the progeny may indicate a current preference towards more acidic apples in
476 European breeding, but further investigation is needed to clarify the trend. The last locus of large effect

477 showing allele frequency dynamics between generations was found for trunk increment. The allele
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478  associated with an increase in trunk increment may have been selected in the progeny due to its
479 potential impact on productivity suggested by moderate positive correlations between tree vigor
480  (trunk diameter and increment) and yield-related traits. Additionally, the marker associated with trunk
481 increment was 1.8 Mb apart from a SNP marker associated with Rvi6 gene responsible for resistance
482  against apple scab'®. These two markers (AX-115183752 for trunk increment and AX-115182989 (also
483 called Rvie_42M10SP6_R193) for apple scab) showed a correlation of 0.15 and occurred within a
484 region of increased linkage disequilibrium between markers (Supplementary Figure 10). All accessions
485 were homozygous for the reference allele of AX-115183752 associated with decreased trunk
486 increment (Figure 6¢) except for ‘Prima’ and X6398, which were heterozygous. The scab-resistant
487 accessions ‘Prima’ and X6398 (which is a second-generation offspring of ‘Prima’>’) but also ‘Priscilla-
488 NL’ (known to be heterozygous for Rvi6®), were also heterozygous for AX-115182989. All other
489  accessions were homozygous for the reference allele not associated with Rvi6. The allele on
490 chromosome 1 associated with increased trunk increment may have been co-selected with the Rvi6
491 locus responsible for resistance against apple scab.

492  Signs of intense selection for red skin were recently detected in the USDA germplasm collection when
493 compared with progenitor species of the cultivated apple®. Our results show that the associations with
494 red over color and green color, which phenotypically mirrored red over color and was associated with
495 the same marker, did not show changes in allele frequency between ancestors and progeny included
496 in the apple REFPOP. Some parental combinations showed almost exclusively the allele increasing red
497 skin color, other parental combinations exhibited a lack of the allele. This uneven distribution of the
498  alleles in the progeny group pointed to different directions of selection for fruit skin color in the
499 European breeding programs (Figure 4b).

500 Performance of the single-environment univariate genomic prediction models. Single-environment
501 univariate genomic prediction models were applied to individual traits after accounting for
502  environmental effects and averaging across locations and/or years. The observed small differences

503 between genomic prediction accuracies of various models (Figure 5a) were in accordance with
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504  previous model comparisons where distinctions among models were negligible®*®°. The largest
505  extremes in prediction accuracy between traits were found with random forest, which allowed for the
506  overall highest prediction accuracy among all compared models for red over color. The explanation for
507  the striking performance of random forest for red over color might be found in the results of our GWAS.
508 This trait of oligogenic architecture was associated with a few low-effect loci and one locus of large
509 effect explaining 61% of the red over color phenotypic variance measured in the apple REFPOP. High
510 correlations between many markers, i.e., linkage disequilibrium, were found in the vicinity of the large-
511 effect locus (Supplementary Figure 10). Random forest is known to assign higher importance to
512 correlated predictor variables (here the markers) in the tree building process®, which may have
513 contributed to the particularly high prediction accuracy found for red over color with random forest.
514  The prediction accuracy for red over color reached ~0.4 in several former prediction studies?%2%2934
515  and was approximately doubled in our work, which demonstrated the potential of the current study
516  design for accurate genomic predictions. For harvest date, the currently reported prediction accuracy
517  of 0.78 was only slightly higher than the accuracy of 0.75 obtained with the initial apple REFPOP dataset
518 measured during one year®, but these accuracies showed a considerable improvement over other
519  accuracies of approximately 0.5-0.6 reported elsewhere?*%2%, As shown before3®, these results
520 underline the suitability of apple REFPOP design for the application of genomic prediction.

521 Prediction accuracy for traits such as yellow color or russet cover were on the opposite side of the
522 spectrum when compared to harvest date and red over color. The prediction accuracy of yellow color
523 and russet cover was low, although the genotypic effects explained 45% and 47% of the phenotypic
524  variance, respectively. The across-environment clonal-mean heritability of russet cover was high
525 (0.97), while the heritability for yellow color was slightly lower (0.81, Figure 6). Yellow color showed a
526  moderate phenotypic correlation of 0.55 with russet cover, suggesting that the phenotyping device
527 might have classified some russet skin as yellow color. Symptoms of powdery mildew could have been

528  misinterpreted as russet skin. The decreased performance of genomic prediction models might stem
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529  from inaccurate phenotyping methods, insufficient SNP density in the associated regions, or other
530 factors, all of which could not be explained in this work.

