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Abstract 
 

Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous 
system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but 
serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and 
host behavior following recovery from apparently mild or subclinical infection is less well understood. 
Furthermore, though deficits in cognitive function are well-documented following recovery from 
neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been 
thoroughly explored. In our study, we performed transcriptomic profiling of primary neuron cultures 
following ZIKV infection, which revealed altered expression of key genes associated with major 
psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis 
also revealed significant changes in gene expression associated with fundamental neurobiological 
processes, including neuronal development, neurotransmission, and others. These alterations to 
neurologic gene expression were also observed in the brain in vivo using an immunocompetent mouse 
model of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory 
mechanism controlling ZIKV-induced changes to neurologic gene expression. Our studies reveal that 
cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional 
profiles, highlighting the need to further explore associations between ZIKV infection and disordered host 
behavioral states.  
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Introduction 
 
 Zika virus (ZIKV) is a mosquito-borne pathogen of global concern (1). Like many other members 
of the genus Flaviviridae, ZIKV is both neuroinvasive and neurotropic (2). Infection of the central nervous 
system has been linked to diverse clinical syndromes, including severe congenital neurodevelopmental 
abnormalities in infants following vertical infection in utero (3-5). Severe neurologic disease is less 
frequent in adults, though cases of encephalitis, myelitis, and, more commonly, peripheral neuropathy 
have been reported (2, 6). While research on ZIKV pathogenesis to date has heavily focused on severe 
neurologic disease, it remains unclear whether ZIKV accesses the central nervous system during mild 
and/or subclinical infection, though data from animal models suggest this is probable (7-9). Even in the 
case of established neuroinvasive infection, the long-term neurologic consequences that follow viral 
clearance and recovery remain poorly understood. However, recent evidence suggests that a range of 
potential neurologic sequalae may occur in the postinfectious brain, including changes to host behavior 
(10-13).  
 
 In particular, recovery from neuroinvasive infection by flaviviruses, including ZIKV, has been 
associated with neurocognitive deficits (14-17). These effects have been attributed in part to the activities 
of immune cells, including both T cells and microglia, which act in concert to aberrantly prune neuronal 
synapses following flavivirus recovery (18-20). Flavivirus infection has also been shown to alter 
neurodevelopmental programs (21-24), including adult neurogenesis (25-27), a feature of flavivirus 
infection that contributes to altered learning and memory following recovery in rodent models (28). 
Cognitive decline, including persistent memory loss, is also a common occurrence in human patients 
recovering from flavivirus encephalitis (29-31).  
 
 Despite these insights into the cognitive consequences of flavivirus infection, the potential impact 
of these viruses on other behavioral domains remains relatively unexplored. The multifaceted impact of 
neurotropic flaviviruses on a diverse array of neurologic functions suggests that such infections may also 
promote or exacerbate neuropsychiatric conditions, including mood and psychotic disorders. Indeed, 
depression is another common behavioral symptom reported in patients recovering from flavivirus 
infection (32-34). Case reports have also documented the appearance of psychotic symptoms, including 
hallucinations, in adult patients infected with ZIKV (35, 36). However, the cellular and molecular 
mechanisms that underlie these effects remain unknown. In particular, the potential for ZIKV infection to 
impact host behavior due to cell intrinsic effects on neuronal gene expression has been relatively 
unexplored.  
 
