

1 Evidence of positive and negative selection associated 2 with DNA methylation

3 Charlie Hatcher^{1*}, Genetics of DNA Methylation Consortium, Gibran Hemani¹, Santiago Rodriguez¹, Tom R.
4 Gaunt¹, Daniel J. Lawson^{1,2} and Josine L. Min¹

5
6 ¹ MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol

7 ² Department of Statistical Sciences, School of Mathematics, University of Bristol

8
9 * Corresponding author: Charlie Hatcher, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical
10 School, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. Email: charlie.hatcher@bristol.ac.uk

12 Abstract

13 Signatures of negative selection are pervasive amongst complex traits and diseases. However, it is
14 unclear whether such signatures exist for DNA methylation (DNAm) that has been proposed to have a
15 functional role in disease. We estimate polygenicity, SNP-based heritability and model the joint
16 distribution of effect size and minor allele frequency (MAF) to estimate a selection coefficient (S) for
17 2000 heritable DNAm sites in 1774 individuals from the Avon Longitudinal Study of Parents and
18 Children. Additionally, we estimate S for meta stable epi alleles and DNAm sites associated with aging
19 and mortality, birthweight and body mass index. Quantification of MAF-dependent genetic architectures
20 estimated from genotype and DNAm reveal evidence of positive ($S > 0$) and negative selection ($S < 0$)
21 and confirm previous evidence of negative selection for birthweight. Evidence of both negative and
22 positive selection highlights the role of DNAm as an intermediary in multiple biological pathways with
23 competing function.

24
25 **Word count: 148**

26
27 Keywords: ALSPAC, DNA methylation, natural selection

41 Introduction

42 Genome-wide association studies (GWASs) have identified many genetic variants (single nucleotide
43 polymorphisms; SNPs) associated with complex traits and diseases¹. Natural selection plays a role in
44 influencing the genetic architecture of complex traits, altering allele frequency at many genetic loci².
45 Negative selection prevents deleterious mutations from becoming common³ and is thought to explain
46 why GWASs have identified many common variants of low effect size⁴. Several studies have shown
47 evidence of negative selection acting on complex traits (including height, body mass index; BMI and
48 birthweight) using the relationship between minor allele frequency (MAF) and SNP effect size to
49 estimate a selection coefficient (S)^{3,5,6}. However, there is difficulty in separating the action of selection
50 from genetic drift when using MAF and SNP effect size to characterise genetic architecture⁷.

51
52 Most GWA loci reside in non-coding regions and colocalization studies have shown that genetic factors
53 underlying intermediate traits are shared with GWA loci^{8,9}. Intermediate traits such DNA methylation
54 (DNAm) and gene expression may therefore also show signatures of selection. Variation in DNAm can
55 be influenced by age¹⁰, environmental¹¹, genetic¹² and stochastic¹³ changes. The variability of DNAm
56 maybe caused by natural selection, epigenetic stochasticity¹⁴ or cellular plasticity¹⁵. The Genetics of
57 DNA Methylation Consortium (GoDMC) has identified a large number of methylation quantitative trait
58 loci (mQTLs) in blood¹⁶. They showed that these DNAm sites influenced by genetic factors are
59 polygenic¹⁶. mQTLs were enriched for a variety of selection metrics (including the singleton density
60 score; SDS¹⁷ and fixation index; F_{st} ¹⁸) and show a strong negative relationship between MAF and
61 mQTL effect size¹⁹. It is therefore likely that natural selection acts on many mQTL variants jointly.
62 However, selection is difficult to detect as DNAm is typically controlled by a local *cis* variant with large
63 effect size and many physically separated *trans* variants with small effect sizes. Previous studies on
64 *cis*-regulatory regions have found evidence of purifying selection on sequence-dependent allele-
65 specific DNAm²⁰ and positive selection among African agriculturist populations²¹. Similarly, gene
66 expression traits are polygenic²² and SNPs showing signatures of selection are enriched among SNPs
67 associated with gene expression (expression quantitative trait loci; eQTLs)^{3,23}.

68
69 DNAm has a variety of roles in gene regulation^{24,25}, is likely cell type-specific, and can be used as a
70 biomarker for risk stratification and disease detection^{26,27}. DNAm at cytosine-guanine dinucleotides
71 (CpGs) has been associated with repression of transcription factor (TF) binding, however, TF binding
72 has also been shown to inhibit DNAm²⁸. Across the 450k sites most commonly measured in
73 epidemiological studies²⁹ (which are biased to promoter regions), mean heritability for DNAm has been
74 shown to be around 20%¹² and relationships between the heritability of a DNAm site and the number
75 of mQTLs and between heritability and effect size have been found¹⁶ DNAm sites may have particular
76 properties in terms of natural selection where heritable sites should have increased polygenicity with a
77 larger proportion of SNPs with larger effect sizes⁴. In epigenome-wide association studies (EWASs),
78 DNAm sites have been associated with many complex traits and diseases including those showing
79 signatures of negative selection such as BMI and birthweight^{3,30,31}. Additionally, PhenoAge is a
80 composite DNAm predictor of aging (trained on mortality including 42 clinical measures and age), that

81 has been predictive of disease risk and mortality³². To date, there is little known about whether these
82 sites are a target of selection for example due to antagonistic pleiotropy³³ where genes required for
83 earlier stages of development may have deleterious effects in later life³². Meta stable DNAm sites
84 exhibiting greater similarity than can be explained genetically have also been identified¹⁴. It may be the
85 case that increased variability of these sites occurred as initial response to the environment before the
86 effect of natural selection.

87
88 DNAm may play various roles in underlying biological processes, and therefore we expect it to be
89 subject to both positive and negative selection. Here, we investigate the relationship between MAF and
90 effect size for SNPs at individual DNAm sites from the widely used 450k array to make inferences about
91 the action of natural selection, which we hypothesise may vary for each DNAm site. We utilise *BayesNS*,
92 a Bayesian mixed linear model method (MLM) that estimates polygenicity, SNP-based heritability and
93 the joint distribution of MAF and effect size³. We apply *BayesNS* to DNAm data from the Accessible
94 Resource for Integrated Epigenomic Studies (ARIES) cohort³⁴.

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114 Results

115 Estimation of genetic architecture parameters of DNAm sites

116 We used a Bayesian mixed linear model (*BayesNS*) to estimate genetic architecture parameters of
117 DNAm sites including polygenicity, SNP-based heritability and a selection coefficient (S)³. We applied
118 *BayesNS* to DNAm sites profiled in blood from 1774 mother-offspring individuals from ARIES³⁴ and
119 474,939 independent non-major histocompatibility complex (MHC) and non-lactase (LCT) SNPs.
120 Specifically, we considered 2000 DNAm sites which have 'high' heritability estimates from twin studies
121 ($\bar{h}_2^2 = 89.9\%$, range 79-99%, Table 1)¹², as selection is dependent on a genetic contribution to DNAm
122 variance. Secondly, we analysed 1508 DNAm sites which show non-genetically mediated similarity
123 between monozygotic twins, so-called epigenetic supersimilarity (ESS) DNAm sites¹⁴. Blood DNA
124 methylation at ESS DNAm sites exhibit plasticity to the periconceptional environment and is associated
125 with risk of cancer. Finally, we considered 513 DNAm sites which combined predict biological age
126 ("PhenoAge"), a trait that is moderately heritable and has been associated with aging, mortality and is
127 predictive of cardiovascular disease risk³².

128
129 Convergence of the Markov chain Monte Carlo (MCMC) algorithm implies that a single consistent
130 selection signal is found, whilst failure to converge implies that competing, inconsistent sets of SNPs
131 explain the data equally (and poorly). This was assessed with the Raftery-Lewis long-chain diagnostic
132 test³⁵ and MCMC trace plots (Figures S1;S2;S3). In line with previous work³, DNAm sites which failed
133 convergence checks typically had lower estimates of heritability (Figure S3; Table 1). *BayesNS*
134 estimates SNP-based heritability and as with the estimates of twin heritability, the highly heritable
135 DNAm sites had the highest mean estimate of SNP based heritability ($\bar{h}_{SNP}^2 = 30.2\%$; SD=12.4%; Table
136 1), followed by the ESS DNAm sites ($\bar{h}_{SNP}^2 = 26.6\%$; SD=13.0%; Table 1) and then the PhenoAge DNAm
137 sites ($\bar{h}_{SNP}^2 = 14.8\%$; SD=9.7%; Table 1). Since we only consider DNAm sites which passed MCMC
138 convergence diagnostics, (Table 1; Figure S1-S3), these mean estimates are likely higher than we
139 would expect for each set of DNAm sites.

140 141 DNAm shows signatures of both positive and negative selection

142 *BayesNS* uses the relationship between SNP effect size and MAF to estimate a selection coefficient
143 (S)³. When $S = 0$ effect size is independent of MAF and this would reflect a 'neutral' scenario, an $S >$
144 0 would represent evidence of positive selection and an $S < 0$ would represent evidence of negative
145 selection. Quantification of MAF-dependent genetic architectures revealed the action of both positive
146 $S > 0$ and negative $S < 0$ selection across all three sets of DNAm sites (Figure 1). On average,
147 estimates are close to zero, (PhenoAge DNAm sites; $\bar{S} = 0.04$) being mildly negative for the highly
148 heritable ($\bar{S} = -0.15$) and ESS DNAm sites ($\bar{S} = -0.14$) (Table 1). Across the distributions we see
149 individual DNAm sites with more extreme positive and negative values of S . DNAm sites with extreme
150 negative estimates of S ($S < -1$) are annotated to a variety of genes including those involved in
151 transcription (*ATF7IP*)³⁶ and tumour suppression (*SCRIB*)³⁷. DNAm sites with extreme positive
152 estimates of S ($S > 1$) are annotated to a variety of genes including cg07175007 ($S=1.13$, SD=0.56)

153 near *UHMK1* associated with the cell cycle³⁸ and cg0479814 (S=0.65, SD=0.60) near *SMYD3* a histone
154 methyltransferase³⁹ (Table S1).

