

1 **Convergent evolution of mevalonate pathway in**

2 ***Inonotus obliquus* and *Betula pendula*.**

3 Omid Safronov^{1,2,3}, Guleycan Lutfullahoglu Bal², Nina Sipari⁴, Maya Wilkens⁵, Pezhman Safdari¹,
4 Olli-Pekka Smolander⁶, Jenna Lihavainen⁷, Niko Silvan⁸, Sitaram Rajaraman¹, Pia K. Laine², Lars G
5 Paulin², Petri Auvinen², Tytti Sarjala⁸, Kirk Overmyer¹, Jaakko Kangasjärvi¹, Brendan Battersby^{2,3},
6 Uwe Richter^{2,9,*}, Jarkko Salojärvi^{1,10,*}.

7

8 ¹Organismal and Evolutionary Biology Research Program, Faculty of Biological and
9 Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki,
10 Finland.

11 ²Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.

12 ³Molecular and Integrative Biosciences Research Program, Faculty of Biological and
13 Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki,
14 Finland.

15 ⁴Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of
16 Helsinki, Helsinki Finland.

17 ⁵Current address: Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany.

18 ⁶Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.

19 ⁷Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.

20 ⁸Biomass Characterization and Properties Group, Production Systems Unit, Natural Resources
21 Institute Finland, Helsinki, Finland.

22 ⁹Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, UK.

23 ¹⁰School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.

24 *Corresponding authors: uwe.richter@helsinki.fi, jarkko@ntu.edu.sg

25

26 **Abstract**

27 *Inonotus obliquus*, Chaga mushroom, is a fungal species from *Hymenochaetaceae* family
28 (*Basidiomycota*) which has been widely used for traditional medicine in Europe and Asia. Here,
29 chaga genome was sequenced using Pacbio sequencing into a 50.7Mbp assembly consisting of 301
30 primary contigs with an N50 value of 375 kbp. Genome evolution analyses revealed a lineage-
31 specific whole genome duplication event and an expansion of Cytochrome P450 superfamily. Fungal
32 biosynthetic clusters were enriched for tandemly duplicated genes, suggesting that biosynthetic
33 pathway evolution has proceeded through small-scale duplications. Metabolomic fingerprinting

34 confirmed a highly complex terpene biosynthesis chemistry when compared against related fungal
35 species lacking the genome duplication event.

36 **Introduction**

37 *Inonotus obliquus*, Chaga mushroom, is a fungal species from *Hymenochaetaceae* family
38 (*Basidiomycota*) distributed across the boreal forest zone in the Northern hemisphere. It causes
39 aggressive white rot disease mainly among *Betula* family members (Blanchette, 1982), but upon
40 suitable conditions it can infect also other tree species such as oaks, poplars, ashes and maples
41 (Ryvarden & Gilbertson, 1993). White rot disease is the result of lignin degradation (having darker
42 color) while the light-coloured cellulose is left intact. The infection starts when *I. obliquus* spores get
43 access to the hardwood of the stem through an opening or wounded bark. At the later stages of the
44 infection, *I. obliquus* appears as a sterile conk, a solid charcoal-black mass on the surface of bark
45 (Blanchette, 1982). The sterile conk has been used in traditional medicine in many cultures. A large
46 body of research on biochemical compounds extracted from the conk suggests that the species may
47 have a wide range of pharmaceutical, medicinal, and industrial applications (Ma, Chen, Dong, & Lu,
48 2013; Nagajyothi, Sreekanth, Lee, & Lee, 2014; Song, Liu, Kong, Chang, & Song, 2013; Yan et al.,
49 2014).

50 Betulin (BE) and betulinic acid are highly abundant triterpenoids in the bark of all birch family
51 members involved in protection against fungi, bacteria and viruses; they collectively form 30-60% of
52 total tissue composition, depending on the species and the tissue type (Holonec, Ranga, Crainic,
53 Truța, & Socaciu, 2012; P. Kovalenko et al., 2009; Safronov et al., 2019). Both betulinate compounds
54 are being studied for industrial applications (Šimáň et al., 2016), and as therapeutic substances in
55 oncology (Król, Kiełbus, Rivero-Müller, & Stepulak, 2015) and infectious diseases (fungal, bacterial,
56 and viral infections) (Gong et al., 2004; Salin et al., 2010; Shai, McGaw, Aderogba, Mdee, & Eloff,
57 2008). In plants, the biosynthesis of betulinate compounds starts with squalene, a product of
58 mevalonate pathway, and involves two enzymatic steps where squalene is first converted to lupeol
59 via lupeol synthase and then to betulinate by lupeol monooxygenase, an enzyme which is a member
60 of the large family of cytochrome P450 monooxygenases, more specifically subfamily 716 (CYP716).
61 Betulin biosynthesis is found across a wide taxonomic range in plants, from *Malvales* (H. J. Zhang et
62 al., 2003), *Fagales* (Safronov et al., 2019), *Rosales* (Andre et al., 2013; S. Zhao et al., 2015), *Fabales*
63 (Wu, Niu, Bakur, Li, & Chen, 2017), *Vitales* (Fukushima et al., 2011), and *Asterales* (Siddiqui et al.,
64 2019) to *Arecales* (Khelil, Jardé, Cabello-Hurtado, Ould-el-Hadj Khelil, & Esnault, 2016; Koolen et al.,
65 2012), suggesting either ancestral origin or convergent evolution. A comparative genomic analysis
66 of the bark tissue in silver birch (*Betula pendula*) and grey alder (*Alnus glutinosa*) revealed birch-

67 specific evolution of mevalonate pathway (MVA), where a tandem duplication of lupeol synthase
68 colocalized with lupeol 28-monoxygenase was suggested as the reason for increased production of
69 betulinate compounds in birch phellem (Safronov et al., 2019). Interestingly, in addition to plants,
70 betulinate compounds have also been identified in diverse range of fungal species from *Eurotiales*
71 (Khouloud Barakat, 2016), *Hymenochaetales* (Yin, Cui, & Ding, 2008), and *Polyporales* (Alresly et al.,
72 2015) families, even though no members of CYP716 gene family have yet been identified or
73 characterized in fungi. Birch fungal pathogens *Inonotus obliquus* and *Fomitopsis betulina* are such
74 examples of fungal species that produce BE and BA compounds (Alresly et al., 2015; Yin et al., 2008),
75 even though the compounds are anti-fungal by nature. The evolution of betulinate biosynthesis in
76 these two fungal species is not known, but one can hypothesize it to be the result of either
77 convergent evolution or horizontal gene transfer (HGT) of the responsible cytochrome P450
78 monooxygenase enzymes from the host species. There exists a recent study on the diversification
79 and distribution of CYP716 enzyme in eudicots (Miettinen et al., 2017), but no studies of this enzyme
80 in fungal species have been carried out, and the enzymes underlying betulin production in the fungal
81 species, known to produce betulinate compounds, have not yet been identified.

82 The CYP450 monooxygenase enzymes are among the oldest and largest gene families,
83 encompassing both prokaryotic and eukaryotic organisms (Sezutsu, Le Goff, & Feyereisen, 2013).
84 They act as key enzymes for detoxification of toxic compounds, and they have an important function
85 in secondary metabolism related to adaptation to environmental conditions. The low sequence
86 similarity, high functional diversity and enzymatic promiscuity among CYP450 monooxygenase
87 enzymes makes functional predictions difficult. The CYP450s are generally classified into families
88 and subfamilies based on sequence similarity; the sequences with identity >40% are assigned into
89 families and sequences with >55% similarity into their own subfamilies; novel candidates with lower
90 identity to the set of identified CYP450s form new candidate families. Based on these criteria, so far
91 over 800 different CYP families have been identified (Lepesheva et al., 2008).

92 In this study we sequenced and assembled an *I. obliquus* genome from an isolate from Merikarvia
93 region in Finland. The genome was annotated using *ab initio* gene model prediction and spliced
94 transcript data obtained from total RNA sequencing. We carried out comparative genomic and
95 gene family expansion analysis among 16 *Basidiomycete* and 3 *Ascomycetes* species together with
96 *I. obliquus* genome and studied the untargeted terpenoid metabolic fingerprints (using UPLC-
97 QTOF/MS) in five strains of *I. obliquus* and one *Fomitiporia mediterranea* strain, focusing on the
98 quantification of betulin (BE) and betulinic acid (BA) abundances across the samples. To confirm
99 our functional predictions we cloned the candidate lupeol synthase from *B. pendula* and CYP450

100 monooxygenase enzymes from both *B. pendula* and *I. obliquus* and tested their ability to produce
101 betulin compounds.

102 Materials and methods

103 Sample collection

104 Four *Inonotus obliquus* strains (Supp. table 1) were collected and isolated from different regions
105 in Finland and one from Altai mountains in Russia. The strain from Merikarvia was selected for whole
106 genome sequencing (location 61°58'38.6"N 21°44'43.1"E). In addition, we also obtained a strain of
107 *Fomitiporia mediterranea* as an outgroup to chaga (Mycobank: MB384943). All samples were
108 cultivated on Hagem agar overlayed by a cellophane membrane.

109 The isolation of chaga mushrooms from the host trees was done by cutting a piece of the conk (Supp.
110 Fig 1), which was then laid on agar plate after short H₂O₂ bath. The samples were re-cultured
111 repeatedly and sequenced for internal transcribed spacer 1 (ITS1) [TCCGTAGGTGAACCTGCGG] and
112 ITS4 [TCCTCCGCTTATTGATATGC] regions confirm the species assignment of *I. obliquus* isolate.

113 RNA isolation, sequencing, and *de novo* assembly of transcriptome

114 To isolate the total RNA from *I. obliquus*, the method from Chang *et al.* (Chang, Puryear, & Cairney,
115 1993) was used. Briefly, the *I. obliquus* was inoculated and grown on autoclaved wood dust from a
116 clone of *B. pendula* (12 years old tree, 167 cm² disk, dry weight of 200 grams) sequenced for *B.*
117 *pendula* reference genome (Salojärvi *et al.*, 2017). A total of 150 milligrams of ground sample
118 (mortar and pestle, and liquid N₂) was transferred on ice for 30 seconds, and 500 µl of pre-warmed
119 (+65-68°C) extraction buffer (2% CTAB, 2% PVP K-30, 100 mM Tris-HCl [pH 8.0], 25 mM EDTA, 2 M
120 NaCl, and 200 µl β-MeOH/10 ml of extraction buffer) was added and vortexed vigorously. Extraction
121 was carried out three times with chloroform:isoamyl alcohol (24:1) by spinning at 200-300 rpm for
122 15 minutes, and then centrifuging at 10 000 rpm 15 minutes. Then, 1/4 volume 10 M LiCl was added
123 and left to precipitate on ice overnight. The overnight sample was centrifuged with 10000 rpm for
124 20-30 minutes at +4°C, and the resulting pellet was dissolved in 500 µl of pre-warmed (+65°C)
125 sodium dodecyl sulfate–Tris-HCl–EDTA (SSTE) buffer, and extracted once (or several times, if
126 necessary) with chloroform:isoamyl alcohol (24:1). The mixture was precipitated by adding 2
127 volumes of absolute EtOH (place at -20°C overnight), and centrifuged at 13 000 rpm, for 20-30
128 minutes at +4°C. the precipitate was washed with 70% EtOH, after which the pellet was dried, and
129 then dissolved in 10-30 µl RNase-free water, and RNase inhibitor was added.

130 TruSeq stranded mRNA kit was used to construct the RNA-seq library. The cDNA was
131 synthesized from 5 µl of total RNA extracted from reference *I. obliquus* plate using random
132 hexamers. DNA polymerase I and dUTP nucleotides were used to synthesize the second strand of

133 cDNA. Then, double stranded cDNA were purified, and ends were repaired. Library preparation
134 was continued by A-tailing, and ligation of Y-adaptors containing indexes from the kit. The
135 fragments were amplified using polymerase chain reaction (PCR), followed by purification steps
136 using AMPure XP. The sequencing was carried out in HiScan SQ platform (paired-end 88 bp + 74
137 bp).

138 The raw paired end RNA-seq data were controlled for quality using FastQC v0.11.2 (Andrews).
139 Trimmomatic v0.33 (Bolger, Lohse, & Usadel, 2014) was used in pair-end mode to remove the
140 adapters, barcodes, low quality bases from both ends of each sequence, and reads shorter than 25
141 base pairs (LEADING:20, TRAILING:20, MINLEN:25, -phred33). After the removal of duplicate
142 sequences, the unpaired sequences were mapped to *I. obliquus* reference genome using Tophat2
143 (Kim et al., 2013) for junction discoveries (-i:10, and --coverage-search); paired end reads were
144 mapped separately (Tophat2; -i:10, and --coverage-search). The aligned reads were separated
145 according to their orientation on reference genome to forward and reverse strands, which were then
146 aligned individually by Trinity v2.1.1, using --genome_guided_bam, and --
147 genome_guided_max_intron: 1 000 options (Grabherr et al., 2011) for *de novo* transcriptome
148 assemblies. The forward and reverse *de novo* transcriptome assemblies were combined, and
149 duplicated assemblies were removed using GenomeTools v1.5.1, using sequniq option (Gremme,
150 Steinbiss, & Kurtz, 2013). The unique *de novo* transcriptome assemblies were clustered by using CD-
151 HIT v4.6 (Godzik & Li, 2006) and aligned to *I. obliquus* reference genome by Program to Assemble
152 Spliced Alignments (PASA v2.2.0) (Brian J. Haas et al., 2008).

153 The processing of the publicly available RNAseq data (Fradj et al., 2019) was carried out in a
154 similar manner. Both data sets were mapped to *I. obliquus* gene models using kallisto quant v0.44.0
155 (Bray, Pimentel, Melsted, & Pachter, 2016). The orphan reads and pair-end reads (separated during
156 preprocessing by trimmomatic) were mapped separately by using kallisto quant single (options: --
157 single, -l 200, -s 20, -b 4000) and pair-end (option: -b 4000) modes, respectively. The raw count table
158 from Kallisto was imported to R (for both single and pair-end count tables) using tximport package
159 v1.18.0 with default options (Soneson, Love, & Robinson, 2015). The single and pair-end counts were
160 summed together to form a single count table for each data set. Differential gene expression analysis
161 was conducted using DESeq2 (Love, Huber, & Anders, 2014). The final tables for differentially
162 expressed genes (DEg) were filtered based on the false discovery rate adjusted p-value threshold of
163 0.05 (p-adj. ≤ 0.05).

164 **DNA isolation, genome assembly and annotation**

165 Modified version of Lodhi *et al.* (Lodhi, Ye, Weeden, & I. Reisch, 1994) was used for DNA
166 extraction from *I. obliquus* strains. Maximum 0.5 g of material was ground in liquid N₂. The ground
167 sample was transferred into ice cold Sodium chloride-Tris-EDTA (STE) buffer (1,4 M NaCl, 0 mM
168 EDTA, 100 mM Tris-HCl pH 8.0), and centrifuged for 5 minutes at 8 000 rpm and +4°C. STE buffer
169 was discarded, and 10 ml of pre-warmed (60°C) cetyltrimethyl ammonium bromide (CTAB) buffer
170 (1 liter CTAB: 20 mM EDTA, 100 mM Tris-HCl pH 8.0, 1.4 M NaCl, 2.0% CTAB, 1.0% PVP 40, and 2%
171 β-MeOH [50μl]) was added to pellet. Subsequently, the mixture was vortexed and incubated for 30-
172 60 min at 60°C and cooled to the room temperature. Chloroform: isoamyl alcohol (IAA) (24:1 ration)
173 mixture was added for extraction (centrifugation: 15 minutes, 10000 rpm at room temperature).
174 The supernatant was collected to a new tube and mixed with 2X CTAB buffer, which was then
175 vortexed and incubated for 30-60 min at 60°C. The chloroform:IAA extraction step was repeated 2-
176 3 times, followed by adding of 2X volume of cold (-20°C) absolute ethanol (EtOH) to supernatant.
177 The EtOH mixture was stored for overnight at +4°C. The mixture then was centrifuged for 15
178 minutes, at 10000 rpm and 4°C. DNA pellet was washed with absolute EtOH (-20°C) and air dried.
179 The sample was treated for the RNA (RNase A), followed by chloroform:IAA extraction, EtOH
180 precipitation, air drying of the DNA pellet, dissolving in DNase/RNase free water, and storing at -
181 80°C.

