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Abstract 
The cleavage-site specificities for many proteases are not well-understood, restricting the 
utility of supervised classification methods. We present an algorithm and web interface to 
overcome this limitation through the unsupervised detection of overrepresented patterns 
in protein sequence data, providing insight into the mixture of protease activities 
contributing to a complex system.  
Here, we apply the RObust LInear Motif Deconvolution (RoLiM) algorithm to confidently 
detect substrate cleavage patterns for SARS-CoV-2 Mpro protease in N terminome data 
of an infected human cell line. Using mass spectrometry-based peptide data from a case-
control comparison of 341 primary urothelial bladder cancer cases and 110 controls, we 
identified distinct sequence motifs indicative of increased MMP activity in urine from 
cancer patients. Evaluation of N terminal peptides from patient plasma post-
chemotherapy detected novel Granzyme B/Corin activity.  
RoLiM will enhance unbiased investigation of peptide sequences to establish the 
composition of known and uncharacterized protease activities in biological systems. 
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Introduction  
Proteolysis affects most proteins in a cell. Protein function, localization or other properties 
are altered by proteolysis. Although advances in proteomics have enabled 
comprehensive identification of proteins in complex biological samples, the direct 
detection of protease activity remains challenging. This is due in part to (i) relatively low 
abundance of some proteolytic products, (ii) detection of a protease does not directly 
imply activity or co-localization with its substrate at the time of detection and (iii) 
simultaneous activity of multiple proteases. Hence, the detection of proteolytic activity is 
typically accomplished by observation of protease substrates pattern. This can be 
accomplished with experimental approaches involving termini enrichment1 or with activity 
based probes which directly recognize active proteases2.  

Statistical algorithms are critical to derive biological insights from massive peptidomic 
datasets. Such algorithms should be able to address two main questions: (i) how 
accurately do peptide motifs identified in a data signify substrate cleavage or substrate 
cleavage pattern, and (ii) can detected sequence patterns be correctly linked to protease 
activity? Currently, there are two major strategies used for the indirect detection of 
proteolytic activity in large-scale peptide data generated by mass spectrometry. One 
approach is to predict putative protease cleavage sites based on observation of known 
cleavage events corresponding to a particular protease. Two popular algorithms that 
make use of this strategy are Proteasix and PROSPERous3,4. Here, supervised learning 
algorithms can be trained to recognize the sequence features characteristic of cleavage 
sites in the known substrates of a protease. Although this strategy has proven effective 
in certain contexts for some well characterized proteases3,4, it fails to account for the 
activity of less-understood proteases. Moreover, cleavage event data have been 
compiled over a substantial period of time via a shifting landscape of methodologies which 
vary drastically in both comprehensiveness and reliability. This strategy’s reliance on 
previous, curated data for the training of supervised learning algorithms makes it 
vulnerable to data that are either no longer current, relevant, or accurate.  
The second approach relies on unsupervised motif detection for the analysis of existing 
sequence determinants of post-translational modifications (PTMs). These algorithms 
notably include Motif-X/Momo and GibbsCluster5–7. Momo supports the analysis of data 
sets containing multiple sequences with fixed central residues and these central residues 
are usually the target of a covalent modification such as phosphorylation6,7. Although 
these tools are promising resources for the unbiased analysis of PTM data centered 
around a modified residue, they are not suitable for the analysis of proteolytic data sets. 
Unlike other PTMs, proteolytic events are centered around a bond between two residues. 
Moreover, the amino acids found adjacent to proteolytic cleavage sites are highly variable 
and depend on the specific protease responsible for a cleavage event. Proteolytic data 
sets therefore lack the fixed central residue required by these tools, even if the sequence 
alignment is shifted in order to center the sequences around a residue position rather 
than the cleavage site. 
Gibbs clustering, a popular Markov chain Monte Carlo algorithm used for clustering of 
sequence data sets8, is among the few algorithms that can align and cluster amino acid 
sequences without restriction to specified central residues. The GibbsCluster algorithm 
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(GibbsCluster 2.0) relies on a non-deterministic algorithm (Gibbs sampling). This limits 
the reproducibility of results between runs and poses a major challenge to its use for 
analysing proteolytic input data, where the mixture of activities contributing to the 
composition of a sample is complex and the number of different protease activities 
(clusters) not known a priori. 
In the present study, we extend a motif deconvolution algorithm we recently developed, 
RObust LInear Motif Deconvolution (RoLiM)9 to overcome the challenges associated with 
the unsupervised detection of protease activity in complex biological samples. We 
evaluate the performance of RoLiM in comparison to Proteasix and Gibbs clustering. In 
a re-analysis of protein N termini enriched from SARS-Cov2-infected human cell lines we 
demonstrate that RoLiM can identify new, uncharacterized protease activities. In re-
analyses of urine collected from patients with urothelial bladder cancer, and extracellular 
fluids collected post chemotherapy from hematopoietic cancer patients we demonstrate 
that RoLiM can identify multiple cancer associated protease activities in complex 
extracellular fluids, and accurately assign identified protease patterns to known proteases 
or protease families.  
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Results 

