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Abstract 33 

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. The apple 34 

reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic 35 

prediction accuracy, and studying genotype by environment interactions (G×E). Here we show 36 

contrasting genetic architecture and genomic prediction accuracies for 30 quantitative traits across up 37 

to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific 38 

associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed 39 

publications. Average genomic prediction accuracies of 0.18–0.88 were estimated using single-40 

environment univariate, single-environment multivariate, multi-environment univariate, and multi-41 

environment multivariate models. The G×E accounted for up to 24% of the phenotypic variability. This 42 

most comprehensive genomic study in apple in terms of trait-environment combinations provided 43 

knowledge of trait biology and prediction models that can be readily applied for marker-assisted or 44 

genomic selection, thus facilitating increased breeding efficiency. 45 

 46 

Introduction 47 

Apple (Malus domestica Borkh.) is the third most produced fruit crop worldwide1. Since its 48 

domestication in the Tian Shan mountains of Central Asia, the cultivated apple developed into a 49 

separated near-panmictic species2. Over the centuries, thousands of apple cultivars have been raised 50 

and conserved thanks to grafting3. Extensive relatedness among cultivars with a strong influence of a 51 
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few founders through the history of apple breeding has been reported despite their high genetic 52 

diversity4-6. Only a fraction of the existing cultivars are grown commercialy3 and they require an 53 

intensive use of pesticides for crop protection. To diversify apple production, it is desirable to produce 54 

new cultivars for sustainable intensive agriculture and adapted to future climate, while remaining 55 

attractive to consumers. 56 

Apple breeding is labor- and time-intensive, but selection efficiency can be improved by integrating 57 

DNA-informed techniques into the breeding process7. Marker-assisted selection allows breeders to 58 

predict the value of a target trait based on its association with a genetic marker. The method leads to 59 

removal of inferior seedlings without phenotyping, thus reducing the labor costs when decreasing the 60 

number of individuals passing to the next selection step7. Quantitative trait locus (QTL) mapping has 61 

been traditionally used to investigate the genetic basis of variation in traits such as pathogen 62 

resistance, phenology, and some fruit quality traits8-11. To bridge the gap between the discovery of 63 

marker-trait associations and their application in breeding, protocols that transfer the knowledge 64 

obtained by QTL analyses into DNA tests were established12,13. However, marker-assisted selection in 65 

apple remains restricted to a limited number of traits associated with single genes or a handful of large-66 

effect QTL, such as pathogen resistance and fruit firmness, acidity, or color14. DNA-informed selection 67 

is rarely deployed in apple when breeding for quantitative traits with complex genetic architecture, 68 

though this task became feasible with the recent technological developments in apple genomics. 69 

In the genomics era, advancements in genotyping and sequencing technologies led to a broad range 70 

of new tools for genetic analyses. In the case of apple, several reference genomes have been 71 

produced15-19, single nucleotide polymorphism (SNP) genotyping arrays of different densities such as 72 

20K or 480K SNPs have been developed20,21, and genotyping-by-sequencing methods have been 73 

adopted22,23. Genome-wide association study (GWAS) emerged as a method for exploring the genetic 74 

basis of quantitative traits24. GWAS in apple have been used to identify associations between markers 75 

and various traits such as fruit quality and phenology traits22,23,25-29. The associations found with GWAS 76 

can be translated into DNA tests for marker-assisted selection. Besides GWAS, genomic selection was 77 
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developed to exploit the effects of genome-wide variation at loci of both large and low effect on 78 

quantitative traits using a single model30 and is sometimes called marker-assisted selection on a 79 

genome-wide scale31. For genomic selection, prediction models are first trained with phenotypic and 80 

genomic data of a training population. In a second step, the models predict the performance of 81 

breeding material based on the genomic data alone. These genomic estimated breeding values are 82 

then used to make selections among the breeding material, thus increasing the breeding efficiency and 83 

genetic gain. Several studies have assessed genomic prediction accuracy for apple quantitative traits 84 

related to fruit quality and phenology22,23,29,32-36. Genomic selection can double genetic gain, as 85 

demonstrated by yield traits in dairy cattle37, but the accuracy of genomic prediction for yield traits in 86 

apple has not been studied. Analyses of genomic datasets beyond 100K SNPs have been limited to 87 

flowering and harvest time (GWAS and genomic prediction)26,36, fruit firmness and skin color 88 

(GWAS)28,38. Marker density, trait architecture, and heritability have been shown to differentially affect 89 

prediction performance in simulated data and for apple34,36,39 and their impact on genomic analyses 90 

should therefore be further empirically tested. Moreover, GWAS for the same traits measured at 91 

different locations, the effect of genotype by environment interaction (G×E) on genomic prediction 92 

accuracy, and predictions with multivariate genomic prediction models have not been evaluated yet 93 

in apple. 94 

Plants are known for their strong phenotypic response to environmental factors, a phenomenon 95 

regularly tested in plant breeding using multi-environment trials. In general, when statistical models 96 

are applied to measurements from multi-environment trials, the effect of environment on individuals 97 

remains constant at single locations, but the G×E leads to changes in the ranking of genotypes across 98 

locations. With an increasing proportion of G×E effect relative to genotypic effect, both heritability and 99 

response to selection decrease40. A noticeable effect of contrasting European environments and G×E 100 

on two apple phenology traits – floral emergence and harvest date – has been reported, which 101 

demands testing the multi-environment modelling approaches in apple36. A location-specific GWAS 102 

may be used to identify loci with stable effects across environments and loci specific to individual 103 
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locations41. Multi-environment prediction models can account for G×E by explicitly modeling 104 

interactions between all available markers and environments42. Borrowing information from other 105 

genotypes across environments through markers, the G×E method can outperform more simple 106 

modelling approaches that ignore G×E42-44. Additionally, taking advantage of information that traits 107 

provide about one another, a multivariate (also called multi-trait) genomic prediction can be applied. 108 

This method may be useful in case the assessment of one trait remains costly, but another correlated 109 

trait with less expensive measurement is available or can be assessed more easily45. The multivariate 110 

prediction can also be extended to a multi-environment approach when treating measurements from 111 

different environments as distinct traits46. 112 

A population of 269 diverse apple accessions from across the globe and 265 progeny from 27 parental 113 

combinations originating in recent European breeding programs constitutes our apple reference 114 

population (apple REFPOP)36. The apple REFPOP has a high-density genomic dataset of 303K SNPs and 115 

was deemed suitable for the application of genomics-assisted breeding36. Combined with extensive 116 

phenotypic information, the apple REFPOP provides the groundwork for marker-assisted and genomic 117 

selection across contrasting European environments. Hence, 30 traits related to productivity, tree 118 

vigor, phenology, and fruit quality were measured in the apple REFPOP during up to three years and 119 

at up to six locations with various climatic conditions of Europe (Belgium, France, Italy, Poland, Spain, 120 

and Switzerland). First, GWAS was performed to dissect the genetic architecture of the studied traits, 121 

identify associated loci stable across locations and location-specific loci, and to observe signs of 122 

selection on loci of large effect. Second, this study aimed to measure prediction accuracy for these 123 

traits using single-environment univariate, single-environment multivariate, multi-environment 124 

univariate, and multi-environment multivariate genomic prediction models. Finally, a critical analysis 125 

of our results provided recommendations for future implementation of genomic prediction tools in 126 

apple breeding. 127 

 128 

Results 129 
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Phenotypic data analysis 130 

The accession and progeny groups of the apple REFPOP were evaluated for 30 quantitative traits at up 131 

to six locations. The measurements for ten traits were collected at one location, while the remaining 132 

20 traits were available from at least two locations (three traits were measured in two locations, three 133 

traits in four locations, eleven traits in five locations and three traits in six locations, Supplementary 134 

Table 1). Most traits (25) were assessed during three seasons while five traits were measured during 135 

two seasons (Supplementary Table 1). Accounting for environmental effects in the phenotypic data, 136 

BLUPs of traits (best linear unbiased prediction of random effects of genotypes, see Equation 1) were 137 

produced across all locations and separately for each location. The traits showed unimodal as well as 138 

multimodal distributions (Supplementary Figure 1). Differences of various extent between the 139 

accession and progeny groups were observed (Supplementary Figure 2). As expected, high phenotypic 140 

and genotypic correlations (>0.7) between traits were observed within trait categories, namely the 141 

phenology, productivity, fruit size, outer fruit, inner fruit, and vigor category (Figure 1a). A few 142 

moderate positive phenotypic correlations (0.3–0.7) were found between trait categories such as 143 

harvest date and fruit firmness (0.51), yellow color and russet cover (0.55), soluble solids content and 144 

russet cover (0.36), or between yield (weight and number of fruits) and vigor trait category (0.36–0.51, 145 

Figure 1a). High average correlations were observed between the environments (combinations of 146 

location and year) for harvest date (0.82 [0.73, 0.95]) or red over color (0.80 [0.62, 0.92]) whereas low 147 

average correlations (<0.3) were present between environments for flowering intensity (0.18 [-0.49, 148 

0.68]) and trunk increment (0.16 [-0.31, 0.55], Supplementary Table 2, Supplementary Figure 3). A shift 149 

of the progeny group compared to the accession group towards smaller, more numerous and less 150 

russeted fruits was observed (Figure 1b). 151 

 152 
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 153 

Figure 1: Exploratory phenotypic data analysis of the studied quantitative apple traits. a Pairwise 154 

correlations between traits with the phenotypic and genomic correlations in the lower and upper 155 

triangular part, respectively. Phenotypic correlation was assessed as Pearson correlation between 156 

pairs of across-location BLUPs, the genomic correlation as Pearson correlation between pairs of 157 
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genomic BLUPs estimated from a G-BLUP model. Trait categories are outlined along the vertical axis. 158 

b Principal component analysis biplot based on across-location BLUPs of apple traits with the addition 159 

of location-specific BLUPs for traits measured at a single location. 160 

 161 

Genome-wide association studies 162 

Across-location GWAS for 20 traits measured at more than one location (Supplementary Table 1) and 163 

location-specific GWAS for all 30 traits were used to explore the genetic basis of the assessed traits. 164 

The quantile-quantile plots showed that the observed and expected distributions of p-values 165 

corresponded well and no apparent inflation of p-values was found (Supplementary Figure 4 and 5). 166 

Across-location GWAS revealed 59 significant (−𝑙𝑜𝑔ଵ଴(𝑝) > 6.74) marker-trait associations in 18 traits 167 

(Figure 2a, Supplementary Table 3). No significant associations were observed for trunk diameter and 168 

russet cover in the across-location GWAS. In the location-specific GWAS, 309 significant marker-trait 169 

associations for all 30 traits were discovered (Figure 2b, Supplementary Table 3). Of these 309 marker-170 

trait associations, 32 associations for twelve traits were shared between the location-specific GWAS 171 

and the across-location GWAS (Supplementary Table 3). The coefficient of determination (𝑅ଶ) of 172 

significant associations was the largest for red over color (0.71), green color (0.55) and harvest date 173 

(0.42, Figure 2c, Supplementary Table 3). 174 

Significant associations with different traits co-localized at identical positions or occurred very close in 175 

some genomic regions (distance between marker positions below 100 kb, Figure 2c, Supplementary 176 

Table 3). In the across-location GWAS, a marker significantly associated with harvest date on 177 

chromosome 3 (position 30,681,581 bp) was located next to two markers associated with fruit firmness 178 

(positions 30,587,378 and 30,590,166 bp). The same marker on the position 30,681,581 bp was also 179 

associated with harvest date, ground color, overall russet frequency and soluble solids content 180 

measured at several different locations (location-specific GWAS). Similarly, the association with 181 

harvest date on chromosome 16 (position 9,023,861 bp) was closely located to a marker associated 182 

with fruit firmness (position 8,985,888 bp) in the across-location GWAS. The traits related to bitter pit 183 
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analyzed in the across-location GWAS, i.e., bitter pit frequency and grade, showed significant 184 

associations on chromosome 16, position 7,681,416 bp. Several associations with traits measuring fruit 185 

skin russet in the across-location GWAS co-localized on chromosome 12 (position 23,013,281 bp, 186 

russet frequency on cheek and in the eye) and 17 (position 27,249,890 bp, overall russet frequency 187 

and russet frequency at stalk). A marker at position 18,679,105 bp on chromosome 1 was associated 188 

with both single fruit weight from the across-location GWAS and fruit diameter from Switzerland 189 

