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Abstract

Signatures of negative selection are pervasive amongst complex traits and diseases. However, it is
unclear whether such signatures exist for DNA methylation (DNAm) that has been proposed to have a
functional role in disease. We estimate polygenicity, SNP-based heritability and model the joint
distribution of effect size and minor allele frequency (MAF) to estimate a selection coefficient (S) for
2000 heritable DNAm sites in 1774 individuals from the Avon Longitudinal Study of Parents and
Children. Additionally, we estimate S for meta stable epi alleles and DNAm sites associated with aging
and mortality, birthweight and body mass index. Quantification of MAF-dependent genetic architectures
estimated from genotype and DNAm reveal evidence of positive (S > 0 ) and negative selection (S < 0)
and confirm previous evidence of negative selection for birthweight. Evidence of both negative and
positive selection highlights the role of DNAm as an intermediary in multiple biological pathways with

competing function.
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Introduction

Genome-wide association studies (GWASSs) have identified many genetic variants (single nucleotide
polymorphisms; SNPs) associated with complex traits and diseases’. Natural selection plays a role in
influencing the genetic architecture of complex traits, altering allele frequency at many genetic loci2.
Negative selection prevents deleterious mutations from becoming common?® and is thought to explain
why GWASs have identified many common variants of low effect size*. Several studies have shown
evidence of negative selection acting on complex traits (including height, body mass index; BMI and
birthweight) using the relationship between minor allele frequency (MAF) and SNP effect size to
estimate a selection coefficient (S)3%€. However, there is difficulty in separating the action of selection

from genetic drift when using MAF and SNP effect size to characterise genetic architecture’.

Most GWA loci reside in non-coding regions and colocalization studies have shown that genetic factors
underlying intermediate traits are shared with GWA loci®®. Intermediate traits such DNA methylation
(DNAm) and gene expression may therefore also show signatures of selection. Variation in DNAm can
be influenced by age'®, environmental'!, genetic'? and stochastic'® changes. The variability of DNAm
maybe caused by natural selection, epigenetic stochasticity'* or cellular plasticity’®. The Genetics of
DNA Methylation Consortium (GoDMC) has identified a large number of methylation quantitative trait
loci (MQTLs) in blood'. They showed that these DNAm sites influenced by genetic factors are
polygenic’®. mQTLs were enriched for a variety of selection metrics (including the singleton density
score; SDS' and fixation index; F,, '®) and show a strong negative relationship between MAF and
mQTL effect size'®. It is therefore likely that natural selection acts on many mQTL variants jointly.
However, selection is difficult to detect as DNAm is typically controlled by a local cis variant with large
effect size and many physically separated trans variants with small effect sizes. Previous studies on
cis-regulatory regions have found evidence of purifying selection on sequence-dependent allele-
specific DNAmM?° and positive selection among African agriculturist populations?'. Similarly, gene
expression traits are polygenic?? and SNPs showing signatures of selection are enriched among SNPs

associated with gene expression (expression quantitative trait loci; eQTLs)*?3.

DNAm has a variety of roles in gene regulation®*25, is likely cell type-specific, and can be used as a
biomarker for risk stratification and disease detection?%2”. DNAm at cytosine-guanine dinucleotides
(CpGs) has been associated with repression of transcription factor (TF) binding, however, TF binding
has also been shown to inhibit DNAmM?8. Across the 450k sites most commonly measured in
epidemiological studies?® (which are biased to promoter regions), mean heritability for DNAm has been
shown to be around 20%'? and relationships between the heritability of a DNAm site and the number
of mQTLs and between heritability and effect size have been found'® DNAm sites may have particular
properties in terms of natural selection where heritable sites should have increased polygenicity with a
larger proportion of SNPs with larger effect sizes*. In epigenome-wide association studies (EWASS),
DNAm sites have been associated with many complex traits and diseases including those showing
signatures of negative selection such as BMI and birthweight®303!,  Additionally, PhenoAge is a
composite DNAm predictor of aging (trained on mortality including 42 clinical measures and age), that
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81 has been predictive of disease risk and mortality®?. To date, there is little known about whether these
82 sites are a target of selection for example due to antagonistic pleiotropy®® where genes required for
83 earlier stages of development may have deleterious effects in later life32. Meta stable DNAm sites
84 exhibiting greater similarity than can be explained genetically have also been identified™. It may be the
85  case that increased variability of these sites occurred as initial response to the environment before the
86 effect of natural selection.

87

88 DNAm may play various roles in underlying biological processes, and therefore we expect it to be
89  subject to both positive and negative selection. Here, we investigate the relationship between MAF and
90 effect size for SNPs at individual DNAm sites from the widely used 450k array to make inferences about
91 the action of natural selection, which we hypothesise may vary for each DNAm site. We utilise BayesNS,
92 a Bayesian mixed linear model method (MLM) that estimates polygenicity, SNP-based heritability and
93 the joint distribution of MAF and effect size®. We apply BayesNS to DNAm data from the Accessible
94 Resource for Integrated Epigenomic Studies (ARIES) cohort®*.
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1142 Results

115 Estimation of genetic architecture parameters of DNAm sites

116 We used a Bayesian mixed linear model (BayesNS) to estimate genetic architecture parameters of
117 DNAm sites including polygenicity, SNP-based heritability and a selection coefficient (S)3. We applied
118 BayesNS to DNAm sites profiled in blood from 1774 mother-offspring individuals from ARIES®** and
119 474,939 independent non-major histocompatibility complex (MHC) and non-lactase (LCT) SNPs.
120 Specifically, we considered 2000 DNAm sites which have ‘high’ heritability estimates from twin studies
121 (h,= 89.9%, range 79-99%, Table 1)'?, as selection is dependent on a genetic contribution to DNAmM
122 variance. Secondly, we analysed 1508 DNAm sites which show non-genetically mediated similarity
123 between monozygotic twins, so-called epigenetic supersimilarity (ESS) DNAm sites'™. Blood DNA
124 methylation at ESS DNAm sites exhibit plasticity to the periconceptional environment and is associated
125 with risk of cancer. Finally, we considered 513 DNAm sites which combined predict biological age
126 (“PhenoAge”), a trait that is moderately heritable and has been associated with aging, mortality and is
127 predictive of cardiovascular disease risk32.

