

1 **Effector loss drives adaptation of *Pseudomonas syringae* pv. *actinidiae* to *Actinidia***
2 ***arguta***

3

4 Lauren M. Hemara^{1,2,3†}, Jay Jayaraman^{1,3†}, Paul W. Sutherland¹, Mirco Montefiori¹, Saadiah
5 Arshed¹, Abhishek Chatterjee¹, Ronan Chen⁴, Mark Andersen¹, Carl H. Mesarich^{3,5}, Otto van
6 der Linden¹, Magan M. Schipper⁶, Joel L. Vanneste⁶, Cyril Brendolise¹, Matthew D.
7 Templeton^{1,2,3*}

8

9 ¹The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research
10 Centre, Auckland, New Zealand,

11 ²School of Biological Sciences, University of Auckland, Auckland, New Zealand,

12 ³Bioprotection Centre for Research Excellence, New Zealand,

13 ⁴The New Zealand Institute for Plant and Food Research Limited, Food Industry Science
14 Centre, Palmerston North, New Zealand,

15 ⁵School of Agriculture and Environment, Massey University, Palmerston North, New
16 Zealand,

17 ⁶The New Zealand Institute for Plant and Food Research Limited, Ruakura Campus,
18 Hamilton, New Zealand

19

20 †co-first authors

21 *corresponding author

22 **Summary**

23 A pandemic isolate of *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) has devastated
24 kiwifruit orchards growing cultivars of *Actinidia chinensis*. In contrast, *A. arguta* (kiwiberry) is
25 resistant to Psa3. This resistance is mediated via effector-triggered immunity, as
26 demonstrated by induction of the hypersensitive response in infected *A. arguta* leaves,
27 observed by microscopy and quantified by ion-leakage assays. Isolates of Psa3 that cause
28 disease in *A. arguta* have been isolated and analyzed, revealing a 49 kb deletion in the
29 exchangeable effector locus (EEL). This natural EEL-mutant isolate and strains with
30 synthetic knockouts of the EEL were more virulent in *A. arguta* plantlets than wild-type Psa3.
31 Screening of a complete library of Psa3 effector knockout strains identified increased growth
32 *in planta* for knockouts of four effectors – AvrRpm1a, HopF1c, HopZ5a, and the EEL effector
33 HopAW1a – suggesting a resistance response in *A. arguta*. Hypersensitive response (HR)
34 assays indicate that three of these effectors trigger a host species-specific HR. A Psa3 strain
35 with all four effectors knocked out escaped host recognition, but a cumulative increase in
36 bacterial pathogenicity and virulence was not observed. These avirulence effectors can be
37 used in turn to identify the first cognate resistance genes in *Actinidia* for breeding durable
38 resistance into future kiwifruit cultivars.

39 **Introduction**

40 The *Pseudomonas syringae* species complex contains over 60 pathovars, each with
41 a discrete host range (Bull et al., 2010; Morris et al., 2019; Xin et al., 2018). The collective
42 host breadth of the *P. syringae* species complex makes this bacterial plant pathogen an
43 ideal model for studying the molecular basis of host specificity. *P. syringae* pv. *actinidiae*
44 (Psa), the causal agent of kiwifruit canker, is a recently emerged plant pathogen. The
45 disease was first isolated from *A. chinensis* var. *deliciosa* (green-fleshed kiwifruit), and *A.*
46 *arguta* (kiwiberry) in Japan in 1984 (Serizawa et al., 1989; Takikawa et al., 1989). There was
47 a subsequent outbreak in South Korea in the mid 1990s (Koh et al., 1994). However, it was
48 the emergence of a pandemic strain that spread rapidly around the world from 2008, which
49 particularly devastated orchards of *Actinidia chinensis* var. *chinensis* (gold-fleshed kiwifruit)
50 (Scortichini, 1994; Vanneste, 2017). Isolates from these three separate outbreaks of
51 bacterial canker have been grouped into biovars and recently two more biovars have been
52 described (Fujikawa and Sawada, 2016; Fujikawa and Sawada, 2019). Biovars of Psa have
53 closely related core genes and are primarily distinguished by their variable accessory
54 genomes, which include effectors and toxin biosynthesis clusters (Sawada and Fujikawa,
55 2019).