155

156 As a sensitivity analysis we implemented models to account for genetic drift⁷ (Figure S4), which suggest
157 that drift may be important but is not the sole driver of the signal of selection, supporting the hypothesis
158 that this captures real biological processes. However, we cannot rule out that any specific effect was
159 not caused by genetic drift.

160

161 **Polygenicity is associated with selection**

162 *BayesNS* estimates polygenicity as the proportion of 200kb genomic 'windows' with non-zero effects³.
163 In contrast to findings from GoDMC¹⁹, our results suggest that the genetic architecture of DNAm is not
164 very polygenic (highly heritable DNAm sites: $\bar{\pi} = 0.04\%$, ESS DNAm sites $\bar{\pi} = 0.04\%$, PhenoAge DNAm
165 sites: $\bar{\pi} = 0.06\%$; Table 1). This finding is in part due to the bimodality of the effect size distribution in
166 DNAm: we lack power to capture polygenic *trans* mQTLs with low effect sizes, whilst we are powered
167 to detect large *cis* mQTL effects. However, it may also reflect the role of many DNAm sites in biological
168 pathways, having a specific biological purpose but either affecting, or being affected by, many other
169 processes.

170

171 We additionally investigated the number of SNPs (N SNPs) highly associated with each DNAm site
172 (posterior inclusion probability; *PIP* ≥ 0.8). Across all three sets of DNAm sites, we find a negative
173 relationship between *S* and N SNPs for DNAm sites (regression coefficient for highly heritable DNAm
174 sites: -0.09; $p < 2.2 \times 10^{-16}$, ESS DNAm sites: -0.10; $p < 2.2 \times 10^{-16}$, PhenoAge DNAm sites: -0.14; $p =$
175 0.00064; Figure 2). In addition, we find that SNPs associated with DNAm sites with negative estimates
176 of *S* have lower mean estimates of variance explained (VE) compared to those with positive estimates
177 of *S* (Figure 3). Polygenicity is therefore associated with selection, with DNAm associated with few
178 mQTLs being the only class of positive selection, and highly polygenic DNAm being subject to strictly
179 negative selection. Further, positively selected DNAm tends to have almost all of the heritability
180 accounted for by identifiable mQTLs.

181

182 **Relationship between selection estimates and traditional selection measures**

183 We additionally investigated whether estimates of *S* correlate with five selection metrics: SDS¹⁷, F_{st} ⁴⁰,
184 integrated haplotype score (iHS)⁴¹, cross-population extended haplotype homozygosity XPEHH⁴² (CEU
185 v. YRI) and XPEHH (CEU v. CHB) in sets of 'high' *PIP* (*PIP* > 0.1) and 'all' *PIP* (*PIP* ≥ 0.001) SNPs
186 for each DNAm site. Values of *S* have the highest correlation with F_{st} ⁴⁰ (0.193; Figure S5A, 0.113; Figure
187 S5C, 0.151; Figure S5E, for highly heritable, ESS and PhenoAge DNAm sites respectively), however,
188 when we include 'all' possible SNPs, even though we weight by *PIP*, the correlation becomes negative
189 and tends to decrease in magnitude (-0.045; Figure S5B, -0.127; Figure S5D, -0.091; Figure S5F). This
190 implies that *cis* or strongly acting *trans* SNPs are selected differently to the bulk DNA associations, i.e.
191 that they are selected via a different mechanism, and that the low *PIP* SNPs are subject to a diversity
192 of pathways, hence leading to an average selection close to 0 (Table 1). We additionally calculate

193 correlations between S and LD scores⁴³. Correlations between LD scores and S are small, with the
194 lowest magnitude correlation being -0.005 and the highest being -0.065, suggesting that estimates of S
195 are not correlated with LDSC.

196

197

198 **Table 1** | *Estimation of genetic architecture parameters for highly heritable, ESS and PhenoAge DNAm*
199 *sites*

DNAm sites	\bar{S}	SD(\bar{S})	\bar{h}_{SNP}^2 (%)	SD(\bar{h}_{SNP}^2)	$\bar{\pi}$ (%)	SD($\bar{\pi}$)	\bar{h}_2 (%)	SD(\bar{h}_2)	Convergence
Highly heritable (n=1804)	-0.15	0.46	30.2	12.4	0.04	0.02	89.9	5.9	90.2% (1804/2000)
ESS (n=887)	-0.14	0.50	26.6	13.0	0.04	0.02	78.8	20.4	56.1% (887/1580)
PhenoAge (n=74)	0.04	0.48	14.8	9.7	0.06	0.04	53.4	23.0	14.4% (74/513)

200

201 SD; standard deviation, h_{SNP}^2 ; SNP based heritability and π ; polygenicity, h_2 ; twin heritability estimates¹² of 2000 heritable
202 DNAm sites, 1580 ESS sites and 513 PhenoAge DNAm sites, Convergence; percentage of DNAm sites passing MCMC
203 convergence checks

204

205

206 **Biological properties of DNAm sites under selection**

207 The magnitude of S is related to the 'strength of selection on trait-associated SNPs'³. To understand
208 whether DNAm traits under 'stronger' selection had biological relevance, we assessed whether DNAm
209 sites with estimates of $S \leq -0.5$ and ≥ 0.5 were enriched or depleted for predicted chromatin states⁴⁴.
210 The positive highly heritable DNAm sites (n=212, $S \geq 0.5$;) showed the strongest enrichment
211 (qvalue<0.05) for enhancers (Odds Ratio; ORs EnhW1 1.75-3.21; ORs EnhW2 1.72-2.57) and
212 promoters (PromP ORs=1.84-3.26; PromU ORs=1.52-2.18) (Figure 4A; Table S2). The negative highly
213 heritable DNAm sites (n=376, $S \leq -0.5$; Figure 4B; Table S2) showed only enrichment for poised
214 promoters (PromP, OR=2.1) but not for transcription activity. Both positive (n=123, $S \geq 0.5$) and
215 negative (n=218, $S \leq -0.5$) ESS DNAm sites also show enrichment for poised promoters (PromP)
216 across all tissue types (positive ORs 2.24-5.1 negative ORs: 1.79-3.64; Figure S7; Tables S3-S4).
217 Poised chromatin is associated with both activating and repressing histone modifications and has been
218 proposed to play a role in the prevention of DNAm⁴⁵. DNAm sites showing signatures of selection are
219 therefore enriched for bivalent chromatin structure associated with silencing genes whilst keeping them
220 ready for activation⁴⁶. CpG rich promoters have been shown to be subject to 'epigenetic buffering'
221 against the effects of random mutations due to their association with housekeeping genes²⁰.

222

223 We additionally assessed enrichment of 167 transcription factor binding sites (TFBSs) in 127 different
224 cell types comprising 30 tissues⁴⁷. Transcription factors have previously been shown to be under weak
225 purifying selection, with a limited minority exhibiting signatures of positive selection⁴⁸. Arbiza *et al.*, find
226 evidence of positive selection on GATA- binding zinc finger proteins⁴⁸. Though, we do not see evidence
227 of enrichment for TFBS for our DNAm sites of interest (Tables S6-S9).

228

229

230 **BMI and birthweight associated DNAm sites show signatures of selection**

231 We used *BayesNS* to estimate S , h_{SNP}^2 and π for 893 DNAm sites associated with birthweight³¹ and 243
232 DNAm sites associated with BMI³⁰ in EWAS of individuals of European ancestry⁴⁹. 220 birthweight-
233 associated DNAm sites (24.6%) and 42 BMI-associated DNAm sites (17.0%) passed MCMC
234 convergence tests (Figure S3). As with the highly heritable, ESS and PhenoAge DNAm sites, MAF-
235 dependent genetic architectures estimated from genotype and DNAm revealed the action of both
236 positive and negative selection for BMI (\bar{S} ; 0.04; SD; 0.59, range: -1.09:0.98) and birthweight (\bar{S} ; -0.05,
237 SD; 0.59, range: -1.81:0.98) associated DNAm sites (Figure 6; Table S10). Birthweight-associated
238 cg16875057 has an S estimate of -1.81 and is annotated to the *STK39* gene which is associated with
239 the cellular stress response pathway and hypertension⁵⁰. In addition, birthweight-associated
240 cg07157107 ($S=0.98$) is associated with the nicotinic receptor *CHRNA6*, positive selection has
241 previously been reported on genomic regions containing nicotinic receptor genes⁵¹. In contrast, a
242 previous study using BMI and birthweight GWA loci found only evidence of negative selection³. After
243 adjustment for non-random properties of the DNAm sites, we found that birthweight associated DNAm
244 sites showed an enrichment of negative estimates of S as compared to heritability matched background
245 DNAm sites (Table 2). To assess whether biological pathways were enriched among the DNAm sites
246 with extreme S we performed GOterm enrichment analysis, however none of the pathways showed
247 evidence of enrichment.

