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Summary

Recent years have seen a remarkable increase in the practicality of sequencing whole genomes from large
numbers of bacterial isolates. The availability of this data has huge potential to deliver new insights into the
evolution and epidemiology of bacterial pathogens, but the scalability of the analytical methodology has been
lagging behind that of the sequencing technology. Here we present a step-by-step approach for such large-
scale genomic epidemiology analyses, from bacterial genomes to epidemiological interpretations. A central
component of this approach is the dated phylogeny, which is a phylogenetic tree with branch lengths
measured in units of time. The construction of dated phylogenies from bacterial genomic data needs to
account for the disruptive effect of recombination on phylogenetic relationships, and we describe how this can
be achieved. Dated phylogenies can then be used to perform fine-scale or large-scale epidemiological analyses,
depending on the proportion of cases for which genomes are available. A key feature of this approach is
computational scalability, and in particular the ability to process hundreds or thousands of genomes within a
matter of hours. This is a clear advantage of the step-by-step approach described here. We discuss other
advantages and disadvantages of the approach, as well as potential improvements and avenues for future
research.

1. Introduction

Over the past decade, the cost and time required to sequence whole bacterial genomes has reduced
dramatically [1]. Sequencing is frequently applied to many or all isolates in local outbreaks, or to a high
proportion of cases in more endemic situations, as well as large retrospective and longitudinal collections.
This genomic data has huge potential to deliver new insights into the evolution and epidemiology of bacterial
pathogens, which can lead to better control measures. However, the lack of scalable methodology for analysis
of this genomic data represents an important bottleneck for the realisation of their full potential.

A gold standard for the analysis of pathogen genomic data has been set by the integrated phylogenetic
frameworks implemented for example in BEAST [2] and BEAST?2 [3]. These phylodynamic tools were
originally conceived for viral genetics and are still mostly used for that purpose, but have also been
increasingly applied to bacterial genomic data [4]. One of the strengths of these tools is that they can infer a
dated phylogeny by combining the genomic data with the dates of isolation, resulting in estimates for the
dates of the common ancestors in the phylogeny. Such dated phylogenies are extremely useful to draw
epidemiological interpretations from the genomic data, as we will see. Another advantage of the integrated
phylogenetic frameworks is that they include a number of powerful extensions, for example to use relaxed
clock models [5], to estimate past population dynamics [6], geographical spread [7-9] or transmission between
hosts [10,11]. This integrated approach has many natural advantages but also limitations especially in terms of
scalability to analyse larger datasets.

These limitations of the integrated approach are especially important in bacterial genomics, where the
genomes are orders of magnitude longer than in viral genetics and often subject to recombination. The
ClonalOrigin model [12] of bacterial evolution has been integrated into BEAST2 [13], but the resulting

algorithm is too computationally intense to be applied to whole genome datasets. Here we present an

alternative step-by-step approach.
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The step-by-step approach is illustrated in Figure 1. In the first step, a phylogeny is constructed from a
genomic alignment in a way that accounts for recombination events. In the second step, this phylogeny is
dated. In the third step, the dated phylogeny is interpreted in terms of a number of epidemiological
properties. Many software packages are available to perform each of these steps, including but not limited to
the ones named in Figure 1, although it is worth noting that many of these tools have emerged only in the past
few years, and so are still work in progress and expected to improve in the near future. In this article we
review each of the steps of this approach in turn. We also pay special attention to the “cracks’ between the
steps, since these are often ignored in articles that focus on each of the steps rather than the whole step-by-step
approach. Finally, we demonstrate the usability of this approach by applying it to a complete collection of
Staphylococcus aureus ST239 genomes.

2. Recombination-aware phylogenetic analysis

Even a relatively low amount of recombination can invalidate the results of phylogenetic tools if not
accounted for [14,15]. It is therefore essential to detect recombination events to correctly reconstruct the clonal
genealogy, that is the phylogenetic relationship between genomes when the ancestral lines of recipient cells
rather than donor cells are followed for each ancestral recombination events. Special phylogenetic methods
have been developed for this purpose, including Gubbins [16] and ClonalFrameML [17] which is based on the
ClonalFrame model [18]. However, these tools are often underexploited, typically to build a recombination-
corrected tree without paying attention to the recombination events and regions that have been detected.