56 Psa3 is the only biovar present in New Zealand, alongside the closely related
57 pathovar *P. syringae* pv. *actinidifoliorum* (Cunty et al., 2015). Psa was first detected in New
58 Zealand's kiwifruit-growing region of Te Puke in 2010 (Everett et al., 2011). The introduction
59 of Psa3 to New Zealand orchards in 2010 appears to have been a single event, as the Psa
60 population has remained largely clonal (Colombi et al., 2017). Subsequently, in response to
61 copper application, acquisition of copper-resistance integrative conjugative elements,
62 plasmids and transposons has been observed (Colombi et al., 2017).

63 Resistance to Psa3 has been observed within an *Actinidia* germplasm collection,
64 including in *A. arguta* (Datson et al., 2013). In contrast, in a commercial *A. arguta* orchard,
65 rare Psa infections of *A. arguta* 'HortGem Tahi' and 'HortGem Rua' cultivars produced

66 symptomatic angular necrotic leaf spots; however, the outbreak did not result in a significant
67 loss of orchard productivity (Vanneste et al., 2014). Additionally, limited infection is observed
68 in *A. arguta* seedlings stab-inoculated with Psa, with infection limited to the tissue
69 immediately surrounding the inoculation site (Hoyte et al., 2013). This appears to be related
70 to earlier recognition of Psa3 in *A. arguta* than in *A. chinensis* (Nunes da Silva et al., 2020),
71 suggesting that *A. arguta* has a degree of resistance to Psa, which may be conferred by
72 undiscovered resistance genes recognizing Psa3 effectors.

73 Host range in the *P. syringae* species complex is largely driven by the composition of
74 the effector complement, which consists of at least 68 effector families (Dillon et al., 2019).
75 Effectors are thus intrinsic to the ability of specialized pathogens within this species complex
76 to cause disease *in planta*. However, an individual *P. syringae* strain carries only a fraction
77 of this “super pan effector repertoire”; further still, only a subset of these effectors, owing to
78 redundancy within the effector complement, may make an indispensable contribution to
79 virulence in a given host (Wei et al., 2015; Wei and Collmer, 2018).

80 Effector proteins are translocated into host cells via a type III secretion system
81 (T3SS) encoded by the *hrp/hrc* gene cluster (Alfano et al., 2000). The *hrp/hrc* genes are
82 required for the production of the T3SS, as $\Delta hrcC$ deletion mutants cannot deliver effector
83 proteins into host plant cells, thus preventing pathogenicity in host plants (Alfano et al., 2000;
84 Jayaraman et al., 2020). Once in host cells, effectors promote bacterial virulence by
85 interacting with host targets to suppress host immunity, allowing the pathogen to invade host
86 tissue, acquire nutrients and cause disease (Bent and Mackey, 2007; Chisholm et al., 2006;
87 Zipfel, 2009). Plant resistance proteins monitor the integrity of, for example, defence
88 signaling cascades, and can detect subversion by bacterial effectors, inducing effector-
89 triggered immunity (ETI), thus restoring plant resistance (Chisholm et al., 2006; Ngou et al.,
90 2021; Yuan et al., 2021). *P. syringae* T3S effectors are termed Hop (Hrp outer protein) or
91 Avr (avirulence) proteins (Lindeberg et al., 2012). Avr proteins are a subset of Hop effectors
92 that are recognized by the products of known plant disease resistance genes.

93 In the majority of *P. syringae* genomes, two groups of effectors are co-located with
94 the *hrp/hrc* gene cluster, forming a tripartite pathogenicity island. These are the conserved
95 effector locus (CEL) and the more variable exchangeable effector locus (EEL) (Alfano et al.,
96 2000). CEL effectors are required for pathogenesis, demonstrated by strongly reduced
97 pathogenicity and virulence in *P. syringae* Δ CEL strains in host plants (Alfano et al., 2000;
98 Badel et al., 2006; Jayaraman et al., 2020). The EEL has been remodeled extensively
99 between different *P. syringae* pathovars, creating significant genetic variation through
100 mutation, insertion, deletion, and recombination (Xin et al., 2018). The non-syntenic EEL
101 from Psa3 ICMP 18884 contains the effectors *hopQ1a*, *hopD1a*, *avrD1*, *avrB2b*, *hopAB1b*,
102 *hopF4a*, *hopAW1a*, *hopF1e*, *hopAF1b*, *hopD2a*, and *hopF1a*. However, even within the Psa
103 pathovar, the EEL is variable across biovars and strains (McCann et al., 2013; Rikkerink et
104 al., 2015).