128

129 Convergence of the Markov chain Monte Carlo (MCMC) algorithm implies that a single consistent
130 selection signal is found, whilst failure to converge implies that competing, inconsistent sets of SNPs
131 explain the data equally (and poorly). This was assessed with the Raftery-Lewis long-chain diagnostic
132 test®> and MCMC trace plots (Figures S1;S2;S3). In line with previous work®, DNAm sites which failed
133 convergence checks typically had lower estimates of heritability (Figure S3; Table 1). BayesNS
134 estimates SNP-based heritability and as with the estimates of twin heritability, the highly heritable
135 DNAm sites had the highest mean estimate of SNP based heritability ( @ = 30.2%; SD=12.4%; Table
136 1), followed by the ESS DNAm sites (m =26.6%; SD=13.0%; Table 1) and then the PhenoAge DNAm

137 sites (hZ,p =14.8%; SD=9.7%;Table 1). Since we only consider DNAm sites which passed MCMC
138 convergence diagnostics, (Table 1; Figure S1-S3), these mean estimates are likely higher than we
139 would expect for each set of DNAm sites.

140

141 DNAm shows signatures of both positive and negative selection

142 BayesNS uses the relationship between SNP effect size and MAF to estimate a selection coefficient
143 (S)%. When S = 0 effect size is independent of MAF and this would reflect a ‘neutral’ scenario, an S >
144 0 would represent evidence of positive selection and an S < 0 would represent evidence of negative
145 selection. Quantification of MAF-dependent genetic architectures revealed the action of both positive
146 §> 0 and negative S < 0 selection across all three sets of DNAm sites (Figure 1). On average,
147 estimates are close to zero, (PhenoAge DNAm sites; S = 0.04) being mildly negative for the highly
148 heritable (S = —0.15) and ESS DNAm sites (S = —0.14) (Table 1). Across the distributions we see
149 individual DNAm sites with more extreme positive and negative values of S. DNAm sites with extreme
150 negative estimates of S (S < —1) are annotated to a variety of genes including those involved in
151 transcription (ATF7IP)*® and tumour suppression (SCRIB)*’. DNAm sites with extreme positive

152 estimates of S (S > 1) are annotated to a variety of genes including cg07175007 (S=1.13, SD=0.56)
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153 near UHMK1 associated with the cell cycle®® and cg0479814 (S=0.65, SD=0.60) near SMYD3 a histone
154 methyltransferase 3°(Table S1).

155

156 As a sensitivity analysis we implemented models to account for genetic drift” (Figure S4), which suggest
157 that drift may be important but is not the sole driver of the signal of selection, supporting the hypothesis
158 that this captures real biological processes. However, we cannot rule out that any specific effect was
159 not caused by genetic drift.

160

161 Polygenicity is associated with selection

162 BayesNS estimates polygenicity as the proportion of 200kb genomic ‘windows’ with non-zero effects?.
163 In contrast to findings from GoDMC"?, our results suggest that the genetic architecture of DNAm is not
164 very polygenic (highly heritable DNAm sites: 7= 0.04%, ESS DNAm sites 7= 0.04%, PhenoAge DNAm
165  sites: 7= 0.06%; Table 1). This finding is in part due to the bimodality of the effect size distribution in
166 DNAm: we lack power to capture polygenic trans mQTLs with low effect sizes, whilst we are powered
167 to detect large cis mQTL effects. However, it may also reflect the role of many DNAm sites in biological
168 pathways, having a specific biological purpose but either affecting, or being affected by, many other
169  processes.

170

171 We additionally investigated the number of SNPs (N SNPs) highly associated with each DNAm site
172 (posterior inclusion probability; PIP >=0.8). Across all three sets of DNAm sites, we find a negative
173 relationship between S and N SNPs for DNAm sites (regression coefficient for highly heritable DNAm
174 sites; -0.09; p < 2.2 x107'%, ESS DNAm sites; -0.10; p < 2.2 x10'¢, PhenoAge DNAm sites; -0.14; p =
175 0.00064; Figure 2). In addition, we find that SNPs associated with DNAm sites with negative estimates
176 of S have lower mean estimates of variance explained (VE) compared to those with positive estimates
177 of S (Figure 3). Polygenicity is therefore associated with selection, with DNAm associated with few
178 mQTLs being the only class of positive selection, and highly polygenic DNAm being subject to strictly
179 negative selection. Further, positively selected DNAm tends to have almost all of the heritability
180  accounted for by identifiable mQTLs.

181

182 Relationship between selection estimates and traditional selection measures

183 We additionally investigated whether estimates of S correlate with five selection metrics: SDS", F,,*°,
184 integrated haplotype score (iHS)*!, cross-population extended haplotype homozygosity XPEHH*? (CEU
185 v. YRI) and XPEHH (CEU v. CHB) in sets of ‘high’ PIP (PIP > 0.1) and ‘all’ PIP (PIP >= 0.001) SNPs
186 for each DNAm site. Values of S have the highest correlation with F,,*°(0.193; Figure S5A, 0.113; Figure
187 S5C, 0.151; Figure S5E, for highly heritable, ESS and PhenoAge DNAm sites respectively), however,
188 when we include ‘all’ possible SNPs, even though we weight by PIP, the correlation becomes negative
189 and tends to decrease in magnitude (-0.045; Figure S5B, -0.127; Figure S5D, -0.091; Figure S5F). This
190 implies that cis or strongly acting trans SNPs are selected differently to the bulk DNA associations, i.e.
191 that they are selected via a different mechanism, and that the low PIP SNPs are subject to a diversity

192 of pathways, hence leading to an average selection close to 0 (Table 1). We additionally calculate
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193 correlations between S and LD scores “3. Correlations between LD scores and S are small, with the
194 lowest magnitude correlation being -0.005 and the highest being -0.065, suggesting that estimates of S
195 are not correlated with LDSC.

