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Summary 
 

Recent years have seen a remarkable increase in the practicality of sequencing whole genomes from large 
numbers of bacterial isolates. The availability of this data has huge potential to deliver new insights into the 
evolution and epidemiology of bacterial pathogens, but the scalability of the analytical methodology has been 
lagging behind that of the sequencing technology. Here we present a step-by-step approach for such large-
scale genomic epidemiology analyses, from bacterial genomes to epidemiological interpretations. A central 
component of this approach is the dated phylogeny, which is a phylogenetic tree with branch lengths 
measured in units of time. The construction of dated phylogenies from bacterial genomic data needs to 
account for the disruptive effect of recombination on phylogenetic relationships, and we describe how this can 
be achieved. Dated phylogenies can then be used to perform fine-scale or large-scale epidemiological analyses, 
depending on the proportion of cases for which genomes are available. A key feature of this approach is 
computational scalability, and in particular the ability to process hundreds or thousands of genomes within a 
matter of hours. This is a clear advantage of the step-by-step approach described here. We discuss other 
advantages and disadvantages of the approach, as well as potential improvements and avenues for future 
research. 
 
 

1. Introduction 
 
Over the past decade, the cost and time required to sequence whole bacterial genomes has reduced 
dramatically [1]. Sequencing is frequently applied to many or all isolates in local outbreaks, or to a high 
proportion of cases in more endemic situations, as well as large retrospective and longitudinal collections. 
This genomic data has huge potential to deliver new insights into the evolution and epidemiology of bacterial 
pathogens, which can lead to better control measures. However, the lack of scalable methodology for analysis 
of this genomic data represents an important bottleneck for the realisation of their full potential.  
 
A gold standard for the analysis of pathogen genomic data has been set by the integrated phylogenetic 
frameworks implemented for example in BEAST [2] and BEAST2 [3]. These phylodynamic tools were 
originally conceived for viral genetics and are still mostly used for that purpose, but have also been 
increasingly applied to bacterial genomic data [4]. One of the strengths of these tools is that they can infer a 
dated phylogeny by combining the genomic data with the dates of isolation, resulting in estimates for the 
dates of the common ancestors in the phylogeny. Such dated phylogenies are extremely useful to draw 
epidemiological interpretations from the genomic data, as we will see. Another advantage of the integrated 
phylogenetic frameworks is that they include a number of powerful extensions, for example to use relaxed 
clock models [5], to estimate past population dynamics [6], geographical spread [7–9] or transmission between 
hosts [10,11]. This integrated approach has many natural advantages but also limitations especially in terms of 
scalability to analyse larger datasets.  
 
These limitations of the integrated approach are especially important in bacterial genomics, where the 
genomes are orders of magnitude longer than in viral genetics and often subject to recombination. The 
ClonalOrigin model [12] of bacterial evolution has been integrated into BEAST2 [13], but the resulting 
algorithm is too computationally intense to be applied to whole genome datasets. Here we present an 
alternative step-by-step approach. 
 

*Author for correspondence (xavier.didelot@warwick.ac.uk). 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469232
http://creativecommons.org/licenses/by/4.0/


The step-by-step approach is illustrated in Figure 1. In the first step, a phylogeny is constructed from a 
genomic alignment in a way that accounts for recombination events. In the second step, this phylogeny is 
dated. In the third step, the dated phylogeny is interpreted in terms of a number of epidemiological 
properties. Many software packages are available to perform each of these steps, including but not limited to 
the ones named in Figure 1, although it is worth noting that many of these tools have emerged only in the past 
few years, and so are still work in progress and expected to improve in the near future. In this article we 
review each of the steps of this approach in turn. We also pay special attention to the ‘cracks’ between the 
steps, since these are often ignored in articles that focus on each of the steps rather than the whole step-by-step 
approach. Finally, we demonstrate the usability of this approach by applying it to a complete collection of 
Staphylococcus aureus ST239 genomes. 
 