182

183 The genome of the *Inonotus obliquus* was sequenced with Pacific Biosciences PacBio RSII
184 instrument using P6-C4 chemistry. Eight SMRTcells were used for sequencing the sample with movie
185 time of 240 minutes. The number of obtained sequences was 712,759 which totaled up to 4.82 Gb
186 of data with read length N50 of 9200 bp. At first, hierarchical Genome Assembly Process (HGAP) V3
187 implemented in SMRT Analysis package (v2.3.0) was used to generate an initial *de novo* genome
188 assembly with default parameters. Mitochondrial genome contig was separated from the
189 chromosomal contigs and circularized manually using GAP4 program (Bonfield, Smith, & Staden,
190 1995). Obtained mitochondrial sequence in length of 118 085 bp and > 4000X sequencing coverage
191 was polished using SMRT Analysis RS Resequencing protocol with Quiver consensus algorithm.
192 Second, the FALCON assembly program (Chin *et al.*, 2016) was used to generate the final *de novo*
193 genome assembly with seed read length of 10 000 bp. Obtained contig sequences were polished
194 using SMRT Analysis RS Resequencing protocol with Quiver consensus algorithm with approximately
195 75x coverage. To quantify completeness of the genome, BUSCO (v3.0, Fungi datasets, -m geno, -
196 long) (Waterhouse *et al.*, 2017) was used.

197 Repeat analysis of the contigs was carried out according to the guidelines of RepeatModeler and
198 RepeatMasker (<http://www.repeatmasker.org/>, v 4.0.7). To predict the gene models, multiple
199 evidence tracks from different platforms were obtained: *ab initio* gene predictors based on Hidden
200 Markov Models (HMMs), spliced transcript evidence from RNA-seq, and orthologous proteins
201 from closely related fungal species. HMM-based models such as AUGUSTUS (v3.3.2) (Stanke &
202 Morgenstern, 2005), and GeneMark-ES (version 4.33; --fungus mode, and --evidence: *de novo*
203 transcriptome assembly) (Besemer & Borodovsky, 2005) were used for *ab initio* gene predictions.
204 In addition, BRAKER2 (Hoff, Lange, Lomsadze, Borodovsky, & Stanke, 2015) (options: --fungus, --
205 rounds=100, and --bam) was run for *ab initio* gene predictions. To identify the open reading frames
206 (ORFs) within the genome, getorf (EMBOSS v6.6.0.0) program (Rice, Longden, & Bleasby, 2000) was
207 used (-find:1, and --maxsize: 5000). The ORFs were then queried against NR database by DIAMOND
208 (v0.9.24, blastp, --more-sensitive) (Buchfink, Xie, & Huson, 2014) and filtered for similarity
209 (sequence identity \geq 75, and score \geq 300); the homologous sequences above the threshold were
210 collected. Selected ORFs were used as the input for exonerate (v2.46.2, --model:protein2genome, --
211 -minintron:10, --maxintron:1000; --percent:65) (Slater & Birney, 2005) to map the candidate ORFs
212 to *I. obliquus* reference genome. Additionally, orthologous proteins from 13 fungal species
213 (*Coprinopsis cinerea*, *Fomitiporia mediterranea*, *Heterobasidion annosum*, *Laccaria bicolor*, *Onnia*
214 *scaura*, *Phanerochaete chrysosporium*, *Phellinus ferrugineofuscus*, *Porodaedalea niemelaei*, *Postia*
215 *placenta*, *Puccinia graminis*, *Rickenella mellea*, *Schizophora paradoxa*, *Trichaptum abietinum*) were
216 aligned against *I. obliquus* reference genome with exonerate (v2.46.2, --model:protein2genome, --
217 minintron:10, --maxintron:1000; --percent:65) (Slater & Birney, 2005). In addition to orthologous
218 proteins, the protein sequences discovered from BUSCO predictions were collected and aligned to
219 reference genome by exonerate as well using the same parameters as given above (Slater & Birney,
220 2005). All the evidence (*ab initio* gene models, spliced transcript alignments, spliced protein
221 alignments, ORFs, and BUSCO) was combined to consensus, high-confidence gene models, using
222 EVidenceModeler (v1.1.1). This was followed by the addition of untranslated regions (UTR) to the
223 gene models by PASA (Brian J. Haas et al., 2008).

224 Mitochondrial genome was also assembled and annotated as described previously (Salojärvi et
225 al., 2017), resulting in 29 tRNAs, 32 coding sequences, and 3 rRNAs.

226 Interproscan (v5.25-64.0) (Quevillon et al., 2005) was used to assign the protein function to gene
227 models. Additionally, Ensemble Enzyme Prediction (E2P2, v3.1) (Schlapfer et al., 2017) and
228 antiSMASH (v2.0) fungal version (Blin et al., 2013) were used to predict the metabolomic pathways.

229 **Comparative genomic analyses**

230 The proteomes of twenty fungal species *Laccaria bicolor*, *Coprinopsis cinerea*, *Schizophyllum*
231 *commune*, *Fomitiporia mediterranea*, *Inonotus obliquus*, *Onnia scaura*, *Phellinidium*
232 *ferrugineofuscum*, *Porodaedalea niemelaei*, *Trichaptum abietinum*, *Rickenella mellea*, *Schizopora*
233 *paradoxa*, *Fomitopsis betulina*, *Postia placenta*, *Phanerochaete chrysosporium*, *Puccinia graminis*,
234 *Heterobasidion annosum*, *Ustilago maydis*, *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe*,
235 and *Neurospora crassa* from Ascomycete and Basidiomycete clades were downloaded from
236 MycoCosm (<https://mycocosm.jgi.doe.gov>) and included for gene family analysis by Orthofinder
237 (Emms & Kelly, 2015) (v2.3.3), run with default parameters.

238 **Synteny analyses**

239 Synteny analysis of self-self alignment of *I. obliquus*, and four other fungal species, namely *F.*
240 *mediterranea*, *S. paradoxa*, *F. betulina*, and *P. niemelaei*, were conducted using SynMap application
241 in CoGe platform (<https://genomevolution.org/coge/>), using Quota Align algorithm with default
242 parameters. The list of syntenic duplicates were obtained from DAGchainer (B. J. Haas, Delcher,
243 Wortman, & Salzberg, 2004); tandem duplicates were obtained as part of the preprocessing
244 pipeline.

245 **Discovery of secreted proteins and carbohydrate active enzymes (CAZymes)**

246 Getorf function of EMBOSS (v6.6.0.0) (Rice et al., 2000) was used to discover the ORFs (-find:1,
247 and –maxsize: 1000). All the ORFs were analyzed by signalp (v5) (Almagro Armenteros et al., 2019)
248 for the presence of signal peptide. Signal peptides were removed from predicted ORF sequences,
249 and the cysteine amino acids were counted for every sequence. ORF sequence with three cysteine
250 residues was predicted as a possible secreted protein (SP).

251 CAZymes are annotated during gene model annotation steps. In order to further classify these
252 enzymes, total proteome of *I. obliquus* was queried against dbCAN2 database using DIAMOND
253 (v0.9.24, blastp, --more-sensitive) (Buchfink et al., 2014; H. Zhang et al., 2018), and the best hit was
254 selected (score \geq 200, percentage identity \geq 55) as a homologous sequence.

255 **Gene tree of cytochrome P450 monooxygenases**

256 A phylogenetic tree was constructed for 15 CYP716 gene models from Streptophyta species which
257 have been confirmed to produce betulinate compounds [*Betula pendula* (Salojärvi et al., 2017),
258 *Betula platyphylla*, *Phoenix dactylifera* (Al-Mssallem et al., 2013), *Medicago truncatula* (Tang et al.,
259 2014), and *Vitis vinifera* (The French–Italian Public Consortium for Grapevine Genome et al., 2007)],
260 after which CYP450 genes with high sequence similarity (< 40%) in *I. obliquus* and *F. betulina* were
261 added to the tree. A total of 77 sequences were subjected to multiple sequence alignment (MSA)

262 using MUSCLE (v3.8.31, -maxiters: 1000) (Edgar, 2004). The amino acid sequences were reverse
263 translated by PAL2NAL (Suyama, Torrents, & Bork, 2006), and both amino acid and nucleotide
264 sequences were used to construct the phylogenetic trees by RaxmlHPC-HYBRID-AVX2 (v8.2.12)
265 (Stamatakis, 2014).

266 **Mass spectrometry, sample preparation and derivatization of *I. obliquus* and *F. mediterranea* metabolites**

268 Five strains of *I. obliquus* and one *F. mediterranea* (three biological replicates for each) were
269 grown in liquid Hagem media for two weeks. Submerged myceliums were washed with sterile milli-
270 Q water three times, and grinded with liquid nitrogen. All samples (fresh weight ~500mg, dry weight
271 ~30mg) were extracted twice with 1.0 ml of ethyl acetate (Merck) by vortexing for 15 min and
272 centrifuged for 10 min in 15000 rpm according to Cao et al. (G. Zhao, Yan, & Cao, 2007) at room
273 temperature. Internal standards (ISTD) (10 μ l, 10 μ g/ml), testosterone and 4-methylumbelliflferone
274 (Sigma), were added to each sample in the first extraction step. The supernatant was evaporated to
275 dryness with MiVac Duo concentrator +40°C (GeneVac Ltd, Ipswich, UK) and the residue was re-
276 solubilized in 100 μ l ACN (Honeywell). Quality control (QC) sample was prepared by combining
277 extracts from each sample line.

278 The triterpenoid profiling was executed from the extracts with UPLC-PDA-QTOF/MS. The UPLC-
279 MS system consisted of a Waters Acquity UPLC attached to a Acquity PDA-detector and to a Waters
280 Synapt G2 (HDMS) QTOF mass spectrometer (Waters, Milford, MA, USA). The separation of the
281 analytes was executed in Acquity BEH C18 (2.1mm x 50mm, 1.7 μ m) column (Waters, Milford, MA,
282 USA) with the temperature of +40°C. The autosampler temperature was set to +27°C. The mobile
283 phase consisted of water (A) and acetonitrile (B) both with 0.1% formic acid and the flow rate was
284 0.6 ml/min. The injection volume was 3 μ l. The linear gradient started with 30% B and proceeded to
285 98% in 9 min, followed by 1 min at 98% B, giving a total run time of 10 min. ESI/MS detection was
286 performed in positive sensitivity ion mode with capillary voltage 3.0 kV, cone voltage 30 V,
287 desolvation gas 800 L/h, cone gas 20 L/h, desolvation temperature 320 °C, source temperature 120
288 °C and extractor lens 3.00 V. The MarkerLynx software (Waters, Milford, MA, USA) was used for data
289 processing. UV spectra, negative MS-runs and fragmentation patterns from MS^e runs of QC sample
290 were used as additional tools for annotation of triterpenes, sterols and phenolic compounds in
291 *Inonotus obliquus* samples.

292 The standard solutions of betulin and betulinic acid (1.0 mg/ml) were prepared in ethyl acetate
293 and testosterone (100 μ g/ml) standard was prepared in methanol. Working solutions (10 μ g/ml, 100
294 ng/ml) were prepared by diluting the standard solution with acetonitrile. The optimization of
295 quantification method was executed with a mix of betulin, betulinic acid and testosterone standards

296 (100 ng/ml). Standard mix (100 μ l) was derivatized with PTSI, and MS parameters were optimized
297 by repeated injection of the sample.

298 Due to very low concentration of betulin and betulinic acid, extracts were derivatized with p-
299 toluenesulfonyl isocyanate (PTSI) (Hu et al., 2013; Zuo, Gao, Liu, Cai, & Duan, 2005) to improve
300 sensitivity. After metabolite profiling with UPLC-QTOF/MS, samples (90 μ l) were derivatized for 3
301 min with 10 μ l of 60% p-toluenesulfonyl isocyanate (PTSI) (Sigma) in acetonitrile (Hu et al., 2013;
302 Zuo et al., 2005). The derivatization reaction was terminated with 50 μ l of methanol (Merck) with
303 30 s vortex mixing, giving the total volume of 150 μ l.

304 The UPLC-MS/MS system consisted of a UPLC (ABSciex, Shimadzu) attached to ABSciex 6500+
305 QTRAP mass spectrometer with ESI source. The Acquity BEH C18 (2.1mm x 50mm, 1.7 μ m) (Waters,
306 Milford, MA, USA) column was used for the separation of compounds, and column oven
307 temperature was +40°C. The autosampler temperature was set to +25°C. Injection volume was 2 μ l.
308 The mobile phases were water (A) and acetonitrile (B) both with 0.1% of formic acid and the flow
309 rate was 0.6 ml/min. The linear gradient started from 30% B and proceeded to 98% in 6.5 min,
310 followed by 1.5 min at 98% B, giving a total run time of 8 min. The data was normalized to dry weight
311 (DW) and to the peak area of internal standard. The Analyst software (ABSciex) was used for data
312 processing and quantification.

313 PTSI derivatization reagent generated betulin p-toluenesulfonyl carbamic diester, betulinic acid
314 p-toluenesulfonyl carbamic ester, and testosterone toluenesulfonyl carbamic ester. Two MRM
315 transitions were selected for each analyte, one for quantification and other for qualification. The
316 ratio between quantification (quan) and qualification (qual) transitions should stay stable among
317 runs. The transitions were as follows: betulin MRM 835.3 \rightarrow 620.3 quan [M-PTSI-H₂O-H]⁻, 835.3 \rightarrow
318 638.3 qual [M-PTSI-H]⁻, betulinic acid MRM 652.3 \rightarrow 455.2 quan [M-PTSI-H]⁻ 652.3 \rightarrow 437.2 qual [M-
319 PTSI-H₂O-H]⁻, and testosterone 484.2 \rightarrow 287.2 quan [PTSI-H]⁻, 484.2 \rightarrow 269.2 qual [PTSI- H₂O-H]⁻. ESI
320 source temperature was set to 450 °C. ESI/MS/MS detection was performed in negative ion mode
321 with ion spray (IS) voltage of -4000, curtain gas (CUR) 30, collision gas (CAD) at medium, entrance
322 potential (EP) -10, declustering potential (DP) -60 (betulinic acid, testosterone) or -100 (betulin),
323 collision energy (CE) -50, collision cell exit potential (CXP) -10.

324 **Cloning and mass spectrometry of lupeol synthase and CYP450 monooxygenase enzymes**

325 Two major cloning constructs were designed for betulin biosynthesis using pRS424 vector
326 (Burgers, 1999). This version of pRS424 vector contained two multiple cloning sites (MCS), one under
327 GAL1 promoter and the second under GAL10. First, single constructs of CYP450 monooxygenase
328 enzymes were isolated from both *B. pendula* (pRS424::CYP716), as well as four homologous CYP450

329 monooxygenases from *I. obliquus* (pRS424::CYP450). The second construct was a double insertion
330 (pRS424::LUS-CYP716) of lupeol synthase (Bpev01.c0219.g0020.m0001 under GAL10 promoter) and
331 CYP450 monooxygenase (Bpev01.c0219.g0021.m0001, under GAL1 promoter) enzymes isolated
332 from *B. pendula* in pRS424 vector. All the vector constructs were transformed to yeast strain
333 (*Saccharomyces cerevisiae* [w303 background]). The transgenic yeasts were grown and induced
334 according to Zhou et al. (Zhou, Li, Li, & Zhang, 2016), with minor changes. SD-TRP was used as the drop
335 out medium. For single inserted vectors, we used 50 μM lupeol (dissolved in DMSO:EtOH [1:1]) in
336 induced growth media. After 60 hours of induction, the yeast growth media were centrifuged, and
337 both media and the cell pellets were collected and sent for mass spectrometry.

338 Total of eight samples (yeast cells (4 tubes), and cell culture media (4 tubes)) were analyzed with
339 UPLC-QTRAP/MS (MRM). Three triterpenoids (betulin [BE]) were extracted first from the media
340 twice with 1.0 ml ethyl acetate (Merck) for 60 min in RT and centrifuged for 5 min in 15 000 rpm
341 according to Cao et al. (G. Zhao et al., 2007). Testosterone was used as an internal standard (ISTD,
342 1.0 μl, 1.0 μg/ml). The cells were extracted in a similar manner as media, but yeast cells with 500 μl
343 H₂O and 1000 μl chloroform twice and were disrupted with freeze/thaw cycle (3 cycles) with ultra-
344 sonication (15min) prior to extraction procedure.

