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Abstract 12 

Signatures of negative selection are pervasive amongst complex traits and diseases. However, it is 13 

unclear whether such signatures exist for DNA methylation (DNAm) that has been proposed to have a 14 

functional role in disease. We estimate polygenicity, SNP-based heritability and model the joint 15 

distribution of effect size and minor allele frequency (MAF) to estimate a selection coefficient (𝑆) for 16 

2000 heritable DNAm sites in 1774 individuals from the Avon Longitudinal Study of Parents and 17 

Children. Additionally, we estimate 𝑆 for meta stable epi alleles and DNAm sites associated with aging 18 

and mortality, birthweight and body mass index. Quantification of MAF-dependent genetic architectures 19 

estimated from genotype and DNAm reveal evidence of positive (𝑆 > 0	) and negative selection (𝑆 < 0	) 20 

and confirm previous evidence of negative selection for birthweight.  Evidence of both negative and 21 

positive selection highlights the role of DNAm as an intermediary in multiple biological pathways with 22 

competing function. 23 
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Introduction  41 

Genome-wide association studies (GWASs) have identified many genetic variants (single nucleotide 42 

polymorphisms; SNPs) associated with complex traits and diseases1. Natural selection plays a role in 43 

influencing the genetic architecture of complex traits, altering allele frequency at many genetic loci2. 44 

Negative selection prevents deleterious mutations from becoming common3 and is thought to explain 45 

why GWASs have identified many common variants of low effect size4. Several studies have shown 46 

evidence of negative selection acting on complex traits (including height, body mass index; BMI and 47 

birthweight) using the relationship between minor allele frequency (MAF) and SNP effect size to 48 

estimate a selection coefficient (𝑆)3,5,6.  However, there is difficulty in separating the action of selection 49 

from genetic drift when using MAF and SNP effect size to characterise genetic architecture7.  50 

 51 

Most GWA loci reside in non-coding regions and colocalization studies have shown that genetic factors 52 

underlying intermediate traits are shared with GWA loci8,9. Intermediate traits such DNA methylation 53 

(DNAm) and gene expression may therefore also show signatures of selection. Variation in DNAm can 54 

be influenced by age10, environmental11, genetic12 and stochastic13 changes. The variability of DNAm 55 

maybe caused by natural selection, epigenetic stochasticity14 or cellular plasticity15. The Genetics of 56 

DNA Methylation Consortium (GoDMC) has identified a large number of methylation quantitative trait 57 

loci (mQTLs) in blood16. They showed that these DNAm sites influenced by genetic factors are 58 

polygenic16. mQTLs were enriched for a variety of selection metrics (including the singleton density 59 

score; SDS17 and fixation index; 𝐹!" 18) and show a strong negative relationship between MAF and 60 

mQTL effect size19. It is therefore likely that natural selection acts on many mQTL variants jointly. 61 

However, selection is difficult to detect as DNAm is typically controlled by a local cis variant with large 62 

effect size and many physically separated trans variants with small effect sizes. Previous studies on 63 

cis-regulatory regions have found evidence of purifying selection on sequence-dependent allele-64 

specific DNAm20 and positive selection among African agriculturist populations21. Similarly, gene 65 

expression traits are polygenic22 and SNPs showing signatures of selection are enriched among SNPs 66 

associated with gene expression (expression quantitative trait loci; eQTLs)3,23.  67 

 68 

DNAm has a variety of roles in gene regulation24,25, is likely cell type-specific, and can be used as a 69 

biomarker for risk stratification and disease detection26,27. DNAm at cytosine-guanine dinucleotides 70 

(CpGs) has been associated with repression of transcription factor (TF) binding, however, TF binding 71 

has also been shown to inhibit DNAm28. Across the 450k sites most commonly measured in 72 

epidemiological studies29 (which are biased to promoter regions), mean heritability for DNAm has been 73 

shown to be around 20%12 and relationships between the heritability of a DNAm site and the number 74 

of mQTLs and between heritability and effect size have been found16 DNAm sites may have particular 75 

properties in terms of natural selection where heritable sites should have increased polygenicity with a 76 

larger proportion of SNPs with larger effect sizes4. In epigenome-wide association studies (EWASs), 77 

DNAm sites have been associated with many complex traits and diseases including those showing 78 

signatures of negative selection such as BMI and birthweight3,30,31.  Additionally, PhenoAge is a 79 

composite DNAm predictor of aging (trained on mortality including 42 clinical measures and age), that 80 
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has been predictive of disease risk and mortality32. To date, there is little known about whether these 81 

sites are a target of selection for example due to antagonistic pleiotropy33 where genes required for 82 

earlier stages of development may have deleterious effects in later life32. Meta stable DNAm sites 83 

exhibiting greater similarity than can be explained genetically have also been identified14. It may be the 84 

case that increased variability of these sites occurred as initial response to the environment before the 85 

effect of natural selection. 86 

 87 

DNAm may play various roles in underlying biological processes, and therefore we expect it to be 88 

subject to both positive and negative selection. Here, we investigate the relationship between MAF and 89 

effect size for SNPs at individual DNAm sites from the widely used 450k array to make inferences about 90 

the action of natural selection, which we hypothesise may vary for each DNAm site. We utilise BayesNS, 91 

a Bayesian mixed linear model method (MLM) that estimates polygenicity, SNP-based heritability and 92 

the joint distribution of MAF and effect size3. We apply BayesNS to DNAm data from the Accessible 93 