2. Recombination-aware phylogenetic analysis 
 
Even a relatively low amount of recombination can invalidate the results of phylogenetic tools if not 
accounted for [14,15]. It is therefore essential to detect recombination events to correctly reconstruct the clonal 
genealogy, that is the phylogenetic relationship between genomes when the ancestral lines of recipient cells 
rather than donor cells are followed for each ancestral recombination events. Special phylogenetic methods 
have been developed for this purpose, including Gubbins [16] and ClonalFrameML [17] which is based on the 
ClonalFrame model [18]. However, these tools are often underexploited, typically to build a recombination-
corrected tree without paying attention to the recombination events and regions that have been detected.  
 
A lot can be learnt from studying the inferred recombination events themselves. Recombination is useful to 
help us understand how species are being formed [19] and the population structure within species, especially 
when the origin of recombination events is being investigated [20]. These recombination patterns often reflect 
important driving evolutionary forces such as ecology [21], adaptation [22] or selective pressures [23]. For 
example in Streptococcus pneumoniae, recombination events have been shown to be driven by antibiotic 
usage in a localised dataset [24] and by immune pressure in a global collection of the PMEN1 lineage [25]. The 
latter study also represents a good example of how the temporal signal can become much clearer once 
recombination is correctly accounted for [25,26]. Recombination is also useful for the analysis of genome-wide 
associations between genotypes and phenotypes, since it separates new genetic variants from their original 
genomic background [27].  
 
Accounting for recombination when reconstructing phylogenies is an important starting point for many 
epidemiological studies. A method often used is to extract from the genomic alignment the sites that have not 
been affected by recombination and to build a phylogeny using these sites only. Both Gubbins and 
ClonalFrameML are often used in this way, to create a recombination-free alignment which is then passed on 
to BEAST. However, this method works only if relatively few recombination events happened throughout the 
tree. For example, consider the simulated dataset shown in Figure 2. The true clonal genealogy is shown in 
Figure 2A and the true recombination events that happened on each of the branches are shown in Figure 2B. 
These data were simulated using a standard coalescent model for the phylogeny [28], a strict clock model of 
mutation with rate θ/2=0.005 per site, a model of recombination coming from external sources [18] with 
initiation rate ρ/2=0.001 per site, average length of recombination !=1500bp and distance of the source ν=0.05. 
For clarity we used a relatively small dataset of 20 sequences of 100,000bp each. In this simulated dataset, 
there was not a single site that was not affected by recombination on at least one of the branches. On the other 
hand, every branch had some sites unaffected by recombination (Figure 2B).  
 
We applied ClonalFrameML [17] to this dataset using a PhyML tree [29] as starting point. The reconstructed 
clonal genealogy is shown in Figure 2C and the inferred recombination events are shown in Figure 2D, and 
they are in very good agreement with the true simulated tree and events shown in Figures 2A and 2B. 
ClonalFrameML correctly inferred that there was not a single site unaffected by recombination on at least one 
of the branches. Therefore an alignment containing only the non-recombinant sites would contain no sites, and 
could not be used as a starting point for further analysis. On the other hand, the inferred clonal genealogy 
shown in Figure 2C can be used in our proposed step-by-step approach. It has the same topology as the true 
clonal genealogy (Figure 2A) and very similar branch lengths, with a weighted Robinson-Foulds distance [30] 
of 0.005 between the true and ClonalFrameML trees. Gubbins [16] was also applied to this dataset using 
RAxML [31] as a tree builder. The correct topology was inferred, with a weighted Robinson-Foulds distance of 
0.03 between the true and Gubbins trees. 
 

3. Dating the ancestors in a phylogeny 
 
Once a recombination-corrected tree has been reconstructed, it is possible to study the temporal signal in this 
tree and to date the common ancestors in the tree. Multiple software tools have recently been developed to 
perform dating on a phylogeny, including BactDating [26] which is specifically aimed at bacterial genomes, 
but also LSD [32], treedater [33] and TreeTime [34]. BactDating uses Bayesian statistics, whereas treedater and 
TreeTime are based on maximum likelihood, which is identical to a Bayesian maximum a-posteriori (MAP) 
approach assuming a uniform prior on dates as previously proposed [35]. It is often important to use a relaxed 
clock model in this step that allows the evolutionary rate to vary between lineages [5]. An additive relaxed 
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clock model has recently been developed which is more biologically realistic and leads to better dating of 
pathogen phylogenies than previous relaxed clock model [36]. 
 
