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Abstract  

 

Nucleosome positioning is involved in many gene regulatory processes happening in 

the cell and it may change as cells differentiate or respond to the changing 

microenvironment in a healthy or diseased organism. One important implication of 

nucleosome positioning in clinical epigenetics is its use in the “nucleosomics” 

analysis of cell-free DNA (cfDNA) for the purpose of patient diagnostics in liquid 

biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin 

of the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of 

DNA in body fluids reflect the positions of nucleosomes in the cells of origin. Here we 

report a systematic nucleosomics database – NucPosDB, curating published 

nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free 

DNA (cfDNA) that reflect nucleosome positioning in situ in the cells of origin. Users 

can select subsets of the database by a number of criteria and then obtain raw or 

processed data. NucPosDB also reports the originally determined regions with stable 

nucleosome occupancy across several individuals with a given condition. An 

additional section provides a catalogue of computational tools for the analysis of 

nucleosome positioning or cfDNA experiments and theoretical algorithms for the 

prediction of nucleosome positioning from DNA sequence. We provide an overview 

of the field, describe the structure of the database in this context and demonstrate 

data variability using examples of different medical conditions. NucPosDB is useful 

both for analysis of fundamental gene regulation processes and training 

computational models for patient diagnostics based on cfDNA. The database 

currently curates ~400 publications on nucleosome positioning in cell lines and in situ 

as well as cfDNA from >10,000 patients and healthy volunteers. For open-access 

cfDNA datasets as well as key MNase-seq datasets in human cells, NucPosDB 

allows downloading processed mapped data in addition to the stable-nucleosome 

regions. NucPosDB is available at https://generegulation.org/nucposdb/.  

 

Keywords: cfDNA, cell-free DNA, liquid biopsy, nucleosome positioning, 

nucleosomics 
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Background 

 

Genomic nucleosome positions are non-random and unique for each cell, reflecting 

many biological processes that require the access of regulatory molecules to the 

DNA (e.g. reviewed in (Clarkson et al. 2019; Baldi et al. 2020; Parmar and 

Padinhateeri 2020)). Previously, we assembled a comprehensive collection of 

experimental datasets of nucleosome positioning across many organisms and cell 

lines as well as software tools for the analysis and prediction of nucleosome 

positioning (Teif 2016). After the initial focus on nucleosome positioning in organisms 

such as Yeast (Yuan et al. 2005; Ioshikhes et al. 2006; Segal et al. 2006) many 

studies focused on human cells (Schones et al. 2008; Valouev et al. 2011; Gaffney 

et al. 2012; Kundaje et al. 2012; Diermeier et al. 2014; Ho et al. 2014; Teif et al. 

2017; Mallm et al. 2019). Furthermore, more recently the field has moved towards 

clinical applications of nucleosome positioning to cell-free DNA (cfDNA), as will be 

explained below. There is a strong need for an integrative database that connects 

both fundamental and clinically focused “nucleosomics”. Here we report a systematic 

database, called NucPosDB, which integrates classical nucleosome positioning 

studies with a new direction of nucleosome positioning landscapes reconstructed 

from cfDNA from human patients. 

 

The shift of the focus of the research from fundamental roles of nucleosome 

positioning in gene regulation to patient diagnostics is happening due to the fact that 

nucleosome positioning can provide a valuable diagnostic marker offering unique 

features not available in other clinical tests. There are two main arguments for this. 

Firstly, the timescale of the change of nucleosome positioning landscape is 

comparable to the timing of gene activation or the cell cycle (Schones et al. 2008; 

Teif et al. 2012) which is between the quick changes of concentrations of disease-

related small molecules and the much slower changes reflected by DNA mutations 

or aberrant methylation happening in cancer (Dawson and Kouzarides 2012; Pich et 

al. 2018; Li and Luscombe 2020) (Figure 1A). Thus, differences in nucleosome 

positioning can be in principle suitable for monitoring a patient’s response to therapy 

in this intermediate time range. While very informative, determining genome-wide 

nucleosome positioning maps in tumour tissues of cancer patients would be an 

expensive and invasive procedure. Here, the second argument comes into play: 
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luckily, nucleosome positioning in tissues is directly reflected in cfDNA circulating in 

blood and other body liquids. This is because nucleases, which shred the chromatin 

of dying cells to form what later becomes cfDNA, preferentially cut the DNA between 

nucleosomes (Chandrananda et al. 2015; Kustanovich et al. 2019; Serpas et al. 