196

197

198 Table 1| Estimation of genetic architecture parameters for highly heritable, ESS and PhenoAge DNAmM

199 sites
DNAm sites s SD (S) hZ,p (%)  SD(hZ,,) 7 (%) SD(7) h, (%) SD(h;) Convergence
Highly heritable (n=1804) -0.15 0.46 30.2 12.4 0.04 0.02 89.9 5.9 90.2% (1804/2000)
ESS (n=887) -0.14 0.50 26.6 13.0 0.04 0.02 78.8 20.4 56.1% (887/1580)
PhenoAge (n=74) 0.04 0.48 14.8 9.7 0.06 0.04 53.4 23.0 14.4% (74/513)
200

201 SD; standard deviation, hZy,; SNP based heritability and z; polygenicity, h,; twin heritability estimates'? of 2000 heritable
202 DNAm sites, 1580 ESS sites and 513 PhenoAge DNAm sites, Convergence; percentage of DNAm sites passing MCMC
203 convergence checks

204

205

206 Biological properties of DNAm sites under selection

207 The magnitude of S is related to the ‘strength of selection on trait-associated SNPs’. To understand
208 whether DNAm traits under ‘stronger’ selection had biological relevance, we assessed whether DNAm
209  sites with estimates of S < —0.5 and > 0.5 were enriched or depleted for predicted chromatin states*4.
210 The positive highly heritable DNAm sites (n=212, S > 0.5;) showed the strongest enrichment
211 (gqvalue<0.05) for enhancers (Odds Ratio; ORs EnhW1 1.75-3.21; ORs EnhW2 1.72-2.57) and
212 promoters (PromP ORs=1.84-3.26; PromU ORs=1.52-2.18) (Figure 4A; Table S2). The negative highly
213 heritable DNAm sites (n=376, S < —0.5; Figure 4B; Table S2) showed only enrichment for poised
214 promoters (PromP, OR=2.1) but not for transcription activity. Both positive (n=123, S > 0.5) and
215 negative (n=218, S < —0.5) ESS DNAm sites also show enrichment for poised promoters (PromP)
216 across all tissue types (positive ORs 2.24-5.1 negative ORs: 1.79-3.64; Figure S7; Tables S3-S4).
217 Poised chromatin is associated with both activating and repressing histone modifications and has been
218 proposed to play a role in the prevention of DNAmM*>. DNAm sites showing signatures of selection are
219 therefore enriched for bivalent chromatin structure associated with silencing genes whilst keeping them
220 ready for activation*®. CpG rich promoters have been shown to be subject to ‘epigenetic buffering’
221 against the effects of random mutations due to their association with housekeeping genes®.

222

223 We additionally assessed enrichment of 167 transcription factor binding sites (TFBSs) in 127 different
224 cell types comprising 30 tissues*’. Transcription factors have previously been shown to be under weak
225 purifying selection, with a limited minority exhibiting signatures of positive selection*®. Arbiza et al., find
226 evidence of positive selection on GATA- binding zinc finger proteins*. Though, we do not see evidence
227 of enrichment for TFBS for our DNAm sites of interest (Tables S6-S9).

228

229
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230 BMI and birthweight associated DNAm sites show signatures of selection

231 We used BayesNS to estimate S, h2y, and 7 for 893 DNAm sites associated with birthweight®' and 243
232 DNAm sites associated with BMI*° in EWAS of individuals of European ancestry*®. 220 birthweight-
233 associated DNAm sites (24.6%) and 42 BMl-associated DNAm sites (17.0%) passed MCMC
234 convergence tests (Figure S3). As with the highly heritable, ESS and PhenoAge DNAm sites, MAF-
235 dependent genetic architectures estimated from genotype and DNAm revealed the action of both
236 positive and negative selection for BMI (S; 0.04; SD; 0.59, range: -1.09:0.98) and birthweight (S; -0.05,
237 SD; 0.59, range: -1.81:0.98) associated DNAm sites (Figure 6; Table S10). Birthweight-associated
238 ¢g16875057 has an S estimate of -1.81 and is annotated to the STK39 gene which is associated with
239 the cellular stress response pathway and hypertension®. In addition, birthweight-associated
240  ¢g07157107 (S=0.98) is associated with the nicotinic receptor CHRNAG6, positive selection has
241 previously been reported on genomic regions containing nicotinic receptor genes®'. In contrast, a
242 previous study using BMI and birthweight GWA loci found only evidence of negative selection®. After
243 adjustment for non-random properties of the DNAm sites, we found that birthweight associated DNAm
244 sites showed an enrichment of negative estimates of S as compared to heritability matched background
245 DNAm sites (Table 2). To assess whether biological pathways were enriched among the DNAm sites
246 with extreme S we performed GOterm enrichment analysis, however none of the pathways showed
247 evidence of enrichment.

248

249  Table 2| Birthweight-associated DNAm sites are enriched for negative estimates of §

250

DNAm sites Fisher’s exact test P-value Odds ratio (OR) Lower 95% ClI Upper 95% CI

PhenoAge (n=74) 1 1.09 0.44 2.70

BMl-associated (n=42) 1 1.13 0.37 3.45

Birthweight (n=220) 3.432x 10 0.29 0.16 0.50
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266 Discussion

267 In this study, we have characterized the genetic architecture of DNA methylation at individual DNAm
268  sites measured on the 450k array?. Specifically, we consider estimates of polygenicity, SNP-based
269 heritability and the joint-distribution of effect size and MAF for 1804 highly heritable DNAm sites, 887
270 ESS DNAm sites and 74 PhenoAge DNAm sites. Unlike previous work looking at complex traits and
271 gene expression which find evidence of negative selection exclusively®°®, across all sets of DNAm sites
272 we find evidence of both positive (S > 0) and negative selection (S < 0). These findings support
273 previous research showing an enrichment of mMQTLs among SNPs with signatures of positive selection,
274 plus a negative relationship between MAF and mQTL effect size'®. We were able to estimate S at
275 individual DNAm sites allowing us to identify specific DNAm sites with extreme estimates of S. In
276 addition, we considered DNAm sites associated with complex traits that have previously been shown
277 to exhibit signatures of negative selection with BayesS®. DNAm sites associated with birthweight in
278 EWAS had a higher proportion of DNAm sites with negative estimates of S compared to heritability
279 matched DNAm sites.

280

281 For traits which are less polygenic it can be particularly hard to separate the actions of natural selection
282 and genetic drift, which can generate extreme changes to the frequency of SNPs between human
283 populations such as our study population (Europeans) and the common ancestor in which DNAm
284 evolved (predating the out-of-Africa event)’. A Bayesian model accounting for genetic drift found that
285 individual estimates of S could be due to either selection or genetic drift, but collectively DNAm was
286 impacted by both positive and negative selection, not explainable by genetic drift alone’.