531  Role of genotype by environment interactions in multi-environment univariate genomic prediction.
532  The multi-environment univariate genomic prediction models either directly estimated environmental
533  effects (across-environment G-BLUP, called here G-BLUP.E) or additionally borrowed genotypic
534 information across environments and thus considered the GxE (marker by environment interaction G-
535 BLUP, called here G-BLUP.E.GxE)*2. The average accuracy of the G-BLUP.E.GxE model across traits was
536 only slightly higher than the accuracy of the G-BLUP.E. In contrast, the G-BLUP.E.GXE model had
537 substantially greater prediction accuracy than the G-BLUP.E model when applied in wheat*. In the
538 latter study, a productivity trait was measured under simulated conditions of mega-environments and
539 the effect of GxXE explained up to ~60% of the phenotypic variance®’.. Our work only focused on
540 European environments and the largest proportion of phenotypic variance assigned to GxE was 24%
541  for a productivity trait (flowering intensity). Furthermore, the average proportion of GxE across traits
542  was approximately 12%, which may explain the mostly negligible differences between the G-BLUP.E
543  and G-BLUP.E.GxE models. Our results were in line with the low interaction of additive genetic effects
544  with location of up to ~6% obtained for apple fruit quality traits measured at two locations in New
545 Zealand?, and the limited GxE reported for fruit maturity timing in sweet cherry across continents®?,
546 For approximately half of the tested traits, the G-BLUP.E.GxE did not outperform G-BLUP.E. For these
547 traits, the G-BLUP.E ignoring GXE may be sufficient to account for the environmental effects across
548 European sites because it is computationally simpler and therefore less demanding. Traits such as
549 flowering intensity, soluble solids content, trunk increment or traits related to fruit size and russet
550 showed an improved performance under G-BLUP.E.GXE when compared to G-BLUP.E. For traits
551 positively responding to G-BLUP.E.GxE, the GxE should be considered when making predictions across
552  environments. The highest improvement of prediction accuracy with G-BLUP.E.GXE when compared
553  to G-BLUP.E was found for flowering intensity, the difference between the models amounting to 0.07

554 (Figure 5b). This result might be explained by the highest contribution of GxE to the phenotypic
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555  variance of flowering intensity among all traits (Figure 6). A comparably high contribution of GXE was
556  also found for weight of fruits and number of fruits, though no improvement with G-BLUP.E.GxE model
557  was observed for these traits. When comparing the relative contributions of variance components to
558 the phenotypic variance of flowering intensity, weight of fruits and number of fruits, the genotype
559 explained 11%, 22% and 21%, the environment 17%, 24% and 25%, and the GxE 24%, 21% and 22%,
560 respectively. Although the proportions of GXE were similar in the three compared traits, the effects of
561 genotype and environment explained a higher proportion of the variance for weight of fruits and
562 number of fruits than for flowering intensity. This may have contributed to the surprisingly lower
563 accuracy of the G-BLUP.E.GxE model when compared with G-BLUP.E for weight of fruits and number
564 of fruits, but additional investigations may be needed to clarify this result in the future.

565  The G-BLUP.E.GXE model assumes positive correlations between environments and is therefore mostly
566  suitable for the joint analysis of correlated environments**®2, As shown by Lopez-Cruz et al.** and in
567  our study, this assumption of G-BLUP.E.GxE resulted in the best model performance for traits showing
568  high positive correlations between environments (here harvest date and red over color) and the worst
569 performance for traits exhibiting low correlations between environments (here flowering intensity and
570  trunk increment, Figure 5b, Supplementary Table 2, Supplementary Figure 3). For flowering intensity
571 and trunk increment, bivariate prediction of the environments or prediction with a different GxE model
572 not assuming positive correlations between environments might be more appropriate than the
573  currently applied approach?*3,

574  Multivariate models as a useful element in the genomic prediction toolbox. Multivariate (also called
575 multi-trait) models were shown to be useful for predicting traits that are costly to phenotype when a
576  correlated trait less expensive to phenotype was available®. In our study, when the prediction accuracy
577  of the single-environment multivariate model MTM.UN was compared with the baseline model G-
578 BLUP, several combinations of related and unrelated traits led to increased accuracy. For the related
579 traits with a high phenotypic correlation (Figure 1a), prediction of traits measured at one location were

580 often improved when a related trait measured across different locations was included. This was the
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581 case for the combination of floral emergence with full flowering and end of flowering and for single
582 fruit weight combined with fruit diameter, fruit length, maximum fruit size and fruit volume. Inclusion
583  of soluble solids content in MTM.UN resulted in increased prediction accuracy for russet cover,
584  although the traits showed only a moderate correlation and no obvious explanation for this result
585  could be found. Our study supports the potential of multivariate models to borrow information that
586 correlated traits provide about one another and identified trait combinations that can be successful
587 under the multivariate setup.