In our proposed step-by-step approach, the reconstruction of a dated phylogeny and its epidemiological 
interpretation are separated. One disadvantage of this is that the prior (or lack-of) on dates used to reconstruct 
the dated phylogeny is not the same as the one that would be implied by the epidemiological models used in 
subsequent analyses. This statistical issue could be resolved for example by considering the difference in tree 
distribution between the models used for the dating and the epidemiology and applying an importance 
sampler to correct for this difference [37]. However, this difference is often small enough to be ignored in 
practice, especially if the method used to build the dated phylogeny was based on the likelihood only, or if a 
mild prior was used such as the coalescent with constant population size [28].  
 
To illustrate this, we simulated five years of an outbreak model [38] with within-host diversity Neg=0.25 year, 
basic reproduction number R0=2, generation time distribution Exponential(1) in years and sampling 
proportion $=0.1. A total of 59 cases were sampled in this outbreak, with the samples being related as shown 
in Figure 3A. We applied a strict clock model to this dated phylogeny with a rate %=5 substitutions per year 
which is of the same order of magnitude as many bacterial pathogens [39]. This undated phylogeny was then 
used, along with the known dates of sampling, to infer a dated phylogeny using BactDating [26] with prior set 
to the coalescent with constant population size [28]. This prior is very different from the outbreak model that 
was used to generate the phylogeny [38], which is not coalescent due to the host structure and where the 
population size is clearly growing since the reproduction number was greater than one. Figure 3B shows the 
inferred dating for this tree, which is in good agreement with the correct dates from the top part despite the 
complete difference between the epidemic model used for simulation and the coalescent model used for 
inference. 
 
At the same time as dating is performed, the substitution rate is typically estimated which provides a useful 
value to compare with previous estimates [39] in order to make sure that the dating is working as expected. 
Statistical methods can also be used to ensure that the temporal signal is significant, for example by 
comparing the fit of the data when the correct sampling dates are used against when all the dates are forced 
equal [40], or using a permutation test on the sample dates [41]. These methods require to perform several 
runs of the dating method, and it is therefore useful for this to be as fast as possible, which is achieved in our 
step-by-step method by separating the phylogenetic inference from the dating.  
 
Furthermore, the root of the phylogeny is typically estimated during the dating step, since the trees generated 
by standard phylogenetic tools are not rooted whereas dated trees are always rooted by definition, with the 
date of the root being the date of the last common ancestor of the whole sample. If the root has already been 
determined robustly, for example using one or ideally several closely related outgroups [42], then this 
information can be preserved during the dating. If on the other hand the root is undetermined, or arbitrarily 
selected for example using the midpoint method [43], then the fact that dating the phylogeny simultaneously 
performs rooting provides an additional reason for dating the tree, which becomes much more informative in 
terms of epidemiology once it is dated and rooted.  
 

4. From dated phylogeny to epidemiology 
 
A dated phylogeny is very useful to learn about the epidemiology of the bacteria under study, and sometimes 
the dating directly provides answers to questions of interest beyond the age of pathogens [44]. For example, 
several antibiotic resistant lineages have been dated to have emerged around the time when the 
corresponding antibiotics were started to be used, highlighting the link between consumption and resistance 
[45,46]. As another example, the dating of the common ancestors between pairs of Clostridium difficile 
patients in a hospital allowed to rule out transmission for many pairs and to conclude that nosocomial 
transmission was less frequent than previous thought [47].  
 
It can often be useful to identify clusters of significantly similar genomes in a dataset. The most commonly 
used approach is to use a separate dedicated algorithm that uses the genomic data for this purpose, such as 
HierBAPS [48], fastbaps [49] or PopPunk [50], and overlay the results of this clustering analysis onto the 
phylogeny using colours for example. Another approach is to use additional non-genomic data to do the 
clustering given the phylogeny, as performed for example by AdaptML [51], treebreaker [52] and treeSeg [53]. 
Finally a third option is to try and identify directly on the dated phylogeny the lineages that seem to be ruled 
by different dynamics, for example using treestructure which does not rely on an explicit phylodynamic 
model [54] or CaveDive [55] which is focused on the detection of clonal expansions. 
 