Resource for Integrated Epigenomic Studies (ARIES) cohort34.   94 

 95 
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Results  114 

Estimation of genetic architecture parameters of DNAm sites 115 

We used a Bayesian mixed linear model (BayesNS) to estimate genetic architecture parameters of 116 

DNAm sites including polygenicity, SNP-based heritability and a selection coefficient (𝑆)3. We applied 117 

BayesNS to DNAm sites profiled in blood from 1774 mother-offspring individuals from ARIES34 and 118 

474,939 independent non-major histocompatibility complex (MHC) and non-lactase (LCT) SNPs. 119 

Specifically, we considered 2000 DNAm sites which have ‘high’ heritability estimates from twin studies 120 

(ℎ#)))= 89.9%, range 79-99%, Table 1)12, as selection is dependent on a genetic contribution to DNAm 121 

variance. Secondly, we analysed 1508 DNAm sites which show non-genetically mediated similarity 122 

between monozygotic twins, so-called epigenetic supersimilarity (ESS) DNAm sites14. Blood DNA 123 

methylation at ESS DNAm sites exhibit plasticity to the periconceptional environment and is associated 124 

with risk of cancer.  Finally, we considered 513 DNAm sites which combined predict biological age 125 

(“PhenoAge”), a trait that is moderately heritable and has been associated with aging, mortality and is 126 

predictive of cardiovascular disease risk32.  127 

 128 

Convergence of the Markov chain Monte Carlo (MCMC) algorithm implies that a single consistent 129 

selection signal is found, whilst failure to converge implies that competing, inconsistent sets of SNPs 130 

explain the data equally (and poorly). This was assessed with the Raftery-Lewis long-chain diagnostic 131 

test35 and MCMC trace plots (Figures S1;S2;S3). In line with previous work3, DNAm sites which failed 132 

convergence checks typically had lower estimates of heritability (Figure S3; Table 1). BayesNS 133 

estimates SNP-based heritability and as with the estimates of twin heritability, the highly heritable 134 

DNAm sites had the highest mean estimate of SNP based heritability ( ℎ$%&#))))))	= 30.2%; SD=12.4%; Table 135 

1), followed by the ESS DNAm sites (ℎ$%&#)))))) =26.6%; SD=13.0%; Table 1) and then the PhenoAge DNAm 136 

sites (ℎ$%&#))))))	=14.8%; SD=9.7%;Table 1). Since we only consider DNAm sites which passed MCMC 137 

convergence diagnostics, (Table 1; Figure S1-S3), these mean estimates are likely higher than we 138 

would expect for each set of DNAm sites.  139 

 140 

DNAm shows signatures of both positive and negative selection 141 

BayesNS uses the relationship between SNP effect size and MAF to estimate a selection coefficient 142 

(𝑆)3.  When 𝑆 = 0	effect size is independent of MAF and this would reflect a ‘neutral’ scenario, an 𝑆 >143 

	0	would represent evidence of positive selection and an 𝑆 < 0	 would represent evidence of negative 144 

selection. Quantification of MAF-dependent genetic architectures revealed the action of both positive 145 

𝑆 > 	0 and negative 𝑆 < 0	selection across all three sets of DNAm sites (Figure 1). On average, 146 

estimates are close to zero, (PhenoAge DNAm sites; 𝑆̅ = 0.04) being mildly negative for the highly 147 

heritable (𝑆̅ = −0.15) and ESS DNAm sites (𝑆̅ = −0.14) (Table 1). Across the distributions we see 148 

individual DNAm sites with more extreme positive and negative values of 𝑆.	 DNAm sites with extreme 149 

negative estimates of 𝑆 (𝑆 < 	−1) are annotated to a variety of genes including those involved in 150 

transcription (ATF7IP)36 and tumour suppression (SCRIB)37. DNAm sites with extreme positive 151 

estimates of 𝑆 (𝑆 > 1) are annotated to a variety of genes including cg07175007 (S=1.13, SD=0.56) 152 
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near UHMK1 associated with the cell cycle38 and cg0479814 (S=0.65, SD=0.60) near SMYD3 a histone 153 

methyltransferase 39(Table S1). 154 

 155 

As a sensitivity analysis we implemented models to account for genetic drift7 (Figure S4), which suggest 156 

that drift may be important but is not the sole driver of the signal of selection, supporting the hypothesis 157 

that this captures real biological processes.  However, we cannot rule out that any specific effect was 158 

not caused by genetic drift. 159 

 160 

Polygenicity is associated with selection  161 

BayesNS estimates polygenicity as the proportion of 200kb genomic ‘windows’ with non-zero effects3. 162 

In contrast to findings from GoDMC19, our results suggest that the genetic architecture of DNAm is not 163 

very polygenic (highly heritable DNAm sites: 𝜋)= 0.04%, ESS DNAm sites 𝜋)= 0.04%, PhenoAge DNAm 164 

sites: 𝜋)= 0.06%; Table 1). This finding is in part due to the bimodality of the effect size distribution in 165 

DNAm: we lack power to capture polygenic trans mQTLs with low effect sizes, whilst we are powered 166 

to detect large cis mQTL effects. However, it may also reflect the role of many DNAm sites in biological 167 

pathways, having a specific biological purpose but either affecting, or being affected by, many other 168 

processes. 169 

 170 

We additionally investigated the number of SNPs (N SNPs) highly associated with each DNAm site 171 

