

1 **Myeloid cell-driven nonregenerative pulmonary scarring is conserved in multiple**  
2 **nonhuman primate species regardless of SARS-CoV-2 infection modality**

3  
4 Alyssa C Fears<sup>1,2,#</sup>, Brandon J Beddingfield<sup>1,#</sup>, Nicole R Chirichella<sup>1</sup>, Nadia Slisarenko<sup>1</sup>,  
5 Stephanie Z Killeen<sup>1</sup>, Rachel K Redmann<sup>1</sup>, Kelly Goff<sup>1</sup>, Skye Spencer<sup>1</sup>, Breanna Picou<sup>1</sup>,  
6 Nadia Golden<sup>1</sup>, Duane J Bush<sup>3</sup>, Luis M Branco<sup>3</sup>, Matthew L Boisen<sup>3</sup>, Hongmei Gao<sup>4</sup>,  
7 David C Montefiori<sup>4</sup>, Robert V Blair<sup>1</sup>, Lara A Doyle-Meyers<sup>1,5</sup>, Kasi Russel-Lodrigue<sup>1</sup>,  
8 Nicholas J Maness<sup>1,6</sup>, Chad J Roy<sup>1,6,\*</sup>

9  
10 <sup>1</sup>Tulane National Primate Research Center, Covington, Louisiana, USA  
11 <sup>2</sup>Biomedical Science Training Program, Tulane University School of Medicine, New  
12 Orleans, Louisiana, USA

13 <sup>3</sup>Zalgen Labs, LLC, Germantown, MD, USA.  
14 <sup>4</sup>Duke University Medical Center, Duke Human Vaccine Institute, Durham, North  
15 Carolina, USA

16 <sup>5</sup>Department of Medicine, Tulane University School of Medicine, New Orleans,  
17 Louisiana, USA

18 <sup>6</sup>Department of Microbiology and Immunology, Tulane University School of Medicine,  
19 New Orleans, Louisiana, USA

20  
21 <sup>#</sup> Authors contributed equally

22 \*Correspondence: CJR, [croy@tulane.edu](mailto:croy@tulane.edu)

23

24

25

26

27

28 **Abstract**

29 The novel coronavirus SARS-CoV-2 has caused a worldwide pandemic resulting in  
30 widespread efforts in development of animal models that recapitulate human disease for  
31 evaluation of medical countermeasures, and to dissect COVID-19  
32 immunopathogenesis. We tested whether route of experimental infection substantially  
33 changes COVID-19 disease characteristics in two species (*Macaca mulatta*; rhesus  
34 macaques; RM, *Chlorocebus aethiops*; African green monkeys; AGM) of nonhuman  
35 primates. Species-specific cohorts of RM and AGM Rhesus macaques (*Macaca*  
36 *mulatta*, RMs) and African green monkeys (*Chlorocebus aethiops*, AGMs) were  
37 experimentally infected with homologous SARS-CoV-2 by either direct mucosal  
38 instillation or small particle aerosol in route-discrete subcohorts. Both species  
39 demonstrated equivalent infection initially by either exposure route although the  
40 magnitude and duration of viral loading was greater in AGMs than that of the RM.  
41 Clinical onset was nearly immediate (+1dpi) in mucosally-exposed cohorts whereas  
42 aerosol-infected animals began to show signs +7dpi. Myeloid cell responses indicative  
43 of the development of pulmonary scarring and extended lack of regenerative capacity in  
44 the pulmonary compartment was a conserved pathologic response in both species by  
45 either exposure modality. This pathological commonality may be useful in future anti-

46 fibrosis therapeutic evaluations and expands our understanding of how SARS-CoV-2  
47 infection leads to ARDS and functional lung damage.

48

49

50

51

52

53

54

55

56

57

58

59

60 **Introduction**

61 SARS-CoV-2, the viral pathogen responsible for the current worldwide pandemic, has  
62 caused over 737,000 deaths in the United States and over 4.9 million deaths  
63 worldwide<sup>1,2</sup>. Pathogenesis of this disease in humans includes pneumonia  
64 accompanied by shortness of breath, with a subset of affected individuals experiencing  
65 acute respiratory distress syndrome (ARDS) and death<sup>3</sup>. Symptoms have been  
66 reported to continue beyond resolution of viral persistence, including fatigue, dyspnea,  
67 anosmia and headache<sup>4</sup>. Symptoms lasting longer than four weeks past this point  
68 being termed post-acute COVID-19 syndrome (PACS), or 'long COVID'<sup>5</sup>.

69

70 The exploratory development of COVID-19 disease models using various animal  
71 species continues to be goal to combat this pandemic and investigations have led to  
72 highly useful test systems for evaluation and pathogenesis studies<sup>6</sup>. Accordingly,  
73 multiple nonhuman primate (NHP) species have been experimentally infected with  
74 SARS-CoV-2, with most studies focusing on *Chlorocebus aethiops* (African green  
75 monkeys, AGMs) or *Macaca mulatta* (Rhesus macaques, RMs). Other examples of  
76 species studied include *Macaca nemestrina* (Southern pigtail macaque)<sup>7</sup>, *Macaca*  
77 *leonina* (Northern pigtail macaque)<sup>8</sup>, *Macaca fascicularis* (Cynomolgus macaque)<sup>9</sup>,  
78 *Callithrix jacchus* (Common marmoset) and *Papio hamadryas* (Baboon)<sup>10</sup>. Most of  
79 these models involve installation of the virus directly to mucosal surfaces<sup>11,12</sup>, though  
80 some have included the aerosol modality of exposure<sup>13</sup>. Overwhelmingly, the NHP  
81 model of SARS-CoV-2 infection results in a mild to moderate disease, with only one  
82 study reporting euthanasia criteria being met post challenge<sup>14</sup>. The RM model of

83 disease, utilized for vaccination<sup>15,16</sup>, re-challenge<sup>17</sup>, and therapeutic<sup>18</sup> studies, results in  
84 disease resolving within three weeks post challenge<sup>9</sup>, though some evidence of longer  
85 term viral replication has also been reported<sup>19</sup>. AGMs have been utilized for many  
86 similar respiratory-based viral diseases including SARS-CoV-1<sup>20</sup>, parainfluenza virus<sup>21</sup>  
87 and Nipah virus<sup>22</sup>. Their use as SARS-CoV-2 infection models has resulted in observed  
88 mild respiratory disease like RMs, but with prolonged shedding of viral RNA<sup>11,13</sup>.

89

90 The most common severe disease outcome in humans infected with SARS-CoV-2 is  
91 ARDS. Fibroproliferative disease following resolution of ARDS is the most common  
92 cause of death in patients, with up to 61% of autopsies showing signs of pulmonary  
93 fibrosis and 25% of ARDS survivors show evidence of restrictive lung disease with long  
94 lasting morbidity<sup>23-25</sup>. Within the COVID patient cohort, 42% who develop severe  
95 pneumonia will progress to ARDS, with fatal cases generally presenting with pulmonary  
96 fibrosis at autopsy<sup>26,27</sup>. ARDS in COVID is characterized by a myeloid cell migration  
97 into the lung<sup>28</sup>, with early NHP studies showing infiltration of CCR2+ myeloid cells.  
98 These studies did not allude to the mechanism by which the cellular kinetics or  
99 phenotypes specifically correlated with the pathologic sequelae of pulmonary scarring  
100 from this viral disease<sup>29</sup>.

101

102 In this study, we tested whether NHP species or exposure modality functionally changes  
103 disease course and progression. RM and AGM cohorts are compared experimentally  
104 infecting either species via direct mucosal route (intratracheal/intranasal) or small  
105 particle aerosol modality to a low passage SARS-CoV-2 archival (WA1/2020) strain.

106 We demonstrate that infection by small particle aerosol results in slower development of  
107 signs of disease and immune response to viral infection in both species. The AGMs  
108 revealed longer viral dynamics in the respiratory compartment and longer-term  
109 elimination in the gastrointestinal system when in contrast to the RM. Myeloid cell  
110 kinetics and phenotypes were defined among the entire cohort to investigate whether  
111 variables associated with experimental infection or differences in species susceptibility  
112 attribute to the severe outcome of SARS-CoV-2 infection. Myeloid cell infiltration and  
113 anti-inflammatory phenotype correlating with decreased pulmonary scarring in either  
114 species. Lack of regenerative activity in the lung was present in both species post  
115 resolution of most of the viral RNA, indicating the NHP model of SARS-CoV-2 infection  
116 can be utilized during anti-fibrosis therapeutic development and evaluation and has  
117 potential utility in evaluation of post-acute COVID sequelae.

118

119 **Methods**

120 Animal cohort and procedures

121 A total of 16 NHPs were utilized for this study, between 4 and 11 years old, with most  
122 being 7 years of age. All RMs used in this study were captive bred at TNPRC. Four  
123 individuals of each species were challenged with SARS-CoV-2 USA\_WA1/2020 (World  
124 Reference Center for Emerging Viruses and Arboviruses, Galveston, TX), by small  
125 particle aerosol, with a mean delivered dose of  $1.5 \times 10^4$  TCID<sub>50</sub>. The animals exposed  
126 to SARS-CoV-2 by aerosol were individually exposed using well-established  
127 methodologies as reported in the literature<sup>14,30</sup>. The other four animals of each species  
128 were challenged via a combination of intratracheal and intranasal administration (IT/IN),

129 herein referred to as ‘multiroute’, with a delivered dose of  $2.0 \times 10^6$  TCID<sub>50</sub> (Table S1).  
130 Pre- and post-exposure samples were taken from blood, mucosal (pharyngeal, nasal,  
131 rectal) swabs, and BAL supernatant. Chest X-rays were also performed regularly  
132 during the study (Figure 1). Animals were monitored for signs of disease throughout the  
133 study, with no animals reaching euthanasia criteria. At necropsy, mucosal samples  
134 were taken, as well as tissues placed in Trizol or z-fix or fresh frozen for later  
135 examination.

136

137 Ethical Statement

138 The Tulane University Institutional Animal Care and Use Committee approved all  
139 procedures used during this study. The Tulane National Primate Research Center  
140 (TNPRC) is accredited by the Association for the Assessment and Accreditation of  
141 Laboratory Animal Care (AAALAC no. 000594). The U.S. National Institutes of Health  
142 (NIH) Office of Laboratory Animal Welfare number for TNPRC is A3071-01. Tulane  
143 University Institutional Biosafety Committee approved all procedures for work in, and  
144 removal of samples from, Biosafety Level 3 laboratories.

145

146 Isolation of Viral RNA

147 RNA was isolated from non-tissue samples using a Zymo Quick RNA Viral Kit (#R1035,  
148 Zymo, USA) or Zymo Quick RNA Viral Kit (#D7003, Zymo, USA) for BAL cells, per  
149 manufacturer’s instructions. RNA was eluted in RNase free water. During isolation, the  
150 swab was placed into the spin column to elute the entire contents of the swab in each  
151 extraction. BAL supernatant was extracted using 100  $\mu$ L. Viral RNA from tissues was

152 extracted using a RNeasy Mini Kit (#74106, Qiagen, Germany) after homogenization in  
153 Trizol and phase separation with chloroform.

154

155 Quantification of Viral RNA using Quantitative Reverse Transcriptase PCR

156 Isolated RNA was analyzed in a QuantStudio 6 (Thermo Scientific, USA) using TaqPath  
157 master mix (Thermo Scientific, USA) and appropriate primers/probes (Table S2) with  
158 the following program: 25°C for 2 minutes, 50°C for 15 minutes, 95°C for 2 minutes  
159 followed by 40 cycles of 95°C for 3 seconds and 60°C for 30 seconds. Signals were  
160 compared to a standard curve generated using *in vitro* transcribed RNA of each  
161 sequence diluted from 10<sup>8</sup> down to 10 copies. Positive controls consisted of SARS-  
162 CoV-2 infected VeroE6 cell lysate. Viral copies per swab were calculated by multiplying  
163 mean copies per well by amount in the total swab extract, while viral copies in tissue  
164 were calculated per µg of RNA extracted from each tissue.

165

166 Live Virus Quantification

167 Median Tissue Culture Infectious Dose (TCID<sub>50</sub>) was used to quantify replication-  
168 competent virus in swabs and BAL supernatant. VeroE6 cells were plated in 48-well  
169 tissue culture treated plates to be subconfluent at time of assay. Cells were washed with  
170 serum free DMEM and virus from 50 µL of sample was allowed to adsorb onto the cells  
171 for 1 hour at 37°C and 5% CO<sub>2</sub>. After adsorption, cells were overlayed with DMEM  
172 containing 2% FBS and 1% Anti/Anti (#15240062, Thermo Scientific, USA). Plates were  
173 incubated for 7-10 days before being observed for cytopathic effect (CPE). Any CPE

174 observed relative to control wells was considered positive and used to calculate TCID<sub>50</sub>  
175 by the Reed and Muench method <sup>31</sup>.

176

177 *Detection of Antibodies in Serum*

178 The ability of antibodies in serum to disrupt the binding of the receptor binding domain  
179 (RBD) of SARS-CoV-2 spike protein to Angiotensin Converting Enzyme (ACE2) was  
180 assessed via the Surrogate Virus Neutralization Test (GenScript# L00847) using the  
181 included kit protocol modified per the following: Serum samples were diluted from 1:10  
182 to 1:21,870 to determine an IC<sub>50</sub> for RBD/ACE2 binding. Pseudovirus neutralization  
183 testing of matched serum was performed using a spike protein pseudotyped virus in  
184 293/ACE2 cells, with neutralization assessed via reduction in luciferase activity (<sup>32,33</sup>).  
185 For binding ELISAs, matched serum was analyzed in duplicate on plates coated with  
186 SARS-CoV-2 NP or RBD (Zalgen Diagnostics, Aurora, CO) at 1:100 in diluent. Serum  
187 was incubated for 30 minutes at room temperature, washed four times, and incubated  
188 with anti-NHP IgG conjugate followed by incubation for 30 minutes at room temp.  
189 Development by TMB for ten minutes was followed by stopping of the reaction and  
190 reading the plate at 450nm.