We recently developed the Robust Linear Motif Deconvolution (RoLiM) algorithm for 
unbiased detection of statistically enriched amino acid patterns, and demonstrated that it 
exceeds existing solutions in robustness and versatility9 . We further demonstrated its 
application to the analysis of over 60 covalent protein modifications across 30 human 
tissues.  

Here, we set out to explore RoLiM’s application to protein cleavage controlled by 
proteases.  

Identification of unknown proteolytic activities by unsupervised RoLiM analysis 

We first tested the hypothesis that unsupervised analysis of protein cleavage sequence 
data enables the detection of unknown proteolytic activities missed by algorithms trained 
on existing knowledge. The MEROPS database10,11 is considered the most 
comprehensive repository of protease/peptidase information. It contains 92,216 substrate 
cleavage site information for 5267 peptidases11 in the form of substrate sequences with 
lengths of 8 amino acids.  

Curated protease databases, in particular MEROPS, remain the backbone of many 
protease prediction algorithms. This presents a major limitation that centers on the 
inability of such algorithms to (i) detect enriched substrate patterns that are not 
categorized in the database, and (ii) match patterns to identify activities from proteases 
lacking curated cleavage site information. We benchmarked the performance of RoLiM 
with Proteasix which we believe is the most comparable tool for the prediction of protease 
activity in comprehensive peptide datasets. 

We first evaluated the ability to detect the activity of an unknown protease in a complex 
system. We used the newly emerged SARS-CoV-2 virus as a model system in which the 
viral protease characteristics are known, but masked from the algorithms. Meyer and 
colleagues12 studied proteolysis induced by SARS-CoV-2 infection in cell lines using a 
mass spectrometry-based N termini enrichment method13. We tested the ability of 
unsupervised (RoLiM) and supervised (Proteasix) algorithms to predict protease activities 
from N termini quantified in A549-Ace2 human lung cell line pre- and post- SARS-Cov2 
infection (Supplementary Table 1, Supplementary Fig. 1A, see Materials and Methods for 
details). We further sought to determine the capability of each algorithm to impartially 
identify substrate cleavage patterns that appear at defined timepoints after viral infection, 
and to possibly pinpoint likely proteases responsible for these proteolytic activities. Both 
approaches identified apoptotic signatures from caspases and granzymes 6-hr post 
infection (Figs. 1A and 1B).  

In addition, RoLiM found enriched patterns after 12 h and 24 h respectively (Fig. 1B and 
Supplementary Fig. 1B). At the 24 h timepoint, RoLiM detected a statistically enriched 
substrate motif (LQ|X) that could not be confidently assigned to any human protease in 
the MEROPS database. The intensity profile of the LQ|X pattern was clearly distinct from 
all other detected patterns (Fig. 1B). The intensity of individual peptides contributing to 
the LQ|X motif is shown in Fig. 1C. Meyer et al further validated the LQ|X pattern identified 
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by RoLiM to be unique to the viral protease MPro (Fig. 1D). This analysis revealed the 
complete reliance on curated information in the MEROPS database by Proteasix as a key 
limitation. Proteasix also cannot identify cleavage events and peptide signatures for 
proteases with no known substrate cleavage information as well as proteases not 
associated with the organism(s) of interest. RoLiM, but not Proteasix, detected an activity 
that could be linked to infection by the novel SARS-CoV-2 virus. This confirms our 
hypothesis that unsupervised analysis of protease cleavage sequences enables the 
unbiased detection of unknown and unexpected cleavage patterns irrespective of 
organism specificity and prior knowledge.  