(posterior inclusion probability; 𝑃𝐼𝑃 >=0.8). Across all three sets of DNAm sites, we find a negative 172 

relationship between 𝑆 and N SNPs for DNAm sites (regression coefficient for highly heritable DNAm 173 

sites; -0.09; p < 2.2 x10-16, ESS DNAm sites; -0.10; p < 2.2 x10-16, PhenoAge DNAm sites; -0.14; p = 174 

0.00064; Figure 2). In addition, we find that SNPs associated with DNAm sites with negative estimates 175 

of 𝑆 have lower mean estimates of variance explained (VE) compared to those with positive estimates 176 

of 𝑆	(Figure 3). Polygenicity is therefore associated with selection, with DNAm associated with few 177 

mQTLs being the only class of positive selection, and highly polygenic DNAm being subject to strictly 178 

negative selection. Further, positively selected DNAm tends to have almost all of the heritability 179 

accounted for by identifiable mQTLs. 180 

 181 

Relationship between selection estimates and traditional selection measures  182 

We additionally investigated whether estimates of 𝑆 correlate with five selection metrics: SDS17, 𝐹!"40, 183 

integrated haplotype score (iHS)41, cross-population extended haplotype homozygosity XPEHH42 (CEU 184 

v. YRI) and XPEHH (CEU v. CHB) in sets of ‘high’ 𝑃𝐼𝑃 (𝑃𝐼𝑃 > 0.1) and ‘all’ 𝑃𝐼𝑃 (𝑃𝐼𝑃 >= 0.001) SNPs 185 

for each DNAm site. Values of 𝑆 have the highest correlation with 𝐹!"40(0.193; Figure S5A, 0.113; Figure 186 

S5C, 0.151; Figure S5E, for highly heritable, ESS and PhenoAge DNAm sites respectively), however, 187 

when we include ‘all’ possible SNPs, even though we weight by 𝑃𝐼𝑃,	the correlation becomes negative 188 

and tends to decrease in magnitude (-0.045; Figure S5B, -0.127; Figure S5D, -0.091; Figure S5F). This 189 

implies that cis or strongly acting trans SNPs are selected differently to the bulk DNA associations, i.e. 190 

that they are selected via a different mechanism, and that the low 𝑃𝐼𝑃 SNPs are subject to a diversity 191 

of pathways, hence leading to an average selection close to 0 (Table 1). We additionally calculate 192 
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correlations between 𝑆	and LD scores 43. Correlations between LD scores and 𝑆 are small, with the 193 

lowest magnitude correlation being -0.005 and the highest being -0.065, suggesting that estimates of 𝑆 194 

are not correlated with LDSC.  195 

 196 

 197 

Table 1| Estimation of genetic architecture parameters for highly heritable, ESS and PhenoAge DNAm 198 

sites  199 

 200 

SD; standard deviation, ℎ!"#$ ; SNP based heritability and 𝜋; polygenicity, ℎ$; twin heritability estimates12 of 2000 heritable 201 

DNAm sites, 1580 ESS sites and 513 PhenoAge DNAm sites, Convergence; percentage of DNAm sites passing MCMC 202 

convergence checks 203 

 204 

 205 

Biological properties of DNAm sites under selection  206 

The magnitude of		𝑆 is related to the ‘strength of selection on trait-associated SNPs’3. To understand 207 

whether DNAm traits under ‘stronger’ selection had biological relevance, we assessed whether DNAm 208 

sites with estimates of 𝑆 ≤ −0.5 and ≥ 0.5 were enriched or depleted for predicted chromatin states44. 209 

The positive highly heritable DNAm sites (n=212, 𝑆	 ≥ 0.5;) showed the strongest enrichment 210 

(qvalue<0.05) for enhancers (Odds Ratio; ORs EnhW1 1.75-3.21; ORs EnhW2 1.72-2.57) and 211 

promoters (PromP ORs=1.84-3.26; PromU ORs=1.52-2.18) (Figure 4A; Table S2). The negative highly 212 

heritable DNAm sites (n=376, 𝑆 ≤ 	−0.5; Figure 4B; Table S2) showed only enrichment for poised 213 

promoters (PromP, OR=2.1) but not for transcription activity. Both positive (n=123, 𝑆	 ≥ 0.5) and 214 

negative (n=218, 𝑆 ≤ 	−0.5) ESS DNAm sites also show enrichment for poised promoters (PromP) 215 

across all tissue types (positive ORs 2.24-5.1 negative ORs: 1.79-3.64; Figure S7; Tables S3-S4). 216 

Poised chromatin is associated with both activating and repressing histone modifications and has been 217 

proposed to play a role in the prevention of DNAm45. DNAm sites showing signatures of selection are 218 

therefore enriched for bivalent chromatin structure associated with silencing genes whilst keeping them 219 

ready for activation46. CpG rich promoters have been shown to be subject to ‘epigenetic buffering’ 220 

against the effects of random mutations due to their association with housekeeping genes20.  221 