 In this study, we examined how ZIKV infection in neurons impacted the expression of key 
neurologic genes that promote homeostatic neural function, as well as genes associated with disordered 
behavioral states. Transcriptomic profiling of primary cortical neurons following ZIKV infection revealed 
altered expression of a large number of genes associated with psychiatric disorders, including autism, 
depression, and schizophrenia. Moreover, unbiased gene ontology enrichment analysis revealed that 
ZIKV infection disproportionately impacted expression of genes associated with neurotransmission and 
neurodevelopment. These patterns of altered gene expression were also observed in vivo, using an 
established model of CNS ZIKV infection in immunocompetent mice. Observed changes in gene 
expression were due, at least in part, to innate cytokine signaling via tumor necrosis factor receptor-1 
(TNFR1). Our data describe a mechanism linking the cell intrinsic innate immune response to ZIKV with 
dysregulation of a diverse array of neurologic gene pathways, opening new avenues of inquiry into the 
effect of flavivirus infection on host behavior.  
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Materials and Methods  
 
Viruses  
 
ZIKV strain MR766 was originally provided by Dr. Andrew Oberst, University of Washington. Viral stocks 
were generated by infecting Vero cells (MOI 0.01) and harvesting supernatants at 72hpi. Viral titers of 
stocks were determined via plaque assay on Vero cells (ATCC, #CCL-81). Cells were maintained in 
DMEM (Corning #10-013-CV) supplemented with 10% Heat Inactivated FBS (Gemini Biosciences #100-
106), 1% Penicillin-Streptomycin-Glutamine (Gemini Biosciences #400-110), 1% Amphoteracin B 
(Gemini Biosciences #400-104), 1% Non Essential Amino Acids (Cytiva #SH30238.01), and 1% HEPES 
(Cytiva SH30237.01). Plaque assay basal media was 10X EMEM (Lonza # 12-684F) adjusted to 1X and 
supplemented with 2% Heat Inactivated FBS (Gemini Biosciences #100-106), 1% Penicillin-
Streptomycin-Glutamine (Gemini Biosciences #400-110), 1% Amphoteracin B (Gemini Biosciences 
#400-104), 1% Non Essential Amino Acids (Cytiva #SH30238.01), and 1% HEPES (Cytiva SH30237.01), 
0.75% Sodium Bicarbonate (VWR #BDH9280) and 0.5% Methyl Cellulose (VWR #K390). Plaque assays 
were developed 4dpi by removal of overlay media and staining/fixation using 10% neutral buffered 
formalin (VWR #89370) and 0.25% crystal violet (VWR #0528). 
 
Cell culture experiments 
 
Primary cerebral cortical neurons were generated using E15 embryos as described (37). Cells were 
maintained on cell culture treated multiwell dishes supplemented by coating with 20μg/mL Poly-L-Lysine 
(Sigma-Aldrich, #9155). Neurobasal Plus + B-27 supplement was used for all experiments (Thermo-
Fisher Scientific, #A3582901). All primary mouse cells were generated using pooled tissues derived from 
both male and female animals. For ZIKV infection experiments, primary neuron cultures were infected at 
an MOI of 0.1.  
 
Quantitative real-time PCR 
 
Total RNA from cultured cells was isolated with Qiagen RNeasy mini extraction kit (Qiagen, #74106) 
following the manufacturer’s protocol. RNA concentration was measured with a Quick Drop device 
(Molecular Devices). cDNA was subsequently synthesized with qScript cDNA Synthesis Kit (Quantabio, 
#95048). qPCR was performed with SYBR Green Master Mix (Applied Biosystems, #A25742) using a 
QuantStudio5 instrument (Applied Biosystems). Cycle threshold (CT) values for analyzed genes were 
normalized to CT values of the housekeeping gene 18S (CTTarget − CT18S = ΔCT). Data were further 
normalized to baseline control values (ΔCTexperimental − ΔCTcontrol = ΔΔCT). Primers were designed using 
Primer3 (https://bioinfo.ut.ee/primer3/) against murine genomic sequences. A list of primer sequences 
used in the study appear in Supplemental Table 1.  
 
Murine model of ZIKV infection 
 
C57BL/6J mice were bred in-house for all experiments. All animals were housed under pathogen-free 
conditions in the animal facilities in Nelson Biological Laboratories at Rutgers University. Both male and 
female mice were inoculated intracranially (10 µl) with 104 PFU of ZIKV, as described previously (8). 
ZIKV strain MR-766 was used in all experiments.  
 
