

FOR PEER REVIEW - CONFIDENTIAL

eLife's Review Process

eLife works to improve the process of peer review so that it more effectively conveys the assessment of expert reviewers to authors, readers and other interested parties. In the future we envision a system in which research is first published as a preprint and the outputs of peer review are the primary way research is assessed, rather than journal title.

Our editorial process produces two outputs: i) an assessment by peers designed to be posted alongside a preprint for the benefit of the readers; ii) detailed feedback on the manuscript for the authors, including requests for revisions and suggestions for improvement.

Therefore we want to change how we construct and write peer reviews to make them useful to both authors and readers in a way that better reflects the work you put into reading and thinking about a paper.

eLife reviews now have three parts:

- An **evaluation summary** (in two or three sentences) that captures the major conclusions of the review in a concise manner, accessible to a wide audience.
- A **public review** that details the strengths and weaknesses of the manuscript before you, and discusses whether the authors' claims and conclusions are justified by their data.
- A set of private **recommendations for the authors** that outline how you think the science and its presentation could be strengthened.

All three sections will be used as the basis for an eLife publishing decision, which will, as always, be made after a consultation among the reviewers and editor. Each of the **public reviews** will be published (anonymously) alongside the preprint, together with a response from the authors if they choose. In the case of papers we reject after review, the authors can choose to delay posting until their paper has been published elsewhere.

If this is your first time going through this new process, we ask that you take some time to read our [Reviewer Guide](#), which discusses how we see each section will be used, what it should contain, and what we hope it accomplishes. And we remind you that, with the shift of reviews from private correspondence to public discourse, it is more important than ever that reviews are written in a **clear and constructive manner** appropriate for a public audience and mindful of the impact language choices might have on the authors.

Information about the manuscript

Eliminating fibroblast activation protein- α expressing cells by photoimmunotherapy

Tracking no: 08-10-2021-RA-eLife-74569

Competing interests: No competing interests declared

Author contributions:

Jiefu Jin: Conceptualization; Data curation; Formal analysis; Validation; Investigation; Visualization; Methodology; Writing - original draft; Project administration; Writing - review and editing James Barnett: Data curation; Validation; Methodology; Writing - review and editing Balaji Krishnamachary: Data curation; Methodology; Writing - review and editing Yelena Mironchik: Data curation; Methodology; Writing - review and editing Catherine Luo: Data curation; Validation; Methodology; Writing - review and editing Hisataka Kobayashi: Investigation; Project administration; Writing - review and editing Zaver Bhujwalla: Conceptualization; Resources; Supervision; Funding acquisition; Methodology; Project administration; Writing - review and editing

Data Availability:

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-7.

N/A

Ethics:

Human Subjects: No Animal Subjects: Yes Ethics Statement: All the animal care and in vivo procedures were conducted in accordance with the regulations of the Institutional Animal Care and Use Committee of The Johns Hopkins University. The protocols (MO17M02, MO18M138 and MO20M04) were approved by the Institutional Animal Care and Use Committee of The Johns Hopkins University.

1 **Eliminating fibroblast activation protein- α expressing cells by photoimmunotheranostics**

2

3

4 Jiefu Jin^{1*}, James D. Barnett¹, Balaji Krishnamachary¹, Yelena Mironchik¹, Catherine K. Luo¹,
5 Hisataka Kobayashi³, Zaver M. Bhujwalla^{1,2,4*}

6

7 ¹*Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and*
8 *Radiological Science; ²Sidney Kimmel Comprehensive Cancer Center, ⁴Department of Radiation*
9 *Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine,*
10 *Baltimore, MD, USA; ³Laboratory of Molecular Theranostics Molecular Imaging Branch,*
11 *NCI/NIH, Bethesda, MD, USA*

12

13

14 **Running title:** FAP- α photoimmunotheranostics

15

16

17 **Keywords:** photoimmunotherapy, fibroblast activation protein- α , cancer associated fibroblasts,
18 theranostics

19

20

21 **Financial Support:** This work was supported by NIH R35 CA209960, R01 CA82337, P41
22 EB024495, P30 CA006973, ZIA BC011513 and a grant from the Emerson Collective Cancer
23 Research Fund.

24

25

26 *** Correspondence should be addressed to:**

27 Dr. Jiefu Jin (jjin@jhmi.edu) or Dr. Zaver M. Bhujwalla (zbhujwa1@jhmi.edu)
28 Division of Cancer Imaging Research
29 Department of Radiology
30 Johns Hopkins University School of Medicine
31 Rm 208C Traylor Bldg., 720 Rutland Avenue
32 Baltimore, MD 21205, USA

33

34

35 **Conflict of Interest Disclosures:** The authors have no conflict of interest to disclose

39 **Abstract**

40

41 Photoimmunotherapy (PIT) using an antibody conjugated to a near infrared dye IR700 is
42 achieving significant success in target-specific elimination of cells. Fibroblast activation protein
43 alpha (FAP- α) is an important target in cancer because of its expression by cancer associated
44 fibroblasts (CAFs) as well as by some cancer cells. CAFs that express FAP- α have
45 protumorigenic and immune suppressive functions. Using immunohistochemistry of human
46 breast cancer tissue microarrays, we identified an increase of FAP- α + CAFs in invasive breast
47 cancer tissue compared to adjacent normal tissue. We found FAP- α expression increased in
48 fibroblasts co-cultured with cancer cells. In proof-of-principle studies, we engineered human
49 FAP- α overexpressing MDA-MB-231 and HT-1080 cancer cells and murine FAP- α
50 overexpressing NIH-3T3 fibroblasts to evaluate several anti-FAP- α antibodies and selected
51 AF3715 based on its high binding-affinity with both human and mouse FAP- α . After conjugation
52 of AF3715 with the phthalocyanine dye IR700, the resultant antibody conjugate, FAP- α -IR700,
53 was evaluated in cells and tumors for its specificity and effectiveness in eliminating FAP- α
54 expressing cell populations with PIT. FAP- α -IR700-PIT resulted in effective FAP- α -specific cell
55 killing in the engineered cancer cells and in two patient-derived CAFs in a dose-dependent
56 manner. Following an intravenous injection, FAP- α -IR700 retention was three-fold higher than
57 IgG-IR700 in FAP- α overexpressing tumors, and two-fold higher compared to wild-type tumors.
58 FAP- α -IR700-PIT resulted in significant growth inhibition of tumors derived from FAP- α
59 overexpressing human cancer cells. A reduction of endogenous FAP- α + murine CAFs was
60 identified at 7 days after FAP- α -IR700-PIT. FAP- α -targeted NIR-PIT presents a promising
61 strategy to eliminate FAP- α + CAFs.

62 **Introduction**

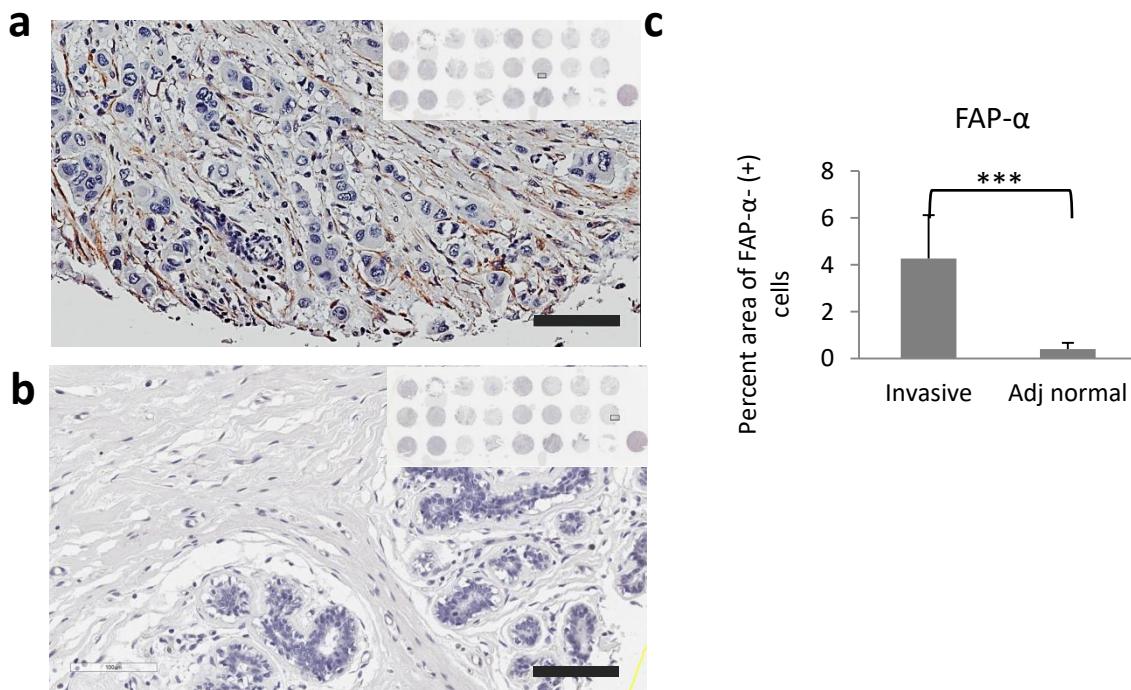
63

64 Near infrared photoimmunotherapy (NIR-PIT) is an emerging targeted cancer therapy in which a
65 water-soluble, photo-stable, phthalocyanine dye IRDye700DX (IR700), is conjugated to an
66 antibody to target cancer cells (Mitsunaga et al., 2011) or pro-tumorigenic cells in the tumor
67 microenvironment (TME) (K. Sato et al., 2016). The antibody conjugate specifically binds to the
68 target on the cell membrane, causing membrane damage after NIR light exposure (Jin,
69 Krishnamachary, Mironchik, Kobayashi, & Bhujwalla, 2016; Kazuhide Sato et al., 2018). A
70 first-in-human phase 1/2 clinical trial of NIR-PIT using cetuximab-IR700 (RM1929) to treat
71 inoperable recurrent head and neck cancer patients that successfully concluded in 2017 was
72 "fast-tracked" by the FDA for a phase 3 trial (<https://clinicaltrials.gov/ct2/show/NCT03769506>)
73 (Kobayashi & Choyke, 2019). In September 2020, the first drug and the laser system for human
74 use, cetuximab-IR700 (ASP1929, AkaluxTM) and a 690nm laser system (BioBladeTM), were
75 conditionally approved and registered for clinical use by the Pharmaceuticals and Medical
76 Devices Agency (PMDA) in Japan, with health insurance coverage available for recurrent head
77 and neck squamous cell carcinoma since January 2021.

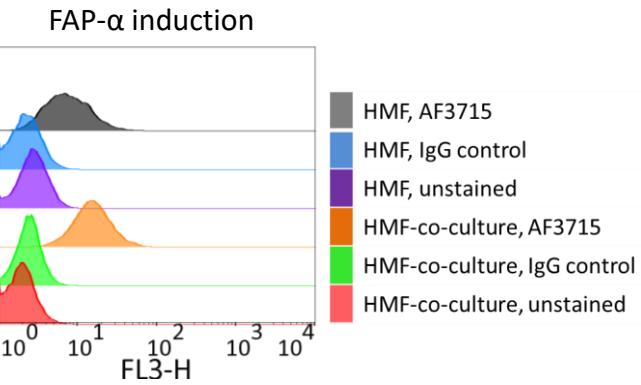
78

79 Here we evaluated the use of NIR-PIT to target FAP- α expressing cells. FAP- α , a member of the
80 dipeptidyl peptidase (DPP) family, is expressed at low or undetectable levels in normal tissue
81 (Niedermeyer et al., 2001), but is upregulated in CAFs in human epithelial tumors. CAFs
82 constitute the most abundant cell population in the stroma of most solid tumors (Prakash, 2016),
83 presenting a ubiquitous target in cancer. A few studies have also reported expression of FAP- α
84 by cancer cells such as melanoma (Fitzgerald & Weiner, 2020). Because FAP- α expressing
85 CAFs exert pro-tumorigenic and immunosuppressive functions (Kieffer et al., 2020), FAP- α is

86 an attractive molecular target for cancer imaging and treatment, especially in stromal-rich
87 desmoplastic cancers (Puré & Blomberg, 2018). FAP- α is also associated with human
88 pathologies such as fibrosis, arthritis, athelosclerosis and autoimmune diseases (Fitzgerald &
89 Weiner, 2020). A recent study investigated the use FAP- α photodynamic therapy in experimental
90 arthritis (Dorst et al., 2020).