 222 

We additionally assessed enrichment of 167 transcription factor binding sites (TFBSs) in 127 different 223 

cell types comprising 30 tissues47. Transcription factors have previously been shown to be under weak 224 

purifying selection, with a limited minority exhibiting signatures of positive selection48. Arbiza et al., find 225 

evidence of positive selection on GATA- binding zinc finger proteins48. Though, we do not see evidence 226 

of enrichment for TFBS for our DNAm sites of interest (Tables S6-S9).  227 

 228 

 229 

DNAm sites 𝑺$ SD (𝑺$) 𝒉𝑺𝑵𝑷𝟐'''''' (%) SD(𝒉𝑺𝑵𝑷𝟐'''''') 𝝅$ (%) SD(𝝅$) 𝒉𝟐''' (%) SD(𝒉𝟐'''	) Convergence 

Highly heritable (n=1804) -0.15 0.46 30.2 12.4 0.04 0.02 89.9 5.9 90.2% (1804/2000) 

ESS (n=887) -0.14 0.50 26.6 13.0 0.04 0.02 78.8 20.4 56.1% (887/1580) 

PhenoAge (n=74) 0.04 0.48 14.8 9.7 0.06 0.04 53.4 23.0 14.4% (74/513) 
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BMI and birthweight associated DNAm sites show signatures of selection  230 

We used BayesNS to estimate 𝑆	, ℎ$%&# 	and 𝜋	for 893 DNAm sites associated with birthweight31 and 243 231 

DNAm sites associated with BMI30 in EWAS of individuals of European ancestry49. 220 birthweight-232 

associated DNAm sites (24.6%) and 42 BMI-associated DNAm sites (17.0%) passed MCMC 233 

convergence tests (Figure S3). As with the highly heritable, ESS and PhenoAge DNAm sites, MAF-234 

dependent genetic architectures estimated from genotype and DNAm revealed the action of both 235 

positive and negative selection for BMI (𝑆̅; 0.04; SD; 0.59, range: -1.09:0.98) and birthweight (𝑆̅; -0.05, 236 

SD; 0.59, range: -1.81:0.98) associated DNAm sites (Figure 6; Table S10).  Birthweight-associated 237 

cg16875057 has an 𝑆 estimate of -1.81 and is annotated to the STK39 gene which is associated with 238 

the cellular stress response pathway and hypertension50. In addition, birthweight-associated 239 

cg07157107 (𝑆=0.98) is associated with the nicotinic receptor CHRNA6, positive selection has 240 

previously been reported on genomic regions containing nicotinic receptor genes51. In contrast, a 241 

previous study using BMI and birthweight GWA loci found only evidence of negative selection3. After 242 

adjustment for non-random properties of the DNAm sites, we found that birthweight associated DNAm 243 

sites showed an enrichment of negative estimates of  𝑆  as compared to heritability matched background 244 

DNAm sites (Table 2). To assess whether biological pathways were enriched among the DNAm sites 245 

with extreme 𝑆	 we performed GOterm enrichment analysis, however none of the pathways showed 246 

evidence of enrichment.   247 

 248 

Table 2| Birthweight-associated DNAm sites are enriched for negative estimates of  𝑺 249 

 250 

DNAm sites Fisher’s exact test P-value Odds ratio (OR) Lower 95% CI Upper 95% CI 
PhenoAge (n=74) 1 1.09 0.44 2.70 

BMI-associated (n=42) 1 1.13 0.37 3.45 

Birthweight (n=220) 3.432 x 10-6 0.29 0.16 0.50 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 
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Discussion 266 

In this study, we have characterized the genetic architecture of DNA methylation at individual DNAm 267 

sites measured on the 450k array29. Specifically, we consider estimates of polygenicity, SNP-based 268 

heritability and the joint-distribution of effect size and MAF for 1804 highly heritable DNAm sites, 887 269 

ESS DNAm sites and 74 PhenoAge DNAm sites. Unlike previous work looking at complex traits and 270 

gene expression which find evidence of negative selection exclusively3,5,6, across all sets of DNAm sites 271 

we find evidence of both positive (𝑆 > 0) and negative selection (𝑆 < 0). These findings support 272 

previous research showing an enrichment of mQTLs among SNPs with signatures of positive selection, 273 

plus a negative relationship between MAF and mQTL effect size19. We were able to estimate 𝑆 at 274 

individual DNAm sites allowing us to identify specific DNAm sites with extreme estimates of 𝑆. In 275 

addition, we considered DNAm sites associated with complex traits that have previously been shown 276 

to exhibit signatures of negative selection with BayesS3. DNAm sites associated with birthweight in 277 

EWAS had a higher proportion of DNAm sites with negative estimates of 𝑆 compared to heritability 278 

matched DNAm sites. 279 

 280 

For traits which are less polygenic it can be particularly hard to separate the actions of natural selection 281 

and genetic drift, which can generate extreme changes to the frequency of SNPs between human 282 

populations such as our study population (Europeans) and the common ancestor in which DNAm 283 

evolved (predating the out-of-Africa event)7. A Bayesian model accounting for genetic drift found that 284 

individual estimates of 𝑆 could be due to either selection or genetic drift, but collectively DNAm was 285 

impacted by both positive and negative selection, not explainable by genetic drift alone7. 286 

 287 

In addition to this, we were also able to characterize SNP based heritability and polygenicity for 288 

individual DNAm sites. Across all DNAm sites, average SNP based heritability was 28.6%. This is higher 289 

than previous estimates looking at ARIES data, but likely reflects the fact we are constrained to 290 

considering DNAm sites which pass convergence checks52. For each group of DNAm sites, average 291 

polygenicity was low. We found a striking relationship between polygenicity and selection, with 292 

positively selected DNAm associated with only a small number of mQTLs which together explained 293 

most of the heritability of the trait. Conversely, negatively selected DNAm is likely to be explained by 294 

more mQTLs, many of which we lack statistical power to identify. The genetic architecture of DNAm 295 

has been shown to have a large cis-mQTL effect plus polygenic trans-mQTLs of low effect sizes19,52. 296 