2019; Han et al. 2020; Heitzer et al. 2020) (Figure 1B). Since the half-life of cfDNA in 

blood is about 15 minutes (Volik et al. 2016), cfDNA extracted at any given time point 

represents a very recent snapshot of nucleosome positioning in the cells of origin. 

 

Medical tests based on cfDNA are sometimes called “liquid biopsy” because this 

promising approach allows avoiding tissue biopsy in the case of solid tumours (Volik 

et al. 2016; Wan et al. 2017; Peng et al. 2020; Ignatiadis et al. 2021; Lo et al. 2021). 

The history of cfDNA research can be traced back to 1944 when it was first reported 

(Mandel and Metais 1948). cfDNA source was correctly interpreted as the products 

of apoptotic cleavage of chromatin subunits as early as 1970 (Williamson 1970; 

Henikoff and Church 2018). However, the active use of cfDNA for medical purposes 

using next generation sequencing (NGS) started only recently (Ignatiadis et al. 2021) 

with many diverse applications ranging from prenatal testing (Kitzman et al. 2012; 

Sun et al. 2018), cancer (Frenel et al. 2015; Phallen et al. 2017; Cristiano et al. 2019; 

Zviran et al. 2020), ageing (Teo et al. 2019), inference of patterns of gene 

expression (Snyder et al. 2016; Ulz et al. 2016) and transcription factor binding (Ulz 

et al. 2019), to even monitoring astronaut’s health on spaceflights (Bezdan et al. 

2020). While the field of liquid biopsies is expanding dramatically, it is still in the 

search of methods balancing sensitivity and cost (Abbosh et al. 2017; Wan et al. 

2019b; Peng et al. 2020).  

 

Historically, the first class of genomics-based cfDNA diagnostic methods relied on 

mutation analysis (Frenel et al. 2015; Abbosh et al. 2017; Dudley and Diehn 2020; 

Zviran et al. 2020). Related approaches involve analyses of gene fusions (Palande 

et al. 2020) or copy number variations (CNVs) (Mouliere et al. 2018b). In all these 

cases, assay sensitivity critically depends on the sequencing depth as well as on the 

abundance of cfDNA derived from tumour cells (ctDNA) which usually correlates with 

the severity/stage of disease (Abbosh et al. 2017; van der Pol and Mouliere 2019; 

Zviran et al. 2020). In fact, a recent report showed that elevated cfDNA levels 
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correlate with all-causes mortality (Kananen et al. 2020). Thus, many assays use 

cfDNA concentration as a marker of disease severity without sequencing. 

 

However, if the detection method is based on few genomic regions that are not 

represented in cfDNA, then even increasing the sequencing depth would not help the 

diagnostics. To overcome this problem, it is possible to base cfDNA analysis on a 

larger number of genomic regions with more subtle epigenetic changes, hence, 

departing from the idea of mutation analysis and focusing the analysis on changes in 

DNA methylation (Shen et al. 2018; Erger et al. 2020; Liu et al. 2020; Nassiri et al. 

2020) or hydroxymethylation (Song et al. 2017) of multiple genomic locations that 

reflect disease-specific changes in the cells of origin. cfDNA methylomics is being 

actively used in a growing number of applications. The main challenge with this class 

of approaches is that the detection of DNA modifications requires at least moderate 

sequencing depth which drives up the cost of the assay. In addition, changes in DNA 

modifications (as well as DNA sequence) accumulate at a long-term timescale and 

may not be prevalent at the onset of disease or as a response to therapy (see Figure 

1A). To address these problems, one can consider assays that are based on the 

detection of smaller changes at a larger number of genomic loci. The most 

straightforward solution is to look at nucleosome positioning per se which is reflected 

in cfDNA localisation patterns. 

 

New types of liquid biopsy tests based on nucleosome positioning-inspired analysis 

of cfDNA are sometimes termed “fragmentomics” and “nucleosomics” (Im et al. 

2020). Fragmentomics analyses have been focused on the distribution of sizes of 

cfDNA fragments (Snyder et al. 2016; Underhill et al. 2016; Mouliere et al. 2018a; 

Sun et al. 2018; Markus et al. 2019; Guo et al. 2020; Zukowski et al. 2020) as well as 

the nucleotide patterns at their cut sites (Chandrananda et al. 2015). Sizes of cfDNA 

fragments reflect the contributions of different biological processes such as 

apoptosis, necrosis and NETosis. For example, apoptotic enzymes tend to cut out 

DNA fragments which are slightly smaller than mononucleosomal DNA (Serpas et al. 