105 While previous research has identified that Psa3 CEL (and related) effectors are
106 required for virulence (Jayaraman et al., 2020), no specific Psa3 avirulence effectors
107 recognized by *Actinidia* spp. have been identified. In this study, a genome sequencing field
108 survey and subsequent effector knockout assays identified four Psa3 avirulence effectors
109 associated with the resistance response to Psa3 in *A. arguta* AA07_03: HopAW1a,
110 AvrRpm1a, HopF1c, and HopZ5a.

111 **Results**

112 **Psa3 induces the hypersensitive response in *Actinidia arguta***

113 Previous work (Jayaraman et al., 2021) showed that *A. arguta* plants were resistant
114 to Psa3, associated with a quantifiable increase in ion leakage due to membrane disruption
115 of the dying cells indicative of a hypersensitive response (HR). Leaves of *A. arguta* and *A.*
116 *chinensis* var. *chinensis* spray-infected with Psa3 were visually inspected for macroscopic
117 symptoms at 1 day post inoculation (dpi) (*A. arguta*) or 5 dpi (*A. chinensis* var. *chinensis*).
118 This revealed small dark brown patches each consisting of a few cells, indicative of an HR in
119 *A. arguta*, in contrast to leaves of *A. chinensis* var. *chinensis* (Figure 1A). Accumulated
120 phenolic compounds, characteristic of the HR, were more obvious when the leaves were
121 cleared (Figure 1A). At higher magnification, immuno-labelling with an antibody specific for
122 β 1-3-glucan revealed callose accumulation in the portion of the cell walls of live cells in
123 direct contact with the dead cells in *A. arguta*, and a lack of cell death, but some callose
124 deposition in *A. chinensis* var. *chinensis* (Figure 1B). Under a fluorescence microscope the
125 dead mesophyll cells were readily visible because of their high concentrations of phenolic
126 compounds following cell wall degradation. Collectively these results in *A. arguta* treated
127 with Psa3 show hypersensitive cell death and a defence response in adjacent cells,
128 hallmarks of ETI.

129

130 **Psa isolates from symptomatic *A. arguta* leaves have a 49 kb deletion in the**
131 **exchangeable effector locus**

132 During routine surveys of our *Actinidia* spp. germplasm collection at the Te Puke
133 Research Orchard, we observed leaves of *A. arguta* 'HortGem Tahi' with leaf spot disease
134 symptoms. The leaf spots comprised an angular necrotic zone surrounded by a chlorotic
135 halo (Figure 2A). *P. syringae* was isolated from these lesions and confirmed to be Psa3
136 using qPCR (Andersen et al., 2017; Barrett-Manako et al., 2021). Several of these isolates

137 were sequenced using the Illumina HiSeq platform. Four isolates had a 49 kb deletion in the
138 EEL, with the deletion flanked by miniature inverted-repeat transposable elements (MITEs).
139 The deleted region contained several effectors including *hopAW1a*, *hopF1e*, *hopAF1b*,
140 *hopD2a*, and *hopF1a*, and genes encoding a putative novel non-ribosomal peptide synthase
141 (NRPS) toxin synthesis pathway (Figure 2B). One of the isolates with the 49 kb deletion,
142 Psa3 X-27, was checked by PCR spanning the deletion site (*Psa-X27*; effector check-
143 primers Table S1) and Sanger sequencing to confirm the deletion (Figure 2C).

144 Potted plants of *A. arguta* AA07_03 were infected with Psa3 ICMP 10627 (wild type,
145 WT) and one of the isolates with the 49 kb deletion, Psa3 X-27. Leaves of these Psa3 X-27-
146 infected plants had chlorotic halos and necrotic leaf symptoms, in contrast to plants infected
147 with Psa3 (WT), which displayed no visible symptoms (Figure 2D). Psa3 X-27 and Psa3 WT
148 were re-isolated from the spray-infected leaves and verified by PCR. Here, confirmation was
149 achieved by multiplex PCR for EEL locus effector gene *hopF1e* (883 bp) and *Psa-ompP1*
150 primers (Koh and Nou, 2002) (492 bp), with both present in the WT but only *Psa-ompP1*
151 present in the original and the re-isolated X-27 (Figure 2E).