Studies in larger and more diverse populations should be undertaken to further investigate the 297 

relationship between polygenicity and selection. Our results provide insight into how genetic 298 

architecture of individual DNAm sites has been influenced by natural selection. 299 

 300 

There are several limitations of this study. The model is restricted to looking at DNAm sites which pass 301 

MCMC convergence checks, which typically are those with high heritability in twin studies12. In addition, 302 

we compared BayesNS estimates to other selection metrics (𝐹!", SDS, XPEHH, iHS), which are 303 

specialised to detect signatures of positive selection and have an estimate per SNP. This means that 304 

they do not make an ideal comparison group, since BayesS can be used to make inferences about both 305 
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positive and negative selection and estimates are provided at the trait level. Blood cell counts have 306 

previously been reported to show signatures of negative selection6. Whilst our DNAm data has been 307 

adjusted for recorded cell counts19, the relationship between DNAm and blood cell counts53 could 308 

warrant further investigation in regards to whether it influences estimates of 𝑆. As mentioned, larger 309 

sample sizes are needed to detect mQTLs with low effect size which we are not powered to detect. Our 310 

study was also limited to the 450k array which measures 1.5% of the genome and is biased to 311 

promoters29. Large epidemiological studies profiled with EPIC arrays54 (measuring regulatory elements) 312 

are expected to find additional signatures for selection. 313 

 314 

Overall, our study finds evidence for both positive and negative selection in the genetic architecture of 315 

DNAm. We are unable to cleanly place DNAm in the causal pathway between genetic variation and 316 

selection. Our results are consistent with two competing hypotheses; firstly, that selection occurs on 317 

DNAm due to a biological function it has, or secondly DNAm is influenced by complex traits that are 318 

themselves the target of selection. The presence of both positive and negative selection is an indication 319 

that both pathways may play a role. Specifically, we hypothesise that DNAm may perform a biological 320 

function which is of less selective importance than the complex traits that have widespread impact on 321 

genome wide DNAm, swamping and confusing the signal with a mixture of proximal and distal signals. 322 

Future work looking into the biological relevance of individual DNAm sites with positive and negative 323 

estimates of 𝑆 could help to identify biological pathways which effect fitness. DNAm data from diverse 324 

individuals will be essential in separating the effects of drift and selection. Understanding the selective 325 

forces shaping DNAm could ultimately help identify potential targets for disease intervention. 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 
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Methods  346 

Study Population  347 

Participants were from the Avon Longitudinal Study of Parents and Children (ALSPAC)55,56, a large 348 

prospective cohort study that recruited 14,541 pregnancies, resident in the Bristol and Avon area with 349 

expected delivery dates between the 1st of April 1991 and the 31st of December 1992. Full details of the 350 

cohort have been published elsewhere55,56. The study website contains details of all the data that are 351 

available through a fully searchable data dictionary (http://www.bristol.ac.uk/alspac/researchers/our-352 

data/). Written and informed consent has been obtained for all ALSPAC participants. Ethical approval 353 

for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 354 

Committees (http://www.bristol.ac.uk/alspac/researchers/research-ethics/).  355 

 356 

ALSPAC genotype data 357 

ALSPAC mothers were genotyped using the Illumina Human660W-quad array at Centre National de 358 

Génotypage (CNG). ALSPAC offspring were genotyped using the Illumina HumanHap550 quad chip 359 

genotyping platforms by 23andMe subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK 360 

and the Laboratory Corporation of America, Burlington, NC, USA. For ALSPAC mothers, SNPs with a 361 

MAF of <1%, a call rate of <95%, or evidence for violations of Hardy–Weinberg equilibrium (p < 1 × 362 

10−6) were removed. For ALSPAC offspring, SNPs with MAF of <1%, a call rate of <95% or evidence 363 

for violations of Hardy–Weinberg equilibrium (p < 5 × 10−7), were removed. Cryptic relatedness within 364 

mothers and within offspring was measured as proportion of identity by descent (IBD < 0.1). All 365 

individuals with non-European ancestry were removed. Imputation of ALSPAC genetic data was 366 

performed on a combined mother and child dataset using Impute2 against the 1000 Genomes Project 367 

Phase 1 Version 3 reference panel.  368 

 369 

Linkage disequilibrium (LD) pruning was undertaken using PLINK57 using the following settings (r2=0.1, 370 

window size=50kb). SNPs residing within the Major Histocompatibility Complex (MHC) (chr6: 25Mb: 371 

35Mb) and lactase (LCT) regions (chr2: 129Mb: 144Mb) were removed as they are known to be under 372 

high selective pressure (build 37). This left 474,939 SNPs available for analysis.  373 

 374 

DNA methylation data  375 

In ALSPAC, blood from 1018 mother-child pairs were selected for analysis as part of ARIES34 376 

(http://www.ariesepigenomics.org.uk/). Following DNA extraction, samples were bisulphite converted 377 

using the Zymo EZ DNA Methylation™ kit (Zymo, Irvine, CA, USA), and DNA methylation was 378 

measured using the Illumina Infinium HumanMethylation450 (HM450) BeadChip. ARIES consists of 379 

