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Abstract

Many current treatment options for lung inflammation and thrombosis come with unwanted side
effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and
antithrombotic. The O3FA are always administered orally and occasionally by intravenous (1V)
infusion. The main goal of this study is to determine if O3FA administered by inhalation of a
nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats.
Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour
later, rats received nebulized treatments consisting of egg lecithin emulsified O3, budesonide and
Montelukast, and blends of O3 and melatonin or Montelukast or Cannabidiol; O3 was in the form
of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines
were determined in n=3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis
severity scores half or less than that of the disease control (Cd) treated with LPS and saline only
inhalation. IL-6, TNF-a, TGF-(, and IL-10 were attenuated in all O3 groups. IL-1 was attenuated
in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in
mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed.
These preclinical data suggest that O3FA formulations should be further investigated as
treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic

obstructive pulmonary disease, lung cancer and acute respiratory distress like COVID-19.
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Pulmonary disorders, both acute or chronic such as acute respiratory distress syndrome (ARDS)
[1], SARS-CoV-2 infections (causative agent of COVID-19) [2], asthma [3, 4], cystic fibrosis (CF)
[5], chronic obstructive pulmonary disease (COPD) [6], interstitial lung disease (ILD) [7] or other
lung disorders [8, 9] are commonly accompanied by pulmonary inflammation. The global COVID-
19 pandemic caused by the SARS-CoV-2 virus is an enigma in part because of its wide clinical
spectrum ranging, from complete silence to mild to severe clinical conditions such as respiratory
failure, sepsis, cytokine storm, thrombosis and multiorgan dysfunction syndromes (MODS) [10,
11]. Since the first COVID-19 cases emerged in Wuhan, China, about 222 countries and territories
have been affected with over 250,895,264 positive diagnoses and 5,068,954 deaths worldwide
as of November 8, 2021 [12]. Both inflammation and thrombosis are mediated by signaling
molecules derived from highly unsaturated fatty acids (HUFA) or more precisely the relative mix

of them present at any one time in cell membranes [11].

Omega-3 (w3 or n-3) fatty acids (O3FA), especially HUFA docosahexaenoic acid (DHA, 22:6n-
3), docosapentaenoic acid (DPA, 22:5n-3) and eicosapentaenoic acid (EPA, 20:5n-3), are natural
healthy fats which inhibit formation of proinflammatory/prothrombotic lipid mediators eicosanoids
and docosanoids, and independently serve as substrates for production of anti-inflammatory and
inflammation-resolving resolvins and protectins [13, 14]. Omega-3 HUFA are found in sea food,
marine oils (e.g. finfish, squid, and krill oils) and microalgae [15-17]. Omega-3 are ubiquitous in
vertebrate tissue, acting as bioactive components of cell membrane phospholipids and anchoring
proteins in cell membranes. Their modification by biosynthetic inhibition or receptor-mediated
actions remains a prevailing strategy for developing valuable drug targets used over-the-counter
and prescription drugs such as aspirin, non-steroidal anti-inflammatory drugs (ibuprofen and
naproxen) and leukotriene receptor inhibitors (zafirlukast, montelukast, and zileuton) [11, 18-22].
Eicosanoids and docosanoids have wide-ranging functions in the body’s cardiovascular,

pulmonary, neurological, immune, and endocrine systems [23-26].
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Treatment options for lung inflammation include corticosteroid or glucocorticoid or leukotriene
receptor antagonist or many other medications, such as budesonide, prednisone,
methylprednisolone, hydrocortisone or montelukast. However, many of these medications come
with unwanted side effects that add health risks, or cause physical discomfort [27-29]. Drug
interactions between antimicrobial agents and corticosteroids leading to Cushing's syndrome,
adrenal suppression, weight gain, osteoporosis, and steroid accumulation have been reported
[30, 31]. Similarly potential risk of adrenal insufficiency due to interaction of glucocorticoids with
antiviral therapy are issues in SARS-CoV-2 patients [32]. O3FA are natural, dietary and also
available as supplements. O3FA protect against several types of lung diseases such as COVID-
19 [33], asthma [34], cystic fibrosis [35], ARDS [36], COPD [37], and non-small cell lung cancer

(NSCLC) [38].

The O3FA are always administered systemically, primarily orally and less commonly by
intravenous (IV) infusion. When administered orally they are provided primarily in four common
forms: as ethyl esters (EE), as triacylglycerols (TAG), as phospholipids (PL) and as free fatty
acids (FFA), also known as non-esterified fatty acids (NEFA) [39-41]. In foods, TAG and PL are
the overwhelmingly predominant forms, with small amounts of FFA. Only small amounts of FA
EE are present in humans, usually endogenously synthesized upon consumption of ethanol
(alcohol) [42]. FA EE usually synthesized by industrial processes from the natural forms, primarily
TAG, for further purification. When administered intravenously, omega-3 are primarily provided
as TAG as an emulsion with smaller amounts in PL that may originate with emulsifying agents

such as egg PL. FA EE may be administered IV as emulsions [43, 44].