(found with the location-specific GWAS). The association with marker at position 2,005,502 bp on 190 

chromosome 8 was shared between fruit diameter and fruit volume from Switzerland and single fruit 191 

weight from Belgium. On chromosome 11, fruit diameter, fruit volume and single fruit weight from 192 

Switzerland, as well as single fruit weight from Belgium, shared the association at position 18,521,895 193 

bp. Additionally, position 3,622,193 bp on chromosome 11 was shared between the associations of 194 

fruit length and single fruit weight from Switzerland. For red over color and green color, the association 195 

with a marker on chromosome 9 (position 33,799,120 bp) occurred in across-location and four 196 

location-specific GWAS, while a close marker (position 33,801,013 bp, less than 2kb away) was 197 

associated in the two other location-specific GWAS. Additional significant marker-trait associations 198 

occurred in the same genomic regions among the location-specific GWAS and between the across-199 

location and location-specific GWAS (Supplementary Table 3). 200 

Previous reports on QTL mapping and GWAS in apple were extensively reviewed and 41 publications 201 

reporting on traits measured similarly to our own were found and taken for comparison 202 

(Supplementary Table 4). The QTL positions from literature and the marker-trait associations found in 203 

this study were assigned to chromosome segments (top, center, and bottom of a chromosome). 204 

Unique segment-trait combinations were discovered in the literature (166), in the across-location 205 

GWAS (52) and in the location-specific GWAS (172, 206 

 Figure 3a). Out of all segment-trait combinations across our GWAS, 30.8% overlapped with the 207 

previously published results of QTL mapping or GWAS and the rest (69.2%) were novel. All previously 208 

published segment-trait combinations for the trait groups bitter pit and trunk were also detected in 209 
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our study, whereas no overlap between the former and present associations was found for ground 210 

color and sugar trait groups (Figure 3b, Supplementary Figure 6). 211 

 212 

 213 

Figure 2: Significant marker-trait associations found by GWAS. a Distribution of the significant 214 

associations and corresponding p-values from across-location GWAS over the 17 apple chromosomes. 215 

b Distribution of the significant associations and corresponding p-values from location-specific GWAS 216 

over the 17 apple chromosomes. Locations are labeled as BEL (Belgium), CHE (Switzerland), ESP 217 

(Spain), FRA (France) and ITA (Italy). a-b Size of the symbols indicate the −𝑙𝑜𝑔ଵ଴(𝑝). The x-axis shows 218 

chromosome numbers. c Physical positions (in bp) of the significant associations on chromosomes with 219 

their respective coefficients of determination (𝑅ଶ) from the across-location GWAS complemented with 220 

the location-specific GWAS for traits measured at a single location. Size of the symbols indicate the 𝑅ଶ. 221 

The x-axis shows chromosome numbers. 222 

 223 
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 224 

Figure 3: Comparison of the significant marker-trait associations with previously published 225 

associations. a Venn diagram comparing the unique associations, which were either previously 226 

published (former), reported in the across-location GWAS (present) or the location-specific GWAS 227 

(present per location). Color intensity and the values reflect the number of associations per diagram 228 

area. b Scatterplot of unique associations comparing published associations (former) with the merged 229 

across-location and location-specific GWAS (present). The traits were assembled into trait groups 230 

based on their similarity. Symbol size reflects the number of markers used in the studies. In case more 231 

than one publication reported an association in the same chromosome segment, only the report with 232 

the largest number of markers is shown (see Supplementary Table 4 for the complete list of previously 233 

published associations). a-b Positions of associations were assigned to three chromosome segments: 234 

top, center and bottom. Only the unique combinations of trait groups with segments and type of study 235 

(former or present) are shown. 236 

 237 

Allele frequency dynamics over generations 238 

Eleven major significant marker-trait associations (𝑅ଶ>0.1) were identified in the global GWAS results 239 

(across-location GWAS with the addition of location-specific GWAS for traits measured at a single 240 

location only, Figure 4). Among these major associations, changes in the frequency of alleles with an 241 

increasing effect on trait phenotypes were quantified in 30 ancestral accessions (five ancestor 242 

generations of the progeny group, Supplementary Table 5) and all 265 progenies included in the apple 243 

REFPOP (Figure 4a). Compared to the ancestral accessions, the frequency of the allele with an 244 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

increasing effect on phenotype (Figure 4c) was higher in the progeny for the alleles associated with 245 

later harvest date and increased flowering intensity, titratable acidity, fruit firmness and trunk 246 

increment (Figure 4a). For the marker associated with green color and red over color, the allele 247 

frequencies were equivalent for ancestors and progeny, which reflected the minor allele frequency of 248 

nearly 0.5 for both traits (Figure 4b,d). Noticeably, at the markers closely associated with harvest date 249 

and fruit firmness on chromosome 3, the allele associated with later harvest date and firmer fruits was 250 

fixed in all progeny, while the allele with a decreasing effect on the phenotype was present with a 251 

frequency below 0.1 in the whole apple REFPOP (Figure 4a-d). The allele associated with larger trunk 252 

increment on chromosome 1 was found in progeny known to segregate for Rvi6, and it was present in 253 

only two accessions (‘Prima’ and X6398) that are also known to carry the apple scab resistance gene 254 

Rvi6, which is located about 1.8 Mb from the SNP associated with trunk increment (Figure 4b-c). The 255 

remaining associations (𝑅ଶ≤0.1) reported by the global GWAS showed various trends in allele 256 

frequencies across generations such as increased frequency of alleles associated with increased weight 257 

of fruits in the progeny (Supplementary Figure 7). The individual parental combinations of the progeny 258 

group were often fixed for single alleles (Figure 4b, Supplementary Figure 8). Boxplots of the across-259 

location BLUPs against the dosage of the reference allele (0, 1, 2) for the eleven major significant 260 

marker-trait associations showed additive effects of the alleles on phenotypes (Supplementary Figure 261 

9). Squared Pearson’s correlations in a window of ~3,000 markers surrounding each of the major 262 

significant marker-trait associations showed that markers in linkage disequilibrium extended over 263 

larger distances around some marker-trait associations (Supplementary Figure 10). When visually 264 

compared with other loci, the associations with harvest date and fruit firmness on chromosome 3 as 265 

well as red over color and green color on chromosome 9 were found in genomic regions of the highest 266 

linkage disequilibrium between markers (Supplementary Figure 10). The markers associated with trunk 267 

increment and Rvi6 also showed signs of linkage disequilibrium (Supplementary Figure 10). 268 

 269 
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 270 

Figure 4: Allele frequency dynamics of the major significant marker-trait associations. a-d The 271 

associations were chosen based on the coefficient of determination (𝑅ଶ>0.1) from the global GWAS. a 272 

For each association, frequency of the allele with increasing effect on trait phenotypes in the apple 273 

REFPOP is shown. For the progeny group (progeny) and its five ancestor generations (ancestors), the 274 

allele frequencies are shown as points connected with a line. Out of all known ancestors, the allele 275 

frequency was estimated for 30 accessions included in the apple REFPOP. Colors of the points and lines 276 

correspond to chromosome locations of the associated SNPs. b Allelic combinations carried by the 277 

apple REFPOP genotypes, sorted according to geographic origin of accessions and affiliation of progeny 278 

to parental combinations (the x-axis was labeled according to Supplementary Table 1 and 2 in Jung et 279 

al.36). c Phenotypic BLUPs of traits and their standard error for each allelic combination, centered to 280 

mean 0 and scaled to standard deviation of 1. d Frequency of the minor allele in the whole apple 281 

REFPOP. b-d The legend and y-axis are shared between plots. In d, the color of an allele corresponds 282 

to the color of the homozygous allelic combination of the same allele in b and c. 283 

 284 

Genomic prediction 285 

Four single-environment univariate prediction models – random forest (RF), BayesCπ, Bayesian 286 

reproducing kernel Hilbert spaces regression (RKHS) and genomic-BLUP (G-BLUP) – and a single-287 

environment multivariate model with an unstructured covariance matrix of the random marker effect 288 

(MTM.UN) were compared using across-location BLUPs and location-specific BLUPs as phenotypes 289 

from a single environment. Among these models, the average prediction accuracies per trait (𝑟̅௧) 290 
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ranged between 0.18 for russet cover and 0.88 for red over color, both extreme values observed with 291 

RF (Supplementary Table 6). The prediction accuracies estimated for G-BLUP were further used as 292 

reference for model comparisons due to its widespread use in genomic prediction. When the 293 

prediction accuracy of the G-BLUP model was averaged over all traits (𝑟̅), the obtained 𝑟̅ was equal to 294 

0.50. The RF showed an 𝑟̅௧ higher than G-BLUP for 9 out of 30 traits and an 𝑟̅ of 0.49. BayesCπ, RKHS 295 

and MTM.UN showed an 𝑟̅ of 0.50, 0.51 and 0.50 and exceeded 𝑟̅௧ of G-BLUP in one, twelve and ten 296 

traits, respectively. Generally, a similar performance of all five models was observed (Figure 5a). 297 

When compared with the baseline model G-BLUP, the single-environment multivariate model 298 

MTM.UN showed an improved prediction accuracy for several traits when they were modelled in 299 

combination with a correlated trait (genomic correlation larger than 0.3, Figure 5a, Supplementary 300 

Table 6). The inclusion of floral emergence as correlated trait improved 𝑟̅௧ of full flowering and end of 301 

flowering. A combination with weight of fruits improved 𝑟̅௧ of flowering intensity. Fitting the model 302 

using fruit length showed an increased 𝑟̅௧ of single fruit weight and using single fruit weight led to an 303 

increase in 𝑟̅௧ for fruit diameter, fruit length, maximum fruit size and fruit volume. Using soluble solids 304 

content resulted in an increase of 𝑟̅௧ for russet cover, while using russet frequency at cheek led to an 305 

improved 𝑟̅௧ of russet frequency at stalk. Prediction accuracies for all possible combinations of 306 

correlated traits can be found in Supplementary Table 7. 307 

Two multi-environment univariate models – across-environment G-BLUP (G-BLUP.E) and marker by 308 

environment interaction G-BLUP (G-BLUP.E.G×E) – and the multi-environment multivariate factor-309 

analytic model (MTM.FA) were compared using two cross-validation scenarios corresponding to 310 

different experimental scenarios. In the first cross-validation scenario (CV1), traits were predicted for 311 

20% of genotypes in each environment (i.e., their phenotypes were masked in all environments for 312 

model training). In the second cross-validation scenario (CV2), traits were predicted for 20% of 313 

genotypes in all but the Swiss environments (i.e., for these genotypes the environments “CHE.2018”, 314 

“CHE.2019” and “CHE.2020” were retained for model training). For the models applied with CV1, the 315 

𝑟̅௧ ranged between 0.13 (for russet frequency in the eye obtained with MTM.FA) and 0.70 (for harvest 316 
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date estimated with G-BLUP.E.G×E, Supplementary Table 6). With CV2, the lowest 𝑟̅௧ of 0.29 was 317 

measured for trunk increment with G-BLUP.E.G×E and the maximum 𝑟̅௧ of 0.86 was found for harvest 318 

date with both G-BLUP.E and G-BLUP.E.G×E models (Supplementary Table 6). The prediction 319 

performance of G-BLUP.E, G-BLUP.E.G×E and MTM.FA was generally lower under CV1 than under CV2 320 

(Figure 5b, Supplementary Table 6). For all traits, the G-BLUP.E.CV1, G-BLUP.E.G×E.CV1 and 321 

MTM.FA.CV1 showed lower 𝑟̅௧ than the single-environment G-BLUP, the 𝑟̅ being equal to 0.40, 0.40 322 

and 0.36, respectively. The G-BLUP.E.G×E.CV1 performed better than G-BLUP.E.CV1 for 14 out of 30 323 

traits. The G-BLUP.E.CV2 and G-BLUP.E.G×E.CV2 outperformed G-BLUP for 13 out of 20 traits. The G-324 

BLUP.E.CV2 and G-BLUP.E.G×E.CV2 both showed 𝑟̅ equal to 0.57. The increase in 𝑟̅௧ from G-BLUP to G-325 