191

192 *Serum Cytokines*

193 Invitrogen 37-Plex NHP ProcartaPlex kits were purchased and processed according to  
194 manufacturer's instructions with a 1-hour sample incubation period and analysis on the  
195 Luminex xMAP. Heatmaps were generated using log<sub>2</sub>-transformed raw fluorescent

196 intensity values input into the R package pheatmap (Raivo Kolde (2019). pheatmap:  
197 Pretty Heatmaps. R package version 1.0.12.). Hierarchical clustering was unsupervised.

198

199 **BAL Cytokines**

200 Invitrogen 37-Plex NHP ProcartaPlex kits were purchased and processed according to  
201 manufacturer's instructions with an overnight sample incubation period and fixation of  
202 the plate for one hour in 2% paraformaldehyde before resuspension in Reading Buffer  
203 and analysis using the Luminex xMAP. Heatmaps were generated using  $\log_2$ -  
204 transformed raw fluorescent intensity values input into the R package pheatmap (Raivo  
205 Kolde (2019). pheatmap: Pretty Heatmaps. R package version 1.0.12.). Hierarchical  
206 clustering was unsupervised.

207

208 **Pathology and Histopathology**

209 Animals were humanely euthanized following terminal blood collection. The necropsy  
210 was performed routinely with collection of organs and tissues of interest in media, fresh  
211 frozen, and in fixative. The left and right lungs were imaged and then weighed  
212 individually. A postmortem bronchoalveolar lavage (BAL) was performed on the left  
213 lower lung lobe. Endoscopic bronchial brushes were used to sample the left and right  
214 mainstem bronchi. One section from each of the major left and right lung lobes (anterior,  
215 middle, and lower) sample fresh, and the remaining lung tissue was infused with fixative  
216 using a 50 mL syringe and saved in fixative. Fixed tissues were processed routinely,  
217 embedded in paraffin and cut in 5  $\mu\text{m}$  sections. Sections were stained routinely with  
218 hematoxylin and eosin or left unstained for later analysis via fluorescent

219 immunohistochemistry. Trichrome staining was performed as described previously,  
220 except with an additional 10 minutes of incubation with Weigert's Iron Hematoxylin  
221 Working Solution<sup>34</sup>.

222

223 Histopathologic lesions identified in tissues were categorically scored by the same  
224 pathologist that performed the necropsies. Lesions were scored based on severity as  
225 the lesions being absent (-), minimal (+), mild (++) , moderate (+++), or severe (+++).

226 Cohorts were grouped together and non-parametric pairwise comparisons were  
227 performed for statistical analysis of histopathologic lesions.

228

229 Fluorescent immunohistochemistry was performed on 5  $\mu$ m sections of Formalin-fixed,  
230 paraffin-embedded lung were incubated for 1 hour with the primary antibodies (SARS,  
231 Guinea Pig, (BEI, cat#NR-10361) diluted in NGS at a concentration of 1:1000).

232 Secondary antibodies tagged with Alexa Fluor fluorochromes and diluted 1:1000 in NGS  
233 were incubated for 40 minutes. DAPI (4',6-diamidino-2-phenylindole) was used to label  
234 the nuclei of each section. Slides were imaged with Zeiss Axio Scan Z.1 slide scanner.  
235 Other antibodies used for fluorescent immunohistochemistry are listed in Table S3.

236

237 *Quantification of pulmonary fibrosis*

238 Trichrome stained slides were scanned on a digital slide scanner (S360, Hamamatsu  
239 Corporation, Bridgewater, NJ, USA). Annotation regions were drawn around the entire  
240 section of lung. The annotated regions were analyzed with a deep learning algorithm  
241 (HALO AI, Indica Labs, Albuquerque, NM, USA) trained by a pathologist (RVB) to

242 recognize areas of fibrosis. The area of fibrosis was reported over the total area  
243 analyzed (% Area analyzed).

244

245 *Quantification of fluorescent immunohistochemistry for CD163+ and CD206+*  
246 Fluorescent immunohistochemistry was performed on sections of lung. Fluorescently  
247 labeled slides were scanned with a digital slide scanner (Axio Scan.Z1, Carl Zeiss  
248 Microscopy, White Plains, NY). Phenotypic markers were quantified using digital image  
249 analysis software (HighPlex FI v4.04, HALO, Indica Labs). Cells were first identified by  
250 detecting nuclei (DAPI signal) and thresholds for detection of each phenotypic marker  
251 were set by a pathologist (RVB). The entire lung section was analyzed, and the number  
252 of each cellular phenotype (CD163+, CD206+, CD163+CD206+) was reported as cells  
253 per mm<sup>2</sup>.

254

255 Flow cytometry

256 After collection and processing of BAL as previously described, samples were  
257 centrifuged, cells resuspended in ammonium chloride potassium (ACK) lysis buffer  
258 (#A1049201, Fisher Scientific, USA), and incubated on ice. Media was added to stop  
259 lysis and cells were washed before counting and added to 5 mL snap-cap tubes. Cells  
260 were stimulated with 0.1% LPS (Enzo Life Sciences Cat# ALX-581-010-L001) and  
261 Brefeldin A (BD Bioscience Cat# 555029) overnight (16-18 hours). After stimulation,  
262 samples were washed with PBS pH7.2 (Fisher Cat#20012027) and incubated with Fc  
263 Block (Tonbo Biosciences Cat# 70-0161-U500) for 5 minutes on ice before viability  
264 staining (BD Biosciences Cat# 564406). Cells were washed with Running Buffer

265 (Miltenyi Cat#130-091-221) before incubation with Surface Master Mix for 30 minutes  
266 on ice. After subsequent washing with Running Buffer, cells were resuspended in  
267 Fixation/Stabilization Buffer (BD Biosciences 554722) for one hour, then washed with  
268 Perm/Wash Buffer (BD Bioscience Cat# BDB554723) twice. Intracellular target  
269 antibodies were then added and incubated for 20 minutes at room temperature, then  
270 washed with Running Buffer. Samples were resuspended in FACS Fixation and  
271 Stabilization Buffer (BD Biosciences Cat# 50-620-051) and analyzed within 24 hours or  
272 resuspended in PBS and read between 48-72 hours after sample processing.  
273 Compensation panels, pooled unstained sample, and unstimulated controls incubated  
274 with Brefeldin A only were run with every set of samples.

275

276 Analysis of flow cytometry data

277 FlowJo version 10.7.1 (BD, Oregon, USA) was used to analyze flow cytometry data.  
278 Acquired samples were gated on viability, single cells, CD20/CD3 negativity, and HLA-  
279 DR positivity before cell typing. Total alveolar macrophages were gated based on their  
280 expression of HLA-DR, CD45, CD163, and CD206. Infiltrating macrophages were gated  
281 based on their expression of HLA-DR, CD45, and CD163 along with a lack of CD206  
282 positivity. Monocyte-derived macrophages in the CD163+CD206+ population were  
283 distinguished from remaining alveolar macrophages by CCR2 and CD16 positivity.  
284 Table S4 lists the antibodies used for staining, and a representative gating strategy  
285 (Figure S5).

286

287 TGF- $\beta$  ELISA

288 TGF- $\beta$ 1 was quantified in BAL supernatant fluid utilizing a Quantikine<sup>®</sup> ELISA TGF- $\beta$ 1  
289 Immunoassay kit (R&D Systems #BD100B) according to manufacturer's instructions  
290 and utilizing a Sample Activation Kit 1 (R&D Systems #DY010) and Human TGF- $\beta$ 1  
291 Controls (R&D Systems #QC01-1). Each animal's necropsy BAL supernatant was  
292 compared to baseline samples, and log<sup>2</sup> fold change was calculated.

293

294 **Hematology and Clinical Chemistries**

295 Analysis of blood chemistries was performed using a Sysmex XT-2000i analyzer for  
296 EDTA collected plasma, or an Olympus AU400 chemistry analyzer for serum.

297

298 **Results**

299 **Viral Dynamics**

300 Eight rhesus macaques (RMs) and eight African green monkeys (AGMs) were  
301 inoculated with SARS-CoV-2, with a subset (n=4) of each species experimentally  
302 infected either by multiroute (IT/IN) or small particle aerosol. The individuals received  
303  $2.0 \times 10^6$  TCID<sub>50</sub> via IT/IN and approximately  $1.5 \times 10^4$  TCID<sub>50</sub> via aerosol, ranging from  
304  $1.9 \times 10^3$  to  $7.5 \times 10^4$ , depending on each animal's respiratory patterns (Table S1).  
305 Mucosal sampling via pharyngeal, nasal, and rectal swabs, blood, BAL and radiography  
306 were performed at indicated times (Figure 1).

307

308 Quantitative RT-PCR was used to measure viral load of both genomic and subgenomic  
309 vRNA throughout the course of disease (Table S2). Viral loads were generally at their  
310 peak at one day post challenge, with viral RNA trailing off for most species/routes by the

311 end of week 2. All cohorts, except the RM aerosol cohort, had detectable genomic RNA  
312 at necropsy in the nasal swabs, though nothing was still detectable in the pharyngeal  
313 swab. In the BAL supernatant, genomic RNA persisted longer in the aerosol groups as  
314 compared to their species-matched IT/IN exposure cohort, with the AGM aerosol cohort  
315 still having detectable genomic vRNA at necropsy, and detectable subgenomic vRNA  
316 two weeks post challenge. Persistent, delayed shedding of viral RNA was observed in  
317 rectal swabs of the aerosol cohorts across species, with subgenomic vRNA present at  
318 necropsy in the AGM aerosol animals (Figure 2A). Overall viral loads, represented as  
319 area under the curve of vRNA over the course of the study, overall higher genomic  
320 vRNA in the multiroute compared to the aerosol cohort in the RMs, with the same  
321 relationship being present in rectal swabs for subgenomic vRNA (Figure S1).

322

323 Genomic RNA was detected in multiple lung regions, with the notable exception of the  
324 RM multiroute cohort, where no persistent RNA was found at necropsy (Figure 2B). All  
325 AGM animals displayed subgenomic vRNA in lung tissue at necropsy, with detectable  
326 amounts of viral RNA in the bronchus and one individual maintaining detectable  
327 amounts in the LA-D region (Figure 2C).

328

329 Live virus was measured in each sample via the median tissue culture infectious dose  
330 (TCID<sub>50</sub>) assay. Viral loads followed a similar pattern of a high peak at one day post  
331 challenge, in all animals regardless of exposure modality or species. The aerosol  
332 cohort exhibited longer term viral loads, with one AGM still possessing detectable virus  
333 at week three post challenge in pharyngeal swab samples. Virus was detected in nasal

334 swabs and BAL supernatant of the AGMs regardless of exposure, with much less  
335 detected in the RMs (Figure S2).

336

337 **Antibody Responses**

338 We used a combination of enzyme-linked immunosorbent assay (ELISA) and  
339 pseudovirus neutralization to characterize the antibody responses of the cohorts during  
340 SARS-CoV-2 infection. In all cases, with pseudovirus neutralization (Figure 3A), and  
341 binding of RBD and NP (Figures 3B and C, respectively), RMs showed less antibody  
342 development than AGMs, regardless of exposure modality, though their anti-RBD  
343 development resembled the AGM aerosol cohort (Figure 3B). The RM aerosol cohort  
344 displayed anti-NP titers equivalent to the AGM aerosol animals at week three, with a  
345 drop in titers at necropsy (Figure 3C). The AGM mutiroute cohort showed the highest  
346 magnitude of antibody development, with a peak at week 3, then a slight decrease from  
347 peak by necropsy. Notably, the AGM aerosol cohort displayed an overall delayed  
348 antibody response, which peaked at necropsy, indicating the potential to continue to  
349 increase at later time points. This peak in titers was observed in AGMs in both  
350 exposure cohorts (Figure 3D). In all cases, a higher titer was seen at necropsy in the  
351 AGM cohort regardless of exposure modality than the RM cohort, with no difference  
352 observed based on exposure modality (Figure 3E-H).

353

354 **BAL and Serum Cytokines**

355 Measurements of cytokines in serum and BAL supernatant samples were performed  
356 throughout the study. Cytokines in the BAL supernatant was more differentially

357 expressed than those in the serum. BAL cytokines were expressed in higher amounts  
358 in the mutiroute than the aerosol cohort, with the aerosol animals revealing a delayed  
359 increase in many cytokines, including IL-2, IL-4, IL-6, IL-7, IL-10, TNF- $\alpha$ , and IFN- $\square$ .  
360 The RM multiroute cohort exhibited a larger increase in some cytokines than the AGM  
361 cohort, including GM-CSF, IL-10, IL-4, and IP-10, and an increase above the RM  
362 aerosol animals in IL-12p70, IL-17A, TNF- $\alpha$  and IL-7. The aerosol cohort exhibited  
363 lower levels of MCP-1, with the aerosol-exposed RMs expressing IP-10 more highly  
364 than the AGM aerosol animals. In some cases, aerosol continued to trend at necropsy  
365 with increases of IL-6, IFN- $\alpha$ , IL-1 $\beta$  throughout sampling. AGMs displayed higher levels  
366 of I-TAC and lower levels of MCP-1 than RMs, though trends were more associated  
367 with exposure modality than species in the BAL (Figure 4).

