

Proteomic Characterization of Serum Small Extracellular Vesicles in Human Breast Cancer

4 Ganfei Xu^{1,2,†}, Weiyi Huang^{1,†}, Shaoqian Du^{1,†}, Minjing Huang^{2,†}, Jiacheng
5 Lyu², Fei Zhou¹, Rongxuan Zhu¹, Yuan Cao¹, Jingxuan Xv¹, Ning Li¹, Guoying
6 Yu³, Binghua Jiang⁴, Olivier Gires⁵, Lei Zhou⁶, Hongwei Zhang^{7,*}, Chen
7 Ding^{2,8,**}, Hongxia Wang^{1,***}

¹ State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

² State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China

³ State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China

⁴ Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China.

⁵ Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

⁶ Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, Singapore 169856, Singapore

⁷ Department of General Surgery, Zhongshan Hospital, Fudan University. 180 Fenglin Road, Shanghai 200032

⁸ Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China

28 † These authors contributed equally to this work

29 * Corresponding authors. Tel: 021-63240090; Email: zhang.hongwei@zs-hospital.sh.cn

30 ** Corresponding authors. Tel: 021-31246742; Email: chend@fudan.edu.cn

31 *** Corresponding authors. Tel: 021-63240090; Email: whx365@126.com

32

33 **Key Words:** Breast cancer; Small extracellular vesicles; Lymph node
34 metastases; Distant metastasis; Proteomics

35

36 **Abstract**

37 There is a lack of comprehensive understanding of breast cancer (BC) specific
38 sEVs characteristics and composition on BC unique proteomic information
39 from human samples. Here, we interrogated the proteomic landscape of sEVs
40 in 167 serum samples from patients with BC, benign mammary disease (BD)
41 and from healthy donors (HD). The analysis provides a comprehensive
42 landscape of serum sEVs with totally 9,589 proteins identified, considerably
43 expanding the panel of sEVs markers. Of note, serum BC-sEVs protein
44 signatures were distinct from those of BD and HD, representing stage- and
45 molecular subtype-specific patterns. We constructed specific sEVs protein
46 identifiers that could serve as a liquid biopsy tool for diagnosis and
47 classification of BC from benign mammary disease, molecular subtypes, as
48 well as assessment of lymph node metastasis. We also identified 11 potential
49 survival biomarkers for distant metastasis. This work may provide reference
50 value for the accurate diagnosis and monitoring of BC progression using
51 serum sEVs.

52

53 **Introduction**

54 Breast cancer (BC) is one of the most common cancers worldwide and
55 accounts for 30% of female cancers (Kim *et al*, 2012; Liu *et al*, 2021; Siegel *et*
56 *al*, 2021). A long-term decline in the death rate has been observed since the
57 mid-1970s due to improvements in treatment protocols, including the
58 development of chemotherapy, immunotherapy and targeted therapies.
59 However, improvements in clinical outcomes have slowed over the past
60 decade, and distant metastasis remains the major cause of mortality (Cassetta
61 & Pollard, 2017; Liu *et al*, 2019a; Siegel *et al.*, 2021; Yin *et al*, 2014; Zhu *et al*,
62 2019). The early detection and dynamic assessment of the metastatic status of
63 BC patients are of great value for the treatment and longitudinal analysis of
64 cancer evolution in response to therapy. To achieve this, liquid biopsies
65 utilizing molecular classifiers detected in blood from patients, such as
66 circulating tumor cells, circulating free DNA, and exosomes, offer minimal
67 invasiveness, fewer complications, and an increased ability for longitudinal
68 monitoring compared with traditional tumor tissue biopsies (Wan *et al*, 2017;
69 Yoneda *et al*, 2019). More importantly, liquid biopsy is more informative than
70 single locally restricted biopsies, providing unique information about tumor
71 heterogeneity, clonal evolution, and the potential development of
72 premetastatic cancer cells (Hoshino *et al*, 2020).

73 Circulating small extracellular vesicles (sEVs), such as exosomes or
74 exosome-like vesicles (ELVs), are 30-150 nm in size and carry a restricted set
75 of nucleic acids, lipids, and proteins (Balaj *et al*, 2011; Johnstone *et al*, 1987;
76 Kim *et al*, 2013; Peinado *et al*, 2011; Raposo & Stoorvogel, 2013; Skog *et al*,
77 2008; Thakur *et al*, 2014; Thery *et al*, 2009; Valadi *et al*, 2007; Wang & Gires,
78 2019) that contribute to intercellular communication in normal physiology and
79 pathology (Johnstone *et al.*, 1987; Maas *et al*, 2017; Skog *et al.*, 2008;
80 Yanez-Mo *et al*, 2015). The functional importance of sEVs has been

81 intensively studied in multiple human cancers, including BC (Hoshino *et al.*,
82 2020). Increasing evidence suggests that sEVs are actively released from
83 cancer cells and markedly affect the tumor microenvironment (TME) as well as
84 the immune ecosystem (Huber *et al.*, 2005), thereby constructing distant
85 metastatic niches and facilitating cancer growth (Fang *et al.*, 2018; Kralj-Iglic,
86 2012; Ozer *et al.*, 2020) and metastasis (Chen *et al.*, 2018; Costa-Silva *et al.*,
87 2015; Hoshino *et al.*, 2015; Peinado *et al.*, 2012; Zhang & Wang, 2015). Of note,
88 the membrane encapsulation of sEVs promotes their structural integrity, and
89 cargos located within sEVs are more stable than other serological proteins
90 since they have protection against degradation by circulating proteases and
91 other enzymes (Li *et al.*, 2017a). Considering their facilitated retrieval and their
92 relatively ubiquitous presence and abundance in serum, sEVs can provide
93 ample materials for downstream analysis in BC detection, prognosis, and
94 therapeutic monitoring as a promising, noninvasive liquid biopsy approach
95 (Choi *et al.*, 2021; Lee *et al.*, 2018; Li *et al.*, 2017b; Wang *et al.*, 2018). For
96 instance, Peinado *et al.* showed that an “sEV protein signature” could identify
97 melanoma patients at risk for metastasis to nonspecific distant sites (Peinado
98 *et al.*, 2012). Hoshino *et al.* identified a specific repertoire of integrins
99 expressed on cancer-derived sEVs, which were distinct from cancer cells, that
100 dictated exosome adhesion to specific cell types and ECM molecules in
101 particular organs (Hoshino *et al.*, 2015).

102 The sEV proteome has been proposed to offer unique advantages as an
103 informative readout for the detection and stratification of BC (Rontogianni *et al.*,
104 2019). Nonetheless, the challenge is to optimize a proteomic profiling
105 approach for sEVs to define and standardize reliable methods. Despite the
106 availability of several public sEV protein databases (e.g., Vesiclepedia
107 (www.microvesicles.org/) (Kalra *et al.*, 2012), EVpedia (www.evpedia.info)
108 (Kim *et al.*, 2012) and ExoCarta (www.exocarta.org) (Kim *et al.*, 2013)), much

109 remains unknown about the sEV proteomes of BC. This includes the definition
110 of (1) markers to distinguish BC from benign disease and healthy state, (2)
111 markers to distinguish diverse molecular subtypes of invasive breast cancer
112 (IBC), (3) markers to predict lymph node (LN) metastases, and (4) the open
113 question of whether molecules present on IBC-derived sEVs are “addressing”
114 them to specific organs. These unresolved problems highlight the need for a
115 better understanding of the protein composition of BC-derived sEVs that could
116 qualify them as biomarkers for clinical application, with a specificity and
117 sensitivity mostly superior to those of traditional serum markers. To address
118 these aims, mass spectrometry-based proteomic profiling is emerging as a
119 strategy to gain insight into the biological cargos, functions, and clinical
120 potential of sEVs ([Wang et al, 2020](#)).

121 Here, we applied a mass spectrometry-based, data-independent acquisition
122 (DIA) quantitative approach to determine the proteomic features of human
123 serum sEVs derived from patients with BC, benign mammary disease (BD),
124 and healthy donors (HDs). In total, we identified 9,589 proteins from 167
125 analyzed samples with a mean of 1,695 proteins quantified per sEV sample.
126 Classification of the pathways related to the enriched proteins revealed that
127 proteins preferentially packaged in BC-sEVs correlated with interferon
128 γ-mediated signaling as well as pathways associated with immune response
129 regulation, antigen processing and presentation, glycolysis and angiogenesis.
130 By examining the sEV proteomes, we constructed specific sEV protein
131 identifiers that could serve as a liquid biopsy tool for the diagnosis and
132 classification of BC from BD and its molecular subtypes, as well as the
133 assessment of LN metastasis. Of note, we found that adipocytes play an
134 important role in the LN metastasis of BC. We also identified 11 potential
135 survival markers for distant BC metastasis and 2 potential survival markers for
136 lung metastasis. This work may provide reference value for the accurate

137 diagnosis and monitoring of BC progression using serum sEVs, and the
138 identification of novel molecules packaged in sEVs offers an opportunity for
139 the targeted therapy of BC in the future.

140

141 **Results**

142 **Proteomic characterization of BC-derived sEVs**

143 To elucidate the proteomic profile of BC-derived sEVs, we purified sEVs from
144 167 human serum samples derived from BC patients ($n = 126$), BD patients (n
145 = 17), and HDs ($n = 24$) by differential ultracentrifugation as described in the
146 Methods and in accordance with previously reported protocols (Colombo *et al*,
147 2014; Peinado *et al*, 2012; Xu *et al*, 2016) (Fig 1A and C). All samples were
148 collected prospectively from treatment-naive stage I-IV BC patients (Fig 1B,
149 Appendix Table 1). Under transmission electron microscopy (TEM) in
150 combination with nanoparticle tracking analysis (NTA), the isolated sEVs
151 appeared as morphologically uniform vesicular structures 30-150 nm in size
152 surrounded by a double-layer membrane (Fig 1D, Appendix Fig S1A). sEV
153 samples were verified by immunoblotting analyses using the conventional
154 markers CD9, CD63, TSG101, and ALIX, while we examined 24 sEV markers
155 in our proteomics data (Hoshino *et al*, 2020) (Fig 1E, Appendix Fig S1B).
156 Clinical data, including sex, age at diagnosis, tumor staging, BC subtypes, LN
157 status, distant metastasis, and survival, are summarized in Fig 1B and Table
158 S1.

159 A proteomic database of serum sEVs was constructed using label-free
160 LC-MS/MS analysis, identifying 9,589 proteins in total from the 167 analyzed
161 samples at a protein- and peptide-level FDR of less than 5% (Fig 1F). The
162 protein abundance was first calculated by iBAQ and then normalized as FOT,
163 allowing for comparison among different experiments. The mean number of
164 proteins detected per sEV sample was 1,695 (range 793 to 2,253 proteins)

165 (Fig 1G). In general, 1,924, 187, and 145 unique sEV proteins were identified
166 in BC, BD, and HD samples, respectively (Fig 1H). Globally, the dynamic
167 range of proteins detected spanned eight orders of magnitude (Appendix Fig
168 S1C). Collectively, these data were consistent with previous reports that sEV
169 protein profiles differ significantly depending on the sample source (Wu *et al*,
170 2019), and sEVs released by BC cells and from other cancer cells may carry
171 more encapsulated cargos for signal transfer to induce the malignant
172 transformation and proliferation of recipient cells (Milane *et al*, 2015).

173

174 **BC-derived sEVs exhibited specific signatures related to immune
175 response, metabolism, and metastasis**

176 Next, proteomic data were analyzed to determine the characteristics of
177 BC-derived sEVs. PCA demonstrated a clear distinction among the three
178 different types of samples, which further highlighted the diverse proteomic
179 patterns among BC-, BD-, and HD-sEVs that underpinned our stratification
180 analysis (Appendix Fig S2A).

181 To decipher the protein network associated with BC tumorigenesis, we
182 identified 287, 602, and 112 proteins that were significantly overrepresented in
183 the BC ($BC_{mean}/BD_{mean} > 2$ -fold and $BC_{mean}/HD_{mean} > 2$ -fold), BD
184 ($BD_{mean}/BC_{mean} > 2$ -fold and $BD_{mean}/HD_{mean} > 2$ -fold) and HD ($HD_{mean}/BC_{mean} >$
185 2 -fold and $HD_{mean}/BD_{mean} > 2$ -fold) samples, respectively (see Materials and
186 Methods). Clustering and cluster-specific enrichment analyses of these
187 proteins using GOBP and Reactome pathway annotations showed that these
188 differentially enriched proteins were involved in distinctive biological processes
189 and pathways (Fig 2A, Appendix Table 2). Specifically, COPI-mediated
190 anterograde transport (Fisher's exact test, $p = 3.88e-3$), vesicle-mediated
191 transport (Fisher's exact test, $p = 1.26e-4$), and regulation of actin dynamics
192 for phagocytic cup formation-related proteins (Fisher's exact test, $p = 2.48e-5$)

193 (i.e., ADD2, ARF5, ARPC1A, IGHV3-53, IGHV4-39, SSC5D, and COPE) were
194 enriched in HD samples (Fig 2A and B, Appendix Table 2). BD-sEVs were
195 characterized by proteins related to cell-cell adhesion (Fisher's exact test, $p =$
196 2.98e-19) (i.e., STAT1, PTPN1, RPL24, and FNBP1L), cholesterol metabolic
197 process (Fisher's exact test, $p = 3.34e-7$) (i.e., PON1, APOC1, APOA2,
198 ANGPTL3, and LIPC), and response to estrogen (Fisher's exact test, $p =$
199 2.13e-2) (i.e., F7, LDHA, HSP90AA1, IGFBP2, and CTNNA1) (Fig 2A and B,
200 Appendix Table 2). Of note, BC-sEVs exhibited specific signatures related to
201 the immune response, metabolism, and metastasis, potentially reflecting the
202 functional roles and molecular heterogeneity of sEVs during BC tumorigenesis
203 and progression. Classification of the pathways related to the enriched
204 proteins from BC-sEVs revealed that these selectively packaged proteins are
205 involved in the interferon γ -mediated signaling pathway (Fisher's exact test, p
206 = 4.94e-4) (i.e., HCK, HLA-H, HLA-B, HLA-C, HLA-A, HLA-G, and CD44),
207 regulation of immune response (Fisher's exact test, $p = 4.61e-5$) (i.e.,
208 IGLV3-25, COL3A1, CXADR, IGLV3-27, HLA-A, IGLV7-43, and PVR), antigen
209 processing and presentation (Fisher's exact test, $p = 1.16e-5$) (i.e., ITGB1,
210 IGLV3-25, CXADR, IGLV3-27, IGLV7-43, PVR, and HLA-G), glycolytic
211 process (Fisher's exact test, $p = 1.29e-3$) (i.e., GPI, PGK1, PGAM4, PGK2,
212 and PGM1), and angiogenesis (Fisher's exact test, $p = 3.92e-2$) (i.e., GPI,
213 RNF213, ANGPTL6, MMP2, PECAM1, CYP1B1, NAA15, and TYMP) (FC > 2,
214 one-way ANOVA $p < 0.05$) (Fig 2A and B, Appendix Table 2). Notably, in the
215 Tang et al. BC cohort (Tang et al, 2018), among sEV proteins that were
216 specifically highly expressed in BC samples, patients with high expression of
217 MMP2 and TYMP appeared to have poor prognostic outcomes (log rank test, p
218 < 0.05) (Fig 2C). These findings that BC-, BD-, and HD-sEV cargos are distinct
219 and related to singular cellular processes suggest that sEV protein packaging
220 into sEVs is heterogeneous and reflects BC biology.

221

222 **Specific damage-associated molecular pattern (DAMP) molecules are**
223 **packaged in BC-derived sEVs**

224 Recent advances have indicated that DAMP molecules, such as nucleic acids,
225 histones, high mobility group box 1, S100, and heat shock proteins, act as
226 endogenous ligands of innate immune receptors and are linked to the immune
227 response and cancer progression (Becker *et al*, 2016). In total, we identified
228 210 different DAMPs in all sEV datasets (Appendix Fig S2B, Appendix Table
229 2). Specifically, the analysis identified 197, 145, and 157 DAMPs in BC-, BD-,
230 and HD-sEVs, respectively, suggesting that more DAMPs were enriched in BC
231 samples than in BD and HD samples (Appendix Fig S2B). Thirty-two of these
232 DAMPs were identified only in BC-sEVs, 9 DAMPs only in BD-sEVs, and 4
233 DAMPs only in HD-sEVs (Appendix Fig S2B). Of all DAMPs identified in
234 BC-sEVs, 27 DAMPs (e.g., ACAN, ANXA11, and CD44) were shared by > 50%
235 of BC samples and were enriched compared to BD-sEVs and/or HD-sEVs (Fig
236 2D).