588 In place of the correlated traits, environments of a single trait can be implemented in a multivariate
589 model*®. The average prediction accuracy over all traits was ~0.04 lower in the multi-environment
590 multivariate (MTM.FA) than in the multi-environment univariate genomic prediction models (G-BLUP.E
591  and G-BLUP.E.GxE). Compared to G-BLUP.E and G-BLUP.E.GxE, the MTM.FA showed the potential to
592 perform equally well for six (CV1) and three traits (CV2) and was able to outperform both models for
593 two (CV1) and five traits (CV2). In cases where MTM.FA outperformed G-BLUP.E and G-BLUP.E.GXxE, a
594  very limited increase in prediction accuracy of 0.01 was found for all traits but trunk increment, for
595  which the increase was equal to 0.07 under the second cross-validation scenario. Except for the
596 noticeable increase in prediction accuracy for trunk increment that could not be explained by our
597 analyses, the performance of MTM.FA was similar to G-BLUP.E and G-BLUP.E.GxE, which establishes
598  the multivariate model as a useful tool for multi-environment genomic prediction in apple.

599 Two approaches to genomic prediction addressed with cross-validation scenarios. The cross-
600 validation scenarios CV1 and CV2 were applied with multi-environment genomic prediction models to
601  test two genomic prediction approaches typically faced in breeding. The CV1 imitated evaluation of
602 breeding material that was yet untested in field trials. The CV2 was implemented to simulate
603 incomplete field trials where breeding material was evaluated in some but not all target environments.
604 More specifically, the CV2 investigated a situation where the breeding material has been evaluated at
605  one location (the breeding site, in this case Switzerland) and the material’s potential over other

606 European sites was predicted without its assessment in a multi-environment trial, which may increase
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607  selection efficiency at latter stages of evaluation. As CV2 provided more phenotypic information to the
608 models than CV1, a higher genomic prediction accuracy was found under CV2 when compared with
609  CV1, which was anticipated®*2. The CV2 was tested by calibrating the model with Swiss observations
610  only. The application of CV2 could be extended to other apple REFPOP locations to provide useful
611 information for the breeding programs located at these sites. The choice of cross-validation scenario
612 did not affect the general ranking of the average genomic prediction accuracies estimated for the
613  evaluated traits.

614  Implications for apple breeding. Phenotypic variance decomposition into genetic, environmental, GxE
615 and residual effects was compared with the results of GWAS and genomic prediction as well as
616 heritability estimates. The comprehensive comparison indicated three classes of traits with contrasting
617  genetic architecture and prediction performance. Characteristics of these trait classes and proposals
618 for their efficient prediction strategies are described in the following paragraphs.

619  The first class included harvest date and red over color that showed a few loci of large effect and some
620  additional loci of low effect, the highest prediction accuracies, and the highest across-environment
621  clonal-mean heritability among all traits. Both traits showed a very high proportion of the genotypic
622 effect explaining ~75% of the phenotypic variance. For harvest date and red over color, the marker
623 with the largest effect explained 52% and 59% of the phenotypic variance and all marker effects in
624  genomic prediction captured together 88% and 85% of the phenotypic variance (i.e., genomic
625 heritability of 0.88 and 0.85), respectively. Selection for these traits exhibiting a strong genetic effect
626 of one locus could be done using marker-assisted selection, although only a part of the variance would
627 be explained by a single marker. Better results can be achieved using genomic prediction, as this was
628  able to explain a substantially larger amount of the phenotypic variance. Other traits such as fruit
629 firmness, titratable acidity, end of flowering or traits related to fruit size and water core were grouped
630 in the same cluster as harvest date and red over color (Figure 6). These traits showed a strong

631  genotypic effect and a comparably low effect of environment and GxE, suggesting that selection for
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632  the traits would be efficient when performed using single-environment genomic prediction models
633 rather than multi-environment prediction.