A lot can be learnt from studying the inferred recombination events themselves. Recombination is useful to
help us understand how species are being formed [19] and the population structure within species, especially
when the origin of recombination events is being investigated [20]. These recombination patterns often reflect
important driving evolutionary forces such as ecology [21], adaptation [22] or selective pressures [23]. For
example in Streptococcus pneumoniae, recombination events have been shown to be driven by antibiotic
usage in a localised dataset [24] and by immune pressure in a global collection of the PMENTI lineage [25]. The
latter study also represents a good example of how the temporal signal can become much clearer once
recombination is correctly accounted for [25,26]. Recombination is also useful for the analysis of genome-wide
associations between genotypes and phenotypes, since it separates new genetic variants from their original
genomic background [27].

Accounting for recombination when reconstructing phylogenies is an important starting point for many
epidemiological studies. A method often used is to extract from the genomic alignment the sites that have not
been affected by recombination and to build a phylogeny using these sites only. Both Gubbins and
ClonalFrameML are often used in this way, to create a recombination-free alignment which is then passed on
to BEAST. However, this method works only if relatively few recombination events happened throughout the
tree. For example, consider the simulated dataset shown in Figure 2. The true clonal genealogy is shown in
Figure 2A and the true recombination events that happened on each of the branches are shown in Figure 2B.
These data were simulated using a standard coalescent model for the phylogeny [28], a strict clock model of
mutation with rate 6/2=0.005 per site, a model of recombination coming from external sources [18] with
initiation rate 0/2=0.001 per site, average length of recombination §=1500bp and distance of the source v=0.05.
For clarity we used a relatively small dataset of 20 sequences of 100,000bp each. In this simulated dataset,
there was not a single site that was not affected by recombination on at least one of the branches. On the other
hand, every branch had some sites unaffected by recombination (Figure 2B).

We applied ClonalFrameML [17] to this dataset using a PhyML tree [29] as starting point. The reconstructed
clonal genealogy is shown in Figure 2C and the inferred recombination events are shown in Figure 2D, and
they are in very good agreement with the true simulated tree and events shown in Figures 2A and 2B.
ClonalFrameML correctly inferred that there was not a single site unaffected by recombination on at least one
of the branches. Therefore an alignment containing only the non-recombinant sites would contain no sites, and
could not be used as a starting point for further analysis. On the other hand, the inferred clonal genealogy
shown in Figure 2C can be used in our proposed step-by-step approach. It has the same topology as the true
clonal genealogy (Figure 2A) and very similar branch lengths, with a weighted Robinson-Foulds distance [30]
of 0.005 between the true and ClonalFrameML trees. Gubbins [16] was also applied to this dataset using
RAXML [31] as a tree builder. The correct topology was inferred, with a weighted Robinson-Foulds distance of
0.03 between the true and Gubbins trees.

3. Dating the ancestors in a phylogeny

Once a recombination-corrected tree has been reconstructed, it is possible to study the temporal signal in this
tree and to date the common ancestors in the tree. Multiple software tools have recently been developed to
perform dating on a phylogeny, including BactDating [26] which is specifically aimed at bacterial genomes,
but also LSD [32], treedater [33] and TreeTime [34]. BactDating uses Bayesian statistics, whereas treedater and
TreeTime are based on maximum likelihood, which is identical to a Bayesian maximum a-posteriori (MAP)
approach assuming a uniform prior on dates as previously proposed [35]. It is often important to use a relaxed
clock model in this step that allows the evolutionary rate to vary between lineages [5]. An additive relaxed
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clock model has recently been developed which is more biologically realistic and leads to better dating of
pathogen phylogenies than previous relaxed clock model [36].