Tissue preparation 
 
All tissues harvested from mice were extracted following extensive cardiac perfusion with 30 mL of sterile 
PBS. Extracted tissues were weighed and homogenized using 1.0 mm diameter zirconia/silica beads 
(Biospec Products, #11079110z ) in sterile PBS for ELISA (VWR #L0119) or TRI Reagent (Zymo, 
#R2050-1) for gene expression analysis. Homogenization was performed in an Omni Beadrupter Elite for 
2 sequential cycles of 20 seconds at a speed of 4 m/s. Total RNA was extracted using Zymo Direct-zol 
RNA Miniprep kit, as per manufacturer instructions (Zymo, #R2051). 
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ELISA 
 
A TNF-α sandwich ELISA kit (EBioscience, #MTA00B) was used for detection of cytokine levels in cell 
culture supernatants and brain tissue homogenates. Colorimetric reading of ELISA plates was performed 
with a microplate reader and Gen5 software (BioTek Instruments, Inc.). 
 
Neutralizing-antibody studies 
 
Neutralizing-antibody studies were performed after 30 minutes of pretreatment with purified anti-mouse 
TNFR1 (Invitrogen, # 16-1202-85) and anti-mouse IFNAR1 (Leinco, # I-400) antibodies. IgG isotype 
antibodies (eBioscience, # eBio299Arm; Leinco, # I-443) were used as controls. 
 
Curation of psychiatric disorder-associated gene list 
 
Genes associated with autism spectrum disorder (ASD) for our bioinformatics study were identified using 
the Sfari Gene database (https://gene.sfari.org) (38). The Sfari database includes a ranked list of genes 
with known associations to ASD. We included genes within the top 3 levels of evidential strength of 
association (syndromic, category 1, and category 2). All genes within this curation have at least two 
reported de novo likely-gene-disrupting mutations. We were unable to identify similar database resources 
for other psychiatric disorders. We thus assembled gene lists for additional disorders by consultation of 
recent and/or highly cited literature in these areas, including metanalyses and systematic reviews. More 
information about our gene list can be found in Supplemental Table 2.  
 
Bioinformatics and statistical analysis 
 
Secondary analysis of our previously published microarray dataset (accession # GSE122121) was 
performed in GEO2R and the GO Enrichment Analysis tool (geneontology.org). Biological pathways 
were defined using the PANTHER (Protein Analysis Through Evolutionary Relationships) classification 
system. Corrected p values (false discovery rate) were determined using the Benjamini & Hochberg 
procedure. For molecular biology assays, two-way analysis of variance (ANOVA) with Sidak’s correction 
for multiple comparisons was performed using GraphPad Prism Software v8 (GraphPad Software, San 
Diego, CA). P < 0.05 was considered statistically significant. Data points in all experiments represent 
biological replicates unless otherwise noted. 
 
 
Results 
 
 We first assessed whether ZIKV infection in neurons resulted in altered expression of genes 
associated with abnormal and/or disordered behavioral states. To do so, we first generated a list of 676 
genes that have been linked in previous studies to psychiatric disorders, including autism, attention 
deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder, and schizophrenia (39-
86) (Supplemental Table 2). This list of genes includes a combination of known risk genes as well as 
genes associated with behavioral abnormalities in each of the above human disorders and related animal 
models. While we stress that the list is not designed to be comprehensive or definitive, it serves as a 
starting point for probing the behavioral consequences of neuronal ZIKV infection. We assessed the 
impact of ZIKV infection on the expression of these genes using a dataset previously published by our 
group and others in which primary cortical neurons derived from C57BL/6J mice were infected with 0.01 
MOI ZIKV-MR766 (8). Gene expression in this study was profiled via microarray analysis at 24h following 
infection.  
 