2019; Han et al. 2020). Such short cfDNA fragments tend to be enriched in cancer 

patients (van der Pol and Mouliere 2019). On the other hand, ultra-long cfDNA 

fragments may result from NETosis – a process in which neutrophils release nets of 

chromatin called neutrophil extracellular traps (NETs) in order to catch and destroy 
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pathogens (Kustanovich et al. 2019). Such long cfDNA fragments can be associated 

with NETosis in different types of inflammation, for example, in diabetes (Wong et al. 

2015) and COVID-19 (Ng et al. 2020). Necrotic cell death is also usually associated 

with longer DNA fragments (>10kb) (Kustanovich et al. 2019). Thus, each type of cell 

death has its distinct pattern of cfDNA size distribution. cfDNA size may also differ 

for different body fluids, e.g. urine usually harbours shorter cfDNA than blood plasma 

(van der Pol and Mouliere 2019). The situation is further complicated by the fact that 

cell senescence opposes cfDNA release (Rostami et al. 2020). Several studies in 

fragmentomics suggested using a simple ratio of the amount of short/long cfDNA 

fragments as an estimate of ctDNA/cfDNA fraction (Mouliere et al. 2018a; van der 

Pol and Mouliere 2019) but, given the complexity of different cell death pathways 

mentioned above, it is not always easily interpretable. We will show below that even 

within a narrow group of medical conditions the distribution of cfDNA sizes is quite 

heterogeneous. Another type of fragmentomics analysis is based on the fact that 

DNA nucleases have different sequence preferences (Serpas et al. 2019; Han et al. 

2020) and therefore the distribution of nucleotide patterns at the ends of the cfDNA 

fragments may provide valuable diagnostic information (van der Pol and Mouliere 

2019).  

 

cfDNA nucleosomics is very promising since it eliminates the need of specific 

genomic markers and pre-set hypotheses about the underlying medical condition, 

and the bottleneck is now on the computational side. Recent studies have used 

machine learning to distinguish the cells of origin or perform binary classification 

healthy/cancer based on cfDNA density in promoters (Snyder et al. 2016; Wan et al. 

2019a) or megabase-size genomic windows (Cristiano et al. 2019). Another 

successful approach combined several "simple" features in the PCA analysis 

including the amplitude of cfDNA oscillations with 10-bp periodicity, gene copy 

number variation and the relative abundances of cfDNA fragments with sizes in 

certain ranges (Mouliere et al. 2018a). One of the directions actively pursued by the 

cfDNA community is creating targeted sequencing assays based on nucleosomics of 

a small number of genomic regions – as small as just 6 regions in a recent 

publication (Zhu et al. 2021). The smaller the number of regions in the targeted 

nucleosomics assays the better, but this also has to be balanced with the sensitivity 

and ability to recognise more than one medical condition. Currently, the “holy grail” of 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469884doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469884
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

liquid biopsies – the ability to diagnose an arbitrary medical condition – is still far 

from reach. Notably, achieving this aim requires access to as many as possible 

published cfDNA datasets to train the models. Few web sites started appearing that 

allow visualisation and download of a limited number of cfDNA datasets (Yu et al. 

2020; Zheng et al. 2020), but a centralised resource which collects cfDNA datasets 

from the dozens of currently available (and increasing in number) publications is 

currently not available. Here, we have developed such a resource - NucPosDB, 

which aims to curate all published datasets of sequenced cfDNA, nucleosome 

positioning maps in vivo and software for nucleosomics analysis. NucPosDB also 

intends to provide our integrative analysis to quantify the genome in terms of regions 

with differential nucleosome occupancy and stability (Vainshtein et al. 2017), 

providing a connection between nucleosome maps in healthy (Schones et al. 2008; 

Gaffney et al. 2012) and cancer human cells (Mallm et al. 2019). 

 

 

Construction and content 

 

Database structure. NucPosDB curates open- and restricted-access datasets of 

nucleosome positioning in vivo and sequenced cfDNA, as well as computational 

software for cfDNA/nucleosome positioning analysis and modelling. The structure of 

the database is summarised in Figure 2. It contains the following sections: (1) 

nucleosome positioning in vivo, (2) sequenced cfDNA, (3) database of regions in the 

human genome with stable nucleosome occupancy for a given condition, and the 

repository of software for nucleosomics, further separated into three subsections 

devoted to (4) analysis of nucleosome maps in vivo, (5) prediction of nucleosome 

formation preferences based on DNA sequence and (6) cfDNA-specific analysis. 