368

369 Serum cytokines were measured throughout the study as well. Here, the RM multiroute  
370 animals displayed lower levels of GM-CSF, IL-5, IL-6, and MCP-1. The temporal  
371 differences in exposure modality were not present in the serum samples. The AGM  
372 mutiroute displayed higher levels of MIG, MIP-1 $\beta$  and VEGF-A (Figure S3).

373

#### 374 **Clinical Scoring**

375 Clinical observations were performed throughout the study and resulted in categorical  
376 scores as a corollary to clinical disease development in the NHPs. The number of  
377 animals showing signs of SARS-CoV-2 related disease increased rapidly early during  
378 the study in the mutiroute cohort in either species, continued to a peak at week three  
379 post challenge, and then declined by day 28 termination of the experiment (necropsy).

380 This is in contrast to the aerosol-exposed animals, which did not display signs of  
381 disease until one week post challenge, and thereafter continued to increase until day 28  
382 at necropsy (Figure 5A, B). The same pattern was observed in overall group severity  
383 scores (Figure 5C). Overlaying the clinical score curves with PCR data showed  
384 persistent subgenomic vRNA in the BAL supernatant (Figure 5A) and rectal swabs  
385 (Figure 5B) of the AGM aerosol cohort, suggesting a slower onset, more persistent  
386 disease process. Both species exhibit persistent signs of disease, with RMs peaking  
387 than AGMs at necropsy over that of the AGM animals (Figure 5D) when data is  
388 segregated by species among all of the aerosol-exposed animals. Overall, the  
389 mutiroute cohort exhibited a higher cumulative score than the aerosol cohort, though the  
390 latter cohort's clinical signs continued to increase until the termination of the study  
391 (Figure 5E). The scoring system was based on respiratory signs and changes in activity  
392 (Figure 5F).

393

394 **Pulmonary Fibrosis**

395 Ten animals of the sixteen exposed to SARS-CoV-2 infection by either aerosol or  
396 mutiroute presented with pulmonary scarring of varying but generally mild degree,  
397 including animals with no signs of disease observed. To define animals with and without  
398 pulmonary scarring for further analysis, three criteria were applied as compared to a  
399 normal control (Figure 6A): fibrin deposition observed by a licensed pathologist using  
400 routine H&E histology (Figure 6B); trichrome staining to identify areas of inflammation  
401 and collagen deposition in at least one section of lung (Figure 6C); and analysis with  
402 HALO, per indicated methods, revealed at least one section of lung which contained

403 more collagen than one standard deviation above the average identified in the same  
404 section in naive animals (Figure 6D). Animals classified with pulmonary scarring were  
405 generally identified based on sections collected from the deep left anterior lobe section.

406

407 **Lung Macrophage Dynamics**

408 Flow cytometric analysis of CD163+CD206+ alveolar macrophages in BAL fluid  
409 revealed an average decrease in this population at day one post-exposure in animals  
410 with and without pulmonary scarring, with recovery to naïve comparator levels in  
411 animals with scarring over the course of the study (Figure 7A). Infiltrating macrophages  
412 within the lumen of the alveoli, classified as CD163+CD206-, were higher at day one  
413 than in naïve comparators, and resolved by week one in animals with scarring.  
414 Meanwhile, infiltrating macrophages remained high in animals without scarring (Figure  
415 7A). Animals with scarring had more alveolar macrophages and fewer infiltrating  
416 macrophages than animals without scarring at necropsy (Figure 7B). IL-10:IL-6 ratios  
417 were calculated via quantification of median fluorescence intensity (MFI) and revealed  
418 greater IL-10:IL-6 ratios in both alveolar and infiltrating macrophages in animals without  
419 pulmonary scarring (Figure 7C). Additionally, HALO analysis was completed with  
420 fluorescent markers for both CD206 and CD163 to validate flow cytometry findings and  
421 confirmed increased macrophage presence in pulmonary tissue (Figure 7D). Combined  
422 quantification and functionality analysis indicated increased anti-inflammatory  
423 macrophages in the pulmonary compartment of animals without pulmonary scarring.

424

425 Further analysis of alveolar macrophages (CD163+CD206+) within the lung included  
426 distinction between CD163+CD206+CD16+CCR2+ infiltrating monocyte-derived  
427 alveolar macrophages and CD163+CD206+CD16- resident alveolar macrophages. The  
428 proportion of alveolar macrophages decreased in both groups at day one and remained  
429 low through the end of the study, while monocyte-derived macrophages dominated the  
430 CD206+CD163+ subset (Figure 8A). Both alveolar macrophages and monocyte-derived  
431 macrophages were higher in animals without pulmonary scarring and produced higher  
432 IL-10:IL-6 ratios throughout the study (Figure 8B), suggesting a more robust, persistent,  
433 and anti-inflammatory pulmonary compartment in animals without scarring.

434

435 **Long-term myofibroblast persistence and lack of regenerative activity in areas of**  
436 **pulmonary fibrosis**

437 Pulmonary scarring is the result of a combination of both persistent fibroblast activation  
438 and reduced regenerative potential, causing excessive deposition of collagen within the  
439 lung that is not readily resolved. To determine if activated myofibroblasts were present  
440 within this collagenous tissue, lung sections of animals both with and without pulmonary  
441 scarring were stained with fluorescent markers for  $\alpha$ SMA and cytokeratin V.

442 Myofibroblasts were present in areas of collagen deposition (Figure 9A). Myofibroblasts  
443 are activated by TGF- $\beta$ , which is produced by macrophages and allows for their  
444 continued production and deposition of collagen. Additionally, TGF- $\beta$  signaling has also  
445 been implicated in fibrogenesis<sup>35,36</sup>. To determine if activated myofibroblasts were within  
446 collagenous lung sections, we measured for the presence TGF- $\beta$  in BAL fluid.

447 Detectable levels of TGF- $\beta$  were in some, but not all, of animals with lung scarring, and

448 in none of the animals without lung scarring already present (Figure 9B). The presence  
449 of TGF- $\beta$  was not discernable between species nor modality of SARS-CoV-2 infection.  
450 Because TGF- $\beta$  is closely involved in wound healing and associated immunoregulation  
451 at sites of injury, there was interest in understanding whether regenerative processes  
452 were taking place in animals recovering from acute viral infection. Fluorescent  
453 antibodies p63 and cytokeratin V were used to identify basal lung progenitor cells to  
454 measure whether regenerative potential within the lung was underway. We identified a  
455 lack of robust regenerative response to SARS-CoV-2 infection (Figure 10A-D), which is  
456 suggestive of a muted regenerative response and potentially prolonged recovery from  
457 viral infection in the lung of experimentally infected macaques.

458

#### 459 **Hematology and Clinical Chemistries**

460 Complete blood counts and clinical chemistries were performed throughout the study at  
461 times of blood collection. The AGM mutiroute cohort displayed lower levels of  
462 neutrophils than the AGM aerosol animals during the study (Figure S6C) and higher  
463 levels of monocytes than the AGM aerosol and RM multiroute cohorts (Figure S6F).  
464 Blood urea nitrogen was elevated in the AGM aerosol cohort compared to the RM  
465 aerosol cohort (Figure S7D), though overall increases in BUN were only slightly higher  
466 than expected levels for either NHP species.

467

#### 468 **Discussion**

469 SARS-CoV-2 infection continue to result in morbidity and mortality in large segments of  
470 the population, with some long-term sequelae persisting well beyond viral clearance in

471 those that carry risk factors associated with severe clinical outcome<sup>1,37-41</sup>. Variants of  
472 concern (VOC) are arising that threaten to continue the pandemic into the future to an  
473 uncertain degree, necessitating efforts that transcend vaccination strategies alone, and  
474 promote alternative prophylactic and therapeutic development both in acute and longer-  
475 term time frames post-infection<sup>42-46</sup>. Multifocal medical countermeasure development  
476 while this virus evolves to the human host necessitates a suitable animal model of  
477 infection that recapitulates the immunologic and clinically relevant aspects of COVID-19.  
478 Accordingly, we evaluated both the multiroute and aerosol exposure modality of SARS-  
479 CoV-2 experimental infection in the Rhesus macaque and African green monkey. In  
480 this study, we attempted to dose animals using two distinct exposure routes:  
481 intratracheal and intranasal concomitantly, and by small particle aerosol. The dosing in  
482 the 'multiroute' groups were fairly easy to obtain as doses were titrated based upon  
483 volume applied in the administration in both the intratracheal and intranasal  
484 administration. Reaching the equivalent dose (2E+06 TCID<sub>50</sub>) by the aerosol route was  
485 hampered by relatively low-titer virus (3E+06 TCID<sub>50</sub>) and the logistics of producing  
486 aerosols for the purposes of individual exposure. There is a natural dilution effect and  
487 corresponding efficiency to aerosolization of SARS-CoV-2 virus that effects the resulting  
488 dosing of each animal. The net effect was a nearly 2-log disparity between the  
489 multiroute and aerosol groups. This disparity should be considered when any direct  
490 comparisons are made controlling only for route of exposure.

491

492 Animals in the multiroute exposure group displayed earlier and respiratory signs of  
493 disease of increased severity, as well as a higher cumulative categorical clinical score

494 than the aerosol cohort. The aerosol-exposed animals of either species, in contrast,  
495 began showing signs of disease a full week later and continued to trend upward until the  
496 termination (28d PI) of the study. Though signs of disease were delayed in the aerosol  
497 cohort, viral titers were similar beginning day one through week one post-exposure in all  
498 in all groups, with persistent infection detected in aerosol exposure cohorts through end  
499 of the study. The similarity of the pattern of early viral kinetics between exposure groups  
500 despite differences in clinical signs of disease suggests that viral replication may not be  
501 the direct cause of disease onset, but rather the immune response to infection that may  
502 play a larger role. Additionally, animals who did not display signs of disease throughout  
503 the study nonetheless exhibited detectable measures of viral replication, including PCR  
504 detection of viral genomic and subgenomic RNA, indicating that these animals may still  
505 be able to transmit virus. Higher viral titers in the lower respiratory tract were observed  
506 in AGMs, whereas the nasal cavity positivity was greater in RMs, representing potential  
507 differences in natural aerosol transmission between species.

508

509 Systemic inflammatory cytokine/chemokine response including TNF $\alpha$ , IL-6, MCP-1, IP-  
510 10, and MIP-1 $\alpha$  has been associated with more severe disease in human studies of  
511 COVID-19<sup>3,47</sup>. We observed increases in some of these mediators early in infection in  
512 serum including MCP-1 and MIP-1 $\alpha$  in AGMs of both exposure routes, indicating  
513 mobilization and recruitment of monocytes, dendritic cells, and NK cells in these  
514 animals. A single animal (NB81) in the AGM mutiroute group exhibited acute increases  
515 in IFN- $\gamma$ , MIG, MIP-1 $\beta$ , and VEGF-A, and drove group trends in blood monocyte

516 number. These outcomes indicate a contribution of NK cells to the activation of  
517 macrophages in this animal, as well as robust extravasation of monocytes.

518

519 Localized soluble mediator responses varied among groups and species. More  
520 pronounced changes were observed in the BAL than in the serum, indicating a more  
521 localized pulmonary than systemic response to infection in this model. The mutiroute  
522 group in both species showed more pronounced changes than the aerosol cohort,  
523 possibly due to dose differences. Similar increases in IL-2, IL-4, IL-6, IL-7, IL-10, TNFa,  
524 and IFNy were observed at week one in mutiroute exposure groups, though the aerosol  
525 group saw similar increases a week later. This shift in cytokine response correlates with  
526 the shift observed with signs of disease, indicating a delayed immune response to  
527 infection despite temporally similar viral titers.

528

529 We found more alveolar macrophages and fewer infiltrating macrophages at nearly all  
530 time points by flow cytometry of BAL and at necropsy by HALO analysis of fluorescent  
531 antibody-stained lung tissue, in animals with pulmonary scarring. Infiltrating  
532 macrophages were increased in animals without scarring at necropsy, though their  
533 average IL-10:IL-6 ratio was higher than those in animals with scarring, indicating an  
534 anti-inflammatory phenotype. This finding emphasizes the need for further investigation  
535 into the role of inflammatory/anti-inflammatory phenotype of infiltrating macrophages in  
536 pulmonary scarring post-SARS-CoV-2 infection. Indeed, individual animals without  
537 scarring with fewer infiltrating macrophages had the highest IL-10:IL-6 ratios, alluding to  
538 a more potent anti-inflammatory response of individual cells in these animals. Individual

539 animals with scarring and fewer infiltrating macrophages also had the lowest IL-10:IL-6  
540 ratios, indicating a more potent inflammatory response. The numbers of both resident  
541 alveolar macrophages (CD163+CD206+CD16-) and monocyte-derived macrophages  
542 (CD163+CD206+CD16+CCR2+) are also higher in animals without scarring early in  
543 infection at day one, with a consistently higher average IL-10:IL-6 ratio in these cells.  
544 Correspondingly, at day one PI, a drastic decrease in IL-10:IL-6 ratio in all alveolar  
545 macrophage (CD163+CD206+) populations in animals with scarring suggests a marked  
546 and early response, as seen in human cases with worsening disease<sup>48</sup>, sets the stage  
547 for separation between scarring outcomes. This early indicator of potential long-term  
548 consequences of disease merits further investigation and suggests that  
549 inflammatory/anti-inflammatory phenotype and potency of response of macrophages in  
550 the lung may be an important indicator to predict scarring outcome. This additionally  
551 suggests differences in proinflammatory monocyte-derived macrophage populations at  
552 baseline may dictate response, as well as the utility of anti-inflammatory steroids such  
553 as dexamethasone to prevent pulmonary scarring in SARS-CoV-2 infection by reducing  
554 the inflammatory response. SARS-CoV-2 results in death of monocyte-derived  
555 macrophages while still correlating with IL-6 secretion, which could result in this IL-10  
556 dominated infiltrating macrophage response as observed in this study<sup>49</sup>. Focused  
557 studies thoroughly interrogating host response in this context should be performed  
558 based upon these findings.

