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Abstract
Expansions of short tandem repeats (STRs) cause dozens of rare Mendelian diseases. However, STR
expansions, especially those arising from repeats not present in the reference genome, are challenging to
detect from short-read sequencing data. Such "novel" STRs include new repeat units occurring at known STR
loci, or entirely new STR loci where the sequence is absent from the reference genome. A primary cause of
difficulty detecting STR expansions is that reads arising from STR expansions are frequently mismapped or
unmapped. To address this challenge, we have developed STRling, a new STR detection algorithm that counts
k-mers (short DNA sequences of length k) in DNA sequencing reads, to efficiently recover reads that inform the
presence and size of STR expansions. As a result, STRling can call expansions at both known and novel STR
loci. STRling has a sensitivity of 83% for 14 known STR disease loci, including the novel STRs that cause
CANVAS and DBQD2. It is the first method to resolve the position of novel STR expansions to base pair
accuracy. Such accuracy is essential to interpreting the consequence of each expansion. STRling has an
estimated 0.078 false discovery rate for known pathogenic loci in unaffected individuals and a 0.20 false
discovery rate for genome-wide loci in unaffected individuals when using variants called from long-read data as
truth. STRling is fast, scalable on cloud computing, open-source, and freely available at
https://github.com/quinlan-lab/STRling.
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Introduction
Short Tandem Repeats (STRs), are 1–6 bp repetitive DNA sequences that comprise ~3% of the human
genome and are highly polymorphic, with mutation rates 10–100,000 times higher than other loci [1]. At least
48 STR expansions cause Mendelian human diseases, such as Huntington’s disease and spinocerebellar
ataxia (SCA) [2]. Modern DNA sequencing has enabled new software to characterize STR variants at known
loci. However, several recently discovered pathogenic STR loci or alleles, including STR expansions implicated
in CANVAS, Baratela-Scott Syndrome, and several forms of Familial Adult Myoclonic Epilepsy (FAME) and
SCA (Table S1) [3–7], are “novel” in that they include new repeat units at annotated STR loci, or new STR loci
where the sequence is completely absent from the reference genome.

Typically, researchers aim to discover a disease-causing variant in a single patient, or occasionally a small
cohort of individuals with similar symptoms. When presenting with symptoms typically associated with a
disease caused by STR variants, patients may have been screened for relevant common STR disease
expansions. However, genotyping individual STR expansions by PCR or Southern blot is expensive and
time-consuming, so, increasingly, researchers are moving to genome sequencing, which is often more
economical and yields a faster diagnosis [8]. When known STR disease loci have been ruled out, methods are
needed to find and prioritize other candidate STRs disease loci.

Several existing methods are capable of genotyping STR alleles shorter than the length of typical Illumina
reads, including LobSTR, HipSTR and RepeatSeq [9–11]. However, the pathogenic allele size for most known
STR disease loci exceeds the limits of these methods [12]. More recently, several methods have been
developed to detect STR alleles greater than the read length: ExpansionHunter, STRetch, exSTRa, GangSTR,
and TREDPARSE [13–18]. While these methods are effective in detecting pathogenic STR expansions at
known loci, they all require knowledge of annotated STR loci. Consequently, they are limited to detecting
expansions solely at known STR loci.

Another recently developed method, ExpansionHunter Denovo [19], is capable of also detecting expansions in
novel STRs. ExpansionHunter Denovo claims to predict the position of novel STR expansions to approximately
500-1000 bp accuracy [20]. Rather than estimating allele sizes, it provides STR counts as a proxy for allele
size for long alleles only. ExpansionHunter Denovo can perform either case-control or outlier analysis rather
than individual-level results, with the user providing controls.

Filtering for variants that are rare in the population has been shown to be a powerful strategy to prioritize
pathogenic SNVs and short indel variants in patients [21]. This has led to the use of large population
databases such as gnomAD to enhance the analysis of patient genomes [22]. For known pathogenic STR loci
it is frequently observed that pathogenic alleles are typically much larger than those found in unaffected
individuals [12]. Bringing together these two approaches, outlier analysis enables discovery and prioritization of
loci across the genome with a larger allele in the affected individual compared with the rest of the population.
This approach has been shown to be successful for prioritizing known pathogenic loci using the STRetch
algorithm [15].

Here we introduce STRling, software that is capable of detecting both novel and reference STR expansions,
including pathogenic STR expansions. It performs calling of alleles both within the read length and greater than
the read length. It is capable of accurately detecting the genomic position of expansions. It can also quickly
discover and jointly call STRs in thousands of individuals, then prioritize alleles that are large outliers in a given
individual. STRling is open source and freely available under the MIT license at
https://github.com/quinlan-lab/STRling.
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Results
STRling uses k-mers to detect novel and reference STRs

When aligning short-read DNA sequences, reads arising from STR expansions are frequently mismapped or
unmapped. Reads containing substantial STR content will tend to map to the position in the reference genome
with the longest matching repeat; we define such loci as STR “sinks”. However, because STRs occur
throughout the genome, the longest locus is unlikely to be the one from which that read truly originated.
Because of their large edit distance compared to the reference sequence, reads containing novel STR
expansions are likely to be left unmapped. This problem is exacerbated for novel STRs; because these loci do
not exist in the reference genome, there is no matching sequence to which to align the read. For this reason,
STRling uses k-mer counting to find all the reads with substantial STR content. Once these candidate reads
are collected, it then uses their well-mapped “mates” to assign them to their correct locus.