Implementation of proteolysis-specific functionality in RoLiM 

We previously described the RoLiM algorithm in detail and evaluated sensitivity, false 
discovery rates, and robustness against changes in data composition9. Compared to 
existing algorithms for site-specific motif detection, particularly, Motif-X and Momo, RoLiM 
enabled a more robust and unbiased characterization of PTM modification sequence 
motifs, including phosphorylation, in large complex biological datasets. RoLiM further 
supports even-length sequence alignment centered around a (cleaved) peptide bond. To 
evaluate its ability to characterize protease substrate specificities we first sought to 
characterize the MEROPS human protease substrate data using RoLiM. MEROPS 
documents 884 known and putative human peptidases, including about 520 identified 
peptidases. Yet of these, we found that only 287 have at least one known physiological 
substrate and only 132 have more than 5 (Fig. 2A) clearly demonstrating our limited 
knowledge, even for a well-studied organism.  

We next reviewed two major public repositories - PubMed14 to retrieve the number of 
scientific literature on each human protease, and ArrayExpress15 to tally how often each 
protease has been reported in high-throughput functional genomics datasets 
(Supplementary Table 2). The results shown in Figs. 2A and 2B underscore the deficit in 
existing knowledge on human protease substrates, for both well-studied and poorly 
characterized proteases.  

For further analysis, our input data consisted of sequences retrieved from the MEROPS 
database, filtered for “human active” protease substrates (indicating confirmed activity in 
humans), and synthetic and theoretical peptides were removed. Using the default settings 
for our algorithm (see Methods), we detected 261 patterns for 108 human proteases 
across all catalytic mechanisms (Supplementary Fig. 2A). We found that less than 20% 
of the 261 patterns were non-discriminatory while 70% of patterns differentiated between 
catalytic types and about 50% of the patterns was even able to discriminate different 
proteases of the same family (Supplementary Fig. 2b). 

To enrich the unsupervised analysis of RoLiM with annotation based on existing 
knowledge - one of the key benefits of supervised algorithms, we decided to match 
patterns identified in the input data set to patterns associated with MEROPS proteases. 
To provide a comprehensive view of matched proteases and enable identification of 
unique pattern-protease matches as well as highly unspecific patterns or proteases we 
developed the protease substrate clustermap and heatmap (Supplementary Fig. 2C). 
RoLiM now provides users with a simple interface and processing steps for highly robust 
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and sensitive unsupervised identification of proteolytic activities combined with intuitive 
annotation of known activities (Supplementary Figs. 1A and 2C). 

Improved extraction of distinct protease patterns from mixed protease activity data 

We next assessed the ability of RoLiM and Gibbs clustering (GibbsCluster 2.0), an 
unsupervised motif discovery tool16, to correctly reject spurious patterns in a random 
sequence set that does not contain any statistically overrepresented patterns. The 
GibbsCluster algorithm takes a prespecified number of clusters and initializes the 
clustering workflow by randomly assigning each input sequence to one of those clusters. 
Clusters are represented by a stacked bar chart representing the Kullback Leibler 
Divergence (KLD) of each cluster and, cumulatively, the KLD of the system, as well as by 
a logo map corresponding to each pattern. To compare the performance of RoLiM and 
GibbCluster (v 2.0), we analyzed an in silico designed set of 1000 random 8 residue long 
sequences derived from the Swiss Prot human proteome (Supplementary Table 3, see 
Methods). Gibbs clustering selected an optimal result of 15 enriched patterns (average 
system KLD = 2.893) and respective logo maps, equal to the maximum number of clusters 
tested in this experiment (Supplementary Figs. 3 and 4). RoLiM on the other hand 
produced an empty result set using the same input data and similar settings confirming 
its robustness against random noise. 

