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Abstract

Nucleosome positioning is involved in many gene regulatory processes happening in
the cell and it may change as cells differentiate or respond to the changing
microenvironment in a healthy or diseased organism. One important implication of
nucleosome positioning in clinical epigenetics is its use in the “nucleosomics”
analysis of cell-free DNA (cfDNA) for the purpose of patient diagnostics in liquid
biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin
of the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of
DNA in body fluids reflect the positions of nucleosomes in the cells of origin. Here we
report a systematic nucleosomics database — NucPosDB, curating published
nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free
DNA (cfDNA) that reflect nucleosome positioning in situ in the cells of origin. Users
can select subsets of the database by a number of criteria and then obtain raw or
processed data. NucPosDB also reports the originally determined regions with stable
nucleosome occupancy across several individuals with a given condition. An
additional section provides a catalogue of computational tools for the analysis of
nucleosome positioning or cfDNA experiments and theoretical algorithms for the
prediction of nucleosome positioning from DNA sequence. We provide an overview
of the field, describe the structure of the database in this context and demonstrate
data variability using examples of different medical conditions. NucPosDB is useful
both for analysis of fundamental gene regulation processes and training
computational models for patient diagnostics based on cfDNA. The database
currently curates ~400 publications on nucleosome positioning in cell lines and in situ
as well as cfDNA from >10,000 patients and healthy volunteers. For open-access
cfDNA datasets as well as key MNase-seq datasets in human cells, NucPosDB
allows downloading processed mapped data in addition to the stable-nucleosome

regions. NucPosDB is available at https://genereqgulation.org/nucposdb/.
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Background

Genomic nucleosome positions are non-random and unique for each cell, reflecting
many biological processes that require the access of regulatory molecules to the
DNA (e.g. reviewed in (Clarkson et al. 2019; Baldi et al. 2020; Parmar and
Padinhateeri 2020)). Previously, we assembled a comprehensive collection of
experimental datasets of nucleosome positioning across many organisms and cell
lines as well as software tools for the analysis and prediction of nucleosome
positioning (Teif 2016). After the initial focus on nucleosome positioning in organisms
such as Yeast (Yuan et al. 2005; loshikhes et al. 2006; Segal et al. 2006) many
studies focused on human cells (Schones et al. 2008; Valouev et al. 2011; Gaffney
et al. 2012; Kundaje et al. 2012; Diermeier et al. 2014; Ho et al. 2014; Teif et al.
2017; Mallm et al. 2019). Furthermore, more recently the field has moved towards
clinical applications of nucleosome positioning to cell-free DNA (cfDNA), as will be
explained below. There is a strong need for an integrative database that connects
both fundamental and clinically focused “nucleosomics”. Here we report a systematic
database, called NucPosDB, which integrates classical nucleosome positioning
studies with a new direction of nucleosome positioning landscapes reconstructed

from cfDNA from human patients.

The shift of the focus of the research from fundamental roles of nucleosome
positioning in gene regulation to patient diagnostics is happening due to the fact that
nucleosome positioning can provide a valuable diagnostic marker offering unique
features not available in other clinical tests. There are two main arguments for this.
Firstly, the timescale of the change of nucleosome positioning landscape is
comparable to the timing of gene activation or the cell cycle (Schones et al. 2008;
Teif et al. 2012) which is between the quick changes of concentrations of disease-
related small molecules and the much slower changes reflected by DNA mutations
or aberrant methylation happening in cancer (Dawson and Kouzarides 2012; Pich et
al. 2018; Li and Luscombe 2020) (Figure 1A). Thus, differences in nucleosome
positioning can be in principle suitable for monitoring a patient’s response to therapy
in this intermediate time range. While very informative, determining genome-wide
nucleosome positioning maps in tumour tissues of cancer patients would be an

expensive and invasive procedure. Here, the second argument comes into play:
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luckily, nucleosome positioning in tissues is directly reflected in cfDNA circulating in
blood and other body liquids. This is because nucleases, which shred the chromatin
of dying cells to form what later becomes cfDNA, preferentially cut the DNA between
nucleosomes (Chandrananda et al. 2015; Kustanovich et al. 2019; Serpas et al.
2019; Han et al. 2020; Heitzer et al. 2020) (Figure 1B). Since the half-life of cfDNA in
blood is about 15 minutes (Volik et al. 2016), cfDNA extracted at any given time point

represents a very recent snapshot of nucleosome positioning in the cells of origin.