 

The section of nucleosome positioning in vivo contains datasets from >250 

publications in >16 biological species, dominated by Saccharomyces cerevisiae 

(28.6%), Mus musculus (25.9%), Homo sapiens (20.1%) and Drosophila 

melanogaster (14.3%). Figure 3 demonstrates relative abundances of different 

model organisms used for nucleosome positioning analysis. This section of the 

database features more than 18 experimental techniques, dominated by MNase-seq, 

complemented by methods such as histone H3 ChIP-seq, MH-seq, MPE-seq, 
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MiSeq, NOME-seq and RED-seq (detailed in our previous publications (Teif 2016; 

Teif and Clarkson 2019) as well as newer techniques based on long single-molecule 

reads, Nanopore-seq (Baldi et al. 2018) and Fiber-seq (Stergachis et al. 2020), and 

nucleosome-scale mapping of 3D genome contact, Micro-C (Hsieh et al. 2015). 

Techniques such as ATAC-seq, which map nucleosomes only in a limited number of 

“open” genomic locations are currently not included in NucPosDB.  

 

The repository of sequenced cfDNA represents a recent addition to NucPosDB and 

currently features more than 75 studies. cfDNA processing is complicated by the fact 

that many datasets dealing with patient data have restricted access, e.g. where the 

raw data is stored in the European Nucleotide Archive (ENA) or the database of 

Genotypes and Phenotypes (dbGaP). The application for access to each such 

dataset is considered individually by the corresponding data access committee and 

the time required to receive regulatory approval may reach several months. On the 

other hand, when the raw data is stored in databases such as GEO, such datasets 

are available without restrictions. NucPosDB curates both open-access and 

restricted-assess datasets, but only open-access datasets are supplied with the 

processed data including the locations of all mapped nucleosomes and stable-

nucleosome regions (see below). Table 1 shows examples of cfDNA datasets from 

NucPosDB that have no access restrictions. cfDNA datasets included in NucPosDB 

can be browsed by organism (e.g. human, mouse or dog). Currently, the majority of 

cfDNA datasets included in NucPosDB are of human origin. For patients, it is 

possible to select medical condition (currently around 50 conditions), source of 

cfDNA (blood e.g. serum/plasma, cerebrospinal liquid or urine), experimental method 

(currently 12 methods) and access type (restricted or not). 

 

A special NucPosDB section is devoted to the stable-nucleosome regions of the 

human genome. It contains condition-specific coordinates of genomic locations 

where nucleosome occupancy has low relative standard deviation across all samples 

within the same condition. This is defined with NucTools (Vainshtein et al. 2017) 

using a window-based approach as detailed below and arranged in tab-separated 

BED files with the following columns: chromosome, region start, region end, 

normalised nucleosome occupancy, standard deviation, relative deviation. In 

addition, for a number of open-access cfDNA entries our database provides access 
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to the uniformly processed BED files with locations of all mapped nucleosomes 

(based on paired-end cfDNA reads). We have mapped these cfDNA reads to the 

human genome assemblies hg19 and hg38 as detailed below. These were further 

processed with NucTools (Vainshtein et al. 2017) to generate tab-separated files 

with the following columns: chromosome, fragments start, fragment end, fragment 

size. Each patient’s sample has been processed separately. The links from the 

interactive database tables lead to the file repository with directories separated by 

publication and further split into different medical conditions. 

 

The repository of software for analysis of nucleosome positioning experiments 

currently contains 31 entries representing different classes of software ranging from 

nucleosome array visualisers and nucleosome peak callers to predictors of specific 

parameters such as the nucleosome repeat length (Vainshtein et al. 2017). The 

repository of algorithms for prediction of DNA sequence-dependent affinity of 

nucleosome octamer currently contains 22 entries, as described previously (Teif 

2016; Teif and Clarkson 2019). The repository of software specific for the analysis of 

cfDNA currently includes 32 entries. 

 

Data collection and curation. The datasets were searched in NCBI GEO as well as in 

peer-reviewed publications and preprints from bioRxiv and medRxiv servers. Initial 

search was conducted using the keywords “nucleosome positioning”, “MNase-seq” 

and “cfDNA”. Further relevant studies were extracted through publication chaining. 