Following this, we compared the capability of RoLiM and Gibbs clustering to discern 
different patterns using a defined in silico mixture of actual protease substrate sequences. 
This comprised 964 sequences generated from 194 substrate sequences of caspase-6, 
469 substrate sequences of cathepsin B, and 301 substrate sequences of matrix 
metallopeptidase 9 (MMP-9) derived from MEROPS. To simulate background noise, 987 
theoretical peptides built from random alignment of 8 amino acids were also included 
(Supplementary Table 4). As shown in Fig. 3A, the caspase-6 subset is characterized by 
enriched acidic residues, particularly in the p4, p3 and p1 positions, along with valine in 
the p4 position. The cathepsin B substrate set is characterized by enrichment of small 
and hydrophobic residues with strong overrepresentation of glycine in positions p1 and 
P3’ respectively (Fig. 3B). Substrates for MMP-9 also displayed small and hydrophobic 
residues in several positions (Fig. 3C). Based on sequence composition, we anticipated 
that caspase-6 and cathepsin B substrates would be relatively easy to separate. While 
same would hold for cathepsin B and MMP-9, similarities in the amino acid composition 
of their substrates would prove challenging to a clustering-based approach when the 
subsets are combined. Logo maps corresponding to the mixed substrate data without and 
with background noise are presented in Figs. 3D and 3E respectively. These underscore 
the profound similarity of MMP-9 and cathepsin B substrates. Gibbs clustering was 
performed on the final data set with background noise using settings similar to the defaults 
in our algorithm (See Methods). Gibbs Clustering selected a solution of two clusters, with 
an average system KLD of 3.432 (Fig. 3F). Even if forced to separate into three clusters 
based on prior knowledge of three mixed activities, Gibbs clustering failed to resolve 
MMP-9 and cathepsin B substrates into separate clusters (Figs. 3G-I). RoLiM detected 
patterns in the mixed sample that mapped effectively to known MEROPS patterns from 
the three proteases used to compose the test dataset. As shown in Fig. 3J, distinct pattern 
matches were observed for cathepsin B as well as multiple caspases and matrix 
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metallopeptidases including caspase-6 and MMP-9. Sequence logos for enriched 
patterns are depicted in Figs. 3K to N. The same patterns matching these proteases also 
matched other proteases from similar MEROPS families. This is a consequence of the 
fact that proteases from the same family often exhibit extremely identical, if not similar 
cleavage site specificity. These results demonstrate the efficacy of the pattern detection 
performed by our sequence clustering algorithm, to resolve a convoluted sample into 
meaningful subsets and link it to prior knowledge of biological activity. In addition to a 
simple user-interface (Supplementary Fig. 1A), RoLiM provides multiple ways for users 
to extract protease and protease substrate patterns from complex datasets, and to 
visualize the result based on quantitative and statistical assessment. 

Sensitive detection of cancer and treatment specific protease activities in biofluids 

Lastly, we re-analyzed two peptidomic and terminomic datasets to demonstrate the 
application of RoLiM to the identification of proteolytic activities in extracellular fluids of 
cancer patients. In a multi-centre study on bladder cancer, Frantzi et al17 analyzed 1,357 
patient urine samples by mass spectrometry-based proteomics and validated urine-based 
biomarker panels for detecting urothelial bladder cancer. A case-control comparison 
between 341 primary urothelial bladder cancer cases and 110 urologic controls identified 
382 potential biomarkers (reported in Supplementary Table 3 in 17). RoLiM analysis on 
the 382 peptide biomarkers showed a distinct enrichment of sequence patterns 
surrounding the peptide N and C termini that were in line with matrix metalloproteinase 
(MMP) specificity motifs (Figs. 4A and 4B). Perhaps due to the absence of a suitable 
software, the authors did not thoroughly investigate reported peptide sequences for 
protease substrate motifs. They however report the presence of peptide fragments from 
a metalloproteinase domain-containing protein 22 (ADAM22), and metalloproteinase with 
thrombospondin motifs 1 (ADAMTS1). In line with the author’s report, we found evidence 
for increased MMP cleavage of protein substrates in patients with urothelial bladder 
cancer compared to disease-free controls. MMP9 and MMP10 were also part of a 
reported 10-marker ELISA-based assay that enabled discrimination (AUC = 0.85, 95% 
CI, 0.80-0.91) of urothelial bladder cancer patients from healthy and benign controls18 
further supporting the assumption that a majority of the 382 peptide biomarkers were a 
result of cancer associated MMP activity. 