345 The upper ethyl acetate was evaporated to dryness with MiVac Duo concentrator +40°C
346 (GeneVac Ltd., Ipswich, UK). The residue was re-solubilized in 100 μl ACN. Due to very low
347 concentration of lupeol, betulin and betulinic acid, extracts had to be derivatized with p-
348 toluenesulfonyl isocyanate (PTSI) (Hu et al., 2013; Zuo et al., 2005) to improve sensitivity. Samples
349 were derivatized in RT for 3 min with 10 μl of 60% p-toluenesulfonyl isocyanate (PTSI) (Sigma
350 Aldrich) in ACN (Hu et al., 2013; Zuo et al., 2005). The derivatization reaction was terminated with
351 90 μl of MeOH with 30 s vortex mixing, giving the total volume of 200 μl. Immediately after PTSI-
352 derivatization, the MRM analysis of lupeol, betulin and betulinic acid was executed with UPLC-
353 QTRAP/MS (ABSciex).

354 The UPLC-MS/MS system consisted of ABSciex UPLC attached to ABSciex 6500+ QTRAP mass
355 spectrometer. The separation of the analytes column was Acquity BEH C18 (2.1mm x 50mm, 1.7 μm)
356 (Waters, Milford, MA, USA), with the temperature of +40°C. The autosampler temperature was set
357 to +25°C. The injection volume was 10 μl. The chromatographic conditions were executed as
358 described previously at Hua et al. (Hu et al., 2013). The mobile phase consisted of water with 0.1%
359 of formic acid in H₂O (A) and acetonitrile (B) with a flow rate of 0.6 ml/min. The linear gradient
360 started 30% B and proceeded to 98% in 6.5 min, left in 98% B for 2 min, and switched back to initial
361 conditions and left to stabilize, giving a total analysis time of 10 min.

362 ESI source temperature was set to 450°C. ESI/MS/MS detection was performed in negative ion
363 mode with ion spray (IS) voltage of -4000, curtain gas (CUR) 30, collision gas (CAD) at medium,
364 entrance potential (EP) -10, de-clustering potential (DP) -60 (betulinic acid, testosterone) or -100
365 (betulin), collision energy (CE) -50, collision cell exit potential (CXP) -10. The Analyst software
366 (ABSciex) was used for data processing. PTSI derivatization reagent generated betulin p-
367 toluenesulfonyl carbamic diester (BTCD). The transitions for betulin and ISTD (testosterone) was as
368 follows: Betulin (BE) MRM 835.2 → 620.2 [M-PTSI-H₂O-H]⁻, 835.2 → 638.3 [M-PTSI-H]⁻ and 835.2 →
369 196.0 [PTSI-H]⁻, and for testosterone MRM 484.2 → 287.2 [M-PTSI-H]⁻ and MRM 484.2 → 269.2 [M-
370 PTSI-H₂O-H]⁻. The most intense transitions of MRM 835.2 → 620.2 (betulin), and MRM 484.2 →
371 287.2 (ISTD, testosterone) were used.

372 Results and discussion

373 Nuclear and mitochondrial genome assemblies and annotations

374 Pacbio sequencing of *I. obliquus* strain from Merikarvia yielded 4.82 Gb of data (96x coverage)
375 with N50 read length of 9,200 bp. Falcon assembly resulted in a 41.1 million bp genome, consisting
376 of 301 primary contigs with an N50 value of 516 kilobases. Overall, the genome size of *I. obliquus*
377 was comparable with other species from *Hymenochaetales* (Supp. table 1).

378 Genome annotation of primary assembly yielded 13,778 gene models with 91.7% of universally
379 conserved single-copy genes being present (BUSCO v3.0, fungi database) (Waterhouse et al., 2017).
380 To support gene model prediction, RNA-seq was carried out from total RNA extracted from *I.*
381 *obliquus* reference strain sample grown on wood dust. Genome-guided *de novo* assembly of RNAseq
382 data showed 91.3% BUSCO completeness with 31% duplicated genes (Supp. table 1). Altogether
383 70.8% of *I. obliquus* genome consisted of coding sequence, with 53.1% in exons. Mean intron, exon,
384 CDS and gene lengths were 89, 284, 1447, and 2113 base pairs, respectively (Supp. table 1).
385 Mitochondrial genome was also assembled and annotated as described previously (Salojärvi et al.,
386 2017), resulting in 29 tRNAs, 32 coding sequences, and 3 rRNAs.

387 Transposable elements (TEs) have been suggested to play a major role in genome plasticity and
388 evolution. Thus, the classification and characterization of genes in close proximity of TEs are of
389 general interest, especially in the case of pathogenic organisms (Faino et al., 2016). In *I. obliquus*,
390 the total genome repeat content was found to be 26%, with 14.24% of repeats being unclassified.
391 The percentage of retrotransposon elements was 8.37%, and DNA transposon elements 1.2%. In
392 contrast to retrotransposon elements, *I. obliquus* genome contained higher amounts of DNA
393 transposon elements compared to the related *F. betulina* and *F. mediterranea* (Supp. table 1). Unlike
394 *F. mediterranea* (42.27% repeat sequences), TE content of *I. obliquus* did not fully explain its large

395 genome size (26% of repeat sequences) (Hage et al., 2021). Gene models flanking the upstream and
396 downstream of TEs contained mainly transposition elements, and gene clusters between two
397 transposable elements from the same DNA transposon class suggested the enrichment of gene
398 models involved in transmembrane transporter (GO:0003677), protein dimerization (GO:0046915),
399 transposition (GO:0046983 and GO:0006310), and DNA biding and recombination (GO:0006313 and
400 GO:0032196) (Supp. table 1) (Ali et al., 2014; Kang, Lebrun, Farrall, & Valent, 2001). The enrichment
401 of the last two categories suggests that some of the predicted gene models may be unidentified
402 transposable elements, and they are organized as clusters in the genome.

403 **Secreted proteins in *I. obliquus***

404 The exact mechanisms of *I. obliquus* pathogenicity and its modes of interaction with the host are
405 not known, but characterization of secreted proteins is the first step to shed more light on the
406 mechanisms involving the initial penetration of plant defences by effector proteins. Secreted
407 proteins (SPs) are known for their essential role in pathogen-host interactions. Altogether 1052
408 open reading frames (ORFs), 7.6% of all gene models, were predicted as possible secreted proteins,
409 with minimal known homologs (Supp. table 2). The SPs were scattered across 128 contigs. Most of
410 the ORFs were likely species-specific, since homology searches with known secreted proteins from
411 other species were successful for only 110 of the ORFs (Supp. table 2). Twenty-one ORFs overlapped
412 at least with one class of TEs, having eighteen unclassified categories. Total of 988 ORFs were co-
413 localized between two TEs of the same TE class, suggesting a role for TEs in SP evolution and
414 diversification.

415 **Carbohydrate-active enzymes**

416 The palette of carbohydrate-active enzymes (CAZymes) present in the genome dictate to a large
417 extent the modes of substrate utilization by the fungus (Eastwood et al., 2011; Navarro et al., 2021).
418 We identified 466 candidate genes classified as carbohydrate-active enzymes (CAZymes), known for
419 their biological roles in anabolism and catabolism of different carbohydrates such as glycogen,
420 trehalose, and glycoconjugates (Supp. table 5). Altogether 211 enzymes were classified as glycoside
421 hydrolases (GHs) and 43 were categorized as carbohydrate binding modules (CBMs) whereas the
422 overall number of glycosyltransferases (GTs) and carbohydrate esterases (CEs) were found to be 110
423 and 23, respectively. Finally, 10 enzymes were assigned to polysaccharide lyases (PLs) (Supp. table
424 5). Overall the CAZyme palette was similar to other lignin-degrading fungi (Liu et al., 2019). RNAseq
425 analysis of *I. obliquus* grown on *B. pendula* wood dust and publicly available RNAseq data (Fradj et
426 al., 2019) identified in 214 (out of 466) CAZymes with positive Log₂FC (Supp. table 5) in at least one

427 of the experimental conditions. Majority of DE CAZymes belonged to glycoside hydrolases and
428 glycosyltransferases categories.

429 **Phylogenomics and expanded gene families in *I. obliquus* genome**

430 In order to estimate a taxonomic placement for *I. obliquus*, we collected the proteomes of fifteen
431 representative fungal species from different orders among *Basidiomycota*: all sequenced species
432 within *Hymenochaetales* (*Fomitiporia mediterranea*, *Inonotus obliquus*, *Onnia scaura*, *Phellinidium*
433 *ferrugineofuscum*, *Porodaedalea niemelaei*, *Trichaptum abietinum*, *Rickenella mellea*, *Schizophora*
434 *paradoxa*), and representatives of *Russulales* (*Heterobasidion annosum*), *Polyporales* (*Fomitopsis*
435 *betulina*, *Postia placenta*, *Phanerochaete chrysosporium*) and *Agaricales* (*Laccaria bicolor*,
436 *Coprinopsis cinerea*, *Schizophyllum commune*). To root the taxonomy we added five outgroup
437 species, including two representatives of the other major classes in *Basidiomycota*: *Pucciniales*
438 (*Puccinia graminis*) and *Ustilaginales* (*Ustilago maydis*), as well as three model *Ascomycota* species
439 from *Saccharomycetales* (*Saccharomyces cerevisiae*), *Schizosaccharomycetales*
440 (*Schizosaccharomyces pombe*), and *Sordariales* (*Neurospora crassa*). We next clustered the full
441 proteomes into gene families (orthogroups) using Orthofinder and identified single copy
442 orthogroups. Phylogeny estimation was carried out using 4040 single copy gene groups and rooted
443 to *Ascomycota* species. The resulting tree illustrates the known taxonomy among the 20 fungal
444 species (Figure 1; Supp. table 3) and the split of *Hymenochaetaceae* family occurs at the expected
445 phylogenetic position (Hibbett & Thorn, 2001; Matheny et al., 2007; R.-L. Zhao et al., 2017) (Figure
446 1). Interestingly *R. mellea* was placed together with the *Russulales* representative, further analysis
447 is however beyond the scope of the present work.

448 To look for gene family evolution we then identified gene families that were expanded in *I.*
449 *obliquus*. Altogether 167 orthologous gene clusters were significantly expanded in comparison to
450 the other nineteen fungal species (chi-squared test; Supp. table 4**Error! Reference source not**
451 **found.**). The expanded gene families were enriched for 23 GO terms such as terpene synthase
452 (GO:0010333), oxidoreductase (GO:0016684), and hydrolase (GO:0016788) activities. In addition,
453 GOs related to oxidative stress responses (GO:0006979), transposition (GO:0015074, GO:0006313),
454 and protein dimerization activity (GO:0046983) were also expanded (Supp. table 4); most of these
455 categories involve members of cytochrome P450 gene family.

456 **Genome evolution in *I. obliquus***

457 The high-quality whole genome assembly allowed us to gain further insight into the gene family
458 evolution by synteny analyses using self-self alignments. The analysis suggested a recent whole

459 genome duplication (WGD) event in *I. obliquus*. Based on the synonymous mutation (Ks) spectrum
460 the event occurred after the split from *F. mediterranea* (approximately 112 million years ago during
461 the Triassic period; (Kumar, Stecher, Suleski, & Hedges, 2017)). Similarly, an independent lineage-
462 specific WGD was observed also in *P. niemelaei* (Figure 2).

463 Synteny analysis identified a total of 1,112 genes originating from the whole genome duplication
464 event, whereas a considerably higher amount, 6,200 genes, were identified in tandem duplications
465 (Supp. table 3). The tandemly duplicated genes reflect the shorter-term adaptation in the species,
466 and in general have been found to be associated with environmental responses (Panchy, Lehti-Shiu,
467 & Shiu, 2016). In *I. obliquus*, the tandemly duplicated genes were enriched for carbohydrate
468 biosynthesis, heme binding, oxidoreductase activity, tetrapyrrole binding, and DNA transposition. In
469 contrast, syntenic regions harbored genes related to biological pathways such as terpene synthesis
470 and cell cycle (Figure 3, Supp. table 6). The overlaps between tandemly duplicated, syntenic genes
471 and expanded gene families were significant (p-value=6.1094e-11, Fisher exact test) (Figure 4).
472 Altogether, the genome evolution analyses highlight the significance of tandem duplication events
473 in adaptation of the *I. obliquus* to different ecological niches and the central role of secondary
474 metabolism and particularly the expansion of CYP450 gene family by small scale duplication events
475 (Figure 5).

476 The members of CYP450 family have critical roles in fungal metabolism and adaptation to specific
477 ecological niches. Altogether 172 CYP450 monooxygenases were predicted in chaga, suggesting a
478 complex biochemical diversity in chaga metabolism. Division into clans and families revealed that
479 most of the enzymes belonged to clan CYP620 (69 members), followed by CYP4 and CYP512 clans
480 (Figure 5). CYP620 is shown to be involved in terpenoid synthases (Yap et al., 2014; Yu, Song, Liang,
481 Wang, & Lu, 2020). CYP4 is studied predominantly in phylum of *Arthropoda*, and shown to be
482 involved in biosynthesis of endogenous compounds (Zhu, Moural, Shah, & Palli, 2013). Finally,
483 CYP512 clan has been hypothesised to have catalytic activities towards steroidal-like compounds,
484 primarily testosterone (Ide, Ichinose, & Wariishi, 2012).

485 A high proportion CYP450 gene models, 79 out of the total of 172, were tandemly duplicated, and
486 many were members of CYP620 clan. GO enrichment analysis of two genes upstream and two genes
487 in downstream of all CYP450 monooxygenase enzymes suggested the enrichment of biological
488 functions related to oxidoreductase activity, heme binding, transmembrane transporter activities,
489 and tetrapyrrole binding (Supp. table 6). These results suggest tandem duplications of CYP450s, and
490 additionally the colocalization with cytochrome P450 reductase (CPR) partners, facilitates their
491 functional divergence (Ebrecht et al., 2019).

492 The observed colocalization of genes related to CYP450s suggested the presence of biosynthetic
493 clusters in the *I. obliquus* genome. We therefore sought biosynthetic gene clusters by antiSMASH
494 (Blin et al., 2013), identifying altogether 24 clusters in 17 contigs: 15 terpene synthase, 3 polyketide
495 synthase, and 4 non-ribosomal peptide synthetase clusters. The clusters were significantly enriched
496 for tandemly duplicated genes (Fisher exact test, p.value=6.34E-76), suggesting that tandem
497 duplications are a dominant process in their diversification. Furthermore, the clusters were enriched
498 for CYP450 gene family (p-value: 0.03161975), highlighting their central enzymatic role in secondary
499 metabolism (Supp. table 6).

500 **Metabolomics fingerprinting of terpenoid compounds in five *I. obliquus* strains and *F. mediterranea***

502 Since chaga showed a significant expansion of CYP450 genes and a considerable number of
503 biosynthetic clusters, we next carried out metabolic fingerprinting of *I. obliquus* to study whether
504 the secondary metabolism was indeed diversified in chaga compared to *F. mediterranea*. Terpenoid
505 fingerprints in five strains of *I. obliquus* were distinctly different from *F. mediterranea* (Supp. table
506 1). Altogether the chaga strains showed 546 mass spectrum peaks, and only 135 of them were
507 shared with *F. mediterranea* (Figure 6 A). In addition, pairwise comparisons of each chaga strain and
508 *F. mediterranea* found 178 metabolomic features among *I. obliquus* strains with significantly higher
509 abundance (Supp. Fig 2, Supp. table 7). Many of the peaks were predicted to have molecular
510 formulae with 30, 31, and 28 carbon backbones, similar to lupeol, betulin and betulinic acid. Among
511 *I. obliquus* strains, Merikarvia had distinct metabolomic fingerprints and clustered more distant from
512 other strains (Figure 6 B, C) in principal coordinate analysis. This suggests that genotypic variation
513 plays a role in metabolic diversity (Figure 6 C). With regards to betulinic compounds, Merikarvia
514 strain had higher abundance of betulin and betulinic acid production in comparison to other strains
515 of *I. obliquus*. There were no peaks which resembled the standard for betulin or betulinic acid (98%,
516 Sigma-aldrich) in *F. mediterranea*, but a significant quantity of lupeol-like substance was discovered
517 (Supp. Fig 2).