 Cross-comparison of the differentially expressed genes (DEGs) from the microarray analysis with 
our curated gene list revealed that 181 out of 676 (26.8%) genes exhibited significant differential 
expression following ZIKV infection (Figure 1A). Of these significant DEGs, 85 (46.96%) were 
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downregulated by ZIKV infection, while 96 (53.04%) were upregulated by ZIKV infection. The 13 genes 
with the lowest p value in this analysis included Nr4a2, Itgb3, and Slc7a5, which were downregulated by 
ZIKV infection, along with Nlgn1, Myt1l, Dpp6, Thsd7a, Hepcam, Syn3, Cacna1e, Met, Pyhin1, and 
Tor3a, which were upregulated by ZIKV infection (Figure 1B). The functions of these genes are 
summarized in Figure 1C, and generally include synaptic function, ion channel physiology, and 
neurodevelopmental processes. None of the specific psychiatric disorder gene lists were significantly 
overrepresented among the list of significant DEGs (Figure 1D). Together, these data suggest that ZIKV 
infection in neurons dysregulates expression of a broad set of genes associated with abnormal or 
pathologic behavioral states.  
 
 To better understand the consequences of ZIKV infection on neurologic gene expression, we next 
took an unbiased approach by performing gene ontology (GO) enrichment analysis on the DEGs derived 
from our microarray dataset. Similar to our results using the curated psychiatric disorder-associated gene 
list, this unbiased analysis revealed significant enrichment of several GO terms related to 
neurotransmission, neuronal stress responses, and neurodevelopment, a subset of which are highlighted 
in Figure 2A-B. Notably, regulatory pathways influencing ion transport and ion homeostasis were 
particularly enriched in our dataset.  We next questioned whether there were clear patterns in the 
direction of differential expression among the significantly enriched GO terms. Heatmaps depicting the 
expression of genes associated with several representative GO terms are shown in Figure 2C-E, each of 
which reveal a mixed set of both up- and down-regulated genes. These findings suggest that the impact 
of ZIKV infection on the transcriptional state of neurons likely involves complex alterations to a variety of 
fundamental neurobiological processes.  
 
 While our microarray data revealed profound alterations to neurologic gene expression in primary 
neuronal culture following ZIKV infection, we next wanted to assess whether similar changes to gene 
expression occur in vivo. To do so, we inoculated male and female wildtype (C57BL/6J) mice 
intracranially with 104 pfu ZIKV-MR766. We performed these studies in separate cohorts of adolescent (3 
week old) and adult (8 week old) animals to account for potential differences in the expression of 
neurologic genes across development (Figure 3A). On days 2 and 4 following infection, we harvested 
brains and used qRT-PCR to assess the expression of a panel of genes derived from the top DEGs 
identified in our microarray analysis. This candidate gene panel included genes from both our curated 
psychiatric disorder-associated gene list, as well as DEGs from the highly enriched GO terms identified 
in Figure 2.  
 
 These experiments revealed that a majority of genes in our panel did exhibit differential 
expression at the whole-brain level following intracranial ZIKV infection in vivo. However, the magnitude 
and direction of differential expression exhibited complex patterns that differed across time post infection 
and between 3 week old and 8 week old animals. In particular, 3 week old animals exhibited a mix of 
significantly downregulated and upregulated expression of selected neurologic genes 2 days post 
infection (dpi), with a marked shift to primarily upregulated expression at 4dpi (Figure 3B-C). In contrast, 
8 week old animals exhibited an essentially inverse pattern, with nearly uniform upregulation of 
significant DEGs at 2dpi, but a mixture of down- and up-regulated DEGs at 4dpi (Figure 3D-E). These 
patterns of differential expression were evident across GO terms, including neurogenesis (Figure 3F), 
neuropeptide signaling pathway (Figure 3G), and regulation of behavior (Figure 3H), as well as genes 
taken from our curated list of psychiatric disorder-associated genes (Figure 3I). Together, these data 
confirm that gene expression associated with disease-relevant neurologic pathways is significantly 
dysregulated following ZIKV infection of the brain in vivo, but the mechanisms that control these 
transcriptional responses are under complex regulation by factors that vary with host age.  
 