Over 300 papers reporting relevant datasets and software were arranged into five 

sections: nucleosome maps in vivo, cfDNA datasets, computational tools for 

nucleosome positioning analysis and modelling, and cfDNA analysis. The criterion 

for the dataset inclusion was the ability to reconstruct based on a given dataset a 

nucleosome positioning profile with single-nucleotide resolution. Datasets reporting 

methods such as ChIP-seq and microarrays were normally excluded unless the 

corresponding publications provided specific nucleosome positioning analysis. 

ATAC-seq was excluded since it maps nucleosomes only in a limited number of 

“open” genomic locations. cfDNA datasets were included when they were obtained 

using any variation of a sequencing technique that involves whole-genome or 

targeted sequencing and thus allows partial or complete reconstruction of 
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nucleosome profiles. This includes methods determining DNA methylation and 

hydroxymethylation, but not microarray-based techniques/assays. 

 

User interface. The user interface of NucPosDB is realised in PHP. The search and 

keywords selection is currently enabled with the help of the TablePress plugin for 

WordPress (tablepress.org, author Tobias Bäthge, Magdeburg, Germany). Datasets 

can be searched by typing a query into the search box or using multiple-item 

selection in drop-down menus such as “Organism” and “Experiment type”. 

Additionally, the repository of cfDNA datasets contains drop-down menus “Medical 

condition”, “cfDNA source” and “Access” (open/restricted). The interactive tables with 

experimental datasets can be ordered or sub-selected by the combination of the 

following criteria: “Description” (typically includes the title of the original publication 

and a clickable link), “Organism”, “Cell type” (only in the section nucleosome maps in 

vivo), “Experiment type/method”, “Raw data” and “Processed data”. The cfDNA 

repository allows additional selection/ordering criteria: “Medical condition”, “cfDNA 

source”, “Access” (open/restricted) and “Number of patients”. 

 

Data processing. The calculation of the histogram of DNA fragment size distribution 

was carried out using R. The calculation of nucleotide frequencies was performed 

with HOMER (Heinz et al. 2010). Raw paired-end reads were aligned to the human 

genomes hg19 and hg38 using Bowtie (Langmead et al. 2009), reporting only 

uniquely aligned reads with up to two mismatches. Normalised nucleosome 

occupancy was calculated genome-wide with 100-bp windows by dividing the 

average nucleosome occupancy in a given window by the average chromosome-

wide nucleosome occupancy. Stable-nucleosome regions were determined with 

NucTools with 100 bp sliding window and the threshold 0.5 applied to the relative 

deviation of nucleosome occupancy across all samples with a given condition, as 

described previously (Vainshtein et al. 2017). The relative deviation was defined as 

the ratio of the standard deviation to the normalised nucleosome occupancy in a 

given window. 

 

Utility and discussion 
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One of the main purposes of having a centralised repository of nucleosome 

positioning/cfDNA datasets is to be able to assess the data heterogeneity within 

conditions and the variability between different conditions and experimental 

protocols. While a systematic analysis of such variability of all datasets in NucPosDB 

is beyond the scope of the current work, let us demonstrate here typical distributions 

of two basic characteristics of cfDNA, namely the GC content and the DNA fragment 

sizes.  

 

Firstly, let us consider the nucleotide frequency as a function of the distance from the 

cfDNA fragment end (Figure 4A). This type of analysis is motivated by previous 

findings that endogenous nucleases have distinct preferences for DNA cut sites, and 

these preferences are different from artificial cut sites observed in MNase-seq 

experiments (Serpas et al. 2019; van der Pol and Mouliere 2019; Han et al. 2020). 

Apoptosis in different types of cancer may involve the same set of nucleases, 

therefore, based on this metric, different types of cancer may not be easily 

distinguishable from each other. Indeed, this is what we observe for the distribution 

of GC frequencies near cfDNA fragment ends in Figure 4A. On the other hand, 

different biological processes such as NETosis may employ a different combination 

of enzymes, thus it may be possible to distinguish medical conditions that are 

characterised by inflammation (inflammation triggers NETosis). Indeed, Figure 4A 

shows that nucleotide profiles of cfDNA from patients with lupus (systemic 

inflammation) differ quite significantly from those in cancer or healthy controls.  