The dated phylogeny can also be used as a starting point for further analysis. In particular, past variations in 
the bacterial population size have a direct effect on the shape of the dated phylogeny, so that the population 
size through time can be estimated and presented as a skyline plot [56]. The methodology for performing such 
an analysis was originally developed within BEAST which simultaneously estimates the dated phylogeny [6], 
but for our step-by-step approach we need to estimate the demographic function from a dated phylogeny, and 
several software tools have recently been released for this purpose including phylodyn [57,58], skygrowth [59] 
and mlesky [60]. Beyond a simple model of varying population size, it is also possible to fit an epidemiological 
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compartmental model such as the susceptible-infected-recovered model [61], and therefore to estimate the 
parameters of this model such as the transmission rate or removal rate. Such an inference can be achieved by 
formulating a structured coalescent model that corresponds to the compartmental model [62,63]. Existing 
software for fitting such a model to a given dated phylogeny include rcolgem [64] and phydyn [65]. The same 
methods based on the structured coalescent can also be applied to a dated phylogeny in order to reconstruct 
past geographical migrations [9], although such phylogeographic inference is much more often based on 
discrete trait analysis, for example using the ace command from the R package ape [66] or in the NextStrain 
platform [67]. The worldwide spread of the current pandemic of Vibrio cholerae has been described using 
such techniques [68,69]. 
 
When the genomes are densely sampled within an epidemic, it can be useful to try and reconstruct the 
transmission tree of who infected whom [70]. Within-host diversity and evolution is significant for many 
bacterial pathogens which blurs the relationships between transmission tree and phylogeny [71]. However, 
TransPhylo can infer the transmission tree from a dated phylogeny in a way that accounts for within-host 
evolution [38,72,73]. Significant uncertainty typically remains in the inferred transmission tree, which is 
captured by the use of Bayesian statistics within TransPhylo. More precise inference can sometimes be 
obtained by combining the genomic inference with epidemiological data [74]. 
 
A drawback of separating the dating step from the interpretation step is that the uncertainty in dating is 
typically not passed on to the epidemiological analysis. This can be achieved by running on multiple samples 
from the posterior of dated phylogeny and averaging the results [75], or reweighting according to the 
posterior probability in the epidemiological analysis [37], but in practice the phylogenetic uncertainty is 
usually not accounted for. However, this is not often a significant issue in practice. To illustrate this, we 
simulated a dataset for a small outbreak with just ten cases, using an epidemic model [38] with basic 
reproduction number R0=1, within-host diversity Neg=0.25 year, mean generation time of 1 year, sampling 
proportion of $=0.5 and a strict clock model with rate %=5 substitutions per year. The dated phylogeny was 
inferred using BactDating [26] and we extracted the first (after burnin) and the last trees sampled by the 
MCMC, as shown in Figures 4A and 4C. We then reconstructed the transmission events using TransPhylo [38] 
separately for each of these two dated trees, as shown in Figures 4B and 4D. In spite of small differences in the 
two dated phylogenies, the inferred results in terms of transmission chains were very similar.  
 

5. Example of application 
 
To illustrate the use of the step-by-step approach from bacterial genomes to epidemiology, we apply it to a 
state-of-the-art dataset, using only a standard laptop computer and paying particular attention to the time 
taken by each step. We collected all available genomes of Staphylococcus aureus ST239 (Table S1). This 
collection is made of 521 assembled genomes, only small subsets of which had been comparatively analysed in 
previous studies [76–79]. The genomes were collected between 1982 and 2010 from all parts of the world (451 
from Asia, 46 from Europe, 18 from Americas, 2 from Africa, 2 from Oceania and 2 unknown). All genomes 
were aligned using MuMMER v3.1 [80] against the reference genome TW20 which is a member of ST239 [81] 
and therefore included in the collection. This resulted in a reference-anchored alignment that took only a few 
minutes to generate, since each pairwise alignment against the reference genome can be performed in parallel. 
Alternatively, assembly pipelines are often based on reference-based mapping of the sequencing reads, for 
example using BWA [82] and SamTools [83]. This can also be performed in parallel and results in a similar 
reference-anchored alignment. 
 