287

288 In addition to this, we were also able to characterize SNP based heritability and polygenicity for
289 individual DNAm sites. Across all DNAm sites, average SNP based heritability was 28.6%. This is higher
200  than previous estimates looking at ARIES data, but likely reflects the fact we are constrained to
291 considering DNAm sites which pass convergence checks®. For each group of DNAm sites, average
292 polygenicity was low. We found a striking relationship between polygenicity and selection, with
293 positively selected DNAm associated with only a small number of mQTLs which together explained
294 most of the heritability of the trait. Conversely, negatively selected DNAm is likely to be explained by
295 more mQTLs, many of which we lack statistical power to identify. The genetic architecture of DNAm
296  has been shown to have a large cis-mQTL effect plus polygenic frans-mQTLs of low effect sizes'®2.
297 Studies in larger and more diverse populations should be undertaken to further investigate the
298 relationship between polygenicity and selection. Our results provide insight into how genetic
299 architecture of individual DNAm sites has been influenced by natural selection.

300

301 There are several limitations of this study. The model is restricted to looking at DNAm sites which pass
302 MCMC convergence checks, which typically are those with high heritability in twin studies. In addition,
303  we compared BayesNS estimates to other selection metrics (F,,, SDS, XPEHH, iHS), which are
304 specialised to detect signatures of positive selection and have an estimate per SNP. This means that

305  they do not make an ideal comparison group, since BayesS can be used to make inferences about both
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306  positive and negative selection and estimates are provided at the trait level. Blood cell counts have
307 previously been reported to show signatures of negative selection®. Whilst our DNAm data has been
308 adjusted for recorded cell counts', the relationship between DNAm and blood cell counts® could
309 warrant further investigation in regards to whether it influences estimates of S. As mentioned, larger
310  sample sizes are needed to detect mQTLs with low effect size which we are not powered to detect. Our
311 study was also limited to the 450k array which measures 1.5% of the genome and is biased to
312 promoters?®. Large epidemiological studies profiled with EPIC arrays® (measuring regulatory elements)
313 are expected to find additional signatures for selection.

314

315 Overall, our study finds evidence for both positive and negative selection in the genetic architecture of
316 DNAm. We are unable to cleanly place DNAm in the causal pathway between genetic variation and
317 selection. Our results are consistent with two competing hypotheses; firstly, that selection occurs on
318 DNAm due to a biological function it has, or secondly DNAm is influenced by complex traits that are
319 themselves the target of selection. The presence of both positive and negative selection is an indication
320  that both pathways may play a role. Specifically, we hypothesise that DNAm may perform a biological
321 function which is of less selective importance than the complex traits that have widespread impact on
322 genome wide DNAm, swamping and confusing the signal with a mixture of proximal and distal signals.
323 Future work looking into the biological relevance of individual DNAm sites with positive and negative
324 estimates of S could help to identify biological pathways which effect fitness. DNAm data from diverse
325 individuals will be essential in separating the effects of drift and selection. Understanding the selective
326 forces shaping DNAm could ultimately help identify potential targets for disease intervention.
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us  Methods

347 Study Population

348 Participants were from the Avon Longitudinal Study of Parents and Children (ALSPAC)%%, a large
349 prospective cohort study that recruited 14,541 pregnancies, resident in the Bristol and Avon area with
350  expected delivery dates between the 15t of April 1991 and the 315t of December 1992. Full details of the

351 cohort have been published elsewhere®-%. The study website contains details of all the data that are

352 available through a fully searchable data dictionary (http://www.bristol.ac.uk/alspac/researchers/our-
353 data/). Written and informed consent has been obtained for all ALSPAC participants. Ethical approval
354 for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics

355 Committees (http://www.bristol.ac.uk/alspac/researchers/research-ethics/).

356

357 ALSPAC genotype data

358 ALSPAC mothers were genotyped using the lllumina Human660W-quad array at Centre National de
359  Génotypage (CNG). ALSPAC offspring were genotyped using the lllumina HumanHap550 quad chip
360  genotyping platforms by 23andMe subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK
361 and the Laboratory Corporation of America, Burlington, NC, USA. For ALSPAC mothers, SNPs with a
362 MAF of <1%, a call rate of <95%, or evidence for violations of Hardy—Weinberg equilibrium (p<1 x
363 107°) were removed. For ALSPAC offspring, SNPs with MAF of <1%, a call rate of <95% or evidence
364  for violations of Hardy—Weinberg equilibrium (p <5 x 1077), were removed. Cryptic relatedness within
365 mothers and within offspring was measured as proportion of identity by descent (IBD < 0.1). All
366 individuals with non-European ancestry were removed. Imputation of ALSPAC genetic data was
367 performed on a combined mother and child dataset using Impute2 against the 1000 Genomes Project
368 Phase 1 Version 3 reference panel.

369

370 Linkage disequilibrium (LD) pruning was undertaken using PLINK® using the following settings (r?=0.1,
371 window size=50kb). SNPs residing within the Major Histocompatibility Complex (MHC) (chr6: 25Mb:
372 35Mb) and lactase (LCT) regions (chr2: 129Mb: 144Mb) were removed as they are known to be under
373 high selective pressure (build 37). This left 474,939 SNPs available for analysis.

374

375 DNA methylation data

376 In ALSPAC, blood from 1018 mother-child pairs were selected for analysis as part of ARIES®
377 (http://www.ariesepigenomics.org.uk/). Following DNA extraction, samples were bisulphite converted
378 using the Zymo EZ DNA Methylation™ kit (Zymo, Irvine, CA, USA), and DNA methylation was
379  measured using the lllumina Infinium HumanMethylation450 (HM450) BeadChip. ARIES consists of
380  DNAm measures at five time points (three time points for children: birth, childhood, and adolescence;
381 and two for mothers: during pregnancy and at middle age). We utilised data on a total of 1774 individuals
382 from the adolescence and middle age time points with both DNAm and genotype data

383 (http://www.ariesepigenomics.org.uk/).