237 Among them, 9 DAMPs, including aggrecan (ACAN), annexin A11
238 (ANXA11), CD44, fibrinogen gamma chain (FGG), integrin-linked kinase (ILK),
239 LGALS3, and several ITGs (ITGA6, ITGB1, and ITGB3), were exclusively
240 present in BC-sEVs versus BD- and HD-sEVs, suggesting that they are
241 specific sEV markers in BC development and progression (Fig 2D). ITGA6,
242 ITGB1, and ITGB3 are members of the integrin family of proteins involved in
243 cell adhesion and recognition in a variety of processes, including tissue repair,
244 hemostasis, immune response, and metastatic dissemination of cancer cells
245 (Laudato *et al*, 2017; Wang *et al*, 2019b). ANXA11 and LGALS3 are
246 associated with the progression of some cancers (Liu *et al*, 2019b; Wang *et al*,
247 2019a). Another 10 DAMP proteins were highly enriched in both BC- and
248 BD-sEVs: ANXA1, ANXA2P2, ANXA4, CD14, HABP2, LGALS4, LUM, OMD,

249 S100A9, and TXNDC5, whereas they were rarely detected in HD samples,
250 suggesting that they represent sEV DAMPs shared across BC and BD (Fig 2E).
251 Interestingly, our analyses revealed that 8 DAMP molecules (A2M, ANXA5,
252 CALR, FGB, IL6ST, LGALS3BP, LYVE1, and S100A7) were abundantly
253 expressed in both BC- and HD-sEVs (Fig 2E). This finding is consistent with
254 previous studies reporting that the noncancer-derived sEV proteome is as
255 informative as the cancer-derived sEV proteome in specific cancer types
256 (Hoshino *et al.*, 2020). It is worth noting that 6 of these molecules (ANXA11,
257 ILK, ITGA6, ITGB1, LGALS3, and OMD) were highly expressed in BC and
258 were associated with poor prognosis in the Tang *et al.* BC cohort (Tang *et al.*,
259 2018) (Fig 2E, Appendix Fig S2C).

260

261 **Possible intercellular communication network diagram of BC-driven 262 sEVs in the TME**

263 Previous evidence suggests that sEVs interact with recipient immune cells to
264 participate in TME remodeling, an effect that is mediated by encapsulated
265 molecular cargos derived from parent cancer cells (Becker *et al.*, 2016). Thus,
266 the proteomics profile of BC-sEVs may reflect the status of corresponding
267 immune cells in the TME. To further map the differentially enriched sEV
268 proteins to the immune response, we performed cell type deconvolution
269 analysis using xCell (Aran *et al.*, 2017). A heatmap of overall and type-specific
270 enrichment scores was constructed to identify the immune landscape of BC
271 (Fig 2F). Specifically, the enrichment scores of macrophages M2, adipocytes,
272 epithelial cells, CD4+ T cells, $\gamma\delta$ T cells (Tgd), Th2 cells and
273 megakaryocyte-erythroid progenitor cells (MEPs) were significantly elevated in
274 BC-sEVs compared to HD-sEVs, with FC > 1.3 and Student's *t* test *p* value <
275 0.05 (Fig 2F, Appendix Table 2). The analysis suggested a possible
276 intercellular communication network of BC-driven sEVs in the TME when we

277 inferred the relative abundance of various immune cell subtypes in the TME.
278 MEPs represent a bipotent transitional state that is permissive to the
279 generation of unipotent progenitors of megakaryocytic or erythroid lineages
280 (Xavier-Ferrucio *et al*, 2019). Adipocytes in the TME play dynamic and
281 sophisticated roles in facilitating BC development (Cao, 2019). These
282 BC-derived sEVs may impact the TME by promoting tumor cell growth and
283 progression, modulating immune responses, regulating angiogenesis and
284 inducing metastatic behavior through MEPs, endothelial cells, and mv
285 endothelial cells (Fig 2G).

286

287 **Eight-protein diagnostic model to distinguish BC from BD and the
288 healthy population**

289 To further assess whether sEV proteins could be used as a liquid diagnostic
290 tool to discriminate cancers from noncancers, we next sought to determine
291 shared and unique sEV proteins by performing pairwise comparisons of
292 proteomes between BC-, BD-, and HD-sEVs. We applied the XGBoost
293 classifier, which is robust to noise and overfitting, to verify a distinct sEV
294 protein subset that can accurately distinguish the BC, BD and HD samples.

295 To train and subsequently test the model, sEV samples were evenly
296 partitioned based on the sample source, and 70% of samples were used as a
297 training set, with the remaining 30% used as an independent test set. Applying
298 5-fold cross-validation to the training set, a combination of 8 sEV proteins
299 (STAT1, PON1, APOC1, APOC2, MMP2, IGHV4-39, IGHV3-53, and ADD2)
300 was used to construct a signature that yielded a sensitivity of 100% and
301 specificity of 100% for discriminating BC from BD and HD (Fig 2H-I, Appendix
302 Fig S2D). Notably, when applying this eight-protein identifier to sEV samples
303 of the independent test set, the model achieved 97% sensitivity and 83%
304 specificity in the diagnosis of BC (Fig 2H).

305

306 **Proteomic characteristics of sEVs derived from four clinical subtypes of**
307 **BC**

308 IBC is a highly heterogeneous disease that can be categorized into various
309 intrinsic or molecular subtypes, which are differentially correlated with clinical
310 presentation, prognosis, distant metastasis, and response to therapy.
311 Molecular subtypes are defined based on the gene expression signature and
312 protein expression of estrogen receptor (ER), progesterone receptor (PR),
313 human epidermal growth factor receptor 2 (Her2), and proliferative cell nuclear
314 antigen (Ki67) (Li *et al*, 2021; Peng *et al*, 2019; Vallejos *et al*, 2010). We
315 reasoned that since the biological behavior of IBC cells differs significantly
316 among IBC subtypes, biological cargos carried by sEVs may vary among
317 diverse molecular subtypes. To distinguish proteomic landscapes among
318 diverse molecular subtypes of IBC and identify drivers that boost intertumoral
319 heterogeneity and cancer evolution, we analyzed sEV samples from luminal A
320 (ER+/PR+, low-grade and low-Ki67 index, n = 20), luminal B (ER+/PR+ of
321 higher grade and proliferative index, n = 50), Her2-enriched (Her2+ with or
322 without ER, n = 21), and triple-negative (ER-PR-Her2-, TNBC, n = 23) IBCs in
323 our cohort. PCA demonstrated a clear distinction among the different
324 molecular subtypes, which further highlighted the distinct proteomic patterns
325 among several clinical subtypes of IBC samples ([Appendix Fig S3A](#)).

326 Next, we applied a *t* test with a nominal *p* value cut-off of < 0.05 and
327 identified 87, 82, 83, and 104 sEV proteins that were significantly
328 overrepresented in luminal A (FC (luminal A/any of the other three subtypes) >
329 2), luminal B (FC (luminal B/ any of the other three subtypes) > 2),
330 Her2-enriched (FC (Her2-enriched/ any of the other three subtypes) > 2), and
331 TNBC (FC (TNBC/ any of the other three subtypes) > 2) samples ([see](#)
332 [Materials and Methods](#)). Clustering and cluster-specific enrichment analyses

333 of the enriched proteins using GOBP and KEGG pathway annotations showed
334 the distinctive biological processes and pathways represented in luminal A,
335 luminal B, Her2-enriched, and TNBC samples ([Fig 3A and B, Appendix Table](#)
336 [3](#)). Specifically, luminal A-derived sEVs were characterized by proteolysis
337 involved in cellular protein catabolic processes (*i.e.*, PSMB7, PSMB2, FAP,
338 and CAPN2) (Fisher's exact test, $p = 1.23e-3$) and positive regulation of
339 protein insertion into mitochondrial membrane involved in apoptotic signaling
340 pathway (*i.e.*, YWHAB, YWHAG, and YWHAH) (Fisher's exact test, $p =$
341 $7.69e-3$). Luminal B-derived sEVs were characterized by cellular response to
342 insulin stimulus (*i.e.*, RAB10, PKLR, GOT1, and STAT1) (Fisher's exact test, p
343 $= 4.41e-3$) and response to hypoxia (*i.e.*, ALAD, VCAM1, PKLR, and HSPD1)
344 (Fisher's exact test, $p = 3.77e-2$). Her2-enriched sEV-enriched proteins were
345 related to cellular response to reactive oxygen species (*i.e.*, PRDX1, TXN, and
346 SOD3) (Fisher's exact test, $p = 1.34e-2$), glucose metabolic process (*i.e.*,
347 FABP5, GAA, BPGM, and GAPDH) (Fisher's exact test, $p = 3.47e-3$), and
348 keratinization (*i.e.*, CASP14, KRT17, and TGM3) (Fisher's exact test, $p =$
349 $1.99e-2$). TNBC samples were characterized by platelet degranulation (*i.e.*,
350 AHSG, ACTN4, PPBP, TLN1, and PF4) (Fisher's exact test, $p = 2.67e-3$),
351 blood coagulation (*i.e.*, EHD1, COL1A1, PROC, COL1A2, F11, and PRKACB)
352 (Fisher's exact test, $p = 3.74e-3$), adaptive immune response (*i.e.*, DBNL,
353 ANXA1, ERAP2, and ICOSLG) (Fisher's exact test, $p = 5.03e-2$), and platelet
354 activation (*i.e.*, COL1A1, COL1A2, SAA1, and PF4) (Fisher's exact test, $p =$
355 $2.67e-2$) ([Fig 3B and C, Appendix Table](#) [3](#)).

356 Collectively, these data suggested that proteomic profiles of serum-derived
357 sEVs reflect selective packaging, which represents an informative readout and
358 differs among diverse subtypes of BCs.

359

360 **sEV-based classifier discriminates BC subtypes**

361 To further investigate the clinical significance of the differentially enriched
362 protein cargos, we addressed whether they could be utilized as a novel liquid
363 biopsy method to distinguish diverse clinical subtypes in clinical practice.
364 Employing XGBoost classification, which is robust to noise and overfitting, we
365 constructed a 61-protein classifier model that can accurately discriminate the
366 luminal A, luminal B, Her2-enriched, and TNBC subtypes. To train and
367 subsequently test the model, 70% of samples were used as a training set, with
368 the remaining 30% used as an independent test set, in the same manner as
369 previously described. Similar to our analysis of BC versus non-BC-sEVs, we
370 constructed a 61-protein classifier model using the XGBoost classifier. To test
371 the 61-sEV protein model, 5-fold cross-validation of the training set was
372 performed and yielded a sensitivity of 100% and a specificity of 100% for each
373 molecular subtype ([Fig 3D](#), [Appendix Fig S3B](#)). When applying the 61-protein
374 classifier to the independent test set, the model achieved 67% sensitivity and
375 97% specificity in the diagnosis of luminal A, 80% sensitivity and 70%
376 specificity in diagnosis of luminal B, 57% sensitivity and 89% specificity in
377 diagnosis of Her2-enriched, and 71% sensitivity and 100% specificity in
378 diagnosis of TNBC ([Fig 3D](#), [Appendix Fig S3B](#)). The receiver operating
379 characteristic (ROC) curve derived from the 61-protein signature showed good
380 sensitivity and specificity, with an area under the curve (AUC) of 1.0 ([Fig 3E](#)).
381 Then, the 61-protein signature was validated in the test set, resulting in a ROC
382 curve with an AUC of 0.875 ([Fig 3E](#)).

383 Thus, serum sEV proteomes can be beneficial in determining the BC
384 subtype for dynamic monitoring in patients during tumor progression, avoiding
385 repeated tissue biopsies.

386

387 **Adipocytes play an important role in LN metastasis of BC**

388 Furthermore, to elucidate the mechanism of LN metastasis in IBC, we
389 analyzed sEV proteins of IBC patients with LN metastases (IBC_LN, n = 51)
390 and without LN metastases (IBC_Pure, n = 54). PCA clearly distinguished
391 between IBC_LN and IBC_Pure samples at the protein level, which further
392 highlighted the diverse proteomic patterns between sEVs from IBC_LN and
393 IBC_Pure samples ([Appendix Fig S4A](#)). We applied Student's *t* test with a
394 nominal *p* value cut-off of < 0.05 and identified significantly enriched
395 sEV-derived proteins in IBC_LN compared with IBC_Pure (FC > 2). The
396 results are summarized in the volcano plot shown in Fig S4B, and the most
397 prominent proteins are indicated ([Appendix Fig S4B](#)).

398 We further performed clustering and cluster-specific enrichment analyses of
399 the upregulated proteins using gene set enrichment analysis (GSEA). We
400 found that IBC_LN samples were characterized by proteins related to
401 hallmarks of adipogenesis ([Fig 4A](#)). To investigate the immune landscapes of
402 the IBC_Pure and IBC_LN groups, the abundance of 16 different cell types
403 was computed using xCell based on proteomic data of sEVs retrieved from the
404 blood of the 105 abovementioned IBC samples ([Fig 4B, Appendix Table 4](#)).
405 We found that the enrichment scores of B cells, basophils, CD4+ T cells, CD4+
406 naive T cells, dendritic cells (DCs), mesangial cells, activated dendritic cells
407 (aDCs), and immature dendritic cells (iDCs) were higher in the IBC_Pure
408 group than in the IBC_LN group. On the other hand, enrichment scores for
409 adipocytes, CD8+ T cells, CD8+ naive T cells, multipotent progenitors (MPPs),
410 macrophages, megakaryocytes, platelets, and sebocytes were higher in the
411 IBC_LN group than in the IBC_Pure group (FC > 1.5, Student's *t* test *p* < 0.05)
412 ([Fig 4B, Appendix Table 4](#)). The enhanced adipocyte enrichment scores in
413 sEVs from IBC_LN samples attracted our attention ([Fig 4B, Appendix Fig S4C,](#)
414 [Table 4](#)). There was a positive correlation between adipogenesis and
415 adipocytes (Spearman rho = 0.188, *p* = 5.507e-02) ([Appendix Fig S4D](#)).

416 Adipocytes were correlated with the VEGF signaling pathway (Fig 4C), and the
417 VEGF signaling pathway was upregulated in the IBC_LN group (Fig 4D). A
418 previously reported comparative cytokine array analysis of
419 adipocyte-conditioned medium (ACM) revealed the upregulation of a group of
420 cytokines belonging to the VEGF signaling pathway in ACM (Sahoo *et al*,
421 2018).

422 The VEGF signaling pathway was correlated with MPPs (Fig 4E), which
423 were upregulated in the IBC_LN group (Appendix Fig S4E) and positively
424 correlated with the coagulation pathway (Spearman rho = 0.295, p value =
425 2.216e-03) (Appendix Fig S4F). At the same time, platelets were positively
426 correlated with the coagulation pathway (Spearman rho = 0.209, p value =
427 3.225e-02) (Appendix Fig S4G). The enrichment scores of platelets were
428 upregulated in the IBC_LN group (Appendix Fig S4H). Experimental evidence
429 has highlighted platelets as active players in all steps of tumorigenesis,
430 including cancer growth, cancer cell extravasation and metastasis
431 (Haemmerle *et al*, 2018). Many of the molecules that are highly associated
432 with platelets are angiogenesis- and metastasis-related molecules (e.g., KIF5B,
433 ARHGDIA, ARPC1B, DYNLL2, NUP98, IQGAP2, PTPRJ, PTPRF, MST1L,
434 and MMP3) (Fig 4F, Appendix Fig S4I). In addition, we found that adipocytes,
435 MPPs, and MEPs were significantly increased in the tissue samples of 40
436 additional IBC patients (IBC_Pure, n = 12; IBC_LN, n = 28), and the platelet
437 count in BC patients with LN metastasis (n = 43) was significantly higher than
438 that in BC patients without LN metastasis (n = 45) in our cohort (Student's *t*
439 test, *p* < 0.05) (Fig 4H and I, Appendix Fig S4J and K).

440

441 **Twelve-protein diagnostic model for LN metastasis**

442 To generate a protein signature that stratifies patients with or without LN
443 metastases, we performed random forest classification to identify a subset of

444 sEV proteins that accurately discriminates between IBC_LN and IBC_Pure
445 samples. As before, sEV samples were evenly partitioned based on sample
446 type (*i.e.*, IBC_LN samples vs. IBC_Pure samples), and 70% of samples were
447 used as a training set, with the remaining 30% used as an independent test set.
448 By comparing the IBC_LN- and IBC_Pure-derived sEV proteomes, we
449 discovered that the best partition was achieved with 12 sEV proteins (PEPD,
450 NCL, PARP1, ACTA2, ACTG2, TBCA, TTYH3, MATR3, KPNB1, KRT16,
451 RANBP2, and CCT6A). Based on this 12-protein signature, applying 5-fold
452 cross-validation to the training set yielded a sensitivity (true positive rate) of
453 100% and specificity (true negative rate) of 100% ([Fig 4J and L, Appendix Fig
454 S4J](#)). When applying the protein signature for discriminating BC patients with
455 or without LN metastasis to the independent test set samples, it had a
456 sensitivity of 81% and a specificity of 81% ([Fig 4M and N, Appendix Fig S4E](#)).
457 In addition, we used the CPTAC breast cancer dataset ($n = 77$) as an external
458 validation test set and achieved 100% sensitivity and 100% specificity ([Mertins
459 et al, 2016](#)) ([Fig 4K](#)).