STRling uses an aligned BAM or CRAM file as input and scans candidate reads (those that differ from the
reference genome, are aligned to known STR regions, or are unmapped) for k-mer content. STRling does not
scan reads that align perfectly (i.e., without mismatches, indels or clipping) to a non-STR region of the
reference genome, as these reads are unlikely to contain high STR content. In each candidate read, STRling
counts the number of non-overlapping k-mers from two to six bp. Non-overlapping k-mers are better suited to
the task of finding tandem (back-to-back) repeats than the overlapping k-mers commonly used in assembly
algorithms. This is done by scanning along the read k bp at a time, then counting the number of times each
unique k-mer was observed (Figure 1A). To retain sensitivity in the case of interruptions to the repeat, for
example one or a few bases inserted that would change the phase, STRling creates all possible rotations of
each k-mer sequence and stores the minimum rotation. It then calculates the proportion of the read accounted
for by each k-mer. STRling chooses the representative k-mer for that read as the one that accounts for the
greatest proportion of the read (Figure 1A). If multiple k-mers cover equal proportions, it chooses the smallest
k-mer. If the representative k-mer exceeds a minimum threshold (see Online Methods), STRling considers the
read to have sufficient STR content to be informative for detecting STR expansions. STRling does the same for
soft-clipped portions of reads to find reads that align to the edges of an STR expansion.
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Figure 1: STRling uses several types of read evidence to infer STR location and size. A: STRling performs k-mer
counting in reads that are soft-clipped, unaligned, or aligned to a large STR in the reference genome. For each k-mer of
length 2-6 bp, STRling selects the one that covers the largest proportion of the read. If two are equal, the smallest is
chosen. B: Where a pair of reads has one read that maps well to the reference genome, and a mate with high
STR-content, the mapping position of the well-mapped read is used to reposition the STR read. These “anchored pairs”
aid in refining the location and improve the quantification of sequence support for the putative STR. C: Different classes of
reads are used to support STR alleles of varying length. Small alleles, shorter than the read length, can be detected by
spanning reads, and typically have many spanning pairs. Medium expansions, of a length between the read length and
the fragment size, are indicated by anchored pairs and few spanning pairs. Soft-clipped reads can be used to infer the
precise insertion point. Large expansions, those longer than the fragment size, are evidenced by a larger number of
anchored pairs, as well as contributing unplaced pairs.
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Predicting STR expansion loci

For reads with sufficient k-mer STR content, STRling assumes the mapping position to be unreliable and
therefore attempts to place the read in its true locus. If the read has a well-mapped non-STR mate then
STRling uses the mate’s mapping location in conjunction with the sample’s median DNA fragment size to
relocate the STR read and terms these “anchored pairs” (Figure 1B). If both reads in the pair have high k-mer
STR content, or one is high k-mer and the other is poorly mapped, then the pair is considered to be unmapped
and is recorded as an “unplaced pair” (Figure 1C).

STRling scans the genome for regions with a cluster of informative anchored and soft-clipped STR reads to
identify putative STR expansion sites. Anchored STR reads are used to approximate the “bounds'' of the STR
expansion, while soft-clipped STR reads are used to more accurately define the precise insertion point. When
performing joint-calling, this procedure is done across informative reads from all samples to produce a joint
estimate of the bounds, requiring that at least one sample contribute five reads (by default) for the given
bounds to be reported.

Once bounds have been discovered, STRling performs a second, partial pass of the BAM/CRAM to extract
additional informative reads for each candidate locus: individual reads that span the bounds (“spanning reads”)
and pairs of reads that span the bounds, “spanning pairs” (Figure 1C).

Estimating allele length

For each individual, STRling uses a combination of spanning reads, anchored pairs, and unplaced pairs to
estimate the allele sizes at each locus. From simulations, we have verified that, as expected, the number of
anchored pairs are proportional to allele size up to the median fragment length of the sample, while the number
of unplaced pairs is proportional to the allele size beyond the median fragment length (Online Methods,
Supplementary Figure 1). These relationships have been previously described [15]. We therefore used linear
models to estimate allele size from these two classes of reads. We used spanning reads to estimate the size of
alleles shorter than the read length, if present.

Joint-calling and outlier detection

STRling can joint-call large cohorts, allowing the comparison of STR loci across individuals (Figure 2). Its
computational efficiency allows the joint-calling of thousands of samples in parallel. First, STRling collects
informative reads for each sample as described above. Then, STRling performs a "joint merge" stage, where
candidate STR loci are discovered using reads from all samples. By collecting read evidence across samples,
this allows more accurate inference of the STR’s boundary in the reference genome. Only those loci with at
least five (by default) supporting reads in at least one sample are reported. Allele size estimation is then
performed on each sample individually, for each of the loci discovered in the cohort.