248

249 **Table 2| Birthweight-associated DNAm sites are enriched for negative estimates of S**

250

DNAm sites	Fisher's exact test P-value	Odds ratio (OR)	Lower 95% CI	Upper 95% CI
<i>PhenoAge</i> (n=74)	1	1.09	0.44	2.70
<i>BMI-associated</i> (n=42)	1	1.13	0.37	3.45
<i>Birthweight</i> (n=220)	3.432×10^{-6}	0.29	0.16	0.50

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266 **Discussion**

267 In this study, we have characterized the genetic architecture of DNA methylation at individual DNAm
268 sites measured on the 450k array²⁹. Specifically, we consider estimates of polygenicity, SNP-based
269 heritability and the joint-distribution of effect size and MAF for 1804 highly heritable DNAm sites, 887
270 ESS DNAm sites and 74 PhenoAge DNAm sites. Unlike previous work looking at complex traits and
271 gene expression which find evidence of negative selection exclusively^{3,5,6}, across all sets of DNAm sites
272 we find evidence of both positive ($S > 0$) and negative selection ($S < 0$). These findings support
273 previous research showing an enrichment of mQTLs among SNPs with signatures of positive selection,
274 plus a negative relationship between MAF and mQTL effect size¹⁹. We were able to estimate S at
275 individual DNAm sites allowing us to identify specific DNAm sites with extreme estimates of S . In
276 addition, we considered DNAm sites associated with complex traits that have previously been shown
277 to exhibit signatures of negative selection with *BayesS*³. DNAm sites associated with birthweight in
278 EWAS had a higher proportion of DNAm sites with negative estimates of S compared to heritability
279 matched DNAm sites.

280

281 For traits which are less polygenic it can be particularly hard to separate the actions of natural selection
282 and genetic drift, which can generate extreme changes to the frequency of SNPs between human
283 populations such as our study population (Europeans) and the common ancestor in which DNAm
284 evolved (predating the out-of-Africa event)⁷. A Bayesian model accounting for genetic drift found that
285 individual estimates of S could be due to either selection or genetic drift, but collectively DNAm was
286 impacted by both positive and negative selection, not explainable by genetic drift alone⁷.

287

288 In addition to this, we were also able to characterize SNP based heritability and polygenicity for
289 individual DNAm sites. Across all DNAm sites, average SNP based heritability was 28.6%. This is higher
290 than previous estimates looking at ARIES data, but likely reflects the fact we are constrained to
291 considering DNAm sites which pass convergence checks⁵². For each group of DNAm sites, average
292 polygenicity was low. We found a striking relationship between polygenicity and selection, with
293 positively selected DNAm associated with only a small number of mQTLs which together explained
294 most of the heritability of the trait. Conversely, negatively selected DNAm is likely to be explained by
295 more mQTLs, many of which we lack statistical power to identify. The genetic architecture of DNAm
296 has been shown to have a large *cis*-mQTL effect plus polygenic *trans*-mQTLs of low effect sizes^{19,52}.
297 Studies in larger and more diverse populations should be undertaken to further investigate the
298 relationship between polygenicity and selection. Our results provide insight into how genetic
299 architecture of individual DNAm sites has been influenced by natural selection.

300

301 There are several limitations of this study. The model is restricted to looking at DNAm sites which pass
302 MCMC convergence checks, which typically are those with high heritability in twin studies¹². In addition,
303 we compared *BayesNS* estimates to other selection metrics (F_{st} , SDS, XPEHH, iHS), which are
304 specialised to detect signatures of positive selection and have an estimate per SNP. This means that
305 they do not make an ideal comparison group, since *BayesS* can be used to make inferences about both

306 positive and negative selection and estimates are provided at the trait level. Blood cell counts have
307 previously been reported to show signatures of negative selection⁶. Whilst our DNAm data has been
308 adjusted for recorded cell counts¹⁹, the relationship between DNAm and blood cell counts⁵³ could
309 warrant further investigation in regards to whether it influences estimates of *S*. As mentioned, larger
310 sample sizes are needed to detect mQTLs with low effect size which we are not powered to detect. Our
311 study was also limited to the 450k array which measures 1.5% of the genome and is biased to
312 promoters²⁹. Large epidemiological studies profiled with EPIC arrays⁵⁴ (measuring regulatory elements)
313 are expected to find additional signatures for selection.

314

315 Overall, our study finds evidence for both positive and negative selection in the genetic architecture of
316 DNAm. We are unable to cleanly place DNAm in the causal pathway between genetic variation and
317 selection. Our results are consistent with two competing hypotheses; firstly, that selection occurs on
318 DNAm due to a biological function it has, or secondly DNAm is influenced by complex traits that are
319 themselves the target of selection. The presence of both positive and negative selection is an indication
320 that both pathways may play a role. Specifically, we hypothesise that DNAm may perform a biological
321 function which is of less selective importance than the complex traits that have widespread impact on
322 genome wide DNAm, swamping and confusing the signal with a mixture of proximal and distal signals.
323 Future work looking into the biological relevance of individual DNAm sites with positive and negative
324 estimates of *S* could help to identify biological pathways which effect fitness. DNAm data from diverse
325 individuals will be essential in separating the effects of drift and selection. Understanding the selective
326 forces shaping DNAm could ultimately help identify potential targets for disease intervention.

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346 **Methods**

347 **Study Population**

348 Participants were from the Avon Longitudinal Study of Parents and Children (ALSPAC)^{55,56}, a large
349 prospective cohort study that recruited 14,541 pregnancies, resident in the Bristol and Avon area with
350 expected delivery dates between the 1st of April 1991 and the 31st of December 1992. Full details of the
351 cohort have been published elsewhere^{55,56}. The study website contains details of all the data that are
352 available through a fully searchable data dictionary (<http://www.bristol.ac.uk/alspac/researchers/our-data/>). Written and informed consent has been obtained for all ALSPAC participants. Ethical approval
353 for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics
354 Committees (<http://www.bristol.ac.uk/alspac/researchers/research-ethics/>).
355

356

357 **ALSPAC genotype data**

358 ALSPAC mothers were genotyped using the Illumina Human660W-quad array at Centre National de
359 Génotypage (CNG). ALSPAC offspring were genotyped using the Illumina HumanHap550 quad chip
360 genotyping platforms by 23andMe subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK
361 and the Laboratory Corporation of America, Burlington, NC, USA. For ALSPAC mothers, SNPs with a
362 MAF of <1%, a call rate of <95%, or evidence for violations of Hardy–Weinberg equilibrium ($p < 1 \times 10^{-6}$) were removed. For ALSPAC offspring, SNPs with MAF of <1%, a call rate of <95% or evidence
363 for violations of Hardy–Weinberg equilibrium ($p < 5 \times 10^{-7}$), were removed. Cryptic relatedness within
364 mothers and within offspring was measured as proportion of identity by descent (IBD < 0.1). All
365 individuals with non-European ancestry were removed. Imputation of ALSPAC genetic data was
366 performed on a combined mother and child dataset using Impute2 against the 1000 Genomes Project
367 Phase 1 Version 3 reference panel.
368

369

370 Linkage disequilibrium (LD) pruning was undertaken using PLINK⁵⁷ using the following settings ($r^2=0.1$,
371 window size=50kb). SNPs residing within the Major Histocompatibility Complex (MHC) (chr6: 25Mb:
372 35Mb) and lactase (LCT) regions (chr2: 129Mb: 144Mb) were removed as they are known to be under
373 high selective pressure (build 37). This left 474,939 SNPs available for analysis.
374

375 **DNA methylation data**

376 In ALSPAC, blood from 1018 mother-child pairs were selected for analysis as part of ARIES³⁴
377 (<http://www.ariesepigenomics.org.uk/>). Following DNA extraction, samples were bisulphite converted
378 using the Zymo EZ DNA Methylation™ kit (Zymo, Irvine, CA, USA), and DNA methylation was
379 measured using the Illumina Infinium HumanMethylation450 (HM450) BeadChip. ARIES consists of
380 DNAm measures at five time points (three time points for children: birth, childhood, and adolescence;
381 and two for mothers: during pregnancy and at middle age). We utilised data on a total of 1774 individuals
382 from the adolescence and middle age time points with both DNAm and genotype data
383 (<http://www.ariesepigenomics.org.uk/>).
384

385 DNA was adjusted using the GoDMC pipeline (described elsewhere)¹⁹. Briefly, we adjusted for sex,
386 age at measurement, batch variables, smoking and predicted cell counts. Genetic principal components
387 (PCs), non-genetic DNA PCs were also calculated using the GoDMC pipeline, and a genetic kinship
388 matrix was fitted using GRAMMAR⁵⁸. The residuals of these analyses were rank transformed to have
389 a mean 0 and variance 1.

390

391 We selected the following DNA sites for analyses:

392

- 393 1. 2000 DNA sites with twin heritability estimates between 0.99 and 0.79¹² (referred to as 'highly
394 heritable' DNA sites)
- 395 2. 1580 DNA sites identified as having greater epigenetic similarity than can be explained
396 genetically, so-called 'epigenetic supersimilarity' (ESS) DNA sites¹⁴
- 397 3. 513 DNA sites forming an epigenetic biomarker of aging, PhenoAge³², that is predictive of
398 all-cause mortality
- 399 4. 243 DNA sites associated with BMI ($p < 1 \times 10^{-4}$) in a discovery EWAS of 2707 individuals of
400 European ancestry³⁰. Results were obtained and downloaded from the EWAS catalog⁴⁹
- 401 5. 893 DNA sites associated with birthweight ($p < 1 \times 10^{-4}$) in a cord blood EWAS meta-analysis
402 of 6023 individuals of European ancestry³¹. Results were obtained and downloaded from the
403 EWAS catalog⁴⁹

404

405 To serve as comparison groups, we additionally ran *BayesNS* on 513, 243 and 893 background DNA sites
406 matched on GC/CpG content and heritability to PhenoAge, BMI and birthweight associated sites
407 respectively.