In any of these forms, systemic administration results in rapid hydrolysis (“lipolysis”) of all forms,
where the resulting liberated FFA enter normal biochemical pathways present to transport and
distribute FA to the blood stream to perfuse all organs. Smaller amounts of O3FA are captured

and re-esterified into the various lipid classes in cells. In the bloodstream, O3FA are rapidly taken
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up in an untargeted manner into all tissues thus distributing the oral or intravenous dose to all
organs. Thus, only a fraction of any given dose will be incorporated into any particular tissue, such

as the lung.

Bioactivity/efficacy of O3FA against pathologies depend on their concentrations in target tissue
and more specifically target lipids of target tissue. For instance, efficacy against lung pathology
depends on the specific concentration of O3FA in lung tissue and more specifically the
concentration in PL present in cell membranes and possibly surfactant lipids. Because of the
untargeted nature of systemic administration, any particular dose is less efficacious than an
equivalent dose delivered directly to the target organ. More specifically, any particular dose will
be less efficacious for treating lung pathology when administered systemically as one of the

common forms compared to an equivalent dose administered directly to the lung.

We hypothesized that delivery of O3FA by inhalation would be efficacious against inflammatory
sequelae induced experimentally by intraperitoneal injection of lipopolysaccharide (LPS) as a
model of COVID-19-induced pulmonary inflammation. The purpose of this study is to evaluate
the efficacy of O3FA test formulations delivered in the form of free fatty acids (FFA) or ethyl esters
(EE) or as components of egg phospholipids, when administered to Wistar rats via nebulization.
We also combined O3FA with common drugs used to treat pulmonary inflammation to evaluate

synergy or interactions.

MATERIALS AND METHODS

The present study was approved by the Institutional Animals Ethics Committee (IAEC) of the
Palamur Biosciences Private Limited (PBPL), Proposal No. PAL/IAEC/2020/12/01/31 dated 15

May, 2021. The PBPL is a preclinical Contract Research Organization (CRO) which is certified
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by the Committee for the Purpose of Control and Supervision of Experiment on Animals

(CPCSEA) for breeding and experimentation.
Test ingredients and Formulation

The test O3FA took two forms: (FFA) or ethyl ester (EE). FFA were the kind gift of K.D. Pharma
(Bexbach, Germany) and contained major fatty acids 31.6% EPA, 31.6% DHA, and 15.4% DPA
(omega-3) and referred to below as “O3FFA”. The EE was a fish oil concentrate (Incromega
E3322, Croda, United Kingdom) with 22% DHA and 33% EPA. Egg phospholipids were used as

sole APl and as emulsifier (Lipoid E 80, Ludwigshafen, Germany).

Montelukast Sodium (Melody Healthcare, Maharashtra, India), melatonin (Swati Spentose Pvt.
Ltd., Gujarat, India), Cannabidiol (Biophore, Hyderabad, India), sodium hydrogen carbonate
(Merck, India), glycerol (Merck, Germany), and Budesonide Respules™ (Pulmicort, AstraZeneca,

Bangalore, India) where all obtained from the respective vendors.

Two control groups were used: G1 (Cn), a normal control group that received saline injections
and G2 (Cd), a disease control group that received LPS injections similar to all experimental

groups.
G3 (EPL), egg lecithin only dispersion

G4 (03), O3FFA (50 mg/mL)

G5 (03-0.5), O3FFA (25 mg/mL) (half dose of G4);

G6 (O3EE), O3EE (50 mg/mL) (compare to G4)

G7 (B-Ref), Budesonide Respules 0.25 mg/mL

G8 (Mont), Montelukast 4 mg/mL

G9 (MelO3), Melatonin (1 mg/mL) + O3FFA (50 mg/mL) (compare to G4)

G10 (MontO3), Montelukast (4 mg/mL) +O3FFA (50 mg/mL) (compare to G4 and G8)
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G11 (Cann03), Cannabidiol (8 mg/mL) + O3FFA 50 mg/mL

Group details are provided in Table 1. Detailed compositions are presented in Supplementary

Tables 1 to 6. EPL-egg phospholipids, FFA-free fatty acids, EE-ethyl esters
Animals

Male Wistar rats, a common model for acute lung inflammation [45, 46], were grouped based on
a stratified randomization method and were acclimatized for five days from arrival to testing. Three
animals per cage were housed in polypropylene rat cages with corn cob bedding. All the animal
cages were identified by cage cards and the corresponding individual animal numbers were
marked with marker pen on the base of the tail. Animals were fed standard rat chow and provided

water ad libitum.