460

461 **Potential sEV survival biomarkers for distant metastases of BC**

462 To identify universal biomarkers associated with distant metastasis, we
463 performed further analysis based on the proteomic profiles of 7 ductal
464 carcinoma in situ (DCIS) samples and 21 distant metastasis (D-MET) (*e.g.*,
465 M-Multiple ($n = 5$), M-Lung ($n = 3$), M-Liver ($n = 4$), M-Bone ($n = 7$), M-Chest
466 wall ($n = 1$), and M-Soft tissue ($n = 1$)) samples in our cohort. Clustering and
467 cluster-specific enrichment analyses of the upregulated proteins using DAVID
468 (KEGG gene sets) pathway annotations clearly showed distinctive biological
469 processes and pathways enriched in D-MET samples compared to DCIS
470 samples ([Fig 5A](#)). Compared with DCIS samples, D-MET samples showed an
471 upregulation of focal adhesion (*i.e.*, FLNA and vitronectin (VTN)) (Fisher's

472 exact test, $p = 5.45\text{e-}03$), metabolism-related pathways (e.g., carbon
473 metabolism (i.e., PKM, G6PD, and TALDO1) (Fisher's exact test, $p =$
474 $5.42\text{e-}05$), glycolysis/gluconeogenesis (i.e., FBP1, LDHB, and PDHB)
475 (Fisher's exact test, $p = 1.33\text{e-}02$), fatty acid metabolism (i.e., ACACA,
476 HSD17B12, and HACD3) (Fisher's exact test, $p = 1.83\text{e-}02$)), and complement
477 and coagulation cascades (i.e., CPB2, alpha-1-antitrypsin (SERPINA1), CFH,
478 C7, heparin cofactor 2 (SERPIND1), F10, F12, SERPINF2, SERPINE1, F2,
479 TFPI, and KNG1) (Fisher's exact test, $p = 3.58\text{e-}02$) ([Fig 5A and B](#)). We found
480 that 24 sEV proteins were significantly overexpressed in distant metastatic
481 samples ($\text{D-MET}_{\text{median}}/\text{DCIS}_{\text{median}} > 2\text{-fold}$, Student's t test, $p < 0.05$),
482 suggesting that they may be potential serum sEV protein markers for LN
483 metastasis of BC ([Fig 5B](#)). Among them, 5 sEV proteins (PDHB, FBP1,
484 PPP4C, GP1BA, and TFPI) were identified in $> 75\%$ of D-MET samples ([Fig
485 5B](#)). Remarkably, 11 sEV proteins (FLNA, VTN, PKM, PDHB, G6PD, TALDO1,
486 LDHB, ACACA, PPP4C, C7 and F2) were highly expressed in BC and were
487 associated with poor prognosis in the Tang et al. BC cohort and the Liu et al.
488 BC cohort ([Liu et al, 2014; Tang et al., 2018](#)) ([Fig 5B and C, Appendix Fig
489 S5A](#)).

490

491 **Potential organ-specific sEV survival biomarkers for distant metastases 492 of BC**

493 Furthermore, we performed pathway enrichment analysis comparing
494 differentially expressed proteins among three different types of organ
495 metastasis samples (M-Lung, M-Liver, and M-Bone samples). M-Lung sEVs
496 showed upregulation of complement and coagulation cascades (i.e., CFD, C6,
497 and SERPING1) (Fisher's exact test, $p = 1.36\text{e-}02$), focal adhesion (i.e.,
498 ITGB3, ITGA2B, and VCL) (Fisher's exact test, $p = 2.63\text{e-}02$), and gap
499 junctions (i.e., TUBB2B, TUBB2A, and TUBB) (Fisher's exact test, $p =$

500 3.49e-02) ([Fig 5D, Appendix Table 5](#)). This finding is consistent with recent
501 reports that focal adhesion and regulation of actin cytoskeleton signaling are
502 involved in lung metastases of BC ([Zeng et al, 2019](#)). Interestingly, we found
503 that abundant metabolism-related pathways were enriched in M-Liver sEVs,
504 including fatty acid metabolism (*i.e.*, ACADVL, TECR, and ACSL5) (Fisher's
505 exact test, $p = 4.56e-02$), galactose metabolism (*i.e.*, GLB1, PGM5, and PGM1)
506 (Fisher's exact test, $p = 1.90e-02$), and starch and sucrose metabolism (*i.e.*,
507 AMY2A, AMY1A, and AMY2B) (Fisher's exact test, $p = 7.99e-05$) ([Fig 5D,](#)
508 [Appendix Table 5](#)). M-Bone sEV samples showed upregulation of protein
509 processing in the endoplasmic reticulum (*i.e.*, HSPH1, STT3A, RAD23A,
510 P4HB, and SEC23B) (Fisher's exact test, $p = 1.90e-02$) and nucleotide
511 excision repair (*i.e.*, RPA1, RAD23A, and CUL4B) (Fisher's exact test, $p =$
512 $3.31e-02$) ([Fig 5D, Appendix Table 5](#)). These results suggest that although
513 upregulated expression of adhesion, metabolism, and angiogenesis pathways
514 are common features of distant metastases, different metastases are biased.
515 M-Lung was the adhesion type, M-Liver was the metabolism type, and M-Bone
516 was the repair type.

517 We found that GMDS was specifically highly expressed in M-Liver, P4HB
518 was specifically highly expressed in M-Bone, and C6, TUBB, SERPING1 and
519 VCL were specifically highly expressed in M-Lung ([Fig 5E-G](#)). In the Tang et al.
520 BC cohort, the high expression of C6 and VCL was associated with poor
521 prognosis, suggesting that they may be survival markers for lung metastasis of
522 BC ([Tang et al., 2018](#)) ([Fig 5G and H, Appendix Fig S5B](#)).

523

524 **Potential BC-derived sEV molecules govern organ-specific metastasis**

525 Metastatic organotropism has remained an enigmatic issue. A recent study
526 showed that cancer-derived sEV uptake by organ-specific cells may govern
527 organ-specific metastasis ([Hoshino et al., 2015](#)). To examine whether sEV

528 proteins may guide the colonization of BC cells in specific organs, we
529 computed the abundance of specific cell types in each of the distant metastatic
530 samples using xCell ([Fig 6 A-D, Appendix Fig S6A and B, Appendix Table 6](#)).
531 The analysis showed an enhanced enrichment score of chondrocytes in
532 M-Bone sEVs, which was 6-fold, 1.75-fold, and 2.75-fold higher than that in
533 DCIS, M-Lung, and M-Liver sEVs, respectively ([Fig 6B](#)). In contrast, the
534 enrichment score of myocytes in M-Lung sEVs was upregulated by 2.20-fold,
535 5.32-fold, and 1.82-fold compared to that in DCIS, M-Liver, and M-Bone sEVs,
536 respectively ([Fig 6C](#)). Moreover, the enrichment score of fibroblasts in M-Liver
537 samples was significantly elevated by 4.10-fold, 12.77-fold, and 5.33-fold
538 compared to DCIS, M-Lung, and M-Bone samples, respectively ([Fig 6D](#))
539 (Student's *t* test, $p < 0.05$). Therefore, the organ specificity of sEV
540 biodistribution matched the organotropic distribution of tumor cells.

541 A previous study suggested that specific exosomal integrins were
542 associated with metastatic organotropism by dictating premetastatic niche
543 formation ([Hoshino et al., 2015](#)). In our dataset, we identified 25 integrins
544 enriched in M-Bone, M-Lung and M-Liver sEVs. Further analysis revealed that
545 ITGA1 was primarily detected in M-Bone sEVs, ITGA7 and ITGA9 were
546 abundantly enriched in M-Liver sEVs, and ITGB3 and ITGA2B were
547 abundantly enriched in M-Lung sEVs ([Fig 6E, Appendix Fig S6C and D](#)).

548 In addition to adhesive properties, sEV integrins can upregulate
549 promigratory and proinflammatory S100 molecules, which influence
550 premetastatic niche formation ([Hoshino et al., 2015](#)). To determine the pattern
551 of sEV-S100 molecules in tumor metastasis, we identified 16 S100 molecules
552 from M-Bone, M-Lung and M-Liver sEVs. The analysis revealed that S100A8
553 was primarily detected in sEV-derived proteins from M-Bone samples ([Fig 6E](#)).
554 S100A13 was primarily detected in M-Liver samples ([Appendix Fig S6C](#)).
555 Interestingly, S100A7A was abundantly present in sEV-derived proteins from

556 M-Lung samples ([Appendix Fig S6D](#)). In addition, we verified that ITGA1 was
557 significantly increased in M-Bone tissue samples in our additional BC cohort
558 (DCIS (n = 4), M-Liver (n = 4), M-Lung (n = 4), and M-Bone (n = 8)) (Student's t
559 test, $p < 0.05$) ([Fig 6F, Appendix Fig S6A](#)). Consistently, S100A8, S100A13,
560 and S100A7A were significantly increased in M-Bone, M-Liver, and M-Lung
561 tissue samples in our additional BC cohort (DCIS (n = 3), M-Liver (n = 3),
562 M-Lung (n = 4), and M-Bone (n = 8)) (Student's t test, $p < 0.05$) ([Fig 6G,](#)
563 [Appendix Fig S6B, E and F](#)). Taken together, these results suggested a
564 correlation between specific sEV integrins and S100 molecules and tissue
565 organotropism ([Fig 6H](#)).

566

567 **Discussion**

568 Blood tests remain the most readily accessible source for the early detection,
569 classification, and treatment guidance of BC patients. The billions of sEVs
570 circulating in blood could represent an essential component of liquid biopsy
571 ([Miyagi et al, 2021](#)). Despite previous studies on BC-derived sEVs ([Chen et al,](#)
572 [2017](#)), there is a lack of a comprehensive understanding of BC-specific sEV
573 characteristics and their composition and consensus on unique BC biomarkers
574 due to limited sEV proteome data from human samples.

575 Here, we performed a large-scale comprehensive analysis of sEV
576 proteomes from 167 serum samples obtained from patients with BC, patients
577 with BD, and healthy individuals. Firstly, we applied this eight-protein (STAT1,
578 PON1, APOC1, APOC2, MMP2, IGHV4-39, IGHV3-53, and ADD2) identifier to
579 sEV samples of the independent test set, the model achieved 97% sensitivity
580 and 83% specificity in the diagnosis of BC. This study may provide reference
581 value for differentiating benign and malignant breast tumors using serum in the
582 future.

583 BC is a heterogeneous disease in terms of molecular alterations, cellular
584 compositions, and clinical outcomes (Wagner *et al*, 2019). Therefore, the
585 classification of molecular subtype is an important tool for treatment and
586 prognosis evaluation. Clinically, based on the expression of ER, PR, Her2, and
587 Ki67 by IHC, BC is categorized into various molecular subtypes (Holm *et al*,
588 2021). However, the patterns of these biological indicators may change during
589 the course of BC progression, so they may be used to adjust treatment
590 strategies accordingly (Ju *et al*, 2018). Thus, we speculated that an sEV-based
591 in vitro diagnostic strategy is an emerging approach complementary to tissue
592 pathology. Unfortunately, we failed to confirm the existence of ER, PR, HER2,
593 and Ki67 in the serum sEV datasets, indicating that they may either have a low
594 abundance or be lacking in serum sEVs. However, further analyses of
595 differentially regulated sEV-derived proteins in luminal A, luminal B,
596 Her2-enriched, and TNBC samples clearly showed significant differences in
597 the proteins and biological pathways involved. By comparing proteomic
598 profiles among diverse molecular subtypes of BC, we constructed a 61-protein
599 classifier. The ROC curve derived from the 61-protein signature showed good
600 sensitivity and specificity, with an AUC of 1.0. Then, the 61-protein signature
601 was validated in the test set, resulting in a ROC curve with an AUC of 0.875.
602 This work may provide reference value for the diagnosis of clinical subtypes of
603 BC using serum in the future.

604 An accurate preoperative assessment of LN status is one of the most
605 important prognostic factors determining the long-term outcome (Banerjee *et*
606 *al*, 2004). Although noninvasive imaging modalities such as ultrasonography,
607 computed tomography, and magnetic resonance imaging have been widely
608 adopted for the clinical evaluation of LN status before surgery, the sensitivity of
609 these modalities is not satisfactory (Song, 2020). In the present study, PCA
610 demonstrated a clear distinction between IBC_LN samples and IBC_Pure

611 samples, which further highlighted the diverse proteomic patterns between
612 IBC with or without LN metastasis. Hence, we constructed an sEV-based
613 protein signature that predicted LN metastasis at the serum sEV proteomic
614 level based on machine learning classification, showing 81% and 81%
615 specificity and sensitivity, respectively. In addition, we used the CPTAC BC
616 dataset ($n = 77$) as an external validation test set and achieved 100%
617 sensitivity and 100% specificity. These data suggest that tumor-associated
618 sEV proteins can serve as biomarkers for early-stage cancer detection of LN
619 metastasis.

620 Previous studies showed that adhesion and ECM molecules, such as
621 integrins, tenascin and periostin, were associated with distant metastasis of
622 disseminating cancer cells (Fukuda *et al*, 2015; Oskarsson *et al*, 2011;
623 Radisky *et al*, 2002; Weaver *et al*, 1997). Regarding the research on this
624 aspect, Hoshino et al. defined a specific repertoire of integrins expressed on
625 cancer-derived exosomes, distinct from cancer cells, that dictate metastatic
626 tropism (Hoshino *et al*, 2015). In our study, we identified 25 integrins
627 abundantly present in human bone-, lung- and liver-tropic metastatic sEVs by
628 quantitative mass spectrometry. Notably, we found that sEVs expressing
629 ITGA1 may specifically bind to chondrocytes, which are related to bone
630 tropism. sEVs expressing ITGB3 and ITGA2B may specifically bind to
631 lung-resident myocytes, mediating lung tropism. However, sEVs expressing
632 ITGA7 and ITGA9 may bind liver-resident fibroblasts, governing liver tropism.
633 Moreover, we revealed that the pattern of sEV-S100 molecules was correlated
634 with tissue organotropism and could serve as a biomarker for distant
635 metastasis (Fig 6H).

636 In conclusion, our findings show that proteins carried by BC-derived sEVs
637 could be used as a novel, minimally invasive liquid biopsy tool for the early
638 detection of BC, as well as for discriminating molecular subtypes, LN

639 involvement status, and organotropic metastasis. These findings could
640 advance the implementation of routine serum sEV-based screening in the
641 clinic.

642

643 **Materials and Methods**

644 **Sample collection**

645 Serum sample collection was approved by Shanghai General Hospital
646 Shanghai Jiao Tong University School of Medicine (Shanghai, China, permit
647 number [2017]KY053), and all patients provided proper consent before
648 samples were collected. Serum samples were collected between March 2011
649 and August 2019. Detailed information is shown in Appendix Table 1.

650

651 **sEV extraction**

652 Isolation of exosomes was performed by differential ultracentrifugation
653 following established centrifugation times and parameters (An *et al*, 2018; Gao
654 *et al*, 2021; Lakhter *et al*, 2018; Takov *et al*, 2019; Thery *et al*, 2006). Firstly, 1
655 mL serum was thawed on ice and centrifuged at 3,000 g for 10 min at 4°C. The
656 supernatant was removed, and large vesicles were removed with another
657 centrifugation step at 10,000 g for 20 min at 4°C and the supernatant was
658 diluted with 25 mL PBS and filtered through a 0.22 µm centrifugal filter device
659 to remove any large contaminating vesicles. Secondly, filtered serum was
660 centrifuge at an overspeed of 150,000 g for 4 h, the milky white floating object
661 at the top was sucked away. Thirdly, centrifuged material was resuspended
662 with 25 mL PBS and further centrifuged at 4°C for 150,000 g for 2 h. Fourthly,
663 supernatant was discarded and 200 µL solution was retained at the bottom to
664 resuspend the precipitate. Isolation and relative purity of the sEVs were
665 confirmed by NTA, transmission electron microscopy (TEM) and immunoblot.

666

667 **sEVs protein extraction and tryptic digestion**

668 sEV samples (typically 5 µg, adjusted based on BCA measurements) were
669 dried by vacuum centrifugation and redissolved in 30–50 µL of 8 M urea/50
670 mM ammonium bicarbonate/10 mM DTT. Following lysis and reduction,
671 proteins were alkylated using 20 or 30 mM iodoacetamide (Sigma, St. Louis,
672 MO, USA). Proteins were digested with trypsin (Promega, Madison, WI, USA)
673 at an enzyme-to-protein mass ratio of 1:50 overnight at 37°C, and peptides
674 were then extracted and dried (SpeedVac, Eppendorf). Peptides were
675 desalted and concentrated using Empore C₁₈-based solid phase extraction
676 prior to analysis by high resolution/high mass accuracy reversed-phase (C₁₈)
677 nano-LC-MS/MS.

678

679 **Liquid chromatography**

680 We employed an EASY-nLC 1200 ultra-high-pressure system liquid
681 chromatography system (Thermo Fisher Scientific). Peptides were separated
682 within 75 min at a flow rate of 600 nL/min on a 150 µm I.D. × 15 cm column
683 with a laser-pulled electrospray emitter packed with 1.9 µm ReproSil-Pur 120
684 C₁₈-AQ particles (Dr. Maisch). Mobile phases A and B were water and
685 acetonitrile with 0.1 vol% FA, respectively. The %B was linearly increased
686 from 15 to 30% within 75 min.