91
92 Small molecule FAP- α inhibitors have been previously developed and evaluated in clinical
93 studies. The most commonly used FAP- α inhibitor, Val-boroPro (Talabostat), failed in a number
94 of phase II clinical trials, with limited clinical benefit even in combination with chemotherapy
95 (Eager, Cunningham, Senzer, Richards, et al., 2009; Eager, Cunningham, Senzer, Stephenson, et
96 al., 2009; Narra et al., 2007). The minimal efficacy of Sibrotuzumab (BIBH1), a humanized
97 version of the murine anti-FAP- α monoclonal antibody F19 (Scott et al., 2003), resulted in a
98 failed early phase II clinical trial in patients with metastatic colorectal cancer (Hofheinz et al.,
99 2003). The failure of Talabostat and Sibrotuzumab in clinical trials indicated that binding of
100 FAP- α or blocking the enzymatic activity of FAP- α was not effective in mediating clinical
101 benefit, identifying depletion of FAP- α + CAFs as a better strategy. The use of an FAP- α
102 inhibitor (FAPI-04) labeled with a therapeutic radionuclide resulted in growth control of
103 pancreatic cancer xenografts (Watabe et al., 2020). Other systemic strategies to deplete FAP- α +
104 stromal cells such as DNA vaccines (Loeffler, Krüger, Niethammer, & Reisfeld, 2006; Xia et al.,
105 2016), and adenoviral vectors (de Sostoa et al., 2019; Pang et al., 2017; Zhang & Ertl, 2016),
106 have resulted in favorable therapeutic outcomes in preclinical tumor models. Antibody-based
107 therapeutics, such as immunotoxins (Fang et al., 2016; Ostermann et al., 2008) and antibody
108 fragment-based chimeric antigen receptor (CAR) engineered T-cells (Kakarla et al., 2013; Lo et

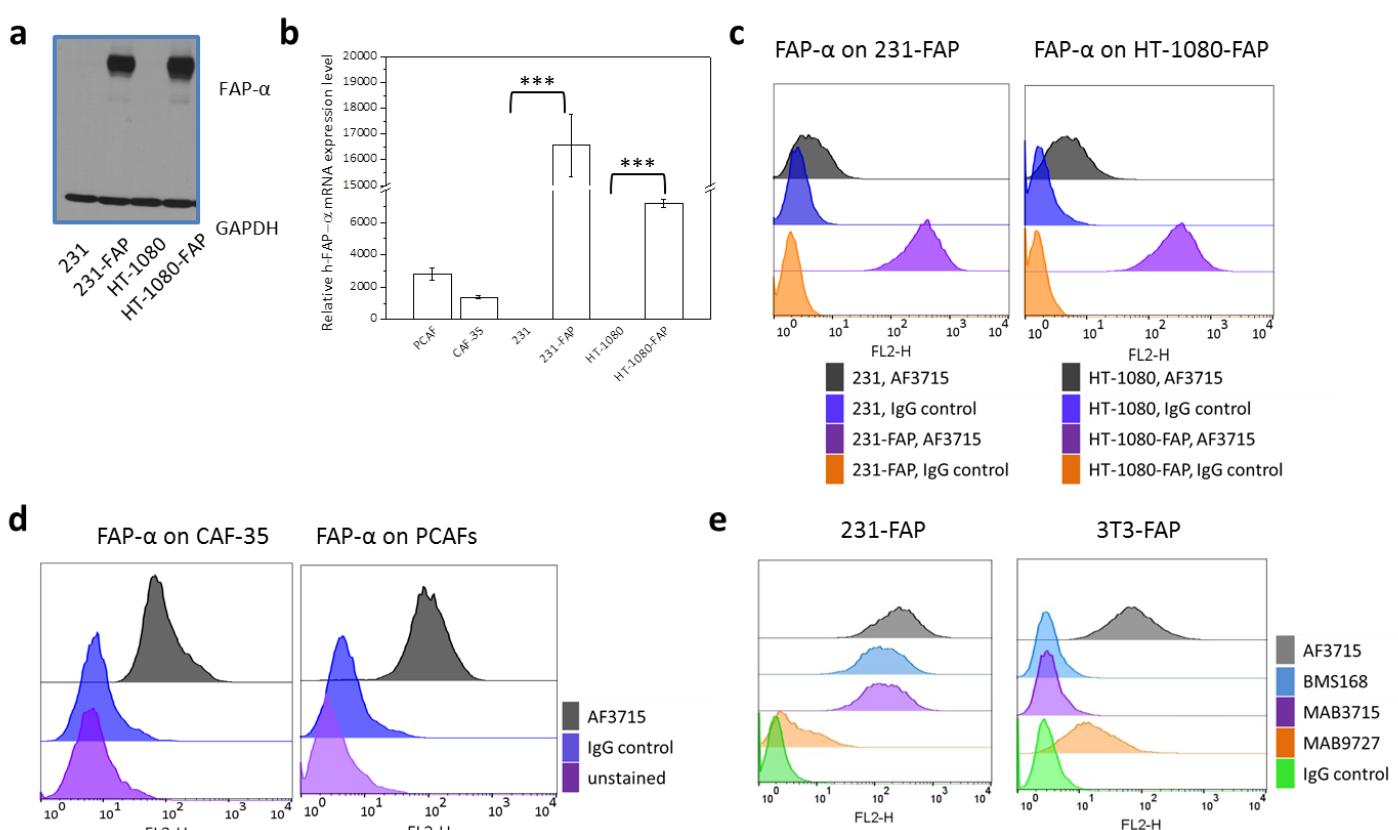
109 al., 2015; Wang et al., 2014), used to deplete FAP- α + cells in preclinical models, also resulted in
110 reduced tumor growth. However, FAP- α specific CAR T cells resulted in toxicity and cachexia
111 because FAP- α + fibroblasts play a pivotal role in preserving tissue homeostasis in the skeletal
112 muscle, and FAP- α is also expressed by PDGFR- α +, Sca-1+ multipotent bone marrow stromal
113 cells (BMSCs) (Tran et al., 2013). These results identified potential problems with systemic
114 elimination of FAP- α + stromal cells, highlighting the importance of eliminating FAP- α + CAFs
115 in tumors without damaging FAP- α + cells in normal tissues.


116
117 Here, we first investigated expression of FAP- α CAFs in human breast cancer tissue microarrays
118 and in human mammary fibroblasts (HMFs) co-cultured with human breast cancer cells. Next, in
119 proof-of-principle studies, we engineered human FAP- α overexpressing MDA-MB-231 and HT-
120 1080 cancer cells and murine FAP- α overexpressing NIH-3T3 mouse fibroblasts to select a high-
121 affinity human and mouse cross-reactive anti-FAP- α antibody, and investigated the specificity
122 and effectiveness of the antibody-IR700 conjugate to bind to and eliminate FAP- α + cells in
123 culture and *in vivo*. NIR emission of IR700 has a penetration depth of ~ 1 cm in tissue allowing
124 the detection of IR700 in tumors with noninvasive fluorescence imaging to determine the
125 optimal timing of PIT. The *in vivo* studies demonstrated the feasibility of combining target-
126 specific antibody binding with tumor localized NIR exposure to eliminate FAP- α + cells in solid
127 tumors.

128
129 **Results**
130 **FAP- α expressing CAFs increase in breast cancer TMAs compared to normal adjacent
131 tissue:** To identify FAP- α expressing CAFs in breast cancer, human breast cancer TMAs (6

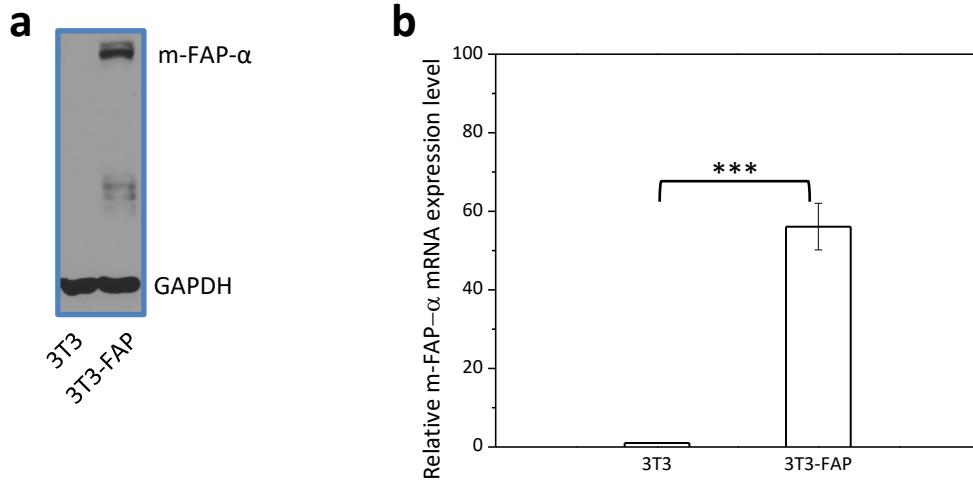
132 cases with 2 cores per group, n = 6) and matched adjacent breast tissue were immunostained
133 (Fig. 1a and b). The percent area occupied by FAP- α + CAFs was ~ 4.3%, while in adjacent
134 breast tissue cores, the fractional area of FAP- α + CAFs was 0.41% (Fig. 1c), confirming that
135 numbers of FAP- α + CAFs significantly increased in breast cancer. Co-culturing HMFs with
136 MDA-MD-231 cells resulted in an increase of FAP- α fluorescence intensity values from 9.5 ±
137 5.2 to 18.0 ± 8.5, as measured by flow cytometry from two independent experiments (Fig. 1-
138 figure supplement 1).

139 **Figure 1.** FAP- α expressing CAFs increase in breast cancer. Representative FAP- α
140 immunostained image of breast invasive ductal carcinoma tissue (a) and the matched adjacent
141 normal breast tissue (b) at 20X magnification, inset shows the entire TMA with rectangle box
142 indicating the location of the image. Scale bar = 100 μ m. (c) Percent area of FAP- α + CAFs in
143 invasive breast cancer cores compared to adjacent normal tissue cores. ***P<0.001. Values
144 represent Mean ± SD from 6 cases with 2 cores per group (n = 6).



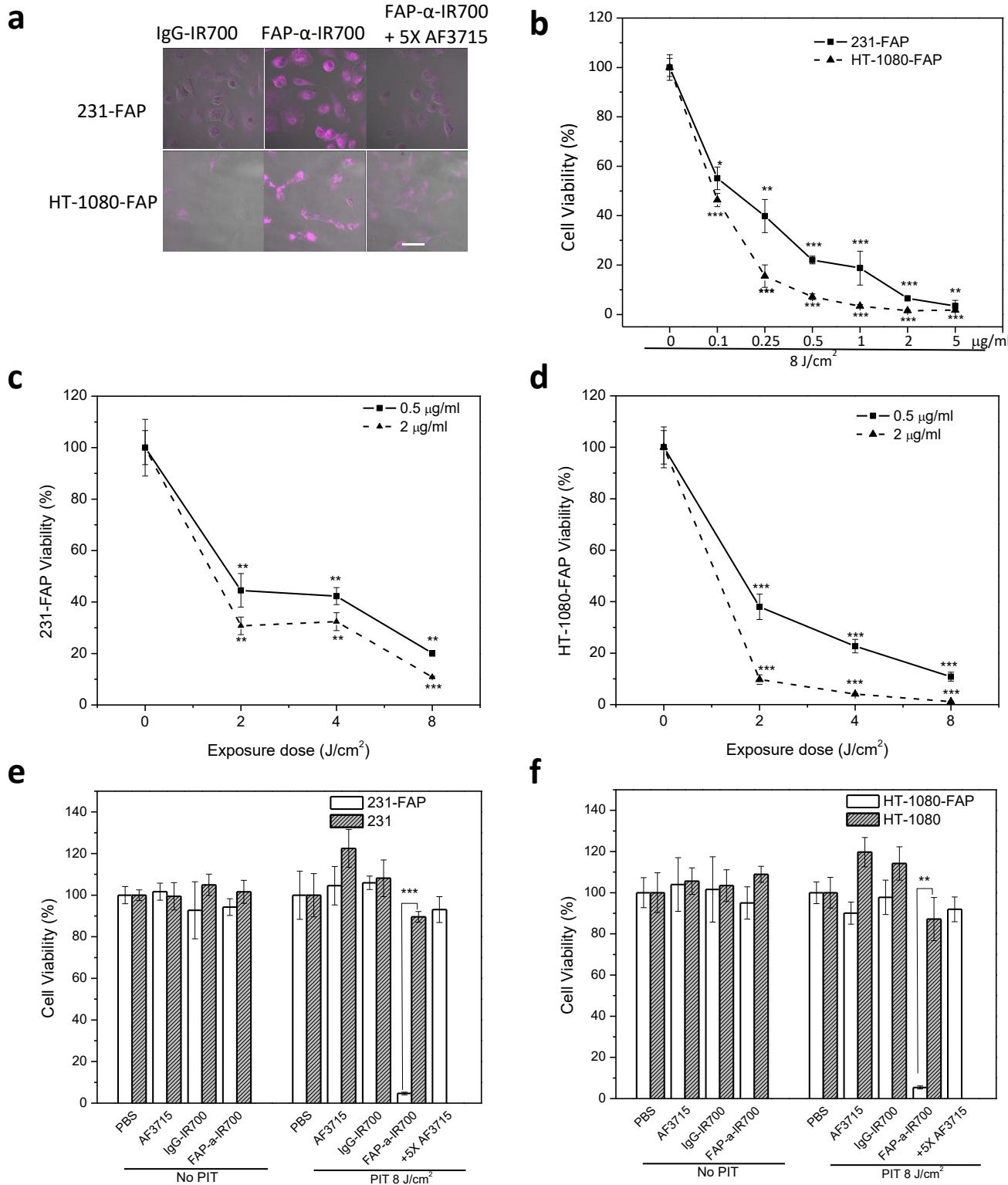
146 **Figure 1-figure supplement 1.** FAP- α is induced in HMFs by co-culturing with human breast
147 cancer cells. Flow cytometry analysis confirmed induction of FAP- α in HMFs after co-culturing
148 with 231 cells.