A first phylogeny was built using PhyML v3.3 [29] which took approximately 3 hours. This was used as the 
starting point to build a recombination-corrected phylogeny using ClonalFrameML v1.12 [17], which took 
approximately two days to run. The same analysis using Gubbins v2.4.1 [16] gave very similar results, and 
took approximately one day to run. This step currently represents a clear bottleneck in the application of the 
step-by-step approach, which should be addressed in the near future through the development of new 
parallelised algorithms. Significant recombination was found, with a total of 198 recombination events 
detected throughout the phylogeny. The relative rate of recombination versus mutation was estimated to be 
R/θ=0.144, meaning that on average mutation events were about 7 times more frequent than recombination 
events. The mean length of recombination events was estimated to be δ=619 bp which is in good agreement 
with previous estimates for S. aureus [17,84,85]. The mean distance between donor and recipient was 
estimated to be ν=0.31%, which corresponds approximately to the distance between ST239 and some of its 
closest relatives such as CC8 [86]. The relative effect of recombination versus mutation was therefore 
estimated to be r/m = R/θ × ν × δ = 0.28, so that 3 to 4 times more substitutions are caused by mutation than 
by recombination. These results confirm that recombination plays a role in S. aureus evolution, although not 
as dramatic as in some other bacterial pathogens [14,87,88].   
 
We detected a strong temporal signal in the recombination-corrected phylogeny on the basis of a regression 
analysis of root-to-tip distances against isolation dates (R2=0.57, p<10-4). We therefore computed a dated 
phylogeny using BactDating v1.1 [26] under the additive relaxed clock model [36]. This step took 
approximately 3 hours to run for 106 MCMC iterations, and the inferred dated phylogeny is shown in Figure 
5A. The isolation dates were unknown for 36 of the 521 genomes (Table S1), but BactDating can accommodate 
this. The evolutionary rate was estimated to be 7.05 substitutions per year throughout the genome, with 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469232
http://creativecommons.org/licenses/by/4.0/


credible interval between 6.43 and 7.67. This estimate is in good agreement with several previous estimates in 
ST239 [76,78] and other lineages of S. aureus [46]. The root of the ST239 was estimated to have existed in 1958, 
with credible interval ranging between 1951 and 1965. This is again in good agreement with previous 
estimates and coincides with penicillins being increasingly used to treat bacterial infections [76,78,89]. 
 
We used the dated phylogeny as input into treestructure v0.1.2 [54] to determine whether there were 
significant differences in the phylodynamic properties of sublineages within the tree. This analysis took less 
than a minute to perform, and found no significant differences, which means that the whole tree can be 
treated as a whole in phylodynamic reconstructions [54]. We therefore applied skygrowth v0.3.1 [59] to the 
whole dated tree using the maximum a-posteriori method. This analysis took less than a minute and the 
estimated demographic function is shown in Figure 5B, with an approximately exponential rise of the effective 
population size between 1960 and 1995, and a plateau between 1995 and 2010. This is in good agreement with 
previous skyline analyses of ST239 [78,89]. We do not seek to say more about the epidemiological dynamics of 
ST239 since our aim with this application was to test the applicability of the step-by-step method to a 
relatively large dataset, rather than study it in detail. 
 

6. Discussion 
 
The step-by-step approach has several drawbacks compared to an integrated approach. A practical 
disadvantage is that multiple tools need to be applied one after the other, with the need to make sure that the 
output of one tool is a suitable input for the next tool. The software tools have been developed separately, and 
format conversion is sometimes required when combining them, which introduces a risk of error being made. 
Method developers should make every effort to minimize this risk, for example by providing practical 
examples of source code combining new tools with pre-existing ones, and including verifications in each tool 
that the input is formatted as expected.  
 