152

153 **Psa3 X-27 escapes host recognition in *A. arguta* through effector loss**

154 To determine whether it was the Psa3 X-27 multi-effector deletion that allowed this
155 isolate to overcome *A. arguta* resistance, the Psa3 V-13 $\Delta sEEL$ knockout strain was
156 developed to have the same EEL effector deletion as Psa3 X-27 while retaining the putative
157 NRPS toxin biosynthesis gene cluster. *A. arguta* AA07_03 plantlets were flood-inoculated
158 with Psa3 V-13, Psa3 X-27, and Psa3 V-13 $\Delta sEEL$ and assessed for *in planta* growth for a
159 single experimental run (Figure 3). Infected plantlets were sampled at 6 and 12 dpi. Psa3 V-
160 13 triggered resistance in *A. arguta* AA07_03 at 6 and 12 dpi; a 5-fold increase in bacterial
161 biomass was observed for both Psa3 X-27 and Psa3 V-13 $\Delta sEEL$ relative to Psa3 V-13
162 using the qPCR approach (Figure 3A). Qualitatively, this same trend was also observed

163 using the plate count method to quantify Psa biomass (Figure 3B). A linear correlation was
164 observed when the dependent variables from the plate count (Log_{10} cfu/cm²) and qPCR
165 (ΔCt) methodologies were plotted against one another as a regression analysis, specifically
166 at 12 dpi (Figure 3C).

167 At 50 dpi, AA07_03 plantlets inoculated with Psa3 V-13 appeared healthy, with little to no
168 development of disease symptoms (Figure S1). Conversely, AA07_03 plantlets inoculated
169 with Psa3 X-27 developed leaf yellowing with small, angular, necrotic lesions surrounded by
170 chlorotic halos. Similar disease-like symptoms were observed when AA07_03 was
171 inoculated with Psa3 V-13 $\Delta sEEL$ (Figure S1). Quantification of diseased tissue (chlorotic
172 and necrotic tissues) using a PIDIQ pipeline (Laflamme et al., 2016) indicated a clear
173 difference between Psa3 V-13-infected versus Psa3 X-27- and Psa3 $\Delta sEEL$ -infected plants
174 (Figure S2). Unlike AA07_03, *A. chinensis* var. *chinensis* 'Hort16A' is highly susceptible to
175 Psa3 V-13. At 50 dpi, 'Hort16A' plantlets inoculated with Psa3 V-13 had a high degree of leaf
176 yellowing and large areas of necrosis (Figure S1). Psa3 X-27 and Psa3 V-13 $\Delta sEEL$ both
177 produced similar disease symptoms to Psa3 V-13 in 'Hort16A', with widespread necrosis
178 evident (Figure S1).

179

180 **Four candidate avirulence effector loci contribute to Psa3 recognition in *A. arguta***

181 Knocking out the sEEL locus increased virulence in *A. arguta* AA07_03
182 quantitatively, but Psa3 X-27 or Psa3 V-13 $\Delta sEEL$ were not as virulent in *A. arguta* AA07_03
183 as they were in 'Hort16A'. This suggested that there may be additional effectors recognized
184 by AA07_03 within the Psa3 V-13 effector complement.

185 To determine whether additional Psa3 V-13 effectors triggered resistance in *A. arguta*, a
186 library of 21 knockout strains was generated, covering all 30 effectors from Psa3 V-13,
187 consisting of 15 individual effectors, a redundant effector pair (*hopAM1a-1/hopAM1a-2*),
188 effector blocks (*hopZ5a/hopH1a*, CEL, or three different iterations of the EEL – Figure S3).

189 This library of knockout strains was screened in *A. arguta* AA07_03 plantlets by flood-
190 inoculation and sampled at 12 dpi (Figure 4). qPCR bacterial biomass quantification alone
191 was used for this screen, owing to the large number of strains being assessed for
192 pathogenicity across three independent infection experiments.

193 Several effector knockout strains achieved significantly more bacterial growth than
194 *Psa3* V-13, including *Psa3* V-13 $\Delta sEEL$, partially escaping recognition in AA07_03 (Figure
195 4). Additionally, *Psa3* V-13 $\Delta fEEL$, which encompasses the sEEL effectors alongside
196 additional effectors in the EEL (*avrB2b*, *avrD1*, and *hopF4a*), was also significantly more
197 virulent in AA07_03 than *Psa3* V-13 (Figure 4). Conversely, *Psa3* V-13 $\Delta xEEL$, which
198 encompasses the fEEL effectors alongside additional effectors in the EEL (*hopQ1a* and
199 *hopD1a*), and *Psa3* V-13 ΔCEL were not significantly different from *Psa3* V-13. *Psa3* V-13
200 $\Delta hopZ5a/\Delta hopH1a$, *Psa3* V-13 $\Delta avrRpm1a$ and *Psa3* V-13 $\Delta hopF1c$ also had a significant
201 increase ($p \leq 0.01$) in bacterial growth *in planta* relative to *Psa3* V-13. The isolates $\Delta hopl1c$,
202 $\Delta hopBP1a$, and $\Delta hopQ1a$ had a significant increase ($p \leq 0.05$) and $\Delta hopBN1a$ was not
203 significant overall but was significant in two of the three qPCR runs. These were further
204 tested by plate count methods and were not found to be significantly increased in virulence
205 in AA07_03 compared with *Psa3* V-13 (Figure S4).