634  The second class of traits was represented by floral emergence and trunk diameter displaying a high
635 proportion of the environmental effect (~70%) and a similar ratio of variance explained by genotypic
636  effects compared to variance explained by GxE effects (~2.5). The genomic prediction accuracy did not
637 considerably deviate from the average accuracy over all traits. Several marker associations with these
638 traits were identified using location-specific GWAS. However, in the across-location GWAS, only one
639 association explaining a very small part of phenotypic variance (floral emergence) or no association
640 (trunk diameter) were discovered. Consequently, such traits predominantly driven by the effect of
641 environment can be successfully selected based on genomic prediction, but the lack of associations
642  stable across environments limits the applicability of marker-assisted selection to this class of traits.
643 In the third class, the productivity traits (flowering intensity, weight of fruits and number of fruits)
644  showed the largest proportion of variance explained by GxE (~20%), with similar amounts of variance
645  explained by genotypic effects for weight of fruits and number of fruits, but half as much variance
646  explained by genotypic effects for flowering intensity (Figure 6). As a consequence, only flowering
647 intensity showed higher prediction accuracy with G-BLUP.E.GxE than G-BLUP.E model. As shown
648 above, the GxE should be considered when making predictions across environments for traits
649 responding positively to the G-BLUP.E.GXE model, but G-BLUP.E may be sufficient for other traits to
650 account for the environmental effects. To our knowledge, this is the first report of genomic prediction
651 for apple yield components and our results can aid the establishment of productivity predictions in
652  apple breeding. Other traits falling within the same cluster as the productivity traits, namely full
653 flowering, ground color, yellow color, soluble solids content, trunk increment, and traits related to
654  bitter pit and russet, showed a pronounced effect of environment and/or GxE (Figure 6). Multi-
655  environment genomic prediction models can be efficient when applying genomic selection to these

656 traits.
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657  The decision to apply either marker-assisted or genomic selection can be based on genetic architecture
658  of traits of interest and resources available in a breeding program. For breeding of yet genetically
659 unexplored traits, variance decomposition of historical phenotypic data prior to genomic analyses may
660  help describe trait architecture, assign traits to one of the three classes described in the previous
661 paragraphs, and finally determine the most appropriate method of genomics-assisted breeding. From
662 all traits explored in this study, the marker-trait associations with large and stable effects across
663 environments found for harvest date, flowering intensity, green color, red over color, titratable acidity,
664  fruit firmness and trunk increment could be implemented into DNA tests for marker-assisted selection.
665  These tests would allow for a reduction of labor costs in a breeding program when removing inferior
666 seedlings without phenotyping’. Although generally requiring more statistical competences than
667 marker-assisted selection, genomic selection can make use of both large- and low-effect associations
668  between markers and traits when accommodating thousands of marker effects in a single genomic
669 prediction model. For all studied traits, our results showed that marker effects estimated in genomic
670  prediction were able to capture a larger proportion of the phenotypic variance than individual markers
671  associated with the traits. Therefore, genomic selection should become the preferred method of
672 genomics-assisted breeding for all quantitative traits explored in this study to ultimately increase their
673 breeding efficiency and genetic gain.

674

675  Conclusion

676  This study laid the groundwork for marker-assisted and genomic selection across European
677 environments for 30 quantitative apple traits. The apple REFPOP experimental design facilitated
678 identification of a multitude of novel and known marker-trait associations. Our multi-environment trial
679 provided accurate genomics-estimated breeding values for apple genotypes under various
680  environmental conditions. Limited GxE detected in this work suggested consistent performance of
681  genotypes across different European environments for most studied traits. Utilizing our dataset, more

682  efficient selection of traits related to yield may lead to higher productivity and increased genetic gain
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683 in the future®. Improved fruit quality would appeal to consumers and tree phenology could be
684  synchronized with current and future climates to secure production. The genomic prediction models
685  developed here can be readily used for selecting germplasm in breeding programs, thus providing
686  breeders with tools increasing selection efficiency. Beside the apple REFPOP, one other large multi-
687  environment reference population for fruit trees, the PeachRefPop®, was designed in Europe.
688  Application of our study design to other horticultural crops such as peach can promote broader use of
689 genomics-assisted breeding in the future.

690

691 Methods

692 Plant material

693  The apple REFPOP was designed and established by the collaborators of the FruitBreedomics project®
694 as described by Jung et al.3. The apple REFPOP consists of 534 genotypes from two groups of diploid
695  germplasm. The accession group consists of 269 accessions of European and non-European origin
696  representing the diversity in cultivated apple. The progeny group of 265 genotypes stemmed from 27
697 parental combinations produced in the current European breeding programs. In 2016, the apple
698 REFPOP was planted in six locations representing several biogeographical regions in Europe, in (i)
699 Rillaar, Belgium, (ii) Angers, France, (iii) Laimburg, Italy, (iv) Skierniewice, Poland, (v) Lleida, Spain and
700 (vi) Wadenswil, Switzerland (one location per country). Every genotype was replicated at least twice
701 per location. All plants included in this study were treated with agricultural practice common to each
702 location. Calcium spraying was avoided due to its influence on bitter pit. Flowers were not thinned,
703 but the fruits were hand-thinned after the June fruit drop and up to two apples per fruit cluster were
704  retained.