BLUP.E.CV2 (0.35) as well as from G-BLUP to G-BLUP.E.G×E.CV2 (0.36) was the most pronounced for 326 

russet cover. The performance of G-BLUP.E.CV2 and G-BLUP.E.G×E.CV2 remained below the level of 327 

G-BLUP predictions for productivity traits (flowering intensity, weight and number of fruits), ground 328 

color, soluble solids content, fruit firmness and trunk increment. The G-BLUP.E.G×E.CV2 performed 329 

better than G-BLUP.E.CV2 for 8 out of 20 traits. The 𝑟̅ of MTM.FA.CV2 was equal to 0.52 and therefore 330 

similar to G-BLUP, however, the model outperformed G-BLUP for nine out of 20 predicted traits 331 

(Supplementary Table 6). The MTM.FA showed higher prediction accuracy than both G-BLUP.E and G-332 

BLUP.E.G×E for two traits under CV1 and five traits under CV2 (Supplementary Table 6). 333 

Across all model groups, the best prediction performance was found for harvest date, green color and 334 

red over color (Figure 5, Supplementary Table 6). The lowest prediction accuracy was found for traits 335 

related to bitter pit and russet as well as yellow color. Additionally, the prediction accuracy for 336 

flowering intensity and trunk increment with the multi-environment models remained strongly below 337 

the 𝑟̅௧ of the corresponding single-environment models. 338 

 339 
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 340 

Figure 5: Genomic prediction accuracy in apple quantitative traits using eight genomic prediction 341 

models and two cross-validation scenarios. a Prediction accuracy of four single-environment 342 

univariate models, i.e., random forest (RF), BayesCπ, Bayesian reproducing kernel Hilbert spaces 343 

regression (RKHS) and genomic-BLUP (G-BLUP), and one single-environment multivariate model with 344 

an unstructured covariance matrix of the random marker effect (MTM.UN). The models were applied 345 
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with a five-fold cross-validation where 20% of the genotypes were masked in each of the five runs. The 346 

MTM.UN was used in case a trait showed genomic correlation larger than 0.3 with at least one other 347 

trait. b Prediction accuracy of two multi-environment univariate models, i.e., across-environment G-348 

BLUP (G-BLUP.E) and marker by environment interaction G-BLUP (G-BLUP.E.G×E), and the multi-349 

environment multivariate factor-analytic model (MTM.FA). The models were applied under two five-350 

fold cross-validation scenarios CV1 and CV2. The CV1 was applied for all traits using G-BLUP.E and G-351 

BLUP.E.G×E and for traits measured in at least three environments using MTM.FA. The CV2 was applied 352 

for traits measured in Switzerland and in at least a one other location. a-b Prediction accuracy was 353 

estimated as a Pearson correlation coefficient between the observed and the predicted values of 354 

genotypes whose phenotypes were masked in a five-fold cross-validation. For the multi-environment 355 

models, the correlation coefficients were estimated for each environment separately. In the box plot, 356 

the bottom and top line of the boxes indicate the 25th percentile and 75th percentile quartiles (the 357 

interquartile range), the center line indicates the median (50th percentile). The whiskers extend from 358 

the bottom and top line up to 1.5-times the interquartile range. The points beyond the 1.5-times the 359 

interquartile range from the bottom and top line are labeled as dots. 360 

 361 

Synthesis of phenotypic and genomic analyses  362 

The across-environment clonal mean heritability was generally very high in the evaluated traits, the 363 

value being close to one for harvest date and red over color and not lower than 0.80 for all the other 364 

traits with the exception of full flowering (0.74), end of flowering (0.79) and water core grade (0.79, 365 

Figure 6, Supplementary Table 6). The genomic heritability, which is the proportion of phenotypic 366 

variance explained by the markers, was larger than 0.80 for harvest date, floral emergence, green color 367 

and red over color, the value was not lower than 0.40 for all the other traits with the exception of 368 

bitter bit frequency (0.33) and grade (0.39, Figure 6, Supplementary Table 6). 369 

The effects of genotype and significantly associated markers together explained a substantial part of 370 

the phenotypic variance of traits, the largest sums of these genotypic effects were observed for harvest 371 
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date (82.8%) and red over color (74.6%, Figure 6, Supplementary Table 6). Altogether, the sum of the 372 

genotypic effects explained a very low proportion of the total variance for floral emergence (13.1%), 373 

flowering intensity (11.4%), trunk diameter (10.9%) and trunk increment (8.7%). The major proportion 374 

of the phenotypic variance was explained by the effect of environment for floral emergence (73.9%) 375 

and trunk diameter (66.3%). The lowest impact of environment was found for traits measured at only 376 

one location over two or three years such as fruit diameter or water core frequency, both showing an 377 

effect of environment (i.e., year) below 1%. The effect of G×E was the most pronounced for 378 

productivity traits, i.e., flowering intensity (23.7%), weight of fruits (20.8%) and number of fruits 379 

(21.6%).. The proportion of the G×E effect was the lowest for harvest date (4.7%), floral emergence 380 

(5.2%), red over color (5.9%) and trunk diameter (4.2%) among the traits measured at more than one 381 

location and for end of flowering (5.7%), fruit volume (5.9%) and green color (3.9%) among the traits 382 

measured at one location. A high proportion of the phenotypic variance remained unexplained by the 383 

model parameters for flowering intensity (47.5%), bitter pit grade (53.4%) and trunk increment 384 

(55.1%). 385 

Hierarchical clustering of the phenotypic variance components revealed three clusters of traits (Figure 386 

6). A strong genotypic effect and a comparably low effect of environment and G×E was observed for 387 

13 traits assigned to the cluster one. Most of the phenotypic variance was explained by the effect of 388 

environment in floral emergence and trunk diameter, which were grouped in cluster two. Finally, 15 389 

traits with a pronounced effect of environment and/or G×E were grouped in cluster three. 390 
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 391 

Figure 6: Synthesis of phenotypic and genomic analyses. Across-environment clonal mean heritability, 392 

genomic heritability, average prediction accuracy (𝑟̅௧) for the single-environment G-BLUP and the 393 

proportion of phenotypic variance explained by the effect of each significantly associated marker (SNP 394 

1–8), genotype (G), environment (E) and genotype by environment interaction (G×E). The significantly 395 

associated markers corresponded to results of the global GWAS. Phenotypic variance components 396 

were used to estimate clusters of traits outlined along the vertical axis. Within each cluster, the traits 397 

were sorted according to 𝑟̅௧. 398 

 399 
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Discussion 400 

Discovered loci overlap between association studies and traits. Our GWAS permitted to enlighten the 401 

architecture of analyzed traits as well as the identification of numerous marker-trait associations stable 402 

across, and specific to, the locations of the apple REFPOP. The particular design of the experiment, 403 

including the diversity of the plant material used (accessions and small progeny groups), multiple 404 

locations, and multiple years of evaluation, resulted in about two thirds of the discovered associations 405 

being novel when compared with the loci published in studies spanning more than two decades. Our 406 

study design also allowed us to replicate the identification of many previously known loci associated 407 

with the studied traits. 408 

The association of one locus with two or more seemingly independent traits (i.e., caused by pleiotropy) 409 

and linkage disequilibrium between loci associated with different traits are frequent for complex 410 

traits47. The GWAS performed in this study showed several marker-trait associations at identical or 411 

close positions for different traits. The interdependency between harvest date and fruit firmness, 412 

which can be also observed empirically for early cultivars that soften more, may be an example of 413 

pleiotropy or linkage disequilibrium between loci. Harvest date and fruit firmness are known to be 414 

regulated by ethylene production48 and associated with loci present on chromosomes 3 (NAC18.1), 10 415 

(Md-ACO1, Md-PG1), 15 (Md-ACS1) and 1622,49-52. 416 

In this work, closely located (distance <100 kb) associations with both harvest date and fruit firmness 417 

were found on chromosome 3. Migicovsky et al.22 reported an overlap between associations with 418 

harvest time and fruit firmness on chromosome 3 falling within the coding region of NAC18.1. The 419 

authors hypothesized that the lack of associations on other chromosomes was likely due to low SNP 420 

density around the causal loci (the study used a GBS-derived 8K SNP dataset). The larger number of 421 

associations reported here might be a result of the high SNP density (303K SNPs) deployed in GWAS, 422 

however, not all previously reported loci were re-discovered. 423 

The SNPs associated with harvest date and fruit firmness on chromosome 10 were further apart (~6 424 

Mb). For harvest date, one of the associations on chromosome 10 was stable across locations and 425 
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several associations were location specific. However, the association on chromosome 10 with fruit 426 

firmness was found for the Italian location only. It has been shown that chromosome 10 contains more 427 

than one QTL controlling fruit firmness49-51, but stable across-location association with fruit firmness 428 

on chromosome 10 was missing in our study. One of the known loci on chromosome 10, the Md-PG1 429 

gene, is responsible for the loss of fruit firmness after storage51,53. In apple REFPOP, fruit firmness was 430 

measured within one week after the harvest date and this very short storage period might have 431 

contributed to the less pronounced effect of the locus Md-PG1 in our GWAS. 432 

Two associations with harvest date measured in Italy but no association with fruit firmness were found 433 

on chromosome 15. Although a marker for Md-ACS1 related to ethylene production was previously 434 

mapped on chromosome 1550, and QTL for fruit firmness was discovered on the same chromosome49, 435 

these markers did not co-locate, but rather, mapped at the opposite extremes of chromosome 1549,50. 436 

Likewise, the connection between harvest date and fruit firmness on chromosome 15 could not be 437 

confirmed here. 438 

Our GWAS showed associations with harvest date and fruit firmness on chromosome 16, which were 439 

located 38 kb apart. In the past, loci associated with harvest date and fruit firmness have been reported 440 

in the same region on chromosome 1626,49. The role of this locus in the regulation of harvest date and 441 

fruit firmness remains unknown and requires further research. 442 

In practice, ripeness of fruit (harvest date) is decided based on ground color and starch content. The 443 

GWAS results showed that the association on chromosome 3 was not only found for harvest date and 444 

nearby markers associated with fruit firmness, but also corresponded to associations with ground color 445 

and soluble solids content. This might be explained by the fact that these traits are used to define 446 

ripeness and thus harvest date. Further, the association of the NAC18.1 locus on chromosome 3 with 447 

overall russet frequency would support the known enhanced expression of NAC transcription factors 448 

in russet skin54. 449 

Co-localizations between associations found for different measures of bitter pit on chromosome 16, 450 

russet on chromosomes 12 and 17, fruit size on chromosomes 1, 8 and 11, and skin color on 451 
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chromosome 9 are likely the result of relatedness among trait measurements. The measures that are 452 

easiest to score can be used in future to phenotype these traits. 453 

Signs of selection in marker-trait associations of large effect. The design of apple REFPOP allowed for 454 

the discovery of major marker-trait associations and for the analysis of changes in allele frequency 455 

between 30 ancestral accessions and 265 progeny included in the apple REFPOP. Comparing ancestors 456 

with the progeny, higher frequencies of the alleles associated with later harvest date and increased 457 

flowering intensity, titratable acidity, fruit firmness and trunk increment were found for the progeny. 458 

Of these traits, harvest date and fruit firmness are correlated, probably due to pleiotropy or linkage 459 

disequilibrium of causal loci, as it was shown in this and previous studies22. Consequently, the 460 

consistently higher frequency of alleles contributing to later harvest and firmer apples in the progeny 461 

is because the softening of harvested apples is undesirable and likely selected against55. Signs of 462 

selection for increased firmness were also recently found in USDA germplasm collection5. Our study 463 

also showed fixation of the late-harvest and high-firmness alleles on chromosome 3 in the whole 464 

progeny group, which suggests a loss of genetic diversity in the modern breeding material at this locus. 465 

For flowering intensity, a trait positively correlated with apple yield, a new locus was discovered on 466 

chromosome 14. The increased frequency of the allele contributing to higher flowering intensity in the 467 

progeny, its presence in all parental genotypes, and fixation in some parental combinations may be 468 

the result of breeding for high yield. The major locus found for acidity on chromosome 16 was 469 

consistent with the Ma locus frequently detected in various germplasm8,11. The total number of the 470 

high-acidity alleles for Ma and Ma3, which is another regularly detected acidity locus, was shown to 471 

be higher in parents of a European breeding program (Better3fruit, Belgium) than in parents used in 472 

the USDA breeding program11,56. The desired acidity level might depend on local climate of the 473 

breeding program and market preferences56. The increase in frequency of the allele contributing to 474 

higher acidity in the progeny may indicate a current preference towards more acidic apples in 475 