For STR diseases with known pathogenic loci and allele sizes, estimating the allele length may be sufficient to
detect a likely pathogenic variant. For patients without an expansion in a known disease STR, strategies are
needed to prioritize potential new pathogenic variants. Large STR alleles that cause disease are likely to be
rare in the general population, and also in patient populations with a mixture of phenotypes. Therefore STRling
looks for alleles that are outliers; that is, they are large in a given subject compared with the alleles observed in
a set of other genomes. STRling performs outlier analysis across the full cohort and a z-score and
corresponding p-value are generated (see Online Methods). These p-values are then corrected for multiple
testing within each individual. A small p-value indicates that an individual harbors an STR expansion that is
rare in the cohort, and can be used to prioritize and filter potentially pathogenic STR expansions.
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Figure 2: STRling joint calling workflow. Index: STRling creates an index of the reference genome, recording the
genomic coordinates where large STRs are observed. These regions act as STR “sinks”, collecting repetitive reads. Any
reads mapping to these regions, in addition to unmapped reads, are candidates to have arisen from a large STR
expansion. Extract: STRling counts k-mers to find high STR-content reads, then checks the mate to move the read to its
correct position. Merge: read evidence is combined across individuals to increase the accuracy and uniformity of
candidate STR expansion loci. Call: STRling estimates the allele sizes using the k-mer count across all reads assigned to
a given locus in a linear model. Outlier: STRling checks the distribution across all individuals at a given locus, and tests
for outliers.
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STRling detects novel and reference STR disease loci

We ran STRling in both individual and joint-calling modes on 134 subjects with whole genome PCR-free,
Illumina DNA sequencing. This cohort contains individuals with expansions in 14 known STR disease loci,
including 83 affected individuals and 11 carriers (Table 1). For Fragile X Syndrome, there were an additional 17
individuals with premutations, and 22 unaffected family members with alleles in the normal size range. While
the majority of the disease STR loci are present in build GRCh38 of the human reference genome, the
CANVAS pathogenic STRs are new repeat units replacing an annotated STR locus, while the DBQD2 STR
locus is part of a completely novel insertion [4,5].

When searching for potential pathogenic variants, reasonable filters include the removal of homopolymer
expansions (see later discussion of the quality of the variants), limiting the results to autosomes and sex
chromosomes, and excluding low complexity regions (LCRs). Using these filters, the 134 subjects tested had a
median of 9 (1-252) significant STR expansions each.

Considering those 94 subjects who are affected or carriers for a full mutation, STRling was able to detect the
pathogenic STR locus for 82 of 94 (87.23%) subjects using "individual" calling (Table 1). With "joint" calling,
known pathogenic loci in 93 of 94 (98.94%) of subjects were detected, while 70 (74.47%) were predicted to be
within the pathogenic range based on STRling’s predicted allele size. STRling outlier testing identified 83% of
pathogenic expansions with an adjusted p-value of less than 0.05. The SCA6 expansion was missed by both
individual and joint-calling, yet this is expected, given that the pathogenic allele in this subject is only 26 bp
larger than the reference [15]. SCA6 variants should be able to be found by methods that look for indels within
the read. STRling failed to predict a pathogenic allele size in the CANVAS, DM2, FTDALS1 and FXS loci.
Notably, the pathogenic repeat units for FTDALS1 (GGGGCC) and FXS (CGG) have 100% GC content, and
previous methods have described a tendency to underestimate allele size in high-GC content STR loci [13,15].
With the exclusion of the FXS locus, STRling outlier testing detected over 96% of pathogenic loci. None of the
alleles in subjects with verified normal or premutations were predicted to be pathogenic, indicating a low
chance of false positives. We additionally ran ExpansionHunter Denovo in outlier mode with each single
affected individual against the same 260 controls from 1000 Genomes used for STRling. Compared with
STRling, ExpansionHunter Denovo (EHdn) had similar sensitivity, except at the FXS locus, where EHdn
showed higher sensitivity (Supplementary Figure 2).
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Table 1: Sensitivity of STRling run on PCR-free Illumina WGS of 94 subjects with alleles of pathogenic size at an
STR disease locus. Outlier testing was performed against 260 individuals from the 1000 genomes project.

AD: Autosomal Dominant, AR: Autosomal Recessive, XD: X-linked Dominant, XR: X-linked Recessive. Novel STR
disease loci (not in reference genome) are indicated in bold/underline. Repeat units are reported on the forward strand.