A second study investigated the induction of cellular apoptosis during chemotherapy19. 
The detection of proteolytic fragments released into body fluids by apoptotic tumor cells 
could offer novel indicators of chemotherapy-induced cell death. Using an N-terminomic 
approach, Wiita et al.,19 found distinct biological signatures of apoptosis in the plasma of 
hematologic malignancy patients after chemotherapy. These proteolytically generated 
fragments were notably absent in normal blood. We re-analyzed the non-redundant 
peptide sequences reported by the authors (Dataset S1 in Witta et al, 2014) for all patient 
cancers combined (301 sequences), for patient cancer-specific signatures (90 sequences 
absent in normal controls), and for N termini unique to normal controls. Consistent with 
the author’s findings, RoLiM clearly identified a caspase D|G and D|A (p1|p1’) signature 
in a combined analysis of fragments from all cancer patients (Figs. 4C and 4D). RoLiM 
also revealed a single amino acid (x|S) pattern from MMPs as well as a weak motif for 
multiple serine proteases including granzymes. Interestingly, this apoptosis related to 
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granzyme signature (R|S[LIV]) was more pronounced in cancer-specific fragments, along 
with a distinct caspase motif (Figs. 4E and 4F) supporting the sensitivity of the RoLiM 
algorithm to even detect minor disease related activities among normal proteolytic 
background activities. The granzyme signature was not described in the paper, and points 
to the relevant application of RoLiM for unbiased investigation of protease substrate 
motifs. RoLiM did not detect any overrepresented pattern in the subset of 83 N termini 
detected in only normal controls. 
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Discussion 

RoLiM was developed to expand on key functionalities of existing motif discovery and 
protease prediction tools, and deliver more robust results. The development and 
characterization of RoLiM is detailed in Smith et al., 20219. Unlike existing tools including 
Proteasix, Gibbs clustering and Motif-X/Momo, our generalized workflow circumvents the 
need for a sequence position descriptive input file, or a fixed central residue, and is 
optimally suited for the analysis of proteolytic data sets. Furthermore, the inclusion of a 
positional weighting term in the enrichment calculation emphasizes low diversity 
positions, thus increasing the ability to deconvolute different activities that often have 
determining sequence features in the same position9. Dynamic background frequency 
adjustment ensures that individual amino acid frequencies are averaged across a 
background proteome while correcting for the removal of amino acids from the 
foreground. Vigorous multiple testing is performed where p-values are Bonferroni 
corrected based on the total number of residues that could be detected at a particular 
point in the data flow of the algorithm9. In addition to enriched individual amino acids, the 
RoLiM algorithm detects cumulative enrichment of groups of biochemically similar amino 
acids in the same position, here described as compound residues. This functionality is 
essential since protease cleavage site specificities are often determined by the general 
physico-chemical properties of flanking amino acids around the P1 residue rather than a 
single specific amino acid. 

We demonstrated that, in contrast to machine learning based algorithms like Proteasix, 
RoLiM is not limited to the identification of previously characterized activities. This utility 
of RoLiM is highlighted in our analysis of time-course data profiling proteolysis in SARS-
CoV-2 infected human cell lines. Results from RoLiM analysis revealed more biologically-
relevant information that was not limited to pre-existing protease data in MEROPS. While 
our tool supports the identification of unknown protease substrate patterns in convoluted 
datasets, additional validation would be needed to verify the protease activity in biological 
samples. 

We also confirmed that RoLiM outperforms alternative unsupervised algorithms, such as 
Gibbs clustering, that fail to ignore noise and perform poorly in discerning highly similar 
activities. RoLiM provides null statistics for data lacking overrepresented patterns rather 
than randomly assigning clusters to likely motifs. Additionally, the descriptive statistics 
and visual outputs provided by our algorithm supports easy and clear interpretation of 
individual protease patterns and explicitly conveys the wealth of cleavage event data 
stored within the MEROPS database. This sets RoLiM apart from other existing motif 
predictors and sequence clustering software. 