 

Next, let us consider the distributions of DNA fragment sizes. Previous studies 

reported that cancer cfDNA appears to have shorter fragments that are more 

strongly digested (Snyder et al. 2016; Underhill et al. 2016; Mouliere et al. 2018a; 

Sun et al. 2018; Markus et al. 2019; Guo et al. 2020; Zukowski et al. 2020). Our 

results do show differences in cfDNA fragment size distributions, most notably for 

lupus (Figure 4B). The difference of cfDNA in lupus from cancer and healthy 

samples may be explained by the different DNA digestion processes undergoing in 

this systemic inflammatory condition (Figure 1B). However, special care is required 

to normalise the data and take into account different protocols (e.g. the lupus 

samples in the study considered above may have been clinically processed in a 

different way than the cancer samples).  
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The differences in the experimental protocols used in different labs for cfDNA 

processing as well as comorbidities of patients may play major roles in the data 

interpretation. To demonstrate this, Figure 4C and D compare samples from different 

subgroups of healthy people. Figure 4C shows that the average GC content of 

cfDNA extracted for whole-genome sequencing by different methods differs 

dramatically. In one case, Teo et al collected cfDNA from three age groups (25, 70 

and 100 years old) and the differences of GC profiles between these age groups are 

pretty minor (Teo et al. 2019). On the other hand, in another group of healthy people 

where sequencing was performed by the method of Snyder et al the average GC 

content is about 3% lower (Snyder et al. 2016). Such difference may lead to biased 

representation of different types of genomic regions and needs to be taken into 

account when comparing datasets across different laboratories. Indeed, Figure 4D 

shows that the distribution of cfDNA fragment sizes varies quite substantially 

between datasets reported by three different labs even when all of these refer to the 

same condition (breast cancer in this example), and when samples within one lab’s 

dataset are consistently similar to each other. This probably reflects differences in 

experimental protocols and needs to be taken with special care when performing 

nucleosomics analysis for cancer diagnostics. Similar care is needed when 

comparing MNase-seq datasets obtained in different laboratories, because it is 

known that parameters such as the degree of chromatin digestion greatly affect 

nucleosome maps due to differential sensitivity of partially unwrapped nucleosomes 

to digestion level (Teif et al. 2014; Chereji et al. 2016; Ramachandran et al. 2017). In 

such situations it may be helpful to adjust clinically relevant analyses taking into 

account the locations of regions with stable nucleosome occupancy in a given 

condition as reported by NucPosDB. 

 

Finally, the examples shown above demonstrate that the development of a robust 

clinical diagnostics based on cfDNA nucleosomics will require many datasets across 

different laboratories and types of wet lab assays. This is where NucPosDB may be 

particularly helpful, allowing the use the data from more than 10,000 patients. 

 

Conclusions 
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NucPosDB offers a user-friendly interface and curates published in vivo nucleosome 

positioning datasets including >18 types of experimental techniques in >16 different 

species and distinct cell types, supplemented with the repository curating cfDNA 

datasets for more than 10,000 patients as well as the software packages for 

“nucleosomics” analysis. For many open-access datasets we also provide 

systematically calculated condition-specific stable-nucleosome regions which are 

useful in comparison between different conditions. In the future, NucPosDB can 

serve as a centralised resource for the nucleosomics community, providing a 

platform for the annotation of cfDNA datasets and storage of processed data 

required for training models for patient diagnostics with liquid biopsies. 
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Figure and table legends 

 

Figure 1. Motivation for the use of nucleosome positioning in situ and cfDNA as a 

diagnostic marker. A) Nucleosome positioning acts as the cell memory at 

intermediate timescales between faster changes of reaction metabolites and long-

term changes such as the accumulation of mutations and changes of DNA 

methylation. B) cfDNA extracted from blood plasma or other body liquids reflects the 

nucleosome positioning landscape in the cells of origin. This is because enzymes 

that shred chromatin into pieces in processes such as apoptosis, necrosis or 

NETosis preferentially cut DNA between nucleosomes. 

 

Figure 2. The structure of NucPosDB containing six major sections (listed left to right 

in the scheme): (1) nucleosome maps measured in vivo in different cell types, (2) 

sequenced cfDNA datasets, (3) regions with stable nucleosome occupancy in the 

human genome for different conditions based on (1) and (2), (4) software for analysis 

of nucleosome mapping experiments, (5) software for predicting preferences of 

nucleosome formation from the DNA sequence and (6) software for cfDNA-specific 

analysis. 