 We next questioned whether innate immune activation following ZIKV infection in neurons may be 
linked to observed changes in neurologic gene expression. To answer this, we returned to our gene 
ontology enrichment analysis to identify innate immune signaling pathways that were most significantly 
impacted by neuronal ZIKV infection. Well-known antiviral cytokine responses were among the most 
enriched pathways in this analysis, particularly those related to innate cytokines, including type I 
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interferon (IFN), interleukin (IL)-1 and IL-6, and tumor necrosis factor (TNF)-α (Figure 4A-B). Pathways 
related to signaling by the inflammatory transcription factor nuclear factor kappa B (NF-κB) were also 
particularly enriched within the list of significant DEGs. We next confirmed that each of these major 
cytokine responses was induced in the brains of 8 week old mice following intracranial infection with 
ZIKV. Expression analysis via qRT-PCR showed that ZIKV infection induced significant upregulation of 
each of the cytokines analyzed, including Ifna6, Ifnb, Ifng, Il1b, Il6, and Tnfa (Figure 4C-H). Together, 
these data confirm that wildtype neurons mount a robust innate immune cytokine response to ZIKV 
infection, including several cytokines previously established to influence brain function and behavior.  
 
 To examine whether neuronal cytokines may be implicated in ZIKV-induced changes in 
neurologic gene expression, we generated primary cultures of cortical neurons and examined expression 
of targets in our candidate gene panel following treatment with exogenous cytokines, including IFN-β, IL-
6, and TNF-α. We then compared the direction of differential expression for each gene to that induced by 
ZIKV to see which, if any, cytokine most closely phenocopied the pattern of gene expression induced by 
ZIKV infection. While IFN-β and IL-6 did significantly alter the expression of some target genes, 
significant DEGs following these treatments did not closely follow the pattern of downregulation (Figure 
5A) or upregulation (Figure 5B) induced by ZIKV infection. In contrast, TNF-α treatment induced a 
strikingly similar pattern of differential expression to that induced by ZIKV infection.  Moreover, while IFN- 
β and IL-6 only induced significant changes in expression of a handful of neurologic genes in our 
analysis (Figure 5C-D), TNF-α significantly altered 17 out of 18 genes in our panel (Figure 5E), and of 
these, all but 2 matched the pattern of up- or downregulated expression observed in ZIKV-infected 
neuronal cultures. These data identified TNF-α signaling as a promising candidate mechanism for the 
altered neurologic gene expression observed in the setting of neuronal ZIKV infection.  
 
 While we previously confirmed that Tnfa was induced at the transcriptional level in the brain in 
vivo following ZIKV infection, we next wanted to confirm that a robust TNF-α-dependent signature could 
indeed be observed following infection. We thus performed enzyme-linked immunosorbent assay 
(ELISA) to confirm that TNF-α was upregulated at the protein level in both supernatants of primary 
neuronal cultures at 24h following infection (Figure 5F) and whole brain homogenates derived from 8 
week old animals on days 2 and 4 following intracranial ZIKV inoculation (Figure 5G). We also confirmed 
upregulation of known TNF-α transcriptional targets, including Cd69, Ccl2, Ccl5, and Stat1, in the brains 
of infected 8 week old mice (Figure 5H-K). In contrast, transcript expression of the TNF-α receptors 
TNFR1 (Tnfrsf1a) and TNFR2 (Tnfrsf1b) were not altered in the brain following infection (Figure 5L-M), 
suggesting that enhanced TNF-α signaling in this setting is mediated primarily through induction of 
cytokine expression. Together, these data confirm that TNF-α signaling is active in both cultured neurons 
and the brain in vivo following ZIKV infection. 
 