DNAm measures at five time points (three time points for children: birth, childhood, and adolescence; 380 

and two for mothers: during pregnancy and at middle age). We utilised data on a total of 1774 individuals 381 

from the adolescence and middle age time points with both DNAm and genotype data 382 

(http://www.ariesepigenomics.org.uk/).  383 

 384 
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DNAm was adjusted using the GoDMC pipeline (described elsewhere)19. Briefly, we adjusted for sex, 385 

age at measurement, batch variables, smoking and predicted cell counts. Genetic principal components 386 

(PCs), non-genetic DNAm PCs were also calculated using the GoDMC pipeline, and a genetic kinship 387 

matrix was fitted using GRAMMAR58. The residuals of these analyses were rank transformed to have 388 

a mean 0 and variance 1.  389 

 390 

We selected the following DNAm sites for analyses:  391 

 392 

1. 2000 DNAm sites with twin heritability estimates between 0.99 and 0.7912 (referred to as ‘highly 393 

heritable’ DNAm sites) 394 

2. 1580 DNAm sites identified as having greater epigenetic similarity than can be explained 395 

genetically, so-called ‘epigenetic supersimilarity’ (ESS) DNAm sites14 396 

3. 513 DNAm sites forming an epigenetic biomarker of aging, PhenoAge32, that is predictive of 397 

all-cause mortality 398 

4. 243 DNAm sites associated with BMI (p < 1x10-4) in a discovery EWAS of 2707 individuals of 399 

European ancestry30. Results were obtained and downloaded from the EWAS catalog49 400 

5. 893 DNAm sites associated with birthweight (p < 1x10-4) in a cord blood EWAS meta-analysis 401 

of 6023 individuals of European ancestry31. Results were obtained and downloaded from the 402 

EWAS catalog49 403 

 404 

To serve as comparison groups, we additionally ran BayesNS on 513, 243 and 893 background DNAm 405 

sites matched on GC/CpG content and heritability to PhenoAge, BMI and birthweight associated sites 406 

respectively.  407 

 408 

BayesNS Analysis 409 

BayesS is a Bayesian mixed linear model (MLM) method that can jointly estimate SNP-based heritability 410 

(ℎ$%&# ), polygenicity (𝜋) and the joint distribution between MAF and SNP effect size (𝑆)3. The relationship 411 

between MAF and effect size is used to make inferences about natural selection and is modelled using 412 

the following mixture distribution as a prior for each SNP effect:  413 

 414 

𝛽'~𝑁(0, =2𝑝'@1 − 𝑝'A]$𝜎(#A𝜋 + 𝜑(1 − 𝜋) 415 

 416 

Where 𝛽𝑗 is the effect of a SNP 𝑗, 𝑝𝑗 is the MAF, 𝜎(# is the variance of SNP effects under a neutral model, 417 

𝜑 is a point mass at zero and 𝜋 is polygenicity (defined as the proportion of SNPs with non-zero effects). 418 

𝑆 is the estimated selection coefficient, when 𝑆 > 0 effect size is positively related to MAF and when 419 

𝑆 < 0 effect size is negatively related to MAF. When 𝑆 = 0, effect size and MAF are unrelated. BayesS 420 

uses a Markov Chain Monte Carlo (MCMC) algorithm for posterior inference. SNP-based heritability is 421 

estimated using the sampled effects of SNPs in the MCMC. We applied a nested version of BayesS 422 

(BayesNS) recommended for traits with low polygenicity such as DNAm. BayesNS considers SNPs 423 

together in non-overlapping windows and skips over regions of zero effect.  SNPs in the same window 424 
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are individually modelled as in BayesS, but also collectively considered as a window effect.  The length 425 

of each window was set as 200kb, replicating the window size selected for analyses of gene 426 

expression3. Polygenicity (𝜋)	here is	considered as the proportion of windows with nonzero effects.	We 427 

considered each DNAm site as an individual trait in our analyses. 428 

 429 

For the MCMC algorithm we set the chain length to 30,000 iterations with the first 10,000 discarded as 430 

burn-in. We plotted MCMC trace plots using bayesplot (http://mc-stan.org/bayesplot/) to visually assess 431 

convergence of the MCMC algorithm. In addition, we ran the Raftery and Lewis35 run length control 432 

diagnostic in coda and selected a threshold of less than 10 for the dependence factor (I) (Figures 433 

S2;S3). MCMC convergence checks were performed in R version 3.6.2. 434 

 435 

Accounting for Genetic Drift 436 

We additionally ran a Bayesian model for genetic architecture which accounts for genetic drift. We used 437 

the MCMC algorithm from Ashraf and Lawson (2021)7 and applied it to the highly heritable, ESS and 438 

PhenoAge DNAm sites. Specifically, the prior for the selection coefficient 𝑆~𝑈(−2,2), and for the 439 

standard deviation of 𝛽 is 𝜎(~𝑈(0,2). Unlike in BayesS where 𝛽I	is a prior, it and the allele frequency 440 