384
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385  DNAm was adjusted using the GoDMC pipeline (described elsewhere)'®. Briefly, we adjusted for sex,
386 age at measurement, batch variables, smoking and predicted cell counts. Genetic principal components
387 (PCs), non-genetic DNAm PCs were also calculated using the GoDMC pipeline, and a genetic kinship
388 matrix was fitted using GRAMMAR?®8. The residuals of these analyses were rank transformed to have
389  amean 0 and variance 1.

390

391 We selected the following DNAm sites for analyses:

392

393 1. 2000 DNAm sites with twin heritability estimates between 0.99 and 0.79'2 (referred to as ‘highly
394 heritable’ DNAm sites)

395 2. 1580 DNAm sites identified as having greater epigenetic similarity than can be explained
396 genetically, so-called ‘epigenetic supersimilarity’ (ESS) DNAm sites™

397 3. 513 DNAm sites forming an epigenetic biomarker of aging, PhenoAge®, that is predictive of
398 all-cause mortality

399 4. 243 DNAm sites associated with BMI (p < 1x10#) in a discovery EWAS of 2707 individuals of
400 European ancestry®’. Results were obtained and downloaded from the EWAS catalog*®

401 5. 893 DNAm sites associated with birthweight (p < 1x10#) in a cord blood EWAS meta-analysis
402 of 6023 individuals of European ancestry3'. Results were obtained and downloaded from the
403 EWAS catalog*®

404

405  To serve as comparison groups, we additionally ran BayesNS on 513, 243 and 893 background DNAm
406 sites matched on GC/CpG content and heritability to PhenoAge, BMI and birthweight associated sites
407 respectively.

408

409  BayesNS Analysis

410 BayesS is a Bayesian mixed linear model (MLM) method that can jointly estimate SNP-based heritability
411 (h2yp), Polygenicity (17) and the joint distribution between MAF and SNP effect size (S)3. The relationship
412 between MAF and effect size is used to make inferences about natural selection and is modelled using
413 the following mixture distribution as a prior for each SNP effect:

414

415 B;i~N(0, [ij(l—pj)]sa,?)r[+(p(1—n)

416

417 Where B;is the effect of a SNP j, p; is the MAF, ag is the variance of SNP effects under a neutral model,
418 ¢ is a point mass at zero and r is polygenicity (defined as the proportion of SNPs with non-zero effects).
419 S is the estimated selection coefficient, when S > 0 effect size is positively related to MAF and when
420  § < 0 effect size is negatively related to MAF. When S = 0, effect size and MAF are unrelated. BayesS
421 uses a Markov Chain Monte Carlo (MCMC) algorithm for posterior inference. SNP-based heritability is
422 estimated using the sampled effects of SNPs in the MCMC. We applied a nested version of BayesS
423 (BayesNS) recommended for traits with low polygenicity such as DNAm. BayesNS considers SNPs

424 together in non-overlapping windows and skips over regions of zero effect. SNPs in the same window
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425  are individually modelled as in BayesS, but also collectively considered as a window effect. The length
426 of each window was set as 200kb, replicating the window size selected for analyses of gene
427 expression®. Polygenicity () here is considered as the proportion of windows with nonzero effects. We
428 considered each DNAm site as an individual trait in our analyses.

429

430 For the MCMC algorithm we set the chain length to 30,000 iterations with the first 10,000 discarded as
431 burn-in. We plotted MCMC trace plots using bayesplot (http://mc-stan.org/bayesplot/) to visually assess
432 convergence of the MCMC algorithm. In addition, we ran the Raftery and Lewis® run length control
433 diagnostic in coda and selected a threshold of less than 10 for the dependence factor (I) (Figures
434 §2;83). MCMC convergence checks were performed in R version 3.6.2.

435

436 Accounting for Genetic Drift

437 We additionally ran a Bayesian model for genetic architecture which accounts for genetic drift. We used
438 the MCMC algorithm from Ashraf and Lawson (2021)” and applied it to the highly heritable, ESS and

439 PhenoAge DNAm sites. Specifically, the prior for the selection coefficient S~U(—2,2), and for the
440 standard deviation of [ is o3~U(0,2). Unlike in BayesS where [is a prior, it and the allele frequency
441 p1 are treated as data, via the same relationship:

442

443 Bi~Normal (O, op [pi(l - pi)]s)
444

445 The drift model below is the appropriate model accounting for genetic drift. To furter check that our

446 results are consistent with BayesS we report results for three models:

447

448 1. Null model: this extends the likelihood to account for PIP. p; is considered fixed, and the
449 likelihood from each SNP weighted by its inclusion probability w; = PIP(i). The log-likelihood
450 is L = %iL, w;logp(B;; 0,04 [p:(1 — p)]®), where p is the Normal distribution density.

451 2. No-drift model: no genetic drift but accounting for PIP and uncertainty in i, pi is considered
452 fixed, the observed effect size 3;~N (b;, o5) where g, is the standard error of the estimate.
453 Then following above L = ¥I_, w; logp(b;; 0, 05 [p; (1 — p)]®).

454 3. Drift model: accounting for genetic drift, PIP and uncertainty in [3i. Drift is modelled with the
455 Baldings-Nichols model. Let f; be the true frequency in the ancestral population and p; be
456 observed as above. Then p;~Beta(f; (1 — F.)/Fs, (1 — i) (1 = Fy)/Fst), Bi~N(b;, 0f) and L =
457 ZiLiwilogp(bi; 0,05 [f;(1 = f)1°).

458

459  F, is set to 0.15, matching the empirical estimate from the out-of-Africa bottleneck at these SNPs as
460 in the original implementation’.

461
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462  Calculating variance explained

463 Following BayesNS analyses we investigated SNPs associated with DNAm at individual DNAm sites.
464  We selected SNPs with a high posterior inclusion probability (PIP) >= 0.8. We calculated the number
465  of SNPs (nSNPs) with a PIP >= 0.8 for each DNAm site.