705

706 Genotyping

707 A high-density genome-wide SNP marker dataset was produced as reported by Jung et al.3®. Briefly,

708  SNPs from two overlapping SNP arrays of different resolution, (i) the lllumina Infinium® 20K SNP
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709  genotyping array® and (ii) the Affymetrix Axiom® Apple 480K SNP genotyping array?, were curated
710  and then joined applying imputation with Beagle 4.0% using the recently inferred pedigrees®. Non-
711 polymorphic markers were removed to obtain a set of 303,148 biallelic SNPs. Positions of SNPs were
712 based on the apple reference genome obtained from the doubled haploid GDDH13 (v1.1).

713

714 Phenotyping

715  Thirty phenotypic traits related to phenology, productivity, fruit size, outer fruit, inner fruit, and vigor
716  were evaluated at up to six locations of the apple REFPOP during up to three seasons (2018-2020).
717  Trunk diameter was measured in 2017 in some locations, enabling for a trunk increment calculation
718  for 2018. The traits were recorded as described in the Supplementary Methods. Two phenology traits
719 measured in 2018, i.e., floral emergence and harvest date, were previously analyzed by Jung et al.*®.
720

721 Phenotypic data analyses

722  Spatial heterogeneity was modeled separately for each trait and environment (nested factor of
723 location and year) using the spatial analysis of field trials with splines (SpATS) to account for the
724 replicate effects and differences due to soil characteristics®”. Phenotypic values of traits adjusted for
725 spatial heterogeneity within each environment were estimated at the level of trees (adjusted
726 phenotypic values of each tree) and genotypes (adjusted phenotypic values of each genotype)3®.

727  The general statistical model for the following phenotypic data analyses fitted via restricted maximum
728  likelihood (R package Ime4®) was:

729 y=XB +Zb + € (Equation 1)

730  where y was a vector of trait phenotypes, X the design matrix for the fixed effects, B the vector of
731 fixed effects, Z the design matrix for the random effects, b the vector of random effects and & the
732 vector of random errors. The b was a g X 1 vector assuming b ~ N(0,X) where ¥ was a variance-

733 covariance matrix of the random effects. The assumptions for the N X 1 vector of random errors were

734 &£~ N(0,I02) with N X N identity matrix I and the variance 62, the N being the number of trees.
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735 To assess the reliability of environment-specific data, a random-effects model was first fitted
736  separately for each trait and environment to estimate an environment-specific clonal mean
737 heritability. Applying the Equation 1, the response y was a vector of the raw (non-adjusted) phenotypic
738  values of each tree. On the place of X, a vector of ones was used to model the intercept 3. The vector
739  of genotypes acted as a random effect in Z. The environment-specific clonal mean heritability was

740 calculated from the variance components of the random-effects model as:
2
741 H? =2 (Equation 2)
Op

742 where the phenotypic variance ag = 05 + 02 /7, was obtained from the genotypic variance agz, error
743  variance 62 and the mean number of genotype replications 7,.. The environment-specific clonal mean
744  heritability was used to eliminate location-year-trait combinations with a heritability value below 0.1.
745 For the remaining location-year combinations, a mixed-effects model following the Equation 1 was
746  fitted to the vector of the adjusted phenotypic values of each tree as response (y). The effects of
747 environments, i.e., combination of location and years, were used as fixed effects and the effects of
748  genotypes and genotype by environment interactions as random effects. Estimated variances of the
749 model components were used to evaluate the across-environment clonal mean heritability calculated

750  using the Equation 2 with the phenotypic variance estimated as:

2 2

751 of =0 + % + % (Equation 3)

752 where aje was the genotype by environment interaction variance and n, represented the number of
753 environments.

754  An additional mixed-effects model following the Equation 1 was fitted to the adjusted phenotypic
755  values of each tree (y) using the effects of location, year and their interaction as fixed effects and the
756 effects of genotypes as random effects. Due to the skewness of their distributions, y-values of the
757  traits weight of fruits, number of fruits and trunk diameter were log-transformed. BLUPs (b) extracted
758  from the model were further denoted as across-location BLUPs. To estimate the location-specific

759 BLUPs, a model according to the Equation 1 was fitted with a subset of the adjusted phenotypic values

760 of each tree from single locations (y) using the effects of years as fixed effects and the effects of
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761  genotypes as random effects. The across-location BLUPs and the adjusted phenotypic values of each
762  genotype were used to assess phenotypic correlation as the Pearson correlation between pairs of traits
763  and between pairs of environments within traits, respectively. The across-location BLUPs with the
764  addition of location-specific BLUPs for traits measured at a single location were further denoted as the
765 main BLUPs. In the main BLUPs, the missing values were replaced with the mean of the BLUPs of the
766 same trait and the data were scaled and centered to finally estimate a principal component analysis
767 biplot®®, where multivariate normal distribution was assumed for the ellipses.