408

409 **BayesNS Analysis**

410 *BayesS* is a Bayesian mixed linear model (MLM) method that can jointly estimate SNP-based heritability
411 (h_{SNP}^2), polygenicity (π) and the joint distribution between MAF and SNP effect size (S)³. The relationship
412 between MAF and effect size is used to make inferences about natural selection and is modelled using
413 the following mixture distribution as a prior for each SNP effect:

414

$$415 \beta_j \sim N(0, [2p_j(1-p_j)]^S \sigma_\beta^2) \pi + \varphi(1-\pi)$$

416

417 Where β_j is the effect of a SNP j , p_j is the MAF, σ_β^2 is the variance of SNP effects under a neutral model,
418 φ is a point mass at zero and π is polygenicity (defined as the proportion of SNPs with non-zero effects).
419 S is the estimated selection coefficient, when $S > 0$ effect size is positively related to MAF and when
420 $S < 0$ effect size is negatively related to MAF. When $S = 0$, effect size and MAF are unrelated. *BayesS*
421 uses a Markov Chain Monte Carlo (MCMC) algorithm for posterior inference. SNP-based heritability is
422 estimated using the sampled effects of SNPs in the MCMC. We applied a nested version of *BayesS*
423 (*BayesNS*) recommended for traits with low polygenicity such as DNA. *BayesNS* considers SNPs
424 together in non-overlapping windows and skips over regions of zero effect. SNPs in the same window

425 are individually modelled as in *BayesS*, but also collectively considered as a window effect. The length
426 of each window was set as 200kb, replicating the window size selected for analyses of gene
427 expression³. Polygenicity (π) here is considered as the proportion of windows with nonzero effects. We
428 considered each DNAm site as an individual trait in our analyses.

429

430 For the MCMC algorithm we set the chain length to 30,000 iterations with the first 10,000 discarded as
431 burn-in. We plotted MCMC trace plots using *bayesplot* (<http://mc-stan.org/bayesplot/>) to visually assess
432 convergence of the MCMC algorithm. In addition, we ran the Raftery and Lewis³⁵ run length control
433 diagnostic in *coda* and selected a threshold of less than 10 for the dependence factor (I) (Figures
434 S2;S3). MCMC convergence checks were performed in R version 3.6.2.

435

436 Accounting for Genetic Drift

437 We additionally ran a Bayesian model for genetic architecture which accounts for genetic drift. We used
438 the MCMC algorithm from Ashraf and Lawson (2021)⁷ and applied it to the highly heritable, ESS and
439 PhenoAge DNAm sites. Specifically, the prior for the selection coefficient $S \sim U(-2,2)$, and for the
440 standard deviation of β is $\sigma_\beta \sim U(0,2)$. Unlike in *BayesS* where β_1 is a prior, it and the allele frequency
441 p_1 are treated as data, via the same relationship:

442

$$443 \beta_i \sim \text{Normal} \left(0, \sigma_\beta^2 [p_i(1 - p_i)]^S \right)$$

444

445 The *drift model* below is the appropriate model accounting for genetic drift. To furter check that our
446 results are consistent with *BayesS* we report results for three models:

447

- 448 1. *Null model*: this extends the likelihood to account for *PIP*. p_i is considered fixed, and the
449 likelihood from each SNP weighted by its inclusion probability $w_i = PIP(i)$. The log-likelihood
450 is $L = \sum_{i=1}^N w_i \log p(\beta_i; 0, \sigma_\beta^2 [p_i(1 - p_i)]^S)$, where p is the Normal distribution density.
- 451 2. *No-drift model*: no genetic drift but accounting for *PIP* and uncertainty in β_i , p_i is considered
452 fixed, the observed effect size $\beta_i \sim N(b_i, \sigma_b^2)$ where σ_b is the standard error of the estimate.
453 Then following above $L = \sum_{i=1}^N w_i \log p(b_i; 0, \sigma_\beta^2 [p_i(1 - p_i)]^S)$.
- 454 3. *Drift model*: accounting for genetic drift, *PIP* and uncertainty in β_i . Drift is modelled with the
455 Baldings-Nichols model. Let f_i be the true frequency in the ancestral population and p_i be
456 observed as above. Then $p_i \sim \text{Beta}(f_i(1 - F_{st})/F_{st}, (1 - f_i)(1 - F_{st})/F_{st})$, $\beta_i \sim N(b_i, \sigma_b^2)$ and $L =$
457 $\sum_{i=1}^N w_i \log p(b_i; 0, \sigma_\beta^2 [f_i(1 - f_i)]^S)$.

458

459 F_{st} is set to 0.15, matching the empirical estimate from the out-of-Africa bottleneck at these SNPs as
460 in the original implementation⁷.

461

462 **Calculating variance explained**

463 Following *BayesNS* analyses we investigated SNPs associated with DNAm at individual DNAm sites.
464 We selected SNPs with a high posterior inclusion probability (*PIP*) ≥ 0.8 . We calculated the number
465 of SNPs (nSNPs) with a *PIP* ≥ 0.8 for each DNAm site.

466

467 For each DNAm site we calculated variance explained for SNPs with *PIP* ≥ 0.8 :

468

$$\beta_j^2 2p_j(1 - p_j)$$

470

471 Where β_j is the effect of a SNP j , p_j is the MAF.

472

473 **Analysing LD score and selection metrics**

474 To determine whether our results were influenced by LD, we additionally looked up European LD scores
475 from the 1000 Genomes Project for each of these SNPs⁴³. To compare *BayesNS* estimates of S with
476 other selection scores we used metrics from the 1000 Genomes Selection Browser 1.0. We selected
477 the same five annotations used in GoDMC¹⁹, reflecting selection over different timescales: singleton
478 density score (SDS¹⁷; UK10K), F_{st} ⁴⁰ (Global F_{st} (CEU vs. YRI vs. CHB)), integrated haplotype score
479 (iHS;CEU)⁴¹, cross population extended haplotype homozygosity (XPEHH; CEU vs. YRI) and XPEHH
480 (CEU vs. CHB)⁴². These methods focus on positive selection¹⁸; F_{st} is based on population
481 differentiation⁴⁰, XPEHH is a cross-population test based on extended haplotype homozygosity (EHH),
482 iHS is defined as the log ratio of integrated haplotype scores for each allele in a single population⁴¹.
483 SDS measures very recent changes in allele frequency from contemporary genome sequences and
484 has been applied to the UK10K dataset¹⁷.

485

486 For each DNAm site we calculated the mean value for each of these selection scores for SNPs with
487 *PIP* > 0.1 and *PIP* > 0.001 respectively. Each mean was weighted by the SNPs *PIP* value. We used
488 *ggpairs* in R version 3.6.2 to plot pairwise distributions of *BayesNS*, LDSC and selection scores and to
489 compute the Pearson correlation coefficient between these variables.

490

491 **Enrichment Analysis**

492 We assessed enrichment or depletion of DNAm sites for 25 chromatin states and TFBSs in 127 different
493 cell types comprising 30 tissues. These data were generated by the Roadmap Epigenomics Project⁴⁴
494 (<http://www.roadmapepigenomics.org/>) and ENCODE (<https://www.encodeproject.org/>). We used
495 Locus Overlap Analysis (LOLA)⁵⁹ (Bioconductor version: Release 3.12) to perform a two-sided Fisher's
496 exact test. Since the magnitude of S reflects the strength of selection we selected DNAm sites with
497 estimates of $S \geq 0.5$ and $S \leq -0.5$ for analyses. Background sites from the HumanMethylation450
498 array were matched on GC and CpG content and heritability prior to analysis (Figure S6), as differential
499 GC content/heritability's between the sites of interest and background sites may bias the results.
500 Analyses were conducted using R v. 3.6.2.

501

502 Four groups of DNAm sites were considered for enrichment analysis:

503

- 504 1. 212 highly heritable DNAm sites with estimates of $S \geq 0.5$ (*positive highly heritable DNAm*
505 *sites*)
- 506 2. 376 highly heritable DNAm sites with estimates of $S \leq -0.5$ (*negative highly heritable DNAm*
507 *sites*)
- 508 3. 123 ESS DNAm sites with estimates of $S \geq 0.5$ (*positive ESS DNAm sites*)
- 509 4. 218 ESS DNAm sites with estimates of $S \leq -0.5$ (*negative ESS DNAm sites*)

510

511

512 **DNAm and complex traits**

513 We ran *BayesNS* on DNAm sites associated with BMI and birthweight in two large-scale EWAS of
514 participants with European ancestry. In addition, we ran *BayesNS* on DNAm sites not associated with
515 the traits of interest, matched on GC/CpG content and heritability. We split DNAm sites in each set
516 (PhenoAge, BMI-associated DNAm sites, birthweight-associated DNAm sites and matched background
517 DNAm sites) into two groups: DNAm sites with negative estimates of $S \leq -0.5$ and DNAm sites with
518 estimates of $S > -0.5$. We then performed one-sided Fisher's exact tests to investigate whether DNAm
519 sites associated with PhenoAge, BMI and birthweight exhibit statistically different estimates of S
520 compared to a set of matched background DNAm sites. We additionally performed GOterm enrichment
521 analysis implemented in missmethyl⁶⁰⁶¹.