687

688 **Mass spectrometry**

689 Samples were analysed on a Q-Exactive-HF mass spectrometer (Thermo
690 Fisher Scientific) via a nanoelectrospray ion source (Thermo Fisher Scientific).
691 The mass spectrometer was operated in data-independent mode for ion
692 mobility-enhanced spectral library generation. Typically, 75% of samples were
693 injected. The peptides were dissolved in 12 µL of loading buffer (0.1% formic

694 acid), and 9 μ L was loaded onto a 100 μ m I.D. \times 2.5 cm C₁₈ trap column at a
695 maximum pressure of 280 bar with 14 μ L of solvent A (0.1% formic acid). The
696 DIA method consisted of an MS1 scan from 300–1400 m/z at 60 k resolution
697 (AGC target 4e5 or 50 ms). Then, 30 DIA segments were acquired at 15 k
698 resolution with an AGC target of 5e4 or 22 ms for maximal injection time. The
699 setting “injections for all available parallelizable time” was enabled. HCD
700 fragmentation was set to a normalized collision energy of 30%. The spectra
701 were recorded in profile mode. The default charge state for the MS2 scan was
702 set to 3.

703

704 **Peptide identification and protein quantification**

705 All data were processed using Firmiana ([Feng et al, 2017](#)). The DIA data were
706 searched against the UniProt human protein database using FragPipe (v.12.1)
707 with MSFragger (2.2) ([Kong et al, 2017](#)). The mass tolerances were 20 ppm
708 for precursor and 50 mmu for product ions. Up to two missed cleavages were
709 allowed. The search engine set cysteine carbamidomethylation as a fixed
710 modification and N-acetylation and oxidation of methionine as variable
711 modifications. Precursor ion score charges were limited to +2, +3, and +4. The
712 data were also searched against a decoy database so that protein
713 identifications were accepted at a false discovery rate (FDR) of 5%.

714 The DIA data was analysed using DIANN (v.1.7.0) ([Demichev et al, 2020](#)).
715 The quantification of identified peptides was calculated as the average
716 chromatographic fragment ion peak areas across all reference spectra
717 libraries. Label-free protein quantifications were calculated using a label-free,
718 intensity-based absolute quantification (iBAQ) approach ([Zhang et al, 2012](#)).
719 We calculated the peak area values as parts of the corresponding proteins.
720 The fraction of total (FOT) was used to represent the normalized abundance of
721 a particular protein across samples. FOT was defined as a protein’s iBAQ

722 divided by the total iBAQ of all identified proteins within a sample. The FOT
723 values were multiplied by 10^5 for ease of presentation, and missing values
724 were imputed to 10^{-5} . The raw proteomics data files are hosted by iProX and
725 can be accessed at <https://www.iprox.cn> (Project ID: IPX0003429000).

726

727 **Statistical analysis**

728 To impute the proteomic data, we first screened more than 50% of the
729 identified proteins in each group and divided the data into two parts. When the
730 protein detection rate was < 50%, the missing value was replaced with one
731 tenth of the minimum value. For these proteins, no imputation was applied.
732 When the protein detection rate was > 0.5, the missing value was probably due
733 to the detection accuracy limitation of LC/MS. In this case, we first calculated
734 the missing probability of a protein using the R package “impute”
735 (<https://git.bioconductor.org/packages/impute>) based on the K-NN algorithm.
736 Meta-analysis-based discovery and validation of survival biomarkers was
737 carried out using Kaplan-Meier Plotter (<http://kmplot.com/analysis/>).

738

739 **Principal component analysis (PCA)**

740 The imputed data were then normalized using the LogNorm algorithm. The
741 PCA function of the R package “factoextra”
742 (<https://cran.r-project.org/web/packages/factoextra/index.html>) was used to
743 implement unsupervised clustering analysis. The 95% confidence coverage
744 was represented by a coloured ellipse for each group and was calculated
745 based on the mean and covariance of points in the different groups. 1,734,
746 1,038, and 1,116 proteins (features) were used for PCA to illustrate the global
747 proteomic differences among BC (n = 126), BD (n = 17) and HD (n = 24), the
748 global proteomic differences among the luminal A (n = 20), luminal B (n = 50),
749 Her2-enriched (n = 21), and triple-negative breast cancer (TNBC) (n = 23)

750 subtypes, and the global proteomic differences between IBC_Pure (n = 54)
751 and IBC_LN (n = 51) (Appendix Fig S2A, 3A, 4A).

752

753 **Global Heatmap**

754 Each gene expression value in the global proteomic expression matrix was
755 transformed to a z-score across all the samples. The z-score-transformed
756 matrix was clustered using the R package “pheatmap”
757 (<https://cran.r-project.org/web/packages/pheatmap/index.html>).

758

759 **Pathway enrichment analysis**

760 Pathway enrichment analysis was performed by DAVID (<https://david.ncifcrf.gov>) and ConsensusPathDB (<http://cpdb.molgen.mpg.de>), and
761 significance in the pathway enrichment analysis was determined by Fisher's
762 exact test on the basis of Kyoto Encyclopedia of Genes and Genomes (KEGG)
763 pathways and categorical annotations, including Gene Ontology (GO)
764 biological process (GOBP) terms and Reactome (<https://reactome.org>).

766

767 **Multiplex immunohistochemistry (mIHC) with tyramide signal 768 amplification**

769 Tissues or cells were prepared for detection with kits using standard fixation
770 and embedding techniques. Each slide was baked in an oven at 65°C for 1 h,
771 dewaxed with xylene (3 x 10 min) and rehydrated through a graded series of
772 ethanol solutions (100% ethanol, 95% ethanol, 75% ethanol, 50% ethanol) and
773 each step took 5 min. After rehydration, immersing the slides in the boiled
774 appropriate AR buffer, and placed in a microwave for 15 min at 20% power.
775 After naturally cooling to room temperature, washing the slides with TBST.
776 Then we used blocking buffer to incubate tissue section for 10 min. The
777 blocking buffer was drained, and Primary Antibody Working Solution was

778 applied. CD45RA (1:3000; ab755; Abcam), CD34 (1:6000; ab81289; Abcam),
779 CD38 (1:800; ab108403; Abcam), CD71 (1:800; ab214039; Abcam), and
780 CDH1 (1:10000; ab181860; Abcam) were used. The slides were incubated at
781 4°C overnight or at room temperature for 1 h; the time may be adjusted
782 according to different characteristics of the antibody. After washing the slides
783 with TBST, incubate them in polymer HRP Ms+Rb for 15 min at room
784 temperature. Washing the slides twice again. Working Solution (100–300 µL)
785 was pipetted onto each slide at room temperature for 10 min. And then
786 immersed in the appropriate AR buffer. This microwave step strips the
787 primary-secondary-HRP complex, allowing the introduction of the next primary
788 antibody. For detection of the next target with fluorophores, we restarted the
789 protocol at blocking. Once all 5 targets were labelled, Opal Polaris 780
790 labelling was continued.

791 Dropping TSA-DIG Working Solution onto slides and incubating at room
792 temperature for 10 min. Repeat the previous microwave repair steps after
793 washing the slides. Polaris 780 Working Solution was pipetted onto each slide
794 and incubated at room temperature for 1 h. DAPI working solution was applied
795 for 5 min. The slides were washed twice again. After the slides were slightly
796 dry, a super quench sealing tablet was added to the slides with a pipette, and
797 the sample area was immersed.

798

799 **Immunohistochemistry (IHC)**

800 Firstly, the sections were baked at 65°C for 1 h and incubated in xylene three
801 times for 10 min each time. Then, the sections were hydrated by a graded
802 series of ethanol (100% ethanol, 95% ethanol, 75% ethanol, 50% ethanol and
803 ddH₂O), and each step took 5 min. Antigen retrieval was conducted using a
804 microwave oven: 3 min at 100% power and 15 min at 20% power filled with 10
805 mM sodium citrate buffer (pH 6.0). After naturally cooling to room temperature

806 and washed in ddH₂O, we blocked the sections with 5% normal goat serum for
807 10 min, incubated sections in 3% H₂O₂ for 10 min at room temperature, and
808 washed the sections twice in PBS for 5 min. The following antibodies were
809 diluted in the appropriate concentrations: PPARg (1:10000; ab59256; Abcam),
810 S100A8 (1:800; 15792-1-AP; Proteintech), S100A13 (1:1200; ab109252;
811 Abcam), S100A7A (1:400; DF8517; Affinity), and ITGA1 (1:300; 22146-1 AP;
812 Proteintech). These antibodies were incubated with the sections overnight at
813 4°C.

814 The next day, after washing the sections twice in PBS, we used an IHC Kit
815 (ZSGB-BIO, Beijing, China, Cat# SP-9000), incubated the sections with
816 biotin-labelled secondary antibody for 15 min. After washing sections twice in
817 PBS, incubating the sections with horseradish enzyme-labelled Streptomyces
818 ovalbumin working solution for 15 min. Finally, We used DAB solution to stain
819 the tissues. Then, using haematoxylin to stain nuclears and washing them in
820 ddH₂O. Finally, the sections were dehydrated by graded ethanol (50% ethanol,
821 75% ethanol, 95% ethanol, and 100% ethanol). We dried the slides in a fume
822 cupboard for at least 20 min and mounted coverslips.

823

824 **Acknowledgments**

825 This work was supported by the National Natural Science Funds (grant
826 numbers 82073269, 81772802 and M-0349), Shanghai Science and
827 Technology Innovation Action Plan (grant number 20XD1402800), Clinical
828 Research Plan of SHDC (grant number SHDC2020CR2065B), Clinical
829 Research Innovation Plan of Shanghai General Hospital (grant number
830 CTCCR-2016B05), National Key R&D Program of China (grant numbers
831 2017YFA0505102, 2016YFA0502500, 2018YFA0507501, and
832 2017YFC0908404), National Natural Science Foundation of China (grant
833 numbers 31770886, 1972933, and 31700682), Science and Technology

834 Commission of Shanghai Municipality (grant number 2017SHZDZX01), Major
835 Project of Special Development Funds of Zhangjiang National Independent
836 Innovation Demonstration Zone (grant number ZJ2019-ZD-004).

837

838 **Author Contributions**

839 H.X.W. contributed to idea, conception, and study design. H.X.W., C.D., and
840 H.W.Z. wrote the paper and supervised the project. G.F.X., S.Q.D. and M.J.H.
841 conducted the mass spectrometry analysis. W.Y.H. and the other authors
842 carried out all the remaining experiments. All authors discussed the results,
843 commented on the project and approved the manuscript.

844

845 **References**

846 An M, Wu J, Zhu J, Lubman DM (2018) Comparison of an Optimized
847 Ultracentrifugation Method versus Size-Exclusion Chromatography for
848 Isolation of Exosomes from Human Serum. *J Proteome Res* 17: 3599-3605
849 Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular
850 heterogeneity landscape. *Genome Biol* 18: 220
851 Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011)
852 Tumour microvesicles contain retrotransposon elements and amplified
853 oncogene sequences. *Nat Commun* 2: 180
854 Banerjee M, George J, Song EY, Roy A, Hryniuk W (2004) Tree-based model
855 for breast cancer prognostication. *J Clin Oncol* 22: 2567-2575
856 Becker M, Weinberger T, Chandy A, Schmukler S (2016) Depression During
857 Pregnancy and Postpartum. *Curr Psychiatry Rep* 18: 32
858 Cao Y (2019) Adipocyte and lipid metabolism in cancer drug resistance. *J Clin
859 Invest* 129: 3006-3017
860 Cassetta L, Pollard JW (2017) Repolarizing macrophages improves breast
861 cancer therapy. *Cell Res* 27: 963-964
862 Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B,
863 Sun H et al (2018) Exosomal PD-L1 contributes to immunosuppression and is
864 associated with anti-PD-1 response. *Nature* 560: 382-386
865 Chen IH, Xue L, Hsu CC, Paez JS, Pan L, Andaluz H, Wendt MK, Iliuk AB, Zhu
866 JK, Tao WA (2017) Phosphoproteins in extracellular vesicles as candidate
867 markers for breast cancer. *Proc Natl Acad Sci U S A* 114: 3175-3180

868 Choi Y, Park U, Koo HJ, Park JS, Lee DH, Kim K, Choi J (2021)
869 Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated
870 nanoparticles bound to selective glycans. *Biosens Bioelectron* 177: 112980
871 Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular
872 interactions of exosomes and other extracellular vesicles. *Annu Rev Cell Dev
873 Biol* 30: 255-289

874 Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A,
875 Hoshino A, Mark MT, Molina H *et al* (2015) Pancreatic cancer exosomes
876 initiate pre-metastatic niche formation in the liver. *Nat Cell Biol* 17: 816-826
877 Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M (2020) DIA-NN:
878 neural networks and interference correction enable deep proteome coverage
879 in high throughput. *Nat Methods* 17: 41-44

880 Fang X, Duan Y, Adkins GB, Pan S, Wang H, Liu Y, Zhong W (2018) Highly
881 Efficient Exosome Isolation and Protein Analysis by an Integrated
882 Nanomaterial-Based Platform. *Anal Chem* 90: 2787-2795

883 Feng J, Ding C, Qiu N, Ni X, Zhan D, Liu W, Xia X, Li P, Lu B, Zhao Q *et al*
884 (2017) Firmiana: towards a one-stop proteomic cloud platform for data
885 processing and analysis. *Nat Biotechnol* 35: 409-412

886 Fukuda K, Sugihara E, Ohta S, Izuhara K, Funakoshi T, Amagai M, Saya H
887 (2015) Periostin Is a Key Niche Component for Wound Metastasis of
888 Melanoma. *PLoS One* 10: e0129704

889 Gao Y, Chen Y, Wang L, Li C, Ge W (2021) Serum-derived extracellular
890 vesicles inhibit osteoclastogenesis in active-phase patients with SAPHO
891 syndrome. *Ther Adv Musculoskelet Dis* 13: 1759720X211006966

892 Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK (2018)
893 The Platelet Lifeline to Cancer: Challenges and Opportunities. *Cancer Cell* 33:
894 965-983

895 Holm J, Yu NY, Johansson A, Ploner A, Hall P, Lindstrom LS, Czene K (2021)
896 Concordance of Immunohistochemistry-Based and Gene Expression-Based
897 Subtyping in Breast Cancer. *JNCI Cancer Spectr* 5: pkaa087

898 Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M,
899 Molina H, Kohsaka S, Di Giannatale A, Ceder S *et al* (2015) Tumour exosome
900 integrins determine organotropic metastasis. *Nature* 527: 329-335

901 Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, Zambirinis CP,
902 Rodrigues G, Molina H, Heissel S *et al* (2020) Extracellular Vesicle and
903 Particle Biomarkers Define Multiple Human Cancers. *Cell* 182: 1044-1061
904 e1018

905 Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A,
906 Colone M, Arancia G, Gentile M *et al* (2005) Human colorectal cancer cells
907 induce T-cell death through release of proapoptotic microvesicles: role in
908 immune escape. *Gastroenterology* 128: 1796-1804

909 Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle
910 formation during reticulocyte maturation. Association of plasma membrane
911 activities with released vesicles (exosomes). *J Biol Chem* 262: 9412-9420
912 Ju G, Zhu R, Zhao H, Ye F, Zhang L, Lin C, Lu Y, Zhang X, Li N, Xue P *et al*
913 (2018) The discordance pattern of molecular sub-types between primary and
914 metastatic sites in Chinese breast cancer patients. *Int J Clin Exp Pathol* 11:
915 5938-5947
916 Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC,
917 Borras FE, Breakefield X, Budnik V *et al* (2012) Vesiclepedia: a compendium
918 for extracellular vesicles with continuous community annotation. *PLoS Biol* 10:
919 e1001450
920 Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH,
921 Jang SC *et al* (2013) EVpedia: an integrated database of high-throughput data
922 for systemic analyses of extracellular vesicles. *J Extracell Vesicles* 2
923 Kim JS, Chang JW, Park JK, Hwang SG (2012) Increased aldehyde reductase
924 expression mediates acquired radioresistance of laryngeal cancer cells via
925 modulating p53. *Cancer Biol Ther* 13: 638-646
926 Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI
927 (2017) MSFagger: ultrafast and comprehensive peptide identification in mass
928 spectrometry-based proteomics. *Nat Methods* 14: 513-520
929 Kralj-Iglic V (2012) Stability of membranous nanostructures: a possible key
930 mechanism in cancer progression. *Int J Nanomedicine* 7: 3579-3596
931 Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA, Sims
932 EK (2018) Beta cell extracellular vesicle miR-21-5p cargo is increased in
933 response to inflammatory cytokines and serves as a biomarker of type 1
934 diabetes. *Diabetologia* 61: 1124-1134
935 Laudato S, Patil N, Abba ML, Leupold JH, Benner A, Gaiser T, Marx A,
936 Allgayer H (2017) P53-induced miR-30e-5p inhibits colorectal cancer invasion
937 and metastasis by targeting ITGA6 and ITGB1. *Int J Cancer* 141: 1879-1890
938 Lee J, Kwon MH, Kim JA, Rhee WJ (2018) Detection of exosome miRNAs
939 using molecular beacons for diagnosing prostate cancer. *Artif Cells Nanomed
940 Biotechnol* 46: S52-S63
941 Li A, Zhang T, Zheng M, Liu Y, Chen Z (2017a) Exosomal proteins as potential
942 markers of tumor diagnosis. *J Hematol Oncol* 10: 175
943 Li H, Gao C, Zhuang J, Liu L, Yang J, Liu C, Zhou C, Feng F, Liu R, Sun C
944 (2021) An mRNA characterization model predicting survival in patients with
945 invasive breast cancer based on The Cancer Genome Atlas database. *Cancer
946 Biomark* 30: 417-428
947 Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D (2017b) Role of exosomal
948 proteins in cancer diagnosis. *Mol Cancer* 16: 145
949 Liu NQ, Stingl C, Look MP, Smid M, Braakman RB, De Marchi T, Sieuwerts
950 AM, Span PN, Sweep FC, Linderholm BK *et al* (2014) Comparative proteome