European breeding, but further investigation is needed to clarify the trend. The last locus of large effect 476 

showing allele frequency dynamics between generations was found for trunk increment. The allele 477 
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associated with an increase in trunk increment may have been selected in the progeny due to its 478 

potential impact on productivity suggested by moderate positive correlations between tree vigor 479 

(trunk diameter and increment) and yield-related traits. Additionally, the marker associated with trunk 480 

increment was 1.8 Mb apart from a SNP marker associated with Rvi6 gene responsible for resistance 481 

against apple scab10. These two markers (AX-115183752 for trunk increment and AX-115182989 (also 482 

called Rvi6_42M10SP6_R193) for apple scab) showed a correlation of 0.15 and occurred within a 483 

region of increased linkage disequilibrium between markers (Supplementary Figure 10). All accessions 484 

were homozygous for the reference allele of AX-115183752 associated with decreased trunk 485 

increment (Figure 6c) except for ‘Prima’ and X6398, which were heterozygous. The scab-resistant 486 

accessions ‘Prima’ and X6398 (which is a second-generation offspring of ‘Prima’57) but also ‘Priscilla-487 

NL’ (known to be heterozygous for Rvi658), were also heterozygous for AX-115182989. All other 488 

accessions were homozygous for the reference allele not associated with Rvi6. The allele on 489 

chromosome 1 associated with increased trunk increment may have been co-selected with the Rvi6 490 

locus responsible for resistance against apple scab. 491 

Signs of intense selection for red skin were recently detected in the USDA germplasm collection when 492 

compared with progenitor species of the cultivated apple5. Our results show that the associations with 493 

red over color and green color, which phenotypically mirrored red over color and was associated with 494 

the same marker, did not show changes in allele frequency between ancestors and progeny included 495 

in the apple REFPOP. Some parental combinations showed almost exclusively the allele increasing red 496 

skin color, other parental combinations exhibited a lack of the allele. This uneven distribution of the 497 

alleles in the progeny group pointed to different directions of selection for fruit skin color in the 498 

European breeding programs (Figure 4b). 499 

Performance of the single-environment univariate genomic prediction models. Single-environment 500 

univariate genomic prediction models were applied to individual traits after accounting for 501 

environmental effects and averaging across locations and/or years. The observed small differences 502 

between genomic prediction accuracies of various models (Figure 5a) were in accordance with 503 
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previous model comparisons where distinctions among models were negligible39,59. The largest 504 

extremes in prediction accuracy between traits were found with random forest, which allowed for the 505 

overall highest prediction accuracy among all compared models for red over color. The explanation for 506 

the striking performance of random forest for red over color might be found in the results of our GWAS. 507 

This trait of oligogenic architecture was associated with a few low-effect loci and one locus of large 508 

effect explaining 61% of the red over color phenotypic variance measured in the apple REFPOP. High 509 

correlations between many markers, i.e., linkage disequilibrium, were found in the vicinity of the large-510 

effect locus (Supplementary Figure 10). Random forest is known to assign higher importance to 511 

correlated predictor variables (here the markers) in the tree building process60, which may have 512 

contributed to the particularly high prediction accuracy found for red over color with random forest. 513 

The prediction accuracy for red over color reached ~0.4 in several former prediction studies22,23,29,34 514 

and was approximately doubled in our work, which demonstrated the potential of the current study 515 

design for accurate genomic predictions. For harvest date, the currently reported prediction accuracy 516 

of 0.78 was only slightly higher than the accuracy of 0.75 obtained with the initial apple REFPOP dataset 517 

measured during one year36, but these accuracies showed a considerable improvement over other 518 

accuracies of approximately 0.5–0.6 reported elsewhere22,23,29. As shown before36, these results 519 

underline the suitability of apple REFPOP design for the application of genomic prediction. 520 

Prediction accuracy for traits such as yellow color or russet cover were on the opposite side of the 521 

spectrum when compared to harvest date and red over color. The prediction accuracy of yellow color 522 

and russet cover was low, although the genotypic effects explained 45% and 47% of the phenotypic 523 

variance, respectively. The across-environment clonal-mean heritability of russet cover was high 524 

(0.97), while the heritability for yellow color was slightly lower (0.81, Figure 6). Yellow color showed a 525 

moderate phenotypic correlation of 0.55 with russet cover, suggesting that the phenotyping device 526 

might have classified some russet skin as yellow color. Symptoms of powdery mildew could have been 527 

misinterpreted as russet skin. The decreased performance of genomic prediction models might stem 528 
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from  inaccurate phenotyping methods, insufficient SNP density in the associated regions, or other 529 

factors, all of which could not be explained in this work. 530 

Role of genotype by environment interactions in multi-environment univariate genomic prediction. 531 

The multi-environment univariate genomic prediction models either directly estimated environmental 532 

effects (across-environment G-BLUP, called here G-BLUP.E) or additionally borrowed genotypic 533 

information across environments and thus considered the G×E (marker by environment interaction G-534 

BLUP, called here G-BLUP.E.G×E)42. The average accuracy of the G-BLUP.E.G×E model across traits was 535 

only slightly higher than the accuracy of the G-BLUP.E. In contrast, the G-BLUP.E.G×E model had 536 

substantially greater prediction accuracy than the G-BLUP.E model when applied in wheat42. In the 537 

latter study, a productivity trait was measured under simulated conditions of mega-environments and 538 

the effect of G×E explained up to ~60% of the phenotypic variance42. Our work only focused on 539 

European environments and the largest proportion of phenotypic variance assigned to G×E was 24% 540 

for a productivity trait (flowering intensity). Furthermore, the average proportion of G×E across traits 541 

was approximately 12%, which may explain the mostly negligible differences between the G-BLUP.E 542 

and G-BLUP.E.G×E models. Our results were in line with the low interaction of additive genetic effects 543 

with location of up to ~6% obtained for apple fruit quality traits measured at two locations in New 544 

Zealand33, and the limited G×E reported for fruit maturity timing in sweet cherry across continents61. 545 

For approximately half of the tested traits, the G-BLUP.E.G×E did not outperform G-BLUP.E. For these 546 

traits, the G-BLUP.E ignoring G×E may be sufficient to account for the environmental effects across 547 

European sites because it is computationally simpler and therefore less demanding. Traits such as 548 

flowering intensity, soluble solids content, trunk increment or traits related to fruit size and russet 549 

showed an improved performance under G-BLUP.E.G×E when compared to G-BLUP.E. For traits 550 

positively responding to G-BLUP.E.G×E, the G×E should be considered when making predictions across 551 

environments. The highest improvement of prediction accuracy with G-BLUP.E.G×E when compared 552 

to G-BLUP.E was found for flowering intensity, the difference between the models amounting to 0.07 553 

(Figure 5b). This result might be explained by the highest contribution of G×E to the phenotypic 554 
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variance of flowering intensity among all traits (Figure 6). A comparably high contribution of G×E was 555 

also found for weight of fruits and number of fruits, though no improvement with G-BLUP.E.G×E model 556 

was observed for these traits. When comparing the relative contributions of variance components to 557 

the phenotypic variance of flowering intensity, weight of fruits and number of fruits, the genotype 558 

explained 11%, 22% and 21%, the environment 17%, 24% and 25%, and the G×E 24%, 21% and 22%, 559 

respectively. Although the proportions of G×E were similar in the three compared traits, the effects of 560 

genotype and environment explained a higher proportion of the variance for weight of fruits and 561 

number of fruits than for flowering intensity. This may have contributed to the surprisingly lower 562 

accuracy of the G-BLUP.E.G×E model when compared with G-BLUP.E for weight of fruits and number 563 

of fruits, but additional investigations may be needed to clarify this result in the future. 564 

The G-BLUP.E.G×E model assumes positive correlations between environments and is therefore mostly 565 

suitable for the joint analysis of correlated environments42,62. As shown by Lopez-Cruz et al.42 and in 566 

our study, this assumption of G-BLUP.E.G×E resulted in the best model performance for traits showing 567 

high positive correlations between environments (here harvest date and red over color) and the worst 568 

performance for traits exhibiting low correlations between environments (here flowering intensity and 569 

trunk increment, Figure 5b, Supplementary Table 2, Supplementary Figure 3). For flowering intensity 570 

and trunk increment, bivariate prediction of the environments or prediction with a different G×E model 571 

not assuming positive correlations between environments might be more appropriate than the 572 

currently applied approach42,63. 573 

Multivariate models as a useful element in the genomic prediction toolbox. Multivariate (also called 574 

multi-trait) models were shown to be useful for predicting traits that are costly to phenotype when a 575 

correlated trait less expensive to phenotype was available45. In our study, when the prediction accuracy 576 

of the single-environment multivariate model MTM.UN was compared with the baseline model G-577 

BLUP, several combinations of related and unrelated traits led to increased accuracy. For the related 578 

traits with a high phenotypic correlation (Figure 1a), prediction of traits measured at one location were 579 

often improved when a related trait measured across different locations was included. This was the 580 
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case for the combination of floral emergence with full flowering and end of flowering and for single 581 

fruit weight combined with fruit diameter, fruit length, maximum fruit size and fruit volume. Inclusion 582 

of soluble solids content in MTM.UN resulted in increased prediction accuracy for russet cover, 583 

although the traits showed only a moderate correlation and no obvious explanation for this result 584 

could be found. Our study supports the potential of multivariate models to borrow information that 585 

correlated traits provide about one another and identified trait combinations that can be successful 586 

under the multivariate setup. 587 

In place of the correlated traits, environments of a single trait can be implemented in a multivariate 588 

model46. The average prediction accuracy over all traits was ~0.04 lower in the multi-environment 589 

multivariate (MTM.FA) than in the multi-environment univariate genomic prediction models (G-BLUP.E 590 

and G-BLUP.E.G×E). Compared to G-BLUP.E and G-BLUP.E.G×E, the MTM.FA showed the potential to 591 

perform equally well for six (CV1) and three traits (CV2) and was able to outperform both models for 592 

two (CV1) and five traits (CV2). In cases where MTM.FA outperformed G-BLUP.E and G-BLUP.E.G×E, a 593 

very limited increase in prediction accuracy of 0.01 was found for all traits but trunk increment, for 594 

which the increase was equal to 0.07 under the second cross-validation scenario. Except for the 595 

noticeable increase in prediction accuracy for trunk increment that could not be explained by our 596 

analyses, the performance of MTM.FA was similar to G-BLUP.E and G-BLUP.E.G×E, which establishes 597 

the multivariate model as a useful tool for multi-environment genomic prediction in apple. 598 

Two approaches to genomic prediction addressed with cross-validation scenarios. The cross-599 

validation scenarios CV1 and CV2 were applied with multi-environment genomic prediction models to 600 

test two genomic prediction approaches typically faced in breeding. The CV1 imitated evaluation of 601 

breeding material that was yet untested in field trials. The CV2 was implemented to simulate 602 

incomplete field trials where breeding material was evaluated in some but not all target environments. 603 

More specifically, the CV2 investigated a situation where the breeding material has been evaluated at 604 

one location (the breeding site, in this case Switzerland) and the material’s potential over other 605 

European sites was predicted without its assessment in a multi-environment trial, which may increase 606 
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selection efficiency at latter stages of evaluation. As CV2 provided more phenotypic information to the 607 

models than CV1, a higher genomic prediction accuracy was found under CV2 when compared with 608 

CV1, which was anticipated33,42. The CV2 was tested by calibrating the model with Swiss observations 609 

only. The application of CV2 could be extended to other apple REFPOP locations to provide useful 610 

information for the breeding programs located at these sites. The choice of cross-validation scenario 611 

did not affect the general ranking of the average genomic prediction accuracies estimated for the 612 

evaluated traits. 613 

Implications for apple breeding. Phenotypic variance decomposition into genetic, environmental, G×E 614 

and residual effects was compared with the results of GWAS and genomic prediction as well as 615 

heritability estimates. The comprehensive comparison indicated three classes of traits with contrasting 616 

genetic architecture and prediction performance. Characteristics of these trait classes and proposals 617 

for their efficient prediction strategies are described in the following paragraphs. 618 