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542 **Acknowledgements**

543 We are extremely grateful to all the families who took part in this study, the midwives for their help in
544 recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory
545 technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses.

546

547 **Funding**

548 The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of
549 Bristol provide core support for ALSPAC. This publication is the work of the authors who will serve as
550 guarantors for the contents of this paper. A comprehensive list of grants funding is available on the
551 ALSPAC website (<http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf>).
552 GWAS data was generated by Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute
553 and LabCorp (Laboratory Corporation of America) using support from 23andMe. This study and C.H.
554 were supported by a 4-year studentship fund from the Wellcome Trust Molecular, Genetic and
555 Lifecourse Epidemiology Ph.D. programme at the University of Bristol (108902/B/15/Z). J.L.M, D.J.L.,
556 T.R.G., S.R are members of the UK Medical Research Council Integrative Epidemiology Unit at the
557 University of Bristol (MC_UU_00011/4, MC_UU_00011/5). For the purpose of Open Access, the author
558 has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from
559 this submission.

560

561 **Author contributions**

562 Analysed the data: C.H., G.H., J.L.M., D.J.L., T.R.G., S.R.

563 Contributed data: GoDMC, ALSPAC

564 Designed and managed the study: J.L.M., D.J.L., T.R.G., S.R.

565 Wrote the manuscript: C.H., J.L.M., D.J.L., T.R.G., S.R.

566

567

568

References

1. Edwards, S. L., Beesley, J., French, J. D. & Dunning, M. Beyond GWASs: Illuminating the dark road from association to function. *Am. J. Hum. Genet.* **93**, 779–797 (2013).
2. Pritchard, J. K., Pickrell, J. K. & Coop, G. The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation. *Curr. Biol.* **20**, R208–R215 (2010).
3. Zeng, J. *et al.* Signatures of negative selection in the genetic architecture of human complex traits. *Nat. Genet.* **50**, 746–753 (2018).
4. O'Connor, L. J. *et al.* Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. *Am. J. Hum. Genet.* **105**, 456–476 (2019).
5. Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models using summary statistics. *Nat. Genet.* **52**, 458–462 (2020).
6. Schoech, A. P. *et al.* Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. *Nat. Commun.* **10**, 790 (2019).
7. Ashraf, B. & Lawson, D. J. Genetic drift from the out-of-Africa bottleneck leads to biased estimation of genetic architecture and selection. *Eur. J. Hum. Genet.* 2020.08.17.254110 (2021) doi:10.1038/s41431-021-00873-2.
8. Giambartolomei, C. *et al.* Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. *PLoS Genet.* **10**, e1004383 (2014).
9. Giambartolomei, C. *et al.* A Bayesian framework for multiple trait colocalization from summary association statistics. *Bioinformatics* **34**, 2538–2545 (2018).
10. Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biol.* **14**, R115 (2013).
11. Joehanes, R. *et al.* Epigenetic Signatures of Cigarette Smoking. *Circ. Cardiovasc. Genet.* **9**, 436–447 (2016).
12. Van Dongen, J. *et al.* Genetic and environmental influences interact with age and sex in shaping the human methylome. *Nat. Commun.* **7**, 11115 (2016).
13. Fraga, M. F. *et al.* Epigenetic differences arise during the lifetime of monozygotic twins. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 10604–10609 (2005).
14. van Baak, T. E. *et al.* Epigenetic supersimilarity of monozygotic twin pairs. *Genome Biol.* **19**, 2 (2018).
15. Ecker, S., Pancaldi, V., Valencia, A., Beck, S. & Paul, D. S. Epigenetic and Transcriptional Variability Shape Phenotypic Plasticity. *Bioessays* **40**, (2018).
16. Min, J. L. *et al.* Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. *Nat. Genet.* **53**, 1311–1321 (2021).
17. Field, Y. *et al.* Detection of human adaptation during the past 2000 years. *Science (80-).* **354**, 760–764 (2016).
18. Pybus, M. *et al.* 1000 Genomes Selection Browser 1.0: A genome browser dedicated to signatures of natural selection in modern humans. *Nucleic Acids Res.* **42**, D903–D909 (2014).
19. Min, J. L. *et al.* Genomic and phenomic insights from an atlas of genetic effects on DNA methylation. *medRxiv* 2020.09.01.20180406 (2020) doi:10.1101/2020.09.01.20180406.

20. Onuchic, V. *et al.* Allele-specific epigenome maps reveal sequence-dependent stochastic switching at regulatory loci. *Science* **361**, (2018).
21. Fagny, M. *et al.* The epigenomic landscape of African rainforest hunter-gatherers and farmers. *Nat. Commun.* **6**, 10047 (2015).
22. Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nat. Genet.* **45**, 580–585 (2013).
23. Glassberg, E. C., Gao, Z., Harpak, A., Lan, X. & Pritchard, J. K. Evidence for weak selective constraint on human gene expression. *Genetics* **211**, 757–772 (2019).
24. Korthauer, K. & Irizarry, R. Genome-wide repressive capacity of promoter DNA methylation is revealed through epigenomic manipulation. *bioRxiv* 381145 (2018) doi:10.1101/381145.
25. Ford, E. *et al.* Frequent lack of repressive capacity of promoter DNA methylation identified through genome-wide epigenomic manipulation. *bioRxiv* 170506 (2017) doi:10.1101/170506.
26. Levenson, V. V. DNA methylation as a universal biomarker. *Expert Rev. Mol. Diagn.* **10**, 481–488 (2010).
27. Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. *Nature* **465**, 721–727 (2010).
28. Héberlé, É. & Bardet, A. F. Sensitivity of transcription factors to DNA methylation. *Essays Biochem.* **63**, 727–741 (2019).
29. Bibikova, M. *et al.* High density DNA methylation array with single CpG site resolution. *Genomics* **98**, 288–295 (2011).
30. Wahl, S. *et al.* Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. *Nature* **541**, 81–86 (2017).
31. Küpers, L. K. *et al.* Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. *Nat. Commun.* **10**, 1893 (2019).
32. Levine, M. E. *et al.* An epigenetic biomarker of aging for lifespan and healthspan. *Aging (Albany, NY)* **10**, 573–591 (2018).
33. Williams, G. C. Pleiotropy, Natural Selection, and the Evolution of Senescence. *Evolution (N. Y.)* **11**, 398–411 (1957).
34. Relton, C. L. *et al.* Data resource profile: Accessible resource for integrated epigenomic studies (ARIES). *Int. J. Epidemiol.* **44**, 1181–1190 (2015).
35. Raftery, A. E. & Lewis, S. M. [Practical Markov Chain Monte Carlo]: Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo. *Stat. Sci.* **7**, 493–497 (1992).
36. Liu, L. *et al.* MCAF1/AM is involved in Sp1-mediated maintenance of cancer-associated telomerase activity. *J. Biol. Chem.* **284**, 5165–5174 (2009).
37. Zhang, W. *et al.* A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. *Nat. Genet.* **50**, 613–620 (2018).
38. Barbutti, I. *et al.* The U2AF homology motif kinase 1 (UHMK1) is upregulated upon hematopoietic cell differentiation. *Biochim. Biophys. Acta - Mol. Basis Dis.* **1864**, 959–966 (2018).

39. Sun, J., Li, Z. & Yang, N. Mechanism of the Conformational Change of the Protein Methyltransferase SMYD3: A Molecular Dynamics Simulation Study. *Int. J. Mol. Sci.* **22**, 7185 (2021).
40. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. *Evolution (N. Y.)* **38**, 1358–1370 (1984).
41. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. *PLoS Biol.* **4**, 0446–0458 (2006).
42. Sabeti, P. C. *et al.* Genome-wide detection and characterization of positive selection in human populations. *Nature* **449**, 913–918 (2007).
43. Bulik-Sullivan, B. *et al.* LD score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat. Genet.* **47**, 291–295 (2015).
44. Roadmap Epigenomics Consortium *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* **518**, 317–329 (2015).
45. Lesch, B. J. & Page, D. C. Poised chromatin in the mammalian germ line. *Development* **141**, 3619–3626 (2014).
46. Hoffman, M. M. *et al.* Integrative annotation of chromatin elements from ENCODE data. *Nucleic Acids Res.* **41**, 827–841 (2013).
47. The, E. P. C. *et al.* An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57 (2012).
48. Arbiza, L. *et al.* Genome-wide inference of natural selection on human transcription factor binding sites. *Nat. Genet.* **45**, 723–729 (2013).
49. Battram, T. *et al.* The EWAS Catalog: a database of epigenome-wide association studies. *OSF Prepr.* 4 (2021) doi:10.31219/osf.io/837wn.
50. Wang, Y. *et al.* Whole-genome association study identifies STK39 as a hypertension susceptibility gene. *Proc. Natl. Acad. Sci.* **106**, 226 LP – 231 (2009).
51. Sadler, B. *et al.* Positive Selection on Loci Associated with Drug and Alcohol Dependence. *PLoS One* **10**, e0134393 (2015).
52. Gaunt, T. R. *et al.* Systematic identification of genetic influences on methylation across the human life course. *Genome Biol.* **17**, 61 (2016).
53. Houseman, E. A. *et al.* DNA methylation arrays as surrogate measures of cell mixture distribution. *BMC Bioinformatics* **13**, 16 (2012).
54. Salas, L. A. *et al.* An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. *Genome Biol.* **19**, 64 (2018).
55. Boyd, A. *et al.* Cohort profile: The 'Children of the 90s'-The index offspring of the avon longitudinal study of parents and children. *Int. J. Epidemiol.* **42**, 111–127 (2013).
56. Fraser, A. *et al.* Cohort profile: The avon longitudinal study of parents and children: ALSPAC mothers cohort. *Int. J. Epidemiol.* **42**, 97–110 (2013).
57. Purcell, S. *et al.* PLINK: A tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).
58. Aulchenko, Y. S., De Koning, D. J. & Haley, C. Genomewide rapid association using mixed

model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. *Genetics* **177**, 577–585 (2007).