A total of 66 animals were used (10% extra animals were taken for randomization). Housing
facilities were maintained at 19.7-22.0°C with 44 - 60% relative humidity, 12-h light/dark cycle and
a minimum of 12-15 room air exchanges per hour. Body weights of the animals at the time of

dosing ranged from 138.9 — 169.2 g.
Animal grouping, induction of lung inflammation and treatment

After acclimation, rats were divided into 11 groups with n=6 rats in each group. Mornings, the
protocol was initiated by an intraperitoneal injection of LPS (2 mg LPS per mL prepared fresh
daily, dose of 2 mg per kg body weight) for groups G2 to G11. Group G1 received a saline
injection. One hour later, animals were restrained and the test item was administered by
inhalation using a standard consumer nebulizer (Romsons Angel™ Nebulizer compressor
system, GS-9023, Uttar Pradesh, India). Approximately 7 hours later, the animals were again
restrained and treated by inhalation, and then released back to their cages for the night. Volume
used for nebulization and the nebulization duration are provided in Table 1. One LPS dose and

two bouts of test article inhalation, morning and evening, were repeated daily for 7 days for half


https://doi.org/10.1101/2021.11.23.469790
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.23.469790; this version posted November 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(n=3) of the animals in each group and then they were euthanized by CO; inhalation. The protocol
was repeated for 14 days for the remaining n=3 animals, at which time they were sacrificed. Thus,
animals from each group received the respective treatment (Table 1) twice daily for 7 days (3
animals/group) or 14 days (3 animals/group) through nebulization. Animals were observed for
overt signs of distress during entire period of dosing and until termination of study, and also

observed for prompt effects during and after administration of inhaled lipids.

Technicians performing the experiments were blinded to the treatment/reference and knew only

group numbers.

On Day 8 and Day 15 three animals from each group were euthanized, lungs were harvested,
weighed and bronchoalveolar lavage fluid (BALF) was collected from left lung. Harvested lungs
were preserved in 10% neutral buffered formalin (NBF) and processed for histopathological
evaluation. Before euthanasia blood was also collected and plasma was separated for further

analysis.

Histopathology. Formalin fixed left lung tissue samples were processed for histopathology
following standard procedures. Tissues were embedded in paraffin blocks and sections were
stained routinely with Hematoxylin and Eosin staining (H&E) procedure. For each animal one slide
was prepared and stained with H&E stain. Full histopathology was performed on the preserved
lung tissues of all animals in the control and treatment groups. All gross lesions were examined.
The lung tissue sections of 3-5 micron were stained with H&E stain and were microscopically
analyzed using microscope (Make: Leica DM1000 LED; Camera: Leica MC170HD). The images
were taken with 10X objective lens (Magnification X 100) using Leica LAS V4.12 software.

Immune Markers. The collected BALF samples were analyzed for the IL-6, IL-13 and TNF-a
levels for all the animals. IL-10 and TGF-B were estimated in the plasma samples in all the
animals. ELISA kits (Krishgen BioSystems, Mumbai, India) were used for the analysis of

different immune markers (Suppl. Table 7).
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Statistical analysis. Inmune data are expressed as Mean = SD. LPS disease control group (G2)
was compared with all the treatment groups (G3-G11) using Student’s t-test. p<0.05 was set as

statistical significance threshold.

RESULTS

Body weights were recorded on the day of the arrival, on the day of randomization and, on the
day of dosing for all groups. All animals increased body weight during the study period (Suppl.
Table 8). Similarly, no differences were found in lung weights between Cd and treatment or
reference groups. No mortality was observed during the acclimatization or study period (Suppl.

Table 9).

Animals from groups O3EE, Melatonin+tO3 and Cannibidiol+O3 showed eye irritation and
lacrimation immediate after nebulization, apparently due to nebulization fumes reaching the eyes.
These clinical signs subsided spontaneously within 30 minutes after nebulization. No other

anomalous clinical symptoms were noted.

Histopathology Evaluations

External and internal pathological examination of the lung tissues did not reveal any gross

abnormalities in any of the control or treatment groups.

Microscopic Findings. LPS induced specific changes in the disease control group compared to

the normal control, treatment and reference groups (Suppl. Figure 1).

Alveolar histiocytosis was scored as 0 (none) and by increasing severity as 1, 2, or 3. Scores
were added and then normalized on a scale of 0 (normal) to 1 (maximum). All animals in the
control disease (Cd) group had at least minimal macrophage infiltration leading to the highest
severity score in the study of 0.61 (Figure 1). All treatments had reduced alveolar histiocytosis

scores. Budesonide (B-ref) animals had the lowest score, based on one animal scored as slight

9


https://doi.org/10.1101/2021.11.23.469790
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.23.469790; this version posted November 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

and the rest normal. The treatments containing O3 scored less than half severity compared to

Cd.
Minimal vacuolation was observed in 1-2 animals in the EPL, O3, 03-0.5, and O3EE groups.

Immune Parameters. BALF samples were analyzed for the IL-6, IL-18 and TNF-a levels for all

the animals. IL-10 and TGF-3 were estimated in the plasma samples of all the animals.

The 8 day and 15 day means for each group were tested for significant differences by pairwise t
test. IL-6, TNFa, and TGF- were not significantly different for time points in any of the groups,
thus results were pooled as n=6. Several groups were significantly different for IL-10 and IL-1j3,
and were analyzed at each time point with n=3. Comparisons between groups were done within

each time point.
Results of IL-6, TNF-a and TGF-f3 are presented in Figure 2 as mean £ SD.