Protein fragments, including disease-associated peptides exist in body fluids3,20,21. In 
hematologic malignancies, cellular components in the interstitial space is bathed in a 
different milieu of substances in comparison to the same extracellular space in normal 
conditions22,23. This is mostly due to the presence of tumor infiltrating cells and the effect 
of their interactions with other cells in the cancer micro environment. Understanding the 
protease network in hematologic diseases at different timepoints is relevant for the 
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pathophysiology and discovery of potential markers. Our non-deterministic algorithm 
strongly supports the unbiased exploration of peptide classifiers, and simplifies the 
detection of additional leads for follow-up validation of protease-substrate relationships. 
For example, Wiita et al19 did not detect the apoptosis related granzyme signature 
(R|S[LIV]) in their data on all hematopoietic cancers. An indication of this signature is 
weakly present in our RoLiM data on all cancers and this signature is further confirmed 
as significantly overrepresented in the cancer-specific data subset.  

In summary, our work for the first time establishes a robust pattern detection algorithm 
for the identification and annotation of protease activities. RoLiM is designed to meet the 
needs of researchers for detailed exploration of complex peptidomic and terminomic data 
to draw biological insights and/or generate testable hypotheses. Our re-analyses of 
diverse data identify SARS-CoV-2 protease activity in infected cells and link proteolytic 
products in liquid biopsies to cancer and treatment specific protease activities, 
demonstrating the profound insights that can be obtained from RoLiM analyses.  
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Experimental Section 
Database information 
Swiss-Prot data 
Context sequences were imported from an offline copy of the Swiss-Prot human 
proteome2425 stored in FASTA format. These sequences were used for the extension of 
input peptides by mapping peptides to the proteome using a combination of protein 
accession numbers and regular expression formats. The human Swiss-Prot proteome is 
also used by default to calculate expected amino acid frequencies. A similar approach 
will work for other organism-specific Swiss-Prot proteome. 

MEROPS data 
An offline copy of the MEROPS database version 12.0 was used11. The proteolytic 
cleavage event data stored in MEROPS were used to generate data sets of protease 
substrates. These sequences were retrieved from the database, partitioned by protease, 
and analysed as input data sets using default algorithm settings. RoLiM was used to 
detect enriched patterns in each of these protease substrate data sets. Proteases 
analysed for patterns were restricted to those flagged as “human active,” in the database, 
and synthetic sequences were excluded from the analyses. MEROPS is an active and 
expanding database, therefore the offline copy used by this tool will periodically be rebuilt 
(including computation and storage of protease substrate patterns) when a new version 
of MEROPS becomes available. 

Data Input and processing  

RoLiM has a simple and intuitive user interface(Supplementary Fig. 1). It accepts a 
number of foreground data set formats as input. These formats include pre- aligned 
sequences of equal width which can be supplied as a text file (pre-aligned text file). 
Peptides and accompanying protein IDs may also be supplied in the form of a text file 
(text file peptide list). For peptide lists, RoLiM automatically extends and aligns the N- and 
C- terminal cleavage sites of each peptide based on the selected FASTA file. All 
sequences in the text file input must be of equal length to allow for the analysis of post 
translational modifications centered around a particular bond. A FASTA file applicable to 
the context data can be selected as either the default Swiss-Prot Human FASTA file, or 
other FASTA file uploaded by the user (Supplementary Fig. 1). 

The data processing steps are as described in Smith et al.,9  

Comparison RoLiM and Proteasix.  