Medical tests based on cfDNA are sometimes called “liquid biopsy” because this
promising approach allows avoiding tissue biopsy in the case of solid tumours (Volik
et al. 2016; Wan et al. 2017; Peng et al. 2020; Ignatiadis et al. 2021; Lo et al. 2021).
The history of cfDNA research can be traced back to 1944 when it was first reported
(Mandel and Metais 1948). cfDNA source was correctly interpreted as the products
of apoptotic cleavage of chromatin subunits as early as 1970 (Williamson 1970;
Henikoff and Church 2018). However, the active use of cfDNA for medical purposes
using next generation sequencing (NGS) started only recently (Ignatiadis et al. 2021)
with many diverse applications ranging from prenatal testing (Kitzman et al. 2012;
Sun et al. 2018), cancer (Frenel et al. 2015; Phallen et al. 2017; Cristiano et al. 2019;
Zviran et al. 2020), ageing (Teo et al. 2019), inference of patterns of gene
expression (Snyder et al. 2016; Ulz et al. 2016) and transcription factor binding (Ulz
et al. 2019), to even monitoring astronaut’s health on spaceflights (Bezdan et al.
2020). While the field of liquid biopsies is expanding dramatically, it is still in the
search of methods balancing sensitivity and cost (Abbosh et al. 2017; Wan et al.
2019b; Peng et al. 2020).

Historically, the first class of genomics-based cfDNA diagnostic methods relied on
mutation analysis (Frenel et al. 2015; Abbosh et al. 2017; Dudley and Diehn 2020;
Zviran et al. 2020). Related approaches involve analyses of gene fusions (Palande
et al. 2020) or copy number variations (CNVs) (Mouliere et al. 2018b). In all these
cases, assay sensitivity critically depends on the sequencing depth as well as on the
abundance of cfDNA derived from tumour cells (ctDNA) which usually correlates with
the severity/stage of disease (Abbosh et al. 2017; van der Pol and Mouliere 2019;
Zviran et al. 2020). In fact, a recent report showed that elevated cfDNA levels
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correlate with all-causes mortality (Kananen et al. 2020). Thus, many assays use

cfDNA concentration as a marker of disease severity without sequencing.

However, if the detection method is based on few genomic regions that are not
represented in cfDNA, then even increasing the sequencing depth would not help the
diagnostics. To overcome this problem, it is possible to base cfDNA analysis on a
larger number of genomic regions with more subtle epigenetic changes, hence,
departing from the idea of mutation analysis and focusing the analysis on changes in
DNA methylation (Shen et al. 2018; Erger et al. 2020; Liu et al. 2020; Nassiri et al.
2020) or hydroxymethylation (Song et al. 2017) of multiple genomic locations that
reflect disease-specific changes in the cells of origin. cfDNA methylomics is being
actively used in a growing number of applications. The main challenge with this class
of approaches is that the detection of DNA modifications requires at least moderate
sequencing depth which drives up the cost of the assay. In addition, changes in DNA
modifications (as well as DNA sequence) accumulate at a long-term timescale and
may not be prevalent at the onset of disease or as a response to therapy (see Figure
1A). To address these problems, one can consider assays that are based on the
detection of smaller changes at a larger number of genomic loci. The most
straightforward solution is to look at nucleosome positioning per se which is reflected

in cfDNA localisation patterns.