When compared to disease control group (Cd), IL-6 levels are significantly downregulated in all
the treatment groups and reference B-Ref (Figure 2A). O3, O3EE, and CannO3 had lowest IL-6,
similar to the Budesonide Respules reference (B-Ref). TNF-a is significantly downregulated in all
the groups except EPL (Figure 2B). The O3EE and CannO3 were similar to Budesonide reference
(B-Ref). TGF-B is significantly downregulated in all groups except EPL and 03-0.5 (Figure 2C).

O3EE attenuation of TGF-$3 was similar to the reference Budesonide (B-Ref).

Most of the O3 groups were significantly lower in IL-10 levels than Cd at the two time points
(Figure 3A). 03-0.5, CannO3, and B-Ref increased with time, whereas O3EE decreased. By
pairwise comparison with Cd at identical time points, O3, O3EE, B-Ref, Mont, MelO3 and CannO3
are significantly lower at both time points; compared to Cd, 03-0.5 is significantly different only at
day 8 and MontO3 is different only at day 15. EPL was not significant at either time point. In

contrast, few of the treatments were significantly different for IL-18 (Figure 3B). O3EE was the
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only treatment with lower IL-18 than Cd at both time points. B-Ref, MelO3, and CannO3 were

significantly lower only at 15 days.

DISCUSSION

We demonstrate here for the first time O3FA formulations delivered via nebulization reduce LPS-
induced acute lung inflammation. Histopathology microscopic observations and immunological
marker analysis revealed significant reduction of inflammation in O3FA treatment groups

compared to disease control (Cd) group.

Our O3FA were delivered primarily in the form of FFA to enhance incorporation into lung tissue
and minimize lipoid pneumonia. The single treatment group using ethyl esters (O3EE) was in the
most common form of oral O3 supplements. No symptoms related to excess lipid accumulation

was observed, and the O3EE treatment was among the most effective in treating effects of LPS.

We are aware of only one other study of an inhalation form of any O3FA. Inhaled ovalbumin was
used to model atopic asthma in mice. Aerosolized tridocosahexaenoyl-glycerol (DHA-TG) inhaled
immediately prior to the ovalbumin insult significantly reduced the total eosinophil percentage in
lavage fluid. The TAG-DHA did not cause lipoid pneumonia [47]. Considering the efficacy of
O3EE and absence of adverse symptoms, we conclude that O3EE are a viable delivery form of

nebulized O3.

Alveolar histiocytosis is characterized by the presence of foci of alveolar macrophages and
mixtures of inflammatory cells [48]. Histopathology microscopic observations revealed minimal to
moderate alveolar histiocytosis in all 6 LPS-treated disease control (Cd) animals (Suppl. Figure
1). None of the animals in the treatment or reference groups had moderate alveolar histiocytosis,
however, minimal to slight alveolar histiocytosis was noted in the O3FA treatment and reference

groups (Suppl. Figure 1). When compared to the O3 FFA treatment groups (O3 and 03-0.5),
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O3EE, B-ref, MelO3 and CannO3 groups showed better alveolar histiocytosis and inflammation
resolution. In the Cd disease control and Mont groups 3 out of 6 animals showed slight alveolar
histiocytosis. Thus, montelukast had less impact on the alveolar histiocytosis and inflammation

resolution. Multifocal alveolar histiocytosis was seen in O3 and O3-0.5 group animals.

The pro-inflammatory synovial phospholipase A2 (PLA2) was found to be highly elevated during
acute lung injury and in LPS stimulated guinea pig alveolar macrophages [49-51]. High amounts
of pro-inflammatory omega-6 arachidonic acid (AA) suppress anti-inflammatory omega-3 DHA,
DPA and EPA synthesis and accumulation in cell membranes. The AA derived eicosanoids
regulate immunopathological processes ranging from inflammatory responses to tissue
remodeling [52, 53]. AA-derived prostaglandin (PG) synthesis occurs upon release of AA within
the membranes by PLA2 [54], thus PG synthesis is limited by the supply of AA. DHA that
substitutes for AA is a known inhibitor of PG synthesis by cyclooxygenase [55]. Dietary EPA and
AA compete for incorporation into membrane phospholipids but also for biosynthesis from their
respective FA precursors, as they share same enzyme for their biosynthesis [56, 57]. AA derived
metabolites mediate inflammation in lung disorders [11, 58, 59], whereas, DHA, DPA and EPA
derived metabolites resolve inflammation and clotting [11, 60-64]. Alveolar histiocytosis was
present in 100% of SARS-CoV-2 infected cats [65]. Resolution of lung inflammation and

thrombosis is the main purpose of our new O3FA formulations.

COPD caused 3.23 million deaths in 2019 and is the third leading cause of death worldwide [66].
Elevated IL-6 levels in the exhaled breath condensate samples are associated with airway
inflammation in COPD patients [67]. TNFa over-expression in both humans and animal models
showed pathological changes consistent with both emphysema and pulmonary fibrosis. Mice lung
histology and computed tomography images showed changes involving airspace enlargement,
loss of small airspaces, increased collagen and thickened pleural septa [68]. Increased

expression of TGF-f3 is seen in lung specimens collected from COPD patients [69]. IL-10 levels
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are elevated in COPD patients [70]. Elevated serum IL-1B levels are associated with airway
inflammation in COPD patients [71]. Higher intake of omega-3 fatty acids is associated with lower
risk of severe exacerbations, better health-related quality of life, and fewer respiratory symptoms

in COPD patients [37].