951 analysis revealing an 11-protein signature for aggressive triple-negative breast
952 cancer. *J Natl Cancer Inst* 106: djt376

953 Liu X, Li J, Cadilha BL, Markota A, Voigt C, Huang Z, Lin PP, Wang DD, Dai J,
954 Kranz G *et al* (2019a) Epithelial-type systemic breast carcinoma cells with a
955 restricted mesenchymal transition are a major source of metastasis. *Sci Adv* 5:
956 eaav4275

957 Liu Y, Wang H, Wang X, Liu J, Li J, Wang X, Zhang Y, Bai Z, Zhou Q, Wu Y *et*
958 *al* (2021) Prevalence and reclassification of BRCA1 and BRCA2 variants in a
959 large, unselected Chinese Han breast cancer cohort. *J Hematol Oncol* 14: 18

960 Liu Z, Wang Y, Wang L, Yao B, Sun L, Liu R, Chen T, Niu Y, Tu K, Liu Q
961 (2019b) Long non-coding RNA AGAP2-AS1, functioning as a competitive
962 endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p
963 and promotes proliferation and metastasis in hepatocellular carcinoma. *J Exp*
964 *Clin Cancer Res* 38: 194

965 Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular Vesicles: Unique
966 Intercellular Delivery Vehicles. *Trends Cell Biol* 27: 172-188

967 Mertins P, Mani DR, Ruggles KV, Gillette MA, Clouser KR, Wang P, Wang X,
968 Qiao JW, Cao S, Petralia F *et al* (2016) Proteogenomics connects somatic
969 mutations to signalling in breast cancer. *Nature* 534: 55-62

970 Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM (2015) Exosome
971 mediated communication within the tumor microenvironment. *J Control*
972 *Release* 219: 278-294

973 Miyagi T, Miyata S, Tagami K, Hiratsuka Y, Sato M, Takeda I, Kohata K,
974 Satake N, Shimokawa H, Inoue A (2021) Prognostic model for patients with
975 advanced cancer using a combination of routine blood test values. *Support*
976 *Care Cancer*

977 Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG,
978 Downey RJ, Manova-Todorova K, Brogi E, Massague J (2011) Breast cancer
979 cells produce tenascin C as a metastatic niche component to colonize the
980 lungs. *Nat Med* 17: 867-874

981 Ozer T, Geiss BJ, Henry CS (2020) Review-Chemical and Biological Sensors
982 for Viral Detection. *J Electrochem Soc* 167: 037523

983 Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno
984 G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C *et al* (2012)
985 Melanoma exosomes educate bone marrow progenitor cells toward a
986 pro-metastatic phenotype through MET. *Nat Med* 18: 883-891

987 Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for
988 pre-metastatic niche formation: old sayings and new thoughts. *Semin Cancer*
989 *Biol* 21: 139-146

990 Peng J, Chen J, Xie F, Bao W, Xu H, Wang H, Xu Y, Du Z (2019)
991 Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal

992 micelles for the combinatorial treatment of HER2-positive breast cancer.
993 *Biomaterials* 222: 119420

994 Radisky D, Muschler J, Bissell MJ (2002) Order and disorder: the role of
995 extracellular matrix in epithelial cancer. *Cancer Invest* 20: 139-153

996 Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes,
997 microvesicles, and friends. *J Cell Biol* 200: 373-383

998 Rontogianni S, Synadaki E, Li B, Liefaard MC, Lips EH, Wesseling J, Wu W,
999 Altelaar M (2019) Proteomic profiling of extracellular vesicles allows for human
1000 breast cancer subtyping. *Commun Biol* 2: 325

1001 Sahoo SS, Lombard JM, Ius Y, O'Sullivan R, Wood LG, Nahar P, Jaaback K,
1002 Tanwar PS (2018) Adipose-Derived VEGF-mTOR Signaling Promotes
1003 Endometrial Hyperplasia and Cancer: Implications for Obese Women. *Mol
1004 Cancer Res* 16: 309-321

1005 Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. *CA: a
1006 cancer journal for clinicians* 71: 7-33

1007 Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M,
1008 Curry WT, Jr., Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma
1009 microvesicles transport RNA and proteins that promote tumour growth and
1010 provide diagnostic biomarkers. *Nat Cell Biol* 10: 1470-1476

1011 Song BI (2020) Nomogram using F-18 fluorodeoxyglucose positron emission
1012 tomography/computed tomography for preoperative prediction of lymph node
1013 metastasis in gastric cancer. *World J Gastrointest Oncol* 12: 447-456

1014 Takov K, Yellon DM, Davidson SM (2019) Comparison of small extracellular
1015 vesicles isolated from plasma by ultracentrifugation or size-exclusion
1016 chromatography: yield, purity and functional potential. *J Extracell Vesicles* 8:
1017 1560809

1018 Tang W, Zhou M, Dorsey TH, Prieto DA, Wang XW, Ruppin E, Veenstra TD,
1019 Ambs S (2018) Integrated proteotranscriptomics of breast cancer reveals
1020 globally increased protein-mRNA concordance associated with subtypes and
1021 survival. *Genome Med* 10: 94

1022 Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y,
1023 Hoshino A, Brazier H, Xiang J *et al* (2014) Double-stranded DNA in exosomes:
1024 a novel biomarker in cancer detection. *Cell Res* 24: 766-769

1025 Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and
1026 characterization of exosomes from cell culture supernatants and biological
1027 fluids. *Curr Protoc Cell Biol* Chapter 3: Unit 3 22

1028 Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of
1029 immune responses. *Nat Rev Immunol* 9: 581-593

1030 Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007)
1031 Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism
1032 of genetic exchange between cells. *Nat Cell Biol* 9: 654-659

1033 Vallejos CS, Gomez HL, Cruz WR, Pinto JA, Dyer RR, Velarde R, Suazo JF,
1034 Neciosup SP, Leon M, de la Cruz MA *et al* (2010) Breast cancer classification
1035 according to immunohistochemistry markers: subtypes and association with
1036 clinicopathologic variables in a peruvian hospital database. *Clin Breast Cancer*
1037 10: 294-300

1038 Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C,
1039 Dykgers A, Rees M, Ramaswamy A, Muenst S, Soysal SD *et al* (2019) A
1040 Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast
1041 Cancer. *Cell* 177: 1330-1345 e1318

1042 Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C,
1043 Pacey S, Baird R, Rosenfeld N (2017) Liquid biopsies come of age: towards
1044 implementation of circulating tumour DNA. *Nat Rev Cancer* 17: 223-238

1045 Wang H, Song X, Huang Q, Xu T, Yun D, Wang Y, Hu L, Yan Y, Chen H, Lu D
1046 *et al* (2019a) LGALS3 Promotes Treatment Resistance in Glioblastoma and Is
1047 Associated with Tumor Risk and Prognosis. *Cancer Epidemiol Biomarkers
Prev* 28: 760-769

1048 Wang HX, Gires O (2019) Tumor-derived extracellular vesicles in breast
1049 cancer: From bench to bedside. *Cancer Lett* 460: 54-64

1050 Wang J, Liu Z, Zhang S, Wang X, Bai H, Xie M, Dong F, Ema H (2019b)
1051 Lineage marker expression on mouse hematopoietic stem cells. *Exp Hematol*
1052 76: 13-23 e12

1053 Wang M, Ji S, Shao G, Zhang J, Zhao K, Wang Z, Wu A (2018) Effect of
1054 exosome biomarkers for diagnosis and prognosis of breast cancer patients.
1055 *Clin Transl Oncol* 20: 906-911

1056 Wang YT, Shi T, Srivastava S, Kagan J, Liu T, Rodland KD (2020) Proteomic
1057 Analysis of Exosomes for Discovery of Protein Biomarkers for Prostate and
1058 Bladder Cancer. *Cancers (Basel)* 12

1059 Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell
1060 MJ (1997) Reversion of the malignant phenotype of human breast cells in
1061 three-dimensional culture and in vivo by integrin blocking antibodies. *J Cell
Biol* 137: 231-245

1062 Wu D, Yan J, Shen X, Sun Y, Thulin M, Cai Y, Wik L, Shen Q, Oelrich J, Qian
1063 X *et al* (2019) Profiling surface proteins on individual exosomes using a
1064 proximity barcoding assay. *Nat Commun* 10: 3854

1065 Xavier-Ferrucio J, Scanlon V, Li X, Zhang PX, Lozovatsky L, Ayala-Lopez N,
1066 Tebaldi T, Halene S, Cao C, Fleming MD *et al* (2019) Low iron promotes
1067 megakaryocytic commitment of megakaryocytic-erythroid progenitors in
1068 humans and mice. *Blood* 134: 1547-1557

1069 Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ (2016) Extracellular
1070 vesicle isolation and characterization: toward clinical application. *J Clin Invest*
1071 126: 1152-1162

1072

1073

1074 Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borrás FE, Buzas EI, Buzas
1075 K, Casal E, Cappello F, Carvalho J *et al* (2015) Biological properties of
1076 extracellular vesicles and their physiological functions. *J Extracell Vesicles* 4:
1077 27066

1078 Yin ZQ, Liu JJ, Xu YC, Yu J, Ding GH, Yang F, Tang L, Liu BH, Ma Y, Xia YW
1079 *et al* (2014) A 41-gene signature derived from breast cancer stem cells as a
1080 predictor of survival. *J Exp Clin Cancer Res* 33: 49

1081 Yoneda K, Imanishi N, Ichiki Y, Tanaka F (2019) A liquid biopsy in primary lung
1082 cancer. *Surg Today* 49: 1-14

1083 Zeng Y, Cao Y, Liu L, Zhao J, Zhang T, Xiao L, Jia M, Tian Q, Yu H, Chen S *et*
1084 *al* (2019) SEPT9_i1 regulates human breast cancer cell motility through
1085 cytoskeletal and RhoA/FAK signaling pathway regulation. *Cell Death Dis* 10:
1086 720

1087 Zhang W, Zhang J, Xu C, Li N, Liu H, Ma J, Zhu Y, Xie H (2012) LFQuant: a
1088 label-free fast quantitative analysis tool for high-resolution LC-MS/MS
1089 proteomics data. *Proteomics* 12: 3475-3484

1090 Zhang Y, Wang XF (2015) A niche role for cancer exosomes in metastasis.
1091 *Nat Cell Biol* 17: 709-711

1092 Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, Ju G, Huang J, Ge W, Chen Y *et al*
1093 (2019) TSPAN8 promotes cancer cell stemness via activation of sonic
1094 Hedgehog signaling. *Nat Commun* 10: 2863

1095

1096 **Figure Legends**

1097 **Figure 1. Overview of the proteomic characterization of breast cancer**

1098 **sEVs.**

1099 A Overview of the experimental design and the number of samples for
1100 proteomics analyses.

1101 B Clinical parameters are indicated in the heatmap.

1102 C Schematic diagram of the extraction process of serum-derived sEVs.

1103 D Representative TEM images of purified EVs. Scale bar–100 nm.

1104 E Immunoblots showing the expression levels of ALIX (PDCD6IP), CD63, CD9,
1105 and TSG101 in the purified EVs.

1106 F Cumulative number of protein identifications. Red denotes BC samples (n =
1107 126), yellow denotes BD samples (n = 17), and blue denotes HD samples (n
1108 = 24).

1109 G The number of proteins identified in 167 samples. Red denotes BC samples
1110 (n = 126), yellow denotes BD samples (n = 17), and blue denotes HD
1111 samples (n = 24).

1112 H Venn diagram depicting the numbers of proteins detected in BC-, BD-, and
1113 HD-sEVs.

1114

1115 **Figure 2. Proteomics features of BC-, BD- and HD-derived sEVs.**

1116 A The bubble plot indicates the distinctive biological pathways of BC, BD, and
1117 HD. Red box, BC; yellow box, BD; blue box, HD. See Table S2.

1118 B Differentially expressed proteins in the distinctive biological pathways of BC,
1119 BD, and HD. Fold change > 2 and one-way ANOVA $p < 0.05$.

1120 C Two proteins (MMP2 and TYMP) differentially expressed in BC, BD, and HD
1121 (p value from Student's t test) and their association with clinical outcomes in
1122 BC (2018, Tang et al., BC cohort, n = 118) (p value from log rank test).

1123 D sEV DAMP molecules were enriched in BC and found in > 50% of BC
1124 samples, with > 2-fold difference and one-way ANOVA $p < 0.05$.

1125 E DAMP molecules enriched in BC-sEVs were significantly associated with
1126 clinical outcomes in BC (2018, Tang et al., BC cohort, n = 118) (p value from
1127 log rank test).

1128 F Distinctive tumour microenvironment in BC. See Table S2.

1129 G Functions of BC-derived sEVs. These sEVs impact the tumour
1130 microenvironment by promoting tumour cell growth and progression,
1131 modulating immune responses, regulating angiogenesis and inducing
1132 metastatic behaviour through MEPs, endothelial cells, and Mv endothelial
1133 cells.

1134 H Classification error matrix of the training set (70%) and test set (30%) for the
1135 8 proteins using the random forest classifier. The number of samples
1136 identified is noted in each box.

1137 I Proteins with the highest predictive values in classifying BC, BD and HD
1138 samples by XGBoost.

1139

1140 **Figure 3. Proteomic landscapes of four clinical subtypes of BC-derived**
1141 **sEVs.**

1142 A Differentially expressed proteins in luminal A, luminal B, Her2-enriched, and
1143 TNBC samples and found in > 50% of the corresponding samples, with >
1144 2-fold difference from the other three subtypes.

1145 B Gene Ontology biological processes (GOBPs) revealed pathways that were
1146 significantly enriched in luminal A, luminal B, Her2-enriched and TNBC
1147 samples (Fisher's exact test, $p < 0.05$). See Table S3.

1148 C Differentially expressed proteins in luminal A, luminal B, Her2-enriched, and
1149 TNBC samples. See Table S3.

1150 D Classification error matrix of the training set (70%) and test set (30%) for the
1151 61 proteins using the XGBoost classifier. The number of samples identified
1152 is noted in each box. The bar chart above represents the predictive
1153 specificity of each subtype. The bar chart on the right represents the
1154 predictive sensitivity of each subtype.

1155 **Figure 4. Potential prognostic biomarkers for IBC patients with lymph**
1156 **node metastases.**

1157 A GSEA of the proteomic data of 105 breast cancer samples revealed that
1158 adipogenesis was significantly upregulated in IBC_LN. IBC_LN: IBC
1159 patients with lymph node metastases.

1160 B Distinctive tumour microenvironment between IBC_Pure and IBC_LN.
1161 IBC_Pure: IBC patients without lymph node metastases; IBC_LN: IBC
1162 patients with lymph node metastases. See Table S4.

1163 C Correlation between adipocytes and the pathway of positive regulation of
1164 VEGF production. Spearman rho = 0.412, Wilcoxon rank sum test, p =
1165 1.242e-05.

1166 D Comparison of the scores of positive regulation of VEGF production
1167 between IBC_LN and IBC_Pure. The p value was calculated by the
1168 Wilcoxon rank sum test. The line and box represent median and upper and
1169 lower quartiles, respectively.

1170 E Correlation between the pathway of positive regulation of VEGF production
1171 and MPPs. Correlation coefficients and p values were calculated by the
1172 Spearman correlation method.

1173 F Molecules highly associated with platelets were expressed in IBC_Pure and
1174 IBC_LN.

1175 G The pattern diagram shows the process by which adipocytes activate MPPs
1176 to generate MEPs and MKs through positive regulation of VEGF production

1177 and finally produce platelets. The produced platelets helped breast cancer
1178 cells migrate to the lymph nodes.

1179 H Representative immunohistochemical images of adipocytes labelled with
1180 PPRGg. Images revealed that adipocytes proliferically grew in lymph node
1181 metastases of BC compared to primary breast cancer.

1182 I Representative fluorescence microscopy images of MPPs labelled with
1183 CD45RA (green), CD34 (red), and CD38 (yellow). Images revealed the
1184 presence of MPPs in lymph node metastases of BC, which were rare in
1185 normal lymph nodes and primary breast cancer.

1186 J Classification error matrix of the training set (70%) and test set (30%) for the
1187 12 proteins using the XGBoost classifier. The number of samples identified
1188 is noted in each box.

1189 K Classification error matrix of the external validation set (2016, CPTAC, BC
1190 cohort, n = 77) for the 12 proteins using the XGBoost classifier. The number
1191 of samples identified is noted in each box.

1192 L Proteins with the highest predictive values in classifying IBC_Pure and
1193 IBC_LN samples by XGBoost.

1194

1195 **Figure 5. Potential sEV survival biomarkers for the distant metastases of**
1196 **BC.**

1197 A The bubble plot indicates the overrepresented pathways in D-MET
1198 compared to DCIS. See Table S5.

1199 B Differentially expressed proteins between distant metastases and DCIS
1200 samples with > 2-fold difference and two-way Student's *t* test *p* < 0.05.

1201 C Potential markers of distant metastasis were significantly associated with
1202 clinical outcomes in BC (2018, Tang et al., BC cohort, n = 118) (*p* value from
1203 log rank test).