768

769  Genome-wide association studies

770  The Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK)’® implemented
771 in the R package GAPIT 3.0t was applied using the genomic matrix M, an n X m matrix for a population
772  of size n = 534 genotypes (i.e., accessions and progeny) with m = 303,148 markers, with across-
773 location BLUPs (across-location GWAS) or location-specific BLUPs (location-specific GWAS) as the
774  response. BLINK was used with two principal components and the minor allele frequency threshold
775  was set to 0.05. Marker-trait associations were identified as significant for p-values falling below a
776  Bonferroni-corrected significance threshold a* = a/m with a = 0.05 (—log;o(p) > 6.74). The
777 proportion of phenotypic variance explained by each significantly associated SNP was assessed with a
778 coefficient of determination (R?). The R? was estimated from a linear regression model, which was
779 fitted with a vector of SNP marker values (coded as 1, 2, 3) as predictor and either the across-location
780 BLUPs or location-specific BLUPs as response. GWAS based on the across-location BLUPs with the
781  addition of location-specific BLUPs, in cases where traits were measured at a single location only, was
782  further denoted as the global GWAS. The position of the last SNP on a chromosome was used to
783  estimate chromosome length, which was used to divide each chromosome into three equal segments,
784 i.e., top, center and bottom. The marker-trait associations were assigned to these chromosome

785 segments based on their positions.
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786 Previous reports on QTL mapping and GWAS in apple were reviewed to perform an extensive
787  comparison with our GWAS results (Supplementary Table 4). Published results for traits measured
788  similarly to the traits studied in the present work were considered, with the traits being assembled
789 into trait groups: harvest time (harvest date and similar), flowering time (floral emergence, full
790 flowering, end of flowering and similar), productivity (flowering intensity, weight of fruits, number of
791 fruits and similar), fruit size (single fruit weight, fruit diameter, fruit length, maximum fruit size, fruit
792 volume and similar), ground color (ground color, yellow color and similar), over color (red over color,
793 green color and similar), bitter pit (bitter pit frequency, bitter pit grade and similar), russet (russet
794 cover, russet frequency overall, at stalk, on cheek and in the eye and similar), acidity (titratable acidity
795  andsimilar), sugar (soluble solids content and similar), firmness (fruit firmness and similar), water core
796  (water core frequency, water core grade and similar) and trunk (trunk diameter, trunk increment and
797  similar). The positions of published associations within respective chromosomes were visually assigned
798 to the three chromosome segments, i.e., top, center and bottom. The total number of markers used
799  was recorded (Supplementary Table 4). Where the number of overlapping markers between the
800  maternal and paternal linkage maps was not provided in a publication, the marker numbers for both
801 maps were summed.

802 In the global GWAS results, the allele frequency was studied over generations. The ancestors of
803 genotypes were identified making use of the apple pedigrees of Muranty et al.*. For all significant
804 marker-trait associations from the global GWAS, frequency of the allele associated with increased
805 phenotypic value was estimated for the progeny group and for its five ancestor generations. To
806  represent the ancestors, the allele frequency was estimated for the 30 accessions of them included in
807  the apple REFPOP. For major significant marker-trait associations with R? > 0.1 reported in the global
808 GWAS, linkage disequilibrium was estimated as squared Pearson’s correlations in a window of 3,000
809 markers surrounding each of the associations. A smaller window size was used for associations located

810 towards the end of a chromosome.
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811 A mixed-effects model following the Equation 1 was fitted to the vector of the adjusted phenotypic
812  values of each tree as response (y) using the effects of environments as fixed effects and the effects
813  of genotypes, genotype by environment interactions, and additional effects for each SNP significantly
814 associated with the trait (a factor of the respective SNP values in M) as random effects. In cases where
815 traits with no marker-trait associations were found in the global GWAS, the additional random effects
816 of significantly associated SNPs were omitted from the model. The mixed-effects model for every trait
817 was used to estimate proportions of phenotypic variance explained by the model components as
818 described in Jung et al.®. The proportions of phenotypic variance explained by the random effects of
819 genotypes and significantly associated SNPs were summed to obtain the proportion of variance
820 explained by a genotypic effect. The proportions of phenotypic variance explained by genotypic,
821  environmental, genotype by environment interaction, and residual effects were scaled and centered
822  to be finally used for discovering similarities between the traits. For this purpose, a hierarchical
823  clustering following Ward’?> was applied to the distance matrix of the set of effects. The number of
824  clusters was estimated from a dendrogram, which was cut where the distance between splits was the
825 largest.