149

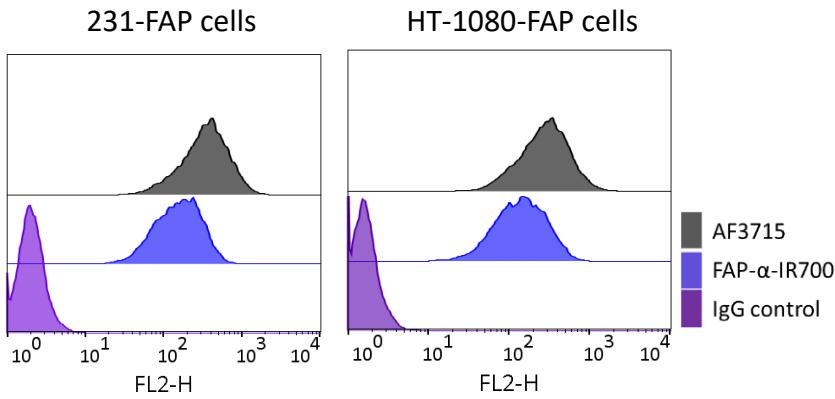

150 **Validation of FAP- α overexpressing cells and mouse and human specificity of FAP- α**
151 **antibody:** Increased protein expression and FAP- α mRNA were confirmed in lentivirally
152 transduced 231-FAP, HT-1080-FAP (Fig. 2a and b) and 3T3-FAP cells (Fig. 2-figure
153 supplement 1) compared to parent cells. Flow cytometry of live cells further confirmed increased
154 expression of FAP- α in plasma membranes of 231-FAP and HT-1080-FAP cells, and the
155 negligible amount of FAP- α protein on parental cell membranes (Fig. 2c). We additionally
156 evaluated FAP- α expression by flow cytometry in two primary CAFs from pancreatic cancer
157 (CAF35) and prostate cancer (PCAFs) (Fig. 2d), and also measured FAP- α mRNA levels in
158 these cells (Fig. 2b). Expression levels of FAP- α determined by flow cytometry in CAF35 and
159 PCAFs were approximately a third of those observed in the engineered cells (Fig. 2d).

160 Several commercially available anti-FAP- α antibodies were evaluated with flow cytometry for
161 their binding affinity to 231-FAP and 3T3-FAP cells. To evaluate the antibodies, identical
162 concentrations of phycoerythrin conjugated secondary antibodies were used. Antibodies
163 ab137549, ab218164, ab28244, ab53066, ab207178, ab227703 and PA5-51057 showed
164 undetectable binding to either 231-FAP or 3T3-FAP (data not shown). Among the antibodies that
165 bound to either 231-FAP or 3T3-FAP, AF3715 displayed the highest binding affinity to both
166 human and murine FAP- α (Fig. 2e).

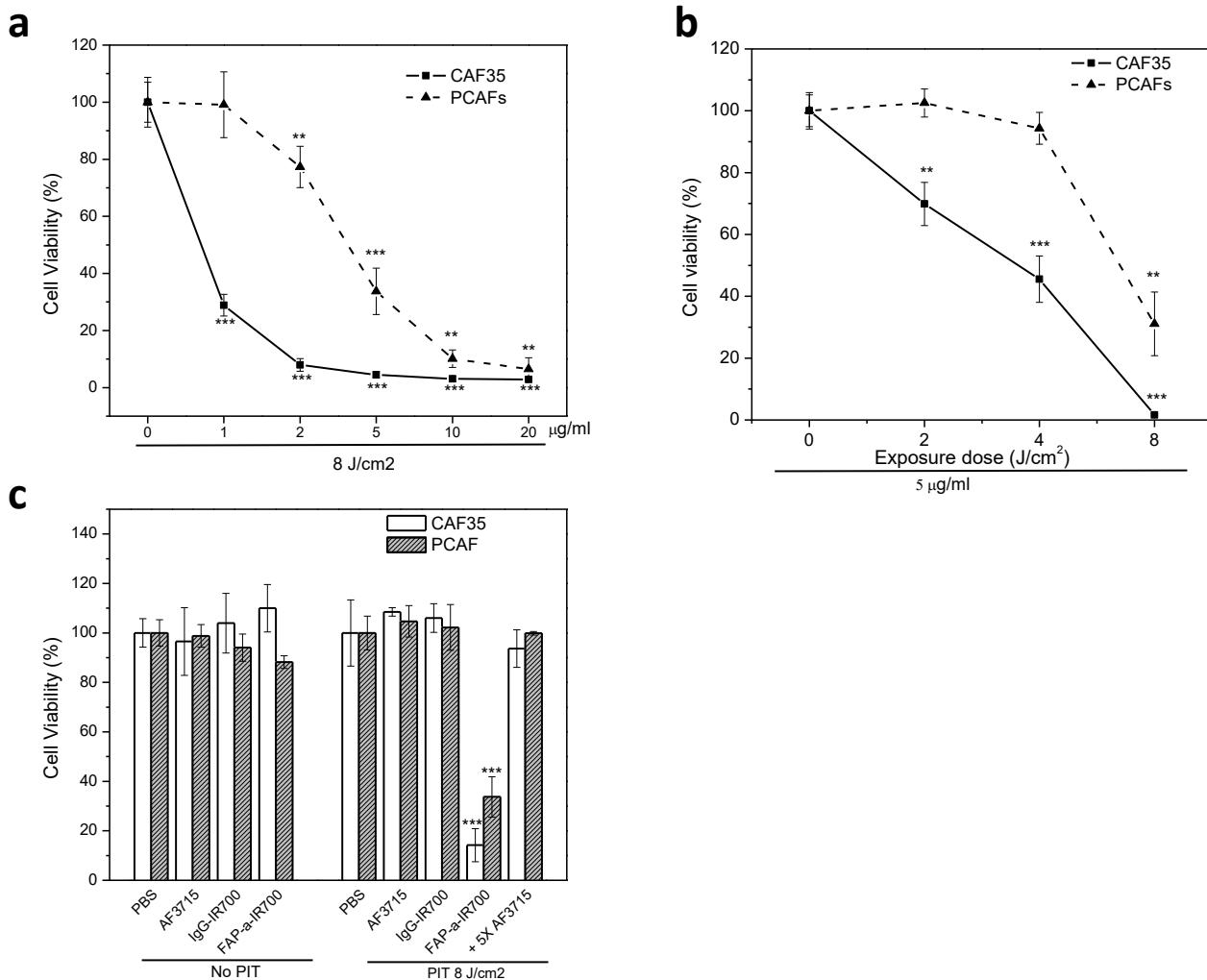
167 **Figure 2.** Verification of FAP- α overexpression, and human and murine FAP- α cross-reactivity
168 of AF3715. (a) Immunoblot analysis confirming FAP- α overexpression in 231-FAP and HT-
169 1080-FAP cells. (b) Relative FAP- α mRNA expression levels (Mean \pm SD) of prostate cancer
170 associated fibroblasts (PCAFs), pancreatic cancer associated fibroblasts (CAF35), MDA-MB-
171 231 (231), MDA-MB-231 (231-FAP), HT-1080 and HT-1080-FAP cells. ***P<0.001. Flow
172 cytometry analysis confirming FAP- α overexpression in 231-FAP and HT-1080-FAP cells with
173 231 and HT-1080 cells used as controls (c) and CAF35 and PCAFs (d). (e) AF3715 binds human
174 and murine FAP- α with high affinity as shown by flow cytometry analysis of the binding of


175 several anti-FAP- α antibodies to 231-FAP and 3T3-FAP. AF3715 was compared with BMS168,
176 MAB3715, and MAB9727. Mouse IgG isotype antibody was used as control.

177
178 **Figure 2-figure supplement 1.** Verification of FAP- α overexpression in 3T3-FAP cells. (a)
179 Western blotting analysis confirming FAP- α overexpression in 3T3-FAP cells. (b) Relative
180 murine FAP- α mRNA expression levels (Mean \pm SD) of NIH-3T3 and 3T3-FAP cells.
181 ***P<0.001.


182
183 **Binding specificity of FAP- α -IR700:** We conjugated IR700 to AF3715 to obtain the FAP- α -
184 IR700 conjugate. Based on the spectroscopy data, the molar ratio of IR700 to antibody in FAP- α -
185 IR700 was \sim 3.5. Confocal microscopy confirmed the selective binding of FAP- α -IR700 in 231-
186 FAP and HT-1080-FAP cells, with negligible non-specific binding of IgG-IR700, and FAP- α -
187 IR700 binding inhibition with 5X excess of AF3715 (Fig. 3a). Compared to the unconjugated
188 antibody, AF3715, FAP- α -IR700 demonstrated only a slightly weaker binding affinity (Fig. 3-
189 figure supplement 1).