Disease Inheritance
Repeat
unit CG%

Locus found
individual
calling

STRling est. >
pathogenic
threshold

Significant
outlier

N
subjects

CANVAS AR AAGGG 60 4 (80%) 0 5 (100%) 5

DBQD2 AR CCG 100 1 (100%) 1 (100%) 1 (100%) 1

DM1 AD CAG 66.7 18 (100%) 18 (100%) 18 (100%) 18

DM2 AD CCTG 75 1 (100%) 0 1 (100%) 1

DRPLA AD CAG 66.7 2 (100%) 2 (100%) 2 (100%) 2

FRDA AR AAG 33.3 26 (100%) 26 (100%) 26 (100%) 26

FTDALS1 AD GGGGCC 100 1 (100%) 0 1 (100%) 1

FXS XD CGG 100 11 (68.8%) 0 3 (18.8%) 16

HD AD CAG 66.7 11 (84.6%) 13 (100%) 13 (100%) 13

SBMA XR CAG 66.7 1 (33.3%) 3 (100%) 3 (100%) 3

SCA1 AD CTG 66.7 3 (75%) 4 (100%) 4 (100%) 4

SCA3 AD CTG 66.7 2 (100%) 2 (100%) 0 2

SCA6 AD CAG 66.7 0 0 0 1

SCA8 AD CTG 66.7 1 (100%) 1 (100%) 1 (100%) 1

Total 82 (87.2%) 70 (74.5%) 78 (83.0%) 94

For most known pathogenic loci, STRling was able to identify the genomic position of the expansion to base
pair accuracy at most loci (Figure 3). To quantify how accurately STRling identified the bounds of each locus,
we compared the STRling call to the reference positions found in the literature (see Online Methods). For
individual calling, STRling had a mean position error of 25.3 bp (median: 2, range: 0-241). joint-calling
increases locus accuracy by drawing evidence from reads across samples, and greatly reduces the mean
position error to 6.14 bp (median: 1, range: 0-155), providing locus resolution that is critical to variant
interpretation.
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Figure 3: STRling shows superior position accuracy at known pathogenic loci. STRling and ExpansionHunter
Denovo (EHdn) were run on PCR-free Illumina WGS of 134 subjects with known STR disease status, 94 of which had
alleles of pathogenic size (those plotted here). STRling was run on an individual genome “Individual calling” or on all 134
genomes together “Joint calling”. EHdn was run with all affected genomes together in outlier mode “EHdn affected vs.
affected”, or each of the true positives was run in outlier mode with a set of 260 unaffected individuals from 1000 genomes
“EHdn affected vs. controls”. A locus was considered found if an STR expansion with the pathogenic repeat unit was
reported within 500bp of the true locus. STRling was able to detect the true locus position to base pair accuracy for most
loci, with greater accuracy using joint-calling, with greater accuracy than ExpansionHunter denovo under all conditions
tested.

As a comparison to STRling, ExpansionHunter Denovo was run in outlier mode with all affected genomes as a
single cohort. The resulting mean position error of 713 (median: 764, range: 328-795, Figure 3) was more than
30 times larger STRling's. STRling demonstrated lower position error for all tested STR loci, likely because, in
contrast to ExpansionHunter Denovo, STRling uses the precision of soft-clipped read evidence to improve
locus resolution (Figures 1 and 2). Both STRling and ExpansionHunter Denovo failed to detect the SCA6
expansion, likely due to its small size (pathogenic expansions are >26bp larger than the reference allele).

For 103 of the subjects with known STR disease, we also had orthogonal allele size estimates from
repeat-primed PCR. It should be noted that while PCR is the current standard method for STR disease
diagnostics, the accuracy of PCR allele size estimates can suffer from stutter and allelic dropout [23,24]. When
comparing STRling allele size estimates to those from PCR, STRling tends to systematically underestimate
allele sizes, especially for larger alleles (Figure 4). STRling additionally tends to underestimate alleles that are
close to the read length of ~150bp. Such underestimates are a consequence of these alleles being in a "gray
area" with respect to typical paired-end sequencing protocols: they are too large to be frequently captured by a
single read that is typically less than or equal to 150bp, and they are too small to yield a strong anchored pair
signal. STRling notably underestimated allele size for the FXS locus, which is a CGG repeat expansion
(Supplementary Figure 2). This locus has been previously identified as problematic for Illumina sequencing
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and allele size estimation, likely due to its 100% GC content [13]. While STRling tends to underestimate large
STR expansions, it performs sufficiently well around the pathogenic threshold of most STR disease loci to
differentiate pathogenic and non-pathogenic alleles (Table 1).

Figure 4: Allele size estimates from STRling compared with PCR estimates (log-log scale). STR allele size
estimates from 103 individuals also assayed with PCR. “Expanded” includes all pathogenic allele sizes, in both affected
individuals and carriers. “Normal” indicates non-pathogenic alleles. The black line indicates x = y, equality between
STRling and PCR allele size estimates.

We joint-called these subjects and performed outlier analysis using an additional set of 260 subjects from the
1000 Genomes Project, a cohort without known STR disease. Each of the true-positive genomes was tested
against the set of 260 controls to find outliers. The known pathogenic STR locus was isolated as a significant
outlier in 83.0% (78 of 94) subjects (Table 1).

In addition we used this cohort set out to estimate the false discovery rate (FDR) for STRling, assuming that
the 260 subjects from the 1000 Genomes Project do not harbor any large pathogenic expansions. We
performed joint-calling and outlier testing on the 260 subjects, then filtered the results to known pathogenic
STR loci, resulting in 2600 calls in 10 STR loci (Table 2). There were no expansions detected in the other 22
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known pathogenic STR loci that we assessed. Of these 2600 calls, 204 were significant, resulting in an
estimated FDR of 0.078, yielding a highly-specific average of less than one significant pathogenic expansion
per subject. Of the 204 significant calls, only two alleles were estimated to be larger than the pathogenic
threshold. Note that because many of these diseases are recessive and/or late onset, we would expect some
subjects in this cohort to harbor pathogenic STR expansions; therefore the true FDR is likely to be smaller. We
found, 4.6% of individuals were significant outliers at the CANVAS locus, which is higher than the previously
estimated 0.7% carrier frequency [3]. In this case the outlier test may be complicated by the fact that only 18%
of individuals harbor the haplotype in which the CANVAS expansion arises.

Table 2: Significant outliers called by STRling in 260 individuals from the 1000 Genomes Project.
We performed joint-calling and outlier testing, then filtered the results to 32 well-characterised known pathogenic STR loci
(see Online Methods). There were 204 significant STRling calls across ten loci (the others had no significant calls),
resulting in an estimated FDR of 0.078. AD: Autosomal Dominant, AR: Autosomal Recessive, XD: X-linked Dominant, XR:
X-linked Recessive. Novel STR disease loci (not in reference genome) are indicated in bold/underline.

Disease
Significant
outlier

Proportion
significant
outlier

STRling est.
> pathogenic
threshold Inheritance Notes

CANVAS 12 0.0462 0 AR 0.7% carrier frequency [3]

DBQD2 5 0.0192 0 AR

DM2 7 0.0269 0 AD Age onset: ~30-40

FRA12A 57 0.219 0 AD

FRAXE 7 0.0269 0 XR

FRDA 61 0.235 1 AR Age onset: 5-25

FTDALS
1 33 0.127 0 AD Age onset: 27-85

FXS 0 0 0 XD

Multiple syndromes with varying
pathogenic size thresholds and age of
onset: FXS 2, FXTAS 60-65, POI?