New types of liquid biopsy tests based on nucleosome positioning-inspired analysis
of cfDNA are sometimes termed “fragmentomics” and “nucleosomics” (Im et al.
2020). Fragmentomics analyses have been focused on the distribution of sizes of
cfDNA fragments (Snyder et al. 2016; Underhill et al. 2016; Mouliere et al. 2018a;
Sun et al. 2018; Markus et al. 2019; Guo et al. 2020; Zukowski et al. 2020) as well as
the nucleotide patterns at their cut sites (Chandrananda et al. 2015). Sizes of cfDNA
fragments reflect the contributions of different biological processes such as
apoptosis, necrosis and NETosis. For example, apoptotic enzymes tend to cut out
DNA fragments which are slightly smaller than mononucleosomal DNA (Serpas et al.
2019; Han et al. 2020). Such short cfDNA fragments tend to be enriched in cancer
patients (van der Pol and Mouliere 2019). On the other hand, ultra-long cfDNA
fragments may result from NETosis — a process in which neutrophils release nets of

chromatin called neutrophil extracellular traps (NETS) in order to catch and destroy
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pathogens (Kustanovich et al. 2019). Such long cfDNA fragments can be associated
with NETosis in different types of inflammation, for example, in diabetes (Wong et al.
2015) and COVID-19 (Ng et al. 2020). Necrotic cell death is also usually associated
with longer DNA fragments (>10kb) (Kustanovich et al. 2019). Thus, each type of cell
death has its distinct pattern of cfDNA size distribution. cfDNA size may also differ
for different body fluids, e.g. urine usually harbours shorter cfDNA than blood plasma
(van der Pol and Mouliere 2019). The situation is further complicated by the fact that
cell senescence opposes cfDNA release (Rostami et al. 2020). Several studies in
fragmentomics suggested using a simple ratio of the amount of short/long cfDNA
fragments as an estimate of ctDNA/cfDNA fraction (Mouliere et al. 2018a; van der
Pol and Mouliere 2019) but, given the complexity of different cell death pathways
mentioned above, it is not always easily interpretable. We will show below that even
within a narrow group of medical conditions the distribution of cfDNA sizes is quite
heterogeneous. Another type of fragmentomics analysis is based on the fact that
DNA nucleases have different sequence preferences (Serpas et al. 2019; Han et al.
2020) and therefore the distribution of nucleotide patterns at the ends of the cfDNA
fragments may provide valuable diagnostic information (van der Pol and Mouliere
2019).

cfDNA nucleosomics is very promising since it eliminates the need of specific
genomic markers and pre-set hypotheses about the underlying medical condition,
and the bottleneck is now on the computational side. Recent studies have used
machine learning to distinguish the cells of origin or perform binary classification
healthy/cancer based on cfDNA density in promoters (Snyder et al. 2016; Wan et al.
2019a) or megabase-size genomic windows (Cristiano et al. 2019). Another
successful approach combined several "simple” features in the PCA analysis
including the amplitude of cfDNA oscillations with 10-bp periodicity, gene copy
number variation and the relative abundances of cfDNA fragments with sizes in
certain ranges (Mouliere et al. 2018a). One of the directions actively pursued by the
cfDNA community is creating targeted sequencing assays based on nucleosomics of
a small number of genomic regions — as small as just 6 regions in a recent
publication (Zhu et al. 2021). The smaller the number of regions in the targeted
nucleosomics assays the better, but this also has to be balanced with the sensitivity

and ability to recognise more than one medical condition. Currently, the “holy grail” of
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liquid biopsies — the ability to diagnose an arbitrary medical condition — is still far
from reach. Notably, achieving this aim requires access to as many as possible
published cfDNA datasets to train the models. Few web sites started appearing that
allow visualisation and download of a limited number of cfDNA datasets (Yu et al.
2020; Zheng et al. 2020), but a centralised resource which collects cfDNA datasets
from the dozens of currently available (and increasing in number) publications is
currently not available. Here, we have developed such a resource - NucPosDB,
which aims to curate all published datasets of sequenced cfDNA, nucleosome
positioning maps in vivo and software for nucleosomics analysis. NucPosDB also
intends to provide our integrative analysis to quantify the genome in terms of regions
with differential nucleosome occupancy and stability (Vainshtein et al. 2017),
providing a connection between nucleosome maps in healthy (Schones et al. 2008;
Gaffney et al. 2012) and cancer human cells (Mallm et al. 2019).

Construction and content

Database structure. NucPosDB curates open- and restricted-access datasets of
nucleosome positioning in vivo and sequenced cfDNA, as well as computational
software for cfDNA/nucleosome positioning analysis and modelling. The structure of
the database is summarised in Figure 2. It contains the following sections: (1)
nucleosome positioning in vivo, (2) sequenced cfDNA, (3) database of regions in the
human genome with stable nucleosome occupancy for a given condition, and the
repository of software for nucleosomics, further separated into three subsections
devoted to (4) analysis of nucleosome maps in vivo, (5) prediction of nucleosome
formation preferences based on DNA sequence and (6) cfDNA-specific analysis.