518 **Functional analysis of lupeol synthase and CYP450 monooxygenase**

519 Even though metabolic fingerprinting does not identify the underlying metabolites, the analysis
520 suggested the presence of terpene and lupeol as well as betulin derivatives based on the predicted
521 carbon backbones. Intraspecies quantification of betulin and betulinic acid (Using HPL) among six
522 species of betula and three strains of chaga showed a higher concentration of betulinic acid
523 compared to betulin in chaga strains. In contrast, the opposite result was observed in six species of

524 Betula, where the concentration of betulin was consistently higher in comparison to betulinic acid
525 (Figure 7).

526 The high quality gene model predictions allowed us to look for the candidate enzymes
527 responsible for the betulin biosynthesis in chaga. Since no members of CYP716 family were not
528 predicted in chaga we identified four best candidates based on homology analysis of CYP450s to
529 known CYP716 family members from plant species, such as *B. pendula*. Yeast expression system has
530 been used successfully for cloning CYP450 monooxygenase enzyme from *B. platyphylla* (Zhou et al.,
531 2016). To functionally validate our candidate genes, we first constructed single insert expression
532 vector for birch CYP716 enzyme (pRS424::CYP716). In addition, we also constructed a double insert
533 vector where lupeol synthase and lupeol monooxygenase from *B. pendula* (Safronov et al., 2019)
534 were inserted into two multiple cloning sites of a vector (pRS424::LUS-CYP716), which was then
535 transferred into yeast expression system. Similar to single insert vector for CYP450 monooxygenase
536 enzyme from *B. pendula*, we isolated four CYP450s from *I. obliquus* and cloned them to engineer
537 single inserted constructs. The single constructs were grown in media which was spiked with
538 standard lupeol compound (98%, Cayman) as the precursor. In contrast to single insert vectors,
539 double insert vector from *B. pendula* (pRS424::LUS-CYP716) expressed lower concentration of
540 betulin compared to single insert vector (pRS424::CYP716) from *B. pendula*. These differences might
541 be explained by the lower initial amount of available precursor compound, lupeol, for CYP716
542 monooxygenase (Figure 8). In addition to *B. pendula* constructs, all four candidate CYP450
543 monooxygenases from *I. obliquus* (pRS424::CYP450) showed some degree of betulin production
544 when compared to standard betulin (98%, Sigma-Aldrich) spectrum. Among the four candidates, the
545 enzyme with gene ID c000016F_g277 (clan CYP505) had the highest amount of betulin production.
546 Interestingly, the cDNA length of this enzyme was 3297 bp, almost twice the length of the other
547 three candidate CYP450 monooxygenase homologs from *I. obliquus*. Upon close examination the
548 amino acid and nucleotide sequences of c000016F_g277 resemble a chimeric isoform of two CYP450
549 monooxygenase enzymes (Figure 8). In general, our study showed that yeast cell fractions contained
550 higher concentration of betulin compared to the culture media fractions (Figure 8), thus confirming
551 the function of the inserted enzymes.

552 To study the evolution of potential homologs and orthologs for the four candidate genes from *I.*
553 *obliquus*, we carried out microsynteny analysis for the cloned CYP450 monooxygenase enzymes
554 against four *Hymenochaetales* and *F. betulina* species. Orthologous one-to-one relationship with
555 other fungal species was confirmed for c000112F.g25 (clan CYP51) and c000041F.g53 (clan CYP51)
556 enzymes (Supp. Fig 3-C,D), whereas microsynteny analysis of c000000F.g253 (clan CYP61) enzyme
557 found a cluster of homologous genes in 5' and 3' of the c000000F.g253 in *I. obliquus* genome (Supp.

558 Fig 3-B). The microsynteny of the chimeric c000016F.g277 linked to a putative ortholog in *F.*
559 *mediterranea* with similar organization (gene_7933, clan CYP505) (Supp. Fig 3**Error! Reference**
560 **source not found.**-A), whereas in other *Hymenochaetales* the syntenic analysis identified two
561 separate CYP450s. This suggests that the fusion gene has arisen from a non-homologous
562 recombination event in the common ancestor of *F. mediterranea* and *I. obliquus*, and after
563 divergence of *P. niemelaei* where the CYP450s were still found separate. Both c000016F.g277 and
564 gene_7933 contain two heme-binding domains, but gene_7933 from *F. mediterranea* has three
565 oxygen-binding domains (with AGADTT/GGDDTG motifs) instead of two in *I. obliquus* (AGADTT).
566 Therefore the fusion may have occurred also independently in chaga and *F. mediterranea* (Supp.
567 table 8), or then involved a loss of the third oxygen-binding domain in chaga.

568 **Evolution of conserved domains and phylogeny reconstruction of cytochrome P450**
569 **monooxygenase**

570 Since betulin and betulinic acid are antifungal substances and they are produced in the main
571 natural host of *I. obliquus*, it is possible that the enzymes have been introduced into chaga or its
572 ancestor via horizontal gene transfer, either directly from the host species or then via another
573 species cohabiting with chaga. However, a phylogenetic tree of a set of monooxygenase enzymes
574 (77 enzymes) from *I. obliquus* and *F. betulina* with sequence similarity to plant CYP716, as well as
575 CYP716 enzymes of eight plant species known to produce betulinic acid compounds, shows a distinct
576 divergence of fungal clades from the plant species. This result is consistent both in protein and DNA
577 based phylogenetic trees, providing no evidence of gene transfer events (Figure 9).

578 **Gene expression analysis**

579 Total of 119 (out of 172) monooxygenase enzymes were significantly expressed with positive
580 log₂fold change (log₂FC) values in at least one of the DEg comparisons (Figure 5) and three key
581 enzymes involved in mevalonate pathways were among this set (**Error! Reference source not**
582 **found.**). We also observed a pair of tandemly duplicated lupeol synthase enzymes to have the
583 highest expression levels. The expression profiles of the chaga samples grown on *B. pendula* wood
584 dust were stronger than the samples grown in culture media from (Fradj et al., 2019). When
585 inspecting the expression profiles for genes with positive log₂FC, enrichments were found for
586 WD40-repeat binding (50 genes out of 294), melanin biosynthesis (65 genes out of 157), aquaporin
587 (20 genes), lipases and peptidases (Supp. table 9).

588 **Conclusion**

589 We observed genome evolution leading towards complex terpene biosynthesis in *I. obliquus*,
590 both in genes originating from whole genome duplication events as well as tandem duplications
591 within the CYP450 gene family. It is possible that the whole genome duplication event is associated
592 with the initial expansion of terpenoid biosynthesis capacity in *I. obliquus*, since no such expansion
593 was observed in the related species *F. mediterranea*. In contrast to eg plants, the number of whole
594 genome duplication events in fungal kingdom has been low (Albertin & Marullo, 2012), but this may
595 be due to faster genome evolution in fungi, making the WGDs difficult to identify (Campbell, Ganley,
596 Gabaldón, & Cox, 2016). The CYP450 superfamily is associated with many reactions in secondary
597 metabolism, and through metabolomics fingerprinting we confirmed that the fungus indeed
598 produces a rich palette of terpenoid derivatives. However, we found no evidence of a horizontal
599 gene transfer event between *B. pendula* and *I. obliquus*, and the identified candidate lupeol
600 monooxygenases in *I. obliquus* were members of a different CYP505 clan with low sequence
601 similarity to their birch counterpart enzymes. Therefore CYP450 monooxygenases enzymes
602 responsible for betulinate biosynthesis in the two species most likely result from convergent
603 evolution.

604 **Author's contributions**

605 O.S and J.S conceived and designed the project. Funding acquisition is carried by J.S and J.K. O.S
606 collected the DNA and RNA samples. O.S and J.S managed and coordinated all bioinformatics
607 activities. O-P.S, L.G.P, and P.A did RNA and DNA library construction and sequencing and
608 participated in genome assembly. O.S did the genome and functional annotation. S.R and P.S
609 participated in genome annotation. O.S analyzed the RNA sequencing data including de novo
610 assembly of RNAseq. O.S did comparative genomics analyses. T.S and N.S were involved in field
611 research for sample isolations. O.S and M.W grown and collected the samples for mass
612 spectrometry. G.L.B, B.B, M.W, and O.S were sequenced were involved in cloning and expression of
613 CYP450 and Lupeol synthase enzymes. N.S and J.L did mass spectrometry, including sample
614 pretreatment, method development, UPLC-HDMS analysis, metabolite identification and data
615 interpretation, and O.S and J.S contributed to data interpretation. O.S and J.S wrote the original
616 manuscript with input from O-P.S , U.R, K.O.

617

618 **Acknowledgement**

619 We thank Cory D. Dunn who provided us with yeast strain, and Peter M.J. Burgers, Ville O.
620 Paavilainen, and Juho Kellosalo for giving us the expression vector. We also acknowledge the
621 computational infrastructure of CSC IT Center for Science, Finland. J.S would like to acknowledge

622 the funding from University of Helsinki three-year grant, Academy of Finland (decisions 318288
623 and 319947), as well as Nanyang Technological University start-up grant.

624

625 **References**

626 Al-Mssallem, I. S., Hu, S., Zhang, X., Lin, Q., Liu, W., Tan, J., . . . Yu, J. (2013). Genome sequence of
627 the date palm *Phoenix dactylifera* L. from *Nat Commun*

628 Albertin, W., & Marullo, P. (2012). Polyploidy in fungi: evolution after whole-genome duplication.
629 *Proceedings of the Royal Society B: Biological Sciences*, 279(1738), 2497-2509.
630 doi:10.1098/rspb.2012.0434

631 Ali, S., Laurie, J. D., Linning, R., Cervantes-Chavez, J. A., Gaudet, D., & Bakkeren, G. (2014). An
632 immunity-triggering effector from the Barley smut fungus *Ustilago hordei* resides in an
633 *Ustilaginaceae*-specific cluster bearing signs of transposable element-assisted evolution.
634 *PLoS Pathog*, 10(7), e1004223. doi:10.1371/journal.ppat.1004223

635 Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., . . .
636 Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural
637 networks. *Nature Biotechnology*, 37(4), 420-423. doi:10.1038/s41587-019-0036-z

638 Alresly, Z., Lindequist, U., Lalk, M., Porzel, A., Arnold, N., & Wessjohann, L. A. (2015). Bioactive
639 Triterpenes from the Fungus *Piptoporus betulinus*. *Rec Nat Prod*, 10, 103-108.

640 Andre, C. M., Larsen, L., Burgess, E. J., Jensen, D. J., Cooney, J. M., Evers, D., . . . Laing, W. A. (2013).
641 Unusual immuno-modulatory triterpene-caffeates in the skins of russeted varieties of
642 apples and pears. *J Agric Food Chem*, 61(11), 2773-2779. doi:10.1021/jf305190e

643 Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data.
644 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. Retrieved from
645 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

646 Besemer, J., & Borodovsky, M. (2005). GeneMark: web software for gene finding in prokaryotes,
647 eukaryotes and viruses. *Nuc acids res*, 33. doi:10.1093/nar/gki487

648 Blanchette, R. A. (1982). Progressive stages of discoloration and decay associated with the canker-
649 rot fungus, *Inonotus obliquus*, in birch. *Phytopathology*, 72(10), 1272-1277.
650 doi:10.1094/phyto-72-1272

651 Blin, K., Medema, M. H., Kazempour, D., Fischbach, M. A., Breitling, R., Takano, E., & Weber, T.
652 (2013). antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite
653 producers. *Nucleic Acids Res*, 41(Web Server issue), W204-212. doi:10.1093/nar/gkt449

654 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
655 sequence data. *Bioinformatics*, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170

656 Bonfield, J. K., Smith, K., & Staden, R. (1995). A new DNA sequence assembly program. *Nucleic
657 Acids Res*, 23(24), 4992-4999.

658 Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq
659 quantification. *Nat Biotechnol*, 34(5), 525-527. doi:10.1038/nbt.3519

660 Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using DIAMOND.
661 *Nat Meth*, 12, 59. doi:10.1038/nmeth.3176
662 <https://www.nature.com/articles/nmeth.3176#supplementary-information>

663 Burgers, P. M. (1999). Overexpression of multisubunit replication factors in yeast. *Methods*, 18(3),
664 349-355. doi:10.1006/meth.1999.0796

665 Campbell, M. A., Ganley, A. R. D., Gabaldón, T., & Cox, M. P. (2016). The Case of the Missing
666 Ancient Fungal Polyploids. *The American Naturalist*, 188(6), 602-614. doi:10.1086/688763

667 Chang, S., Puryear, J., & Cairney, J. (1993). A Simple and Efficient Method for Isolating RNA from
668 Pine Trees. *Plant Mol Biol Rep*, 11(2), 113-116. doi:10.1007/BF02670468

669 Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., . . . Schatz, M. C.
670 (2016). Phased diploid genome assembly with single-molecule real-time sequencing. *Nat Methods*, 13(12), 1050-1054. doi:10.1038/nmeth.4035

671 Eastwood, D. C., Floudas, D., Binder, M., Majcherczyk, A., Schneider, P., Aerts, A., . . . Watkinson
672 Sarah, C. (2011). The Plant Cell Wall—Decomposing Machinery Underlies the Functional
673 Diversity of Forest Fungi. *Science*, 333(6043), 762-765. doi:10.1126/science.1205411

674 Ebrecht, A. C., van der Berg, N., Harrison, S. T. L., Smit, M. S., Sewell, B. T., & Opperman, D. J.
675 (2019). Biochemical and structural insights into the cytochrome P450 reductase from
676 *Candida tropicalis*. *Scientific Reports*, 9(1), 20088. doi:10.1038/s41598-019-56516-6

677 Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
678 throughput. *Nucleic Acids Res*, 32(5), 1792-1797. doi:10.1093/nar/gkh340

679 Emms, D. M., & Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome
680 comparisons dramatically improves orthogroup inference accuracy. *Genome Biology*, 16(1),
681 157. doi:10.1186/s13059-015-0721-2

682 Faino, L., Seidl, M. F., Shi-Kunne, X., Pauper, M., van den Berg, G. C., Wittenberg, A. H., & Thomma,
683 B. P. (2016). Transposons passively and actively contribute to evolution of the two-speed
684 genome of a fungal pathogen. *Genome Res*, 26(8), 1091-1100. doi:10.1101/gr.204974.116

685 Fradj, N., Goncalves Dos Santos, K. C., de Montigny, N., Awwad, F., Boumghar, Y., Germain, H., &
686 Desgagne-Penix, I. (2019). RNA-Seq de Novo Assembly and Differential Transcriptome
687 Analysis of Chaga (*Inonotus obliquus*) Cultured with Different Betulin Sources and the
688 Regulation of Genes Involved in Terpenoid Biosynthesis. *Int J Mol Sci*, 20(18).
689 doi:10.3390/ijms20184334

690 Fukushima, E. O., Seki, H., Ohyama, K., Ono, E., Umemoto, N., Mizutani, M., . . . Muranaka, T.
691 (2011). CYP716A subfamily members are multifunctional oxidases in triterpenoid
692 biosynthesis. *Plant Cell Physiol*, 52(12), 2050-2061. doi:10.1093/pcp/pcp146

693 Godzik, A., & Li, W. (2006). Cd-hit: a fast program for clustering and comparing large sets of
694 protein or nucleotide sequences. *Bioinformatics*, 22(13), 1658-1659.
695 doi:10.1093/bioinformatics/btl158

696 Gong, Y., Raj, K. M., Luscombe, C. A., Gadawski, I., Tam, T., Chu, J., . . . Sacks, S. L. (2004). The
697 synergistic effects of betulin with acyclovir against herpes simplex viruses. *Antiviral Res*,
698 64(2), 127-130. doi:10.1016/j.antiviral.2004.05.006

699 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., . . . Regev, A. (2011).
700 Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data.
701 *Nat Biotechnol*, 29(7), 644-652. doi:10.1038/nbt.1883

702 Gremme, G., Steinbiss, S., & Kurtz, S. (2013). GenomeTools: a comprehensive software library for
703 efficient processing of structured genome annotations. *IEEE/ACM Trans Comput Biol
704 Bioinform*, 10(3), 645-656. doi:10.1109/TCBB.2013.68

705 Haas, B. J., Delcher, A. L., Wortman, J. R., & Salzberg, S. L. (2004). DAGchainer: a tool for mining
706 segmental genome duplications and synteny. *Bioinformatics*, 20(18), 3643-3646.
707 doi:10.1093/bioinformatics/bth397

708 Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., . . . Wortman, J. R. (2008).
709 Automated eukaryotic gene structure annotation using EvidenceModeler and the Program
710 to Assemble Spliced Alignments. *Genome Biol*, 9(1), R7-R7. doi:10.1186/gb-2008-9-1-r7

711 Hage, H., Miyauchi, S., Viragh, M., Drula, E., Min, B., Chaduli, D., . . . Rosso, M. N. (2021). Gene
712 family expansions and transcriptome signatures uncover fungal adaptations to wood
713 decay. *Environ Microbiol*. doi:10.1111/1462-2920.15423

714 Hibbett, D. S., & Thorn, R. G. (2001). Basidiomycota: Homobasidiomycetes. In D. J. McLaughlin, E.
715 G. McLaughlin, & P. A. Lemke (Eds.), *Systematics and Evolution* (pp. 121-168). Berlin,
716 Heidelberg: Springer Berlin Heidelberg.