In our proposed step-by-step approach, the reconstruction of a dated phylogeny and its epidemiological
interpretation are separated. One disadvantage of this is that the prior (or lack-of) on dates used to reconstruct
the dated phylogeny is not the same as the one that would be implied by the epidemiological models used in
subsequent analyses. This statistical issue could be resolved for example by considering the difference in tree
distribution between the models used for the dating and the epidemiology and applying an importance
sampler to correct for this difference [37]. However, this difference is often small enough to be ignored in
practice, especially if the method used to build the dated phylogeny was based on the likelihood only, or if a
mild prior was used such as the coalescent with constant population size [28].

To illustrate this, we simulated five years of an outbreak model [38] with within-host diversity N.g=0.25 year,
basic reproduction number Ro=2, generation time distribution Exponential(1) in years and sampling
proportion t=0.1. A total of 59 cases were sampled in this outbreak, with the samples being related as shown
in Figure 3A. We applied a strict clock model to this dated phylogeny with a rate u=>5 substitutions per year
which is of the same order of magnitude as many bacterial pathogens [39]. This undated phylogeny was then
used, along with the known dates of sampling, to infer a dated phylogeny using BactDating [26] with prior set
to the coalescent with constant population size [28]. This prior is very different from the outbreak model that
was used to generate the phylogeny [38], which is not coalescent due to the host structure and where the
population size is clearly growing since the reproduction number was greater than one. Figure 3B shows the
inferred dating for this tree, which is in good agreement with the correct dates from the top part despite the
complete difference between the epidemic model used for simulation and the coalescent model used for
inference.

At the same time as dating is performed, the substitution rate is typically estimated which provides a useful
value to compare with previous estimates [39] in order to make sure that the dating is working as expected.
Statistical methods can also be used to ensure that the temporal signal is significant, for example by
comparing the fit of the data when the correct sampling dates are used against when all the dates are forced
equal [40], or using a permutation test on the sample dates [41]. These methods require to perform several
runs of the dating method, and it is therefore useful for this to be as fast as possible, which is achieved in our
step-by-step method by separating the phylogenetic inference from the dating.

Furthermore, the root of the phylogeny is typically estimated during the dating step, since the trees generated
by standard phylogenetic tools are not rooted whereas dated trees are always rooted by definition, with the
date of the root being the date of the last common ancestor of the whole sample. If the root has already been
determined robustly, for example using one or ideally several closely related outgroups [42], then this
information can be preserved during the dating. If on the other hand the root is undetermined, or arbitrarily
selected for example using the midpoint method [43], then the fact that dating the phylogeny simultaneously
performs rooting provides an additional reason for dating the tree, which becomes much more informative in
terms of epidemiology once it is dated and rooted.

4. From dated phylogeny to epidemiology

A dated phylogeny is very useful to learn about the epidemiology of the bacteria under study, and sometimes
the dating directly provides answers to questions of interest beyond the age of pathogens [44]. For example,
several antibiotic resistant lineages have been dated to have emerged around the time when the
corresponding antibiotics were started to be used, highlighting the link between consumption and resistance
[45,46]. As another example, the dating of the common ancestors between pairs of Clostridium difficile
patients in a hospital allowed to rule out transmission for many pairs and to conclude that nosocomial
transmission was less frequent than previous thought [47].

It can often be useful to identify clusters of significantly similar genomes in a dataset. The most commonly
used approach is to use a separate dedicated algorithm that uses the genomic data for this purpose, such as
HierBAPS [48], fastbaps [49] or PopPunk [50], and overlay the results of this clustering analysis onto the
phylogeny using colours for example. Another approach is to use additional non-genomic data to do the
clustering given the phylogeny, as performed for example by AdaptML [51], treebreaker [52] and treeSeg [53].
Finally a third option is to try and identify directly on the dated phylogeny the lineages that seem to be ruled
by different dynamics, for example using treestructure which does not rely on an explicit phylodynamic
model [54] or CaveDive [55] which is focused on the detection of clonal expansions.