The section of nucleosome positioning in vivo contains datasets from >250
publications in >16 biological species, dominated by Saccharomyces cerevisiae
(28.6%), Mus musculus (25.9%), Homo sapiens (20.1%) and Drosophila
melanogaster (14.3%). Figure 3 demonstrates relative abundances of different
model organisms used for nucleosome positioning analysis. This section of the
database features more than 18 experimental techniques, dominated by MNase-seq,

complemented by methods such as histone H3 ChIP-seq, MH-seq, MPE-seq,
;
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MiSeq, NOME-seq and RED-seq (detailed in our previous publications (Teif 2016;
Teif and Clarkson 2019) as well as newer techniques based on long single-molecule
reads, Nanopore-seq (Baldi et al. 2018) and Fiber-seq (Stergachis et al. 2020), and
nucleosome-scale mapping of 3D genome contact, Micro-C (Hsieh et al. 2015).
Techniques such as ATAC-seq, which map nucleosomes only in a limited number of

“‘open” genomic locations are currently not included in NucPosDB.

The repository of sequenced cfDNA represents a recent addition to NucPosDB and
currently features more than 75 studies. cfDNA processing is complicated by the fact
that many datasets dealing with patient data have restricted access, e.g. where the
raw data is stored in the European Nucleotide Archive (ENA) or the database of
Genotypes and Phenotypes (dbGaP). The application for access to each such
dataset is considered individually by the corresponding data access committee and
the time required to receive regulatory approval may reach several months. On the
other hand, when the raw data is stored in databases such as GEO, such datasets
are available without restrictions. NucPosDB curates both open-access and
restricted-assess datasets, but only open-access datasets are supplied with the
processed data including the locations of all mapped nucleosomes and stable-
nucleosome regions (see below). Table 1 shows examples of cfDNA datasets from
NucPosDB that have no access restrictions. cfDNA datasets included in NucPosDB
can be browsed by organism (e.g. human, mouse or dog). Currently, the majority of
cfDNA datasets included in NucPosDB are of human origin. For patients, it is
possible to select medical condition (currently around 50 conditions), source of
cfDNA (blood e.g. serum/plasma, cerebrospinal liquid or urine), experimental method

(currently 12 methods) and access type (restricted or not).

A special NucPosDB section is devoted to the stable-nucleosome regions of the
human genome. It contains condition-specific coordinates of genomic locations
where nucleosome occupancy has low relative standard deviation across all samples
within the same condition. This is defined with NucTools (Vainshtein et al. 2017)
using a window-based approach as detailed below and arranged in tab-separated
BED files with the following columns: chromosome, region start, region end,
normalised nucleosome occupancy, standard deviation, relative deviation. In

addition, for a number of open-access cfDNA entries our database provides access
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to the uniformly processed BED files with locations of all mapped nucleosomes
(based on paired-end cfDNA reads). We have mapped these cfDNA reads to the
human genome assemblies hgl9 and hg38 as detailed below. These were further
processed with NucTools (Vainshtein et al. 2017) to generate tab-separated files
with the following columns: chromosome, fragments start, fragment end, fragment
size. Each patient’'s sample has been processed separately. The links from the
interactive database tables lead to the file repository with directories separated by

publication and further split into different medical conditions.

The repository of software for analysis of nucleosome positioning experiments
currently contains 31 entries representing different classes of software ranging from
nucleosome array visualisers and nucleosome peak callers to predictors of specific
parameters such as the nucleosome repeat length (Vainshtein et al. 2017). The
repository of algorithms for prediction of DNA sequence-dependent affinity of
nucleosome octamer currently contains 22 entries, as described previously (Teif
2016; Teif and Clarkson 2019). The repository of software specific for the analysis of
cfDNA currently includes 32 entries.