 To more carefully assess whether TNF-α signaling was required for ZIKV-mediated alterations to 
neurologic gene expression, we cultured primary cortical neurons and pretreated with neutralizing 
antibodies against cytokine receptors for 2h prior to infection. After 24h, we then performed qRT-PCR 
analysis of major DEGs from our microarray analysis to assess the impact of cytokine signaling on ZIKV-
induced gene expression. These experiments revealed that blockade of type I IFN signaling via 
neutralization of the IFN α/β receptor (IFNAR) had no impact on ZIKV-induced changes in expression of 
the neurologic genes we analyzed (Figure 5N), findings which mirrored our previous result showing that 
exogenous IFN-β treatment did not phenocopy ZIKV-induced patterns of expression in our target gene 
list (Figure 5A-B). In contrast, blockade of TNFR1 rescued ZIKV-induced changes in each of the 6 
genes we analyzed, including Chac1, Nr4a2, Lhx6, Dpp6, Cacna1e, and Tor3a (Figure 5O). Taken 
together, these data suggest that the induction of TNF-α following neuronal ZIKV infection is a major 
regulatory mechanism that alters expression of genes relevant to neuronal function.  
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Discussion  
 

Emerging flaviviruses represent a significant and growing challenge to global public health. While 
most famously associated with rare but severe clinical manifestations, including encephalitis, congenital 
abnormalities, etc., the consequences of apparently mild and/or asymptomatic infection by neuroinvasive 
flaviviruses remain poorly understood (2, 87). The observation of behavioral sequalae following recovery 
from severe flavivirus infections raises the possibility that subclinical neuroinvasive infection may also 
impact brain function in ways that promote or exacerbate psychiatric disorders. This idea is supported by 
some case reports (15, 35, 88-90), though, to our knowledge, this hypothesis has not been rigorously 
tested in the clinical literature. The prevalence of psychiatric sequelae following ZIKV infection, in 
particular, may be hard to discern due to the relatively low neurovirulence of ZIKV compared to other 
flaviviruses, resulting in symptoms that may not be severe enough to warrant clinical attention and the 
documentation of infection status. Our study highlights the need for increased attention to behavioral 
symptoms in patients who are seropositive for ZIKV and other neuroinvasive flaviviruses, as well as 
further mechanistic investigation into the cellular and molecular impacts of flavivirus infection on brain 
physiology and function.  

 
 In our study, we show that neurons mount a robust innate cytokine response to ZIKV infection, 
including a number of cytokines with previously established effects on behavior. A large body of evidence 
has established that neuroinflammation and inflammatory cytokine signaling is associated with 
psychiatric disorders, including major depressive disorder (91-94) and schizophrenia (95-97). TNF-α is a 
major pleiotropic cytokine induced strongly in the CNS by ZIKV and other flaviviruses (98-101). Notably, 
recent work has described complex neuromodulatory effects of TNF-α signaling, including direct effects 
on glutamatergic neurotransmission (102-104), neuronal differentiation (105-107), and other fundamental 
neurologic processes (108-110). In our study, ZIKV-mediated changes to neurologic gene expression 
greatly overlapped those induced by TNF-α, and gene expression changes induced by ZIKV could be 
rescued in part by blockade of TNFR1 signaling. These data identify TNF-α as a candidate for further 
mechanistic investigation of the potential impacts of flavivirus infection on neuronal function.  
 
 To date, the most well-described behavioral outcomes of neuroinvasive flavivirus infection in 
animal models are changes to learning and memory (18, 19, 27, 111-113). While it is clear that a variety 
of pathogenic processes related both to viral infection and neuroinflammation can impact cognition, 
comparatively less attention has been devoted to how flavivirus infection impacts other behavioral 
domains, including mood, affect, and emotional regulation. This discrepancy is likely due, in part, to 
technical limitations, including difficulty modeling these behavioral domains in rodents and containment 
issues related to using ABSL2 and ABSL3 pathogens within behavioral laboratories. Nevertheless, our 
data identify a need for more robust assessment of behavioral changes in models of flavivirus infection, 
particularly measures of anxiety, fear/avoidance, and other paradigms with relevance to human 
psychiatric disorders.   
 