466

467 For each DNAm site we calculated variance explained for SNPs with PIP >= 0.8:

468

469 Bi2p;(1—p;)

470

471 Where g; is the effect of a SNP j, p; is the MAF.

472

473 Analysing LD score and selection metrics

474 To determine whether our results were influenced by LD, we additionally looked up European LD scores
475  from the 1000 Genomes Project for each of these SNPs*3. To compare BayesNS estimates of S with
476 other selection scores we used metrics from the 1000 Genomes Selection Browser 1.0. We selected
477 the same five annotations used in GoDMC'®, reflecting selection over different timescales: singleton
478 density score (SDS'; UK10K), F;, “°(Global F,, (CEU vs. YRI vs. CHB)), integrated haplotype score
479 (iHS;CEU)*', cross population extended haplotype homozygosity (XPEHH; CEU vs. YRI) and XPEHH
480 (CEU vs. CHB)*. These methods focus on positive selection'®; F, is based on population
481 differentiation*®, XPEHH is a cross-population test based on extended haplotype homozygosity (EHH),
482 iHS is defined as the log ratio of integrated haplotype scores for each allele in a single population*'.
483 SDS measures very recent changes in allele frequency from contemporary genome sequences and
484 has been applied to the UK10K dataset”.

485

486 For each DNAm site we calculated the mean value for each of these selection scores for SNPs with
487 PIP > 0.1 and PIP > 0.001 respectively. Each mean was weighted by the SNPs PIP value. We used
488  ggpairs in R version 3.6.2 to plot pairwise distributions of BayesNS, LDSC and selection scores and to
489 compute the Pearson correlation coefficient between these variables.

490

491 Enrichment Analysis

492 We assessed enrichment or depletion of DNAm sites for 25 chromatin states and TFBSs in 127 different
493 cell types comprising 30 tissues. These data were generated by the Roadmap Epigenomics Project*

494 (http://www.roadmapepigenomics.org/) and ENCODE (https://www.encodeproject.org/). We used

495 Locus Overlap Analysis (LOLA)%® (Bioconductor version: Release 3.12) to perform a two-sided Fisher’s
496 exact test. Since the magnitude of S reflects the strength of selection we selected DNAm sites with
497 estimates of S > 0.5 and S < —0.5 for analyses. Background sites from the HumanMethylation450
498 array were matched on GC and CpG content and heritability prior to analysis (Figure S6), as differential
499 GC content/heritability’s between the sites of interest and background sites may bias the results.
500  Analyses were conducted using R v. 3.6.2.

501
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Four groups of DNAm sites were considered for enrichment analysis:
1. 212 highly heritable DNAm sites with estimates of S > 0.5 (positive highly heritable DNAm
sites)
2. 376 highly heritable DNAm sites with estimates of S < —0.5 (negative highly heritable DNAm
sites)

123 ESS DNAm sites with estimates of S = 0.5 (positive ESS DNAm sites)
218 ESS DNAm sites with estimates of S < —0.5 (negative ESS DNAm sites)

DNAm and complex traits

We ran BayesNS on DNAm sites associated with BMI and birthweight in two large-scale EWAS of
participants with European ancestry. In addition, we ran BayesNS on DNAm sites not associated with
the traits of interest, matched on GC/CpG content and heritability. We split DNAm sites in each set
(PhenoAge, BMI-associated DNAm sites, birthweight-associated DNAm sites and matched background
DNAm sites) into two groups: DNAm sites with negative estimates of S < —0.5 and DNAm sites with
estimates of S > —0.5. We then performed one-sided Fisher’s exact tests to investigate whether DNAm
sites associated with PhenoAge, BMI and birthweight exhibit statistically different estimates of S
compared to a set of matched background DNAm sites. We additionally performed GOterm enrichment

analysis implemented in missmethyl%",


https://doi.org/10.1101/2021.11.25.469994
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.25.469994; this version posted November 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

542 Acknowledgements

543  \We are extremely grateful to all the families who took part in this study, the midwives for their help in
544 recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory
545  technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses.

546

547 Funding

548  The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of
549 Bristol provide core support for ALSPAC. This publication is the work of the authors who will serve as
550 guarantors for the contents of this paper. A comprehensive list of grants funding is available on the

551 ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf).

552 GWAS data was generated by Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute
553 and LabCorp (Laboratory Corporation of America) using support from 23andMe. This study and C.H.
554  were supported by a 4-year studentship fund from the Wellcome Trust Molecular, Genetic and
555  Lifecourse Epidemiology Ph.D. programme at the University of Bristol (108902/B/15/Z). J.L.M, D.J.L.,
556 T.R.G., S.R are members of the UK Medical Research Council Integrative Epidemiology Unit at the
557 University of Bristol (MC_UU_00011/4, MC_UU_00011/5). For the purpose of Open Access, the author
558 has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from
559 this submission.

560

561 Author contributions

562 Analysed the data: C.H., G.H., J.LM., D.J.L, T.R.G,, S.R.

563  Contributed data: GoDMC, ALSPAC

564  Designed and managed the study: J.L.M., D.J.L., T.R.G., S.R.

565  Wrote the manuscript: C.H., J.L.M,, D.J.L., T.R.G., S.R.

566

567

568


https://doi.org/10.1101/2021.11.25.469994
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.25.469994; this version posted November 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Edwards, S. L., Beesley, J., French, J. D. & Dunning, M. Beyond GWASSs: llluminating the dark
road from association to function. Am. J. Hum. Genet. 93, 779-797 (2013).

Pritchard, J. K., Pickrell, J. K. & Coop, G. The Genetics of Human Adaptation: Hard Sweeps,
Soft Sweeps, and Polygenic Adaptation. Curr. Biol. 20, R208—R215 (2010).

Zeng, J. et al. Signatures of negative selection in the genetic architecture of human complex
traits. Nat. Genet. 50, 746-753 (2018).

O’Connor, L. J. et al. Extreme Polygenicity of Complex Traits Is Explained by Negative
Selection. Am. J. Hum. Genet. 105, 456476 (2019).

Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models using
summary statistics. Nat. Genet. 52, 458—-462 (2020).

Schoech, A. P. et al. Quantification of frequency-dependent genetic architectures in 25 UK
Biobank traits reveals action of negative selection. Nat. Commun. 10, 790 (2019).

Ashraf, B. & Lawson, D. J. Genetic drift from the out-of-Africa bottleneck leads to biased
estimation of genetic architecture and selection. Eur. J. Hum. Genet. 2020.08.17.254110
(2021) doi:10.1038/s41431-021-00873-2.

Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic
Association Studies Using Summary Statistics. PLoS Genet. 10, e1004383 (2014).

Giambartolomei, C. et al. A Bayesian framework for multiple trait colocalization from summary
association statistics. Bioinformatics 34, 2538-2545 (2018).

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115
(2013).

Joehanes, R. et al. Epigenetic Signatures of Cigarette Smoking. Circ. Cardiovasc. Genet. 9,
436-447 (2016).

Van Dongen, J. et al. Genetic and environmental influences interact with age and sex in
shaping the human methylome. Nat. Commun. 7, 11115 (2016).

Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc.
Natl. Acad. Sci. U. S. A. 102, 10604-10609 (2005).

van Baak, T. E. et al. Epigenetic supersimilarity of monozygotic twin pairs. Genome Biol. 19, 2
(2018).

Ecker, S., Pancaldi, V., Valencia, A., Beck, S. & Paul, D. S. Epigenetic and Transcriptional
Variability Shape Phenotypic Plasticity. Bioessays 40, (2018).

Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA
methylation. Nat. Genet. 53, 1311-1321 (2021).

Field, Y. et al. Detection of human adaptation during the past 2000 years. Science (80-. ). 354,
760-764 (2016).

Pybus, M. et al. 1000 Genomes Selection Browser 1.0: A genome browser dedicated to
signatures of natural selection in modern humans. Nucleic Acids Res. 42, D903—-D909 (2014).

Min, J. L. et al. Genomic and phenomic insights from an atlas of genetic effects on DNA
methylation. medRxiv 2020.09.01.20180406 (2020) doi:10.1101/2020.09.01.20180406.


https://doi.org/10.1101/2021.11.25.469994
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.25.469994; this version posted November 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

perpetuity. It is made available under aCC-BY 4.0 International license.

Onuchic, V. et al. Allele-specific epigenome maps reveal sequence-dependent stochastic
switching at regulatory loci. Science 361, (2018).

Fagny, M. et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers.
Nat. Commun. 6, 10047 (2015).

Lonsdale, J. et al. The Genotype-Tissue Expression (GTEX) project. Nat. Genet. 45, 580-585
(2013).

Glassberg, E. C., Gao, Z., Harpak, A., Lan, X. & Pritchard, J. K. Evidence for weak selective
constraint on human gene expression. Genetics 211, 757-772 (2019).

Korthauer, K. & Irizarry, R. Genome-wide repressive capacity of promoter DNA methylation is
revealed through epigenomic manipulation. bioRxiv 381145 (2018) doi:10.1101/381145.

Ford, E. et al. Frequent lack of repressive capacity of promoter DNA methylation identified
through genome-wide epigenomic manipulation. bioRxiv 170506 (2017) doi:10.1101/170506.

Levenson, V. V. DNA methylation as a universal biomarker. Expert Rev. Mol. Diagn. 10, 481—
488 (2010).

Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases.
Nature 465, 721-727 (2010).

Héberlé, E. & Bardet, A. F. Sensitivity of transcription factors to DNA methylation. Essays
Biochem. 63, 727-741 (2019).

Bibikova, M. et al. High density DNA methylation array with single CpG site resolution.
Genomics 98, 288-295 (2011).

Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse
outcomes of adiposity. Nature 541, 81-86 (2017).

Kipers, L. K. et al. Meta-analysis of epigenome-wide association studies in neonates reveals
widespread differential DNA methylation associated with birthweight. Nat. Commun. 10, 1893
(2019).

Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging
(Albany. NY). 10, 573-591 (2018).

Williams, G. C. Pleiotropy, Natural Selection, and the Evolution of Senescence. Evolution (N.
Y). 11, 398-411 (1957).

Relton, C. L. et al. Data resource profile: Accessible resource for integrated epigenomic
studies (ARIES). Int. J. Epidemiol. 44, 1181-1190 (2015).

Raftery, A. E. & Lewis, S. M. [Practical Markov Chain Monte Carlo]: Comment: One Long Run
with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo. Stat. Sci. 7, 493—
497 (1992).

Liu, L. et al. MCAF1/AM is involved in Sp1-mediated maintenance of cancer-associated
telomerase activity. J. Biol. Chem. 284, 5165-5174 (2009).

Zhang, W. et al. A global transcriptional network connecting noncoding mutations to changes
in tumor gene expression. Nat. Genet. 50, 613-620 (2018).

Barbultti, I. et al. The U2AF homology motif kinase 1 (UHMK1) is upregulated upon
hematopoietic cell differentiation. Biochim. Biophys. Acta - Mol. Basis Dis. 1864, 959-966
(2018).


https://doi.org/10.1101/2021.11.25.469994
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.25.469994; this version posted November 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

perpetuity. It is made available under aCC-BY 4.0 International license.

Sun, J., Li, Z. & Yang, N. Mechanism of the Conformational Change of the Protein
Methyltransferase SMYD3: A Molecular Dynamics Simulation Study. Int. J. Mol. Sci. 22, 7185
(2021).

Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure.
Evolution (N. Y). 38, 1358—1370 (1984).

Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in
the human genome. PLoS Biol. 4, 0446—0458 (2006).

Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human
populations. Nature 449, 913-918 (2007).

Bulik-Sullivan, B. et al. LD score regression distinguishes confounding from polygenicity in
genome-wide association studies. Nat. Genet. 47, 291-295 (2015).

Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human
epigenomes. Nature 518, 317-329 (2015).

Lesch, B. J. & Page, D. C. Poised chromatin in the mammalian germ line. Development 141,
3619-3626 (2014).

Hoffman, M. M. et al. Integrative annotation of chromatin elements from ENCODE data.
Nucleic Acids Res. 41, 827-841 (2013).

The, E. P. C. et al. An integrated encyclopedia of DNA elements in the human genome. Nature
489, 57 (2012).

Arbiza, L. et al. Genome-wide inference of natural selection on human transcription factor
binding sites. Nat. Genet. 45, 723-729 (2013).

Battram, T. et al. The EWAS Catalog: a database of epigenome-wide association studies.
OSF Prepr. 4 (2021) doi:10.31219/0sf.io/837wn.