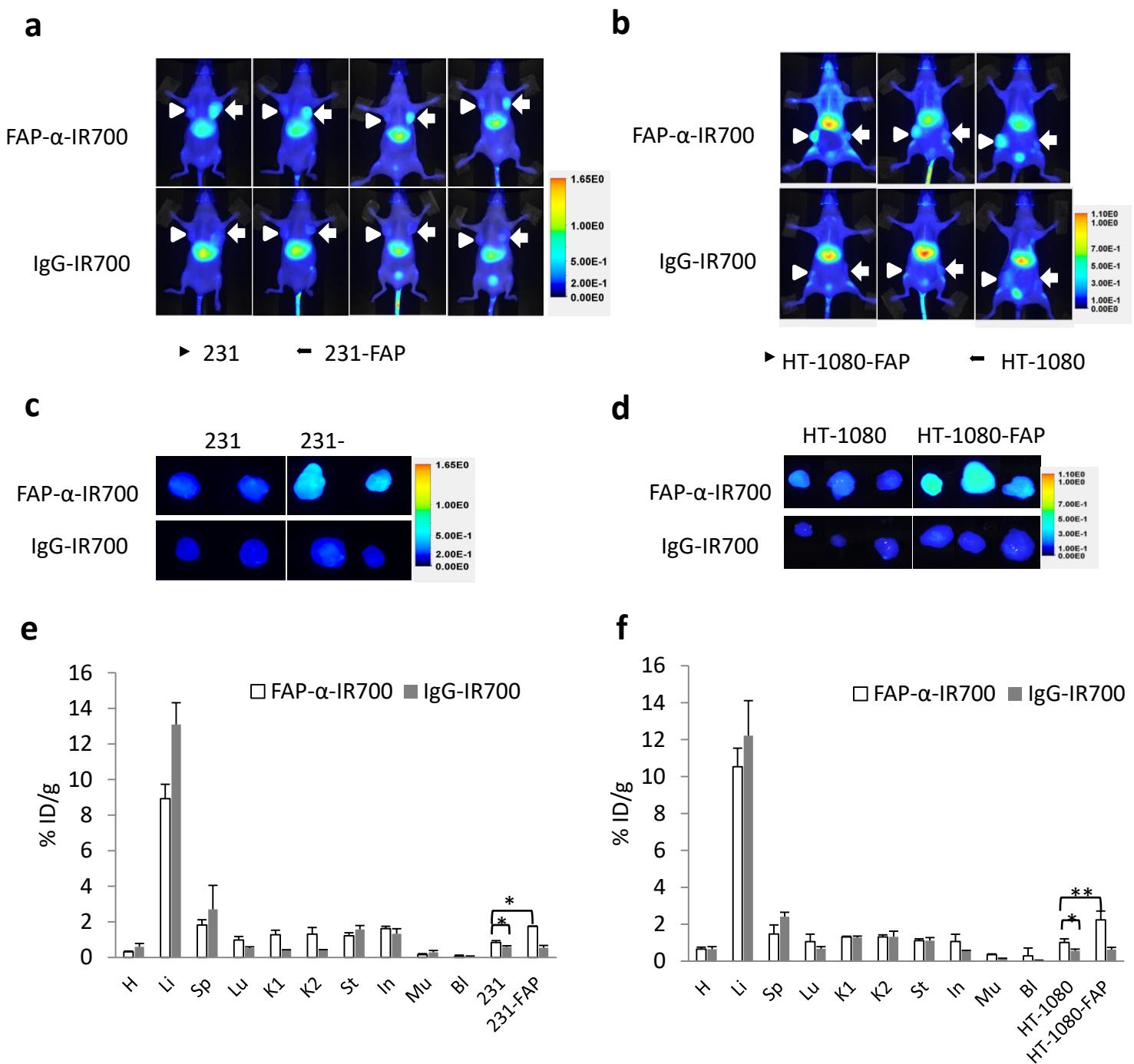
190 **Dose-dependent and FAP- α -specific cell killing by FAP- α -IR700-PIT:** Cells were incubated
191 with FAP- α -IR700 at concentrations ranging from 0.1 to 5 μ g/ml and exposed to a fixed light
192 exposure density of 8 J/cm² to confirm concentration-dependent phototoxicity in both 231-FAP
193 and HT-1080-FAP cells (Fig. 3b). EC₅₀ values of FAP- α -IR700 at 8 J/cm² were \sim 0.1 μ g/ml
194 (0.67 nM) for 231-FAP and HT-1080-FAP cells (Fig. 3b). Despite comparable FAP- α
195 expression, HT-1080-FAP cells were intrinsically more sensitive to FAP- α -IR700-PIT than 231-
196 FAP cells. With the concentration of FAP- α -IR700 set at 0.5 or 2 μ g/ml, cell death increased as
197 light exposure intensity was increased from 2 to 8 J/cm² (Fig. 3c and d). The amount of
198 conjugate bound to the cell surface and the light exposure intensity were the two main
199 determinants of FAP- α -IR700-PIT effectiveness. FAP- α -IR700-PIT resulted in greater than 95%
200 cell death in both 231-FAP and HT-1080-FAP cells at 5 μ g/ml and 8 J/cm², and was inhibited by
201 5X AF3715 (Fig. 3e and f). Under dark conditions, neither AF3715 nor the conjugates showed
202 any toxicity in the four cell lines investigated.


Figure 3. Binding specificity, dose-dependence and FAP- α -specific cell killing with FAP- α -IR700-PIT. (a) Confocal microscopy images of overlaid fluorescence and bright-field views of 231-FAP and HT-1080-FAP cells following 1-h incubation with 5 μ g/ml of IgG-IR700, 5 μ g/ml

206 of FAP- α -IR700, or 5 μ g/ml of FAP- α -IR700 together with 25 μ g/ml of AF3715 at 37 $^{\circ}$ C. Scale
207 bar = 50 μ m. FAP- α -IR700-mediated phototoxicity is dependent on the concentration of FAP- α -
208 IR700 (b) and light exposure dose (c, d). FAP- α -specific cell killing only occurs with FAP- α -
209 IR700 binding and light exposure of 231-FAP cells (e) or HT-1080-FAP cells (f). FAP- α -IR700-
210 PIT-mediated phototoxicity is inhibited by 5X AF3715. Values represent Mean \pm SD (n = 4,
211 P<0.05, **P<0.01, ***P<0.001, for treated groups compared to PBS groups).

212
213 **Figure 3–figure supplement 1.** Flow cytometry analysis to determine binding of FAP- α -IR700
214 to 231-FAP (left) and HT-1080-FAP cells (right) when compared with AF3715 or IgG control.
215

216 FAP- α -IR700-PIT also resulted in concentration and light exposure-dependent cell death in
217 CAF35 and PCAFs, for which EC₅₀ values at 8 J/cm² were approximately 1 and 5 μ g/ml,
218 respectively (Fig. 4a, and b). The higher EC₅₀ values in CAF35 and PCAF cells were attributed
219 to their relatively lower FAP- α expression levels compared to 231-FAP or HT-1080-FAP cells as
220 evident from the qRT-PCR and flow cytometry results. Similar to the cancer cells, FAP- α -
221 specific cell killing with FAP- α -IR700-PIT was also observed in CAF35 or PCAFs and was
222 inhibited by incubation with 5X AF3715 (Fig. 4c).


223

224 **Figure 4.** FAP- α -IR700-PIT of human CAFs. FAP- α -IR700-PIT-mediated phototoxicity of
225 CAF35 cells and PCAFs is dependent on the concentration of FAP- α -IR700 (a) and light
226 exposure dose (b). (c) FAP- α -specific cell killing only occurs with FAP- α -IR700 binding
227 combined with light exposure. FAP- α -IR700-PIT-mediated phototoxicity of CAF35 and PCAFs
228 is inhibited by incubation with 5X AF3715. Values represent Mean \pm SD ($n = 4$, $P < 0.05$,
229 ** $P < 0.01$, *** $P < 0.001$, for treated groups compared to PBS groups).

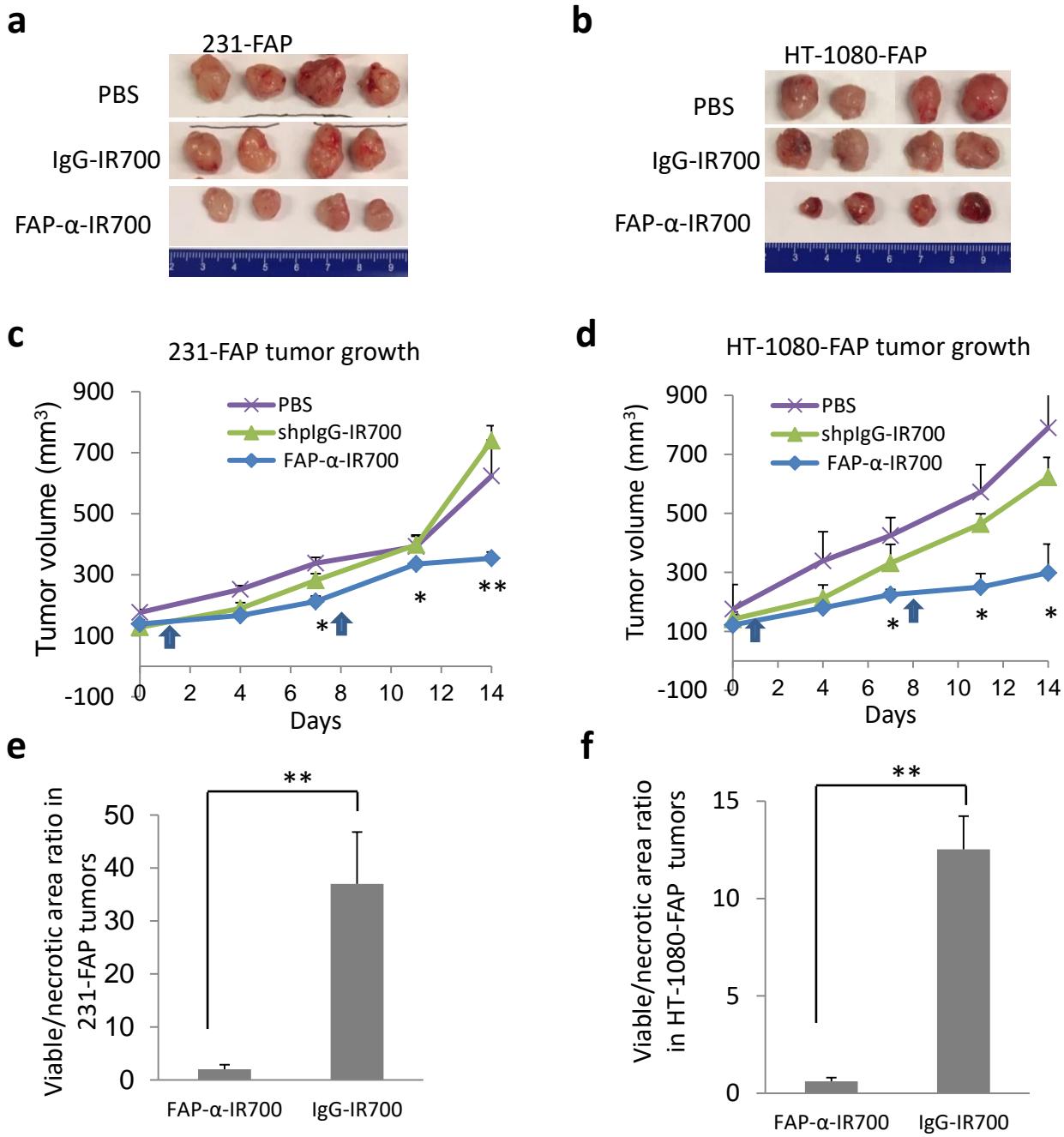
230

231 **In vivo and ex vivo NIR fluorescence imaging and biodistribution:** At 24 h *p.i.*, FAP- α -IR700
232 accumulated in 231-FAP and HT-1080-FAP tumors but not in 231 and HT-1080 tumors.
233 Consistent with the non-specific uptake, IgG-IR700 was present at a relatively low level in all

234 tumors (Fig. 5a and b). *Ex vivo* fluorescence images of resected tumors at 24 h *p.i.* confirmed the
235 preferential accumulation of FAP- α -IR700 in 231-FAP and HT-1080-FAP tumors and the low
236 uptake of IgG-IR700 in all the tumors (Fig. 5c and d). Quantitative uptake data, obtained from *ex*
237 *vivo* fluorescence intensities normalized to the weights of organs and tumors, were presented as
238 the percent injected dose per gram of tissue (%ID/g) (Fig. 5 e and f). At 24 h *p.i.*, FAP- α -IR700
239 uptake was 1.74% and 0.84% ID/g in 231-FAP and 231 tumors, respectively (n = 4, P = 0.013);
240 IgG-IR700 was present at 0.55% and 0.59% ID/g in 231-FAP and 231 tumors, respectively (n =
241 4, P = 0.65). In 231 tumors, the uptake of FAP- α -IR700 was significantly higher than the uptake
242 IgG-IR700 (n = 4, P = 0.040) that can be attributed to the presence of endogenous murine FAP-
243 α + CAFs. A significantly higher uptake of FAP- α -IR700 was found in HT-1080-FAP tumors
244 compared with HT-1080 tumors (2.23% vs 1.01% ID/g, n = 3, P = 0.025), while no difference in
245 the uptake of IgG-IR700 was found between HT-1080-FAP and HT-1080 tumors (0.63% vs
246 0.56% ID/g, n = 3, P = 0.30). As with the 231 tumors, in HT-1080 tumors, the uptake of FAP- α -
247 IR700 was significantly higher than IgG-IR700 (n = 3, P = 0.0022). In normal tissues, FAP- α -
248 IR700 showed an uptake comparable to IgG-IR700.