- 59. Sheffield, N. C. & Bock, C. LOLA: Enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. *Bioinformatics* **32**, 587–589 (2016).
- 60. Young, A. I. Solving the missing heritability problem. *PLOS Genet.* **15**, e1008222 (2019).
- 61. Phipson, B., Maksimovic, J. & Oshlack, A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. *Bioinformatics* **32**, 286–288 (2016).

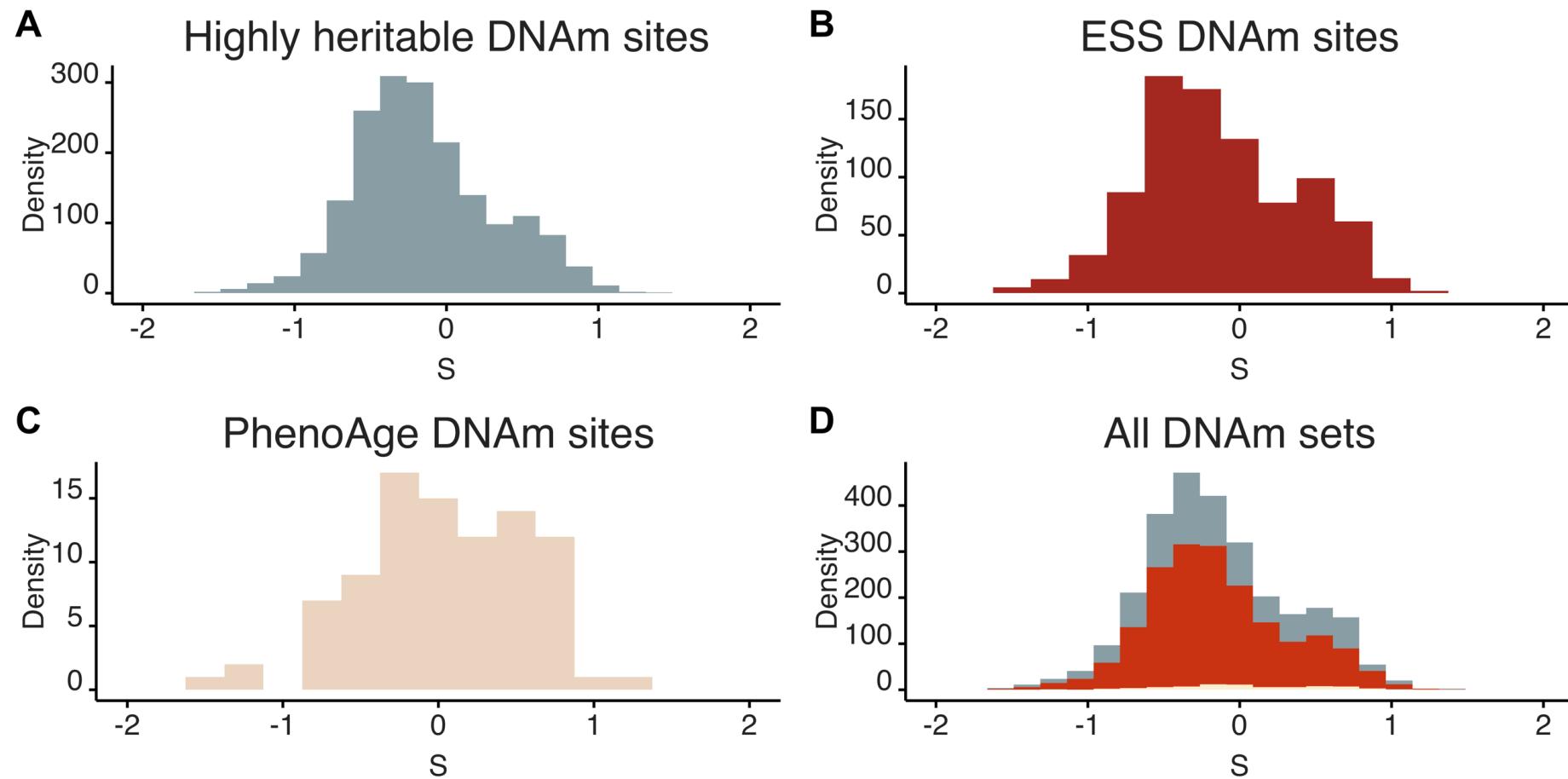


Figure 1| Estimates of S from *BayesNS*. S is estimated using the relationship between SNP effect size and MAF, when $S = 0$ SNP effect size is independent of MAF (neutral), $S > 0$ indicates positive selection, $S < 0$ indicates negative selection. Results are for **(A)** 1804 highly heritable DNAm sites, **(B)** 887 ESS DNAm sites and **(C)** 74 PhenoAge DNAm sites which passed MCMC convergence checks. All DNAm sites shown in **(D)** with highly heritable DNAm sites in grey, ESS DNAm sites in red and PhenoAge DNAm sites in beige.

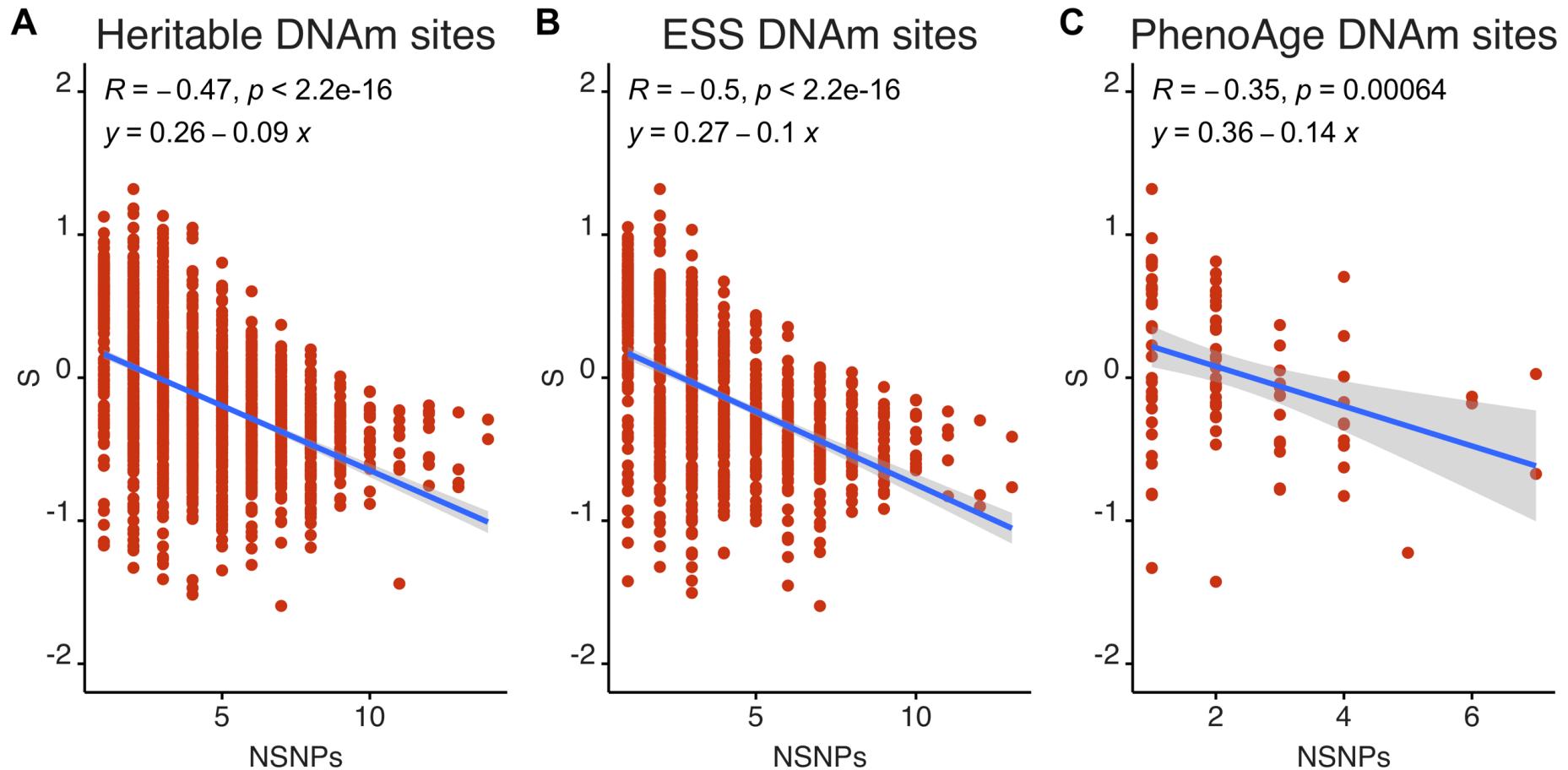


Figure 2 | Relationship between estimates of S from *BayesNS* and NSNPs. For (A) 1804 highly heritable DNA sites, (B) 887 ESS DNA sites and (C) 74 PhenoAge DNA sites. NSNPs calculated as the number of SNPs with a posterior inclusion probability (PIP) ≥ 0.8 for each DNA site and S calculated from the relationship between SNP effect size and MAF. Slope for highly heritable DNA sites (-0.09; $p < 2.2 \times 10^{-16}$), ESS DNA sites (-0.10; $p < 2.2 \times 10^{-16}$), PhenoAge DNA sites (-0.14; $p = 0.00064$).