SCA10 8 0.0308 0 AD Age onset: 12-48

SCA8 14 0.0538 1 AD Age onset: 1-73

Long reads enable estimates of STRling’s false discovery rate

In an effort to estimate the number of true and false positive STRling calls outside of known pathogenic STR
loci across the genome, we compared STRling calls made based on Illumina sequencing data to STR variants
found in long read HiFi PacBio genome assemblies from the same three individuals sequenced by the
Genome in a Bottle consortium: the Ashkenazim trio HG002 (son), HG003 (father) and HG004 (mother) [25].
The original sequencing depth was ~300X, so we subsampled the Ashkenazim trio Illumina sequencing to a
more typical ~70X depth to be comparable to other samples. We performed STRling joint-calling of these three
individuals in conjunction with 260 controls, and tested for outliers. We limited our analysis to STRling calls with
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a minimum estimated insertion of 50 bp on the autosomes, and excluded STRling calls that overlapped an
annotated telomere, centromere or low complexity region (LCR).

We called variants from PacBio HiFi assemblies of the same individuals, filtering to insertions greater than 50
bp. For each STRling call we selected the closest PacBio call within 500 bp. A STRling call was considered a
true positive if the most frequent k-mer in the PacBio insertion matched the STRling repeat unit, or if the
STRling repeat unit made up at least 50% of the PacBio insertion. All other STRling calls were considered
false positives if they were overlapped by at least one PacBio contig.

Across all three individuals we observed 956 true positives and a raw false discovery rate (FDR) of 0.48 across
all loci given the above filters (Supplementary Table 3). False positives were enriched among homopolymers,
with 1 bp repeat units making up 94.7% of all false positives. When excluding homopolymers (i.e., 2-6 bp
repeat units), the FDR is reduced to 0.20. Furthermore, for significant outlier STR loci of all repeat units with
adjusted p-values less than 0.05, the FDR was 0.38, and 0.20 for significant 2-6 bp loci. Once restricted to 2-6
bp loci, limiting to outliers did not further reduce the aggregate FDR. However, given the small numbers (12-19
false positives per individual), we expect that increasing sample size may reveal a lower number of false
positives in the outliers.

As de novo STR expansions in a proband are prioritized in studies of rare human disease, we further
examined the Ashkenazim trio for non-homopolymer de novo variants. For each of the 47 significant outlier
expansions predicted by STRling in the child, we tested for Mendelian concordance or violation in the parents,
and then checked for supporting evidence in the long-read contigs. Whereas 75% (27/36) of the expanded loci
that were concordant between the child and one or both parents were supported by the long read assemblies,
only 18.2% (2/11) of apparent de novo variants called by STRling were corroborated. This indicates that while
overall STRling calls were more often concordant between parent and child, while, STRling de novo calls were
enriched for errors. While the FDR for apparent de novo changes was high, only 47 significant
non-homopolymer expansions were called in the child, demonstrating a low genome-wide false positive rate.
Therefore, when searching for a pathogenic variant in the context of rare disease, STRling reports a relatively
small number of candidate variants.

STRling algorithm resource requirements

When running STRling joint-calling on the same 260 subset of the 1000 Genomes Project samples, the full
dataset ran in 373 CPU hours, for an average of 1.43 hours per sample (Supplementary Figure 3A). The
longest task was the “extract” stage, which finds informative reads and counts k-mers in them (mean: 64.1
mins). The max RAM usage occurred during the joint merge stage (29.04 GB) and the joint outlier stage (27.05
GB, Supplementary Figure 3B). Across stages that run on a single sample, the max RAM usage was 2.047
GB.

The most resource-intensive stage, “merge”, is also dependent on the number of samples, scaling at
approximately 0.1 GB per genome (Supplementary Figures 3C-D). Additionally, as more individuals are
tested, an increasing number of variant STR loci are discovered (Supplementary Figure 3E). This number
does appear to begin to plateau at thousands of individuals.
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Discussion
STRling has the potential to go beyond the diagnosis of known STR disease, to discover new STR loci from
existing short read sequencing data with positional accuracy. At pathogenic loci, STRling has high sensitivity
(83% for the outlier test), similar to ExpansionHunter Denovo, except for the Fragile-X Syndrome locus.
Critically, STRling was typically able to identify the genomic coordinates of STR expansions to base pair
accuracy, in contrast to ExpansionHunter Denovo, which was typically off by more than 700 bp. Position
accuracy is vital to interpretation and validation, especially for novel STR loci that have not previously been
identified.

While we estimate STRling’s false discovery rate to be 0.078 for pathogenic STR loci, it is possible that some
of these individuals are carriers of recessive alleles or are below the typical age of symptom onset. Therefore,
the true rate at which it detects expanded alleles may be lower. For non-pathogenic 2-6 bp STR expansions,
STRling’s FDR after recommended filters was 0.20, which is similar to the best performing SV callers [26].
STRling showed limited accuracy for estimating the size of the STR allele, especially for alleles exceeding the
insert size. This is a limitation of using short-read sequencing data to detect events larger than the read length.