559

560 Activated myofibroblasts positive for  $\alpha$ SMA and cytokeratin V in areas of collagen  
561 deposition within scarred lung were identified using fluorescent immunohistochemistry.

562 Myofibroblasts co-localized with macrophages were identified within the pulmonary  
563 region of the lung, further suggesting their role in the activation and persistence within  
564 scarred tissue. The presence of activated myofibroblasts within scarred areas of tissue  
565 also suggests further development of this cellular subset in affected areas within the  
566 lung. Additionally, when TGF- $\beta$  ELISA was performed on BAL fluid, a cytokine which  
567 induces activation of myofibroblasts and is associated with wound healing and found  
568 significant levels of TGF- $\beta$  in some, but not all, animals with lung scarring at 28 days  
569 post-exposure. Further studies should explore the secretion and resolution of TGF- $\beta$   
570 production and its relation to pulmonary scarring after SARS-CoV-2 infection.

571 Immunohistochemistry identifying basal progenitor cells positive for p63 and cytokeratin  
572 V showed minimal difference in the frequency of progenitor cells between animals naïve  
573 to SARS-CoV-2 and infected animals with or without pulmonary scarring after infection.  
574 This lack of signs of robust regenerative activity after infection suggests that infection  
575 with SARS-CoV-2 negatively affects the potential for prolonged recovery and resolution  
576 of pulmonary scarring in NHP. This finding is consistent with clinical human findings of  
577 elevated TGF-  $\beta$  in severe COVID <sup>50</sup>, as well as myofibroblast activity within infected  
578 lungs <sup>51</sup>. This makes the NHP model of SARS-CoV-2 infection a powerfully predictive  
579 tool for this unique pathologic sequela, as well as for testing future therapeutics that  
580 targets TGF- $\beta$ <sup>52,53</sup>.

581

582 Delayed local pulmonary cytokine/chemokine responses, prolonged viral titers through  
583 necropsy, and residual pulmonary inflammation at necropsy may indicate that aerosol  
584 inoculation produces prolonged consequences of infection. Further, broad dose

585 differences (nearly 2-log) between mutiroute and aerosol groups produce similar  
586 outcomes, which suggests aerosol exposure is a more potent exposure modality for  
587 SARS-CoV-2 infection. The aerosol AGM group also showed consistent, modest signs  
588 of disease trending upward at necropsy, persistent viral titers in the BAL, and a trend of  
589 increasing inflammatory cytokines at necropsy, indicating aerosol exposure of AGMs as  
590 an appropriate NHP model of post-COVID syndrome.

591

592 Both aerosol RM and mutiroute AGM groups demonstrate increased respiratory rate,  
593 comparable neutrophilia, and increased signs of disease in their respective exposure  
594 group. However, the AGM mutiroute group exhibited the greatest lymphocyte and  
595 monocyte increases, earliest and greatest signs of disease, highest pharyngeal peak  
596 viral titer, most inflammatory cytokines in serum, and most consistently high BAL  
597 inflammatory cytokines (IL-6, IFNa, TNFa, IL-1 $\beta$ ). Taken together, these responses  
598 suggest mutiroute exposure of AGMs most accurately recapitulates human disease with  
599 predictive poorer clinical outcome. Future studies should consider use of either  
600 species, and choice of exposure modality when exploring currently-identified or future  
601 VOC as dictated by the tempo and sustainability of the COVID-19 pandemic.

602

603

## 604 **References**

- 605 1 *Center for Systems Science and Engineering, Johns Hopkins University, CoVID-  
606 19 Dashboard, <<https://coronavirus.jhu.edu/map.html>> (2021).*  
607 2 *Centers for Disease Control and Prevention, COVID Data Tracker,  
608 <<https://covid.cdc.gov/covid-data-tracker/#datatracker-home>> (2021).*

- 609 3 Huang, C. *et al.* Clinical features of patients infected with 2019 novel coronavirus  
610 in Wuhan, China. *Lancet* **395**, 497-506, doi:10.1016/s0140-6736(20)30183-5  
611 (2020).
- 612 4 Sudre, C. H. *et al.* Attributes and predictors of long COVID. *Nature Medicine* **27**,  
613 626-631, doi:10.1038/s41591-021-01292-y (2021).
- 614 5 Nalbandian, A. *et al.* Post-acute COVID-19 syndrome. *Nature Medicine* **27**, 601-  
615 615, doi:10.1038/s41591-021-01283-z (2021).
- 616 6 Munoz-Fontela, C. *et al.* Animal models for COVID-19. *Nature* **586**, 509-515,  
617 doi:10.1038/s41586-020-2787-6 (2020).
- 618 7 Melton, A. *et al.* The pigtail macaque (<em>Macaca nemestrina</em>) model of  
619 COVID-19 reproduces diverse clinical outcomes and reveals new and complex  
620 signatures of disease. *bioRxiv*, 2021.2008.2028.458047,  
621 doi:10.1101/2021.08.28.458047 (2021).
- 622 8 Song, T. Z. *et al.* Northern pig-tailed macaques ( *Macaca leonina*) infected with  
623 SARS-CoV-2 show rapid viral clearance and persistent immune response. *Zool  
624 Res* **42**, 350-353, doi:10.24272/j.issn.2095-8137.2020.334 (2021).
- 625 9 Salguero, F. J. *et al.* Comparison of rhesus and cynomolgus macaques as an  
626 infection model for COVID-19. *Nat Commun* **12**, 1260, doi:10.1038/s41467-021-  
627 21389-9 (2021).
- 628 10 Singh, D. K. *et al.* Responses to acute infection with SARS-CoV-2 in the lungs of  
629 rhesus macaques, baboons and marmosets. *Nature Microbiology* **6**, 73-86,  
630 doi:10.1038/s41564-020-00841-4 (2021).
- 631 11 Woolsey, C. *et al.* Establishment of an African green monkey model for COVID-  
632 19 and protection against re-infection. *Nat Immunol* **22**, 86-98,  
633 doi:10.1038/s41590-020-00835-8 (2021).
- 634 12 McMahan, K. *et al.* Correlates of protection against SARS-CoV-2 in rhesus  
635 macaques. *Nature* **590**, 630-634, doi:10.1038/s41586-020-03041-6 (2021).
- 636 13 Hartman, A. L. *et al.* SARS-CoV-2 infection of African green monkeys results in  
637 mild respiratory disease discernible by PET/CT imaging and shedding of  
638 infectious virus from both respiratory and gastrointestinal tracts. *PLoS Pathog* **16**,  
639 e1008903, doi:10.1371/journal.ppat.1008903 (2020).
- 640 14 Blair, R. V. *et al.* Acute Respiratory Distress in Aged, SARS-CoV-2-Infected  
641 African Green Monkeys but Not Rhesus Macaques. *Am J Pathol* **191**, 274-282,  
642 doi:10.1016/j.ajpath.2020.10.016 (2021).
- 643 15 Bewley, K. R. *et al.* Immunological and pathological outcomes of SARS-CoV-2  
644 challenge following formalin-inactivated vaccine in ferrets and rhesus macaques.  
645 *Sci Adv* **7**, eabg7996, doi:10.1126/sciadv.abg7996 (2021).
- 646 16 Mercado, N. B. *et al.* Single-shot Ad26 vaccine protects against SARS-CoV-2 in  
647 rhesus macaques. *Nature* **586**, 583-588, doi:10.1038/s41586-020-2607-z (2020).
- 648 17 Chandrashekhar, A. *et al.* SARS-CoV-2 infection protects against rechallenge in  
649 rhesus macaques. *Science* **369**, 812-817, doi:10.1126/science.abc4776 (2020).
- 650 18 Williamson, B. N. *et al.* Clinical benefit of remdesivir in rhesus macaques infected  
651 with SARS-CoV-2. *Nature* **585**, 273-276, doi:10.1038/s41586-020-2423-5 (2020).
- 652 19 Böszörényi, K. P. *et al.* The Post-Acute Phase of SARS-CoV-2 Infection in Two  
653 Macaque Species Is Associated with Signs of Ongoing Virus Replication and

- 654 Pathology in Pulmonary and Extrapulmonary Tissues. *Viruses* **13**,  
655 doi:10.3390/v13081673 (2021).

656 20 McAuliffe, J. et al. Replication of SARS coronavirus administered into the  
657 respiratory tract of African Green, rhesus and cynomolgus monkeys. *Virology*  
658 **330**, 8-15, doi:10.1016/j.virol.2004.09.030 (2004).

659 21 Durbin, A. P., Elkins, W. R. & Murphy, B. R. African green monkeys provide a  
660 useful nonhuman primate model for the study of human parainfluenza virus  
661 types-1, -2, and -3 infection. *Vaccine* **18**, 2462-2469, doi:10.1016/s0264-  
662 410x(99)00575-7 (2000).

663 22 Johnston, S. C. et al. Detailed analysis of the African green monkey model of  
664 Nipah virus disease. *PLoS One* **10**, e0117817,  
665 doi:10.1371/journal.pone.0117817 (2015).

666 23 Thille, A. W. et al. Chronology of histological lesions in acute respiratory distress  
667 syndrome with diffuse alveolar damage: a prospective cohort study of clinical  
668 autopsies. *Lancet Respir Med* **1**, 395-401, doi:10.1016/s2213-2600(13)70053-5  
669 (2013).

670 24 Herridge, M. S. et al. Functional disability 5 years after acute respiratory distress  
671 syndrome. *N Engl J Med* **364**, 1293-1304, doi:10.1056/NEJMoa1011802 (2011).

672 25 Burnham, E. L. et al. Chest CT features are associated with poorer quality of life  
673 in acute lung injury survivors. *Crit Care Med* **41**, 445-456,  
674 doi:10.1097/CCM.0b013e31826a5062 (2013).

675 26 Zhang, T., Sun, L. X. & Feng, R. E. [Comparison of clinical and pathological  
676 features between severe acute respiratory syndrome and coronavirus disease  
677 2019]. *Zhonghua Jie He He Hu Xi Za Zhi* **43**, 496-502,  
678 doi:10.3760/cma.j.cn112147-20200311-00312 (2020).

679 27 Wu, C. et al. Risk Factors Associated With Acute Respiratory Distress Syndrome  
680 and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan,  
681 China. *JAMA Intern Med* **180**, 934-943, doi:10.1001/jamainternmed.2020.0994  
682 (2020).

683 28 Hue, S. et al. Uncontrolled Innate and Impaired Adaptive Immune Responses in  
684 Patients with COVID-19 Acute Respiratory Distress Syndrome. *Am J Respir Crit  
685 Care Med* **202**, 1509-1519, doi:10.1164/rccm.202005-1885OC (2020).

686 29 Fahlberg, M. D. et al. Cellular events of acute, resolving or progressive COVID-  
687 19 in SARS-CoV-2 infected non-human primates. *Nature Communications* **11**,  
688 6078, doi:10.1038/s41467-020-19967-4 (2020).

689 30 Roy, C. J. et al. Rescue of rhesus macaques from the lethality of aerosolized  
690 ricin toxin. *JCI Insight* **4**, doi:10.1172/jci.insight.124771 (2019).

691 31 REED, L. J. & MUENCH, H. A SIMPLE METHOD OF ESTIMATING FIFTY PER  
692 CENT ENDPOINTS12. *American Journal of Epidemiology* **27**, 493-497,  
693 doi:10.1093/oxfordjournals.aje.a118408 (1938).

694 32 Shen, X. et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing  
695 antibodies elicited by ancestral spike vaccines. *Cell Host Microbe* **29**, 529-539  
696 e523, doi:10.1016/j.chom.2021.03.002 (2021).

697 33 Weissman, D. et al. D614G Spike Mutation Increases SARS CoV-2 Susceptibility  
698 to Neutralization. *Cell Host Microbe* **29**, 23-31 e24,  
699 doi:10.1016/j.chom.2020.11.012 (2021).