Several studies have shown IL-6 as the critical tumor-promoting cytokines in NSCLC. IL-6 levels
are increased in the serum and exhaled breath condensate samples from NSCLC patients and
are related to tumor size [72]. By inducing epithelial-mesenchymal transition of lung cancer cells
IL-6 and TNF-a can promote invasion and metastasis in NSCLC [73]. Increased TGF-
expression was found to be associated with lymph node metastasis and tumor angiogenesis in
NSCLC [74]. In late stage NSCLC patients increased expression of IL-10 is seen in tumor-
associated macrophages [75]. IL-1B is a key mediator of the initiation of inflammatory response
in NSCLC and a potent inducer of the COX2—-PGE2 pathway, leading to immune suppression
[76]. Cachexia is frequently observed in lung cancer; omega-3 oral supplementation preserved
body weight in NSCLC patients undergoing chemoradiotherapy [38]. Lung cancer patients whose
plasma phospholipid EPA concentrations were higher showed better preservation of body weight
[38]. Most of our O3FA test treatments reduced the levels of IL-6, TNF-a, TGF-f3, IL-10 and IL-13

significantly (Figures 2 and 3).

Multiple studies have shown elevation of both pro-inflammatory and anti-inflammatory cytokines
in COVID-19 patients, reviewed by Dhar et al [77]. Dysregulation and increased production of IL-
1B and its downstream molecule IL-6 are seen in severe COVID-19 patients [78, 79]. IL-6 and IL-
10 are found to be predictive of COVID-19 disease severity [80]. A dramatic elevation of IL-6 and
IL-10 levels is a characteristic feature of the cytokine storm in COVID-19 patients [81-83].
Persistent viral stimulation, and IL-6, IL-10 and TNF-alpha levels, are indicators of T-cell
exhaustion in COVID-19 patients [84]. Increased IL-6 and TNF-a levels are significant predictors

of COVID-19 severity and death [85].

13


https://doi.org/10.1101/2021.11.23.469790
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.23.469790; this version posted November 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

In COVID-19 patients, increased pro-inflammatory IL-6 levels are associated with increased body
temperature, elevation in CRP and ferritin inflammation markers, pulmonary inflammation and
extensive lung damage [77, 86]. IL-6 levels are elevated in COPD patients [67], asthma patients
[87, 88] and other inflammatory lung disorders [88]. All our O3FA test treatments reduced the
levels of IL-6 significantly (Figure 2A). Omega-3 HUFA reduce plasma concentrations of IL-6 and
ameliorate systematic inflammation [89]. Ma et al. 2016 found that an allele of IL6 rs2961298 SNP
was associated with higher cg01770232 methylation and increased IL-6 levels, however, higher
circulating omega-3 HUFA concentration by interacting with rs2961298 reduced cg01770232
methylation and IL-6 levels [90]. Intratracheal DHA pre-treatment reduced IL-6 levels and

mitigated bleomycin-induced pulmonary inflammation and fibrosis in a mice model [91].

Tissue necrosis factor-a (TNF-a) is upregulated in most inflammatory conditions and contributes
to changes in the blood coagulation [92]. Increased TNF-a along with IL-6 and IL-10 are hallmarks
of a hyperinflammatory response and an underlying cytokine storm in COVID-19 patients [93]. An
excessive amount of ferritin in COVID-19 patients is also reflective of a surplus of TNF-a levels
[94]. TNF-a is upregulated in several inflammatory lung disorders [68]. Fish oil treatment
decreased TNF-a production in healthy human volunteers [13]. All our O3FA test treatments
reduced the levels of TNF-a significantly at both the time points (Figure 2B). Notably, the O3EE

and CannO3 groups were comparable to the B-Ref (Budesonide) steroid reference group.

Transforming growth factor B (TGF-B) is a pleiotropic cytokine which plays a major role in
inflammatory conditions [95]. TGF- along with IL-6 drives the differentiation of T helper 17 (Th17)
cells, which promote inflammation and augment autoimmune conditions [95, 96]. In addition, TGF-
B promotes the differentiation of IL-10 producing T cells, which lack suppressive function and in
turn promote tissue inflammation [97, 98]. Increased expression of TGF-3 cause and promote
lung fibrosis in COVID-19 patients [99, 100]. Increased expression of TGF-f3 is seen in acute lung

injury and several chronic lung inflammatory disorders [101, 102]. All our O3FA test treatments,
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except 03-0.5 reduced the levels of TGF-f3 significantly and the reduction was comparable to the

B-Ref in O3EE (Figure 2C).

IL-10 is a pleiotropic cytokine whose primary function in most tissues is to limit the inflammatory
response, however, in COVID-19 it is dramatically elevated. This phenomenon in COVID-19 is
thought to be a negative feedback mechanism to suppress inflammation [81]. IL-10 is also known
to introduce T-cell anergy during viral infection [103]. Our O3FA test treatments reduced the levels

of IL-10 significantly (Figure 3A).