𝑝I are treated as data, via the same relationship: 441 

	442 

𝛽!~Normal $0, 𝜎𝛽2%𝑝𝑖&1 − 𝑝𝑖'(
𝑆) 443 

 444 

The drift model below is the appropriate model accounting for genetic drift. To furter check that our 445 

results are consistent with BayesS we report results for three models: 446 

 447 

1. Null model: this extends the likelihood to account for 𝑃𝐼𝑃. 𝑝i is considered fixed, and the 448 

likelihood from each SNP weighted by its inclusion probability 𝑤- = 𝑃𝐼𝑃(𝑖). The log-likelihood 449 

is 𝐿 = ∑ 𝑤- log 𝑝(𝛽𝑖; 0, 𝜎(
#[𝑝-(1 − 𝑝-)]$)%

-./ , where 𝑝 is the Normal distribution density. 450 

2. No-drift model: no genetic drift but accounting for 𝑃𝐼𝑃 and uncertainty in 𝛽i, 𝑝i is considered 451 

fixed, the observed effect size 𝛽!~𝑁(𝑏! , 𝜎𝑏2) where 𝜎1 is the standard error of the estimate. 452 

Then following above 𝐿 = ∑ 𝑤- log 𝑝(𝑏𝑖; 0, 𝜎(#[𝑝-(1 − 𝑝-)]$)%
-./ . 453 

3. Drift model: accounting for genetic drift, 𝑃𝐼𝑃 and uncertainty in 𝛽i. Drift is modelled with the 454 

Baldings-Nichols model. Let 𝑓- be the true frequency in the ancestral population and 𝑝- be 455 

observed as above. Then 𝑝-~Beta(𝑓- (1 − 𝐹!") 𝐹!"⁄ , (1 − 𝑓-) (1 − 𝐹!") 𝐹!"⁄ ), 𝛽-~𝑁(𝑏- , 𝜎1#) and 𝐿 =456 

∑ 𝑤- log 𝑝(𝑏-; 0, 𝜎(#[𝑓-(1 − 𝑓-)]$)%
-./ . 457 

 458 

𝐹!" is set to 0.15, matching the empirical estimate from the out-of-Africa bottleneck at these SNPs as 459 

in the original implementation7.  460 

 461 
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Calculating variance explained  462 

Following BayesNS analyses we investigated SNPs associated with DNAm at individual DNAm sites. 463 

We selected SNPs with a high posterior inclusion probability (𝑃𝐼𝑃) >= 0.8. We calculated the number 464 

of SNPs (nSNPs) with a 𝑃𝐼𝑃 >= 0.8 for each DNAm site. 465 

 466 

For each DNAm site we calculated variance explained for SNPs with 𝑃𝐼𝑃 >= 0.8:  467 

 468 

𝛽'#2𝑝'(1 − 𝑝') 469 

 470 

Where 𝛽'  is the effect of a SNP 𝑗, 𝑝' is the MAF. 471 

 472 

Analysing LD score and selection metrics 473 

To determine whether our results were influenced by LD, we additionally looked up European LD scores 474 

from the 1000 Genomes Project for each of these SNPs43. To compare BayesNS estimates of S with 475 

other selection scores we used metrics from the 1000 Genomes Selection Browser 1.0. We selected 476 

the same five annotations used in GoDMC19, reflecting selection over different timescales: singleton 477 

density score (SDS17; UK10K), 𝐹!"  40(Global 𝐹!"  (CEU vs. YRI vs. CHB)), integrated haplotype score 478 

(iHS;CEU)41, cross population extended haplotype homozygosity (XPEHH; CEU vs. YRI) and XPEHH 479 

(CEU vs. CHB)42. These methods focus on positive selection18; 𝐹!" is based on population 480 

differentiation40, XPEHH is a cross-population test based on extended haplotype homozygosity (EHH), 481 

iHS is defined as the log ratio of integrated haplotype scores for each allele in a single population41. 482 

SDS measures very recent changes in allele frequency from contemporary genome sequences and 483 

has been applied to the UK10K dataset17.  484 

 485 

For each DNAm site we calculated the mean value for each of these selection scores for SNPs with 486 

𝑃𝐼𝑃 > 0.1 and 𝑃𝐼𝑃 > 0.001 respectively. Each mean was weighted by the SNPs 𝑃𝐼𝑃 value. We used 487 

ggpairs in R version 3.6.2 to plot pairwise distributions of BayesNS, LDSC and selection scores and to 488 

compute the Pearson correlation coefficient between these variables.  489 

 490 

Enrichment Analysis  491 

We assessed enrichment or depletion of DNAm sites for 25 chromatin states and TFBSs in 127 different 492 

cell types comprising 30 tissues. These data were generated by the Roadmap Epigenomics Project44 493 

(http://www.roadmapepigenomics.org/) and ENCODE (https://www.encodeproject.org/). We used 494 

Locus Overlap Analysis (LOLA)59 (Bioconductor version: Release 3.12) to perform a two-sided Fisher’s 495 

exact test. Since the magnitude of S reflects the strength of selection we selected DNAm sites with 496 

estimates of 𝑆 ≥ 0.5  and 𝑆 ≤ −0.5  for analyses.  Background sites from the HumanMethylation450 497 

array were matched on GC and CpG content and heritability prior to analysis (Figure S6), as differential 498 

GC content/heritability’s between the sites of interest and background sites may bias the results. 499 

Analyses were conducted using R v. 3.6.2.  500 

 501 
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Four groups of DNAm sites were considered for enrichment analysis: 502 