- 700 34 Bancroft, J. & Gamble, M. *Theory and Practice of Histological Techniques*. 6 edn,  
701 (Churchill Livingstone, 2007).
- 702 35 Wynn, T. A. & Vannella, K. M. Macrophages in Tissue Repair, Regeneration, and  
703 Fibrosis. *Immunity* **44**, 450-462, doi:<https://doi.org/10.1016/j.immuni.2016.02.015>  
704 (2016).
- 705 36 Ueno, M. et al. Hypoxia-inducible factor-1 $\alpha$  mediates TGF- $\beta$ -induced PAI-1  
706 production in alveolar macrophages in pulmonary fibrosis. *American Journal of*  
707 *Physiology-Lung Cellular and Molecular Physiology* **300**, L740-L752,  
708 doi:10.1152/ajplung.00146.2010 (2011).
- 709 37 Merkler, A. E. et al. Risk of Ischemic Stroke in Patients With Coronavirus  
710 Disease 2019 (COVID-19) vs Patients With Influenza. *JAMA Neurol* **77**, 1-7,  
711 doi:10.1001/jamaneurol.2020.2730 (2020).
- 712 38 Pan, L. et al. Clinical Characteristics of COVID-19 Patients With Digestive  
713 Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study.  
714 *Am J Gastroenterol* **115**, 766-773, doi:10.14309/ajg.00000000000000620 (2020).
- 715 39 Mao, L. et al. Neurologic Manifestations of Hospitalized Patients With  
716 Coronavirus Disease 2019 in Wuhan, China. *JAMA Neurol* **77**, 683-690,  
717 doi:10.1001/jamaneurol.2020.1127 (2020).
- 718 40 Romero-Sánchez, C. M. et al. Neurologic manifestations in hospitalized patients  
719 with COVID-19: The ALBACOVID registry. *Neurology* **95**, e1060-e1070,  
720 doi:10.1212/wnl.0000000000009937 (2020).
- 721 41 Horn, A. et al. Long-term health sequelae and quality of life at least 6 months  
722 after infection with SARS-CoV-2: design and rationale of the COVIDOM-study as  
723 part of the NAPKON population-based cohort platform (POP). *Infection*,  
724 doi:10.1007/s15010-021-01707-5 (2021).
- 725 42 Alenquer, M. et al. Signatures in SARS-CoV-2 spike protein conferring escape to  
726 neutralizing antibodies. *PLOS Pathogens* **17**, e1009772,  
727 doi:10.1371/journal.ppat.1009772 (2021).
- 728 43 Grint, D. J. et al. Severity of SARS-CoV-2 alpha variant (B.1.1.7) in England.  
729 *Clinical Infectious Diseases*, doi:10.1093/cid/ciab754 (2021).
- 730 44 Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape.  
731 *Nature Reviews Microbiology* **19**, 409-424, doi:10.1038/s41579-021-00573-0  
732 (2021).
- 733 45 Hoffmann, M. et al. SARS-CoV-2 variants B.1.351 and P.1 escape from  
734 neutralizing antibodies. *Cell* **184**, 2384-2393.e2312,  
735 doi:10.1016/j.cell.2021.03.036 (2021).
- 736 46 Zhang, L. et al. Ten emerging SARS-CoV-2 spike variants exhibit variable  
737 infectivity, animal tropism, and antibody neutralization. *Commun Biol* **4**, 1196,  
738 doi:10.1038/s42003-021-02728-4 (2021).
- 739 47 Zhang, Z. et al. Associations of immunological features with COVID-19 severity:  
740 a systematic review and meta-analysis. *BMC Infectious Diseases* **21**, 738,  
741 doi:10.1186/s12879-021-06457-1 (2021).
- 742 48 McElvaney, O. J. et al. A linear prognostic score based on the ratio of interleukin-  
743 6 to interleukin-10 predicts outcomes in COVID-19. *EBioMedicine* **61**, 103026,  
744 doi:<https://doi.org/10.1016/j.ebiom.2020.103026> (2020).

- 745 49 Zheng, J. *et al.* Severe Acute Respiratory Syndrome Coronavirus 2-Induced  
746 Immune Activation and Death of Monocyte-Derived Human Macrophages and  
747 Dendritic Cells. *The Journal of Infectious Diseases* **223**, 785-795,  
748 doi:10.1093/infdis/jiaa753 (2020).
- 749 50 Ferreira-Gomes, M. *et al.* SARS-CoV-2 in severe COVID-19 induces a TGF- $\beta$ -  
750 dominated chronic immune response that does not target itself. *Nature  
751 Communications* **12**, 1961, doi:10.1038/s41467-021-22210-3 (2021).
- 752 51 Delorey, T. M. *et al.* COVID-19 tissue atlases reveal SARS-CoV-2 pathology and  
753 cellular targets. *Nature* **595**, 107-113, doi:10.1038/s41586-021-03570-8 (2021).
- 754 52 Carvacho, I. & Piesche, M. RGD-binding integrins and TGF- $\beta$  in SARS-CoV-2  
755 infections – novel targets to treat COVID-19 patients? *Clinical & Translational  
756 Immunology* **10**, e1240, doi:<https://doi.org/10.1002/cti2.1240> (2021).
- 757 53 Chen, W. A potential treatment of COVID-19 with TGF- $\beta$  blockade. *Int J Biol Sci*  
758 **16**, 1954-1955, doi:10.7150/ijbs.46891 (2020).
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773

774 **Figure 1: Study Design.** SARS-CoV-2 was delivered via aerosol or IT/IN (multiroute)  
775 to RMs or AGMs at the noted doses. Animals were followed for 4 weeks, with  
776 biosampling performed as indicated above. Figure created in Biorender.com.

777

778 **Figure 2: Viral Loads Assessed via RT-qPCR post SARS-CoV-2 Challenge.** A)Viral  
779 loads in swabs and BAL supernatant were assessed via RT-qPCR post challenge for  
780 genomic (black) and subgenomic N (red) RNA. After necropsy, respiratory tissues were  
781 analyzed for the presence of genomic (B) and subgenomic (C) content.

782

783 **Figure 3: Antibody Responses to SARS-CoV-2 Challenge.** Antibody responses  
784 were followed post challenge by A)pseudovirus neutralization, B and C) ELISA for  
785 binding to RBD and NP, respectively, and D) surrogate virus neutralization test at  
786 necropsy. Route and species variability in antibody levels at time of necropsy were  
787 compared for each assay type (E-H). Comparisons were made using the Mann-  
788 Whitney or Welch's t-test, depending on normality of data. Asterisks represent  
789 significant comparisons (\*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001).

790

791 **Figure 4: BAL Supernatant Cytokines post SARS-CoV-2 Challenge.** Cytokines in  
792 BAL supernatant were analyzed at indicated time points post challenge. Comparisons  
793 were made with two-way ANOVA using Tukey's multiple comparisons test. Asterisks  
794 represent significant comparisons (\*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001; \*\*\*\*, p<0.0001).

795

796 **Figure 5: Clinical Disease Severity Scores.** Signs of disease present in each cohort  
797 over time. Number of animals showing signs of disease along with subgenomic viral  
798 loads in A) BAL supernatant and B) rectal swabs. Severity scores per group in C) both  
799 delivery cohorts and D) aerosol cohort split into species. E) Cumulative severity scores  
800 per delivery cohort. F) Simplified scoring system used for cohorts. Curves in figures

801 were smoothed. Comparisons made using Welch's t-test. Asterisks represent  
802 significant comparisons (\*, p<0.05).

803

804 **Figure 6: Mild pulmonary scarring in NHPs exposed to SARS-CoV-2.**

805 Representative figure of sequentially cut slides of lung tissue from a SARS-CoV-2-  
806 infected NHP. A) H&E of normal lung tissue. Inset: normal pleura characterized by an  
807 outer mesothelial lining and a thick layer of collagen. B,C: KN90, LA-D. There is mild,  
808 diffuse thickening of the collagen layer of the pleura on B) H&E and C) trichrome, blue)  
809 stains. Insets show higher magnification of the pleural fibrosis. Bar = 1mm. D) Percent  
810 collagen identified in trichrome stained lung by HALO analysis. \*\*p<0.002 , one-way  
811 ANOVA with Dunnett's multiple testing correction.

812

813 **Figure 7: Myeloid cell kinetics in BAL.** A) Quantification of alveolar macrophage  
814 (CD163+CD206+) and infiltrating macrophage (CD163+CD206-) populations throughout  
815 the study. B) Quantification of alveolar and infiltrating macrophages at necropsy. C) IL-  
816 10:IL-6 ratio calculated from mean fluorescence intensity (MFI); Right, Pearson  
817 correlation test p=0.001. D) HALO analysis of macrophage phenotypes reported as cells  
818 per mm<sup>2</sup>.

819

820 **Figure 8: Infiltration and persistence of infiltrating macrophage.** A) Left: Resident  
821 alveolar macrophages (CD163+CD206+CD16-) as a percent of alveolar macrophages;  
822 p=0.003, ordinary one-way ANOVA. Right: Monocyte-derived alveolar macrophages  
823 (CD163+CD206+CD16+CCR2+) as a percent of alveolar macrophages. B) Ratio of IL-  
824 10:IL-6 in Left: resident alveolar macrophages, Right: monocyte-derived alveolar  
825 macrophages; calculated from MFI.

826

827 **Figure 9: Activated myofibroblasts are present within scarred lung tissue and**  
828 **persist long term.** A) KN90, lung alveoli. Myofibroblasts characterized by double-

829 positive staining of  $\alpha$ SMA (red) and cytokeratin V (green). Bar = 100 $\mu$ m. B) Continued  
830 myofibroblast activation, as determined by TGF beta ELISA, at 28 days post exposure.  
831 \*\*\*p<0.001, multiple unpaired t-test with Holm-Šídák correction.

832

833 **Figure 10: Absence of regenerative activity at 28 days post-exposure.**

834 Immunofluorescence for the detection of bronchial epithelial progenitor cells. A) NJ48,  
835 lung. The epithelial lining of large airways (bronchi) has a basal layer containing  
836 progenitor cells characterized by cytoplasmic expression of cytokeratin V (green) and  
837 nuclear expression of p63 (red). B-D) KN90, lung alveoli. B) Progenitor cells are not  
838 observed in regions of pleural fibrosis, even in regions where moderate fibrosis and  
839 inflammation are observed with H&E (C) and trichrome (D). Bar = 100 $\mu$ m.

840

841 **Figure S1: Viral Loads Assessed via RT-qPCR post SARS-CoV-2 Challenge.** Viral  
842 loads, assessed by RT-qPCR for genomic and subgenomic RNA, represented as area  
843 under the curve for the post challenge period. Comparisons between groups were  
844 made via Kruskal-Wallis with Dunn's multiple comparisons test. Asterisks represent  
845 significant comparisons (\*, p<0.05).

846

847 **Figure S2: Viral Loads Assessed via TCID<sub>50</sub> post SARS-CoV-2 Challenge.** Viral  
848 loads, assessed by TCID<sub>50</sub>, represented as area under the curve for the post challenge  
849 period. Black lines indicate viral loads per individual, with red lines indicating group  
850 geometric means. Dotted lines indicate a positive sample below the limit of  
851 quantification.

852

853 **Figure S3: Serum Cytokines post SARS-CoV-2 Challenge.** Cytokines circulating in  
854 serum were analyzed at indicated time points post challenge, with early indicating a  
855 mean value of days 1, 2 and 3 post challenge. Comparisons were made with two-way

856 ANOVA using Tukey's multiple comparisons test. Asterisks represent significant  
857 comparisons (\*, p<0.05; \*\*, p<0.01;\*\*\*\*, p<0.0001).

858

859 **Figure S4: Representative histopathology.** A,B: Aerosol RM, right middle lobe. A)  
860 The pleura is segmentally thickened (pleuritis, arrows). B) Regions of pleuritis are  
861 characterized by fibrosis (dotted line) with infiltration by mononuclear cells. Aggregates  
862 of similar inflammatory cells are present subpleurally (arrow). C,D: Aerosol AGM, left  
863 anterior lobe. C) The pleura is segmentally thickened (arrows). D) The pleura is lined by  
864 hypertrophic mesothelial cells (arrow) and there is infiltration of the subpleural  
865 parenchyma by histiocytes. E,F: IT/IN RM, left lower lobe. E) The pleura is segmentally  
866 thickened (pleuritis, arrows). F) The pleura is thickened by fibrosis and infiltrated by  
867 mononuclear cells, predominately lymphocytes. G,H: IT/IN AGM, right lower lobe. G)  
868 There is mild congestion and rare perivascular inflammation (arrow). H) Perivascular  
869 inflammation is characterized by infiltration of the tunica adventitia by mononuclear  
870 cells.

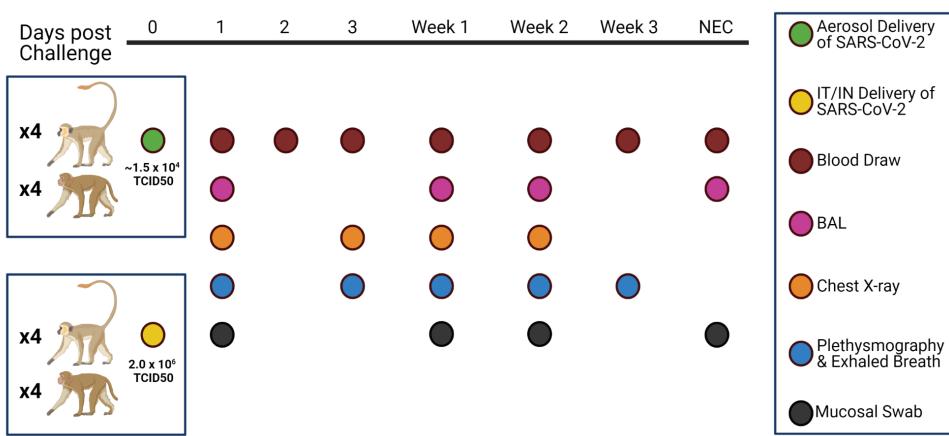
871

872 **Figure S5: BAL flow cytometry gating strategy.** Representative gating strategy to  
873 classify alveolar (CD163+CD206+), interstitial (CD163+CD206-), monocyte-derived  
874 (CD163+CD206+CD16+CCR2+), and resident alveolar (CD163+CD206+CD16-)  
875 macrophages in BAL.