206 Following this screen, candidate avirulence effector knockout strains with significance
207 ($p < 0.01$) were tested by plate count methods. Using the previously described biolistic co-
208 expression assays to measure HR-mediated reporter eclipse in AA07_03 leaves, *hopZ5a*
209 was identified as the recognized effector in the *hopZ5a/hopH1a* effector block (Figure S5;
210 (Jayaraman et al., 2021). Therefore, only the single *hopZ5a* knockout strain was used for
211 subsequent experiments. Thus, the candidate avirulence-effector knockout strains selected
212 for further analysis were *Psa3* V-13 $\Delta sEEL$, *Psa3* V-13 $\Delta fEEL$, *Psa3* V-13 $\Delta xEEL$, *Psa3* V-
213 13 $\Delta hopZ5a$, *Psa3* V-13 $\Delta hopF1c$, and *Psa3* V-13 $\Delta avrRpm1a$. *Psa3* V-13 $\Delta hopl1c$ was
214 selected to be a negative control in this experiment, as this strain did not display an increase
215 in bacterial growth or escape recognition because of the deletion of the $\Delta hopl1$ effector gene

216 (Figure S4). To confirm the candidate avirulence effector knockout strains identified in the
217 qPCR screens, bacterial growth was quantified in AA07_03 using both qPCR and the plate
218 count method (Figures 5A and 5B; Figures S6 and S7). Interestingly, all three of the *EEL*
219 knockout strains had significantly more Psa biomass *in planta*, with a ten-fold increase in
220 bacterial growth relative to Psa3 V-13. Similarly, Psa3 V-13 Δ hopZ5a, Psa3 V-13 Δ hopF1c
221 and Psa3 V-13 Δ avrRpm1a also had significantly more bacterial growth *in planta* relative to
222 Psa3 V-13, with approximately a mean ten-fold increase in bacterial growth. As expected,
223 Psa3 V-13 Δ hopI1c was not significantly different from Psa3 V-13.

224

225 **sEEL effector HopAW1a triggers resistance in *A. arguta***

226 Pathogenicity screening of AA07_03 determined that Psa3 V-13 Δ sEEL lost at least one
227 avirulence effector (Figure 5). To identify which sEEL effector(s) triggers resistance,
228 individual sEEL effectors (*hopAW1a*, *hopD2a*, *hopF1e* and *hopAF1b*) were plasmid-
229 complemented into Psa3 V-13 Δ sEEL (Table 1). Pathogenicity assays were conducted to
230 identify which sEEL effector(s) triggered resistance in *A. arguta* AA07_03.

231 Plasmid complementation of Psa3 V-13 Δ sEEL with *hopAF1b* and *hopD2a* yielded similar
232 amounts of *in planta* bacterial biomass to Psa3 V-13 Δ sEEL and these were significantly
233 different from Psa3 V-13 (Figures 6A and 6B). This suggests that neither HopAF1b nor
234 HopD2a trigger resistance to Psa3 V-13 in AA07_03. Interestingly, Psa3 V-13 Δ sEEL +
235 *p.hopAW1a* and Psa3 V-13 Δ sEEL + *p.hopF1e* showed a decrease in *in planta* bacterial
236 biomass relative to Psa3 V-13 Δ sEEL, suggesting that individual plasmid complementation
237 of *hopAW1a* and *hopF1e* partially restored host recognition (Figures 6A and 6B). However,
238 using the qPCR method (Figure 6A), *in planta* bacterial biomass of neither of these strains
239 was fully reduced to the same degree as Psa3 V-13, possibly owing to plasmid loss. If both
240 effectors are required for recognition, they may have an additive effect that is only fully seen
241 in wild-type Psa3 V-13. The plate count quantification (Figure 6B), in contrast, showed

242 neither Psa3 V-13 $\Delta sEEL$ + *p.hopAW1a* nor Psa3 V-13 $\Delta sEEL$ + *p.hopF1e* was significantly
243 different from Psa3 V-13, suggesting that both HopAW1a and HopF1e may trigger
244 resistance in AA07_03.