249 **Figure 5.** Preferential accumulation of FAP- α -IR700 in 231-FAP and HT-1080-FAP tumors. (a)

250 NIR fluorescence *in vivo* images of mice bearing bilateral tumors (arrow head points to 231

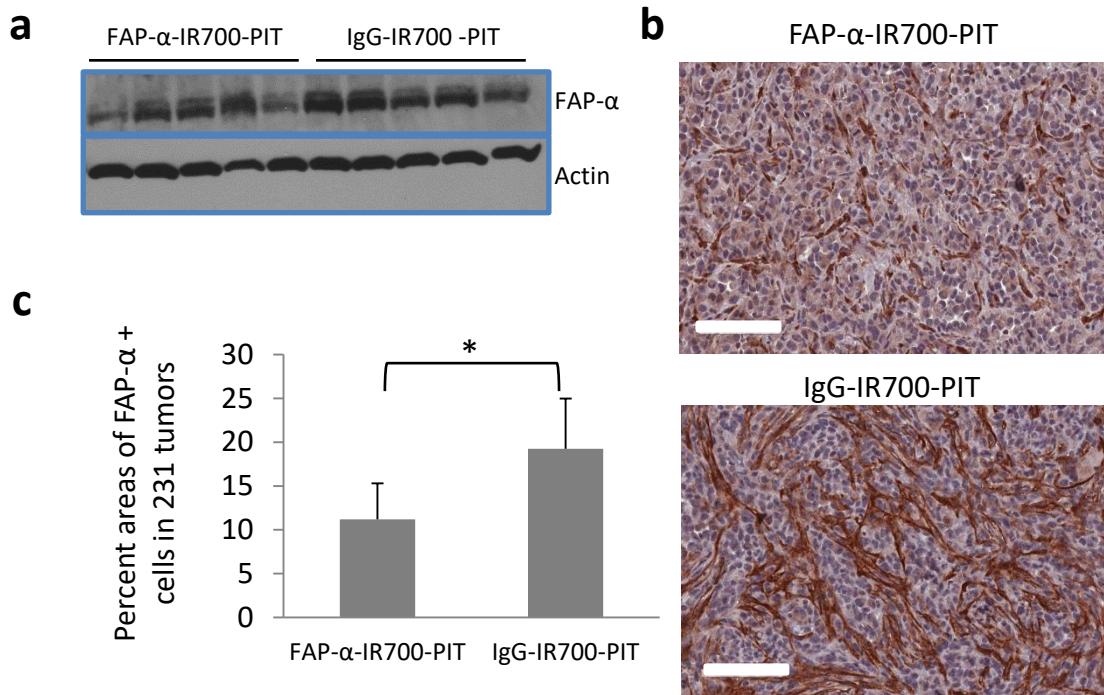

251 tumor; arrow points to 231-FAP tumor) at 24 h *p.i.* (b) NIR fluorescence *in vivo* images of mice

252 bearing bilateral tumors (arrow head points to HT-1080-FAP tumor; arrow points to HT-1080

253 tumor) at 24 h *p.i.* 50 µg of FAP- α -IR700 or IgG-IR700 injected *i.v.* *Ex vivo* NIR fluorescence
254 images of resected 231 and 231-FAP tumors (c) and resected HT-1080 and HT-1080-FAP
255 tumors (d) at 24 h *p.i.* Distribution of antibody conjugates in organs, 231 and 231-FAP tumors (e)
256 and HT-1080 and HT-1080-FAP tumors (f) at 24 h *p.i.* Values (Mean \pm SD) are normalized to %
257 injected dose/g (%ID/g) from three or four mice per group (n = 3 or 4), *P<0.05, **P<0.01.

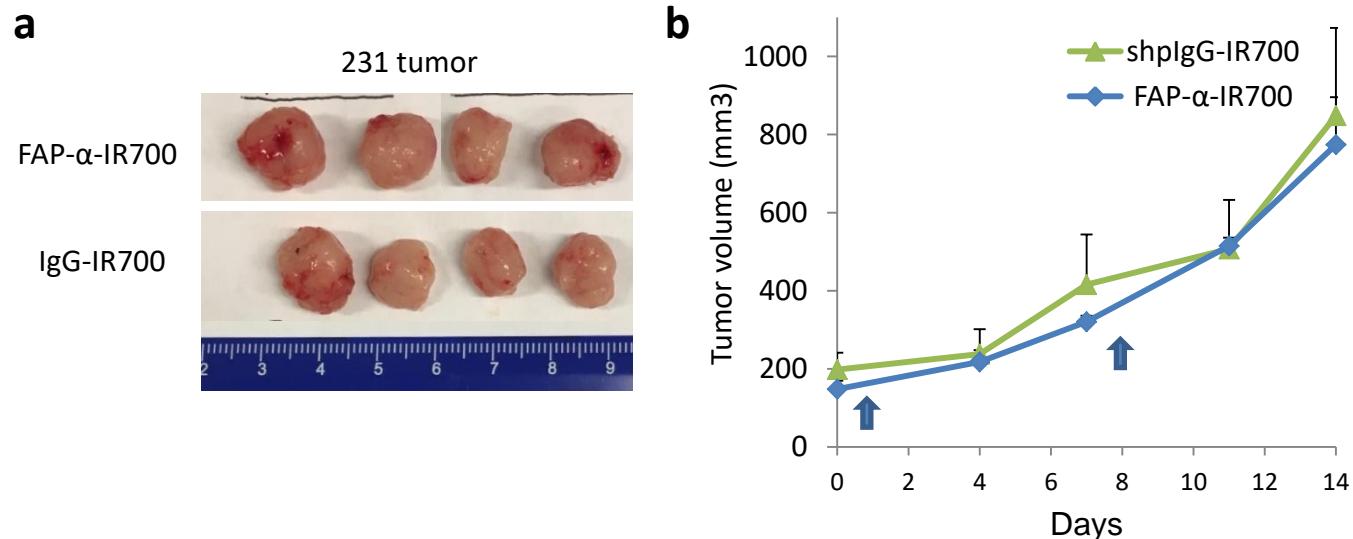
258

259 ***In vivo* FAP- α -IR700-PIT causes growth delay and cell death in 231-FAP and HT-1080-
260 FAP tumors:** Tumors resected from the FAP- α -IR700 group were significantly smaller than the
261 control PBS or IgG-IR700 group at the end of the two-week treatment (Fig. 6a and b). Compared
262 to 231-FAP tumors, HT-1080-FAP tumors responded better to FAP- α -IR700-PIT as evident
263 from the smaller sizes, consistent with the *in vitro* NIR-PIT results (Fig. 3c and d). Tumor
264 growth curves obtained over two weeks confirmed that FAP- α -IR700-PIT significantly inhibited
265 the growth of 231-FAP (FAP- α -IR700 group *vs* IgG-IR700 group: at day 7, P = 0.019; at day 11,
266 P = 0.033; at day 14, P = 0.00085) and HT-1080-FAP (FAP- α -IR700 group *vs* IgG-IR700 group:
267 at day 7, P = 0.030; at day 11, P = 0.014; at day 14, P = 0.0063) tumors; IgG-IR700 showed no
268 significant effect on tumor growth as compared to the PBS group (Fig. 6c and d). In 231-FAP
269 tumors, the ratios of viable/necrotic area measured in H&E stained sections were 2.0 and 37.0 for
270 the FAP- α -IR700 and IgG-IR700 groups (P = 0.00029), respectively (Fig. 6e). In HT-1080-FAP
271 tumors, the ratios were 0.6 and 12.5 for the FAP- α -IR700 and IgG-IR700 group (P = 0.00048),
272 respectively (Fig. 6f). These data confirmed that FAP- α -IR700-PIT caused significant FAP- α
273 specific cell death in 231-FAP and HT-1080-FAP tumors.


274

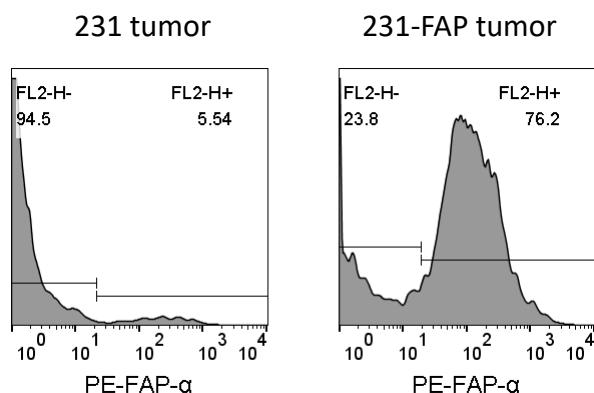
275 **Figure 6.** Tumor growth delay and necrosis due to FAP- α -IR700-PIT. Photographs of 231-FAP
 276 (a) and HT-1080-FAP (b) tumors resected from different groups at the end of treatment. Growth
 277 curve of 231-FAP tumors (c) and HT-1080-FAP tumors (d) in the FAP- α -IR700, IgG-IR700 and
 278 PBS groups over the duration of two weeks after injection. 100 μg of FAP- α -IR700 or IgG-
 279 IR700 or 100 μl of PBS was injected *i.v.* on day 0 and on day 7. Light was delivered at 200 J/cm^2
 280 24 h following each injection. Values represent Mean \pm SD from four mice per group. * $P<0.05$,

281 **P<0.01 for the FAP- α -IR700 group compared to PBS group. The viable/necrotic area ratio in
282 H&E stained 231-FAP (e) and HT-1080-FAP (f) tumor sections from FAP- α -IR700 and IgG-
283 IR700 groups. Values represent Mean \pm SD from four mice per group, **P<0.01 for the FAP- α -
284 IR700 group compared to the IgG-IR700 group.


285

286 **The effect of FAP- α -IR700-PIT on FAP- α + murine CAFs:** We evaluated the effectiveness of
287 FAP- α -IR700-PIT in depleting FAP- α + murine CAFs in tumors *in vivo*. FAP- α -IR700-PIT was
288 performed with tumors derived from wild-type 231 cells that do not express FAP- α . In these
289 tumors, CAFs are of mouse origin. Compared to IgG-IR700-PIT, FAP- α -IR700-PIT resulted in a
290 reduction of FAP- α protein in 231 tumors as identified in the western-blots (Fig. 7a). A reduction
291 of FAP- α + murine CAFs was also confirmed in IHC studies (Fig. 7b and c), where the percent
292 area of FAP- α + cells in FAP- α -IR700-PIT treated 231 tumors was significantly lower than in the
293 IgG-IR700 group. FAP- α -IR700-PIT did not result in significant growth inhibition of 231 tumors
294 as compared to IgG-IR700-PIT (Fig. 7-figure supplement 1), which is likely due in part to the
295 low abundance of murine CAFs in 231 tumors, and due to their limited role in tumor growth in
296 immune deficient mice. Flow cytometry of single cell suspensions of cells dissociated from 231
297 tumors revealed that 5.54% of 231 tumor-dissociated cells were FAP- α + in contrast to 76.2% in
298 231-FAP tumors (Fig. 7-figure supplement 2).

299


300 **Figure 7.** The effect of FAP- α -IR700-PIT on FAP- α + murine fibroblasts in 231 tumors. (a)
301 Immunoblots identify reduction of FAP- α in FAP- α -IR700-PIT treated tumors. (b)
302 Representative FAP- α immunostained 5 μ m sections from 231 tumors following FAP- α -IR700-
303 PIT or IgG-IR700-PIT. 100 μ g of FAP- α -IR700 or IgG-IR700 were injected *i.v.* in 231 tumor-
304 bearing mice on day 0 and on day 7 and tumors were excised 7 days later. Light exposure was
305 delivered at 200 J/cm^2 24 h after each injection. Scale bar = 100 μ m. (c) Analysis of FAP- α
306 immunostaining in 231 tumors following FAP- α -IR700-PIT or IgG-IR700-PIT. Values represent
307 Mean \pm SD from five mice per group (n = 3), *P<0.05.

308

309 **Figure 7-figure supplement 1.** The effect of FAP- α -IR700-based PIT on 231 tumor growth. (a)
310 Photograph of 231 tumors resected from different groups following treatment. (b) Growth curve
311 of 231 tumors in FAP- α -IR700 and IgG-IR700 groups over the duration of two weeks. 100 μ g of
312 FAP- α -IR700 or IgG-IR700 were injected i.v. on day 0 and on day 7. Light exposure was
313 delivered at 200 J/cm^2 24 h after each injection. Values represent Mean \pm SD from four mice per
314 group.

315

316

317 **Figure 7-figure supplement 2.** The abundance of FAP- α + cells in 231 (left) and 231-FAP
318 tumors (right) studied by flow cytometry.

319

320 **Discussion**

321

322 We identified an increase of FAP- α + CAFs in human breast cancer tissue compared to adjacent
323 normal tissue, and an induction of FAP- α in HMFs co-cultured with breast cancer cells
324 consistent with earlier studies that have detected an increase of FAP- α in breast cancer (Puré &
325 Blomberg, 2018).