1204 D DAVID (KEGG gene sets) analyses of the proteomic data of 21 BC patients
1205 with distant metastases revealed pathways that were significantly altered in
1206 lung metastases (M-Lung, n = 3), liver metastases (M-Liver, n = 4), and
1207 bone metastases (M-Bone, n = 7) (Fisher's exact test, $p < 0.05$).
1208 E GMDS was specifically highly expressed in M-Liver. ns, no significance; $*p <$
1209 0.05 by one-way Student's *t* test.
1210 F P4HB was specifically highly expressed in M-Bone. ns, no significance; $**p <$
1211 0.01 by one-way Student's *t* test.
1212 G C6, TUBB, SERPING1 and VCL were specifically highly expressed in
1213 M-Lung. ns, no significance; $*p < 0.05$, $**p < 0.01$ by one-way Student's *t*
1214 test.
1215 H High expression of VCL was associated with poor prognosis in BC (2018,
1216 Tang, et al. BC cohort, n = 126).
1217

1218 **Figure 6. Potential BC-derived sEV molecules govern organ-specific**
1219 **metastasis.**

1220 A Distinctive tumour microenvironment of M-Lung, M-Liver, and M-Bone
1221 samples. $*p < 0.05$, $**p < 0.01$, $***p < 0.001$ by ANOVA.
1222 B Boxplot showing the relative abundance of chondrocytes in the distant
1223 metastases of BC. *P* value from one-way Student's *t* test.
1224 C Boxplot showing the relative abundance of myocytes in the distant
1225 metastases of BC. *P* value from one-way Student's *t* test.
1226 D Boxplot showing the relative abundance of fibroblasts in the distant
1227 metastases of BC. *P* value from one-way Student's *t* test.
1228 E sEV ITGA1, S100A8 and S100A11 molecular levels in M-Bone. *P* value from
1229 one-way Student's *t* test.
1230 F Protein expression of ITGA1 in DCIS, M-Liver, M-Lung, and M-Bone tissues
1231 detected by using immunohistochemistry.

1232 G Protein expression of S100A8 in DCIS, M-Liver, M-Lung, and M-Bone
1233 tissues detected by using immunohistochemistry.

1234 H Model of sEV-mediated organotropic tumour dissemination. BC-derived
1235 sEVs are taken up by organ-specific resident cells in metastatic organs
1236 based on integrin expression.

1237

1238 **Appendix Figure 1. Proteomic characterization of BC-derived sEVs,**
1239 **related to Figure 1**

1240 A NanoSight profiles showing the size distribution of serum-derived sEVs
1241 isolated from BC, BD, and HD. Red denotes BC-derived sEVs, yellow
1242 denotes BD-derived sEVs, and blue denotes HD-derived sEVs.

1243 B Identification of 24 sEV protein markers in our proteomic data.

1244 C Distribution of log10-transformed iBAQ abundance of identified proteins in
1245 167 proteome samples that passed quality control. Red denotes BC
1246 samples (n = 126), yellow denotes BD samples (n = 17), and blue denotes
1247 HD samples (n = 24). In the box plots, the middle bar represents the median,
1248 and the box represents the interquartile range; bars extend to 1.5 × the
1249 interquartile range.

1250

1251 **Appendix Figure 2. Proteomics features of BC-, BD- and HD-derived**
1252 **sEVs, related to Figure 2**

1253 A PCA of 1,734 proteins in 167 samples. Red, BC (n = 126); yellow, BD (n =
1254 17); blue, HD (n = 24).

1255 B Schematic diagram of the structural distribution of damage-associated
1256 molecular patterns (DAMPs) in sEVs (left). Venn diagram showing the
1257 number of DAMPs detected in BC, BD, and HD samples (right). See Table
1258 S2.

1259 C sEV DAMP molecules enriched in BC were significantly associated with
1260 clinical outcomes in BC (2018, Tang et al., BC cohort, n = 118) (*p* value from
1261 log rank test).

1262 D The dataset was split randomly into training (70%) and test sets (30%) at the
1263 patient level. A machine learning algorithm, XGBoost, was used for model
1264 development, training, and validation. Receiver operating characteristic
1265 (ROC) analysis was used to evaluate the performance of the classifier on
1266 the test dataset.

1267

1268 **Appendix Figure 3. Proteomic landscapes of four clinical subtypes of**
1269 **BC-derived sEVs, related to Figure 3**

1270 A PCA of 1,308 proteins in 114 samples. Orange, luminal A (n = 20); green,
1271 luminal B (n = 50); purple, Her2-enriched (n = 21); and blue, TNBC (n = 23).

1272 B Proteins with the highest predictive values in classifying luminal A, luminal B,
1273 Her2-enriched, and TNBC samples by XGBoost.

1274

1275 **Appendix Figure 4. Potential prognostic biomarkers for IBC patients with**
1276 **lymph node metastases, related to Figure 4**

1277 A PCA of 1,116 proteins in 105 samples. Blue, invasive breast cancer with
1278 lymph node metastases (IBC_Pure, n = 54); red, invasive breast cancer
1279 without lymph node metastases (IBC_LN, n = 51).

1280 B Differentially expressed proteins between IBC_Pure and IBC_LN samples
1281 that were found in > 50% of the corresponding samples, with > 2-fold
1282 difference and Student's *t* test *p* < 0.05.

1283 C Comparison of the scores of adipocytes between the IBC_LN group and the
1284 IBC_Pure group. The *p* value was calculated by the Wilcoxon rank sum test.
1285 The line and box represent median and upper and lower quartiles,
1286 respectively.

1287 D Correlation between adipogenesis and adipocytes. Spearman rho = 0.188, *p*
1288 value = 5.507e-02.

1289 E Comparison of the MPP scores between the IBC_LN group and the
1290 IBC_Pure group. The *p* value was calculated by the Wilcoxon rank sum test.
1291 The line and box represent the median and upper and lower quartiles,
1292 respectively.

1293 F Correlation between MPPs and the coagulation pathway. Spearman rho =
1294 0.295, *p* value = 2.216e-03.

1295 G Correlation between platelets and the coagulation pathway. Spearman rho =
1296 0.209, *p* value = 3.225e-02.

1297 H Comparison of the platelet scores between the IBC_LN group and the
1298 IBC_Pure group. The *p* value was calculated by the Wilcoxon rank sum test.
1299 The line and box represent the median and upper and lower quartiles,
1300 respectively.

1301 I Molecules that are highly associated with platelets.

1302 J Representative fluorescence microscopy images of MEPs labelled with
1303 CD71 (green), CD38 (red), and CD45RA (yellow). Images revealed the
1304 presence of MEPs in lymph node metastases of BC, which were rare in
1305 normal lymph nodes and primary breast cancer.

1306 K Platelet counts in the blood of IBC patients with lymph node metastasis (*n* =
1307 43) and IBC patients without lymph node metastasis (*n* = 45).

1308 L The dataset was randomly split into training (70%) and test sets (30%) at the
1309 patient level. A machine learning algorithm, XGBoost, was used for model
1310 development, training, and validation. Receiver operating characteristic
1311 (ROC) analysis was used to evaluate the performance of the classification
1312 on the test dataset.

1313

1314 **Appendix Figure 5. Potential sEV survival biomarkers for the distant**
1315 **metastases of BC, related to Figure 5**

1316 A Potential markers of distant metastasis were significantly associated with
1317 clinical outcomes in BC (2018, Tang et al., BC cohort, n = 118 and 2014, Liu
1318 et al., BC cohort, n = 126) (*p* value from log rank test).

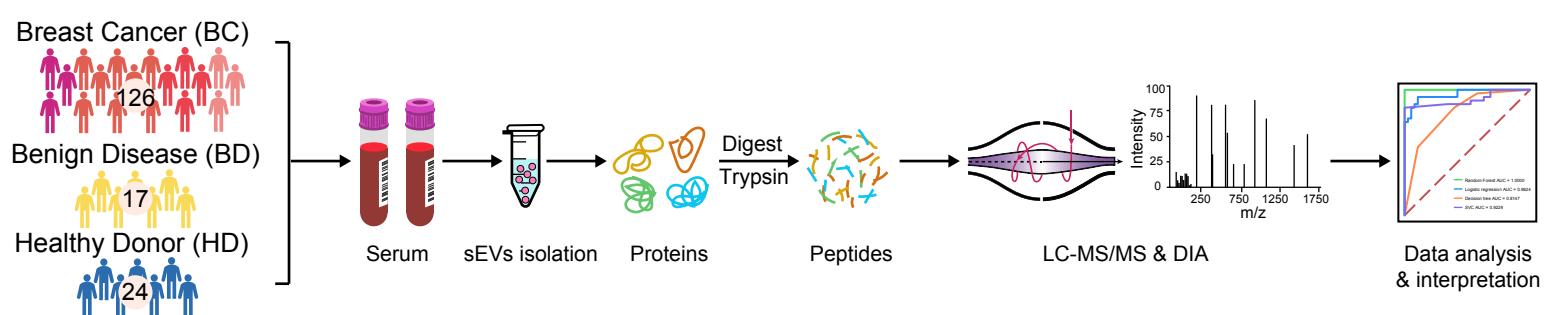
1319

1320 **Appendix Figure 6. Potential molecules present on IBC-derived sEVs**
1321 **target them to specific organs, related to Figure 6**

1322 A IHC score of ITGA1 in DCIS (n = 4), M-Liver (n = 4), M-Lung (n = 4), and
1323 M-Bone (n = 8). *P* value from two-way Student's *t* test.

1324 B IHC score of S100A8 in DCIS (n = 3), M-Liver (n = 3), M-Lung (n = 4), and
1325 M-Bone (n = 8). *P* value from two-way Student's *t* test.

1326 C sEV ITGA7, S100A9 and S100A13 molecular levels in M-Liver. *P* value from
1327 one-way Student's *t* test.


1328 D sEV ITGB3, S100A2B and S100A7A molecular levels in M-Lung. *P* value
1329 from one-way Student's *t* test.

1330 E The protein expression of S100A13 in DCIS (n = 3), M-Liver (n = 3), M-Lung
1331 (n = 4), and M-Bone (n = 8) tissues was detected by using
1332 immunohistochemistry (left); IHC score of S100A13 in M-Liver. *P* value from
1333 two-way Student's *t* test (right).

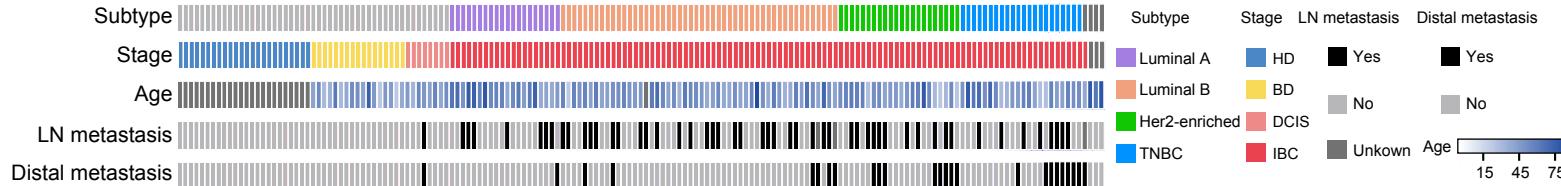
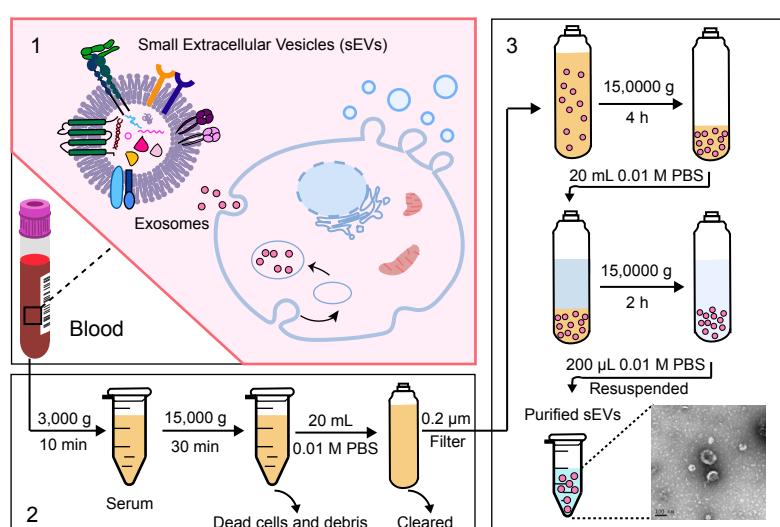
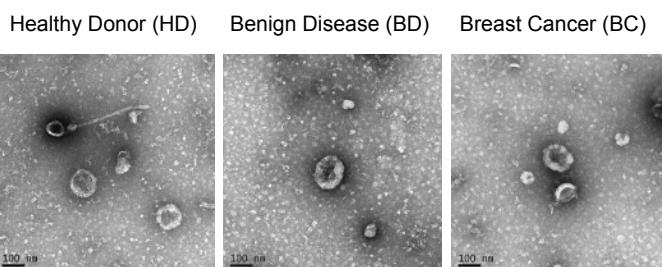
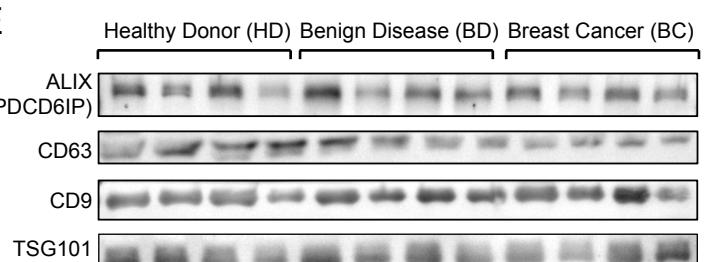
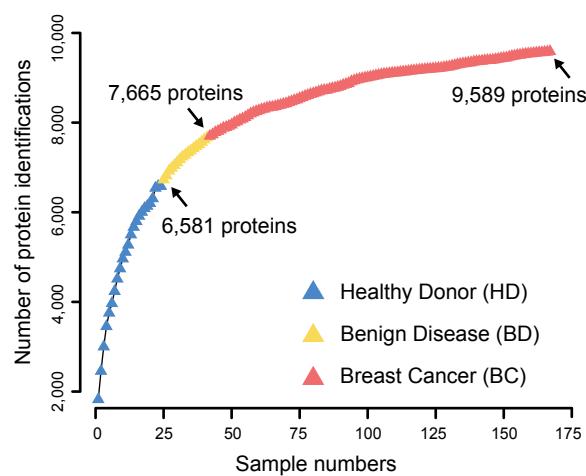

1334 F The protein expression of S100A7A in DCIS (n = 3), M-Liver (n = 3), M-Lung
1335 (n = 4), and M-Bone (n = 8) tissues was detected by using
1336 immunohistochemistry (left); IHC score of S100A7A in M-Lung. *P* value from
1337 two-way Student's *t* test (right).