876

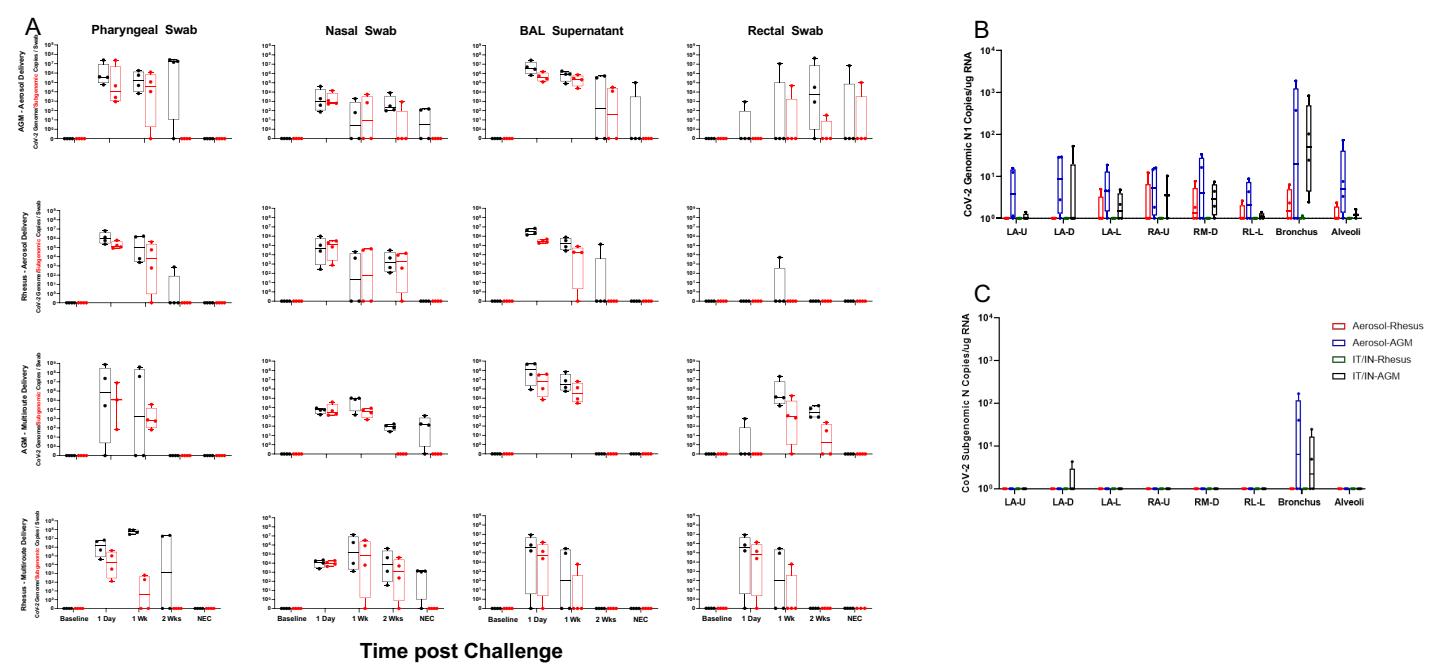
877 **Figure S6: Hematology-Based Parameters of SARS-CoV-2 Challenge.** Complete  
878 blood counts were performed at indicated times and were compared for counts of  
879 RBCs, platelets, neutrophils, lymphocytes, WBCs and monocytes (A, B, C, D, E, and F,  
880 respectively), as well as neutrophil/lymphocytes ratio (G). Comparisons were made via  
881 two-way ANOVA with Tukey's multiple comparisons test. Asterisks represent significant  
882 comparisons (\*\*\*\*, p<0.0001).

883


884 **Figure S7: Clinical Chemistry-Based Parameters of SARS-CoV-2 Challenge.**

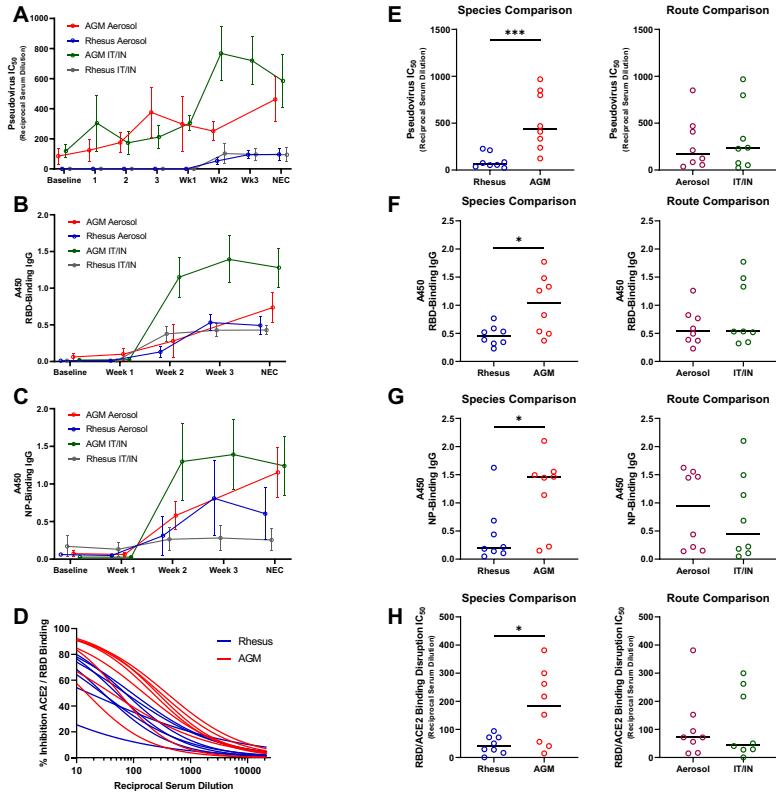
885 Clinical chemistries were performed at the indicated times post challenge.

886 Comparisons between each group were made for  $\log_2$  fold change from baseline of  
887 creatinine (A), ALT (B), BUN (D) and concentrations of CRP (C) and AST (E).


888 Comparisons were made via two-way ANOVA with Tukey's multiple comparisons test.

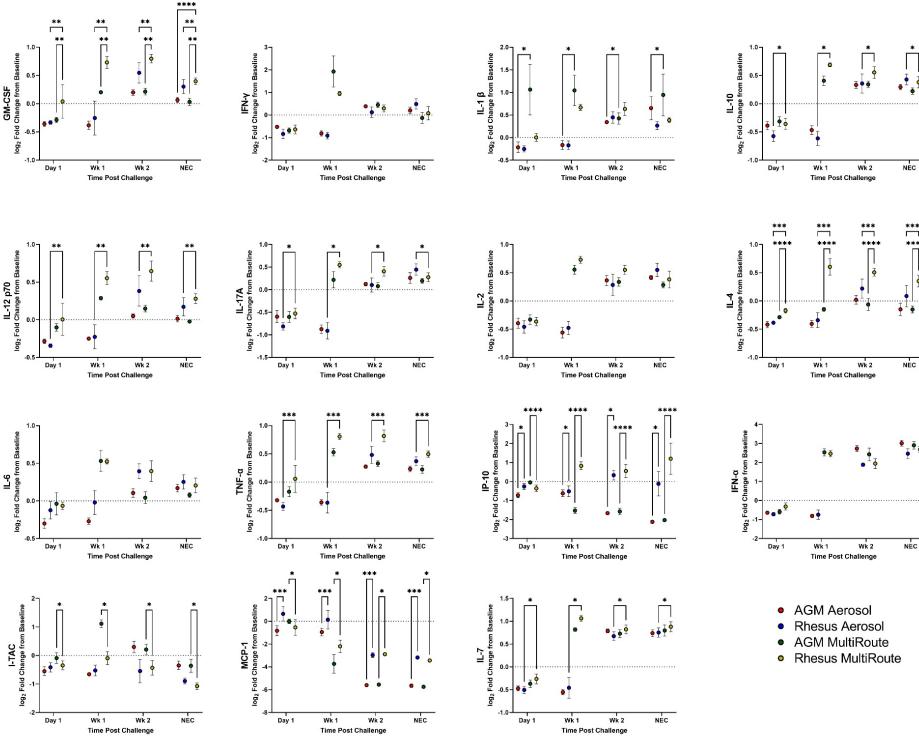
889 Asterisks represent significant comparisons (\*\*,  $p<0.01$ ).




**Figure 1: Study Design**

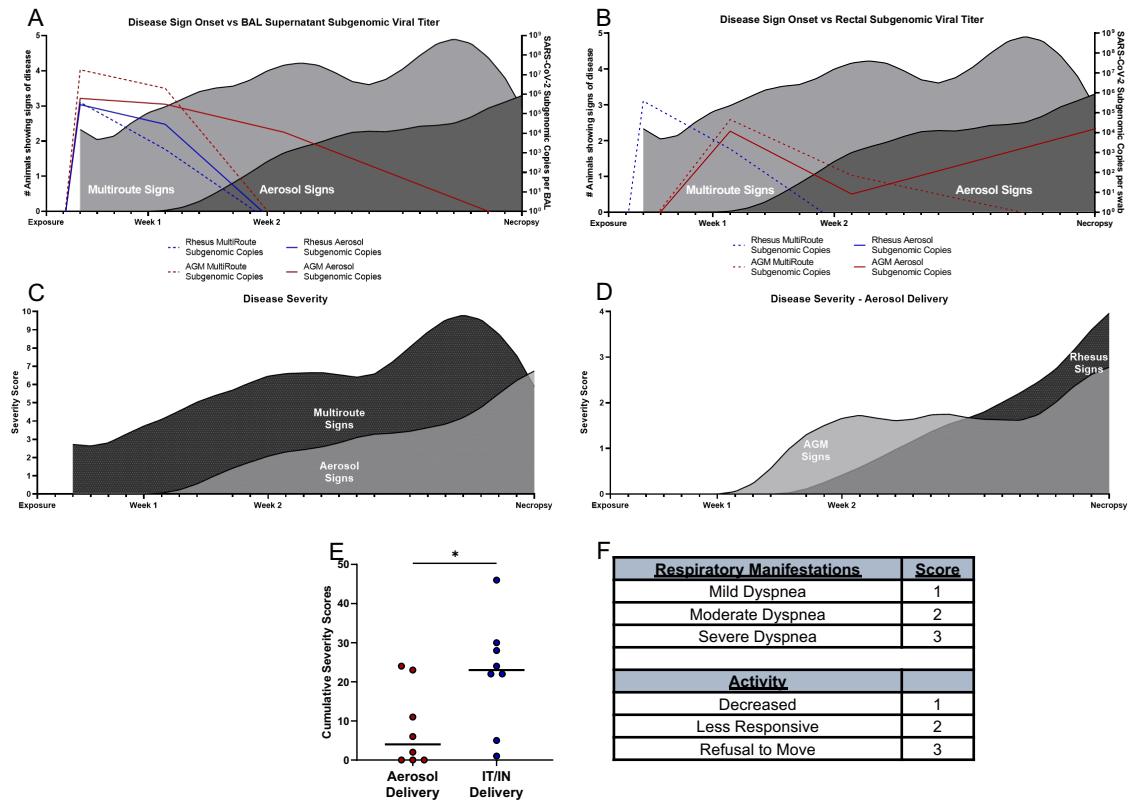
SARS-CoV-2 was delivered via aerosol or IT/IN (multiroute) to RMs or AGMs at the noted doses. Animals were followed for 4 weeks, with biosampling performed as indicated above. Figure created in Biorender.com.




**Figure 2: Viral Loads Assessed via RT-qPCR post SARS-CoV-2 Challenge**

A) Viral loads in swabs and BAL supernatant were assessed via RT-qPCR post challenge for genomic (black) and subgenomic N (red) RNA. After necropsy, respiratory tissues were analyzed for the presence of genomic (B) and subgenomic (C) content.




**Figure 3: Antibody Responses to SARS-CoV-2 Challenge**

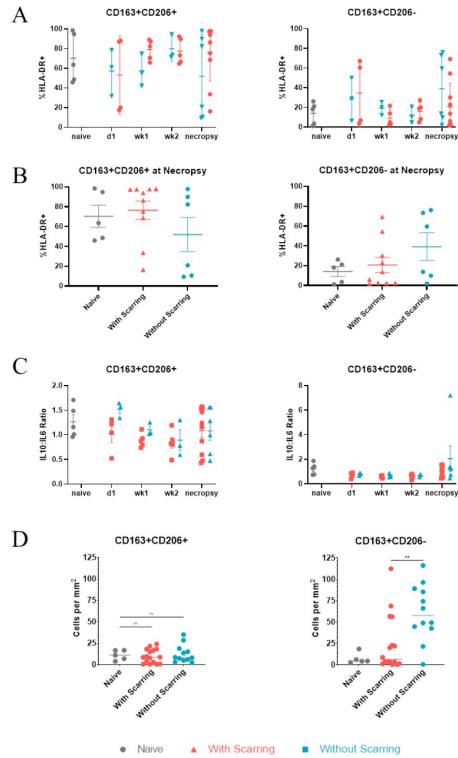
Antibody responses were followed post challenge by A) pseudovirus neutralization, B and C) ELISA for binding to RBD and NP, respectively, and D) surrogate virus neutralization test at necropsy. Route and species variability in antibody levels at time of necropsy were compared for each assay type (E-H). Comparisons were made using the Mann-Whitney or Welch's t-test, depending on normality of data. Asterisks represent significant comparisons (\*,  $p < 0.05$ ; \*\*\*,  $p < 0.001$ ).



**Figure 4: BAL Supernatant Cytokines post SARS-CoV-2 Challenge**

Cytokines in BAL supernatant were analyzed at indicated time points post challenge. Comparisons were made with two-way ANOVA using Tukey's multiple comparisons test. Asterisks represent significant comparisons (\*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001; \*\*\*\*, p<0.0001).