717

718 Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M., & Stanke, M. (2015). BRAKER1: Unsupervised
719 RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. *Bioinformatics*,
720 32(5), 767-769. doi:10.1093/bioinformatics/btv661

721 Holonec, L., Ranga, F., Crainic, D., Truța, A., & Socaciu, C. (2012). Evaluation of Betulin and
722 Betulinic Acid Content in Birch Bark from Different Forestry Areas of Western Carpathians.
723 *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 40. doi:10.15835/nbha4027967

724 Hu, Z., Guo, N., Wang, Z., Liu, Y., Wang, Y., Ding, W., . . . Yan, X. (2013). Development and
725 validation of an LC-ESI/MS/MS method with precolumn derivatization for the
726 determination of betulin in rat plasma. *J Chromatogr B Analyt Technol Biomed Life Sci*, 939,
727 38-44. doi:10.1016/j.jchromb.2013.09.005

728 Ide, M., Ichinose, H., & Wariishi, H. (2012). Molecular identification and functional characterization
729 of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta.
730 *Archives of Microbiology*, 194(4), 243-253. doi:10.1007/s00203-011-0753-2

731 Kang, S., Lebrun, M. H., Farrall, L., & Valent, B. (2001). Gain of virulence caused by insertion of a
732 Pot3 transposon in a Magnaporthe grisea avirulence gene. *Mol Plant Microbe Interact*,
733 14(5), 671-674. doi:10.1094/MPMI.2001.14.5.671

734 Khelil, R., Jardé, E., Cabello-Hurtado, F., Ould-el-Hadj Khelil, A., & Esnault, M.-A. (2016). Structure
735 and composition of the wax of the date palm, Phoenix dactylifera L., from the septentrional
736 Sahara. *Scientia Horticulturae*, 201, 238-246.
737 doi:<https://doi.org/10.1016/j.scientia.2016.02.012>

738 Khouloud Barakat, M. S. (2016). Bioactive Betulin produced by marine Paecilomyces WE3-F. *J Appl
739 Pharm Sci*(Volume: 6, Issue: 3), 034-040. Retrieved from
740 http://japsonline.com/abstract.php?article_id=1799

741 Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate
742 alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
743 *Genome Biol*, 14(4), R36. doi:10.1186/gb-2013-14-4-r36

744 Koolen, H. H. F., Soares, E. R., Silva, F. M. A. d., Souza, A. Q. L. d., Rodrigues Filho, E., & Souza, A. D.
745 L. d. (2012). Triterpenes and flavonoids from the roots of Mauritia flexuosa. *Rev Bras
746 Farmacogn*, 22, 189-192. Retrieved from
747 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2012000100028&nrm=iso

748 Król, S. K., Kiełbus, M., Rivero-Müller, A., & Stepulak, A. (2015). Comprehensive Review on Betulin
749 as a Potent Anticancer Agent. *BioMed Research International*, 2015, 11.
750 doi:10.1155/2015/584189

751 Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A Resource for Timelines,
752 Timetrees, and Divergence Times. *Mol Biol Evol*, 34(7), 1812-1819.
753 doi:10.1093/molbev/msx116

754 Lepesheva, G. I., Hargrove, T. Y., Kleshchenko, Y., Nes, W. D., Villalta, F., & Waterman, M. R.
755 (2008). CYP51: A major drug target in the cytochrome P450 superfamily. *Lipids*, 43(12),
756 1117-1125. doi:10.1007/s11745-008-3225-y

757 Liu, Y., Wu, Y., Zhang, Y., Yang, X., Yang, E., Xu, H., . . . Yan, J. (2019). Lignin degradation potential
758 and draft genome sequence of Trametes trogii S0301. *Biotechnol Biofuels*, 12, 256.
759 doi:10.1186/s13068-019-1596-3

760 Lodhi, M., Ye, G.-N., Weeden, N., & I. Reisch, B. (1994). A simple and efficient method for DNA
761 extraction from grapevine cultivars and Vitis species. *Plant Mol Biol Rep*, 12(1), 6-13.
762 doi:10.1007/BF02668658

763 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion
764 for RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550. doi:10.1186/s13059-014-0550-8

766 Ma, L., Chen, H., Dong, P., & Lu, X. (2013). Anti-inflammatory and anticancer activities of extracts
767 and compounds from the mushroom *Inonotus obliquus*. *Food Chem*, 139(1-4), 503-508.
768 doi:10.1016/j.foodchem.2013.01.030

769 Matheny, P. B., Wang, Z., Binder, M., Curtis, J. M., Lim, Y. W., Nilsson, R. H., . . . Hibbett, D. S.
770 (2007). Contributions of *rpb2* and *tef1* to the phylogeny of mushrooms and allies
771 (Basidiomycota, Fungi). *Mol Phylogenet Evol*, 43(2), 430-451.
772 doi:10.1016/j.ympev.2006.08.024

773 Miettinen, K., Pollier, J., Buyst, D., Arendt, P., Csuk, R., Sommerwerk, S., . . . Goossens, A. (2017).
774 The ancient CYP716 family is a major contributor to the diversification of eudicot
775 triterpenoid biosynthesis. *Nat Commun*, 8, 14153.

776 Nagajyothi, P. C., Sreekanth, T. V., Lee, J. I., & Lee, K. D. (2014). Mycosynthesis: antibacterial,
777 antioxidant and antiproliferative activities of silver nanoparticles synthesized from
778 *Inonotus obliquus* (Chaga mushroom) extract. *J Photochem Photobiol B*, 130, 299-304.
779 doi:10.1016/j.jphotobiol.2013.11.022

780 Navarro, D., Chaduli, D., Taussac, S., Lesage-Meessen, L., Grisel, S., Haon, M., . . . Favel, A. (2021).
781 Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural,
782 industrial compounds. *Communications Biology*, 4(1), 871. doi:10.1038/s42003-021-02401-
783 w

784 P. Kovalenko, L., Shipaeva, E., V. Balakshin, V., A. Presnova, G., N. Chistyakov, A., Klodt, P., . . .
785 Durnev, A. (2009). Antiallergenic activity of birch bark dry extract with at least 70% betulin
786 content. *Pharm Chem J*, 43, 110-114. doi:10.1007/s11094-009-0242-y

787 Panchy, N., Lehti-Shiu, M., & Shiu, S.-H. (2016). Evolution of Gene Duplication in Plants. *Plant
788 Physiology*, 171(4), 2294-2316. doi:10.1104/pp.16.00523

789 Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005).
790 InterProScan: protein domains identifier. *Nucleic Acids Res*, 33(Web Server issue), W116-
791 120. doi:10.1093/nar/gki442

792 Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open
793 Software Suite. *Trends Genet*, 16(6), 276-277. Retrieved from
794 <https://www.ncbi.nlm.nih.gov/pubmed/10827456>

795 Ryvarden, L., & Gilbertson, R. L. (1993). *European polypores. 1 : Abortiporus-Lindtneria*: Oslo :
796 Fungiflora.

797 Safronov, O., Alonso-Serra, J., Lim, K. J., Fraser-Miller, S. J., Blokhina, O. B., Campilho, A., . . .
798 Salojarvi, J. (2019). Tissue-specific study across the stem reveals the chemistry and
799 transcriptome dynamics of birch bark. *New Phytol*, 222(4), 1816-1831.
800 doi:10.1111/nph.15725

801 Salin, O., Alakurtti, S., Pohjala, L., Siiskonen, A., Maass, V., Maass, M., . . . Vuorela, P. (2010).
802 Inhibitory effect of the natural product betulin and its derivatives against the intracellular
803 bacterium *Chlamydia pneumoniae*. *Biochem Pharmacol*, 80(8), 1141-1151.
804 doi:10.1016/j.bcp.2010.06.051

805 Salojärvi, J., Smolander, O.-P., Nieminen, K., Rajaraman, S., Safronov, O., Safdari, P., . . .
806 Kangasjärvi, J. (2017). Genome sequencing and population genomic analyses provide
807 insights into the adaptive landscape of silver birch. *Nat Genet*, 49, 904.
808 doi:10.1038/ng.3862

809 Schlapfer, P., Zhang, P., Wang, C., Kim, T., Banf, M., Chae, L., . . . Rhee, S. Y. (2017). Genome-Wide
810 Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants. *Plant Physiol*,
811 173(4), 2041-2059. doi:10.1104/pp.16.01942

812 Sezutsu, H., Le Goff, G., & Feyereisen, R. (2013). Origins of P450 diversity. *Philosophical
813 transactions of the Royal Society of London. Series B, Biological sciences*, 368(1612),
814 20120428-20120428. doi:10.1098/rstb.2012.0428

815 Shai, L. J., McGaw, L. J., Aderogba, M. A., Mdee, L. K., & Eloff, J. N. (2008). Four pentacyclic
816 triterpenoids with antifungal and antibacterial activity from *Curtisia dentata* (Burm.f) C.A.
817 Sm. leaves. *J Ethnopharmacol*, 119(2), 238-244. doi:10.1016/j.jep.2008.06.036

818 Siddiqui, S. A., Rahman, A., Rahman, M. O., Akbar, M. A., Ali, M. A., Al-Hemaid, F. M. A., . . . Farah,
819 M. A. (2019). A novel triterpenoid 16-hydroxy betulinic acid isolated from *Mikania cordata*
820 attributes multi-faced pharmacological activities. *Saudi J Biol Sci*, 26(3), 554-562.
821 doi:10.1016/j.sjbs.2018.03.002

822 Šiman, P., Filipová, A., Tichá, A., Niang, M., Bezrouk, A., & Havelek, R. (2016). Effective Method of
823 Purification of Betulin from Birch Bark: The Importance of Its Purity for Scientific and
824 Medicinal Use. *PLOS ONE*, 11(5), e0154933. doi:10.1371/journal.pone.0154933

825 Slater, G. S. C., & Birney, E. (2005). Automated generation of heuristics for biological sequence
826 comparison. *BMC Bioinformatics*, 6(1), 31. doi:10.1186/1471-2105-6-31

827 Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: transcript-
828 level estimates improve gene-level inferences. *F1000Res*, 4, 1521.
829 doi:10.12688/f1000research.7563.2

830 Song, F. Q., Liu, Y., Kong, X. S., Chang, W., & Song, G. (2013). Progress on understanding the
831 anticancer mechanisms of medicinal mushroom: *inonotus obliquus*. *Asian Pac J Cancer
832 Prev*, 14(3), 1571-1578. Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/23679238>

833 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
834 phylogenies. *Bioinformatics*, 30(9), 1312-1313. doi:10.1093/bioinformatics/btu033

835 Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in eukaryotes
836 that allows user-defined constraints. *Nuc acids res*, 33. doi:10.1093/nar/gki458

837 Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: robust conversion of protein sequence
838 alignments into the corresponding codon alignments. *Nucleic Acids Res*, 34(Web Server
839 issue), W609-612. doi:10.1093/nar/gkl315

840 Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S., . . . Town, C. D. (2014). An
841 improved genome release (version Mt4.0) for the model legume *Medicago truncatula*.
842 *BMC Genomics*, 15, 312. doi:10.1186/1471-2164-15-312

843 The French–Italian Public Consortium for Grapevine Genome, C., Jaillon, O., Aury, J.-M., Noel, B.,
844 Policriti, A., Clepet, C., . . . Wincker, P. (2007). The grapevine genome sequence suggests
845 ancestral hexaploidization in major angiosperm phyla. *Nature*, 449, 463.
846 doi:10.1038/nature06148
847 <https://www.nature.com/articles/nature06148#supplementary-information>

848 Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., . . .
849 Zdobnov, E. M. J. M. B. E. (2017). BUSCO applications from quality assessments to gene
850 prediction and phylogenomics. doi:10.1093/molbev/msx319

851 Wu, J., Niu, Y., Bakur, A., Li, H., & Chen, Q. (2017). Cell-Free Production of Pentacyclic Triterpenoid
852 Compound Betulinic Acid from Betulin by the Engineered *Saccharomyces cerevisiae*.
853 *Molecules*, 22(7). doi:10.3390/molecules22071075

854 Yan, Z. F., Yang, Y., Tian, F. H., Mao, X. X., Li, Y., & Li, C. T. (2014). Inhibitory and Acceleratory
855 Effects of *Inonotus obliquus* on Tyrosinase Activity and Melanin Formation in B16
856 Melanoma Cells. *Evid Based Complement Alternat Med*, 2014, 259836.
857 doi:10.1155/2014/259836

858 Yap, H.-Y. Y., Chooi, Y.-H., Firdaus-Raih, M., Fung, S.-Y., Ng, S.-T., Tan, C.-S., & Tan, N.-H. (2014).
859 The genome of the Tiger Milk mushroom, *Lignosus rhinocerotis*, provides insights into the
860 genetic basis of its medicinal properties. *BMC Genomics*, 15(1), 635. doi:10.1186/1471-
861 2164-15-635

862 Yin, Y., Cui, Y., & Ding, H. (2008). Optimization of betulin extraction process from *Inonotus*
863 *Obliquus* with pulsed electric fields. *Innov Food Sci Emerg Technol*, 9(3), 306-310.
864 doi:<https://doi.org/10.1016/j.ifset.2007.07.010>

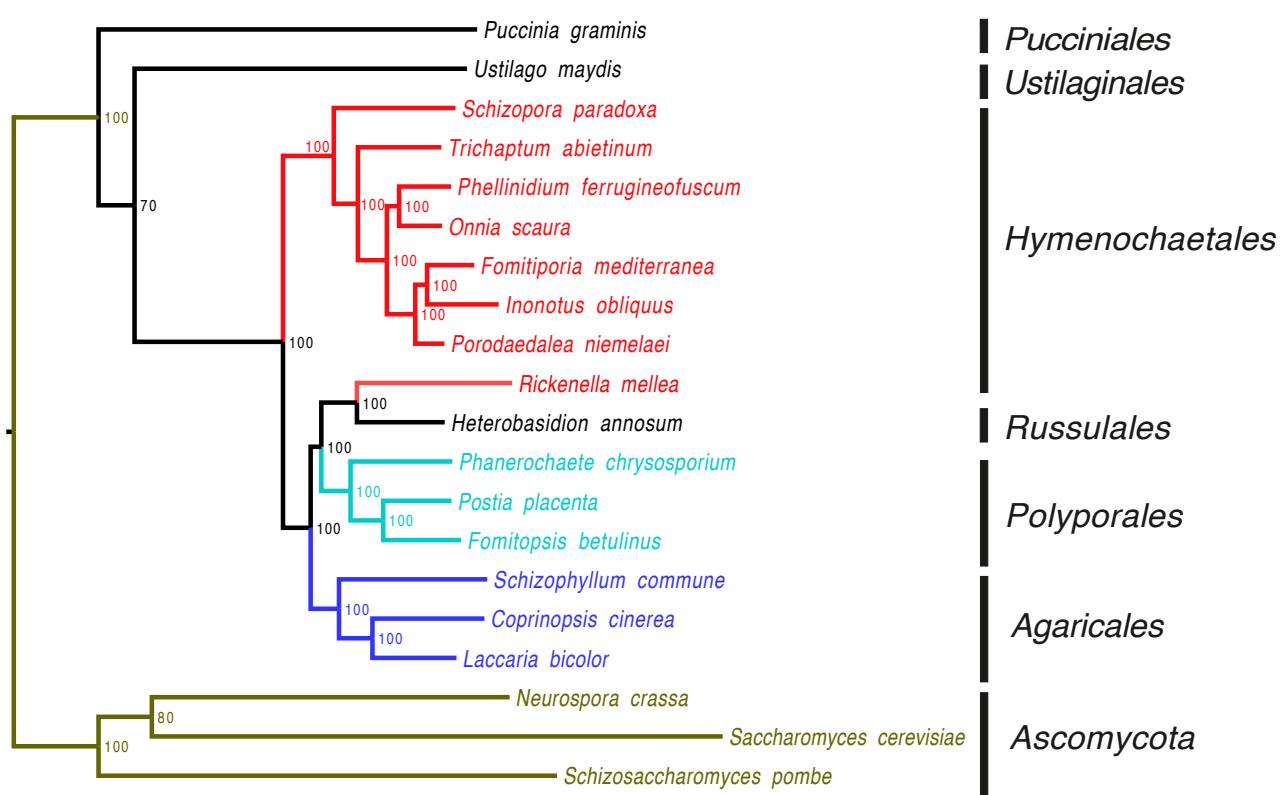
865 Yu, F., Song, J., Liang, J., Wang, S., & Lu, J. (2020). Whole genome sequencing and genome
866 annotation of the wild edible mushroom, *Russula griseocarnosa*. *Genomics*, 112(1), 603-
867 614. doi:<https://doi.org/10.1016/j.ygeno.2019.04.012>