The dated phylogeny can also be used as a starting point for further analysis. In particular, past variations in
the bacterial population size have a direct effect on the shape of the dated phylogeny, so that the population
size through time can be estimated and presented as a skyline plot [56]. The methodology for performing such
an analysis was originally developed within BEAST which simultaneously estimates the dated phylogeny [6],
but for our step-by-step approach we need to estimate the demographic function from a dated phylogeny, and
several software tools have recently been released for this purpose including phylodyn [57,58], skygrowth [59]
and mlesky [60]. Beyond a simple model of varying population size, it is also possible to fit an epidemiological
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compartmental model such as the susceptible-infected-recovered model [61], and therefore to estimate the
parameters of this model such as the transmission rate or removal rate. Such an inference can be achieved by
formulating a structured coalescent model that corresponds to the compartmental model [62,63]. Existing
software for fitting such a model to a given dated phylogeny include rcolgem [64] and phydyn [65]. The same
methods based on the structured coalescent can also be applied to a dated phylogeny in order to reconstruct
past geographical migrations [9], although such phylogeographic inference is much more often based on
discrete trait analysis, for example using the ace command from the R package ape [66] or in the NextStrain
platform [67]. The worldwide spread of the current pandemic of Vibrio cholerae has been described using
such techniques [68,69].

When the genomes are densely sampled within an epidemic, it can be useful to try and reconstruct the
transmission tree of who infected whom [70]. Within-host diversity and evolution is significant for many
bacterial pathogens which blurs the relationships between transmission tree and phylogeny [71]. However,
TransPhylo can infer the transmission tree from a dated phylogeny in a way that accounts for within-host
evolution [38,72,73]. Significant uncertainty typically remains in the inferred transmission tree, which is
captured by the use of Bayesian statistics within TransPhylo. More precise inference can sometimes be
obtained by combining the genomic inference with epidemiological data [74].

A drawback of separating the dating step from the interpretation step is that the uncertainty in dating is
typically not passed on to the epidemiological analysis. This can be achieved by running on multiple samples
from the posterior of dated phylogeny and averaging the results [75], or reweighting according to the
posterior probability in the epidemiological analysis [37], but in practice the phylogenetic uncertainty is
usually not accounted for. However, this is not often a significant issue in practice. To illustrate this, we
simulated a dataset for a small outbreak with just ten cases, using an epidemic model [38] with basic
reproduction number Ro=1, within-host diversity N.g=0.25 year, mean generation time of 1 year, sampling
proportion of =0.5 and a strict clock model with rate u=>5 substitutions per year. The dated phylogeny was
inferred using BactDating [26] and we extracted the first (after burnin) and the last trees sampled by the
MCMC, as shown in Figures 4A and 4C. We then reconstructed the transmission events using TransPhylo [38]
separately for each of these two dated trees, as shown in Figures 4B and 4D. In spite of small differences in the
two dated phylogenies, the inferred results in terms of transmission chains were very similar.

5. Example of application

To illustrate the use of the step-by-step approach from bacterial genomes to epidemiology, we apply it to a
state-of-the-art dataset, using only a standard laptop computer and paying particular attention to the time
taken by each step. We collected all available genomes of Staphylococcus aureus ST239 (Table S1). This
collection is made of 521 assembled genomes, only small subsets of which had been comparatively analysed in
previous studies [76-79]. The genomes were collected between 1982 and 2010 from all parts of the world (451
from Asia, 46 from Europe, 18 from Americas, 2 from Africa, 2 from Oceania and 2 unknown). All genomes
were aligned using MuMMER v3.1 [80] against the reference genome TW20 which is a member of ST239 [81]
and therefore included in the collection. This resulted in a reference-anchored alignment that took only a few
minutes to generate, since each pairwise alignment against the reference genome can be performed in parallel.
Alternatively, assembly pipelines are often based on reference-based mapping of the sequencing reads, for
example using BWA [82] and SamTools [83]. This can also be performed in parallel and results in a similar
reference-anchored alignment.