IL-1B8 is a pro-inflammatory cytokine that is crucial for host-defense responses to infection,
antimicrobial immunity and autoimmune inflammation [104, 105]. IL-1p levels are associated with
cytokine storm in a subset of COVID-19 patients [106, 107]. IL-13 expression levels are found to
be significantly increased in the bronchial wall of asthmatic patients [108]. On the other hand, fish
oil treatment decreased IL-1B production in healthy human volunteers [13]. Our O3FA test
treatment O3EE reduced the levels of IL-1B significantly at both time points and the reduction was

better than the B-Ref group (Figure 3B).

Multiple animal and human studies indicate that both inhaled and systemic corticosteroids cause
immunosuppression and impair induction of anti-viral type-I interferon responses to a range of
respiratory viruses, including COVID-19 [109-114]. These are usually undesirable side effects. In
India and other regions of the world, a significant increase in the incidence of fungal infections
such as invasive aspergillosis or mucormycosis, a life-threatening angioinvasive maxillofacial
fungal infection(s) due to corticosteroid administration, has been reported in many individuals
suffering from COVID-19, especially in patients with diabetes [114-118]. In patients with
overwhelming viral iliness, broad immunosuppression may be inadvisable [109]. The novel O3FA
formulations thus represent an alternative therapy with some significant advantages over
corticosteroids. O3FA are dietary, natural, endogenous metabolites that promote balanced

inflammatory and thrombotic responses. The safety and efficacy of multigram oral and
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intravenous lipid emulsions has long been established in young children and adults [119-123]. A
double-blind, randomized clinical trial showed oral O3FA improved the levels of several
respiratory and renal function parameters in critically ill COVID-19 patients [124]. The present

formulations include administration of O3FA without substantial adverse reactions or side effects.

Persons who have survived the acute disease and have long term symptoms are known as
“COVID Long Haulers”. Prominent symptoms in these patients are fibromyalgia, fatigue, and
sleep disturbance [125-127]. The O3FA, due to their anti-inflammatory effects, are known to be
beneficial in the treatment of arthritis and neuropathic pain associated with fibromyalgia syndrome
(FMS) [128-130]. Melatonin has helped in reducing anxiety, lung fibrosis and controlling insomnia
in COVID-19 patients [131-135]. On this basis, our MelO3 treatment group may reduce long haul

COVID-19 symptoms, in addition to lung fibrosis.

The O3FA are precursors for the synthesis of endocannabinoids, including endocannabinoid
epoxides with powerful anti-inflammatory properties [136, 137]. Cannabidiol exerts a wide range
of anti-inflammation and immunomodulation effects and can mitigate the uncontrolled cytokine
storm during acute lung injury [138]. Nguyen et al. 2021 showed CBD administration is associated
with decreased risk of SARS-CoV-2 infection in humans and can block SARS-CoV-2 infection at
early stages [139]. A combined inhalation cannabidiol-O3FA modeled by our CannQO3 group is
thus likely to reduce runaway inflammation and thrombosis by mitigating the uncontrolled cytokine

storm in COVID-19.

CONCLUSIONS

In the present study we showed novel forms of pharmaceutical grade O3FA, specifically
docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) and/or eicosapentaenoic acid (EPA)
medicament delivery to the rat lungs via nebulization reduced LPS induced acute lung

inflammation. Both histopathology observations and immunological marker analysis revealed
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significant reduction of inflammation in our O3FA treatment groups compared to the disease
control (Cd). COPD is a global epidemic, killing over 3.2 million individuals each year and there
is no cure for it. COVID-19 is an enigma and treatment protocols are still evolving to treat critically
ill patients with COVID-19. One of the major challenges during COVID-19 pandemic is to prevent
disease progression from symptomatic to ICU. We propose that our natural, dietary, anti-
inflammatory and pro-resolving O3FA formulations can help in preventing eicosanoid storm which
can be followed by the cytokine storm. Our formulations can be used to treat inflammation and
thrombosis related lung disorders, for example, asthma, COPD, cystic fibrosis, interstitial fibrosis,

bronchiolitis, NSCLC and conditions related to acute respiratory distress like COVID-19.
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Table 1. The control, O3FA test and reference treatments grouping. After randomization, rats
were divided into 11 groups (n=6). Animals from each group received the respective treatment
twice daily for 7 days (3 animals/group) or 14 days (3 animals/group) through nebulization. G2 to
G11 received LPS once daily. The concentration and the dose volume used for nebulization for

each group are given in below table:

s Formulation/ Concentration of | Volume used for | Nebulization
roup
Composition solution Nebulization duration
Cn G1 Control, normal; saline injection, no LPS NA 1.5mL 2.5min
Cd G2 Control disease NA 1.5mL 2.5min
EPL G3 Egg Lecithin only NA 1.5mL 3.0min
03 G4 03 50 mg/mL 1.5mL 4.5min
3.0mL (1.5mL 03
03-0.5 G5 03 25 mg/mL 25mg/ml + 1.5mL 6.0min
normal saline)
O3EE G6 03 ethyl esters 50 mg/mL 1.5mL 3.0min
B-Ref G7 Budesonide Respules, reference therapy 0.5 mg/mL 1.5mL 3.0min
Mont G8 Montelukast sodium 4 mg/mL 1.5mL 3.0min
1.0 mg/mL + 50
MelO3 G9 Melatonin + O3 1.5mL 4.5min
mg/mL
3.0mL (1.5mL
montelukast sodium
MontO3 G10 Montelukast sodium + O3 4 mg/mL + 50 mg/mL 6.5min
4mg/mi+ 1.5mL 03
50mg/ml)
Cann03 G11 Cannabidiol + O3 8 mg/mL + 50 mg/mL 1.5mL 4min