826

827 Genomic prediction

828  The general statistical model for genomic prediction was

829 y = 1pu + u + £ (Equation 4)

830  where y was avector of trait phenotypes, p was an intercept, u represented a vector of random effects
831  and & was a vector of residuals. Different vectors of y and assumptions for u and & were used across
832  eight single- and multi-environment genomic prediction models.

833  Single-environment genomic prediction. The single-environment genomic prediction models were
834  fitted after the environmental effects were accounted for during the phenotypic data analysis, a
835 process also called two-step genomic prediction. Therefore, the across-location BLUPs and location-

836 specific BLUPs acted here as phenotypes from a single environment. Four univariate prediction models
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837 and one multivariate model were implemented. First, regression with random forest (RF) was
838  performed”. In this and the following three univariate models, the response y was definedasan x 1
839 vector of the main BLUPs. The centered and scaled additive genomic matrix M, an n X m matrix for a
840  population of size n = 534 with m = 303,148 markers, was used as further input. The number of
841  treesto grow in the RF was 500 and the number of variables randomly sampled as candidates at each
842 split was (rounded down) mtry = m/3. Second, BayesCrt was applied’®, where the random marker
843  effects u = )J- za, with z;, an n X 1 vector of the number of copies of one allele at the marker k
844  and ay being the additive effect of the marker k. The prior for a; depended on the variance aﬁk and
845 the prior probability 7t that a marker k had zero effect, the priors of all marker effects having a common
846  variance agk = ¢2. The m parameter was treated as an unknown with uniform(0,1) prior. The random
847  vector of residual effects followed a normal distribution € ~ N(0, I62) withn X n identity matrix I and
848  the variance ¢2. Third, the Bayesian reproducing kernel Hilbert spaces regression (RKHS) was
849 implemented using a multi-kernel approach’. The multi-kernel model was fitted with L = 3 random
850  marker effects u = Y'¥_; u; following a distribution u ~ N(0, K;02)), with K, being the reproducing
851  kernel evaluated at the [th value of the bandwidth parameter h = {h4, ..., h;} = {0.1,0.5, 2.5} and the
852  variance gZ. For each random effect, the kernel matrix K = {K(x;,x;)} was an n X n matrix
853  K(x;x;7) = exp{—h X D;;}, where D = {Dii’ = w} was the average squared-Euclidean
854  distance matrix between genotypes, and Xx;, the element on line i (genotype i) and column k (kth
855 marker) of the centered and scaled additive genomic matrix M. The residual effect assumed
856 g~ N(O, Ia,f). Fourth, from the centered and scaled additive genomic matrix M, the genomic
857 relationship matrix G was computed as G = MM'/m and used to fit the genomic-BLUP (G-BLUP)
858  model applying a semi-parametric RKHS algorithm, with the random marker effects following
859 u~ N(0,Go?) with variance o2 and the model residuals assuming &~ N(0,Ic2)’®. Fifth, a
860 multivariate model with an unstructured covariance matrix of the random marker effect (here
861 abbreviated as MTM.UN) was fitted for chosen pairs of traits using the Bayesian multivariate Gaussian

862 model environment MTM (http://quantgen.github.io/MTM/vignette.html). The main BLUPs acted as
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863  the response y, which was a vector of length n - t with t = 2 being the number of traits used in the
864 model. The vector of the random marker effects followed u~ N(0,U @ G) where U was an
865  unstructured covariance matrix of the random marker effect with dimension t X t. Model residuals
866 assumed € ~ N(0,R ® I) with R being an unstructured covariance matrix of the residual effect. To
867  choose the pairs of traits for MTM.UN, a G-BLUP model was applied using all genotypes to estimate
868  genomic BLUPs, which were then used to obtain pairwise genomic correlations between traits. The
869 pairs with the genomic correlations larger than 0.3 were retained for the MTM.UN analysis. In case a
870  trait was included in more than one pair of traits, the result for the pair with the highest average
871 predictive ability for this trait was reported.