The first class included harvest date and red over color that showed a few loci of large effect and some 619 

additional loci of low effect, the highest prediction accuracies, and the highest across-environment 620 

clonal-mean heritability among all traits. Both traits showed a very high proportion of the genotypic 621 

effect explaining ~75% of the phenotypic variance. For harvest date and red over color, the marker 622 

with the largest effect explained 52% and 59% of the phenotypic variance and all marker effects in 623 

genomic prediction captured together 88% and 85% of the phenotypic variance (i.e., genomic 624 

heritability of 0.88 and 0.85), respectively. Selection for these traits exhibiting a strong genetic effect 625 

of one locus could be done using marker-assisted selection, although only a part of the variance would 626 

be explained by a single marker. Better results can be achieved using genomic prediction, as this was 627 

able to explain a substantially larger amount of the phenotypic variance. Other traits such as fruit 628 

firmness, titratable acidity, end of flowering or traits related to fruit size and water core were grouped 629 

in the same cluster as harvest date and red over color (Figure 6). These traits showed a strong 630 

genotypic effect and a comparably low effect of environment and G×E, suggesting that selection for 631 
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the traits would be efficient when performed using single-environment genomic prediction models 632 

rather than multi-environment prediction. 633 

The second class of traits was represented by floral emergence and trunk diameter displaying a high 634 

proportion of the environmental effect (~70%) and a similar ratio of variance explained by genotypic 635 

effects compared to variance explained by G×E effects (~2.5). The genomic prediction accuracy did not 636 

considerably deviate from the average accuracy over all traits. Several marker associations with these 637 

traits were identified using location-specific GWAS. However, in the across-location GWAS, only one 638 

association explaining a very small part of phenotypic variance (floral emergence) or no association 639 

(trunk diameter) were discovered. Consequently, such traits predominantly driven by the effect of 640 

environment can be successfully selected based on genomic prediction, but the lack of associations 641 

stable across environments limits the applicability of marker-assisted selection to this class of traits. 642 

In the third class, the productivity traits (flowering intensity, weight of fruits and number of fruits) 643 

showed the largest proportion of variance explained by G×E (~20%), with similar amounts of variance 644 

explained by genotypic effects for weight of fruits and number of fruits, but half as much variance 645 

explained by genotypic effects for flowering intensity (Figure 6). As a consequence, only flowering 646 

intensity showed higher prediction accuracy with G-BLUP.E.G×E than G-BLUP.E model. As shown 647 

above, the G×E should be considered when making predictions across environments for traits 648 

responding positively to the G-BLUP.E.G×E model, but G-BLUP.E may be sufficient for other traits to 649 

account for the environmental effects. To our knowledge, this is the first report of genomic prediction 650 

for apple yield components and our results can aid the establishment of productivity predictions in 651 

apple breeding. Other traits falling within the same cluster as the productivity traits, namely full 652 

flowering, ground color, yellow color, soluble solids content, trunk increment, and traits related to 653 

bitter pit and russet, showed a pronounced effect of environment and/or G×E (Figure 6). Multi-654 

environment genomic prediction models can be efficient when applying genomic selection to these 655 

traits. 656 
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The decision to apply either marker-assisted or genomic selection can be based on genetic architecture 657 

of traits of interest and resources available in a breeding program. For breeding of yet genetically 658 

unexplored traits, variance decomposition of historical phenotypic data prior to genomic analyses may 659 

help describe trait architecture, assign traits to one of the three classes described in the previous 660 

paragraphs, and finally determine the most appropriate method of genomics-assisted breeding. From 661 

all traits explored in this study, the marker-trait associations with large and stable effects across 662 

environments found for harvest date, flowering intensity, green color, red over color, titratable acidity, 663 

fruit firmness and trunk increment could be implemented into DNA tests for marker-assisted selection. 664 

These tests would allow for a reduction of labor costs in a breeding program when removing inferior 665 

seedlings without phenotyping7. Although generally requiring more statistical competences than 666 

marker-assisted selection, genomic selection can make use of both large- and low-effect associations 667 

between markers and traits when accommodating thousands of marker effects in a single genomic 668 

prediction model. For all studied traits, our results showed that marker effects estimated in genomic 669 

prediction were able to capture a larger proportion of the phenotypic variance than individual markers 670 

associated with the traits. Therefore, genomic selection should become the preferred method of 671 

genomics-assisted breeding for all quantitative traits explored in this study to ultimately increase their 672 

breeding efficiency and genetic gain. 673 

 674 

Conclusion 675 

This study laid the groundwork for marker-assisted and genomic selection across European 676 

environments for 30 quantitative apple traits. The apple REFPOP experimental design facilitated 677 

identification of a multitude of novel and known marker-trait associations. Our multi-environment trial 678 

provided accurate genomics-estimated breeding values for apple genotypes under various 679 

environmental conditions. Limited G×E detected in this work suggested consistent performance of 680 

genotypes across different European environments for most studied traits. Utilizing our dataset, more 681 

efficient selection of traits related to yield may lead to higher productivity and increased genetic gain 682 
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in the future37. Improved fruit quality would appeal to consumers and tree phenology could be 683 

synchronized with current and future climates to secure production. The genomic prediction models 684 

developed here can be readily used for selecting germplasm in breeding programs, thus providing 685 

breeders with tools increasing selection efficiency. Beside the apple REFPOP, one other large multi-686 

environment reference population for fruit trees, the PeachRefPop64, was designed in Europe. 687 

Application of our study design to other horticultural crops such as peach can promote broader use of 688 

genomics-assisted breeding in the future. 689 

 690 

Methods 691 

Plant material 692 

The apple REFPOP was designed and established by the collaborators of the FruitBreedomics project65 693 

as described by Jung et al.36. The apple REFPOP consists of 534 genotypes from two groups of diploid 694 

germplasm. The accession group consists of 269 accessions of European and non-European origin 695 

representing the diversity in cultivated apple. The progeny group of 265 genotypes stemmed from 27 696 

parental combinations produced in the current European breeding programs. In 2016, the apple 697 

REFPOP was planted in six locations representing several biogeographical regions in Europe, in (i) 698 

Rillaar, Belgium, (ii) Angers, France, (iii) Laimburg, Italy, (iv) Skierniewice, Poland, (v) Lleida, Spain and 699 

(vi) Wädenswil, Switzerland (one location per country). Every genotype was replicated at least twice 700 

per location. All plants included in this study were treated with agricultural practice common to each 701 

location. Calcium spraying was avoided due to its influence on bitter pit. Flowers were not thinned, 702 

but the fruits were hand-thinned after the June fruit drop and up to two apples per fruit cluster were 703 

retained. 704 

 705 

Genotyping 706 

A high-density genome-wide SNP marker dataset was produced as reported by Jung et al.36. Briefly, 707 

SNPs from two overlapping SNP arrays of different resolution, (i) the Illumina Infinium® 20K SNP 708 
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genotyping array20 and (ii) the Affymetrix Axiom® Apple 480K SNP genotyping array21, were curated 709 

and then joined applying imputation with Beagle 4.066 using the recently inferred pedigrees4. Non-710 

polymorphic markers were removed to obtain a set of 303,148 biallelic SNPs. Positions of SNPs were 711 

based on the apple reference genome obtained from the doubled haploid GDDH13 (v1.1)16. 712 

 713 

Phenotyping 714 

Thirty phenotypic traits related to phenology, productivity, fruit size, outer fruit, inner fruit, and vigor 715 

were evaluated at up to six locations of the apple REFPOP during up to three seasons (2018–2020). 716 

Trunk diameter was measured in 2017 in some locations, enabling for a trunk increment calculation 717 

for 2018. The traits were recorded as described in the Supplementary Methods. Two phenology traits 718 

measured in 2018, i.e., floral emergence and harvest date, were previously analyzed by Jung et al.36. 719 

 720 

Phenotypic data analyses 721 

Spatial heterogeneity was modeled separately for each trait and environment (nested factor of 722 

location and year) using the spatial analysis of field trials with splines (SpATS) to account for the 723 

replicate effects and differences due to soil characteristics67. Phenotypic values of traits adjusted for 724 

spatial heterogeneity within each environment were estimated at the level of trees (adjusted 725 

phenotypic values of each tree) and genotypes (adjusted phenotypic values of each genotype)36. 726 

The general statistical model for the following phenotypic data analyses fitted via restricted maximum 727 

likelihood (R package lme468) was: 728 

𝒚 = 𝑿𝜷 + 𝒁𝒃 + 𝜺 (Equation 1) 729 

where 𝒚 was a vector of trait phenotypes, 𝑿 the design matrix for the fixed effects, 𝜷 the vector of 730 

fixed effects, 𝒁 the design matrix for the random effects, 𝒃 the vector of random effects and 𝜺 the 731 

vector of random errors. The 𝒃 was a 𝑞 × 1 vector assuming 𝒃 ~ 𝑁(0, 𝚺) where 𝚺 was a variance-732 

covariance matrix of the random effects. The assumptions for the 𝑁 × 1 vector of random errors were 733 

𝜺 ~ 𝑁(0, 𝑰𝜎ఌ
ଶ) with 𝑁 × 𝑁 identity matrix 𝑰 and the variance 𝜎ఌ

ଶ, the 𝑁 being the number of trees. 734 
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To assess the reliability of environment-specific data, a random-effects model was first fitted 735 

separately for each trait and environment to estimate an environment-specific clonal mean 736 

heritability. Applying the Equation 1, the response 𝒚 was a vector of the raw (non-adjusted) phenotypic 737 

values of each tree. On the place of 𝑿, a vector of ones was used to model the intercept 𝛽. The vector 738 

of genotypes acted as a random effect in 𝒁. The environment-specific clonal mean heritability was 739 

calculated from the variance components of the random-effects model as: 740 

𝐻ଶ =
ఙ೒

మ

ఙ೛
మ (Equation 2) 741 

where the phenotypic variance 𝜎௣
ଶ = 𝜎௚

ଶ + 𝜎ఌ
ଶ 𝑛ത௥⁄  was obtained from the genotypic variance 𝜎௚

ଶ, error 742 

variance 𝜎ఌ
ଶ and the mean number of genotype replications 𝑛ത௥. The environment-specific clonal mean 743 

heritability was used to eliminate location-year-trait combinations with a heritability value below 0.1. 744 

For the remaining location-year combinations, a mixed-effects model following the Equation 1 was 745 

fitted to the vector of the adjusted phenotypic values of each tree as response (𝒚). The effects of 746 

environments, i.e., combination of location and years, were used as fixed effects and the effects of 747 

genotypes and genotype by environment interactions as random effects. Estimated variances of the 748 

model components were used to evaluate the across-environment clonal mean heritability calculated 749 

using the Equation 2 with the phenotypic variance estimated as: 750 

𝜎௣
ଶ = 𝜎௚

ଶ +
ఙ೒೐

మ

௡೐
+

ఙഄ
మ

௡೐௡തೝ
 (Equation 3) 751 

where 𝜎௚௘
ଶ  was the genotype by environment interaction variance and 𝑛௘ represented the number of 752 

environments. 753 

An additional mixed-effects model following the Equation 1 was fitted to the adjusted phenotypic 754 

values of each tree (𝒚) using the effects of location, year and their interaction as fixed effects and the 755 

effects of genotypes as random effects. Due to the skewness of their distributions, 𝒚-values of the 756 

traits weight of fruits, number of fruits and trunk diameter were log-transformed. BLUPs (𝒃෡) extracted 757 

from the model were further denoted as across-location BLUPs. To estimate the location-specific 758 

BLUPs, a model according to the Equation 1 was fitted with a subset of the adjusted phenotypic values 759 

of each tree from single locations (𝒚) using the effects of years as fixed effects and the effects of 760 
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genotypes as random effects. The across-location BLUPs and the adjusted phenotypic values of each 761 

genotype were used to assess phenotypic correlation as the Pearson correlation between pairs of traits 762 

and between pairs of environments within traits, respectively. The across-location BLUPs with the 763 

addition of location-specific BLUPs for traits measured at a single location were further denoted as the 764 

main BLUPs. In the main BLUPs, the missing values were replaced with the mean of the BLUPs of the 765 

same trait and the data were scaled and centered to finally estimate a principal component analysis 766 

biplot69, where multivariate normal distribution was assumed for the ellipses. 767 