 Finally, our data add to a growing body of evidence suggesting that the impact of flavivirus 
infection varies across the lifespan. In our study, intracranial ZIKV infection resulted in very different 
impacts on neurologic gene expression in adolescent compared to adult animals, suggesting that factors 
such as developmental states and immune system maturation may significantly influence the neurologic 
outcomes of flavivirus infection. Recent work has shown that neuroimmune responses to other 
flaviviruses are impacted by aging (114, 115), and thus differential engagement of cytokine signaling, 
adaptive immune priming, and blood-brain barrier function may all be relevant variables in determining 
how flavivirus infection might impact behavior differentially across life stages. Moreover, while the 
potential for ZIKV to induce severe congenital abnormalities following vertical transmission in utero has 
now been well established, it remains less clear what the impact of ZIKV infection is on apparently 
developmentally normal fetuses, including those who are exposed to ZIKV late in gestation, when rates 
of microcephaly and severe birth defects are exceedingly rare (113, 116, 117). Further work will be 
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needed to assess whether ZIKV infection in this context may result in changes to neurodevelopment and 
brain function that impact behavior postnatally and beyond.   
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Figures 
 

 
 
Figure 1: ZIKV infection in neurons dysregulates expression of a broad set of genes associated 
with abnormal or pathologic behavioral states. A) Heatmap depicting relative expression values of 
181 candidate genes associated with psychiatric disorders. Values are derived from microarray analysis 
of primary cortical neurons 24h following ZIKV-MR766 infection (MOI 0.1) or PBS control treatment. B-C) 
Expression values (B) of the top 13 significant differentially expressed genes (DEGs) in our microarray 
analysis (identified by lowest p values). Table in (C) lists known functions and associated disorders for 
these genes. D) Descriptive statistics for the curated psychiatric disorder-associated gene list and the 
significant DEGs observed for each disorder. Data in (A) and (B) represent normalized and z-
transformed expression values. Data in (A) include all genes with a False Discovery Rate (FDR) <0.1.  
 

Autism Spectrum Disorder
Schizophrenia
Bipolar Disorder
Major Depressive Disorder/Depression
Attention Deficit Hyperactivity Disorder (ADHD)
Total

Number of 
genes in 
curated list

504
76
63
26
53

676

Percentage of total 
genes associated 
with the disorder 
from curated list

74.70
11.24
9.32
3.85
7.84

Number of significant 
DEGs associated with
 the disorder

138
28
13

9
10

181

Percentage of significant 
disorder-associated DEGs 
out of the total 
number of DEGs