 

Figure 3. The distribution of nucleosome positioning datasets across different 

biological species. 

 

Figure 4. Aggregate characteristics of cfDNA datasets across different medical 

conditions (A-B) and ages of healthy people (C-D). A) GC content as a function of 

the distance from the end of cfDNA fragment (Snyder et al. 2016). B) Distribution of 

lengths of cfDNA fragments (Snyder et al. 2016). C) GC content as a function of the 

distance from the end of cfDNA fragment for 25, 70 and 100-years old people (Teo 

et al. 2019), compared with pooled healthy people from another study (Snyder et al. 

2016). D) Differences of cfDNA fragment sizes for cfDNA of breast cancer patients 

collected in three different studies (Snyder et al. 2016, Song et al., 2017 and Butler 

et al, 2015). 

 

Table 1. Example open-access datasets from NucPosDB reporting whole genome 

sequencing of cfDNA. 
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Figure 1. Motivation for the use of nucleosome positioning in situ and cfDNA as a 

diagnostic marker. A) Nucleosome positioning acts as the cell memory at 

intermediate timescales between faster changes of reaction metabolites and long-

term changes such as the accumulation of mutations and changes of DNA 

methylation. B) cfDNA extracted from blood plasma or other body liquids reflects the 

nucleosome positioning landscape in the cells of origin. This is because enzymes 

that shred chromatin into pieces in processes such as apoptosis, necrosis or 

NETosis preferentially cut DNA between nucleosomes. 
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Figure 2. The structure of NucPosDB containing six major sections (listed left to right 

in the scheme): (1) nucleosome maps measured in vivo in different cell types, (2) 

sequenced cfDNA datasets, (3) regions with stable nucleosome occupancy in the 

human genome for different conditions based on (1) and (2), (4) software for analysis 

of nucleosome mapping experiments, (5) software for predicting preferences of 

nucleosome formation from the DNA sequence and (6) software for cfDNA-specific 

analysis. 
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Figure 3. The distribution of nucleosome positioning datasets across different 

biological species. 
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Figure 4. Aggregate characteristics of cfDNA datasets across different medical 

conditions (A-B) and ages of healthy people (C-D). A) GC content as a function of 

the distance from the end of cfDNA fragment (Snyder et al. 2016). B) Distribution of 

lengths of cfDNA fragments (Snyder et al. 2016). C) GC content as a function of the 

distance from the end of cfDNA fragment for 25, 70 and 100-years old people (Teo 

et al. 2019), compared with pooled healthy people from another study (Snyder et al. 

2016). D) Differences of cfDNA fragment sizes for cfDNA of breast cancer patients 

collected in three different studies (Snyder et al. 2016, Song et al., 2017 and Butler 

et al, 2015). 
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Table 1. Example open-access datasets from NucPosDB reporting whole genome 

sequencing of cfDNA. 

 

Description Medical 
conditions 

N 
patients 

Generation of highly biomimetic quality control 
materials for noninvasive prenatal testing based on 
enzymatic digestion of matched mother-child cell lines 
(Zhang et al. 2019) 

prenatal 
testing 

2 

Sequencing of cfDNA derived from the plasma of 
individuals of different ages (Teo et al. 2019) 

ageing 12 

Very short mitochondrial DNA fragments and 
heteroplasmy in human plasma (Zhang et al. 2016) 

sepsis, tissue 
transplantation  

7 

Cell-free DNA comprises an in vivo, genome-wide 
nucleosome footprint that informs its tissue(s)-of-
origin (Snyder et al. 2016) 

healthy, lupus, 
Crohn's 
disease, 

colitis, cancer 

60 

Cell-free DNA provides a good representation of the 
tumor genome despite its biased fragmentation 
patterns (Ma et al. 2017) 

cancer 5 

The next-generation sequencing (NGS) technologies 
related assessments of circulating tumor DNA 
(ctDNA) in both primary brain tumors and metastatic 
brain tumors (Liang et al. 2020) 

cancer 28 

WGS of human pooled plasma cfDNA sampled from 
GI diseased individuals (PRJEB1791) 

healthy, 
cancer, 

inflammatory 
bowel disease 

24 

Decoding the evolutionary response to prostate 
cancer therapy by plasma genome sequencing 
(Ramesh et al. 2020) 

cancer 23 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469884doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469884
http://creativecommons.org/licenses/by-nc-nd/4.0/