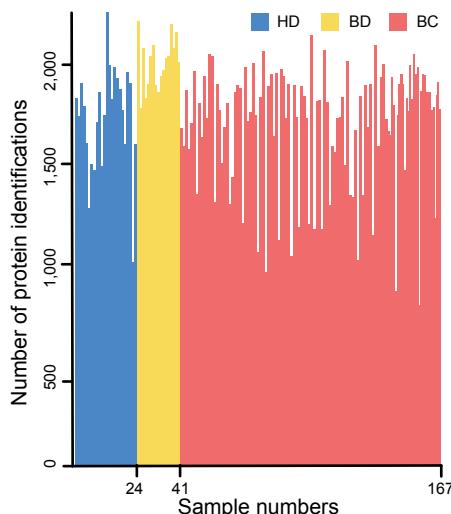
Figure 1

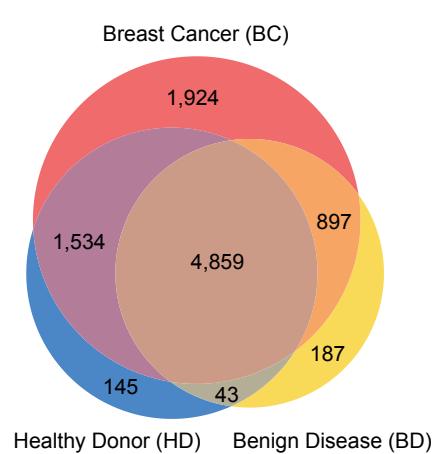

A


B

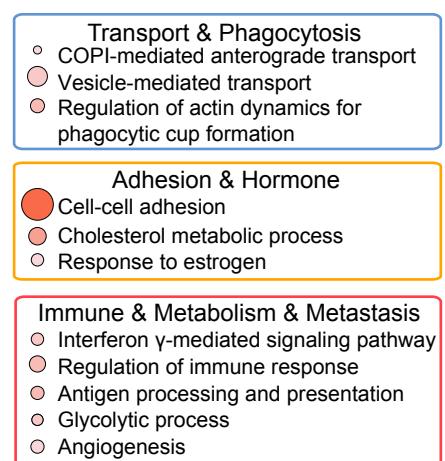

C


D


E


F

G



H

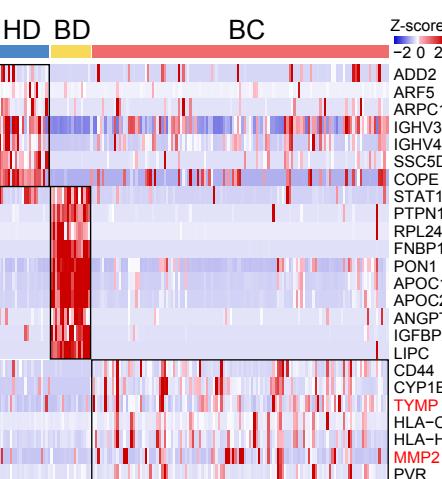
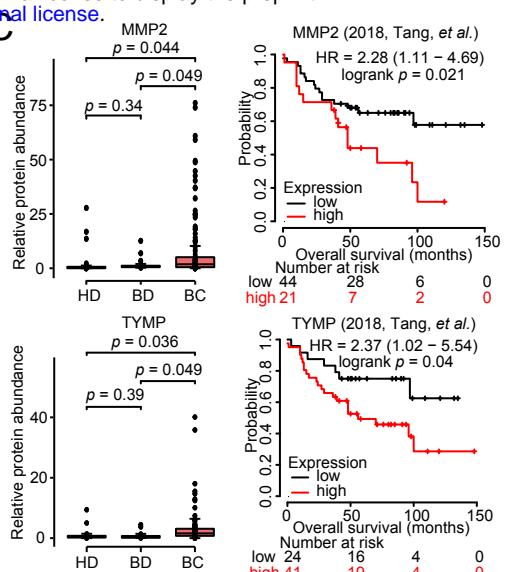
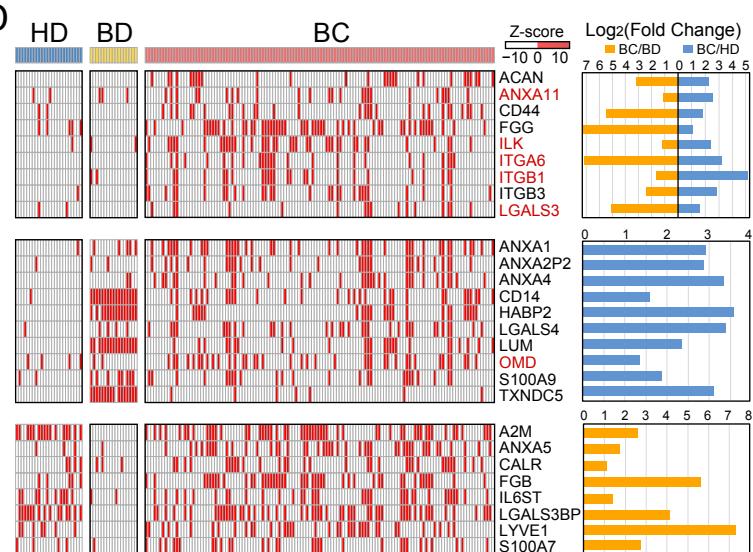
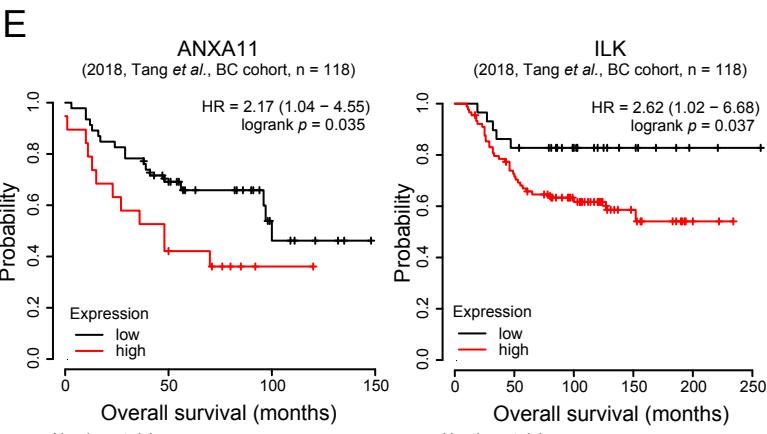
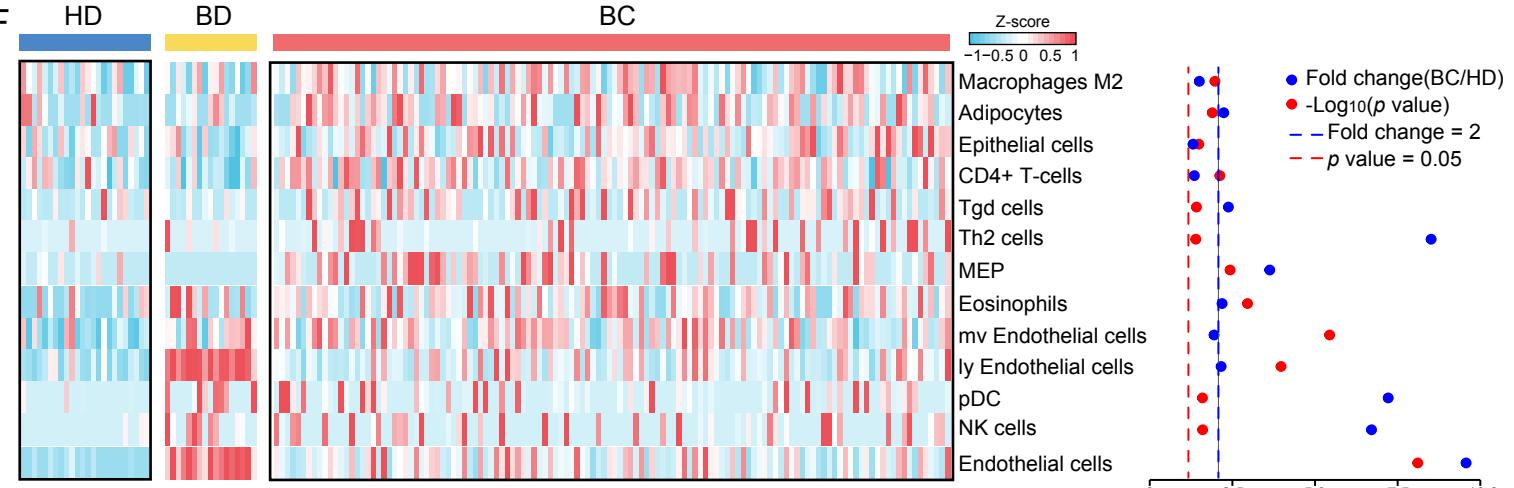


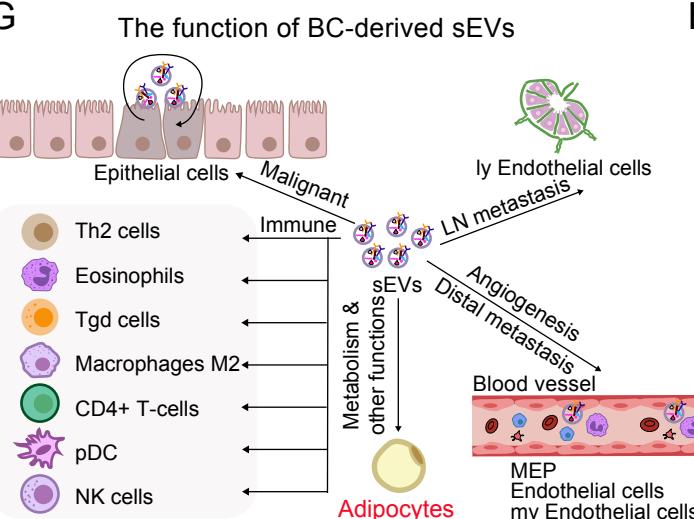
Figure 2

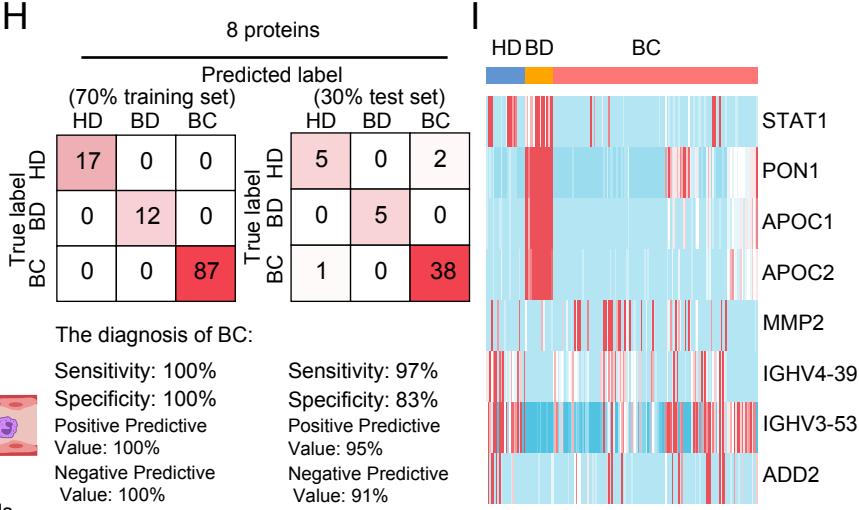

A


B


C


D


E


F

G

H

I

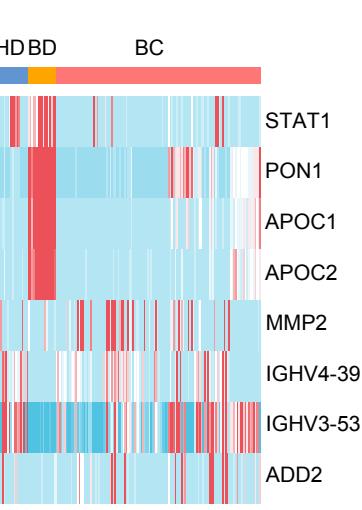
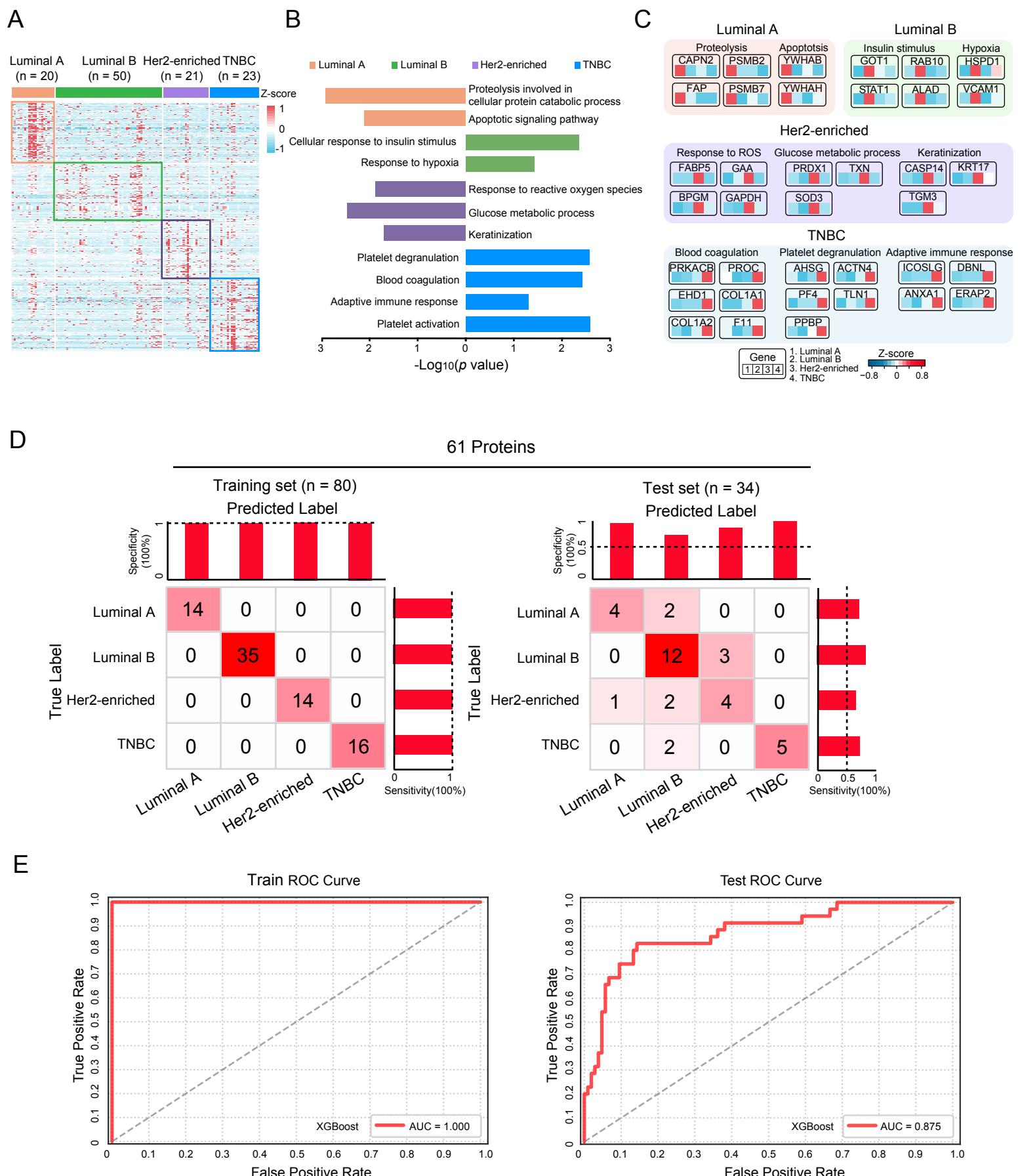
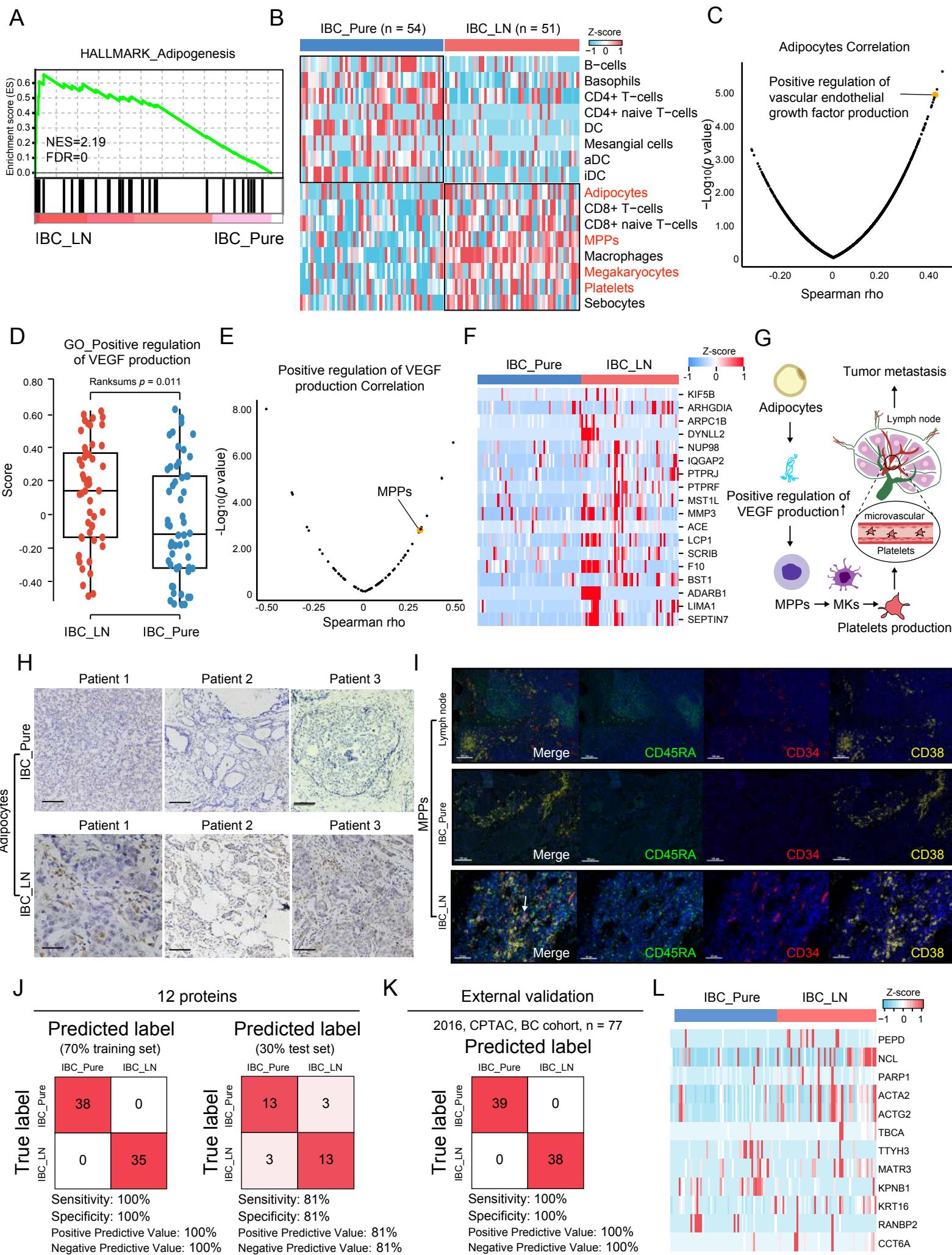