76.24
15.47

7.18
4.97
5.52

-1

PBS

0

1

ZIKV

z-scoreA

B

C

D

Nr4a2

Itgb3

Slc7a5

Nlgn1

Myt1l

Dpp6

Thsd7a

Hepacam

Syn3

Cacna1e

Met

Pyhin1

Tor3a

-1

0

1

PBS        ZIKV

z-score

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.11.15.468744doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468744
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 2: ZIKV infection impacts transcriptional pathways associated with fundamental 
neurobiological processes. A-B) Selected overrepresented GO terms obtained from GO enrichment 
analysis of DEGs resulting ZIKV-MR766 infection in primary cortical neurons. Tabular results (A) are 
graphically represented in a bubble plot (B) to demonstrate associations between fold enrichment, FDR, 
and number of associated genes for each GO term. C-E) Heatmaps depicting expression values for 
genes associated with neurogenesis (C), regulation of behavior (D), and neuropeptide signaling pathway 
(E). Data in (C), (D) and (E) represent normalized and z-transformed expression values. 
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Figure 3: Gene expression associated with disease-relevant neurologic pathways is significantly 
dysregulated following ZIKV infection of the brain in vivo. A) Schematic of experimental design of in 
vivo murine model. C57/BL/6J WT mice were infected with 104 pfu ZIKV-MR766 via intracranial 
inoculation at 3 and 8 weeks of age. Whole brain homogenates were collected at 2 or 4 days post 
infection (dpi). B-E) Expression profiles of 23 candidate genes assessed by qRT-PCR analysis are 
described and separated into 3-week mice at 2dpi (B), 3-week mice at 4dpi (C), 8-week mice at 2dpi (D), 
and 8-week mice at 4dpi (E). Significant differences (p < 0.05) are noted in red (upregulated DEGs) or 
blue (downregulated DEGs). F-I) Heatmaps showing individual expression values per mouse for 
candidate genes from microarray and GO enrichment analyses in 3 week old adolescent and 8 week old 
adult mouse brains following ZIKV-MR766 infection. Relative gene expression values are reported for 
naïve, 2 dpi, or 4 dpi groups. Data in (F), (G), (H) and (I) represent normalized and z-transformed values 
of qRT-PCR expression data. n= 5-7 mice/group. 
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Figure 4: Neurons mount a robust innate immune cytokine response to ZIKV infection. A-B) 
Results of GO enrichment analysis of microarray data derived from primary cortical neurons following 
ZIKV-MR766 infection (MOI 0.1) compared to PBS-treated controls after 24 hours. Selected GO terms 
focus on cytokine activation or inflammatory transcription factor responses. Tabular results (A) are 
graphically represented in a bubble plot (B) to demonstrate associations between fold enrichment, FDR, 
and number of associated genes for each GO term. C-H) qRT-PCR analysis was performed measuring 
cytokine genes Ifna6 (C), Ifnb (D), Ifng (E), Il1b (F), Il6 (G), and Tnfa (H) at indicated time points in 8 
week old adult mouse brains following intracranial ZIKV-MR766 infection. n=5. ns not significant, * p < 
0.05, ** p < 0.01, *** p < 0.001. Bars represent group means.  
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Figure 5: Induction of TNF-α following neuronal ZIKV infection is a major regulatory mechanism 
that alters expression of genes relevant to neuronal function. A-B) Expression values of candidate 
genes previously shown to be either downregulated (A) or upregulated (B) by ZIKV infection were 
measured via qRT-PCR in neuronal cultures treated for 24h with exogenous cytokines: IFN-b, IL-6, or 
TNF-a. n=6. C-E) Volcano plots depicting mean z-score and -log10FDR of representative DEGs in 
neurons treated with IFN-b (C), IL-6 (D), or TNF-a (E). Significant differences (p < 0.05) are noted in red 
(upregulated DEGs) or blue (downregulated DEGs). n=6. F-G) Concentrations of TNF-a in supernatants 
of in vitro neuronal cell cultures infected with ZIKV for 24h (n=4) (F) and brains harvested following in 
vivo intracranial infection (n=5) (G). Cytokine concentrations were quantified via ELISA assay. H-M) qRT-
PCR analysis was performed for known TNF-a transcriptional target genes, Cd69 (H), Ccl2 (I), Ccl5 (J), 
Stat1 (K), and TNF-a receptor genes, Tnfrsf1a (L) and Tnfrsf1b (M), in 8 week old adult mouse brains 
following ZIKV-MR766 infection at 2 or 4 dpi. n=5. N-O) qRT-PCR analysis of representative DEGs 
associated with neurological functions (Chac1, Nr4a2, Lhx6, Dpp6, Cacna1e, and Tor3a) following 
pretreatment with neutralizing antibodies against IFN α/β receptor (IFNAR) (N) or TNFR1 (O) and 
subsequent 24h infection with ZIKV-MR766. n=3-6 biological replicates per group. Data in (A) and (B) 
represent normalized and z-transformed values of qRT-PCR expression data. ns not significant, * p < 
0.05, ** p < 0.01, *** p < 0.001. Bars represent group means. 
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