872 BayesCn, RKHS, G-BLUP and MTM.UN were applied with 12,000 iterations of the Gibbs sampler, a
873 thinning of 5, and a burn-in of 2,000 discarded samples. With all models, a five-fold cross-validation
874  repeated five times was performed, generating 25 estimates of prediction accuracy. The folds were
875  chosen randomly without replacement to mask phenotypes of 20% of the genotypes in each run.
876 Prediction accuracy was estimated as a Pearson correlation coefficient between phenotypes of the
877 masked genotypes and the predicted values for the same genotypes. The RF model was implemented
878 in the R package ranger”’, the models BayesCr, RKHS and G-BLUP in the R package BGLR® and the

879  MTM.UN model in the R package MTM (http://quantgen.github.io/MTM/vignette.html).

880  Multi-environment genomic prediction. Two univariate multi-environment genomic prediction
881 algorithms and one multivariate multi-environment algorithm were implemented, the response y
882 being a vector of the adjusted phenotypic values of each genotype of length n X r with r equal to the
883 number of environments (nested factor of location and year). The two univariate multi-environment

[.*2 and implemented in the R package BGLR”® were applied to

884  models reported by Lopez-Cruz et a
885  explore the effects of genotypes, environments and their interaction in genomic prediction. Of the two
886 models, the across-environment G-BLUP model (G-BLUP.E) assumed that marker effects were constant

887  across environments. The random marker effects followed u ~ N(0, Gyo2) where Gy = ] @ G, the ]

888  being an r X r matrix of ones. The model residuals assumed & ~ N(0,I52). Additionally to the
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889  constant effects of markers across environments as assumed in the previous model, the marker by
890 environment interaction G-BLUP model (G-BLUP.E.GxE) allowed the marker effects to change across
891 environments, i.e., to borrow information across environments. The random marker effects were
892  defined as u = uy + u; where ug ~ N(0, Gyo2,) and uy ~ N(0, G;) with

02,6 0 0
893 Gi=| 0 002G 0
0 0 026G

894  assuming r = 3 here for easier notation. The model residuals assumed &~ N(0,Ic2). Finally, a
895 multivariate multi-environment factor-analytic model (here abbreviated as MTM.FA) using the
896 Bayesian multivariate Gaussian model environment implemented in the R package MTM

897 (http://quantgen.github.io/MTM/vignette.html) was fitted to the data. As in the previous two models,

898  phenotypes of the same trait from multiple environments acted as response, although this model was
899  originally designed to analyze multiple traits. The traits measured at only one location during two
900  seasons (full flowering, end of flowering, fruit volume, water core frequency and water core grade)
901  were not modeled using MTM.FA because the analysis required at least three environments. The
902 vector of the random marker effects assumed u ~ N(0,C @ G) where C was anr X r covariance
903 matrix. For the factor analysis, the C = BB’ + W where B was a matrix of loadings (regressions of the
904 original random effects into common factors) and W was a diagonal matrix whose entries gave the
905 variances of environment-specific factors. The loadings were estimated for all environments and the
906  variance of the Gaussian prior assigned to the unknown loadings was set to 100. The model residuals
907  assumed & ~ N(0,R @ I) with R being an unstructured covariance matrix of the residual effect.

908  All three multi-environment genomic prediction models were applied with 12,000 iterations of the
909  Gibbs sampler, a thinning of 5 and a burn-in of 2,000 discarded samples. The folds of a five-fold cross-
910  validation were chosen randomly without replacement. The cross-validation was repeated under two
911  scenarios. In the first cross-validation scenario (CV1), the phenotypes of 20% of the genotypes were
912 masked across all environments. For the second cross-validation scenario (CV2), the phenotypes of

913 20% of the genotypes were masked across all environments except for three Swiss environments, i.e.,
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914  phenotypes of all genotypes from the environments “CHE.2018”, “CHE.2019” and “CHE.2020” were
915 used for model training. Ten traits were measured in only one location and therefore excluded from
916 CV2 (i.e., full flowering, end of flowering, fruit diameter, fruit length, maximum fruit size, fruit volume,
917  yellow color, green color, water core frequency and water core grade). Prediction accuracy was
918  estimated as a Pearson correlation coefficient between the phenotypes of the masked genotypes and
919 the predicted values for these genotypes. The correlations were estimated for each predicted
920 environment separately.

921

922 Genomic heritability

923  The BayesCnt model was applied for each trait as described before but trained with a full set of the
924  main BLUPs as response. The genomic heritability h? = Vy/(Vy + V) was estimated as the proportion
925 of phenotypic variance explained by the markers, where 1, and I, represented the amount of
926  phenotypic variance explained and unexplained by the markers, respectively’”®’. The genomic
927 heritability was calculated from the marker effects saved in each iteration and averaged over iterations
928  to obtain the mean genomic heritability per trait.

929

930 Data availability

931  All SNP genotypic data generated with the 480K array used in this study have been deposited in the
932  INRAe dataset archive (https://data.inrae.fr/) at https://doi.org/10.15454/IOPGYF. All SNP genotypic
933 data generated using the 20K array used in this study have been deposited in the INRAe dataset archive
934  at https://doi.org/10.15454/1ERHGX. The raw phenotypic data generated during the study are
935 available in the INRAe dataset archive at (TBA upon acceptance).
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