Data collection and curation. The datasets were searched in NCBI GEO as well as in
peer-reviewed publications and preprints from bioRxiv and medRxiv servers. Initial
search was conducted using the keywords “nucleosome positioning”, “MNase-seq”
and “cfDNA”. Further relevant studies were extracted through publication chaining.
Over 300 papers reporting relevant datasets and software were arranged into five
sections: nucleosome maps in vivo, cfDNA datasets, computational tools for
nucleosome positioning analysis and modelling, and cfDNA analysis. The criterion
for the dataset inclusion was the ability to reconstruct based on a given dataset a
nucleosome positioning profile with single-nucleotide resolution. Datasets reporting
methods such as ChIP-seq and microarrays were normally excluded unless the
corresponding publications provided specific nucleosome positioning analysis.
ATAC-seq was excluded since it maps nucleosomes only in a limited number of
‘open” genomic locations. cfDNA datasets were included when they were obtained
using any variation of a sequencing technique that involves whole-genome or

targeted sequencing and thus allows partial or complete reconstruction of
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nucleosome profiles. This includes methods determining DNA methylation and

hydroxymethylation, but not microarray-based techniques/assays.

User interface. The user interface of NucPosDB is realised in PHP. The search and
keywords selection is currently enabled with the help of the TablePress plugin for
WordPress (tablepress.org, author Tobias Bathge, Magdeburg, Germany). Datasets
can be searched by typing a query into the search box or using multiple-item
selection in drop-down menus such as “Organism” and “Experiment type”.
Additionally, the repository of cfDNA datasets contains drop-down menus “Medical

” 113

condition”, “cfDNA source” and “Access” (open/restricted). The interactive tables with
experimental datasets can be ordered or sub-selected by the combination of the
following criteria: “Description” (typically includes the title of the original publication
and a clickable link), “Organism”, “Cell type” (only in the section nucleosome maps in
vivo), “Experiment type/method”, “Raw data” and “Processed data”’. The cfDNA
repository allows additional selection/ordering criteria: “Medical condition”, “cfDNA

source”, “Access” (open/restricted) and “Number of patients”.

Data processing. The calculation of the histogram of DNA fragment size distribution
was carried out using R. The calculation of nucleotide frequencies was performed
with HOMER (Heinz et al. 2010). Raw paired-end reads were aligned to the human
genomes hgl9 and hg38 using Bowtie (Langmead et al. 2009), reporting only
uniquely aligned reads with up to two mismatches. Normalised nucleosome
occupancy was calculated genome-wide with 100-bp windows by dividing the
average nucleosome occupancy in a given window by the average chromosome-
wide nucleosome occupancy. Stable-nucleosome regions were determined with
NucTools with 100 bp sliding window and the threshold 0.5 applied to the relative
deviation of nucleosome occupancy across all samples with a given condition, as
described previously (Vainshtein et al. 2017). The relative deviation was defined as
the ratio of the standard deviation to the normalised nucleosome occupancy in a

given window.

Utility and discussion
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One of the main purposes of having a centralised repository of nucleosome
positioning/cfDNA datasets is to be able to assess the data heterogeneity within
conditions and the variability between different conditions and experimental
protocols. While a systematic analysis of such variability of all datasets in NucPosDB
is beyond the scope of the current work, let us demonstrate here typical distributions
of two basic characteristics of cfDNA, namely the GC content and the DNA fragment

sizes.

Firstly, let us consider the nucleotide frequency as a function of the distance from the
cfDNA fragment end (Figure 4A). This type of analysis is motivated by previous
findings that endogenous nucleases have distinct preferences for DNA cut sites, and
these preferences are different from artificial cut sites observed in MNase-seq
experiments (Serpas et al. 2019; van der Pol and Mouliere 2019; Han et al. 2020).
Apoptosis in different types of cancer may involve the same set of nucleases,
therefore, based on this metric, different types of cancer may not be easily
distinguishable from each other. Indeed, this is what we observe for the distribution
of GC frequencies near cfDNA fragment ends in Figure 4A. On the other hand,
different biological processes such as NETosis may employ a different combination
of enzymes, thus it may be possible to distinguish medical conditions that are
characterised by inflammation (inflammation triggers NETosis). Indeed, Figure 4A
shows that nucleotide profiles of cfDNA from patients with lupus (systemic
inflammation) differ quite significantly from those in cancer or healthy controls.