326 Two human cancer cell lines (MDA-MB-231 and HT-1080) and the murine fibroblast cell line,
327 NIH-3T3, were engineered to overexpress FAP- α . Using the engineered cells, we evaluated
328 several anti-FAP- α antibodies to ultimately select AF3715 based on its high affinity with both
329 human and mouse FAP- α . The human and mouse cross-reactivity was important because CAFs
330 in the mouse models are of mouse origin. To the best of our knowledge, our work is the first
331 example of NIR-PIT using human/mouse FAP- α cross-reactive antibody.

332

333 We found that the effectiveness and specificity of NIR-PIT depended upon the number of
334 antibody conjugates bound to the target that was mainly determined by two factors: the affinity
335 of the antibody conjugate, and the expression level of the target at the cell surface. CAF35 and
336 PCAFs had lower expression of FAP- α than 231-FAP and HT-1080-FAP cells in terms of
337 mRNA and surface protein levels, and therefore required correspondingly higher concentration
338 of FAP- α -IR700 to achieve comparable cell death. EC50 values of FAP- α -IR700-PIT in 231-
339 FAP and HT-1080-FAP cells at 8 J/cm² were \sim 0.1 μ g/ml, while the values with CAF35 and
340 PCAFs were approximately 1 and 5 μ g/ml, respectively.

341

342 IR700 provided both imaging and therapeutic abilities. Detection of FAP- α -IR700 with NIR
343 fluorescence imaging allowed noninvasive imaging of the biodistribution within the body, and

344 detection of tumor delivery and retention, to optimally time exposure of the tumor to therapeutic
345 light. In bilaterally inoculated wild-type and FAP- α overexpressing tumors, NIR fluorescence
346 imaging clearly identified increased retention of FAP- α -IR700 in FAP- α overexpressing tumors
347 compared to the corresponding wild-type tumors. By normalizing the fluorescence intensity to
348 the weight and injected dose, we also observed increased retention of FAP- α -IR700 uptake in
349 wild-type MDA-MB-231 and HT-1080 tumors compared to the retention of IgG-IR700,
350 confirming the ability of FAP- α -IR700 driven fluorescence to detect endogenous FAP- α + murine
351 CAFs.

352
353 FAP- α -based-PIT has been previously performed with human esophageal squamous fibroblasts
354 expressing FAP- α (Watanabe et al., 2019). Different from our studies, fibroblasts were first pre-
355 incubated with the antibody conjugate and then inoculated together with cancer cells. NIR-PIT
356 was given immediately following inoculation before the tumor was established. The same model
357 system was used in a recent study to demonstrate that FAP- α -targeted NIR-PIT reduced
358 therapeutic resistance to 5-fluorouracil in CAF co-inoculated human esophageal tumors (Katsume
359 et al., 2021). While these previous studies provided valuable information, one study indicates
360 that immunofluorescence from co-inoculated CAFs disappeared within 13 days, highlighting a
361 limitation of this strategy for investigating established tumors (Fabris et al., 2010). In addition,
362 the antibody conjugate in these studies exhibited a lower potency *in vitro*, with 20 μ g/ml of the
363 antibody conjugate at 15 J/cm² resulting in a 58.9% reduction in viability of CAFs. In our study,
364 we achieved 95% and 70% reduction in viability of CAF35 cells PCAFs, respectively with 5
365 μ g/ml of the antibody conjugate at 8 J/cm².

366

367 IHC and immunoblotting detected a decrease of endogenous FAP- α + CAFs with FAP- α -IR700-
368 PIT, although wild type tumor growth was not affected. This was anticipated, in part, since FAP-
369 α + CAFs mainly play an important role in immunosuppression (Cremasco et al., 2018; Kieffer et
370 al., 2020; Kraman et al., 2010; Yang et al., 2016; Zhang & Ertl, 2016). Our data are consistent
371 with an earlier study performed with FAP- α targeted nanoparticle-based phototherapy of 4T1
372 syngeneic tumors in immunocompetent mice (Zhen et al., 2017). In this study the suppression of
373 tumor growth was attributed to a significant increase of CD8+ T cells. Our studies were
374 performed with human tumor xenografts in immune suppressed mice that lack T cells.

375

376 Since FAP- α -targeted depletion by NIR-PIT has the potential to combat immunosuppression and
377 activate systemic anti-tumor immunity in primary tumors, distant metastatic tumors not exposed
378 to PIT may also come under immune surveillance. Future studies should evaluate FAP- α -specific
379 NIR-PIT in syngeneic mouse models either singly or in combination with cancer immunotherapy
380 with immune checkpoint inhibitors, to achieve effective primary and metastatic tumor control.

381 Since CAFs actively modulate the ECM, angiogenesis, and cell migration and growth, our FAP-
382 α -based NIR-PIT can be combined with conventional cancer cell-centric therapies to halt tumor
383 progression and overcome drug resistance. One major limitation of PIT is that NIR light at 690
384 nm can penetrate and treat cancers at a depth of approximately 1 cm. Applying NIR-PIT in an
385 intra-operative setting or by using interstitial NIR light delivered through fiber-optic diffusers
386 inside catheter needles (Okuyama et al., 2018) or endoscopes (Nagaya et al., 2018), can expand
387 applications in treating deep-seated tumors and metastatic lesions.

388

389 While we did not evaluate toxicity in mice, in cell culture studies we clearly observed that the

390 binding of FAP- α -IR700 to FAP- α expressing cells did not induce cytotoxicity. Cell death only
391 occurred when these cells were exposed to light. Because we localized light exposure only to the
392 tumor, cells outside of the tumor with FAP- α expression were not affected. This is different from
393 approaches mentioned in the introduction where the FAP- α cytotoxic cargo is delivered
394 systemically and targets all FAP- α expressing cells.

395 In conclusion, FAP- α -targeted NIR-PIT provides a novel and specific approach for eliminating
396 FAP- α expressing CAFs in studies designed to understand the impact of these CAFs in tumor
397 immune surveillance and progression. With increased availability of intra-operative or catheter-
398 based light delivery and detection systems, the translation of this approach can provide a
399 treatment strategy against a ubiquitous target to use in combination with immune checkpoint
400 inhibitors for cancer treatment. The availability of FAP- α -PIT may also find uses in debilitating
401 diseases such as fibrosis and arthritis.

402

403 **Materials and Methods**

404

405 **Reagents:** Water soluble phthalocyanine dye, IRDye 700DX NHS ester (IR700), was obtained
406 from Li-Cor Bioscience (Lincoln, NE, USA). Anti-FAP- α polyclonal sheep antibody, AF3715,
407 monoclonal mouse antibody, MAB3715, and monoclonal rat antibody, MAB9729 were
408 purchased from R&D systems (Minneapolis, MN, USA). Anti-FAP- α monoclonal mouse
409 antibody BMS168 was purchased from eBioscience (San Diego, CA, USA). Anti-FAP- α
410 antibodies, ab137549, ab218164, ab28244, ab53066, ab207178, and ab227703 were purchased
411 from abcam (Cambridge, MA, USA). Anti-FAP- α polyclonal rabbit antibody, PA5-51057 and
412 sheep IgG isotype control (Cat. No. 31243) were purchased from Thermo Fisher Scientific

413 (Waltham, MA, USA).

414

415 **Cloning and lentivirus production:** The lentiviral vector pMA3211 was purchased from
416 Addgene (Watertown, MA, USA). Cloning was outsourced to GenScript (Piscataway, NJ, USA).

417 In brief, a PGK promoter was synthesized to replace the original TRE-Tight promoter via
418 XhoI/SalI. Human FAP- α (Accession No. NM_004460) or murine FAP- α cDNA (Accession No.
419 NM_007986.3) was synthesized and inserted into pMA3211 via SalI/NotI.

420 Lentivirus was produced and harvested according to our previously published method (Balaji
421 Krishnamachary et al., 2009). Viral supernatants were derived by transient co-transfection of
422 293T (6×10^6 in 100 mm³ petri-plates) cells using lipofectamine 2000 (Thermo Fisher Scientific).
423 A total of 19.5 μ g of plasmid in the proportion of 12 μ g of lentiviral plasmid carrying
424 human/murine FAP- α cDNA, 6 μ g of packaging plasmid pCMV Δ R8.2 and 1.5 μ g of pCMV-
425 VSVG was used, and viral supernatant collected at 48, 72 and 96 h post-transfection. Pooled
426 supernatants were concentrated using an Amicon Ultra-15 (100 K cutoff) filter device
427 (Millipore).

428

429 **Cell transduction and sorting:** For lentiviral transduction, 2×10^6 MDA-MB-231 or HT-1080
430 cells were plated onto 100 mm³ dishes and 5 ml of 10X concentrated viral supernatant with 1
431 mg/ml of polybrene was added for 4-5 h. This procedure was repeated for three days. Cells were
432 maintained in culture medium containing 4 μ g/ml of puromycin for selection. To sort out high
433 FAP- α expressing cells, 4×10^7 puromycin-selected cells were first incubated with 40 μ g of
434 AF3715, and then stained with phycoerythrin (PE)-conjugated anti-sheep secondary antibody
435 IgG (F0126, R&D systems). Cell sorting was conducted on a BD FACSaria IIu cell sorter

436 (Franklin Lakes, NJ, USA), and cells with the highest 90% of PE signal were collected. The
437 sorted FAP- α overexpressing MDA-MB-231 and HT-1080 cells were denoted as 231-FAP, and
438 HT-1080-FAP, respectively. NIH/3T3 fibroblasts were lentivirally transduced with murine FAP-
439 α using the same protocol but without flow sorting. Murine FAP- α overexpressing fibroblasts
440 were denoted as 3T3-FAP.

441 **Cells:** MDA-MB-231 human breast cancer cells (notated here as 231 cells), HT-1080 human
442 fibrosarcoma cells, and NIH/3T3 murine fibroblasts were purchased from American Type
443 Culture Collection (ATCC, Manassas, VA, USA). Human mammary fibroblasts (HMFs) were
444 kindly provided by Dr. Gary Luker, University of Michigan-Ann Arbor. Patient-derived prostate
445 CAFs (PCAFs) were purchased from Asterand (Detroit, MI, USA). CAF35, a primary culture of
446 stromal fibroblasts established from surgically resected pancreatic cancer tissue, was a generous
447 gift from Drs. William Matsui and Asma Begum, Johns Hopkins University School of Medicine.
448 FAP- α overexpressing human cancer cells (notated as 231-FAP or HT-1080 FAP) or murine
449 NIH-3T3 fibroblasts (notated as 3T3-FAP) were lentivirally transduced using a lentiviral vector
450 pMA3211 containing human or murine FAP- α cDNA, with a pGK promoter and a puromycin
451 resistance gene as previously described (B. Krishnamachary et al., 2020).

452 All cells were cultured in DMEM medium supplemented with 10% FBS (Sigma, St. Louis, MO,
453 USA). Cells were maintained at 37 °C in a humidified atmosphere containing 5% CO₂.

454

455 **Synthesis of IR700-conjugated antibodies and concentration determination:** The synthesis
456 of IR700-conjugated antibodies was performed as previously described (Jin et al., 2016). Briefly,
457 1 mg of AF3715 was first dispersed in 1 ml of 1x PBS containing 159.2 μ g of IR700 (81.6 nmol,
458 1 mM in DMSO). The mixture was maintained overnight at 4 °C, and then loaded onto Amicon

459 Ultra-0.5 (10K cutoff) filter units (Millipore, Burlington, MA, USA) to remove the unbound
460 IR700 molecules. The purified and concentrated conjugate (FAP- α -IR700) was sterilized by
461 filtering through 0.2 μ m membranes. Sheep IgG isotype control was similarly conjugated with
462 IR700, and the conjugate was denoted as IgG-IR700. The concentration of antibody and
463 dye/protein ratio was calculated by measuring the absorbance at 280 nm ($\epsilon_{\text{antibody}} = 210,000 \text{ M}^{-1}$
464 cm^{-1}) and 689 nm ($\epsilon_{\text{IR700}} = 165,000 \text{ M}^{-1}\text{cm}^{-1}$). The correction factor of IR700 at 280 nm was
465 0.095.