Quantified N termini reported in Supplementary Table 1 in Meyer et al.,12 were analyzed 
with Proteasix and RoLiM. For analysis in Proteasix, the data was prepared in the required 
input format, and analyzed with the protease predictor tool using the default settings. The 
resulting output is summarized in Supplementary Table 5. Proteasix matches a peptide 
to multiple proteases with identical cleavage patterns. We selected sequence-protease 
matches with a specificity threshold >= 95. For each protease, the average N termini 
intensity was determined by calculating the mean intensity for all peptide sequences 
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(Supplementary Table 1) matched to that protease. The resulting data matrix consisted 
of proteases (rows) and associated sequence averages across all timepoints (columns). 
A row-wise normalization to the 0 h control was performed on this data. For each row, the 
average pattern intensity for 0h M, 0h A, 0h B, 0h C was subtracted from the intensity 
values at timepoints 6 h, 12 h and 24 h respectively. A heatmap with row-wise hierarchical 
clustering was plotted using the ggplot’s heatmap.2 function in R.   

With RoLiM, N termini were analyzed using the default setting with the following additional 
changes: p value threshold of 0.05, minimum occurrence set to 5% of the input (4, 7, 8, 
17 sequences respectively), width at 8, and centered sequences activated. 
Overrepresented patterns identified by RoLiM and grouped according to each timepoint 
are listed in Supplementary Table 6. Each pattern was matched to the corresponding 
sequences in Supplementary Table 1 based on its P4 – P4’ alignment. The resulting 
matrix contained a list of all quantified N termini from Meyer et al, each with an associated 
RoLiM pattern. The abundance of a pattern across all timepoints was determined using 
the average intensity of all peptides linked to that pattern. This generated a matrix 
containing all identified patterns (rows), and the mean intensity of matched peptides per 
pattern across all timepoints (columns). A row-wise normalization to the 0 h control was 
performed on this matrix. For each row, the average pattern intensity for 0h M, 0h A, 0h 
B, 0h C was subtracted from the intensity values at timepoints 6 h, 12 h and 24 h 
respectively. The resulting data with normalized ratios to timepoint 0 was used as input 
for hierarchical clustering plots in R using ggplot’s heatmap.2 function. 

Comparison of RoLiM and Gibbs Clustering  

An analysis of the frequency of false positive detection by our algorithm was already 
conducted and is described in Smith et al.,9. 

Generation of in silico datasets 

An in silico set of 1000 sequences containing non-fixed positional amino acids was 
randomly constructed from the Swiss Prot human proteome using NumPy arrays26 in 
Python. This data (Supplementary Table 3) was supplied as input, and Gibbs clustering 
was run over a range of 1 to 15 possible clusters respectively (the minimum and maximum 
settings for the web interface). A motif length of 8 (the full length of the input sequences) 
was selected, the simple shift move of the algorithm which attempts realignment of the 
dataset was disabled, and the trash cluster for outlier rejection was enabled at 0. All other 
settings were kept at their default values. The same data was supplied as input for RoLiM 
using the default settings, a width of 8 and centered sequences checked. The Human 
Swiss Prot Fasta was supplied as context proteome. 

Mixed protease data set 

This data set was generated using a combination of human protease substrate 
sequences from the MEROPS database. This included 194 caspase-6 substrates, 469 
cathepsin B substrates, 301 matrix metalloproteinase 9 substrates, and 987 random 
Swiss Prot human protein sequences (Supplementary Table 4). Gibbs clustering was run 
over 1 to 15 possible clusters, motif length of 8 (the full length of the input sequences) 
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was selected, the simple shift move of the algorithm which attempts realignment of the 
dataset was disabled, and the trash cluster for outlier rejection was enabled at 0. All other 
settings were kept at their default values. The same data was supplied as input for RoLiM 
using the default settings, a width of 8 and centered sequences checked. The Human 
Swiss Prot Fasta was supplied as background proteome. 

Urinary peptidome data 

We analyzed N and C terminally extended, non-redundant sequences reported by Frantzi 
and colleagues (Supplementary Table 3 in 17). RoLiM default settings of p value < 0.001, 
minimum frequency of 20 was used. A width of 8 was maintained and centered sequences 
option was checked. 

Hematologic cancer data 

Non-redundant sequences reported for all cancers combined, or for cancer-specific 
patients in Wiita et al (Supplementary Table S1 in 19) were analyzed. RoLiM settings were 
p value cut-off of 0.001, minimum frequency of 5., width at 8, and centered sequences 
activated. 