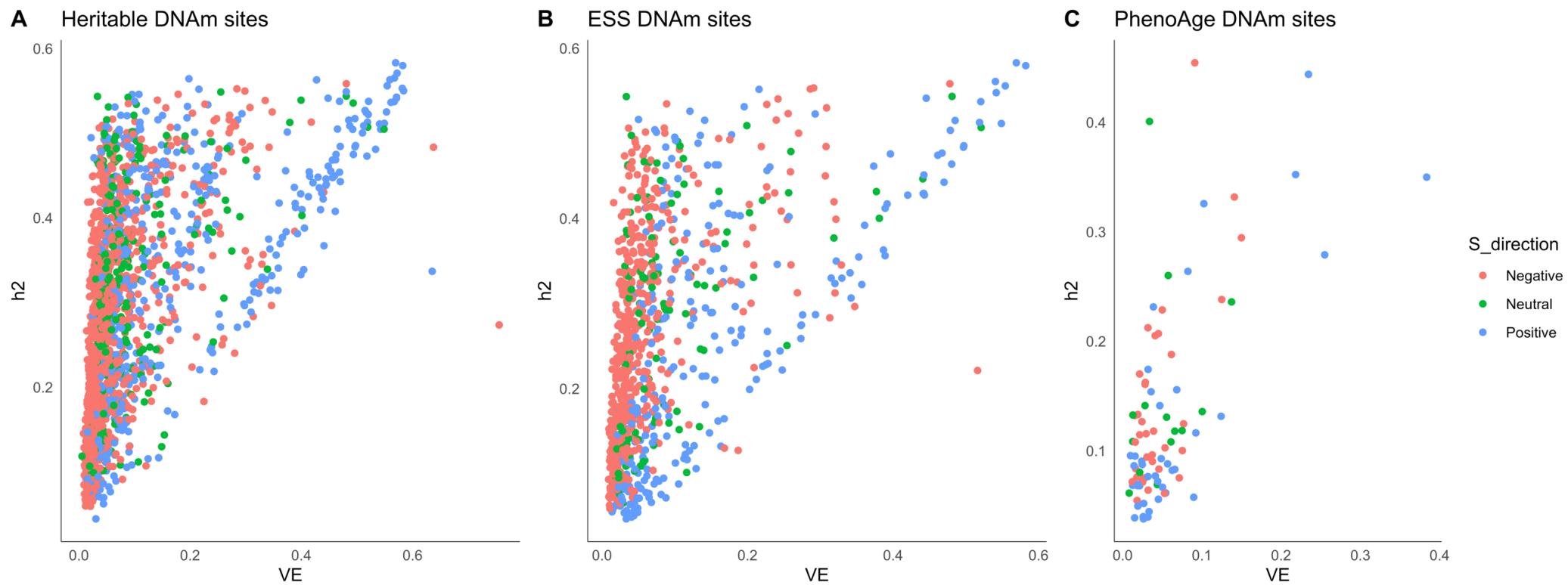
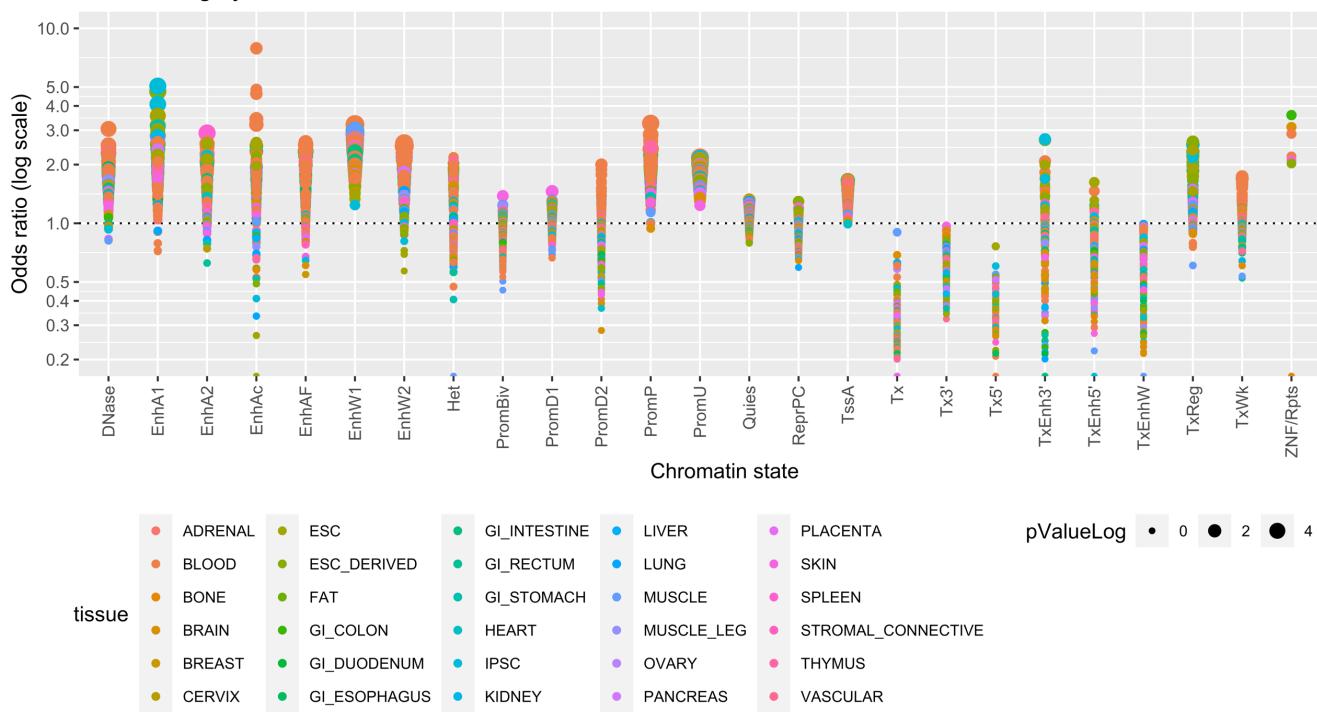


Figure 3 | Relationship between h^2_{SNP} calculated by *BayesNS* and mean variance explained (VE). For (A) 1804 highly heritable DNA sites, (B) 887 ESS DNA sites and (C) 74 PhenoAge DNA sites. Estimates of S coloured: red (negative ≤ -0.1), green (neutral $-0.1 - 0.1$) and blue (positive > 0.1).

A Positive Highly Heritable



B Negative Highly Heritable

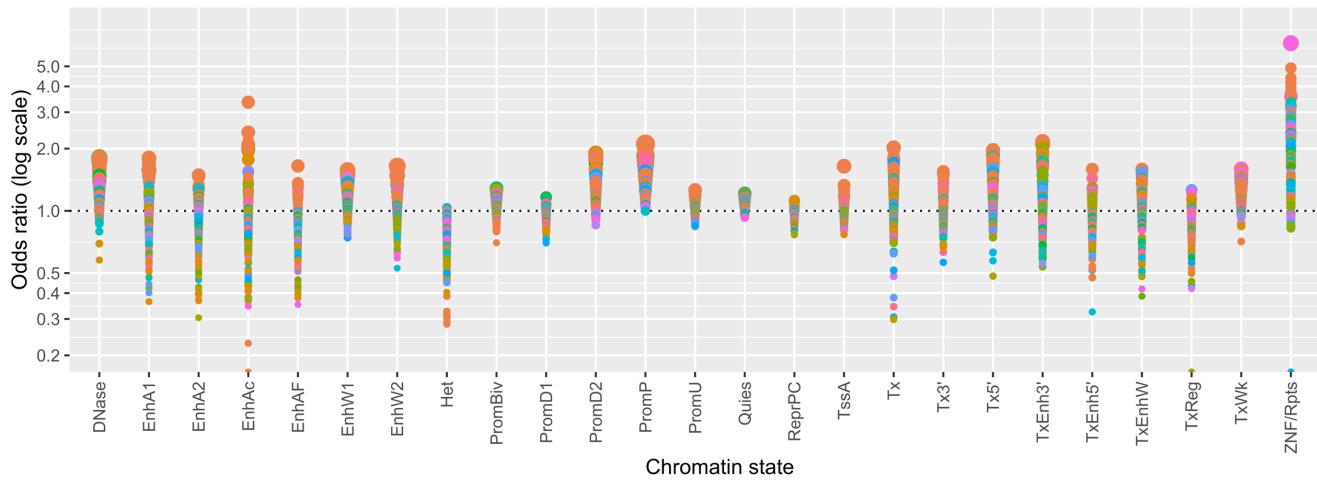


Figure 4 | Enrichment or depletion of DNAm sites in predicted chromatin states for DNAm sites from the highly heritable probe set with estimates of $S >= 0.5$ (positive highly heritable) and $S <= -0.5$ (negative highly heritable). Odds ratio (on log scale) shown on the y axis and chromatin state on the x axis. Size of circle represents the $-\log_{10} P$ value. Enrichment analysis performed via two-sided Fisher's exact test implemented in LOLA¹. 25 chromatin states abbreviations: TssA, Active TSS; PromU, Promoter Upstream TSS; PromD1, Promoter Downstream TSS with DNase; PromD2, Promoter Downstream TSS; Tx5', Transcription 5'; Tx, Transcription; Tx3', Transcription 3'; TxWk, Weak transcription; TxReg, Transcription Regulatory; TxEnh5', Transcription 5' Enhancer; TxEnh3', Transcription 3' Enhancer; TxEnhW, Transcription Weak Enhancer; EnhA1, Active Enhancer 1; EnhA2, Active Enhancer 2; EnhAF, Active Enhancer Flank; EnhW1, Weak Enhancer 1; EnhW2, Weak Enhancer 2; EnhAc, Enhancer Acetylation Only; DNase, DNase only; ZNF/Rpts, ZNF genes & repeats; Het, Heterochromatin; PromP, Poised Promoter; PromBiv, Bivalent Promoter; ReprPC, Repressed PolyComb, Quiescent/Low.