Another concern with the step-by-step approach relates to statistical soundness. In an integrated approach, a 
complex model is formed by combining multiple simpler models into a consistent whole, for example a model 
describing how the pathogen population size varied over time, another model describing how these 
fluctuations affect the genealogy and yet another model describing how mutation and recombination events 
affect the genomes given the genealogy. Inference is then performed on the combined model, with all 
uncertainties being accounted for simultaneously and in all directions: for example the uncertainty on a 
mutation event will feed into the uncertainty on the past population size, and vice-versa. By contrast, in the 
step-by-step approach, each of the tool makes separate modelling assumptions, which may not always by 
consistent with each other. An example of this was discussed in Section 3, where the prior used for the 
reconstruction of a dated phylogeny was not the correct one, but Figure 3 showed that the result can still be 
correct. Furthermore, the uncertainty can only be passed from one tool to the next in the order that they are 
being applied, and even in this direction it is frequent to use the best estimate from one method as the starting 
point of the next, without passing any uncertainty. Again this is not necessarily a problem in practice, as 
illustrated in Figure 4 where the uncertainty on the phylogeny had little effect on the uncertainty of the 
transmission tree. From a statistical point of view, the integrated approach therefore represents a gold 
standard, although statisticians have recently noted that joint inference under a combined model carries the 
risk that misspecification in any of the model parts can affect estimates from the others in unpredictable ways 
[90]. Further research is needed on this in the context of genomic epidemiology, as well as research on how to 
avoid the statistical issues described above with the step-by-step approach. 
 
A key advantage to the step-by-step approach we described is that by breaking down the problem into simple 
steps, it becomes easier to solve, a strategy often called “divide and conquer” in the computer science 
literature. The running time is greatly improved compared to an integrated approach, which quickly becomes 
intractable as more model components are combined into a large model. An example of this concerns the 
difficulty to integrate recombination into a phylodynamic framework [13]. A similar situation occurs when 
aligning sequences and building a phylogeny: in principle alignment and phylogeny would benefit from 
being performed simultaneously [91,92] but in practice this is too computationally challenging. The lower 
running time of the step-by-step approach also means that it is more scalable to the large numbers of bacterial 
genomes currently available, and this scalability is probably the main reason for a recent increase in 
popularity [67,93].  
 
Perhaps even more importantly, a counterintuitive advantage of the step-by-step approach is that it is less 
automatic than the integrated approach. Although this may seem like a disadvantage, the fact that several 
software tools have to be applied one after the other brings great benefits. It allows the user to check after each 
step that the result makes sense before carrying the next step. For example, if a phylogeny is clearly wrong 
due to contamination during sequencing, there is no point trying to apply dating of the nodes or interpreting 
the phylogeny in terms of epidemiology. Since each tool is focused on a simpler task, it is easier for the user to 
check the validity of the assumptions made, and if needed to compare models or the results of several 
software tools, or apply more complex models since each step is relatively quick. These checks and 
refinements provide the user with a better understanding of their data and the analysis process, rather than 
relying on “black-box” or “turn-key” analysis. This is one of the most important advantages of the step-by-
step approach, since it creates good conditions for a balanced interpretation of the data and results. 
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Figure legends 
 
Figure 1: Overview of the step-by-step analytical approach. The names of some of the software tools that can 
be used in each step are indicated under the arrows. 
 
Figure 2: Illustration of the effect of recombination on phylogenetic inference. A phylogeny was simulated (A) 
with recombination events happening on the branches at a constant rate (B). ClonalFrameML was applied to 
this simulated dataset, resulting in a good reconstruction of both the clonal genealogy (C) and recombination 
events (D).  
 
Figure 3: Illustration of the relative lack of effect of the prior model used for the inference of dated phylogeny. 
A dated phylogeny (A) was simulated from an epidemic model and dating was inferred (B) based on a 
coalescent model with constant population size. 
 
Figure 4: Illustration of the relative lack of effect of the uncertainty in the reconstructed dated phylogeny on 
interpretation as a tree transmission trees. Two dated phylogenies were sampled from the posterior (A and C) 
and a separate inference of the transmission tree was performed for each one (B and D). The coloured matrices 
represent the distance between pairs of cases in number of transmission links, with red coding for direct 
transmission and yellow coding for a distance of ten links. 
 
Figure 5: Example of application of the approach to a collection of Staphylococcus aureus ST239 genomes. The 
dated phylogeny was inferred using BactDating (A) and the past population size dynamics was inferred using 
skygrowth (B). 
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