466

467 **RNA isolation, cDNA synthesis, and quantitative reverse transcription polymerase chain
468 reaction (qRT-PCR):** Total RNA was isolated from cells using QIAshredder and RNeasy mini
469 kits (Qiagen, Hilden, Germany). cDNA was prepared from 1 μ g of RNA using iScript cDNA
470 synthesis kit (Bio-Rad, Hercules, CA, USA). cDNA samples were diluted 1:10 and real-time
471 PCR was performed using IQ SYBR Green supermix and gene-specific primers in the iCycler
472 real-time PCR detection system (Bio-Rad). The Hs-FAP- α primer was designed by using
473 Primer3Plus, and the Mm-FAP- α primer using previously published data (Fan et al., 2016). The
474 expression of target RNA relative to the house-keeping gene hypoxanthine
475 phosphoribosyltransferase 1 (HPRT1) for human cells was calculated based on the threshold
476 cycle (Ct) as $R = 2^{-\Delta(\Delta\text{Ct})}$, where $\Delta\text{Ct} = \text{Ct}_{\text{target}} - \text{Ct}_{\text{HPRT1}}$, $\Delta(\Delta\text{Ct}) = \Delta\text{Ct}_{\text{target}} - \Delta\text{Ct}_{\text{wild type}}$. For
477 mouse cells, fold expression was calculated relative to 18s RNA expression.

478

479 **Flow cytometry:** Cells were detached using TrypLE (Thermo Fisher Scientific). Freshly
480 resected tumor tissue was dissociated into single cell suspensions using a tumor dissociation kit
481 (130-096-730, Miltenyi Biotec, Auburn, CA, USA) according to the manufacturer's protocol.

482 Cells were then dispersed at 1×10^6 per 100 μ l of FACS buffer made with 1x PBS supplemented
483 with 1% BSA and 2 mM EDTA. For FAP- α staining, cells were incubated on ice for 30 min with
484 1 μ g of AF3715. Polyclonal sheep IgG was used as control. After a single wash, cells were re-
485 suspended in 100 μ l of FACS buffer and incubated with 10 μ l of PE-conjugated anti-sheep IgG
486 secondary antibody (F0126, R&D systems) for 30 min on ice. For tumor-dissociated cells, prior
487 to incubation with primary antibody, rat anti-mouse CD16/32 antibody (clone 2.4G2, BD
488 PharmingenTM, San Diego, CA, USA) was added for Fc blocking. LIVE/DEADTM Fixable Dead
489 Cell Stain Kit (Thermo Fisher Scientific) was used after incubation with secondary antibody to
490 identify and distinguish live cells from dead cells. Flow cytometry was conducted on a FACS
491 Calibur (BD Bioscience, Franklin Lakes, NJ, USA) and analyzed by FlowJo software (FLOWJO,
492 Ashland, OR, USA).

493

494 **Co-culture study:** HMFs at a density of $8 \times 10^4/3$ ml were plated in each well of a 6-well
495 companion plate (Corning, Corning, NY, USA), and MDA-MB-231 cells at a density of 8×10^4
496 cells/2 ml were seeded in each FalconTM cell culture insert containing a 0.4 μ m transparent
497 polyester (PET) membrane (Corning). After a 3-day incubation, the HMFs were detached, re-
498 seeded at a density of $8 \times 10^4/3$ ml and co-cultured for a further 3 days with fresh MDA-MB-231
499 cells at a density of 8×10^4 cells/2 ml. Following the second 3-day incubation, HMFs were
500 collected for FAP- α and α -SMA immunostaining. FAP- α immunostaining was performed
501 following the procedure detailed earlier for flow cytometry except for using Per-Cp conjugated
502 anti-sheep IgG as secondary antibody. For α -SMA staining, HMFs were first fixed with 4% PFA
503 and permeabilized by 0.4% Triton X-100. Immunostaining was performed with anti- α -SMA
504 polyclonal rabbit antibody (ab5694, abcam) or rabbit IgG isotype control followed by staining

505 with APC-conjugated anti-rabbit IgG secondary antibody (F0111, R&D systems).

506

507 **Confocal microscopy:** Wild-type and FAP- α overexpressing cells were seeded in an 8-well Lab-
508 Tek II chamber slide (Nalge Nunc, Rochester, NY, USA) at a density of 10,000 cells/well
509 overnight, and incubated with FAP- α -IR700 or IgG-IR700 at a concentration of 5 μ g/ml for 1 h
510 at 37 °C. To investigate competition binding, a five-fold excess of AF3715 (5 μ g/ml) was added
511 to a separate set of wells 15 min prior to adding FAP- α -IR700. After a single wash, cells were
512 fixed with 4% PFA and imaged with a laser scanning confocal microscope (Zeiss LSM 510-Meta,
513 Carl Zeiss Microscopy GmbH, Jena, Germany). The red laser at 633 nm was used to excite
514 IR700, and the receiving PMT channel was set at 680~700 nm. The IR700 fluorescence was
515 displayed in pseudo magenta color. All the images were obtained under identical microscope
516 settings.

517

518 **Immunoblot assay:** Cells or homogenized tumor tissue were lysed in radioimmune precipitation
519 (RIPA, Sigma) buffer and measured by a BCA assay (Pierce) for protein concentration. Cell
520 lysate at 100 μ g of protein in 1x loading buffer with β -mercaptoethanol was boiled for 50 min
521 at 95 °C. Denatured protein was later resolved by SDS-PAGE and transferred to a nitrocellulose
522 membrane. A recombinant anti-FAP- α monoclonal rabbit antibody ab207178 (clone EPR20021,
523 abcam) was used to probe human/murine FAP- α . GAPDH or Actin was used as loading control.

524

525 **Cell viability:** The specificity and effectiveness of FAP- α -IR700-PIT were evaluated using cell
526 viability assays. In a typical assay, cells were seeded overnight in 96-well plates at a density of
527 five thousand cells/well. Cells were further incubated for 1 h at 37 °C in medium containing

528 either FAP- α -IR700 or IgG-IR700 or AF3715. After carefully aspirating the medium and
529 replenishing with fresh media, cells were exposed to light using a light emitting diode (LED,
530 Marubeni, Tokyo, Japan) that provided continuous NIR irradiation at 690 nm. The power of the
531 light exposure was measured by an optical power meter (PM 100, Thorlabs, Newton, NJ, USA).
532 Immediately after NIR light exposure, 10 μ l of CCK-8 reagent (Dojindo, Mashiki, Japan) was
533 added to each well for 3 h and the absorbance at 450 nm was measured on an EpochTM
534 Microplate Spectrophotometer (Biotek, Winooski, VT, USA). Cytotoxicity data were expressed
535 as mean \pm standard derivation (SD) from at least triplicate wells. In studies characterizing
536 antibody concentration or light-dose dependency, the concentration of FAP- α -IR700 was varied
537 from 0.1 to 5 μ g/ml or light intensity was varied from 2 to 8 J/cm². The specificity of FAP- α -
538 IR700-mediated phototoxicity in comparison with wild-type MDA-MB-231 and HT-1080 cells,
539 or unconjugated AF3715 antibody or IgG-IR700 was established. In a separate study, plates with
540 cells were wrapped in aluminum foil to evaluate effects without light exposure. The effect of
541 competitive inhibition was also examined by adding 5x AF3715 15 minutes prior to FAP- α -
542 IR700.

543
544 **Tumor models:** Animal studies were conducted in accordance with approved protocols. Six- to
545 eight-week-old female athymic Balb/c (nu/nu) mice were purchased from Charles River
546 (Wilmington, MA, USA). Tumor xenografts from the cancer cell lines were established
547 bilaterally by inoculating 1×10^6 cancer cells in 0.1 ml of Hanks balanced salt solution in the
548 second mammary fat pad for 231 and 231-FAP tumors or in the flank for HT-1080 and HT-
549 1080-FAP tumors.

550

551 ***In vivo, ex vivo* fluorescence imaging and biodistribution:** NIR fluorescence imaging was
552 performed on a Li-Cor Pearl® Impulse imager (LI-COR Biosciences). Mice bearing bilateral 231
553 and 231-FAP tumors (n = 4 per group) or HT-1080 and HT-1080-FAP tumors (n = 3 per group),
554 were imaged once tumor volume reached 100 mm³. Next, 50 µg of FAP-α-IR700 or IgG-IR700
555 was injected intravenously (*i.v.*) through the tail vein, and fluorescence images were obtained
556 over a 24 h period at 0, 1 h, 6 h, 24 h post-injection (*p.i.*). At 24 h *p.i.*, mice were sacrificed, and
557 major organs and tumors were resected for *ex vivo* imaging. Images were acquired under
558 identical experimental conditions. Regions of interest were drawn on *ex vivo* images and
559 analyzed by Pearl Impulse software (Li-Cor Biosciences) to determine fluorescence intensity.
560 Bio-distribution values were normalized to the weight as % injected dose/g (%ID/g) from three
561 or four mice per group (n = 3 or 4), using a calibration curve of intensity *versus* blood FAP-α-
562 IR700 concentration.

563

564 ***In vivo* PIT:** Once tumor volumes reached approximately 100 mm³, tumor-bearing mice were
565 randomly assigned to three groups (n = 4 per group) based on the different injections: (i) PBS; (ii)
566 FAP-α-IR700; (iii) IgG-IR700. Next, 100 µg of antibody conjugate or 100 µl of PBS were
567 injected *i.v.* into each mouse on day 0 and again on day 7. NIR light exposure at a power of 200
568 J/cm² was given at 24 h *p.i.* Caliper measurements of tumor volumes were obtained over a 2-
569 week period on Day 0, 3, 7, 10, and 14, following which mice were euthanized and the tumors
570 excised for immunohistochemistry (IHC), hematoxylin and eosin (H&E) staining, and western
571 blot analysis.

572

573 **Immunohistochemistry:** Human breast cancer tissue microarrays (TMAs, BR243k) from 6

574 cases of breast invasive ductal carcinoma (two cores per group) with matched adjacent breast
575 tissue (two cores per group) were purchased from US Biomax (Derwood, MD, USA). The TNM
576 stage and grade of 6 cases were TisN0M0 and grade 1 for cores A1 and A2, T2N2M0 and grade
577 2 for cores A5 and A6, T3N0M0 and grade 2 for cores B1 and B2, T2N2M0 and grade 3 for
578 cores B5 and B6, T2N0M0 and grade 2 for cores C1 and C2, T2N0M0 and grade 3 for cores C5
579 and C6. TMA slides were immunostained for FAP- α according to standard IHC protocols.

580

581 Five-micron tumor sections obtained from formalin fixed paraffin embedded xenografts were
582 stained with H&E, and for FAP- α according to standard IHC protocols. Antigen retrieval was
583 performed by boiling the slides in citric buffer at pH 6 for 50 minutes. Anti-FAP- α antibody,
584 ab207178 (abcam, 1:300 dilution) was used for immunostaining both human and murine FAP- α .
585 Slides were digitally scanned at 20X magnification and analyzed by Aperio ImageScope
586 software (Leica Biosystems, Richmond, IL, USA).

587

588 **Statistical analysis:** Data were expressed as mean \pm SD from three or more samples or three or
589 more mice. Statistical analysis was performed with a two-sided student t-test (Microsoft Excel,
590 Redmond, WA, USA), assuming unequal variance. Values of $P \leq 0.05$ were considered
591 significant, unless otherwise stated.

592

593 **Supporting information**

594

595 **Supplementary files:** Supplementary Table 1-Source Data Files.

596

597 **Acknowledgements**

598

599 We thank Drs. William Matsui and Asma Begum for generously providing CAF35 cells. We
600 thank Mr. G. Cromwell for his valuable technical assistance. We thank Dr. K. M. Horton for her
601 support.