**Figure 5: Clinical Disease Severity Scores.**

Signs of disease present in each cohort over time. Number of animals showing signs of disease along with subgenomic viral loads in A) BAL supernatant and B) rectal swabs. Severity scores per group in C) both delivery cohorts and D) aerosol cohort split into species. E) Cumulative severity scores per delivery cohort. F) Simplified scoring system used for cohorts. Curves in figures were smoothed. Comparisons made using Welch's t-test. Asterisks represent significant comparisons (\*,  $p < 0.05$ ).



**Figure 6: Mild pulmonary scarring in NHPs exposed to SARS-CoV-2.**

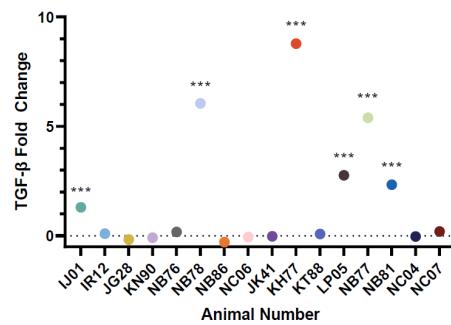
Representative figure of sequentially cut slides of lung tissue from a SARS-CoV-2-infected NHP. A) H&E of normal lung tissue. Inset: normal pleura characterized by an outer mesothelial lining and a thick layer of collagen. B,C: KN90, LA-D. There is mild, diffuse thickening of the collagen layer of the pleura on B) H&E and C) trichrome, blue) stains. Insets show higher magnification of the pleural fibrosis. Bar = 1mm. D) Percent collagen identified in trichrome stained lung by HALO analysis. \*\*p<0.002 , one-way ANOVA with Dunnett's multiple testing correction.



**Figure 7: Myeloid cell kinetics in BAL.**

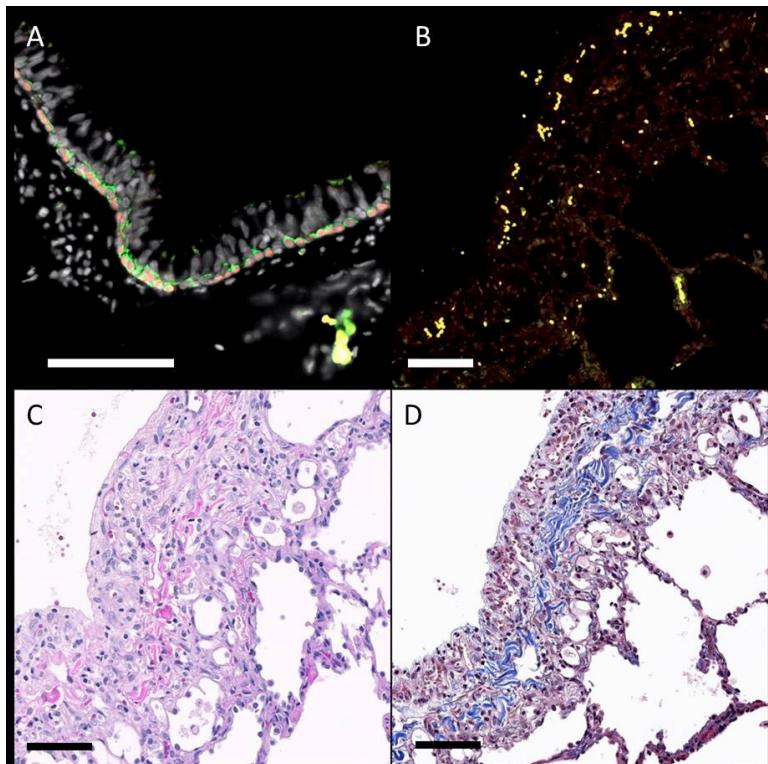
A) Quantification of alveolar macrophage (CD163+CD206+) and infiltrating macrophage (CD163+CD206-) populations throughout the study. B) Quantification of alveolar and infiltrating macrophages at necropsy. C) IL-10:IL-6 ratio calculated from mean fluorescence intensity (MFI); Right, Pearson correlation test  $p=0.001$ . D) HALO analysis of macrophage phenotypes reported as cells per mm<sup>2</sup>.




**Figure 8: Infiltration and persistence of infiltrating macrophage.**

A) Left: Resident alveolar macrophages (CD163+CD206+CD16-) as a percent of alveolar macrophages;  $p=0.003$ , ordinary one-way ANOVA. Right: Monocyte-derived alveolar macrophages (CD163+CD206+CD16+CCR2+) as a percent of alveolar macrophages. B) Ratio of IL-10:IL-6 in Left: resident alveolar macrophages, Right: monocyte-derived alveolar macrophages; calculated from MFI.

A




B

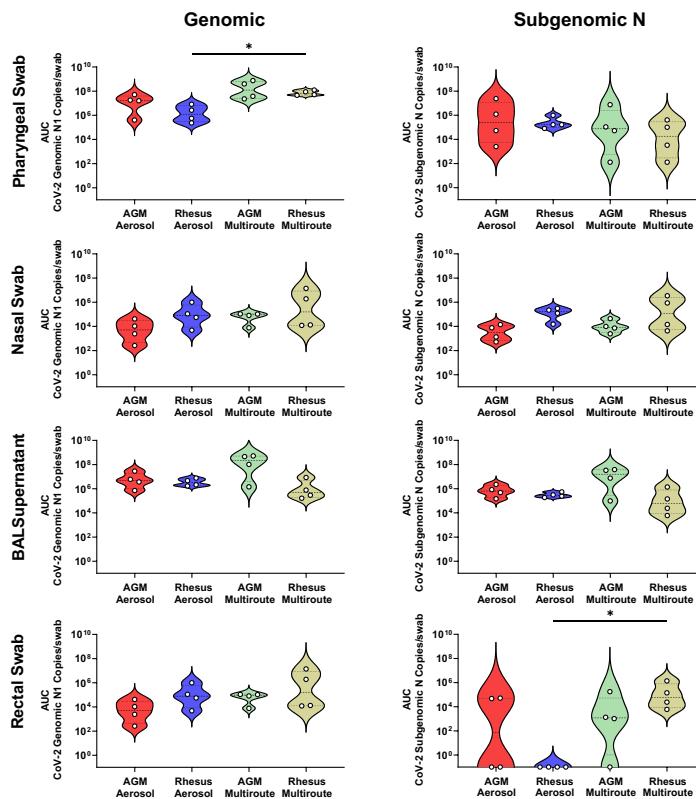


**Figure 9: Activated myofibroblasts are present within scarred lung tissue and persist long term.**

A) KN90, lung alveoli. Myofibroblasts characterized by double-positive staining of  $\alpha$ SMA (red) and cytokeratin V (green). Bar = 100 $\mu$ m. B) Continued myofibroblast activation, as determined by TGF beta ELISA, at 28 days post exposure. \*\*\*p<0.001, multiple unpaired t-test with Holm-Šídák correction.



**Figure 10: Absence of regenerative activity at 28 days post-exposure.**


Immunofluorescence for the detection of bronchial epithelial progenitor cells. A) NJ48, lung. The epithelial lining of large airways (bronchi) has a basal layer containing progenitor cells characterized by cytoplasmic expression of cytokeratin V (green) and nuclear expression of p63 (red). B-D) KN90, lung alveoli. B) Progenitor cells are not observed in regions of pleural fibrosis, even in regions where moderate fibrosis and inflammation are observed with H&E (C) and trichrome (D). Bar = 100 $\mu$ m.

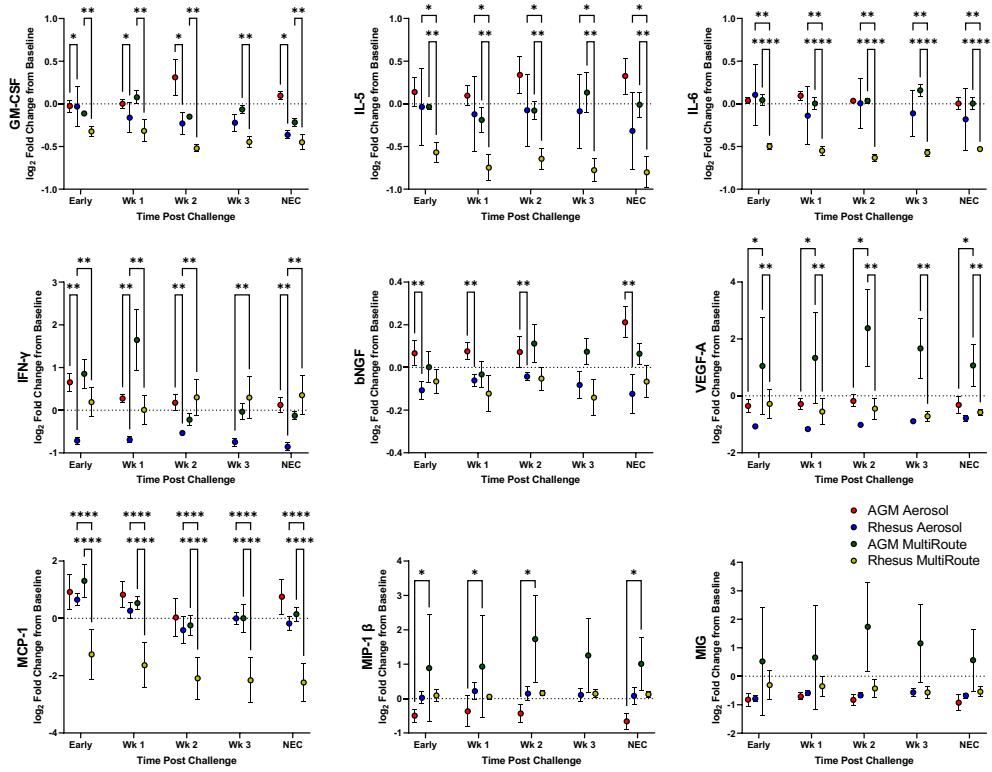
| Animal | Species              | Age (years) | Sex  | Weight (kg) | Dose (TCID <sub>50</sub> ) | Exposure Route |
|--------|----------------------|-------------|------|-------------|----------------------------|----------------|
| IR12   | Macaca mulatta       | 10          | Male | 9.5         | 1.9 x 10 <sup>3</sup>      | Aerosol        |
| IJ01   | Macaca mulatta       | 11          | Male | 10.4        | 2.2 x 10 <sup>3</sup>      | Aerosol        |
| KN90   | Macaca mulatta       | 7           | Male | 11.1        | 1.6 x 10 <sup>4</sup>      | Aerosol        |
| JG28   | Macaca mulatta       | 10          | Male | 12.1        | 7.5 x 10 <sup>4</sup>      | Aerosol        |
| NB86   | Chlorocebus aethiops | 7           | Male | 7.1         | 7.1 x 10 <sup>3</sup>      | Aerosol        |
| NB78   | Chlorocebus aethiops | 7           | Male | 6.3         | 4.4 x 10 <sup>3</sup>      | Aerosol        |
| NB76   | Chlorocebus aethiops | 7           | Male | 6.6         | 6.0 x 10 <sup>3</sup>      | Aerosol        |
| NC06   | Chlorocebus aethiops | 7           | Male | 6.0         | 5.0 x 10 <sup>3</sup>      | Aerosol        |
| JK41   | Macaca mulatta       | 9           | Male | 11.5        | 2.0 x 10 <sup>6</sup>      | Multi-route    |
| KH77   | Macaca mulatta       | 7           | Male | 13.0        | 2.0 x 10 <sup>6</sup>      | Multi-route    |
| KT88   | Macaca mulatta       | 7           | Male | 13.3        | 2.0 x 10 <sup>6</sup>      | Multi-route    |
| LP05   | Macaca mulatta       | 4           | Male | 7.0         | 2.0 x 10 <sup>6</sup>      | Multi-route    |
| NB77   | Chlorocebus aethiops | 7           | Male | 5.4         | 2.0 x 10 <sup>6</sup>      | Multi-route    |
| NC04   | Chlorocebus aethiops | 7           | Male | 5.9         | 2.0 x 10 <sup>6</sup>      | Multi-route    |
| NC07   | Chlorocebus aethiops | 7           | Male | 6.4         | 2.0 x 10 <sup>6</sup>      | Multi-route    |
| NB81   | Chlorocebus aethiops | 7           | Male | 6.3         | 2.0 x 10 <sup>6</sup>      | Multi-route    |

**Table S1: Study Animal Characteristics**

| Target                  | Primer/Probe Designation | Sequence                                                    |
|-------------------------|--------------------------|-------------------------------------------------------------|
| Genomic Nucleocapsid    | 2019-nCoV_N1-F           | 5'-GAC CCC AAA ATC AGC GAA AT-3'                            |
|                         | 2019-nCoV_N1-R           | 5'-TCT GGT TAC TGC CAG TTG AAT CTG-3'                       |
|                         | 2019-nCoV_N1-P           | 5'-FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ-3'               |
| Subgenomic Nucleocapsid | SgN-F                    | 5'-CGA TCT CTT GTA GAT CTG TTC TC-3'                        |
|                         | SgN-R                    | 5'-GGT GAA CCA AGA CGC AGT AT-3'                            |
|                         | SgN-P                    | 5'-56-FAM/TAA CCA GAA/ZEN/TGG AGA ACG CAG TGG G/3IABkFQ/-3' |