Next, let us consider the distributions of DNA fragment sizes. Previous studies
reported that cancer cfDNA appears to have shorter fragments that are more
strongly digested (Snyder et al. 2016; Underhill et al. 2016; Mouliere et al. 2018a;
Sun et al. 2018; Markus et al. 2019; Guo et al. 2020; Zukowski et al. 2020). Our
results do show differences in cfDNA fragment size distributions, most notably for
lupus (Figure 4B). The difference of cfDNA in lupus from cancer and healthy
samples may be explained by the different DNA digestion processes undergoing in
this systemic inflammatory condition (Figure 1B). However, special care is required
to normalise the data and take into account different protocols (e.g. the lupus
samples in the study considered above may have been clinically processed in a

different way than the cancer samples).
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The differences in the experimental protocols used in different labs for cfDNA
processing as well as comorbidities of patients may play major roles in the data
interpretation. To demonstrate this, Figure 4C and D compare samples from different
subgroups of healthy people. Figure 4C shows that the average GC content of
cfDNA extracted for whole-genome sequencing by different methods differs
dramatically. In one case, Teo et al collected cfDNA from three age groups (25, 70
and 100 years old) and the differences of GC profiles between these age groups are
pretty minor (Teo et al. 2019). On the other hand, in another group of healthy people
where sequencing was performed by the method of Snyder et al the average GC
content is about 3% lower (Snyder et al. 2016). Such difference may lead to biased
representation of different types of genomic regions and needs to be taken into
account when comparing datasets across different laboratories. Indeed, Figure 4D
shows that the distribution of cfDNA fragment sizes varies quite substantially
between datasets reported by three different labs even when all of these refer to the
same condition (breast cancer in this example), and when samples within one lab’s
dataset are consistently similar to each other. This probably reflects differences in
experimental protocols and needs to be taken with special care when performing
nucleosomics analysis for cancer diagnostics. Similar care is needed when
comparing MNase-seq datasets obtained in different laboratories, because it is
known that parameters such as the degree of chromatin digestion greatly affect
nucleosome maps due to differential sensitivity of partially unwrapped nucleosomes
to digestion level (Teif et al. 2014; Chereji et al. 2016; Ramachandran et al. 2017). In
such situations it may be helpful to adjust clinically relevant analyses taking into
account the locations of regions with stable nucleosome occupancy in a given
condition as reported by NucPosDB.

Finally, the examples shown above demonstrate that the development of a robust
clinical diagnostics based on cfDNA nucleosomics will require many datasets across
different laboratories and types of wet lab assays. This is where NucPosDB may be

particularly helpful, allowing the use the data from more than 10,000 patients.

Conclusions
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NucPosDB offers a user-friendly interface and curates published in vivo nucleosome
positioning datasets including >18 types of experimental techniques in >16 different
species and distinct cell types, supplemented with the repository curating cfDNA
datasets for more than 10,000 patients as well as the software packages for
‘nucleosomics” analysis. For many open-access datasets we also provide
systematically calculated condition-specific stable-nucleosome regions which are
useful in comparison between different conditions. In the future, NucPosDB can
serve as a centralised resource for the nucleosomics community, providing a
platform for the annotation of cfDNA datasets and storage of processed data

required for training models for patient diagnostics with liquid biopsies.
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Figure and table legends

Figure 1. Motivation for the use of nucleosome positioning in situ and cfDNA as a
diagnostic marker. A) Nucleosome positioning acts as the cell memory at
intermediate timescales between faster changes of reaction metabolites and long-
term changes such as the accumulation of mutations and changes of DNA
methylation. B) cfDNA extracted from blood plasma or other body liquids reflects the
nucleosome positioning landscape in the cells of origin. This is because enzymes
that shred chromatin into pieces in processes such as apoptosis, necrosis or
NETosis preferentially cut DNA between nucleosomes.

Figure 2. The structure of NucPosDB containing six major sections (listed left to right
in the scheme): (1) nucleosome maps measured in vivo in different cell types, (2)
sequenced cfDNA datasets, (3) regions with stable nucleosome occupancy in the
human genome for different conditions based on (1) and (2), (4) software for analysis
of nucleosome mapping experiments, (5) software for predicting preferences of
nucleosome formation from the DNA sequence and (6) software for cfDNA-specific
analysis.