602 **References**

603 Cremasco, V., Astarita, J. L., Grauel, A. L., Keerthivasan, S., MacIsaac, K., Woodruff, M. C., . . .
604 Turley, S. J. (2018). FAP Delineates Heterogeneous and Functionally Divergent Stromal
605 Cells in Immune-Excluded Breast Tumors. *Cancer immunology research*, 6(12), 1472-
606 1485. doi:10.1158/2326-6066.Cir-18-0098

607 de Sostoa, J., Fajardo, C. A., Moreno, R., Ramos, M. D., Farrera-Sal, M., & Alemany, R. (2019).
608 Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation
609 protein-targeted bispecific T-cell engager. *J Immunother Cancer*, 7(1), 19.
610 doi:10.1186/s40425-019-0505-4

611 Dorst, D. N., Rijpkema, M., Boss, M., Walgreen, B., Helsen, M. M. A., Bos, D. L., . . . Buitinga,
612 M. (2020). Targeted photodynamic therapy selectively kills activated fibroblasts in
613 experimental arthritis. *Rheumatology*, 59(12), 3952-3960.
614 doi:10.1093/rheumatology/keaa295

615 Eager, R. M., Cunningham, C. C., Senzer, N., Richards, D. A., Raju, R. N., Jones, B., . . .
616 Nemunaitis, J. (2009). Phase II trial of talabostat and docetaxel in advanced non-small
617 cell lung cancer. *Clin Oncol (R Coll Radiol)*, 21(6), 464-472.
618 doi:10.1016/j.clon.2009.04.007

619 Eager, R. M., Cunningham, C. C., Senzer, N. N., Stephenson, J., Jr., Anthony, S. P., O'Day, S.
620 J., . . . Nemunaitis, J. (2009). Phase II assessment of talabostat and cisplatin in second-
621 line stage IV melanoma. *BMC Cancer*, 9, 263. doi:10.1186/1471-2407-9-263

622 Fabris, V. T., Sahores, A., Vanzulli, S. I., Colombo, L., Molinolo, A. A., Lanari, C., & Lamb, C.
623 A. (2010). Inoculated mammary carcinoma-associated fibroblasts: contribution to
624 hormone independent tumor growth. *BMC Cancer*, 10, 293. doi:10.1186/1471-2407-10-
625 293

626 Fan, M.-H., Zhu, Q., Li, H.-H., Ra, H.-J., Majumdar, S., Gulick, D. L., . . . Puré, E. (2016).
627 Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance
628 from Lungs in Mice. *Journal of Biological Chemistry*, 291(15), 8070-8089.
629 doi:10.1074/jbc.M115.701433

630 Fang, J., Xiao, L., Joo, K.-I., Liu, Y., Zhang, C., Liu, S., . . . Wang, P. (2016). A potent
631 immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice.
632 *International Journal of Cancer*, 138(4), 1013-1023. doi:10.1002/ijc.29831

633 Fitzgerald, A. A., & Weiner, L. M. (2020). The role of fibroblast activation protein in health and
634 malignancy. *Cancer Metastasis Rev*, 39(3), 783-803. doi:10.1007/s10555-020-09909-3

635 Hofheinz, R. D., al-Batran, S. E., Hartmann, F., Hartung, G., Jäger, D., Renner, C., . . . Stehle, G.
636 (2003). Stromal antigen targeting by a humanised monoclonal antibody: an early phase II

637 trial of sibrotuzumab in patients with metastatic colorectal cancer. *Onkologie*, 26(1), 44-
638 48. doi:10.1159/000069863

639 Jin, J., Krishnamachary, B., Mironchik, Y., Kobayashi, H., & Bhujwalla, Z. M. (2016).
640 Phototheranostics of CD44-positive cell populations in triple negative breast cancer.
641 *Scientific reports*, 6, 27871-27871. doi:10.1038/srep27871

642 Kakarla, S., Chow, K. K. H., Mata, M., Shaffer, D. R., Song, X.-T., Wu, M.-F., . . . Gottschalk, S.
643 (2013). Antitumor effects of chimeric receptor engineered human T cells directed to
644 tumor stroma. *Molecular therapy : the journal of the American Society of Gene Therapy*,
645 21(8), 1611-1620. doi:10.1038/mt.2013.110

646 Katsube, R., Noma, K., Ohara, T., Nishiwaki, N., Kobayashi, T., Komoto, S., . . . Fujiwara, T.
647 (2021). Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR
648 PIT) overcomes therapeutic resistance in human esophageal cancer. *Scientific reports*,
649 11(1), 1693. doi:10.1038/s41598-021-81465-4

650 Kieffer, Y., Hocine, H. R., Gentric, G., Pelon, F., Bernard, C., Bourachot, B., . . . Mechta-
651 Grigoriou, F. (2020). Single-Cell Analysis Reveals Fibroblast Clusters Linked to
652 Immunotherapy Resistance in Cancer. *Cancer Discovery*, 10(9), 1330-1351.
653 doi:10.1158/2159-8290.Cd-19-1384

654 Kobayashi, H., & Choyke, P. L. (2019). Near-Infrared Photoimmunotherapy of Cancer. *Acc
655 Chem Res*, 52(8), 2332-2339. doi:10.1021/acs.accounts.9b00273

656 Kraman, M., Bambrough, P. J., Arnold, J. N., Roberts, E. W., Magiera, L., Jones, J. O., . . .
657 Fearon, D. T. (2010). Suppression of Antitumor Immunity by Stromal Cells Expressing
658 Fibroblast Activation Protein- α . *Science*, 330(6005), 827-830.
659 doi:10.1126/science.1195300

660 Krishnamachary, B., Glunde, K., Wildes, F., Mori, N., Takagi, T., Raman, V., & Bhujwalla, Z.
661 M. (2009). Noninvasive Detection of Lentiviral-Mediated Choline Kinase Targeting in a
662 Human Breast Cancer Xenograft. *Cancer research*, 69(8), 3464. doi:10.1158/0008-
663 5472.CAN-08-4120

664 Krishnamachary, B., Mironchik, Y., Jacob, D., Goggins, E., Kakkad, S., Ofori, F., . . . Bhujwalla,
665 Z. M. (2020). Hypoxia theranostics of a human prostate cancer xenograft and the
666 resulting effects on the tumor microenvironment. *Neoplasia*, 22(12), 679-688.
667 doi:10.1016/j.neo.2020.10.001

668 Lo, A., Wang, L.-C. S., Scholler, J., Monslow, J., Avery, D., Newick, K., . . . Puré, E. (2015).
669 Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells.
670 *Cancer research*, 75(14), 2800-2810. doi:10.1158/0008-5472.CAN-14-3041

671 Loeffler, M., Krüger, J. A., Niethammer, A. G., & Reisfeld, R. A. (2006). Targeting tumor-
672 associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug
673 uptake. *The Journal of clinical investigation*, 116(7), 1955-1962. doi:10.1172/JCI26532

674 Mitsunaga, M., Ogawa, M., Kosaka, N., Rosenblum, L. T., Choyke, P. L., & Kobayashi, H.
675 (2011). Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific
676 membrane molecules. *Nature medicine*, 17(12), 1685-1691. doi:10.1038/nm.2554

677 Nagaya, T., Okuyama, S., Ogata, F., Maruoka, Y., Choyke, P. L., & Kobayashi, H. (2018).
678 Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal
679 dissemination of gastric cancer. *Cancer science*, 109(6), 1902-1908.
680 doi:10.1111/cas.13621

681 Narra, K., Mullins, S. R., Lee, H. O., Strzemkowski-Brun, B., Magalang, K., Christiansen, V.
682 J., . . . Cheng, J. D. (2007). Phase II trial of single agent Val-boroPro (Talabostat)

683 inhibiting Fibroblast Activation Protein in patients with metastatic colorectal cancer.
684 *Cancer Biol Ther*, 6(11), 1691-1699. doi:10.4161/cbt.6.11.4874

685 Niedermeyer, J., Garin-Chesa, P., Kriz, M., Hilberg, F., Mueller, E., Bamberger, U., . . . Schnapp,
686 A. (2001). Expression of the fibroblast activation protein during mouse embryo
687 development. *Int J Dev Biol*, 45(2), 445-447.

688 Okuyama, S., Nagaya, T., Sato, K., Ogata, F., Maruoka, Y., Choyke, P. L., & Kobayashi, H.
689 (2018). Interstitial near-infrared photoimmunotherapy: effective treatment areas and light
690 doses needed for use with fiber optic diffusers. *Oncotarget*, 9(13), 11159-11169.
691 doi:10.18632/oncotarget.24329

692 Ostermann, E., Garin-Chesa, P., Heider, K. H., Kalat, M., Lamche, H., Puri, C., . . . Adolf, G. R.
693 (2008). Effective Immunoconjugate Therapy in Cancer Models Targeting a Serine
694 Protease of Tumor Fibroblasts. *Clinical Cancer Research*, 14(14), 4584.
695 doi:10.1158/1078-0432.CCR-07-5211

696 Pang, T., Wang, X., Gao, J., Chen, W., Shen, X. J., Nie, M. M., . . . Xue, X. C. (2017). Fiber-
697 modified hexon-chimeric oncolytic adenovirus targeting cancer associated fibroblasts
698 inhibits tumor growth in gastric carcinoma. *Oncotarget*, 8(44), 76468-76478.
699 doi:10.18632/oncotarget.20273

700 Prakash, J. (2016). Cancer-Associated Fibroblasts: Perspectives in Cancer Therapy. *Trends
701 Cancer*, 2(6), 277-279. doi:10.1016/j.trecan.2016.04.005

702 Puré, E., & Blomberg, R. (2018). Pro-tumorigenic roles of fibroblast activation protein in cancer:
703 back to the basics. *Oncogene*, 37(32), 4343-4357. doi:10.1038/s41388-018-0275-3

704 Sato, K., Ando, K., Okuyama, S., Moriguchi, S., Ogura, T., Totoki, S., . . . Kobayashi, H. (2018).
705 Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with
706 Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared
707 Photoimmunotherapy. *ACS central science*, 4(11), 1559-1569.
708 doi:10.1021/acscentsci.8b00565

709 Sato, K., Sato, N., Xu, B., Nakamura, Y., Nagaya, T., Choyke, P. L., . . . Kobayashi, H. (2016).
710 Spatially selective depletion of tumor-associated regulatory T cells with near-infrared
711 photoimmunotherapy. *Sci Transl Med*, 8(352), 352ra110.
712 doi:10.1126/scitranslmed.aaf6843

713 Scott, A. M., Wiseman, G., Welt, S., Adjei, A., Lee, F. T., Hopkins, W., . . . Old, L. J. (2003). A
714 Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic
715 fibroblast activation protein-positive cancer. *Clin Cancer Res*, 9(5), 1639-1647.

716 Tran, E., Chinnasamy, D., Yu, Z., Morgan, R. A., Lee, C.-C. R., Restifo, N. P., & Rosenberg, S.
717 A. (2013). Immune targeting of fibroblast activation protein triggers recognition of
718 multipotent bone marrow stromal cells and cachexia. *The Journal of experimental
719 medicine*, 210(6), 1125-1135. doi:10.1084/jem.20130110

720 Wang, L.-C. S., Lo, A., Scholler, J., Sun, J., Majumdar, R. S., Kapoor, V., . . . Albelda, S. M.
721 (2014). Targeting fibroblast activation protein in tumor stroma with chimeric antigen
722 receptor T cells can inhibit tumor growth and augment host immunity without severe
723 toxicity. *Cancer immunology research*, 2(2), 154-166. doi:10.1158/2326-6066.CIR-13-
724 0027

725 Watabe, T., Liu, Y., Kaneda-Nakashima, K., Shirakami, Y., Lindner, T., Ooe, K., . . . Hatazawa,
726 J. (2020). Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma:
727 (64)Cu- and (225)Ac-Labeled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models. *J
728 Nucl Med*, 61(4), 563-569. doi:10.2967/jnumed.119.233122

729 Watanabe, S., Noma, K., Ohara, T., Kashima, H., Sato, H., Kato, T., . . . Fujiwara, T. (2019).
730 Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation
731 protein in human esophageal squamous cell carcinoma. *Cancer Biology & Therapy*, 20(9),
732 1234-1248. doi:10.1080/15384047.2019.1617566

733 Xia, Q., Zhang, F. F., Geng, F., Liu, C. L., Wang, Y. Q., Xu, P., . . . Zhang, H. H. (2016).
734 Improvement of anti-tumor immunity of fibroblast activation protein α based vaccines by
735 combination with cyclophosphamide in a murine model of breast cancer. *Cell Immunol*,
736 310, 89-98. doi:10.1016/j.cellimm.2016.08.006

737 Yang, X., Lin, Y., Shi, Y., Li, B., Liu, W., Yin, W., . . . He, R. (2016). FAP Promotes
738 Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment
739 via STAT3-CCL2 Signaling. *Cancer research*, 76(14), 4124-4135. doi:10.1158/0008-
740 5472.Can-15-2973

741 Zhang, Y., & Ertl, H. C. J. (2016). Depletion of FAP+ cells reduces immunosuppressive cells
742 and improves metabolism and functions CD8+T cells within tumors. *Oncotarget*, 7(17),
743 23282-23299. doi:10.18632/oncotarget.7818

744 Zhen, Z., Tang, W., Wang, M., Zhou, S., Wang, H., Wu, Z., . . . Xie, J. (2017). Protein Nanocage
745 Mediated Fibroblast-Activation Protein Targeted Photoimmunotherapy To Enhance
746 Cytotoxic T Cell Infiltration and Tumor Control. *Nano Lett*, 17(2), 862-869.
747 doi:10.1021/acs.nanolett.6b04150