 768 

Genome-wide association studies 769 

The Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK)70 implemented 770 

in the R package GAPIT 3.071 was applied using the genomic matrix 𝑴, an 𝑛 × 𝑚 matrix for a population 771 

of size 𝑛 = 534 genotypes (i.e., accessions and progeny) with 𝑚 = 303,148 markers, with across-772 

location BLUPs (across-location GWAS) or location-specific BLUPs (location-specific GWAS) as the 773 

response. BLINK was used with two principal components and the minor allele frequency threshold 774 

was set to 0.05. Marker-trait associations were identified as significant for p-values falling below a 775 

Bonferroni-corrected significance threshold 𝛼∗ = 𝛼 𝑚⁄  with 𝛼 = 0.05 (−𝑙𝑜𝑔ଵ଴(𝑝) > 6.74). The 776 

proportion of phenotypic variance explained by each significantly associated SNP was assessed with a 777 

coefficient of determination (𝑅ଶ). The 𝑅ଶ was estimated from a linear regression model, which was 778 

fitted with a vector of SNP marker values (coded as 1, 2, 3) as predictor and either the across-location 779 

BLUPs or location-specific BLUPs as response. GWAS based on the across-location BLUPs with the 780 

addition of location-specific BLUPs, in cases where traits were measured at a single location only, was 781 

further denoted as the global GWAS. The position of the last SNP on a chromosome was used to 782 

estimate chromosome length, which was used to divide each chromosome into three equal segments, 783 

i.e., top, center and bottom. The marker-trait associations were assigned to these chromosome 784 

segments based on their positions. 785 
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Previous reports on QTL mapping and GWAS in apple were reviewed to perform an extensive 786 

comparison with our GWAS results (Supplementary Table 4). Published results for traits measured 787 

similarly to the traits studied in the present work were considered, with the traits being assembled 788 

into trait groups: harvest time (harvest date and similar), flowering time (floral emergence, full 789 

flowering, end of flowering and similar), productivity (flowering intensity, weight of fruits, number of 790 

fruits and similar), fruit size (single fruit weight, fruit diameter, fruit length, maximum fruit size, fruit 791 

volume and similar), ground color (ground color, yellow color and similar), over color (red over color, 792 

green color and similar), bitter pit (bitter pit frequency, bitter pit grade and similar), russet (russet 793 

cover, russet frequency overall, at stalk, on cheek and in the eye and similar), acidity (titratable acidity 794 

and similar), sugar (soluble solids content and similar), firmness (fruit firmness and similar), water core 795 

(water core frequency, water core grade and similar) and trunk (trunk diameter, trunk increment and 796 

similar). The positions of published associations within respective chromosomes were visually assigned 797 

to the three chromosome segments, i.e., top, center and bottom. The total number of markers used 798 

was recorded (Supplementary Table 4). Where the number of overlapping markers between the 799 

maternal and paternal linkage maps was not provided in a publication, the marker numbers for both 800 

maps were summed. 801 

In the global GWAS results, the allele frequency was studied over generations. The ancestors of 802 

genotypes were identified making use of the apple pedigrees of Muranty et al.4. For all significant 803 

marker-trait associations from the global GWAS, frequency of the allele associated with increased 804 

phenotypic value was estimated for the progeny group and for its five ancestor generations. To 805 

represent the ancestors, the allele frequency was estimated for the 30 accessions of them included in 806 

the apple REFPOP. For major significant marker-trait associations with 𝑅ଶ > 0.1 reported in the global 807 

GWAS, linkage disequilibrium was estimated as squared Pearson’s correlations in a window of 3,000 808 

markers surrounding each of the associations. A smaller window size was used for associations located 809 

towards the end of a chromosome. 810 
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A mixed-effects model following the Equation 1 was fitted to the vector of the adjusted phenotypic 811 

values of each tree as response (𝒚) using the effects of environments as fixed effects and the effects 812 

of genotypes, genotype by environment interactions, and additional effects for each SNP significantly 813 

associated with the trait (a factor of the respective SNP values in 𝑴) as random effects. In cases where 814 

traits with no marker-trait associations were found in the global GWAS, the additional random effects 815 

of significantly associated SNPs were omitted from the model. The mixed-effects model for every trait 816 

was used to estimate proportions of phenotypic variance explained by the model components as 817 

described in Jung et al.36. The proportions of phenotypic variance explained by the random effects of 818 

genotypes and significantly associated SNPs were summed to obtain the proportion of variance 819 

explained by a genotypic effect. The proportions of phenotypic variance explained by genotypic, 820 

environmental, genotype by environment interaction, and residual effects were scaled and centered 821 

to be finally used for discovering similarities between the traits. For this purpose, a hierarchical 822 

clustering following Ward72 was applied to the distance matrix of the set of effects. The number of 823 

clusters was estimated from a dendrogram, which was cut where the distance between splits was the 824 

largest. 825 

 826 

Genomic prediction 827 

The general statistical model for genomic prediction was 828 

𝒚 = 1𝝁 + 𝒖 + 𝜺 (Equation 4) 829 

where 𝒚 was a vector of trait phenotypes, 𝝁 was an intercept, 𝒖 represented a vector of random effects 830 

and 𝜺 was a vector of residuals. Different vectors of 𝒚 and assumptions for 𝒖 and 𝜺 were used across 831 

eight single- and multi-environment genomic prediction models. 832 

Single-environment genomic prediction. The single-environment genomic prediction models were 833 

fitted after the environmental effects were accounted for during the phenotypic data analysis, a 834 

process also called two-step genomic prediction. Therefore, the across-location BLUPs and location-835 

specific BLUPs acted here as phenotypes from a single environment. Four univariate prediction models 836 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

and one multivariate model were implemented. First, regression with random forest (RF) was 837 

performed73. In this and the following three univariate models, the response 𝒚 was defined as a 𝑛 × 1 838 

vector of the main BLUPs. The centered and scaled additive genomic matrix 𝑴, an 𝑛 × 𝑚 matrix for a 839 

population of size 𝑛 = 534 with 𝑚 = 303,148 markers, was used as further input. The number of 840 

trees to grow in the RF was 500 and the number of variables randomly sampled as candidates at each 841 

split was (rounded down) 𝑚𝑡𝑟𝑦 =  𝑚 3⁄ . Second, BayesCπ was applied74, where the random marker 842 

effects 𝒖 = ∑ 𝑧௞𝑎௞
௠
௞ୀଵ  with 𝑧௞ an 𝑛 × 1 vector of the number of copies of one allele at the marker 𝑘 843 

and 𝑎௞ being the additive effect of the marker 𝑘. The prior for 𝑎௞ depended on the variance 𝜎௔ೖ
ଶ  and 844 

the prior probability 𝜋 that a marker 𝑘 had zero effect, the priors of all marker effects having a common 845 

variance 𝜎௔ೖ
ଶ = 𝜎௔

ଶ. The 𝜋 parameter was treated as an unknown with uniform(0,1) prior. The random 846 

vector of residual effects followed a normal distribution 𝜺 ~ 𝑁(0, 𝑰𝜎ఌ
ଶ) with 𝑛 × 𝑛 identity matrix 𝑰 and 847 

the variance 𝜎ఌ
ଶ. Third, the Bayesian reproducing kernel Hilbert spaces regression (RKHS) was 848 

implemented using a multi-kernel approach75. The multi-kernel model was fitted with 𝐿 = 3 random 849 

marker effects 𝒖 = ∑ 𝒖𝒍
௅
௟ୀଵ  following a distribution 𝒖 ~ 𝑁(0, 𝑲𝒍𝜎௨௟

ଶ ), with 𝑲𝒍 being the reproducing 850 

kernel evaluated at the 𝑙th value of the bandwidth parameter ℎ = {ℎଵ, … , ℎ௅} = {0.1, 0.5, 2.5} and the 851 

variance 𝜎௨௟
ଶ . For each random effect, the kernel matrix 𝑲 = {𝐾(𝑥௜, 𝑥௜ᇲ)} was an 𝑛 × 𝑛 matrix 852 

𝐾(𝑥௜, 𝑥௜ᇲ) = exp{−ℎ × 𝐷௜௜ᇲ}, where 𝑫 = ቄ𝐷௜௜ᇲ =
∑ (௫೔ೖି௫೔ᇲೖ)మ೘

ೖసభ

௠
ቅ was the average squared-Euclidean 853 

distance matrix between genotypes, and 𝑥௜௞ the element on line 𝑖 (genotype 𝑖) and column 𝑘 (𝑘th 854 

marker) of the centered and scaled additive genomic matrix 𝑴. The residual effect assumed 855 

𝜺 ~ 𝑁(0, 𝑰𝜎ఌ
ଶ). Fourth, from the centered and scaled additive genomic matrix 𝑴, the genomic 856 

relationship matrix 𝑮 was computed as 𝑮 = 𝑴𝑴ᇱ 𝑚⁄  and used to fit the genomic-BLUP (G-BLUP) 857 

model applying a semi-parametric RKHS algorithm, with the random marker effects following 858 

𝒖 ~ 𝑁(0, 𝑮𝜎௨
ଶ) with variance 𝜎௨

ଶ and the model residuals assuming 𝜺 ~ 𝑁(0, 𝑰𝜎ఌ
ଶ)76. Fifth, a 859 

multivariate model with an unstructured covariance matrix of the random marker effect (here 860 

abbreviated as MTM.UN) was fitted for chosen pairs of traits using the Bayesian multivariate Gaussian 861 

model environment MTM (http://quantgen.github.io/MTM/vignette.html). The main BLUPs acted as 862 
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the response 𝒚, which was a vector of length 𝑛 ∙ 𝑡 with 𝑡 = 2 being the number of traits used in the 863 

model. The vector of the random marker effects followed 𝒖 ~ 𝑁(0, 𝑼 ⊗ 𝑮) where 𝑼 was an 864 

unstructured covariance matrix of the random marker effect with dimension 𝑡 × 𝑡. Model residuals 865 

assumed 𝜺 ~ 𝑁(0, 𝑹 ⊗ 𝑰) with 𝑹 being an unstructured covariance matrix of the residual effect. To 866 

choose the pairs of traits for MTM.UN, a G-BLUP model was applied using all genotypes to estimate 867 

genomic BLUPs, which were then used to obtain pairwise genomic correlations between traits. The 868 

pairs with the genomic correlations larger than 0.3 were retained for the MTM.UN analysis. In case a 869 

trait was included in more than one pair of traits, the result for the pair with the highest average 870 

predictive ability for this trait was reported. 871 

BayesCπ, RKHS, G-BLUP and MTM.UN were applied with 12,000 iterations of the Gibbs sampler, a 872 

thinning of 5, and a burn-in of 2,000 discarded samples. With all models, a five-fold cross-validation 873 

repeated five times was performed, generating 25 estimates of prediction accuracy. The folds were 874 

chosen randomly without replacement to mask phenotypes of 20% of the genotypes in each run. 875 

Prediction accuracy was estimated as a Pearson correlation coefficient between phenotypes of the 876 

masked genotypes and the predicted values for the same genotypes. The RF model was implemented 877 

in the R package ranger77, the models BayesCπ, RKHS and G-BLUP in the R package BGLR78 and the 878 

MTM.UN model in the R package MTM (http://quantgen.github.io/MTM/vignette.html). 879 

Multi-environment genomic prediction. Two univariate multi-environment genomic prediction 880 

algorithms and one multivariate multi-environment algorithm were implemented, the response 𝒚 881 

being a vector of the adjusted phenotypic values of each genotype of length 𝑛 × 𝑟 with 𝑟 equal to the 882 

number of environments (nested factor of location and year). The two univariate multi-environment 883 

models reported by Lopez-Cruz et al.42 and implemented in the R package BGLR78 were applied to 884 

explore the effects of genotypes, environments and their interaction in genomic prediction. Of the two 885 

models, the across-environment G-BLUP model (G-BLUP.E) assumed that marker effects were constant 886 

across environments. The random marker effects followed 𝒖 ~ 𝑁(0, 𝑮𝟎𝜎௨
ଶ) where 𝑮𝟎 = 𝑱 ⊗ 𝑮, the 𝑱 887 

being an 𝑟 × 𝑟 matrix of ones. The model residuals assumed 𝜺 ~ 𝑁(0, 𝑰𝜎ఌ
ଶ). Additionally to the 888 
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constant effects of markers across environments as assumed in the previous model, the marker by 889 

environment interaction G-BLUP model (G-BLUP.E.G×E) allowed the marker effects to change across 890 

environments, i.e., to borrow information across environments. The random marker effects were 891 

defined as 𝒖 = 𝒖𝟎 + 𝒖𝟏 where 𝒖𝟎 ~ 𝑁(0, 𝑮𝟎𝜎௨଴
ଶ ) and 𝒖𝟏 ~ 𝑁(0, 𝑮𝟏) with 892 

𝑮𝟏 = ቎

𝜎௨ଵ
ଶ 𝑮 0 0

0 𝜎௨ଶ
ଶ 𝑮 0

0 0 𝜎௨ଷ
ଶ 𝑮

቏ 893 

assuming 𝑟 = 3 here for easier notation. The model residuals assumed 𝜺 ~ 𝑁(0, 𝑰𝜎ఌ
ଶ). Finally, a 894 

multivariate multi-environment factor-analytic model (here abbreviated as MTM.FA) using the 895 