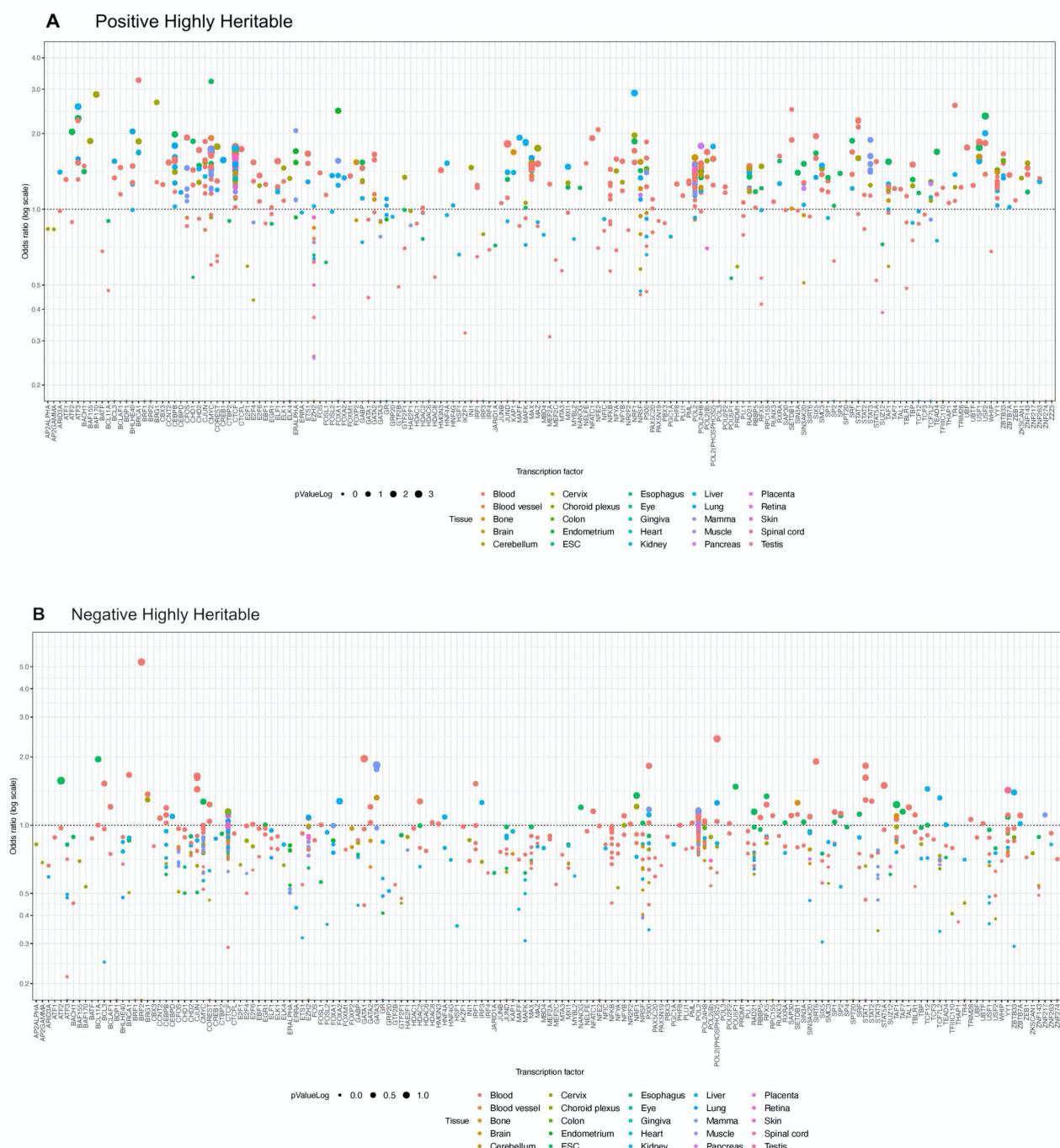


Figure 5 | Enrichment or depletion of DNAm sites in transcription factors (TFs) for DNAm sites from the highly heritable probe set with estimates of $S \geq 0.5$ (positive highly heritable) and $S \leq -0.5$ (negative highly heritable). Odds ratio (on log scale) shown on the y axis and chromatin state on the x axis. Size of circle represents the $-\log_{10} P$ value. Enrichment analysis performed via two-sided Fisher's exact test implemented in LOLA¹.

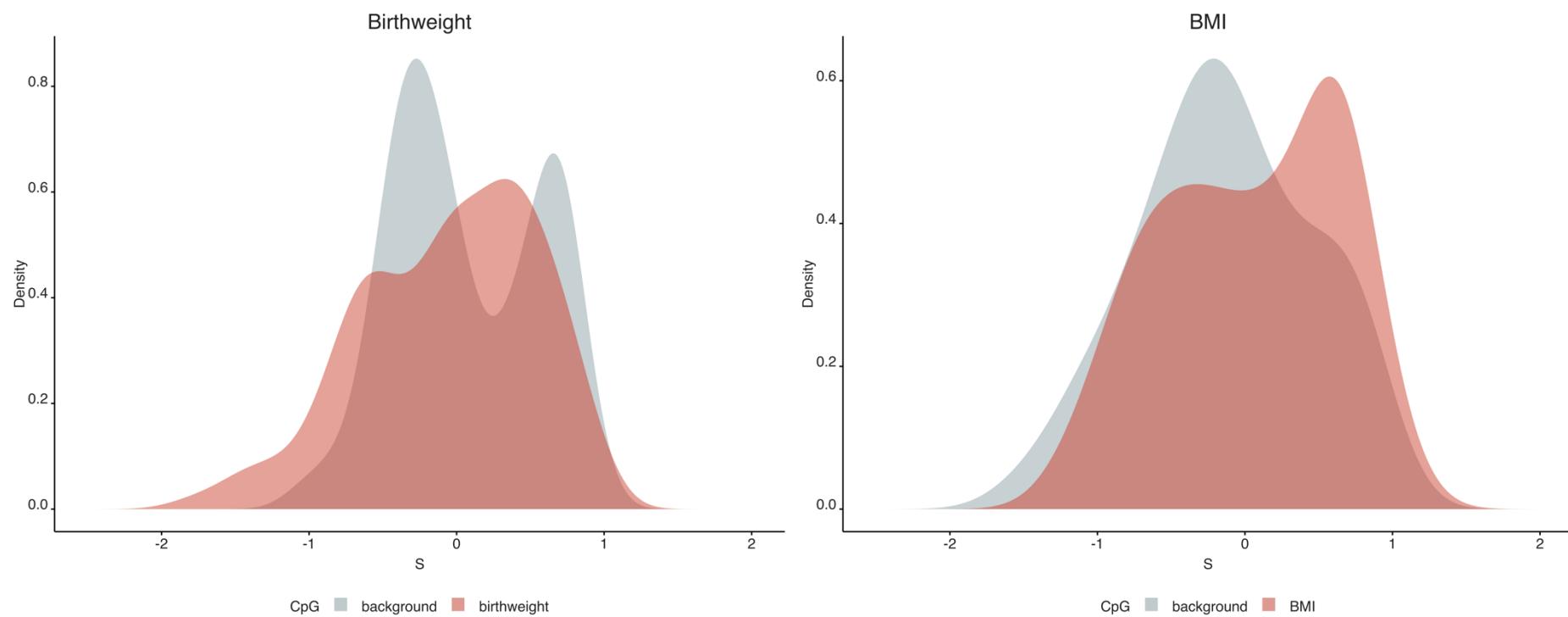


Figure 6 | Distribution of estimates of S for DNA sites associated with birthweight and BMI compared to background DNA sites. S is estimated using the relationship between SNP effect size and MAF, when $S = 0$ SNP effect size is independent of MAF (neutral), $S > 0$ indicates positive selection, $S < 0$ indicates negative selection. Birthweight and BMI associated DNA sites shown in red and matched DNA sites (matched on GC/CpG content and heritability) shown in grey.

References

1. Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. *Bioinformatics*. 2016;32(4):587-589.