245 To confirm that HopAW1a and HopF1e are candidate avirulence effectors, segmented
246 effector knockouts within the sEEL were generated to confirm these results (Figures 6C and
247 6D). Psa3 V-13 $\Delta hopAW1a$ lacks *hopAW1a* while Psa3 V-13 $\Delta tEEL$ lacks *hopF1e*,
248 *hopAF1b*, *hopD2a* and *hopF1a*. Pathogenicity assays of AA07_03 demonstrated that Psa3
249 V-13 $\Delta hopAW1a$ was significantly different from Psa3 V-13 and similar to Psa3 V-13 $\Delta sEEL$.
250 In contrast, Psa3 V-13 $\Delta tEEL$ was not significantly different from Psa3 V-13. This suggests
251 that the individual deletion of *hopAW1a* is sufficient to partially release host recognition and
252 further suggests that none of the effectors in the tEEL triggers resistance on AA07_03. The
253 plate count data (Figure 6D) results corroborate the qPCR data (Figure 6C) and suggest that
254 HopAW1a is the sole sEEL effector responsible for triggering resistance on AA07_03.
255 Notably, AA07_03 plantlets inoculated with Psa3 $\Delta sEEL$ complemented with *hopAW1a* was
256 the sole plasmid-complemented line to display a lack of disease symptoms, including leaf
257 yellowing and necrosis (Figure S8). Additionally, Psa3 $\Delta hopAW1a$ produced Psa3 $\Delta sEEL$ -
258 like disease symptoms while Psa3 $\Delta tEEL$ did not (Figure S8). Quantification of diseased
259 tissue (chlorotic and necrotic tissues) using the modified PIDIQ pipeline indicated Psa3
260 $\Delta sEEL$ -infected plants most closely resembled the Psa3 $\Delta hopAW1a$ -infected plants, while
261 Psa3 V-13-infected plants resembled Psa3 $\Delta tEEL$ -infected plants (Figure S9). These results
262 were further supported by biotic co-expression assays in AA07_03 leaves, with only
263 *hopAW1a* triggering an HR response and an associated reporter eclipse (see below, Figure
264 S10).

265

266 **Psa3 candidate avirulence effectors trigger a hypersensitive response in *A. arguta***

267 Psa3 V-13 effectors *hopAW1a*, *hopF1c*, *hopZ5a*, and *avrRpm1a* cloned under a 35S
268 promoter were co-bombarded into kiwifruit leaf tissue with a GUS reporter gene to assess if
269 the proteins they encode triggered the hypersensitive response (HR) in *A. arguta* AA07_03
270 and *A. chinensis* var. *chinensis* 'Hort16A' leaves (Figure 7A). The effector *hopA1j* from *P.*
271 *syringae* pv. *syringae* 61 was used as a positive control for HR in this assay (Jayaraman et
272 al., 2021). Co- bombardment of candidate avirulence effectors *hopAW1a*, *hopF1c*, *hopZ5a*
273 and *avrRpm1a* all demonstrated a decrease in GUS activity on *A. arguta* AA07_03 in
274 comparison to the control (empty vector), indicating that the proteins they encode triggered a
275 hypersensitive response. Surprisingly, HopF1c expression in 'Hort16A' leaves also produced
276 an HR similar to that in AA07_03, albeit without a significant difference in ion leakage
277 compared with the control. The HR triggered by AvrRpm1a, HopZ5a and HopAW1a
278 appeared to be AA07_03-specific, however. Ion leakage assays using *Pseudomonas*
279 *fluorescens* Pf0-1 carrying an introduced type III secretion system indicated that only
280 HopAW1a resulted in an increase in conductivity compared with the empty vector control,
281 although the result was considerably weaker than that with the control HopA1j (Figure S11).
282 *P. fluorescens* may not be able to express and deliver effectors from Psa in the full context
283 of a suite of other potential pathogenicity factors. To mimic this more complete context and
284 deliver individual effectors from Psa3, a complete effector knockout strain (Psa3 V-13 Δ 30E)
285 was generated that lacked all 30 predicted and expressed effectors. To confirm that the
286 AA07_03-recognized avirulence effectors were not affected by level of expression under the
287 synthetic promoter or the C-terminal HA tag, *hopAW1a*, *hopZ5a*, *avrRpm1a*, and *hopF1c*
288 (with *shcF* carrying a point mutation resulting in an early truncation) were cloned under their
289 native promoters. Psa3 V-13 Δ 30E delivery of *hopAW1a*, *hopZ5a*, *avrRpm1a*, and *hopF1c*
290 surprisingly revealed that only HopAW1a was able to trigger a strong early ion leakage in
291 AA07_03 leaves (24 h), but not in 'Hort16A' (Figure 7B). Owing to the lack of a functional
292 *ShcF* protein, unsurprisingly, HopF1c only triggered a delayed ion leakage, but did so in both
293 plants, supporting the reporter eclipse findings (Figure 7A).