868 Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., . . . Yin, Y. (2018). dbCAN2: a meta
869 server for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res*, 46(W1),
870 W95-W101. doi:10.1093/nar/gky418

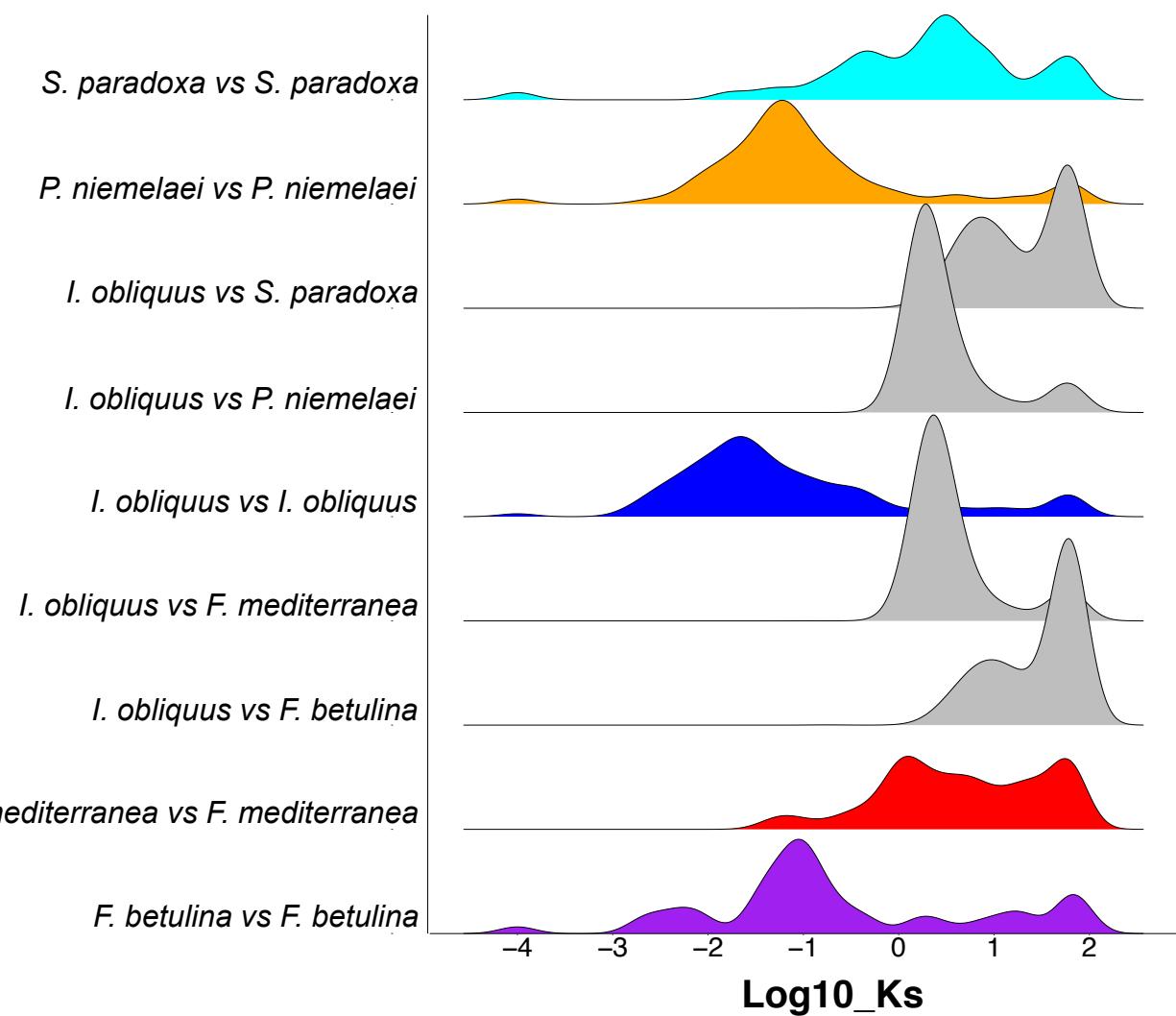
871 Zhang, H. J., Tan, G. T., Hoang, V. D., Hung, N. V., Cuong, N. M., Soejarto, D. D., . . . Fong, H. H.
872 (2003). Natural anti-HIV agents. Part IV. Anti-HIV constituents from *Vatica cinerea*. *J Nat*
873 *Prod*, 66(2), 263-268. doi:10.1021/np020379y

874 Zhao, G., Yan, W., & Cao, D. (2007). Simultaneous determination of betulin and betulinic acid in
875 white birch bark using RP-HPLC. *J Pharm Biomed Anal*, 43(3), 959-962.
876 doi:10.1016/j.jpba.2006.09.026

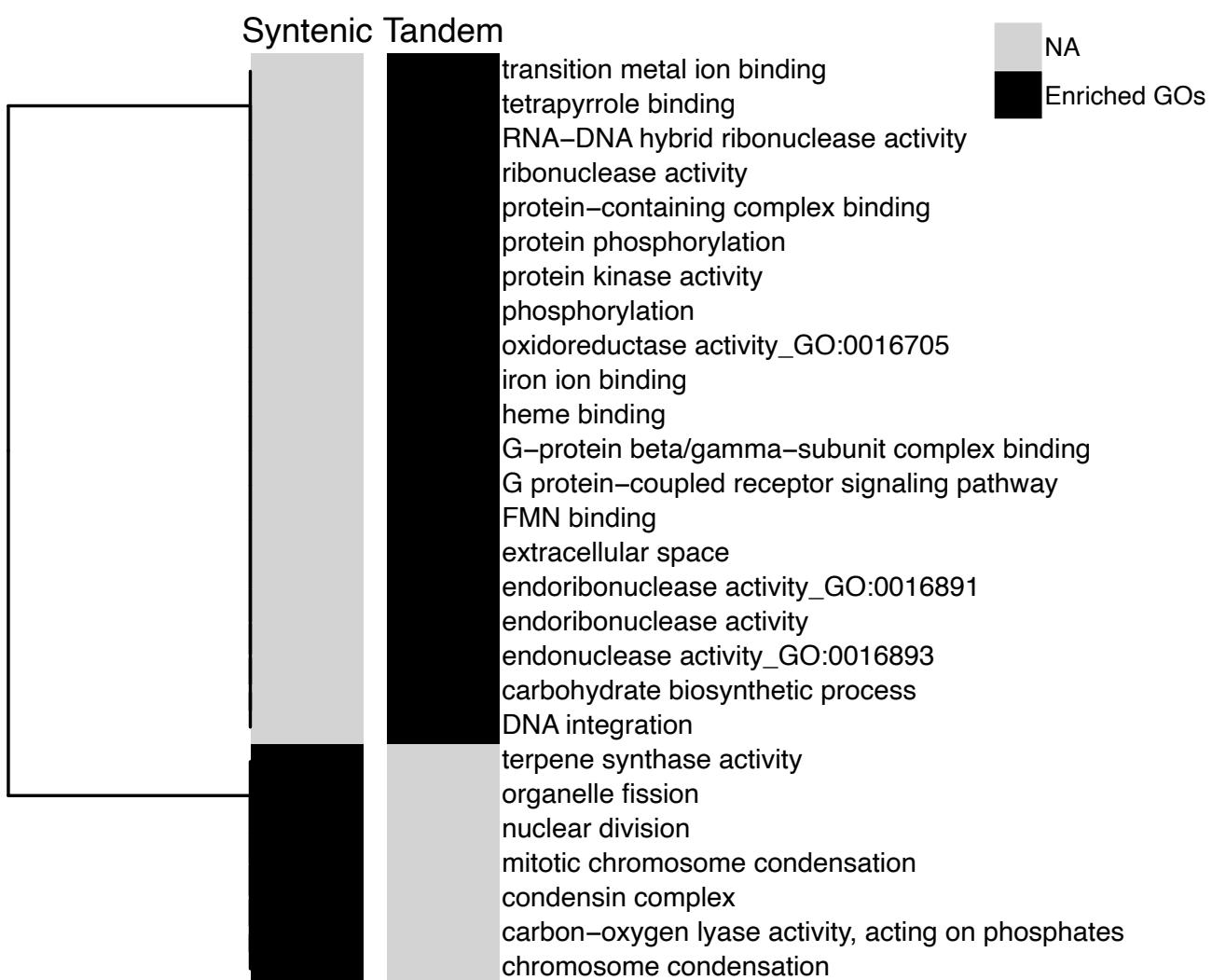
877 Zhao, R.-L., Li, G.-J., Sánchez-Ramírez, S., Stata, M., Yang, Z.-L., Wu, G., . . . Hyde, K. D. (2017). A six-
878 gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence
879 times of higher taxa and a phyloproteomics perspective. *Fungal Diversity*, 84(1), 43-74.
880 doi:10.1007/s13225-017-0381-5


881 Zhao, S., Park, C. H., Li, X., Kim, Y. B., Yang, J., Sung, G. B., . . . Park, S. U. (2015). Accumulation of
882 Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic
883 Genes in Mulberry (*Morus alba* L.). *J Agric Food Chem*, 63(38), 8622-8630.
884 doi:10.1021/acs.jafc.5b03221

885 Zhou, C., Li, J., Li, C., & Zhang, Y. (2016). Improvement of betulinic acid biosynthesis in yeast
886 employing multiple strategies. *BMC Biotechnology*, 16(1), 59. doi:10.1186/s12896-016-
887 0290-9


888 Zhu, F., Moural, T. W., Shah, K., & Palli, S. R. (2013). Integrated analysis of cytochrome P450 gene
889 superfamily in the red flour beetle, *Tribolium castaneum*. *BMC Genomics*, 14(1), 174.
890 doi:10.1186/1471-2164-14-174

891 Zuo, M., Gao, M. J., Liu, Z., Cai, L., & Duan, G. L. (2005). p-Toluenesulfonyl isocyanate as a novel
892 derivatization reagent to enhance the electrospray ionization and its application in the
893 determination of two stereo isomers of 3-hydroxyl-7-methyl-norethynodrel in plasma. *J*
894 *Chromatogr B Analyt Technol Biomed Life Sci*, 814(2), 331-337.
895 doi:10.1016/j.jchromb.2004.10.054


Figures:

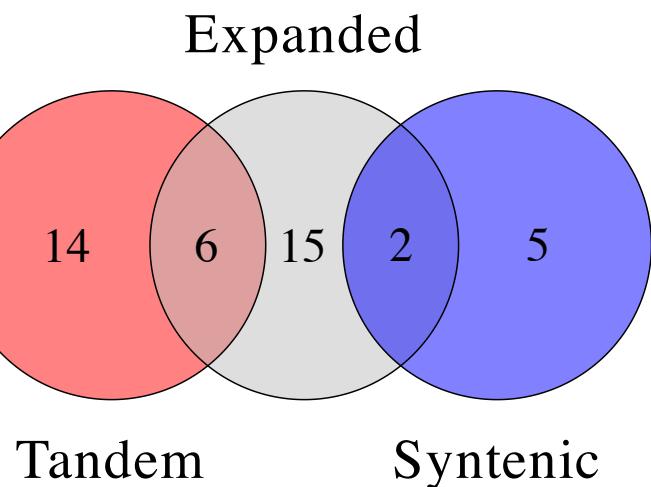

Figure 1. Phylogenetic tree of three Ascomycetes and 17 Basidiomycetes species. Ascomycetes are highlighted with green colour and grouped by Phylum. Basidiomycetes species are grouped by taxonomic order. Bootstrap values are plotted next to the nodes illustrating the level of the confidence of the split, and the phylogenetic tree was rooted to Ascomycetes clade.

Figure 2. Density plots of the number of synonymous (Ks) substitutions in syntelogs identified from syntenic alignments of *I. obliquus*, *F. mediterranea*, *P. niemelaei*, and *S. paradoxa*. X-axis is displayed as log10 of synonymous substitutions per synonymous site (Ks).

Figure 3. Gene ontology (GO) enrichment of genes identified in syntenic and tandemly duplicated regions in *I. obliquus* and four other species. Separate heatmaps are shown for the syntenic and tandemly duplicated regions, black color shows significantly enriched GOs and grey illustrates non-significant enrichments (NS). GOs are clustered using the Euclidean distance and hierarchical clustering (method: complete).