 503 

1. 212 highly heritable DNAm sites with estimates of 𝑆 ≥ 0.5  (positive highly heritable DNAm 504 

sites)  505 

2. 376 highly heritable DNAm sites with estimates of 𝑆 ≤ −0.5 (negative highly heritable DNAm 506 

sites) 507 

3. 123 ESS DNAm sites with estimates of 𝑆 ≥ 0.5  (positive ESS DNAm sites) 508 

4. 218 ESS DNAm sites with estimates of 𝑆 ≤ −0.5 (negative ESS DNAm sites) 509 

 510 

 511 

 DNAm and complex traits  512 

We ran BayesNS on DNAm sites associated with BMI and birthweight in two large-scale EWAS of 513 

participants with European ancestry. In addition, we ran BayesNS on DNAm sites not associated with 514 

the traits of interest, matched on GC/CpG content and heritability. We split DNAm sites in each set 515 

(PhenoAge, BMI-associated DNAm sites, birthweight-associated DNAm sites and matched background 516 

DNAm sites) into two groups: DNAm sites with negative estimates of 𝑆 ≤ −0.5	and DNAm sites with 517 

estimates of 𝑆 > −0.5. We then performed one-sided Fisher’s exact tests to investigate whether DNAm 518 

sites associated with PhenoAge, BMI and birthweight exhibit statistically different estimates of 𝑆 519 

compared to a set of matched background DNAm sites. We additionally performed GOterm enrichment 520 

analysis implemented in missmethyl6061.  521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 
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Figure 1| Estimates of S from BayesNS. S is estimated using the relationship between SNP effect size and MAF, when S = 0 SNP effect 

size is independent of MAF (neutral), S > 0 indicates positive selection, S < 0 indicates negative selection. Results are for (A) 1804 highly 

heritable DNAm sites, (B) 887 ESS DNAm sites and (C) 74 PhenoAge DNAm sites which passed MCMC convergence checks. All DNAm sites 

shown in (D) with highly heritable DNAm sites in grey, ESS DNAm sites in red and PhenoAge DNAm sites in beige.  
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Figure 2 | Relationship between estimates of S from BayesNS and NSNPs. For (A) 1804 highly heritable DNAm sites, (B) 887 ESS DNAm 

sites and (C) 74 PhenoAge DNAm sites. NSNPs calculated as the number of SNPs with a posterior inclusion probability (PIP) >=0.8 for each DNAm 

site and S calculated from the relationship between SNP effect size and MAF. Slope for highly heritable DNAm sites (-0.09; p < 2.2 x10-16), ESS 

DNAm sites (-0.10; p < 2.2 x10-16), PhenoAge DNAm sites (-0.14; p = 0.00064).  
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Figure 3 | Relationship between h2SNP calculated by BayesNS and mean variance explained (VE). For (A) 1804 highly heritable DNAm sites, 

(B) 887 ESS DNAm sites and (C) 74 PhenoAge DNAm sites. Estimates of S coloured: red (negative <=-0.1), green (neutral -0.1 – 0.1) and blue 
(positive >0.1).   
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Figure 4 | Enrichment or depletion of DNAm sites in predicted chromatin states for DNAm sites from the 
highly heritable probe set with estimates of S >=0.5 (positive highly heritable) and S <= -0.5 (negative highly 
heritable). Odds ratio (on log scale) shown on the y axis and chromatin state on the x axis. Size of circle represents 

the -log10 P value. Enrichment analysis performed via two-sided Fisher’s exact test implemented in LOLA1. 25 

chromatin states abbreviations: TssA, Active TSS; PromU, Promoter Upstream TSS; PromD1, Promoter 

Downstream TSS with DNase; PromD2, Promoter Downstream TSS; Tx5’, Transcription 5’; Tx, Transcription; Tx3’, 

Transcription 3’; TxWk, Weak transcription; TxReg, Transcription Regulatory; TxEnh5’, Transcription 5’ Enhancer; 

TxEnh3’, Transcription 3’ Enhancer; TxEnhW, Transcription Weak Enhancer; EnhA1, Active Enhancer 1; EnhA2, 

Active Enhancer 2; EnhAF, Active Enhancer Flank; EnhW1, Weak Enhancer 1; EnhW2, Weak Enhancer 2; EnhAc, 

Enhancer Acetylation Only; DNase, DNase only; ZNF/Rpts, ZNF genes & repeats; Het, Heterochromatin; PromP, 

Poised Promoter; PromBiv, Bivalent Promoter; ReprPC, Repressed PolyComb, Quies, Quiescent/Low. 
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Figure 5 | Enrichment or depletion of DNAm sites in transcription factors (TFs) for DNAm sites from the 
highly heritable probe set with estimates of S >= 0.5 (positive highly heritable) and S <= -0.5 (negative 
highly heritable). Odds ratio (on log scale) shown on the y axis and chromatin state on the x axis. Size of circle 

represents the -log10 P value. Enrichment analysis performed via two-sided Fisher’s exact test implemented in 

LOLA1.  
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Figure 6 | Distribution of estimates of S for DNAm sites associated with birthweight and BMI compared to background DNAm sites. S is estimated using the 

relationship between SNP effect size and MAF, when S = 0 SNP effect size is independent of MAF (neutral), S > 0 indicates positive selection, S < 0 indicates 

negative selection. Birthweight and BMI associated DNAm sites shown in red and matched DNAm sites (matched on GC/CpG content and heritability) shown 

in grey.  
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