294 **Cumulative deletion of Psa3 candidate avirulence effectors does not result in added**
295 **fitness in *A. arguta***

296 To identify whether Psa3 V-13 avirulence effectors *hopF1c*, *avrRpm1a*, *hopZ5a*, and
297 *hopAW1a* contribute cumulatively towards triggering resistance, all four effectors were
298 successively knocked out of the Psa3 V-13 strain and these multiple-knockout strains were
299 inoculated onto *A. arguta* AA07_03 and *A. chinensis* var. *chinensis* 'Hort16A' plantlets
300 (Figure 8). Psa3 V-13 Δ *hrcC* was used as a negative control, as it lacks the ability to secrete
301 type III effectors into host plant cells and is not virulent in *Actinidia* host plants, including
302 'Hort16A'.

303 Interestingly, while Psa3 V-13 is avirulent in AA07_03, the type III secretion-deficient mutant
304 (Psa3 V-13 Δ *hrcC*) grew less than the wild-type, suggesting that while several effectors
305 trigger a strong HR in AA07_03 plants, the retention of effector secretion remains largely
306 beneficial to Psa3 (Figures 8A and 8B). Furthermore, pathogenicity assays in AA07_03
307 demonstrated that, while Psa3 V-13 Δ *hopF1c*/ Δ *hopAW1a* (double), Psa3 V-13
308 Δ *hopF1c*/ Δ *hopAW1a*/ Δ *avrRpm1a* (triple), and Psa3 V-13
309 Δ *hopF1c*/ Δ *hopAW1a*/ Δ *avrRpm1a*/ Δ *hopZ5a* (quadruple) were significantly different from
310 Psa3 V-13, they did not cumulatively increase in growth *in planta* with each successive
311 knockout (Figures 8A and 8B). In fact, the triple and quadruple effector knockout strains
312 appeared to accumulate in reduced amounts in AA07_03 compared with the double
313 knockout. This finding of reduced fitness in AA07_03 for the multiple knockout strains was
314 largely reflected in 'Hort16A', with the quadruple knockout demonstrating nearly 15-fold less
315 growth compared with Psa3 V-13 (Figure 8A). Taken together, the data suggest that while
316 several Psa3 effectors are recognized in *A. arguta*, the ability to secrete these effectors
317 collectively is beneficial to survival in kiwifruit plants and thus they are unlikely to be lost in
318 succession from a lack of evolutionary selection.

319

320 **Psa3 avirulence effectors shared by multiple Psa biovars appear to contribute to**
321 **broad Psa resistance in *A. arguta***

322 The four Psa3 V-13 effectors we have identified that are recognized in *A. arguta* AA07_03
323 are also present in the effector complements of the other Psa biovars. At least one
324 avirulence effector is shared for each emergent clade of Psa with *hopAW1a* in Psa5/Psa6,
325 *avrRpm1a* in Psa1/Psa6, and *hopF1c* in Psa2/Psa5 (Figure 9A). Because Psa2 possesses a
326 close orthologue of a truncated effector in Psa3 V-13 (*avrRpm1c*), we checked whether
327 AvrRpm1c was also recognized in AA07_03 and 'Hort16A' leaves. Similar to AvrRpm1a,
328 AvrRpm1c from Psa2 K-28 was also recognized specifically in AA07_03 but not in 'Hort16A'
329 (Figure S12).

330 Having examined the effector complement of Psa3 V-13, we next sought to examine
331 whether the presence of these shared avirulence effectors predicted performance of these
332 biovars in *A. arguta* AA07_03. Representative Psa biovar strains were screened in *A.*
333 *chinensis* var. *chinensis* 'Hort16A' and *A. arguta* AA07_03 to test their virulence (Figure 9B).