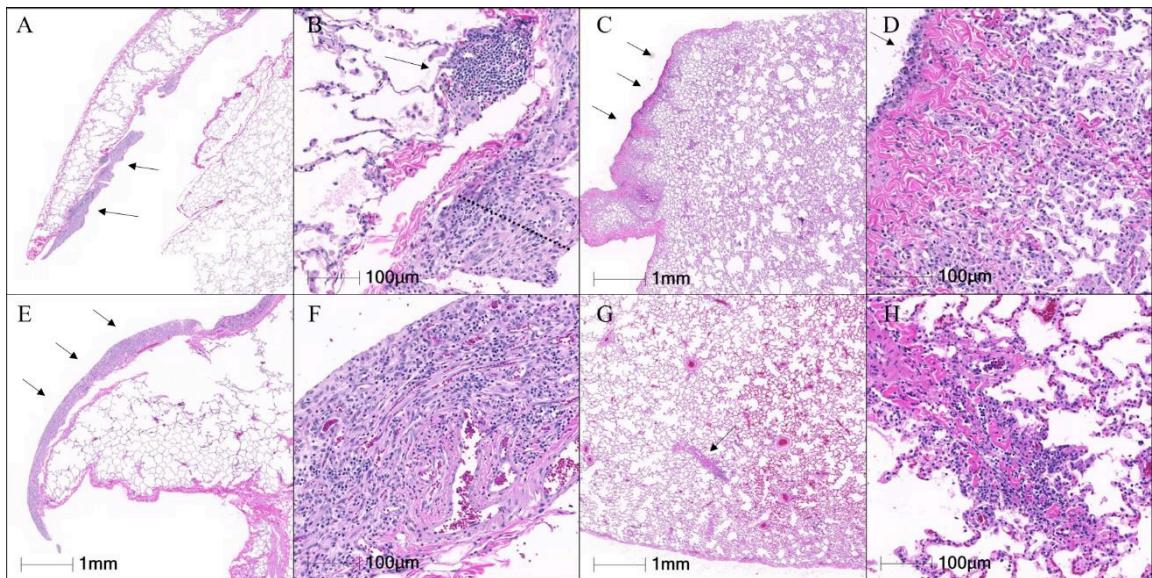
**Table S2: RT-qPCR Primers and Probes**




**Figure S1: Viral Loads Assessed via RT-qPCR post SARS-CoV-2 Challenge**

Viral loads, assessed by RT-qPCR for genomic and subgenomic RNA, represented as area under the curve for the post challenge period. Comparisons between groups were made via Kruskal-Wallis with Dunn's multiple comparisons test. Asterisks represent significant comparisons (\*,  $p < 0.05$ ).




**Figure S2: Viral Loads Assessed via TCID<sub>50</sub> post SARS-CoV-2 Challenge**

Viral loads, assessed by TCID<sub>50</sub>, represented as area under the curve for the post challenge period. Black lines indicate viral loads per individual, with red lines indicating group geometric means. Dotted lines indicate a positive sample below the limit of quantification.



**Figure S3: Serum Cytokines post SARS-CoV-2 Challenge**

Cytokines circulating in serum were analyzed at indicated time points post challenge, with early indicating a mean value of days 1, 2 and 3 post challenge. Comparisons were made with two-way ANOVA using Tukey's multiple comparisons test. Asterisks represent significant comparisons (\*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ; \*\*\*\*,  $p < 0.0001$ ).

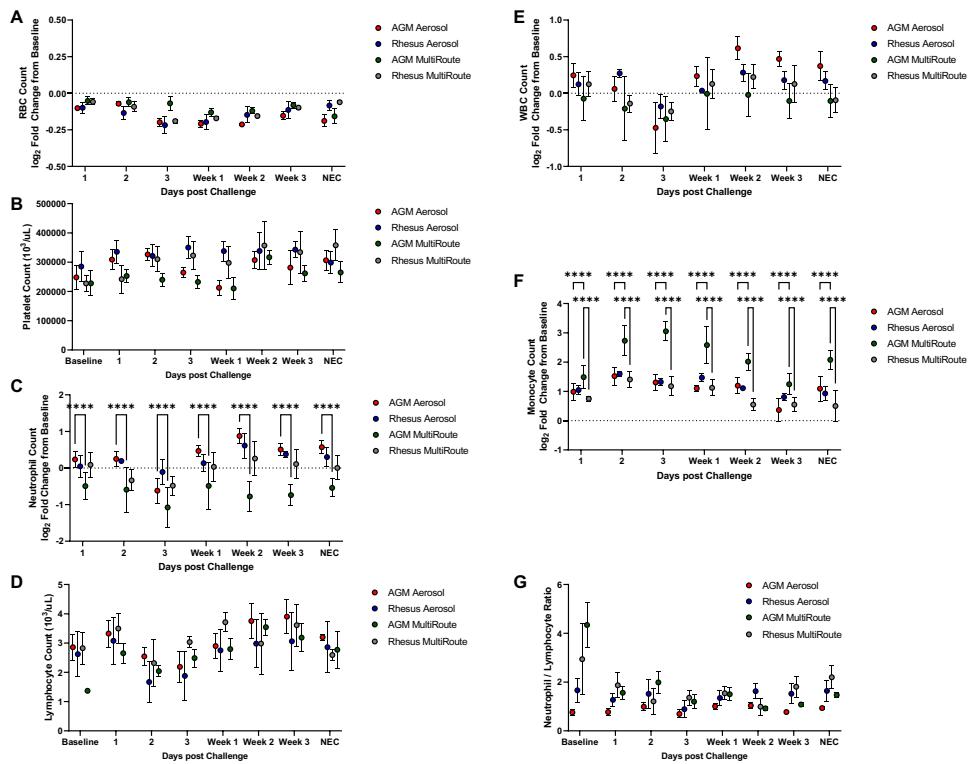


**Figure S4: Representative histopathology.**

A,B: Aerosol RM, right middle lobe. A) The pleura is segmentally thickened (pleuritis, arrows). B) Regions of pleuritis are characterized by fibrosis (dotted line) with infiltration by mononuclear cells. Aggregates of similar inflammatory cells are present subpleurally (arrow). C,D: Aerosol AGM, left anterior lobe. C) The pleura is segmentally thickened (arrows). D) The pleura is lined by hypertrophic mesothelial cells (arrow) and there is infiltration of the subpleural parenchyma by histiocytes. E,F: IT/IN RM, left lower lobe. E) The pleura is segmentally thickened (pleuritis, arrows). F) The pleura is thickened by fibrosis and infiltrated by mononuclear cells, predominantly lymphocytes. G,H: IT/IN AGM, right lower lobe. G) There is mild congestion and rare perivascular inflammation (arrow). H) Perivascular inflammation is characterized by infiltration of the tunica adventitia by mononuclear cells.

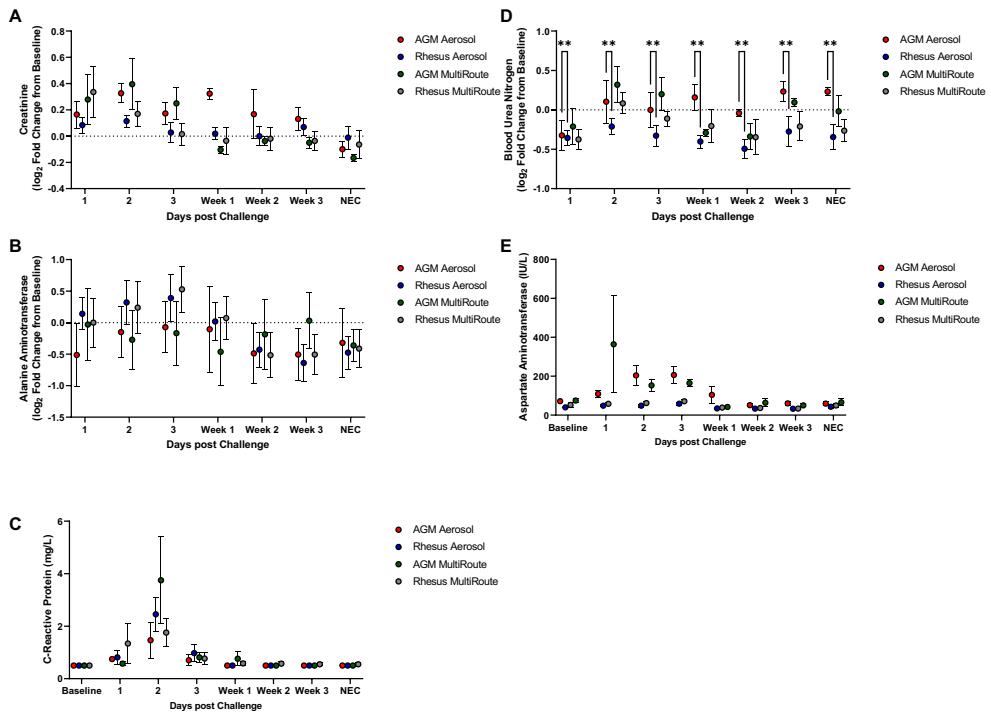


**Figure S5: BAL flow cytometry gating strategy.**


Representative gating strategy to classify alveolar (CD163+CD206+), interstitial (CD163+CD206-), monocyte-derived (CD163+CD206+CD16+CCR2+), and resident alveolar (CD163+CD206+CD16-) macrophages in BAL.

| Target        | Manufacturer     | Catalog #   | Use       | Dilution |
|---------------|------------------|-------------|-----------|----------|
| Cytokeratin V | Abcam            | ab17130     | Primary   | 1:50     |
| p63           | GeneTex          | GTX102425   | Primary   | 1:100    |
| $\alpha$ SMA  | Dako             | M0851       | Primary   | 1:100    |
| CD163         | Leica            | NCL-L_CD163 | Primary   | 1:50     |
| CD206         | R&D Systems      | AF2535      | Primary   | 1:50     |
| Collagen I    | Abcam            | ab34710     | Primary   | 1:100    |
| Alexa 568     | Invitrogen       | A-11036     | Secondary | 1:1000   |
| Alexa 568     | Invitrogen       | A21134      | Secondary | 1:1000   |
| Alexa 568     | Molecular Probes | A11057      | Secondary | 1:1000   |
| Alexa 488     | Invitrogen       | A-11034     | Secondary | 1:1000   |
| Alexa 488     | Invitrogen       | A21202      | Secondary | 1:1000   |
| Alexa 488     | Invitrogen       | A21121      | Secondary | 1:1000   |

**Table S3: Antibodies used for fluorescent immunohistochemistry.**


| BAL Antibodies |              |           |                 |           |                            |
|----------------|--------------|-----------|-----------------|-----------|----------------------------|
| Target         | Fluorochrome | Clone     | Company         | Ref#      | Known Reactivity           |
| CD3            | FITC         | SP34      | BD Biosciences  | 557705    | Rhesus                     |
| CD20           | FITC         | 2H7       | BD Biosciences  | 555622    | Rhesus,AGM                 |
| CD86           | PCP-Cy5.5    | FUN-1     | BD Biosciences  | 561129    | Rhesus                     |
| IFN $\alpha$   | APC          | LT27:295  | Miltenyi Biotec | 130099214 | AGM                        |
| CD206          | APC-Cy7      | 15.2      | Biolegend       | 321120    | Rhesus                     |
| CCR2           | BV421        | 48607     | BD Biosciences  | 564067    | No NHP reactivity reported |
| Viability      | BV510        | N/A       | BD Biosciences  | 564406    | No NHP reactivity reported |
| CD163          | BV605        | GH/61     | BD Biosciences  | 745091    | Rhesus                     |
| IL-10          | BV650        | JES3-9D7  | BD Biosciences  | 564051    | Rhesus                     |
| CD169          | BV711        | 7-239     | BD Biosciences  | 742995    | No NHP reactivity reported |
| IL-6           | PE           | MQ2-6A3   | BD Biosciences  | 559331    | Rhesus                     |
| TNF $\alpha$   | PE-CF594     | MAB11     | BD Biosciences  | 562784    | Rhesus                     |
| CD11c          | PE-Cy5       | 3.9       | Biolegend       | 301609    | Rhesus,AGM                 |
| CD16           | PE-Cy7       | 3G8       | BD Biosciences  | 560716    | Rhesus,AGM                 |
| HLA-DR         | BUV396       | G46-6     | BD Biosciences  | 564040    | Rhesus                     |
| CD14           | BUV496       | M5E2      | BD Biosciences  | 750381    | Rhesus,AGM                 |
| CD45           | BUV737       | DO58-1283 | BD Biosciences  | 741874    | Rhesus,AGM                 |

**Table S4: Antibodies used for flow cytometry analysis.**



**Figure S6: Hematology-Based Parameters of SARS-CoV-2 Challenge**

Complete blood counts were performed at indicated times and were compared for counts of RBCs, platelets, neutrophils, lymphocytes, WBCs and monocytes (A, B, C, D, E, and F, respectively), as well as neutrophil/lymphocytes ratio (G). Comparisons were made via two-way ANOVA with Tukey's multiple comparisons test. Asterisks represent significant comparisons (\*\*\*\*,  $p < 0.0001$ ).



**Figure S7: Clinical Chemistry-Based Parameters of SARS-CoV-2 Challenge**

Clinical chemistries were performed at the indicated times post challenge. Comparisons between each group were made for log<sub>2</sub> fold change from baseline of creatinine (A), ALT (B), BUN (D) and concentrations of CRP (C) and AST (E). Comparisons were made via two-way ANOVA with Tukey's multiple comparisons test. Asterisks represent significant comparisons (\*\*, p < 0.01).