STRling has been developed to scale to thousands of samples. It typically runs in less than 2 hours per
genome with less than 30 GB peak memory usage for joint stages on 260 samples (scaling at ~0.1 GB per
genome) and ~2 GB for individual stages. We provide workflows in three languages, Nextflow [27] Bpipe [28]
and WDL [29], for compatibility with cloud services such as AWS, Google Cloud and Terra
(​​https://strling.readthedocs.io/en/latest/workflows.html).

Although we have used PacBio long reads as an orthogonal truth set to judge the accuracy of STRling STR
detection, there are limitations to this approach. Despite the enormous promise of long-read sequencing
technologies for their ability to span repetitive sequences, it has been observed that the number of repeat units
can vary substantially between long reads in the same individual at the same locus [30]. The implication is that
it may be difficult to determine the true allele size of an STR, even with long reads.

Furthermore, while there are key advantages to using long reads to detect STRs, thousands of individuals with
rare diseases have been sequenced with short-read technologies and remain without a genetic diagnosis. It is
likely that a substantial proportion of patients without a molecular diagnosis may be harbouring pathogenic
repeat expansions that are evading detection. This is particularly likely to be the case for rare genetic
neurodegenerative disease, where STR expansions are a common known cause. Given its accuracy and locus
specificity, STRling has the potential to contribute to solving the roughly half of sequenced rare disease cases
that remain unsolved, and to deepen our understanding of how STRs vary in the wider population [31].

In conclusion, STRling is a fast and accurate method to detect STR expansions from short-read sequencing
data. Critically, it can detect novel expansions, those that are missing from the reference genome. Several
such loci are known to cause human disease. In contrast to previous methods to detect novel STRs, STRling is
capable of defining the locus boundaries to base pair accuracy. STRling is open source and freely available at
https://github.com/quinlan-lab/STRling.
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Online Methods

STRling algorithm

STRling is open source and freely available under an MIT license at https://github.com/quinlan-lab/STRling.
STRling is predominantly written in the compiled nim language using the hts-nim library [32] with outlier
analysis written in Python using pyranges [33], peddy [34], pandas [35], statsmodels [36], numpy [37] and
scipy v1.2 [38]. Workflows are available in Nextflow [27] Bpipe [28] and WDL [29]
(​​https://strling.readthedocs.io/en/latest/workflows.html).

Identifying and localizing informative reads with k-mer counting

Illumina reads containing substantial repetitive content are frequently mis-mapped or left unmapped by
alignment algorithms [39]. The first task is to recover STR-containing reads and determine their most likely
genomic origin. STRling first makes an index of large uninterrupted STR loci in the reference genome, by
searching for perfect repeats in 100 bp windows, sliding by 60 bp at a time. Reads aligning to these STR "sink"
regions are considered to have unreliable mapping locations. In the extract subcommand, STRling performs
k-mer counting to identify STR content on reads aligning to STR regions, reads that are unmapped or have low
mapping quality (MAPQ less than 40) and in the portions of reads that are soft-clipped. STRling counts k-mers
of size 2-6 bp, sliding by k to generate non-overlapping k-mers. For each k-mer we perform all possible
rotations and store the minimum. This enables us to retain sensitivity in the case of interruptions to the repeat
that would change the phase. K-mers are represented as integers to avoid string comparisons, thereby
increasing speed. A read is considered informative if any k-mer makes up at least 80% of the sequence by
default. The most frequent k-mer is taken to be the representative repeat unit of that read. If that k-mer is a
homopolymer (e.g. AA) then the repeat unit is reported to be a single base pair.

We consider the alignment location of high STR content reads unreliable. Therefore, STRling uses paired
information to localize these reads where possible. Specifically, if a read contains at least 80% STR content
and has a well mapped mate (MAPQ > 40 and non-repetitive), STRling uses the mapping position of the mate
to relocate the STR read to a position that is the median fragment length away in the direction concordant with
the orientation of the mate. This is called an “anchored pair” (Figure 1). The empirical fragment length
distribution is determined for each sample individually. If the mate does not have sufficient mapping quality to
be used to relocate the STR read, then the STR read is considered unmapped. If both reads exceed the STR
content threshold then the pair are both considered unmapped and are recorded as an “unplaced pair” (Figure
1).

Identifying STR loci

STRling bins informative STR reads by their representative k-mer then scans across them in genomic order
looking for clusters of informative reads that may indicate an STR locus. To be considered, a position must
have, by default, at least five informative reads, with at least one of those being anchored reads. The median
center position of the reads is calculated; any reads that are more than the 98th percentile of the fragment
distribution + 100 bp away from the centre are removed, and any new reads within range are added. The
process is repeated until the position stabilizes or a left clip is discovered, indicating a distinct STR locus. The
"left" and "right" bounds of the putative locus are estimated using the edges of soft-clips, or if none are present,
the centre of the anchored reads.
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For joint-calling, locus discovery is performed using reads from all samples using the merge subcommand,
and the resulting positions are provided to the call subcommand for individual genotyping. By default,
STRling discards any loci where less than five of these reads come from the same sample. The call
subcommand additionally performs locus detection on any reads that cannot be assigned to the provided loci
so that expansions present in an individual genome can still be detected if joint-calling is performed on a
different sample set.

Estimating allele length

STRling collects additional read evidence for each identified STR locus: reads that completely span the STR
locus (“spanning reads”) and pairs of reads representing a fragment that spans the locus (“spanning pairs”,
Figure 1). Spanning reads are used to determine if an allele shorter than the read length is present at that
locus, the size of which can be estimated by taking the average indel size over the locus in all spanning reads.