Bayesian multivariate Gaussian model environment implemented in the R package MTM 896 

(http://quantgen.github.io/MTM/vignette.html) was fitted to the data. As in the previous two models, 897 

phenotypes of the same trait from multiple environments acted as response, although this model was 898 

originally designed to analyze multiple traits. The traits measured at only one location during two 899 

seasons (full flowering, end of flowering, fruit volume, water core frequency and water core grade) 900 

were not modeled using MTM.FA because the analysis required at least three environments. The 901 

vector of the random marker effects assumed 𝒖 ~ 𝑁(0, 𝑪 ⊗ 𝑮) where 𝑪 was an 𝑟 × 𝑟 covariance 902 

matrix. For the factor analysis, the 𝑪 = 𝑩𝑩′ + 𝚿 where 𝑩 was a matrix of loadings (regressions of the 903 

original random effects into common factors) and 𝚿 was a diagonal matrix whose entries gave the 904 

variances of environment-specific factors. The loadings were estimated for all environments and the 905 

variance of the Gaussian prior assigned to the unknown loadings was set to 100. The model residuals 906 

assumed 𝜺 ~ 𝑁(0, 𝑹 ⊗ 𝑰) with 𝑹 being an unstructured covariance matrix of the residual effect. 907 

All three multi-environment genomic prediction models were applied with 12,000 iterations of the 908 

Gibbs sampler, a thinning of 5 and a burn-in of 2,000 discarded samples. The folds of a five-fold cross-909 

validation were chosen randomly without replacement. The cross-validation was repeated under two 910 

scenarios. In the first cross-validation scenario (CV1), the phenotypes of 20% of the genotypes were 911 

masked across all environments. For the second cross-validation scenario (CV2), the phenotypes of 912 

20% of the genotypes were masked across all environments except for three Swiss environments, i.e., 913 
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phenotypes of all genotypes from the environments “CHE.2018”, “CHE.2019” and “CHE.2020” were 914 

used for model training. Ten traits were measured in only one location and therefore excluded from 915 

CV2 (i.e., full flowering, end of flowering, fruit diameter, fruit length, maximum fruit size, fruit volume, 916 

yellow color, green color, water core frequency and water core grade). Prediction accuracy was 917 

estimated as a Pearson correlation coefficient between the phenotypes of the masked genotypes and 918 

the predicted values for these genotypes. The correlations were estimated for each predicted 919 

environment separately. 920 

 921 

Genomic heritability 922 

The BayesCπ model was applied for each trait as described before but trained with a full set of the 923 

main BLUPs as response. The genomic heritability ℎଶ = 𝑉௚/(𝑉௚ + 𝑉௘) was estimated as the proportion 924 

of phenotypic variance explained by the markers, where 𝑉௚ and 𝑉௘ represented the amount of 925 

phenotypic variance explained and unexplained by the markers, respectively79,80. The genomic 926 

heritability was calculated from the marker effects saved in each iteration and averaged over iterations 927 

to obtain the mean genomic heritability per trait. 928 

 929 

Data availability 930 

All SNP genotypic data generated with the 480K array used in this study have been deposited in the 931 

INRAe dataset archive (https://data.inrae.fr/) at https://doi.org/10.15454/IOPGYF. All SNP genotypic 932 

data generated using the 20K array used in this study have been deposited in the INRAe dataset archive 933 

at https://doi.org/10.15454/1ERHGX. The raw phenotypic data generated during the study are 934 

available in the INRAe dataset archive at (TBA upon acceptance). 935 

 936 

Acknowledgements 937 

The authors thank the field technicians and staff, especially Sylvain Hanteville, at INRAe IRHS and 938 

Experimental Unit (UE Horti), Angers, France, and technical staff at other apple REFPOP sites for the 939 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

maintenance of the orchards and phenotypic data collection. We thank Dr. Graham Dow for English 940 

language editing. Phenotypic data collection was partially supported by the Horizon 2020 Framework 941 

Program of the European Union under grant agreement No 817970 (project INVITE: "Innovations in 942 

plant variety testing in Europe to foster the introduction of new varieties better adapted to varying 943 

biotic and abiotic conditions and to more sustainable crop management practices"). This work was 944 

partially supported by the project RIS3CAT (COTPA-FRUIT3CAT) financed by the European Regional 945 

Development Fund through the FEDER frame of Catalonia 2014-2020 and by the CERCA Program from 946 

Generalitat de Catalunya. We acknowledge financial support from the Spanish Ministry of Economy 947 

and Competitiveness through the “Severo Ochoa Programme for Centres of Excellence in R&D” 2016-948 

2019 (SEV-20150533) and 2020-2023 (CEX2019-000902-S). C.D. was supported by "DON CARLOS 949 

ANTONIO LOPEZ" Abroad Postgraduate Scholarship Program, BECAL-Paraguay. We dedicate this paper 950 

to Prof. Edward Zurawicz of the National Institute of Horticultural Research in Skierniewice, Poland 951 

who co-promoted this study, but sadly recently passed away. 952 

 953 

Competing interests 954 

The authors declare no competing interests. 955 

 956 

References 957 

1 FAOSTAT (Food and Agriculture Organization of the United Nations, 2019). 958 

2 Cornille, A., Giraud, T., Smulders, M. J. M., Roldán-Ruiz, I. & Gladieux, P. The domestication 959 

and evolutionary ecology of apples. Trends in Genetics 30, 57-65, 960 

doi:10.1016/j.tig.2013.10.002 (2014). 961 

3 Way, R. D. et al. Apples (Malus). Acta Horticulturae, 3-46, doi:10.17660/ActaHortic.1991.290.1 962 

(1991). 963 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

4 Muranty, H. et al. Using whole-genome SNP data to reconstruct a large multi-generation 964 

pedigree in apple germplasm. BMC Plant Biology 20, 2, doi:10.1186/s12870-019-2171-6 965 

(2020). 966 

5 Migicovsky, Z. et al. Genomic consequences of apple improvement. Horticulture Research 8, 9, 967 

doi:10.1038/s41438-020-00441-7 (2021). 968 

6 Urrestarazu, J. et al. Analysis of the genetic diversity and structure across a wide range of 969 

germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biology 16, 970 

130, doi:10.1186/s12870-016-0818-0 (2016). 971 

7 Wannemuehler, S. D. et al. A cost–benefit analysis of DNA informed apple breeding. 972 

HortScience horts 54, 1998, doi:10.21273/hortsci14173-19 (2019). 973 

8 Maliepaard, C. et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) using 974 

multi-allelic markers. Theoretical and Applied Genetics 97, 60-73, doi:10.1007/s001220050867 975 

(1998). 976 

9 Kenis, K., Keulemans, J. & Davey, M. W. Identification and stability of QTLs for fruit quality 977 

traits in apple. Tree Genetics & Genomes 4, 647-661, doi:10.1007/s11295-008-0140-6 (2008). 978 

10 Jänsch, M. et al. Identification of SNPs linked to eight apple disease resistance loci. Molecular 979 

Breeding 35, 45, doi:10.1007/s11032-015-0242-4 (2015). 980 

11 Verma, S. et al. Two large-effect QTLs, Ma and Ma3, determine genetic potential for acidity in 981 

apple fruit: breeding insights from a multi-family study. Tree Genetics & Genomes 15, 18, 982 

doi:10.1007/s11295-019-1324-y (2019). 983 

12 Baumgartner, I. O. et al. Development of SNP-based assays for disease resistance and fruit 984 

quality traits in apple (Malus × domestica Borkh.) and validation in breeding pilot studies. Tree 985 

Genetics & Genomes 12, 35, doi:10.1007/s11295-016-0994-y (2016). 986 

13 Iezzoni, A. F. et al. RosBREED: Bridging the chasm between discovery and application to enable 987 

DNA-informed breeding in rosaceous crops. Horticulture Research 7, 177, doi:10.1038/s41438-988 

020-00398-7 (2020). 989 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

14 Chagné, D. et al. Validation of SNP markers for fruit quality and disease resistance loci in apple 990 

(Malus × domestica Borkh.) using the OpenArray® platform. Horticulture Research 6, 30, 991 

doi:10.1038/s41438-018-0114-2 (2019). 992 

15 Velasco, R. et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nature 993 

Genetics 42, 833-839, doi:10.1038/ng.654 (2010). 994 

16 Daccord, N. et al. High-quality de novo assembly of the apple genome and methylome 995 

dynamics of early fruit development. Nature Genetics 49, 1099-1106, doi:10.1038/ng.3886 996 

(2017). 997 

17 Zhang, L. et al. A high-quality apple genome assembly reveals the association of a 998 

retrotransposon and red fruit colour. Nature Communications 10, 1494, doi:10.1038/s41467-999 

019-09518-x (2019). 1000 

18 Sun, X. et al. Phased diploid genome assemblies and pan-genomes provide insights into the 1001 

genetic history of apple domestication. Nature Genetics 52, 1423-1432, doi:10.1038/s41588-1002 

020-00723-9 (2020). 1003 

19 Broggini, G. A. L. et al. Chromosome-scale de novo diploid assembly of the apple cultivar ‘Gala 1004 

Galaxy’. bioRxiv, 2020.2004.2025.058891, doi:10.1101/2020.04.25.058891 (2020). 1005 

20 Bianco, L. et al. Development and validation of a 20K single nucleotide polymorphism (SNP) 1006 

whole genome genotyping array for apple (Malus × domestica Borkh). PLOS ONE 9, e110377, 1007 

doi:10.1371/journal.pone.0110377 (2014). 1008 

21 Bianco, L. et al. Development and validation of the Axiom®Apple480K SNP genotyping array. 1009 

The Plant Journal 86, 62-74, doi:10.1111/tpj.13145 (2016). 1010 

22 Migicovsky, Z. et al. Genome to phenome mapping in apple using historical data. The Plant 1011 

Genome 9, doi:10.3835/plantgenome2015.11.0113 (2016). 1012 

23 McClure, K. A. et al. A genome-wide association study of apple quality and scab resistance. The 1013 

Plant Genome 11, 170075, doi:10.3835/plantgenome2017.08.0075 (2018). 1014 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 
 

24 Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and 1015 

complex traits. Nature Reviews Genetics 6, 95-108, doi:10.1038/nrg1521 (2005). 1016 

25 Kumar, S. et al. Novel genomic approaches unravel genetic architecture of complex traits in 1017 

apple. BMC Genomics 14, 393, doi:10.1186/1471-2164-14-393 (2013). 1018 

26 Urrestarazu, J. et al. Genome-wide association mapping of flowering and ripening periods in 1019 

apple. Frontiers in Plant Science 8, 1923, doi:10.3389/fpls.2017.01923 (2017). 1020 

27 Larsen, B. et al. Genome-wide association studies in apple reveal loci for aroma volatiles, sugar 1021 

composition, and harvest date. The Plant Genome 12, 180104, 1022 

doi:10.3835/plantgenome2018.12.0104 (2019). 1023 

28 Hu, Y. et al. ERF4 affects fruit firmness through TPL4 by reducing ethylene production. The 1024 

Plant Journal 103, 937-950, doi:10.1111/tpj.14884 (2020). 1025 

29 Minamikawa, M. F. et al. Tracing founder haplotypes of Japanese apple varieties: application 1026 

in genomic prediction and genome-wide association study. Horticulture Research 8, 49, 1027 

doi:10.1038/s41438-021-00485-3 (2021). 1028 

30 Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using 1029 

genome-wide dense marker maps. Genetics 157, 1819 (2001). 1030 

31 Meuwissen, T. Genomic selection: marker assisted selection on a genome wide scale. Journal 1031 

of Animal Breeding and Genetics 124, 321-322, doi:10.1111/j.1439-0388.2007.00708.x (2007). 1032 