Data output files 

Logo maps used were generated in WebLogo27. RoLiM automatically generated logo 
maps for data analyzed with the algorithm. Logomaps were used to visualize the amino 
acid distribution of each subset of aligned input sequences exactly matching one of the 
detected patterns.  
Supporting Information 
Additional details for experimental analyses are provided and include input data, figures 
and results.  
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Figure 1. Unbiased detection of unknown sequence patterns in SARS-Cov2 infected 
human cell line. 
A. Heatmap on normalized peptide intensity ratios for protease activities predicted by Proteasix at different 
time points after SARS-Cov2 infection of human A549-Ace2 cell line. See Methods for details of the 
analysis.  
B. Heatmap on normalized peptide intensity ratios for enriched patterns detected by RoLiM at specific time 
points after viral infection. Row wise hierarchical clusters group patterns unique to one or more timepoint 
post-infection. 
C. Line plot shows the normalized intensity of peptides with the ..[L][Q]…. pattern in infected (6 h, 12 h, 24 
h) and non-infected (0M, 24M) cells at all timepoints studied. 
D. Aligned sequence logo for SARS-CoV-2 MPro protease documented in MEROPS. 
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Figure 2. MEROPS human proteases.  
A. Barplots show the number and percentage of 520 curated MEROPS human proteases with known 
physiological substrates (blue bars) along with the number of times a protease has been identified and/or 
characterized in ArrayExpress, a publicly accessible repository for high-throughput proteomics and 
genomics data (brown bars). The five proteases with the highest counts in ArrayExpress are highlighted. 
B. Bubbleplot shows the poor relationship between proteases having known physiological substrates, the 
number of literature citations for these proteases in PubMed and the depth of functional studies reported in 
ArrayExpress.  
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Figure 3. Comparison of GibbsCluster and RoLiM on a mixed MEROPS protease 
substrate set. 
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 4 

A-E. Aligned sequence logo for (A) 194 caspase-6 substrates, (B) 469 cathepsin-B substrates, (C) 301 
substrates of MMP-9, (D) mix of 964 sequences from A, B and C. (E) sequences in D and an additional 
1000 theoretical random sequences to simulate noise. See Methods for more details of the analysis. 
F. Gibbs Cluster analysis of 1951 mixed protease sequences with background noise. GibbsCluster stacked 
bar chart shows Cluster 2 is the selected solution with the highest average system KLD.  
G, H, I. Logo map of patterns selected for 2 cluster solution shows enriched features consistent with (G) 
co-clustering of cathepsin B and MMP-9 substrates and (H) caspase-6 sequences respectively. (I) logo 
map for the third cluster did not resolve cathepsin B and MMP-9 co-clusters. 
J. RoLiM clustermap displaying patterns detected in mixed MEROPS sample containing caspase-6, 
cathepsin B and MMP-9 substrates. Each column represents a sequence in the data set and each row 
represents a pattern detected by RoLiM. Both rows and columns are clustered and the matching 
dendograms are shown to the left and above the clustermap respectively. Pattern distances are encoded 
as length in the dendograms. Next to the clustermap is a heatmap displaying the patterns detected along 
with protease specificity annotation from the pre-computed MEROPS protease substrate patterns included 
in RoLiM. 
K-N. Sequence logos for enriched patterns identified by RoLiM for proteases in a mixed MEROPS protease 
sample subset. 
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Figure 4. RoLiM enables robust and accurate characterization of protease activities in 
extracellular fluids from cancer patients. 
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A. RoLiM analysis on 382 potential peptide biomarkers for primary urothelial bladder cancer. Clustermap 
shows patterns enriched in peptide data, and heatmap depicts the main proteases (MMPs) annotated 
with these patterns.  
B. Sequence logos from aligned peptides with MMP motif. 
C, D. RoLiM analysis on 301 sequences reported by Wiita et al., in all patient cancers (C) and the 
sequence logos for predicted caspase and MMP proteases (D). 
E, F. RoLiM analysis on 90 sequences uniquely identified by Wiita et al., in only cancer samples (E) and 
the sequence logos for predicted caspase and granzyme B /  Corin proteases (D). 
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