To estimate the size of alleles greater than the read length, STRling counts the number of STR k-mers in all
anchored and overlapping reads assigned to that locus. As an experiment, we edited the reference genome at
the Huntington’s Disease (HTT) locus to add 300 alleles of varying length between 0 bp (reference allele) and
1800 bp insertion then simulated paired end reads using an empirical insert-size distribution. We found that the
simulated allele size was well predicted by the number of anchored reads, or the sum of the k-mers in those
anchored reads, up to the median fragment length (Supplementary Figure 1). Beyond the median fragment
length, the number of unplaced pairs predicted the allele size. We fitted a linear model to the simulated data
and then applied the relationship to new samples to estimate the allele size.

Outlier detection

STR counts for each locus are normalized by the local sequencing depth to account for differences in library
sizes between samples and local sequencing variations.

log2( (sum_str_counts + 1) / local_depth)

At each locus STRling tests if the normalized log2 counts for that sample is greater than the median normalized
log2 counts for all samples. STRling generates z-scores using the median and standard deviation of the
normalized counts, and corresponding one-sided p-values, similarly to previously described outlier scores [15].
These are adjusted for multiple testing across all loci in a given sample using the Benjamini-Hochberg method
[40]. A locus is considered significant if the adjusted p-value is < 0.05.

Validation

Detecting expansions in novel and reference STR disease loci

We ran STRling on 134 Illumina PCR-free whole genomes of individuals with known STR disease loci including
some unaffected carriers. This cohort had expansions in 14 known STR disease loci, including 83 affected
individuals and 11 carriers (Table 1). For FXS there were an additional 17 individuals with premutations, and
22 unaffected family members with alleles in the normal size range. Most of these individuals have been
previously described [5,13–15]. In addition we included 5 individuals with CANVAS and one with DBQD2.

An STR disease locus was considered found if STRling reported a locus with the disease-causing repeat unit,
within 500 bp either side of the position reported in the literature. The set of known STR disease loci that we
interrogated can be found in the STRling repository at
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https://github.com/quinlan-lab/STRling/blob/master/data/hg38.STR_disease_loci.bed. The position error is the
distance in base pairs of the STRling call from the position found in the literature. If the STRling call was within
the true locus it was given a value of zero. The left and right sides of the locus were compared separately, then
the maximum of these values taken to be the position error for that locus. The same method was used to
evaluate ExpansionHunter Denovo calls.

Comparison to other novel STR detection methods

We ran ExpansionHunter Denovo v0.9.0 [19] in outlier mode on the same 134 genomes used to validate
STRling (see above), referred to as “EHdn affected vs. affected”. Additionally, each sample was run in outlier
mode with a set of 260 unaffected controls, “EHdn affected vs. controls” (full workflow:
https://github.com/hdashnow/longSTR/blob/master/EHdn_1vsControls.groovy). The commands used were:

ExpansionHunterDenovo profile --reads $input.cram --reference
Homo_sapiens_assembly38.fasta --output-prefix $sample

ExpansionHunterDenovo merge --reference Homo_sapiens_assembly38.fasta
--manifest $input.manifest --output-prefix all

python outlier.py locus --manifest $input.manifest --multisample-profile
$input.json --output $output.tsv

An STR disease locus was considered found if ExpansionHunter Denovo reported a locus with the
disease-causing repeat unit, within 500 bp either side of the position reported in the literature.

Comparison to long reads: Ashkenazim trio

Illumina reads from the Ashkenazim trio were downloaded from Genome In a Bottle
(https://github.com/genome-in-a-bottle/giab_data_indexes) and subsampled from approximately 300X by using
the first 206 pairs of FASTQ files for a final mean sequencing depth of HG002 (son) 65.12X, HG003 (father)
72.05X and HG004 (mother) 73.69X.

We obtained assemblies of HiFi reads from the same Ashkenazim trio from PacBio. Individuals were
assembled using PacBio Improved Phased Assembler with default settings (see Supplementary Methods).
Contigs were aligned to GRCh38 with pbmm2 then variants were called with bcftools mpileup. We then limited
the callset to insertions greater than 10 bp and counted the most frequent 1-6 bp k-mer in each. Each STRling
call from above was annotated with the closest PacBio insertion. We additionally counted the number of times
the STRling repeat unit was found in the PacBio insertion. Before calculating true and false positives, we
removed STRling calls overlapping LCRs, centromeres and telomeres, and limited the calls to those on
autosomes: chromosomes chr1-22. A STRling call was considered a true positive if it had a pacbio insertion
with a matching most frequent k-mer, or if at least 50% of the PacBio insertion was made up of the STRling
repeat unit. All other STRling calls with at least one overlapping PacBio contig but no matching variant call
were considered false positives. Code for PacBio alignment, variant calling, k-mer counting and comparison to
STRling calls can be found at https://github.com/hdashnow/longSTR.