A first phylogeny was built using PhyML v3.3 [29] which took approximately 3 hours. This was used as the
starting point to build a recombination-corrected phylogeny using ClonalFrameML v1.12 [17], which took
approximately two days to run. The same analysis using Gubbins v2.4.1 [16] gave very similar results, and
took approximately one day to run. This step currently represents a clear bottleneck in the application of the
step-by-step approach, which should be addressed in the near future through the development of new
parallelised algorithms. Significant recombination was found, with a total of 198 recombination events
detected throughout the phylogeny. The relative rate of recombination versus mutation was estimated to be
R/6=0.144, meaning that on average mutation events were about 7 times more frequent than recombination
events. The mean length of recombination events was estimated to be d=619 bp which is in good agreement
with previous estimates for S. aureus [17,84,85]. The mean distance between donor and recipient was
estimated to be v=0.31%, which corresponds approximately to the distance between ST239 and some of its
closest relatives such as CC8 [86]. The relative effect of recombination versus mutation was therefore
estimated to be r/m =R /0 x v x d =0.28, so that 3 to 4 times more substitutions are caused by mutation than
by recombination. These results confirm that recombination plays a role in S. aureus evolution, although not
as dramatic as in some other bacterial pathogens [14,87,88].

We detected a strong temporal signal in the recombination-corrected phylogeny on the basis of a regression
analysis of root-to-tip distances against isolation dates (R?=0.57, p<10*). We therefore computed a dated
phylogeny using BactDating v1.1 [26] under the additive relaxed clock model [36]. This step took
approximately 3 hours to run for 10° MCMC iterations, and the inferred dated phylogeny is shown in Figure
5A. The isolation dates were unknown for 36 of the 521 genomes (Table S1), but BactDating can accommodate
this. The evolutionary rate was estimated to be 7.05 substitutions per year throughout the genome, with
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credible interval between 6.43 and 7.67. This estimate is in good agreement with several previous estimates in
ST239 [76,78] and other lineages of S. aureus [46]. The root of the ST239 was estimated to have existed in 1958,
with credible interval ranging between 1951 and 1965. This is again in good agreement with previous
estimates and coincides with penicillins being increasingly used to treat bacterial infections [76,78,89].

We used the dated phylogeny as input into treestructure v0.1.2 [54] to determine whether there were
significant differences in the phylodynamic properties of sublineages within the tree. This analysis took less
than a minute to perform, and found no significant differences, which means that the whole tree can be
treated as a whole in phylodynamic reconstructions [54]. We therefore applied skygrowth v0.3.1 [59] to the
whole dated tree using the maximum a-posteriori method. This analysis took less than a minute and the
estimated demographic function is shown in Figure 5B, with an approximately exponential rise of the effective
population size between 1960 and 1995, and a plateau between 1995 and 2010. This is in good agreement with
previous skyline analyses of ST239 [78,89]. We do not seek to say more about the epidemiological dynamics of
ST239 since our aim with this application was to test the applicability of the step-by-step method to a
relatively large dataset, rather than study it in detail.

6. Discussion

The step-by-step approach has several drawbacks compared to an integrated approach. A practical
disadvantage is that multiple tools need to be applied one after the other, with the need to make sure that the
output of one tool is a suitable input for the next tool. The software tools have been developed separately, and
format conversion is sometimes required when combining them, which introduces a risk of error being made.
Method developers should make every effort to minimize this risk, for example by providing practical
examples of source code combining new tools with pre-existing ones, and including verifications in each tool
that the input is formatted as expected.