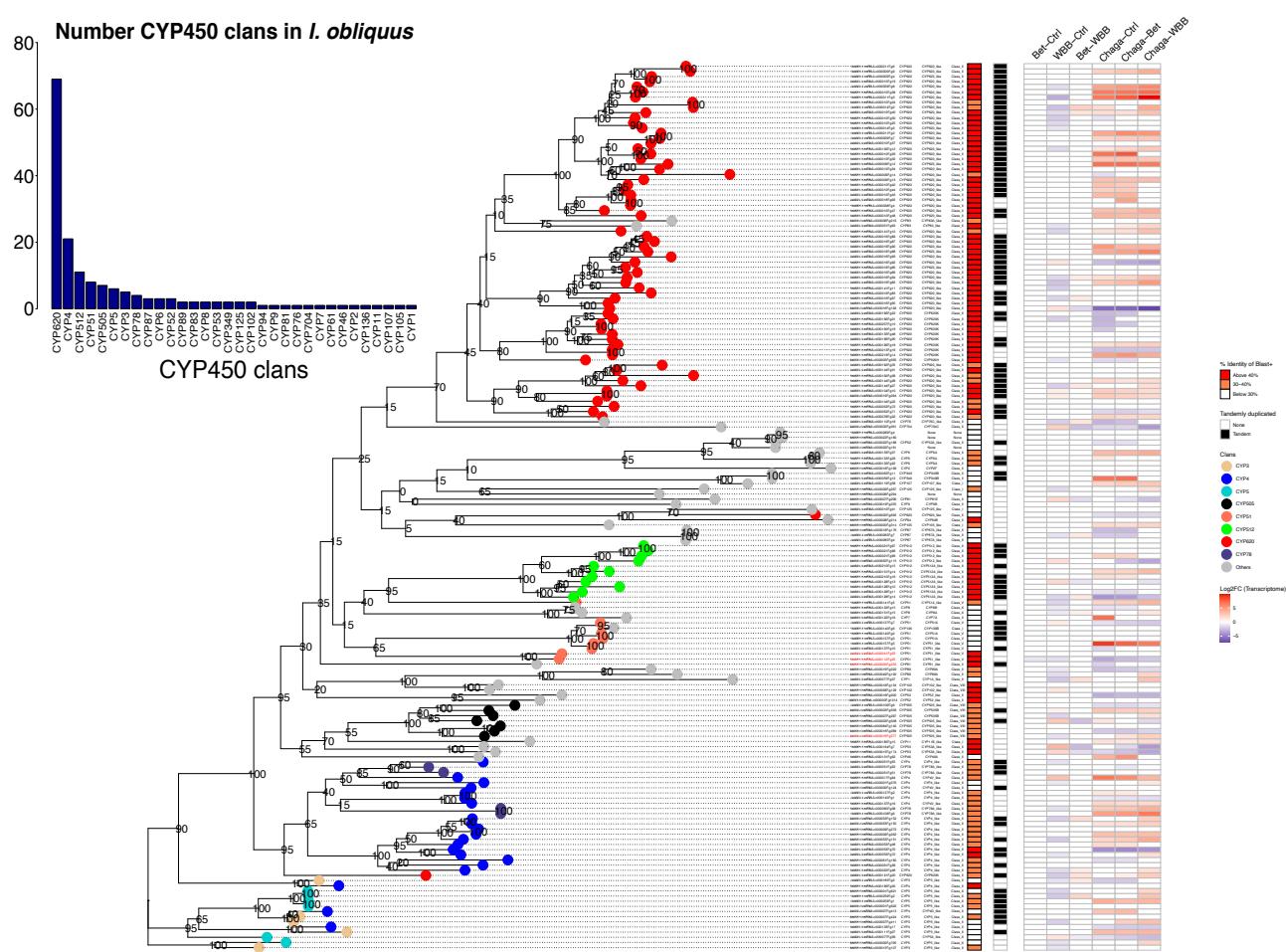
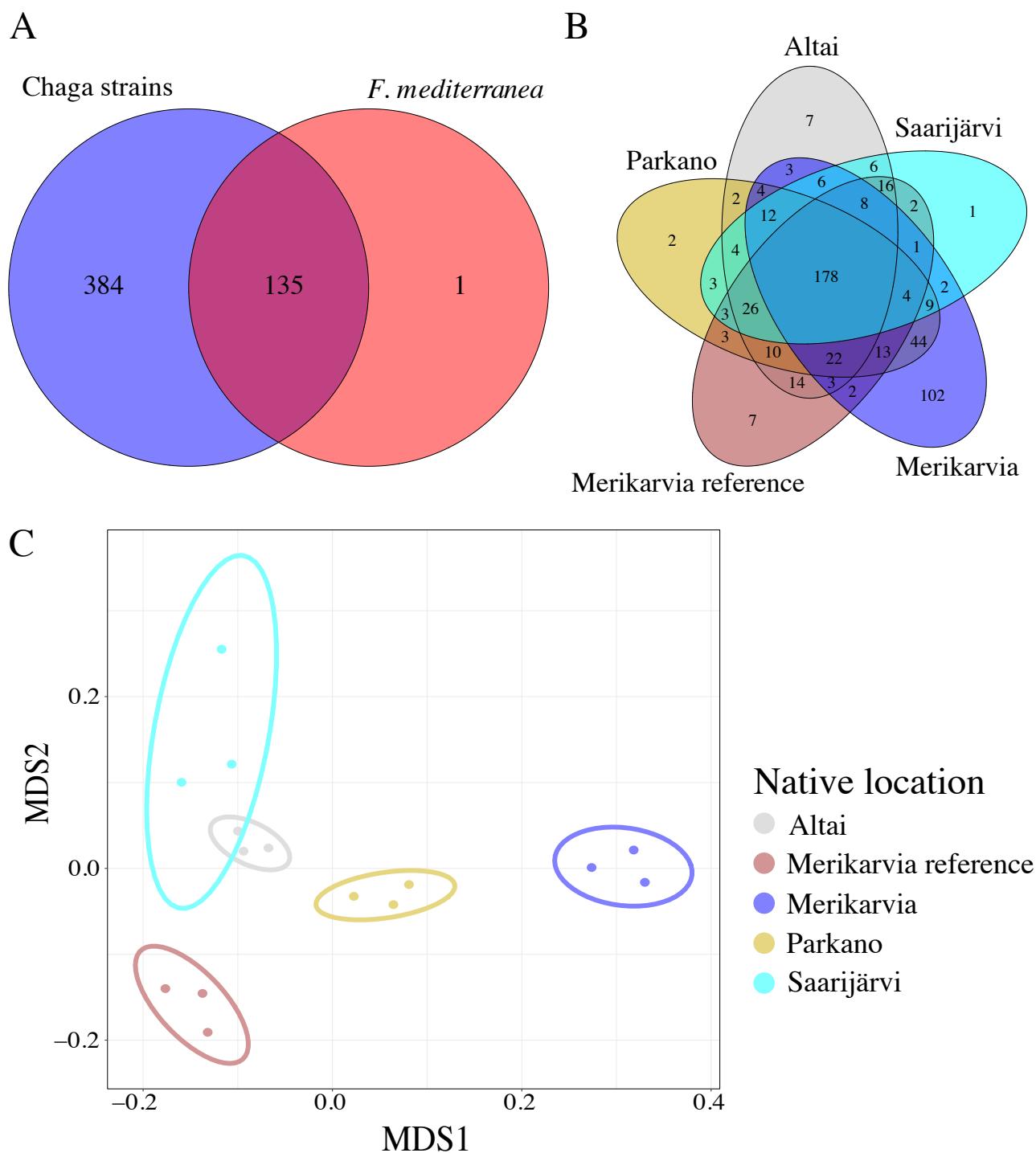
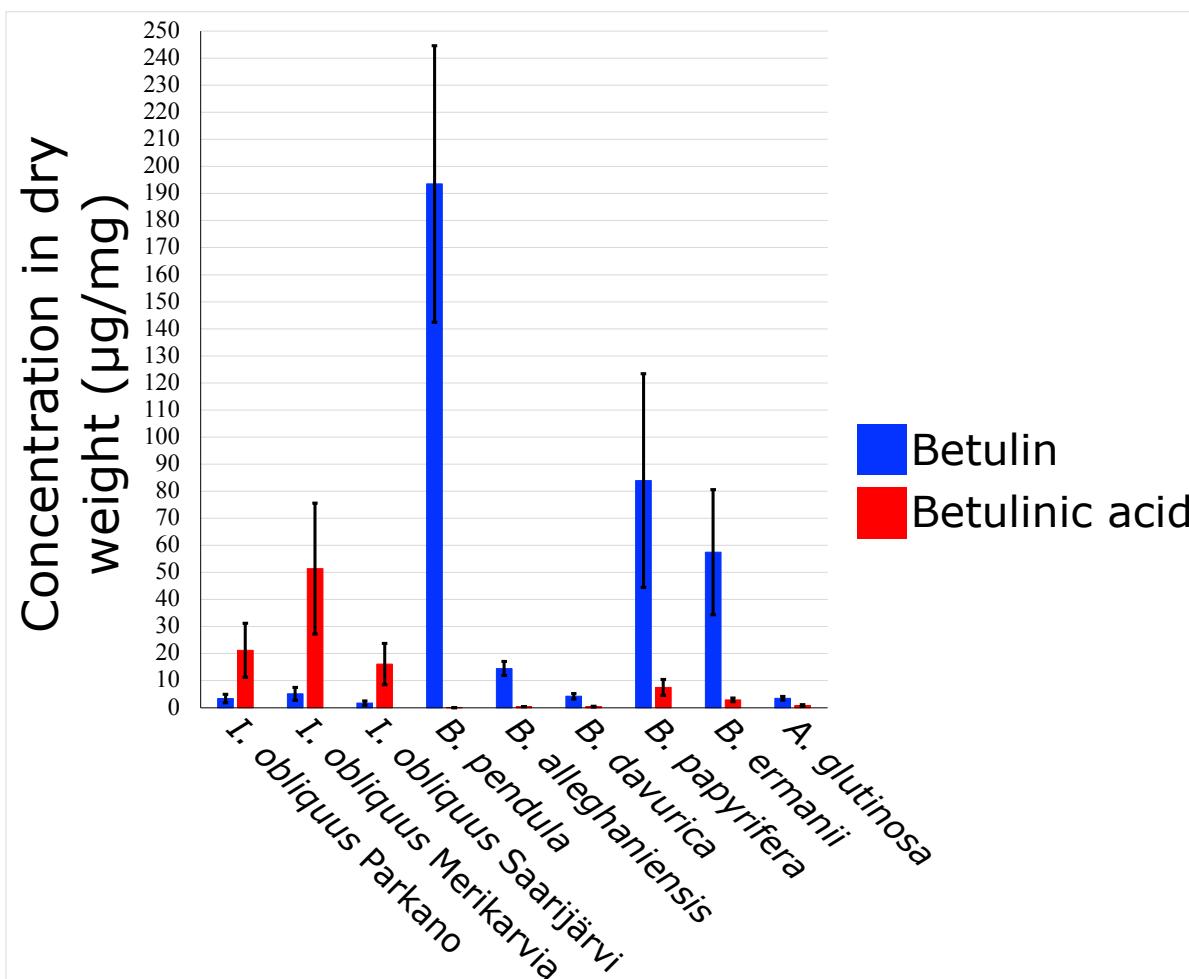

p.value: 6.1094e-11

Figure 4: Venn diagram of GO enrichment analysis for expanded gene families and tandemly duplicated genes from *I. obliquus* genome.

Each category is highlighted and labeled by specific color. P -value was calculated with Fisher exact test assessing the the statistical significance of the overlap. Tandem: tandemly duplication genes; Expanded: expanded gene families; syntenic: syntenic self-self alignment of *I. obliquus* resulting in the set of genes originating from whole genome duplication event.


898
899
900
901
902
903
904
905
906
907

908



909

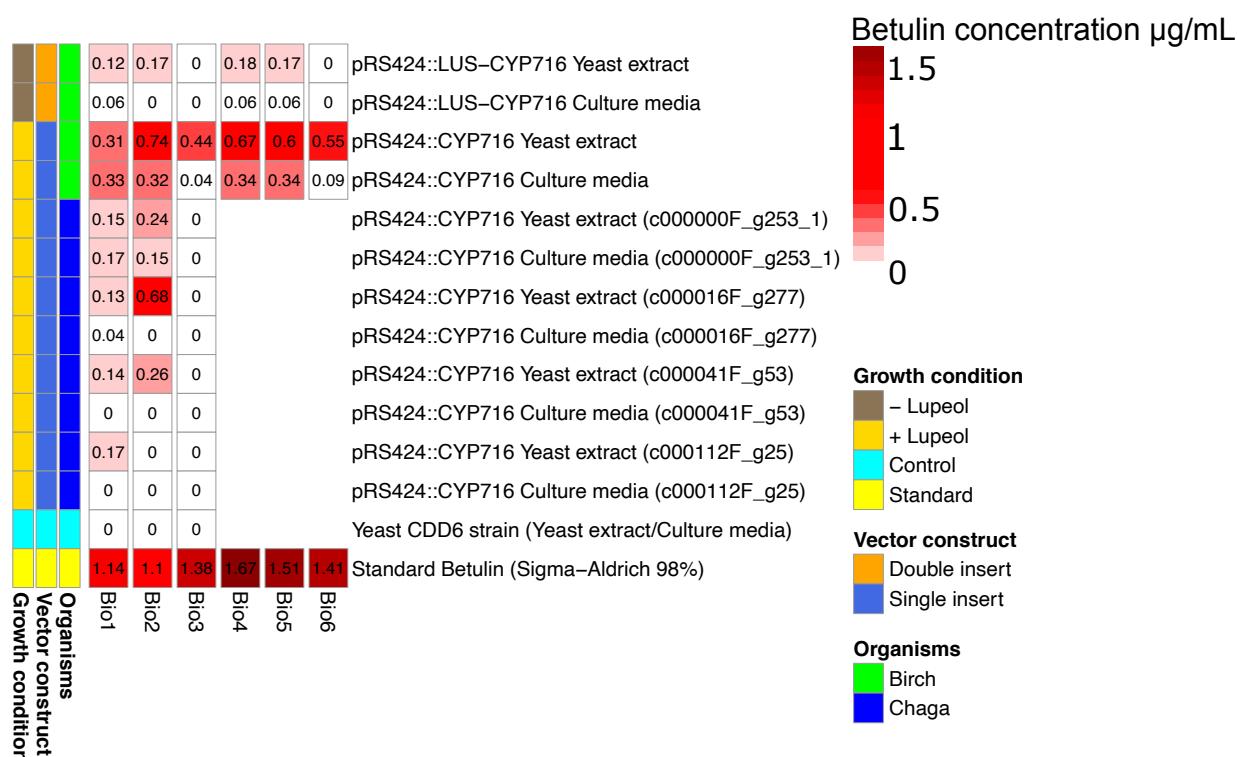

Figure 5. A gene tree of CYP450s predicted in *I. obliquus*. The clades are highlighted according to the major clan of the enzyme and tandemly duplicated genes are indicated with black squares; the color scheme is shown in the color key to the right of the plots. The branches are labeled by gene ID, cytochrome P450 clans, family, and class. The heatmaps illustrate BLAST similarities (red), tandemly duplicated (black/white), and differential expression of the genes. Barplot in the inset shows the number of CYP450 clans in *I. obliquus*.

Figure 6: Venn diagrams of UPLC-MS mass spectrum for metabolomic fingerprints. A) Pooled mass spectrums from five strains of *I. obliquus* and one *F. mediterranea*, B) mass spectrums of five strains of *I. obliquus*, C) multidimensional scaling (MDS) plot of metabolomics abundant of five strains of *I. obliquus*. Panels B and C use the same color coding, explained in panel C legend. .

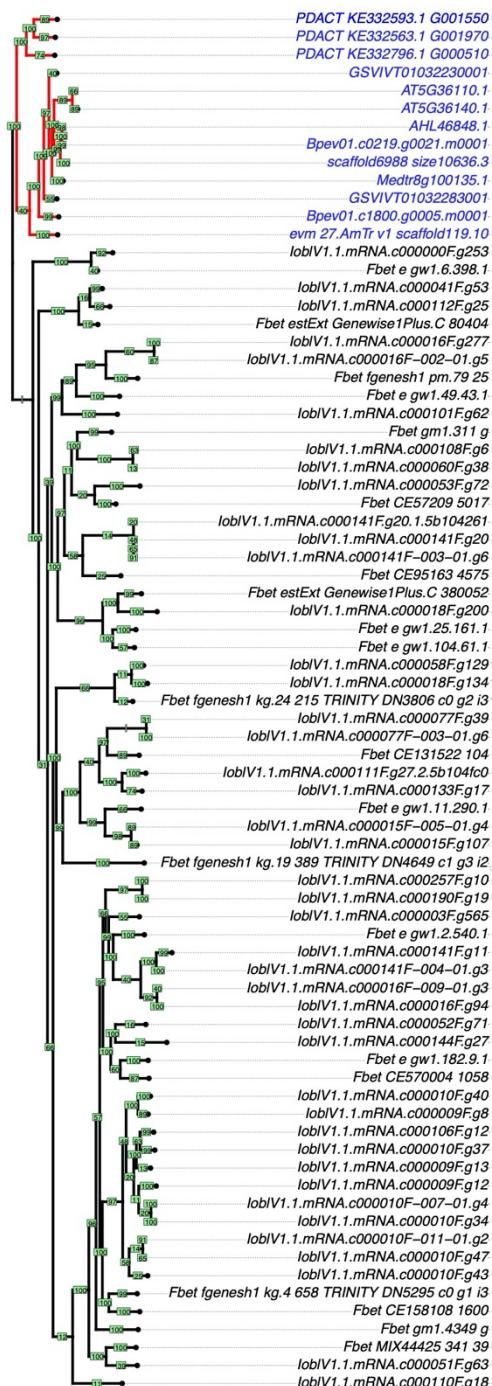


Figure 7: Concentration of betulin and betulinic acid in three strains of chaga and six betula species by HPLC-MS. Betulin and betulinic acid are highlighted in red and blue.