Note: Cn- normal control; Cd- disease control; EPL- Egg phospholipids; O3- Omega-3 free fatty
acids; O3EE- Omega-3 ethyl esters; B-Ref- Budesonide reference, Mont- Montelukast sodium;
MelO3- Melatonin + O3; MontO3- Montelukast sodium + O3; CannO3- Cannabidiol + O3
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FIGURE LEGENDS

Figure 1. Represents alveolar histiocytosis severity scores. All animals in the control disease
(Cd) group had the highest severity score (0.61). Reduced alveolar histiocytosis scores are seen
in all the treatment groups. B-ref group had the lowest score compared to all treatment groups.

The O3 treatment groups scored less than half severity compared to Cd.

Figure 2. Cytokine levels in treatments compared to the disease control Cd (mean+SD). No time
effects were found for these groups; day 8 and day 15 results were pooled to yield n=6. A) IL-6
levels are downregulated and reached statistical significance in all the treatment groups and B-
Ref by pairwise comparison (*p<0.05). B) TNF-a levels are downregulated and reached
statistical significance in all the treatment groups and B-Ref (*p<0.05), except EPL. C) TGF-3
levels are downregulated; all significantly different from Cd (*p<0.05), except EPL and O3-0.5

groups.

Figure 3. Cytokine levels in treatments compared to the disease control Cd (meant+SD). Time
effects were significant for these groups; day 8 results were compared to day 8, and day 15 to
day 15, n=3 per group. A) With time IL-10 for O3-0.5, CannO3, and B-ref increased, whereas
O3EE decreased (*p<0.05 for time effect). All comparisons at single time points are significant
except EPL at both time points, 03-0.5 at day 15 and MontO3 at day 8 (“ns”). B) IL-1[3 levels
were mostly not significantly different from Cd except those labeled with 9. O3EE is the only
treatment significant at both the time points. O3, B-Ref, MelO3 and CannQO3 are significant only

at the 15 day time point.
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Supplementary Figures. Supplementary Figure 1. Individual Animal Microscopic Images of
Lung (Day 8)
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Suppl. Fig. 1 (cont.) Individual Animal Microscopic Images of Lung (Day 15)

Group H&E Images (10X)
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Suppl. Fig. 1 (cont.) Individual Animal Microscopic Images of Lung (Day 15)

Group H&E Images (10X)
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Suppl. Fig. 1 (cont.) Individual Animal Microscopic Images of Lung (Day 15)
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Supplementary Tables.

Suppl. Table 1: Composition of Egg Lecithin (Placebo) Emulsion (EPL group)

S. No | Name of the Ingredients Qty Per mL (mg) % (wWiv)
1 Lipoid E 80 S 12.5 1.25
2 Glycerol 20 20
3 Sodium Hydrogen Carbonate 2.5 0.25
4 Milli-Q Water Q.Sto1mL Q.S to 100%
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Suppl. Table 2: Composition of Omega-3 FFA Emulsion (O3 group)

S. No | Name of the Ingredients Qty Per mL (mg) Y% (W/v)
1 Omega-3 Fatty Acids 50 5.0
2 Lipoid E 80 S 8 0.8
3 Glycerol 20 2.0
4 Sodium Hydrogen Carbonate 2.5 0.25
5 Milli-Q Water Q.Sto1mL Q.S to 100%

Note: FFA- free fatty acids
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Suppl. Table 3: Composition of Omega-3 EE Emulsion (O3EE group)

S. No | Name of the Ingredients Qty Per mL (mg) Yo (W/v)
1 Fish Qil (Incromega E3322) 50 5
2 Lipoid E 80 S 12.5 1.25
3 Glycerol 20 2
4 Sodium Hydrogen Carbonate 0.15 0.015
5 Milli-Q Water Q.Sto1mL Q.S to 100%

Note: EE- ethyl esters
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Suppl. Table 4: Composition of Montelukast Sodium Solution (Mont group)

Nsé Name of the Ingredients Qty Per mL (mg) Yo (W/v)
1 Montelukast Sodium 4 0.4
2 Milli-Q Water Q.Sto1mL Q.S to 100%
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Suppl. Table 5: Composition of Melatonin Solution (MelO3 group)

S. No Name of the Ingredients Qty Per mL (mg) Y% (wW/v)
1 Melatonin 1 0.1
2 Omega-3 FFA Q.Sto1mL Q.S to 100%

Note: FFA- free fatty acids
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Suppl. Table 6: Composition of Omega-3 FFA and LPC Emulsion (CannO3 group)