Wang, Y. et al. Whole-genome association study identifies &lt;em&gt;STK39&lt;/em&agt; as a
hypertension susceptibility gene. Proc. Natl. Acad. Sci. 106, 226 LP — 231 (2009).

Sadler, B. et al. Positive Selection on Loci Associated with Drug and Alcohol Dependence.
PLoS One 10, e0134393 (2015).

Gaunt, T. R. et al. Systematic identification of genetic influences on methylation across the
human life course. Genome Biol. 17, 61 (2016).

Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture
distribution. BMC Bioinformatics 13, 16 (2012).

Salas, L. A. et al. An optimized library for reference-based deconvolution of whole-blood
biospecimens assayed using the lllumina HumanMethylationEPIC BeadArray. Genome Biol.
19, 64 (2018).

Boyd, A. et al. Cohort profile: The 'Children of the 90s’-The index offspring of the avon
longitudinal study of parents and children. Int. J. Epidemiol. 42, 111-127 (2013).

Fraser, A. et al. Cohort profile: The avon longitudinal study of parents and children: ALSPAC
mothers cohort. Int. J. Epidemiol. 42, 97-110 (2013).

Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage
analyses. Am. J. Hum. Genet. 81, 559-575 (2007).

Aulchenko, Y. S., De Koning, D. J. & Haley, C. Genomewide rapid association using mixed


https://doi.org/10.1101/2021.11.25.469994
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.25.469994; this version posted November 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

model and regression: A fast and simple method for genomewide pedigree-based quantitative
trait loci association analysis. Genetics 177, 577-585 (2007).

59. Sheffield, N. C. & Bock, C. LOLA: Enrichment analysis for genomic region sets and regulatory
elements in R and Bioconductor. Bioinformatics 32, 587-589 (2016).

60.  Young, A. |. Solving the missing heritability problem. PLOS Genet. 15, e1008222 (2019).

61. Phipson, B., Maksimovic, J. & Oshlack, A. missMethyl: an R package for analyzing data from
lllumina’s HumanMethylation450 platform. Bioinformatics 32, 286—288 (2016).


https://doi.org/10.1101/2021.11.25.469994
http://creativecommons.org/licenses/by/4.0/

A Highly heritable DNAm sites B ESS DNAm sites
300 |
150 |
2200 =
@ §100-
3100 Q 50/
0 0.
2 -1 0 1 2 2 -1 0 1
S S
¢ PhenoAge DNAm sites D All DNAm sets
15 400 |
%’10_ %300-
5 . £200.
e “ 100
0] 0/
-2 -1 0 1 2 -2 -1 0 1
S S

Figure 1| Estimates of S from BayesNS. S is estimated using the relationship between SNP effect size and MAF, when S = 0 SNP effect
size is independent of MAF (neutral), S > 0 indicates positive selection, S < 0 indicates negative selection. Results are for (A) 1804 highly
heritable DNAm sites, (B) 887 ESS DNAm sites and (C) 74 PhenoAge DNAm sites which passed MCMC convergence checks. All DNAm sites
shown in (D) with highly heritable DNAm sites in grey, ESS DNAm sites in red and PhenoAge DNAm sites in beige.
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Figure 2 | Relationship between estimates of S from BayesNS and NSNPs. For (A) 1804 highly heritable DNAm sites, (B) 887 ESS DNAm
sites and (C) 74 PhenoAge DNAm sites. NSNPs calculated as the number of SNPs with a posterior inclusion probability (PIP) >=0.8 for each DNAm
site and S calculated from the relationship between SNP effect size and MAF. Slope for highly heritable DNAm sites (-0.09; p < 2.2 x10'%), ESS
DNAm sites (-0.10; p < 2.2 x10-'%), PhenoAge DNAm sites (-0.14; p = 0.00064).
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Figure 3 | Relationship between h2sxe calculated by BayesNS and mean variance explained (VE). For (A) 1804 highly heritable DNAm sites,
(B) 887 ESS DNAm sites and (C) 74 PhenoAge DNAm sites. Estimates of S coloured: red (negative <=-0.1), green (neutral -0.1 — 0.1) and blue
(positive >0.1).
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Figure 4 | Enrichment or depletion of DNAm sites in predicted chromatin states for DNAm sites from the
highly heritable probe set with estimates of S >=0.5 (positive highly heritable) and S <= -0.5 (negative highly
heritable). Odds ratio (on log scale) shown on the y axis and chromatin state on the x axis. Size of circle represents
the -log10 P value. Enrichment analysis performed via two-sided Fisher's exact test implemented in LOLA'. 25
chromatin states abbreviations: TssA, Active TSS; PromU, Promoter Upstream TSS; PromD1, Promoter
Downstream TSS with DNase; PromD2, Promoter Downstream TSS; Tx5’, Transcription 5’; Tx, Transcription; Tx3’,
Transcription 3’; TXWk, Weak transcription; TxReg, Transcription Regulatory; TXEnh5’, Transcription 5° Enhancer;
TxEnh3’, Transcription 3' Enhancer; TXEnhW, Transcription Weak Enhancer; EnhA1, Active Enhancer 1; EnhA2,
Active Enhancer 2; EnhAF, Active Enhancer Flank; EnhW1, Weak Enhancer 1; EnhW2, Weak Enhancer 2; EnhAc,
Enhancer Acetylation Only; DNase, DNase only; ZNF/Rpts, ZNF genes & repeats; Het, Heterochromatin; PromP,
Poised Promoter; PromBiv, Bivalent Promoter; ReprPC, Repressed PolyComb, Quies, Quiescent/Low.
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Figure 5 | Enrichment or depletion of DNAm sites in transcription factors (TFs) for DNAm sites from the
represents the -log10 P value. Enrichment analysis performed via two-sided Fisher's exact test implemented in

highly heritable). Odds ratio (on log scale) shown on the y axis and chromatin state on the x axis. Size of circle
LOLA".
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Figure 6 | Distribution of estimates of S for DNAm sites associated with birthweight and BMI compared to background DNAm sites. S is estimated using the
relationship between SNP effect size and MAF, when S = 0 SNP effect size is independent of MAF (neutral), S > 0 indicates positive selection, S < 0 indicates

negative selection. Birthweight and BMI associated DNAm sites shown in red and matched DNAm sites (matched on GC/CpG content and heritability) shown
in grey.
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