Another concern with the step-by-step approach relates to statistical soundness. In an integrated approach, a
complex model is formed by combining multiple simpler models into a consistent whole, for example a model
describing how the pathogen population size varied over time, another model describing how these
fluctuations affect the genealogy and yet another model describing how mutation and recombination events
affect the genomes given the genealogy. Inference is then performed on the combined model, with all
uncertainties being accounted for simultaneously and in all directions: for example the uncertainty on a
mutation event will feed into the uncertainty on the past population size, and vice-versa. By contrast, in the
step-by-step approach, each of the tool makes separate modelling assumptions, which may not always by
consistent with each other. An example of this was discussed in Section 3, where the prior used for the
reconstruction of a dated phylogeny was not the correct one, but Figure 3 showed that the result can still be
correct. Furthermore, the uncertainty can only be passed from one tool to the next in the order that they are
being applied, and even in this direction it is frequent to use the best estimate from one method as the starting
point of the next, without passing any uncertainty. Again this is not necessarily a problem in practice, as
illustrated in Figure 4 where the uncertainty on the phylogeny had little effect on the uncertainty of the
transmission tree. From a statistical point of view, the integrated approach therefore represents a gold
standard, although statisticians have recently noted that joint inference under a combined model carries the
risk that misspecification in any of the model parts can affect estimates from the others in unpredictable ways
[90]. Further research is needed on this in the context of genomic epidemiology, as well as research on how to
avoid the statistical issues described above with the step-by-step approach.

A key advantage to the step-by-step approach we described is that by breaking down the problem into simple
steps, it becomes easier to solve, a strategy often called “divide and conquer” in the computer science
literature. The running time is greatly improved compared to an integrated approach, which quickly becomes
intractable as more model components are combined into a large model. An example of this concerns the
difficulty to integrate recombination into a phylodynamic framework [13]. A similar situation occurs when
aligning sequences and building a phylogeny: in principle alignment and phylogeny would benefit from
being performed simultaneously [91,92] but in practice this is too computationally challenging. The lower
running time of the step-by-step approach also means that it is more scalable to the large numbers of bacterial
genomes currently available, and this scalability is probably the main reason for a recent increase in
popularity [67,93].

Perhaps even more importantly, a counterintuitive advantage of the step-by-step approach is that it is less
automatic than the integrated approach. Although this may seem like a disadvantage, the fact that several
software tools have to be applied one after the other brings great benefits. It allows the user to check after each
step that the result makes sense before carrying the next step. For example, if a phylogeny is clearly wrong
due to contamination during sequencing, there is no point trying to apply dating of the nodes or interpreting
the phylogeny in terms of epidemiology. Since each tool is focused on a simpler task, it is easier for the user to
check the validity of the assumptions made, and if needed to compare models or the results of several
software tools, or apply more complex models since each step is relatively quick. These checks and
refinements provide the user with a better understanding of their data and the analysis process, rather than
relying on “black-box” or “turn-key” analysis. This is one of the most important advantages of the step-by-
step approach, since it creates good conditions for a balanced interpretation of the data and results.
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Figure legends

Figure 1: Overview of the step-by-step analytical approach. The names of some of the software tools that can
be used in each step are indicated under the arrows.

Figure 2: Illustration of the effect of recombination on phylogenetic inference. A phylogeny was simulated (A)
with recombination events happening on the branches at a constant rate (B). ClonalFrameML was applied to
this simulated dataset, resulting in a good reconstruction of both the clonal genealogy (C) and recombination
events (D).

Figure 3: Illustration of the relative lack of effect of the prior model used for the inference of dated phylogeny.
A dated phylogeny (A) was simulated from an epidemic model and dating was inferred (B) based on a
coalescent model with constant population size.

Figure 4: Illustration of the relative lack of effect of the uncertainty in the reconstructed dated phylogeny on
interpretation as a tree transmission trees. Two dated phylogenies were sampled from the posterior (A and C)
and a separate inference of the transmission tree was performed for each one (B and D). The coloured matrices
represent the distance between pairs of cases in number of transmission links, with red coding for direct
transmission and yellow coding for a distance of ten links.

Figure 5: Example of application of the approach to a collection of Staphylococcus aureus ST239 genomes. The
dated phylogeny was inferred using BactDating (A) and the past population size dynamics was inferred using
skygrowth (B).
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