Qty Per mL
S. No | Name of the Ingredients (mg) Y% (Wiv)

1 Omega-3 Fatty Acids 50 5

2 Cannabidiol Synthetic (LPC) 8 0.8

3 Lipoid E 80 S 8 0.8

4 Glycerol 20 2

5 Sodium Hydrogen Carbonate 25 0.25

6 Milli-Q Water QSto1mL | Q.Sto100%

Note: FFA- free fatty acids, LPC - Leiutis proprietary compound
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Suppl. Table 7. ELISA kits used to measure immune markers

S.No. |  ELISA Kit Name REF ID Lot No. Company
Name
GENLISA™ Rat
1 TGF-B ELISA KLRO778 RTGFB0621
GENLISA™ Rat
2 IL-6 ELISA KB3068 RI160621
™ Krishgen
3 GENLISA'  Fat KLR0108 RIL100621 BioSystems,
IL-10 ELISA .
Mumbai
GENLISA™ Rat
4 IL-1B ELISA KB3063 RTB0721
GENLISA™ Rat
S TNF-a ELISA KB3145 RTA0521
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Suppl. Table 8. Individual Animal Body Weights

Body Weight (g)
Group Treatment A. No. Sex Day 0 Day 8 Day 15
1 153.31 173.85 -
Normal 2 142.36 159.74 -
o S\f;trf;l 3 vl | 14491 165.67 =
. 4 143.69 162.43 188.32
saline, no
LPS) 5 139.63 152.21 172.40
6 14131 158.34 182.16
7 144.97 164.18 ~
Disease 8 148.62 172.49 -
a2 Control 9 Male 139.81 156.95 --
(Normal saline 10 138.92 152.76 173.21
+LPS) 11 140.37 161.69 183.31
12 139.61 157.32 172.09
13 153.36 178.91 -
Treatment 1 ™ 139.12 152.38 -
(Egg  Lecithin ™5 152.83 176.79 -
3 3&?5:;23;5 16 Male 5411 176.11 194.08
17 152.88 179.03 197.02
18 144.19 163.61 189.79
19 141.91 162.50 —
Treatment 2 20 163.83 190.39 -
- (O3FA 21 Vale 153.69 176.90 ~
Dispersion, 22 150.11 171.36 192.54
twice daily ) 23 14352 161.44 179.54
24 154.92 177.04 196.08
Treatment 3 25 145.75 164.87 -
(O3FA 26 146.39 168.46 ~
Dispersion 27 154.04 175.44 --
G5 | diluted to 50% | 28 Male 591 160.61 179.94
in NS, twice 29 149.73 171.23 189.21
daily) 30 154.08 179.19 204.78
31 152.12 178.37 ~
Treatment 4 32 144.30 162.37 -
a6 (Fish Oil 33 Male 151.82 178.46 --
Dispersion, 34 146.01 169.27 186.05
twice daily) 35 149.08 174.92 194.36
36 141.62 159.14 175.83
Treatment 5 37 163.01 192.82 --
G7 (Reference: 38 Male ™ 46.70 17018 -
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Budesonide 39 145.88 163.83 -
Respules), 40 142.08 162.91 189.41
twice daily) 41 141.39 159.63 183.77
42 142.04 163.11 197.92
Treatment 6 43 159.36 188.92 -
(Reference: 44 143.68 162.60 --
Gs Montelukast 45 Male 147.09 171.20 --
sodium 46 145.11 165.75 189.55
solution, twice 47 142.39 161.07 180.12
daily) 48 148.67 172.43 198.42
49 145.33 164.38 -
Treatment 7 50 149.81 172.88 --
(Melatonin 51 154.98 17755 -
9 Osgé‘ﬁ"’tcv:ge 52 Male 5222 17529 190.89
daily) 53 142.61 159.03 178.67
54 143.01 163.96 183.60
Treatment 8 55 142.49 160.14 -
(Montelukast 56 149.09 174.77 --
G10 sod. solution + 57 Male 152.27 176.39 --
O3FA 58 151.66 173.55 190.24
Dispersion, 59 156.31 182.38 199.75
twice daily) 60 158.07 189.62 213.59
Treatment 9 61 149.14 172.37 -
(Cannabidiol 62 169.24 202.61 -
S{Eg‘g;“’ 63 167.71 195.84 -
G11 Compound + 64 Male 152.12 171.36 189.36
O3FA 65 147.05 163.36 182.21
t‘f,'v?fjrj;‘l’lg) 66 148.62 168.81 196.59

A.No. = Animal number; g= gram

Note: LPC - Leiutis proprietary compound
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Suppl. Table 9. Summary of Mortality

Animal

(Day 8-14)

Observation Period Parameter Sex Incidences
Numbers

Acclimatization .

Phase Day (1-4) Mortality Male 1-72 0/72

Treatment /

Experiment Phase Mortality Male 1-66 0/66

(Day 0-7)

Treatment /

Experiment Phase Mortality Male 33 0/33

0/72 — 0 Mortality out of 72 animals
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