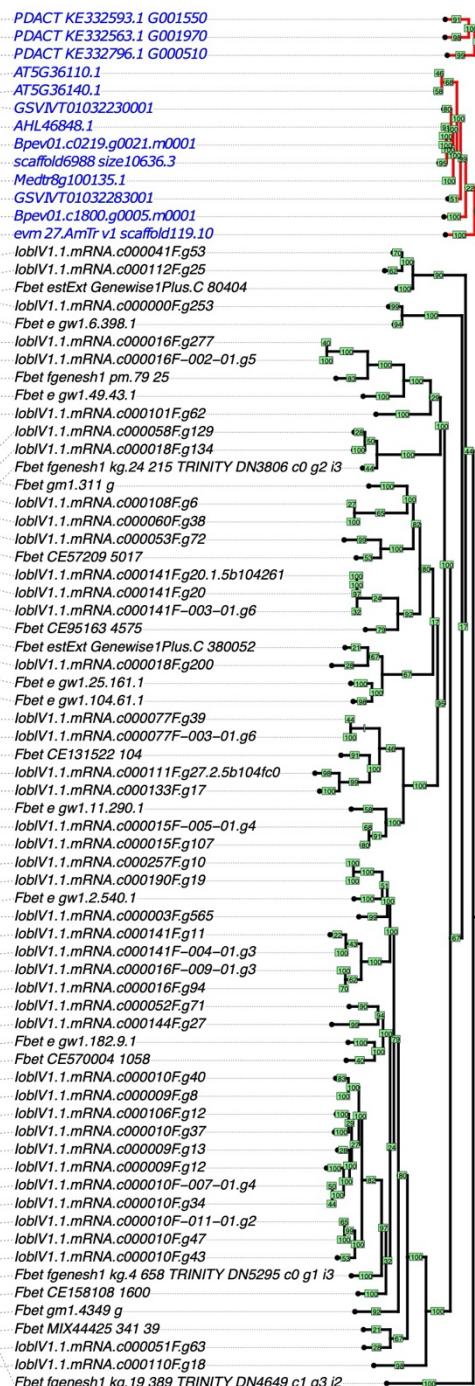
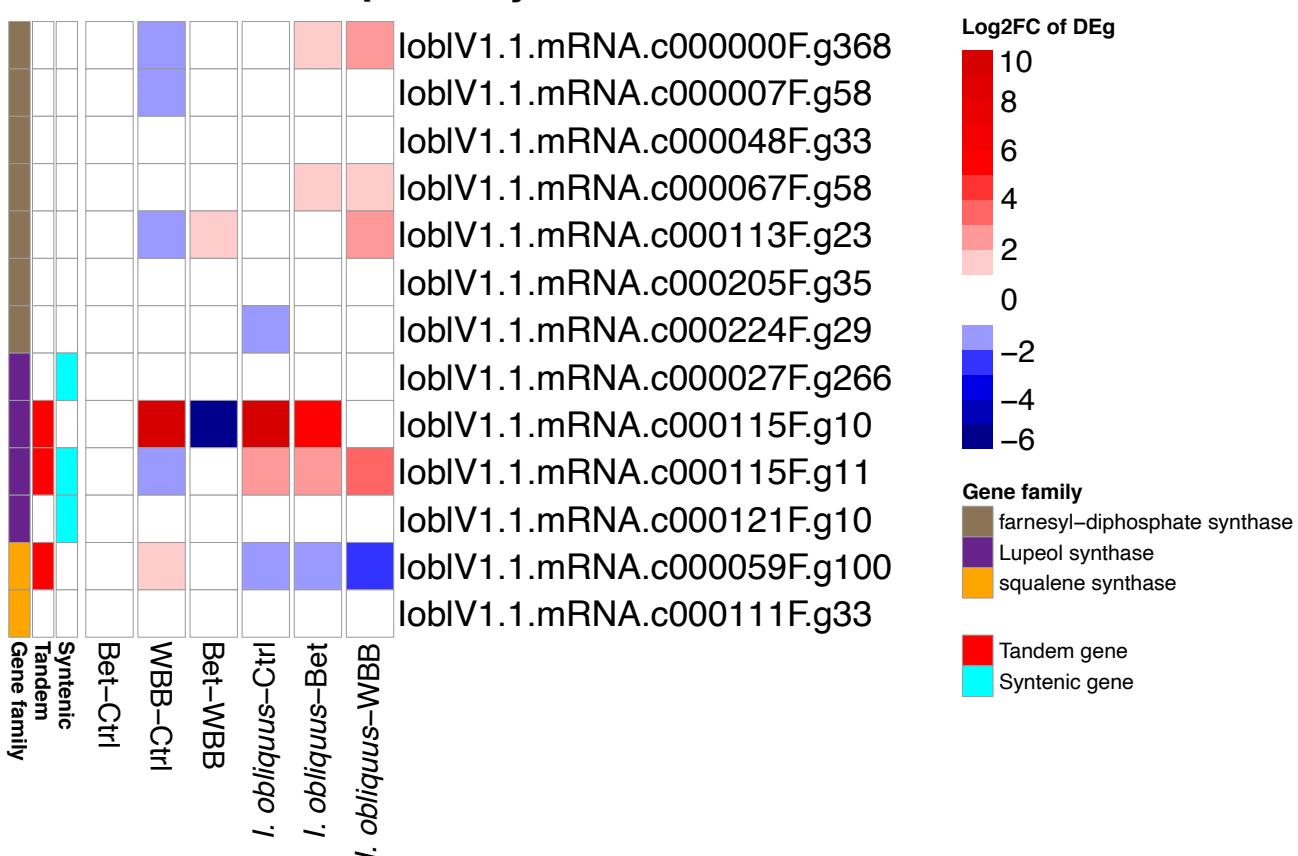


Figure 8: Heatmap illustrating the amount of betulin synthesized in transgenic yeast. The columns illustrate the biological replicates, and rows the vector constructs for lupeol synthase and CYP716 genes. The biological source for lupeol synthase was birch (green, *B. pendula*), and the biological sources for CYP716 enzymes were from birch and chaga mushroom (dark blue, *I. obliquus*). Vector constructs were divided to double insert (orange, lupeol synthase and CYP716 from birch in a single vector), and single inserts (royal blue, only CYP716 from birch and chaga). The color palette of the heatmap illustrates the concentrations ($\mu\text{g/mL}$) of betulin found in yeast cell (Yeast extract) and yeast growth media (Culture media), with white color assigned to minimum and dark red to maximum concentration of betulin. The second heatmap illustrates the growth conditions: brown (- Lupeol) is yeast growth media without standard lupeol (precursor for CYP716 gene), gold (+ Lupeol) yeast growth media with standard lupeol, and cyan CDD6 yeast strain used as control, and finally yellow is lupeol standard (98% purity).

Monoxygenase P450 (Nucleotides)



Monoxygenase P450 (Amino acids)

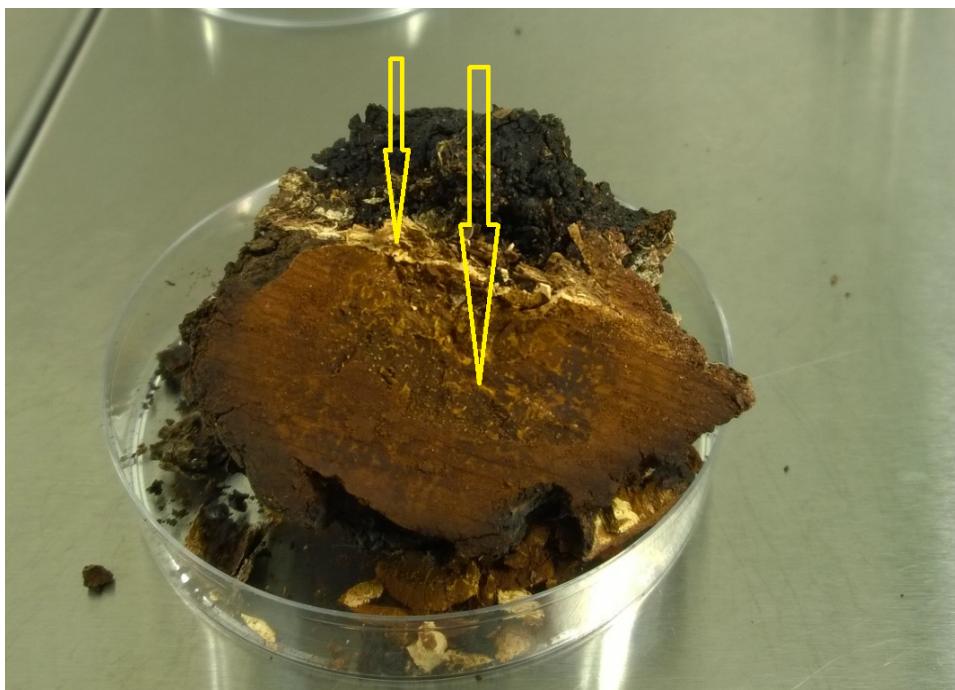


Figure 9: Phylogenetic reconstruction of 70 monooxygenase enzymes from *I. obliquus*, *F. betulina*, and 8 plant species. Trees are labeled according to the type of the sequence used in multiple sequence alignment (amino acid or nucleotide) and rooted to plant species. Cophylo (from phytools) function is used in order to rotate the branches to match the tips and the labels. Bootstrap values (green rectangular) illustrate the level of the confidence, and plant species are highlighted in blue.

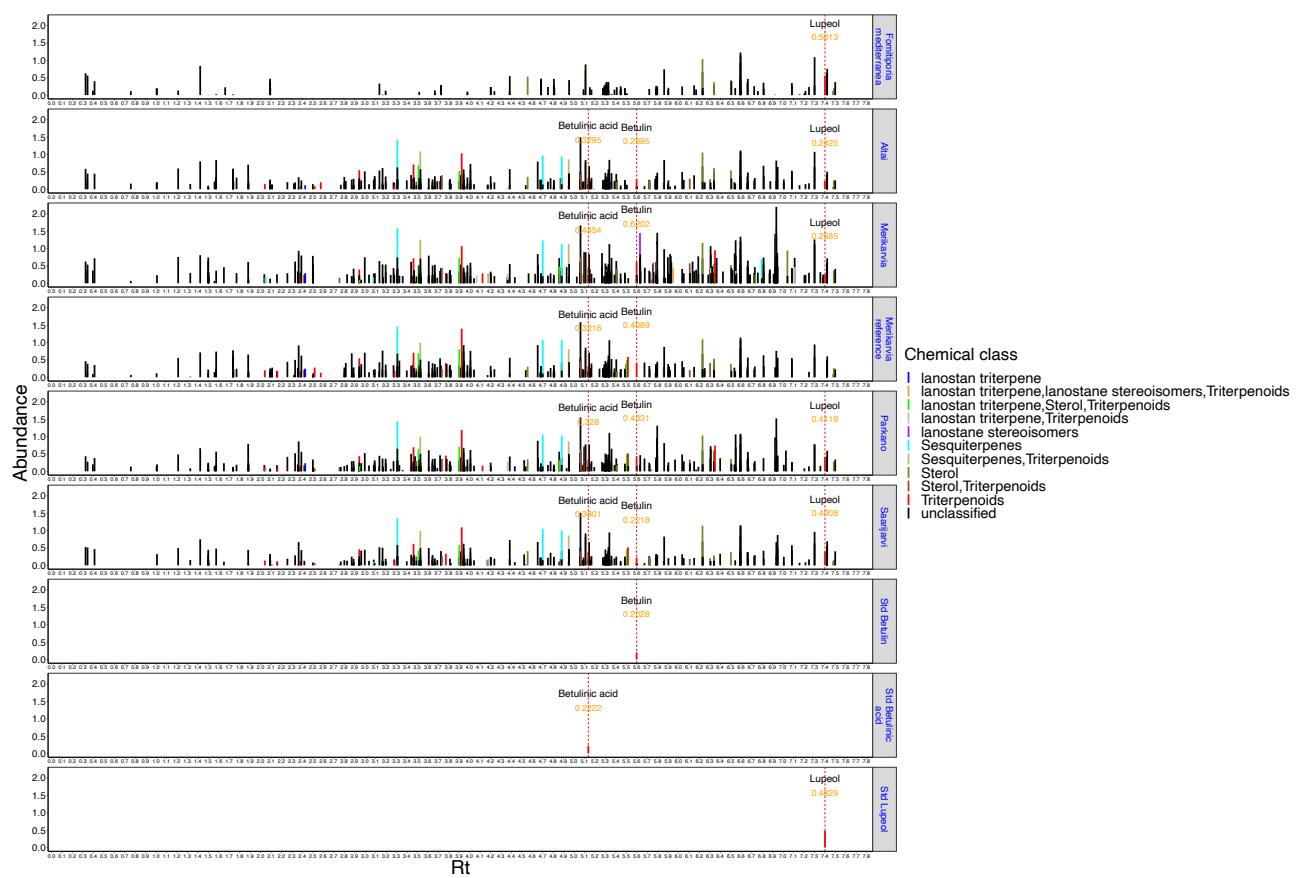
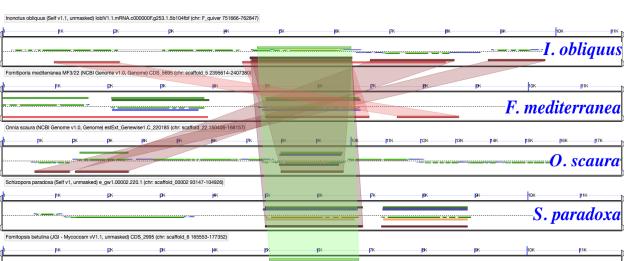
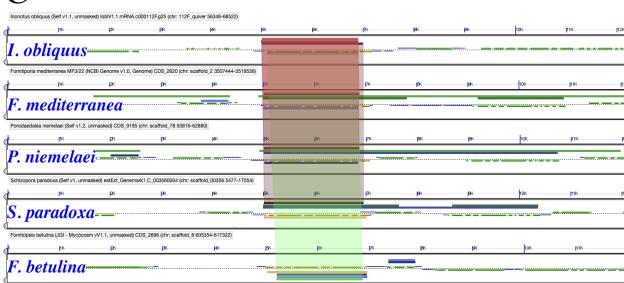

Mevalonate pathway

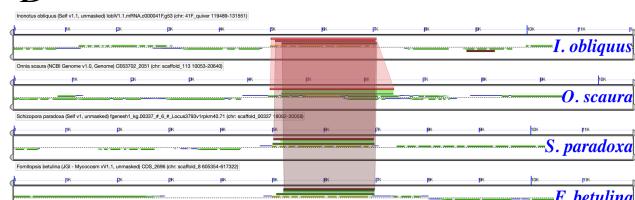
Figure 10: Heatmap of differentially expressed (DE) genes annotated: A) CYP450 monooxygenase enzymes, and B) key enzymes in mevalonate pathways (MVA). The larger heatmap illustrates the \log_2 fold-changes ($\log_2\text{FC}$) of DE genes, the color is proportional to differential expression. The smaller heatmap illustrates the duplication origins of the gene, either syntenic originating from whole genome duplication or tandem originating from segmental duplication. Genes are clustered using the Euclidean distance and hierarchical clustering (method: complete). Gene ID highlighted in blue was selected for cloning.

Supp. Fig 1: Fragment of *Inonotus obliquus* conk collected from Merikarvia, Finland [N62.00°, E24.74°]. Yellow arrows point at sites where samples were collected for inoculation of culture media. There might be contamination of birch bark at the site where the smaller arrow is pointing. The larger arrow points to the center of the conk where more pure sample was collected.



Supp. Fig 2: Relative abundances of secondary metabolites among five strains of *I. obliquus*, one strain of *F. mediterranea*, and standard (98%) lupeol, betulin, and betulinic acid. X-axis is the retention time, and Y-axis the relative abundance (ggplot, scales='free_x'). Vertical red lines show the standard retention times for lupeol, betulin, and betulinic acid, labeled with the name of the compound and its relative abundance. Mass spectra are classified to known chemical class. Std: standard (98%).


A


B

C

D

Supp. Fig 3: Microsynteny analysis of four cloned genes from *I. obliquus* and four *Hymenochaetales* species and *Fomitopsis betulina*. A) gene ID : c000016F.g277, B) gene ID : c000000F.g253, C) gene ID : c0000112F.g25, and D) gene ID : c0000041F.g53.

Supp. table 1: Statistics of *I. obliquus* genome assembly and annotation, genome size of orthologous species, repeat masking statistics, and the GO enrichment of genes adjacent to DNA transposable elements.

Supp. table 2: List of putative secreted proteins from *I. obliquus*.

Supp. table 3: List of genes from *I. obliquus* which are associated to syntenic or tandemly duplicated regions of the genome.

Supp. table 4: List of expanded gene families and their GO enrichment in *I. obliquus*.

Supp. table 5: List of homologous CAZymes from *I. obliquus*.

Supp. table 6: List of syntenic and tandemly duplicated genes, and gene ontology (GO) enrichment in these genomic regions.

Supp. table 7: List of metabolomics fingerprints from five strains of *I. obliquus*, and one strain of *F. mediterranea*.

Supp. table 8: List of putative oxygen, heme, ERR-Triad domains across multiple kingdoms.

Supp. table 9: List of differentially expressed gene families.