32 Kumar, S. et al. Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). 1033 

PLOS ONE 7, e36674, doi:10.1371/journal.pone.0036674 (2012). 1034 

33 Kumar, S. et al. Genome-enabled estimates of additive and nonadditive genetic variances and 1035 

prediction of apple phenotypes across environments. G3 Genes|Genomes|Genetics 5, 2711-1036 

2718, doi:10.1534/g3.115.021105 (2015). 1037 

34 Muranty, H. et al. Accuracy and responses of genomic selection on key traits in apple breeding. 1038 

Horticulture Research 2, 15060, doi:10.1038/hortres.2015.60 (2015). 1039 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

35 Roth, M. et al. Genomic prediction of fruit texture and training population optimization 1040 

towards the application of genomic selection in apple. Horticulture Research 7, 148, 1041 

doi:10.1038/s41438-020-00370-5 (2020). 1042 

36 Jung, M. et al. The apple REFPOP—a reference population for genomics-assisted breeding in 1043 

apple. Horticulture Research 7, 189, doi:10.1038/s41438-020-00408-8 (2020). 1044 

37 García-Ruiz, A. et al. Changes in genetic selection differentials and generation intervals in US 1045 

Holstein dairy cattle as a result of genomic selection. Proceedings of the National Academy of 1046 

Sciences 113, E3995-E4004, doi:10.1073/pnas.1519061113 (2016). 1047 

38 Duan, N. et al. Genome re-sequencing reveals the history of apple and supports a two-stage 1048 

model for fruit enlargement. Nature Communications 8, 249, doi:10.1038/s41467-017-00336-1049 

7 (2017). 1050 

39 Howard, R., Carriquiry, A. L. & Beavis, W. D. Parametric and nonparametric statistical methods 1051 

for genomic selection of traits with additive and epistatic genetic architectures. G3: 1052 

Genes|Genomes|Genetics 4, 1027-1046, doi:10.1534/g3.114.010298 (2014). 1053 

40 Cooper, M. & DeLacy, I. H. Relationships among analytical methods used to study genotypic 1054 

variation and genotype-by-environment interaction in plant breeding multi-environment 1055 

experiments. Theoretical and Applied Genetics 88, 561-572, doi:10.1007/BF01240919 (1994). 1056 

41 Snape, J. W. et al. Dissecting gene × environmental effects on wheat yields via QTL and 1057 

physiological analysis. Euphytica 154, 401-408, doi:10.1007/s10681-006-9208-2 (2007). 1058 

42 Lopez-Cruz, M. et al. Increased prediction accuracy in wheat breeding trials using a marker × 1059 

environment interaction genomic selection model. G3: Genes|Genomes|Genetics 5, 569-582, 1060 

doi:10.1534/g3.114.016097 (2015). 1061 

43 Jarquín, D. et al. A reaction norm model for genomic selection using high-dimensional genomic 1062 

and environmental data. Theoretical and Applied Genetics 127, 595-607, doi:10.1007/s00122-1063 

013-2243-1 (2014). 1064 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

44 Tsai, H.-Y. et al. Use of multiple traits genomic prediction, genotype by environment 1065 

interactions and spatial effect to improve prediction accuracy in yield data. PLOS ONE 15, 1066 

e0232665, doi:10.1371/journal.pone.0232665 (2020). 1067 

45 Lado, B. et al. Resource allocation optimization with multi-trait genomic prediction for bread 1068 

wheat (Triticum aestivum L.) baking quality. Theoretical and Applied Genetics 131, 2719-2731, 1069 

doi:10.1007/s00122-018-3186-3 (2018). 1070 

46 Gianola, D. & Fernando, R. L. A multiple-trait Bayesian LASSO for genome-enabled analysis and 1071 

prediction of complex traits. Genetics 214, 305-331, doi:10.1534/genetics.119.302934 (2020). 1072 

47 Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. 1073 

Nature Genetics 51, 1339-1348, doi:10.1038/s41588-019-0481-0 (2019). 1074 

48 Johnston, J. W., Gunaseelan, K., Pidakala, P., Wang, M. & Schaffer, R. J. Co-ordination of early 1075 

and late ripening events in apples is regulated through differential sensitivities to ethylene. 1076 

Journal of Experimental Botany 60, 2689-2699, doi:10.1093/jxb/erp122 (2009). 1077 

49 Chagné, D. et al. Genetic and environmental control of fruit maturation, dry matter and 1078 

firmness in apple (Malus × domestica Borkh.). Horticulture Research 1, 14046, 1079 

doi:10.1038/hortres.2014.46 (2014). 1080 

50 Costa, F. et al. Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life 1081 

of apple (Malus domestica Borkh). Euphytica 141, 181-190, doi:10.1007/s10681-005-6805-4 1082 

(2005). 1083 

51 Costa, F. et al. QTL dynamics for fruit firmness and softening around an ethylene-dependent 1084 

polygalacturonase gene in apple (Malus x domestica Borkh.). Journal of experimental botany 1085 

61, 3029-3039, doi:10.1093/jxb/erq130 (2010). 1086 

52 Longhi, S., Moretto, M., Viola, R., Velasco, R. & Costa, F. Comprehensive QTL mapping survey 1087 

dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). Journal of 1088 

Experimental Botany 63, 1107-1121, doi:10.1093/jxb/err326 (2012). 1089 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

53 Longhi, S. et al. A candidate gene based approach validates Md-PG1 as the main responsible 1090 

for a QTL impacting fruit texture in apple (Malus x domestica Borkh.). BMC Plant Biology 13, 1091 

37, doi:10.1186/1471-2229-13-37 (2013). 1092 

54 Legay, S. et al. Apple russeting as seen through the RNA-seq lens: Strong alterations in the 1093 

exocarp cell wall. Plant Molecular Biology 88, 21-40, doi:10.1007/s11103-015-0303-4 (2015). 1094 

55 Johnston, J. W., Hewett, E. W. & Hertog, M. L. A. T. M. Postharvest softening of apple (Malus 1095 

domestica) fruit: A review. New Zealand Journal of Crop and Horticultural Science 30, 145-160, 1096 

doi:10.1080/01140671.2002.9514210 (2002). 1097 

56 Rymenants, M. et al. Detection of QTL for apple fruit acidity and sweetness using sensorial 1098 

evaluation in multiple pedigreed full-sib families. Tree Genetics & Genomes 16, 71, 1099 

doi:10.1007/s11295-020-01466-8 (2020). 1100 

57 van de Weg, E. et al. Epistatic fire blight resistance QTL alleles in the apple cultivar ‘Enterprise’ 1101 

and selection X-6398 discovered and characterized through pedigree-informed analysis. 1102 

Molecular Breeding 38, 5, doi:10.1007/s11032-017-0755-0 (2017). 1103 

58 Evans, K. M. et al. Genotyping of pedigreed apple breeding material with a genome-covering 1104 

set of SSRs: Trueness-to-type of cultivars and their parentages. Molecular Breeding 28, 535-1105 

547, doi:10.1007/s11032-010-9502-5 (2011). 1106 

59 Heslot, N., Yang, H.-P., Sorrells, M. E. & Jannink, J.-L. Genomic selection in plant breeding: A 1107 

comparison of models. Crop Science 52, 146-160, doi:10.2135/cropsci2011.06.0297 (2012). 1108 

60 Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance 1109 

for random forests. BMC Bioinformatics 9, 307, doi:10.1186/1471-2105-9-307 (2008). 1110 

61 Hardner, C. M. et al. Prediction of genetic value for sweet cherry fruit maturity among 1111 

environments using a 6K SNP array. Horticulture Research 6, 6, doi:10.1038/s41438-018-0081-1112 

7 (2019). 1113 

62 Crossa, J. et al. Genomic selection in plant breeding: Methods, models, and perspectives. 1114 

Trends in Plant Science 22, 961-975, doi:10.1016/j.tplants.2017.08.011 (2017). 1115 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

63 Cuevas, J. et al. Bayesian genomic prediction with genotype × environment interaction kernel 1116 

models. G3 Genes|Genomes|Genetics 7, 41-53, doi:10.1534/g3.116.035584 (2017). 1117 

64 Cirilli, M. et al. The multisite PeachRefPop collection: A true cultural heritage and international 1118 

scientific tool for fruit trees  Plant Physiology 184, 632-646, doi:10.1104/pp.19.01412 (2020). 1119 

65 Laurens, F. et al. An integrated approach for increasing breeding efficiency in apple and peach 1120 

in Europe. Horticulture Research 5, 11, doi:10.1038/s41438-018-0016-3 (2018). 1121 

66 Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data 1122 

inference for whole-genome association studies by use of localized haplotype clustering. The 1123 

American Journal of Human Genetics 81, 1084-1097, doi:10.1086/521987 (2007). 1124 

67 Rodríguez-Álvarez, M. X., Boer, M. P., van Eeuwijk, F. A. & Eilers, P. H. C. Correcting for spatial 1125 

heterogeneity in plant breeding experiments with P-splines. Spatial Statistics 23, 52-71, 1126 

doi:10.1016/j.spasta.2017.10.003 (2018). 1127 

68 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. 1128 

Journal of Statistical Software 67 (2015). 1129 

69 Gabriel, K. R. The biplot graphic display of matrices with application to principal component 1130 

analysis. Biometrika 58, 453-467, doi:10.1093/biomet/58.3.453 (1971). 1131 

70 Huang, M., Liu, X., Zhou, Y., Summers, R. M. & Zhang, Z. BLINK: A package for the next level of 1132 

genome-wide association studies with both individuals and markers in the millions. 1133 

GigaScience 8, doi:10.1093/gigascience/giy154 (2018). 1134 

71 Tang, Y. et al. GAPIT version 2: An enhanced integrated tool for genomic association and 1135 

prediction. The Plant Genome 9, doi:10.3835/plantgenome2015.11.0120 (2016). 1136 

72 Ward, J. H. Hierarchical grouping to optimize an objective function. Journal of the American 1137 

Statistical Association 58, 236-244, doi:10.1080/01621459.1963.10500845 (1963). 1138 

73 Breiman, L. Random forests. Machine Learning 45, 5-32, doi:10.1023/A:1010933404324 1139 

(2001). 1140 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

74 Habier, D., Fernando, R. L., Kizilkaya, K. & Garrick, D. J. Extension of the bayesian alphabet for 1141 

genomic selection. BMC Bioinformatics 12, 186, doi:10.1186/1471-2105-12-186 (2011). 1142 

75 de los Campos, G., Gianola, D., Rosa, G. J. M., Weigel, K. A. & Crossa, J. Semi-parametric 1143 

genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces 1144 

methods. Genetics Research 92, 295-308, doi:10.1017/S0016672310000285 (2010). 1145 

76 VanRaden, P. M. Efficient methods to compute genomic predictions. Journal of Dairy Science 1146 

91, 4414-4423, doi:10.3168/jds.2007-0980 (2008). 1147 

77 Wright, M. N. & Ziegler, A. ranger: A fast implementation of random forests for high 1148 

dimensional data in C++ and R. Journal of Statistical Software 77, 1-17, 1149 

doi:10.18637/jss.v077.i01 (2017). 1150 

78 Pérez, P. & de los Campos, G. Genome-wide regression and prediction with the BGLR statistical 1151 

package. Genetics 198, 483-495, doi:10.1534/genetics.114.164442 (2014). 1152 

79 de los Campos, G., Sorensen, D. & Gianola, D. Genomic heritability: What is it? PLOS Genetics 1153 

11, e1005048, doi:10.1371/journal.pgen.1005048 (2015). 1154 

80 Lehermeier, C., de Los Campos, G., Wimmer, V. & Schön, C. C. Genomic variance estimates: 1155 

With or without disequilibrium covariances? J Anim Breed Genet 134, 232-241, 1156 

doi:10.1111/jbg.12268 (2017). 1157 

 1158 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470309
http://creativecommons.org/licenses/by-nc-nd/4.0/