Figure 3

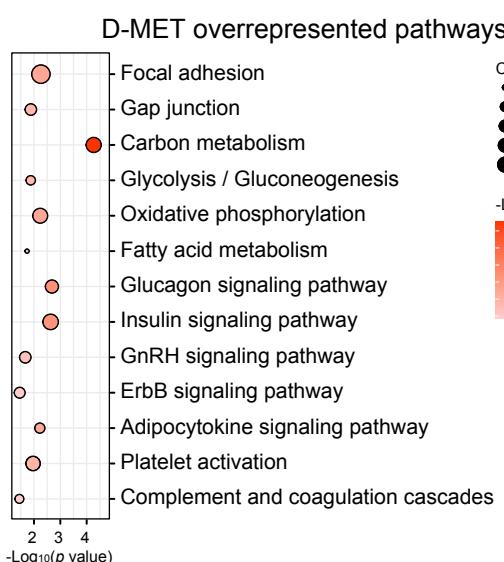


Figure 4

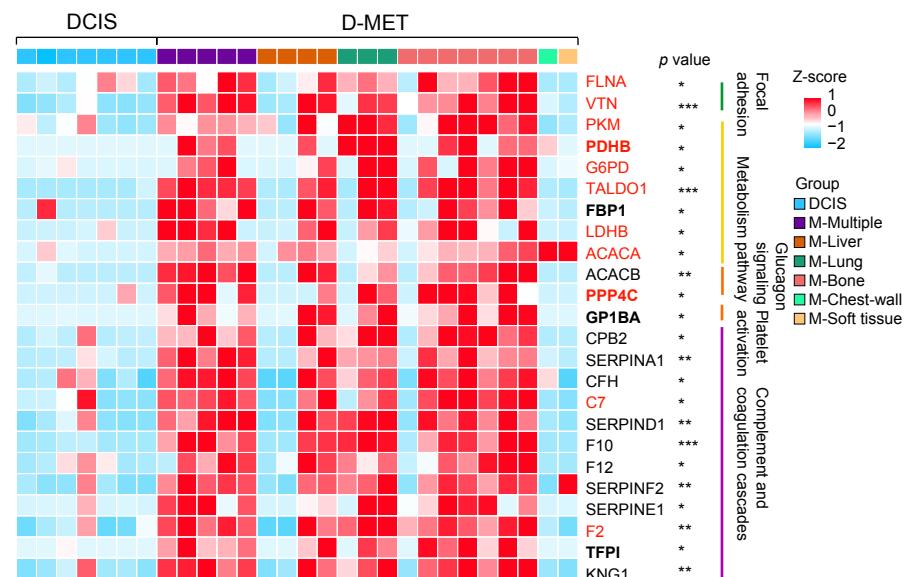
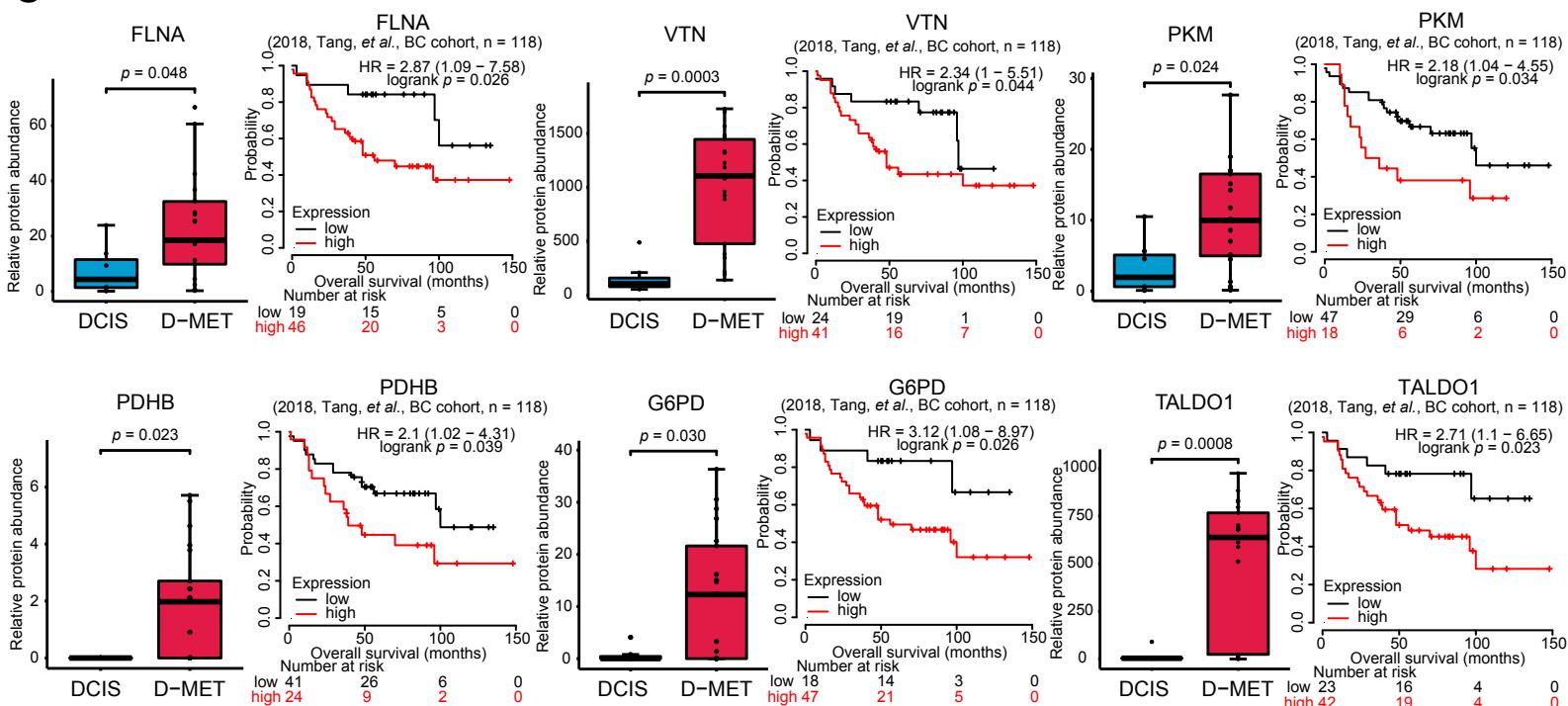
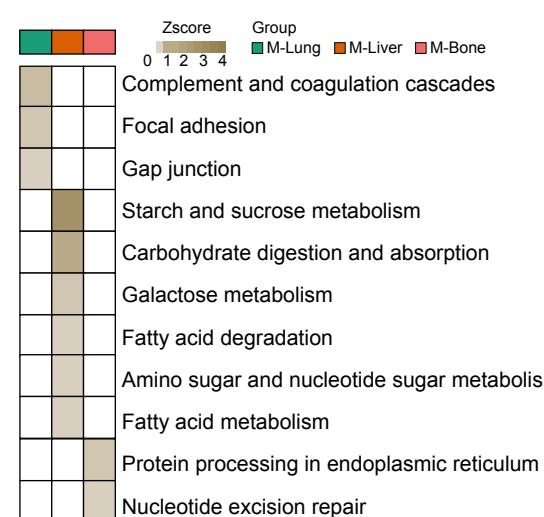
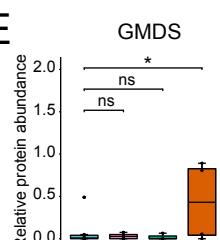
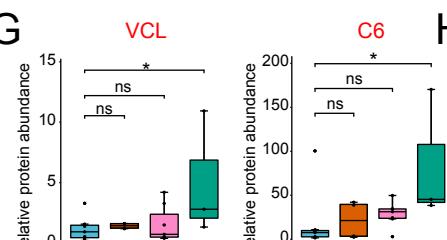


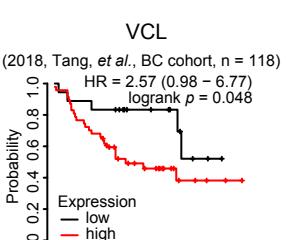
Figure 3

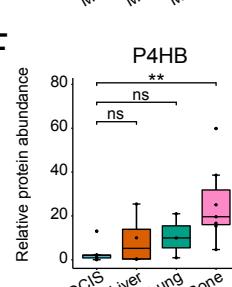

A

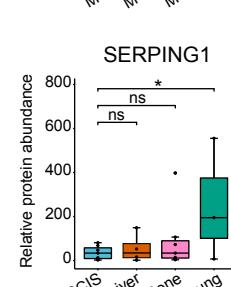

B

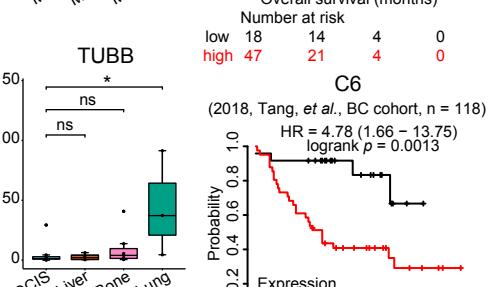

C

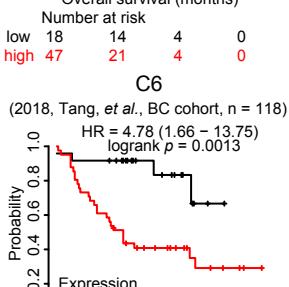

D


E

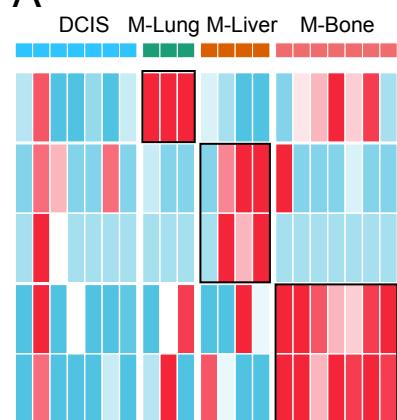

G


H


F


G

H



C6

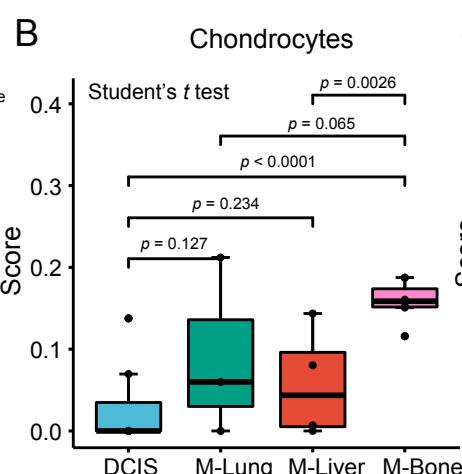
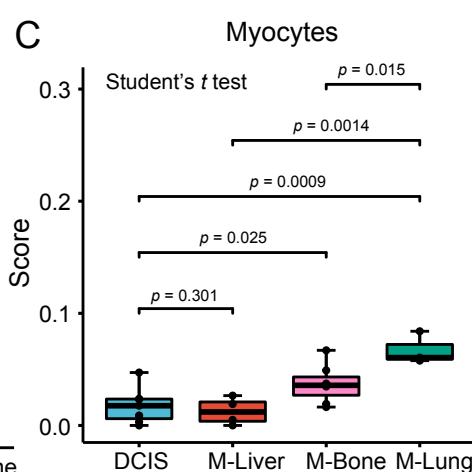
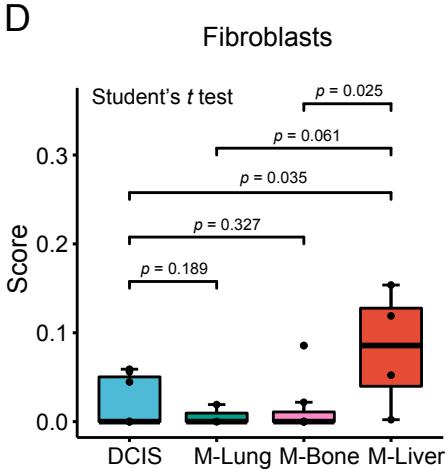
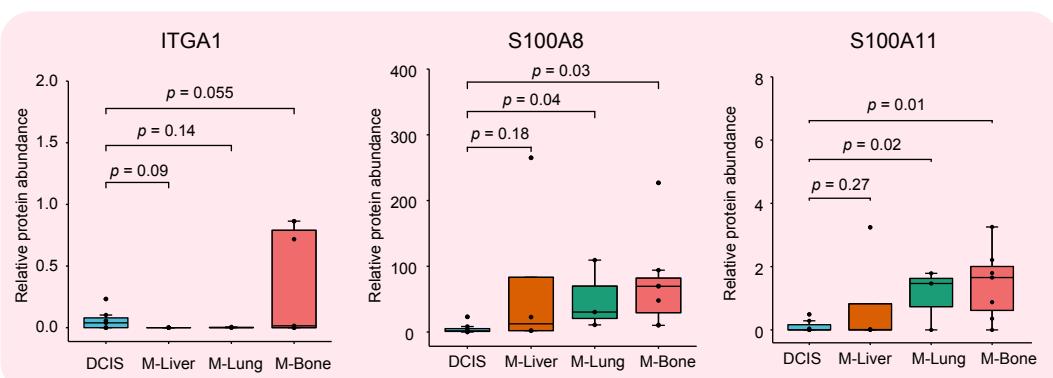
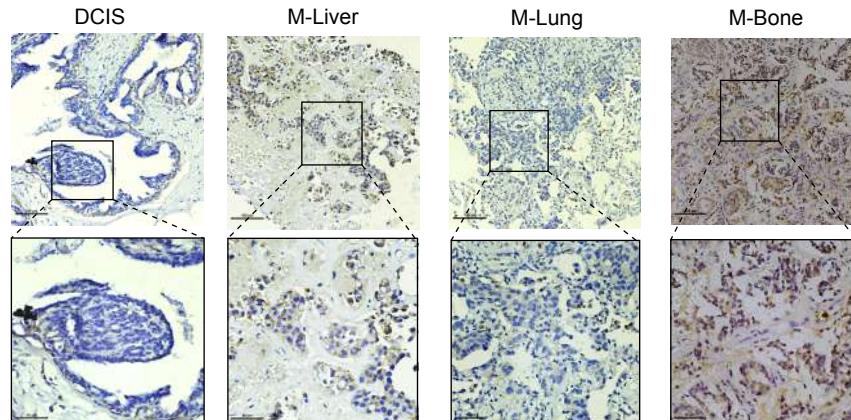


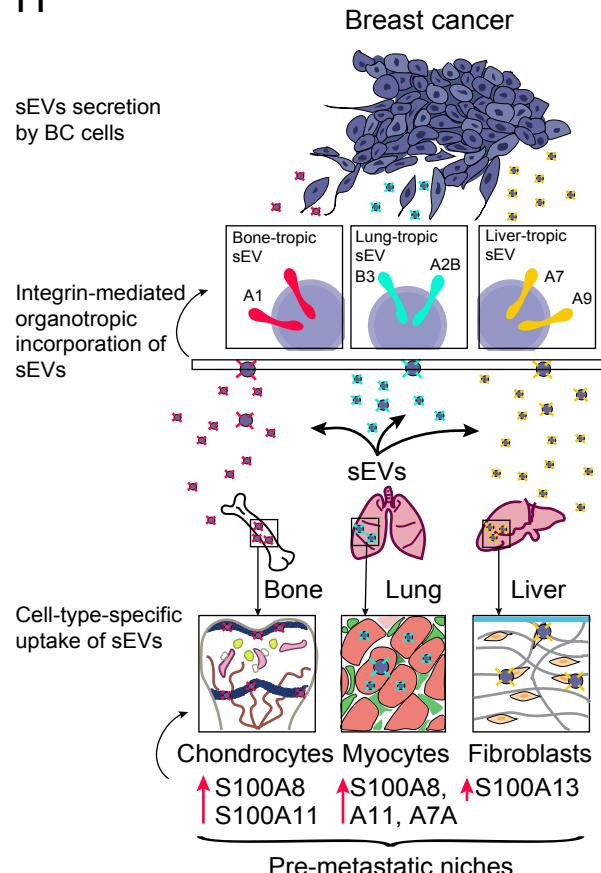
Figure 6

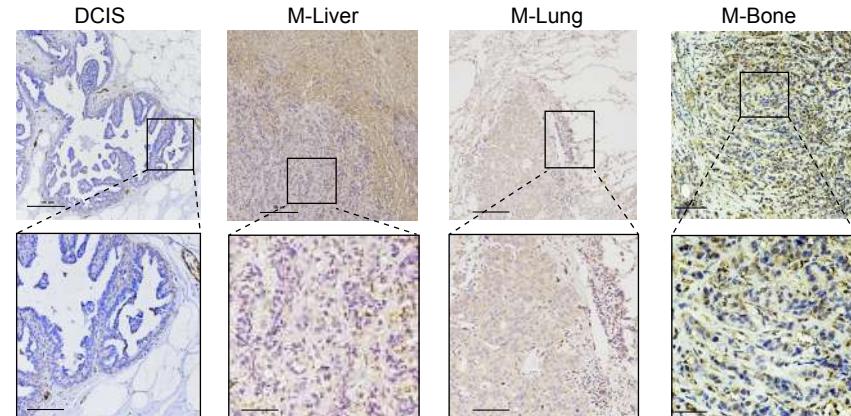

A


B


C


D


E


F

H

G