Figure 3. The distribution of nucleosome positioning datasets across different

biological species.

Figure 4. Aggregate characteristics of cfDNA datasets across different medical
conditions (A-B) and ages of healthy people (C-D). A) GC content as a function of
the distance from the end of cfDNA fragment (Snyder et al. 2016). B) Distribution of
lengths of cfDNA fragments (Snyder et al. 2016). C) GC content as a function of the
distance from the end of cfDNA fragment for 25, 70 and 100-years old people (Teo
et al. 2019), compared with pooled healthy people from another study (Snyder et al.
2016). D) Differences of cfDNA fragment sizes for cfDNA of breast cancer patients
collected in three different studies (Snyder et al. 2016, Song et al., 2017 and Butler
et al, 2015).

Table 1. Example open-access datasets from NucPosDB reporting whole genome

sequencing of cfDNA.
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Figure 1. Motivation for the use of nucleosome positioning in situ and cfDNA as a
diagnostic marker. A) Nucleosome positioning acts as the cell memory at
intermediate timescales between faster changes of reaction metabolites and long-
term changes such as the accumulation of mutations and changes of DNA
methylation. B) cfDNA extracted from blood plasma or other body liquids reflects the
nucleosome positioning landscape in the cells of origin. This is because enzymes
that shred chromatin into pieces in processes such as apoptosis, necrosis or
NETosis preferentially cut DNA between nucleosomes.
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Figure 2. The structure of NucPosDB containing six major sections (listed left to right
in the scheme): (1) nucleosome maps measured in vivo in different cell types, (2)
sequenced cfDNA datasets, (3) regions with stable nucleosome occupancy in the
human genome for different conditions based on (1) and (2), (4) software for analysis
of nucleosome mapping experiments, (5) software for predicting preferences of
nucleosome formation from the DNA sequence and (6) software for cfDNA-specific
analysis.
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Figure 3. The distribution of nucleosome positioning datasets across different
biological species.
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Figure 4. Aggregate characteristics of cfDNA datasets across different medical
conditions (A-B) and ages of healthy people (C-D). A) GC content as a function of
the distance from the end of cfDNA fragment (Snyder et al. 2016). B) Distribution of
lengths of cfDNA fragments (Snyder et al. 2016). C) GC content as a function of the
distance from the end of cfDNA fragment for 25, 70 and 100-years old people (Teo
et al. 2019), compared with pooled healthy people from another study (Snyder et al.
2016). D) Differences of cfDNA fragment sizes for cfDNA of breast cancer patients
collected in three different studies (Snyder et al. 2016, Song et al., 2017 and Butler
et al, 2015).
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Table 1. Example open-access datasets from NucPosDB reporting whole genome
sequencing of cfDNA.

Description Medical N
conditions patients
Generation of highly biomimetic quality control prenatal 2
materials for noninvasive prenatal testing based on testing

enzymatic digestion of matched mother-child cell lines
(Zhang et al. 2019)

Sequencing of cfDNA derived from the plasma of ageing 12
individuals of different ages (Teo et al. 2019)
Very short mitochondrial DNA fragments and sepsis, tissue 7
heteroplasmy in human plasma (Zhang et al. 2016) transplantation
Cell-free DNA comprises an in vivo, genome-wide healthy, lupus, 60
nucleosome footprint that informs its tissue(s)-of- Crohn's
origin (Snyder et al. 2016) disease,

colitis, cancer
Cell-free DNA provides a good representation of the cancer 5

tumor genome despite its biased fragmentation
patterns (Ma et al. 2017)

The next-generation sequencing (NGS) technologies cancer 28
related assessments of circulating tumor DNA
(ctDNA) in both primary brain tumors and metastatic
brain tumors (Liang et al. 2020)

WGS of human pooled plasma cfDNA sampled from healthy, 24
Gl diseased individuals (PRJEB1791) cancer,
inflammatory
bowel disease
Decoding the evolutionary response to prostate cancer 23

cancer therapy by plasma genome sequencing
(Ramesh et al. 2020)
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