STRling outlier results for the Ashkenazim trio were classified as Mendelian matches if the child’s alleles
matched inheritance expectations, or Mendelian violations otherwise (code:
https://github.com/laurelhiatt/strling-MV). STRling alleles were considered matched if their sizes were within
25% of the parent allele or ten bp. Only loci with at least depth of 15 reads and no missing alleles were
considered. STRling calls were compared to variants called from PacBio assemblies of the same individuals.
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PacBio variants were considered Mendelian matches if both child alleles of the designated repeat unit were
within 10bp in size to matched parent alleles, and a Mendelian violation if this was not the case.
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Supplementary Materials

Table S1: Novel STR diseases

Disease Gene Repeat
unit

Genic
position

Reference

Bartela-Scott
syndrome

XYLT1 CCG noncoding LaCroix 2019

﻿BAFME/FAM
E1, 6 and 7

SAMD12 et al TTTTA +
TTTCA

intronic Ishiura 2018 Nature Genetics

SCA37 TTTTA +
TTTCA

intronic Seixas et al 2017 AJHG

Glutaminease deficiency CAG 5'UTR van Kuilenburg 2019 NEJM

Neuronal Intranuclear Inclusion
Disease

GGC 5'UTR Tian 2019 AJHG, Sone 2019 Nat Genet,
Ishiura 2019 Nat Genet

FAME2 TTTTA +
TTTCA

intronic Corbett (unpublished)

FAME3 TTTTA +
TTTCA

intronic Florian (unpublished)

CANVAS RFC1 AAGGG

ACAGG

intronic Cortese 2019

Scriba 2020
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Table S2: Sensitivity of ExpansionHunter denovo run on PCR-free Illumina WGS of 94 subjects with alleles of
pathogenic size at an STR disease locus. EHdn was run in outlier mode once for each subject against 260
individuals from the 1000 genomes project.

AD: Autosomal Dominant, AR: Autosomal Recessive, XD: X-linked Dominant, XR: X-linked Recessive. Novel STR
disease loci (not in reference genome) are indicated in bold/underline. Repeat units are reported on the forward strand.

Disease Inheritance repeat unit CG% Significant outlier N subjects

CANVAS AR AAGGG 60 5 (100%) 5

DBQD2 AR CCG 100 1 (100%) 1

DM1 AD CAG 66.7 18 (100%) 18

DM2 AD CCTG 75 1 (100%) 1

DRPLA AD CAG 66.7 2 (100%) 2

FRDA AR AAG 33.3 26 (100%) 26

FTDALS1 AD GGGGCC 100 1 (100%) 1

FXS XD CGG 100 16 (100%) 16

HD AD CAG 66.7 13 (100%) 13

SBMA XR CAG 66.7 3 (100%) 3

SCA1 AD CTG 66.7 3 (75.0%) 4

SCA3 AD CTG 66.7 2 (100%) 2

SCA6 AD CAG 66.7 0 1

SCA8 AD CTG 66.7 1 (100%) 1

Total 92 (96.8.%) 95
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Table S3: STRling false discovery rate

all loci 2-6bp significant outliers

significant outliers

2-6bp

hg002

FDR 0.52 0.15 0.38 0.11

TP 311 69 131 47

FP 339 12 79 6

hg003

FDR 0.45 0.25 0.36 0.25

TP 326 58 120 36

FP 269 19 68 12

hg004

FDR 0.47 0.22 0.40 0.24

TP 319 58 98 34

FP 283 16 66 11

Aggregate

FDR 0.48 0.20 0.38 0.20

TP 956 185 349 117

FP 891 47 213 29
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Figure S1: Simulated allele size at the HTT locus predicts the number of anchored and unplaced pairs. The
number of anchored pairs is approximately linearly correlated with allele size until the fragment length, while the number
of unplaced pairs is approximately linearly correlated with allele size beyond the fragment length.

Figure S2: STRling underestimates allele sizes in Fragile X Syndrome (FXS). STRling was run on a cohort of X
individuals, including X individuals who were tested for the FXS expansion by PCR. Individuals designated Expansion had
a FXS allele with at least 200 CGG repeats. Premutation was 45-200 repeats, normal below 45. The remaining samples
indicated NA were not tested, but are assumed to have no pathogenic FXS expansion. Individuals who were outliers at
the FXS locus compared to controls are indicated by p_adj < 0.05.
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A B

C D E

Figure S3: STRling resource usage. A STRling joint-calling Nextflow workflow was executed on 260 WGS from the
1000 Genomes Project. A: Time and B: memory usage. C-D: In these scenarios, the STRling "merge" stage was applied
to subsets of only 1, 100, 200, 500, 1000, 2000 and the full 2504 genomes from the 1000 Genomes Project. Samples are
first randomly ordered, then select the first N samples, such that each sample contains all samples from each smaller one.
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Supplementary Methods

PacBio assemblies

Sequencing reads are available on SRA. HG002: SRR10382244, SRR10382245, SRR10382248 and
SRR10382249. HG003: SRR11567494 - SRR11568082. HG004: SRR11568075 - SRR11568077, and
SRR11568083 - SRR11568088.

The PacBio Improved Phased Assembler (IPA) was run on default for all assemblies using the following
commands and versions:

Command:

ipa dist -i reads.fofn --nthreads 24 --njobs 30 --cluster-args 'qsub -S /bin/bash -N ipa.{rule}

-cwd -q bigmem -pe smp {params.num_threads} -e qsub_log/ -o qsub_log/ -V' --tmp-dir $TMP

Software versions:

ipa.py ipa (wrapper) version=1.1.2

snakemake version=5.17.0

ipa2-task 0.5.0

Machine name: 'Linux'

falconc version=1.8.0+git.63e589a80f5668e1cfe0a0ac0f26e2f51501a1ca, nim-version=1.3.5

Nighthawk 0.1.0 (commit 28d8475)

pancake 0.2.0 (commit 881d3bc)

pblayout 0.1.0 (commit 64f78e5)

racon version=1.4.13-cb13104

samtools 1.10

Using htslib 1.10.2
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