334 At 12 dpi, the bacterial growth of Psa1 J-35, Psa2 K-28, and Psa5 in *A. chinensis* var.
335 *chinensis* 'Hort16A' was slightly but significantly lower than that of Psa3 V-13, while that of
336 Psa6 was not significantly different (Figure 9B). Conversely, in *A. arguta* AA07_03, Psa1 J-
337 35 and Psa2 K-28 accumulated in significantly higher amounts than Psa3 V-13 at 12 dpi.
338 Similarly, Psa5 accumulated in slightly higher amounts than Psa3 V-13 at 12 dpi, albeit not
339 significantly. Meanwhile, Psa6 accumulated *in planta* in amounts similar to those of Psa3 V-
340 13. This relationship between Psa growth in *A. arguta* and *A. chinensis* var. *chinensis*
341 appeared to be inversely correlated. These results taken together suggest a broad
342 recognition, present specifically in *A. arguta*, of a number of shared effectors across the Psa
343 biovars.

344

345 **Discussion**

346 Although the pandemic isolate Psa3 causes devastating leaf spot and canker symptoms in
347 widely grown commercial cultivars of *A. chinensis*, many other *Actinidia* species such as *A.*
348 *arguta* are resistant (Datson et al., 2013). Resistance to Psa3 in the *A. arguta* accessions we
349 investigated was due to the induction of the hypersensitive response (HR). This conclusion
350 was supported by both microscopic observation of cell death and ion leakage experiments
351 using leaf discs (Jayaraman et al., 2021) (Figure 1). The induction of HR implies effector-
352 triggered immunity (ETI), and that at least one effector in Psa3 is recognized by the product
353 of an, as yet, uncharacterized, resistance gene in *A. arguta*. It is well documented that the
354 loss of a single effector by deletion or mutation can increase virulence in previously resistant
355 cultivars or species. Psa was isolated from leafspots of *A. arguta* plants in areas where Psa3
356 is prevalent in New Zealand. Whole genome sequence analysis of a Psa strain isolated from
357 *A. arguta*, Psa3 X-27, identified a 49 kb deletion in the EEL, which included five effectors
358 and the uncharacterized NRPS. This deletion appeared to be the only mutation of
359 significance in these isolates. Flanking the deletion were two MITE sequences, suggesting a
360 relatively facile mechanism for excision of the region via homologous recombination between
361 the MITE loci.

362 A gene knock out in Psa3 V-13 that deleted the same group of five effectors present
363 in Psa3 X-27 was constructed (Psa3 V-13 Δ sEEL). Both these isolates were able to grow to
364 the same extent in AA07_03. This suggested that the deletion of the putative NRPS toxin
365 biosynthesis gene cluster in Psa3 X-27 is not contributing to the increase in *in planta* growth.
366 Several lines of evidence suggest that the increase in bacterial biomass associated with *A.*
367 *arguta* infections by this strain is due only to the deletion of *hopAW1a*. These include: Psa3
368 V-13 Δ sEEL strain plasmid-complemented with *hopAW1a* demonstrated a decrease in
369 pathogenicity to the same rate as that of Psa3 V-13; the Psa3 V-13 Δ hopAW1a individual
370 effector knockout demonstrated an increase in pathogenicity similar to that observed with
371 Psa3 X-27 and Psa3 V-13 Δ sEEL; and finally, biolistic expression of HopAW1a in AA07_03
372 leaves triggered an HR.

373 To determine whether there were additional effectors in Psa3 in addition to
374 HopAW1a that trigger an HR, or whose loss might result in an increase in virulence in *A.*
375 *arguta*, we generated and screened a library of effector knockouts for their ability to grow in
376 AA07_03. We found that the loss of Psa3 V-13 effectors *avrRpm1a*, *hopF1c*, and *hopZ5a*
377 increased growth in AA07_03 compared with Psa3 V-13, and biolistic expression of these
378 effectors also indicated that they trigger an HR in *A. arguta*. Notably, this approach is unable
379 to identify effectors that non-redundantly participate in virulence but are also recognized in *A.*
380 *arguta*. Important Psa effectors that may fall into this category include AvrE1d and HopR1b
381 (Jayaraman et al., 2020).

382 For the multiple candidate avirulence effectors identified, AA07_03 must either
383 possess an R protein capable of recognizing numerous effectors, or carry multiple R proteins
384 specific for each effector. If these avirulence effectors are collectively recognized by one or
385 more host resistance proteins, the increase in bacterial growth observed in individual effector
386 knockouts may not represent a full escape from host recognition. The complex interplay of
387 effector complements makes it challenging to study the activity of a single effector in
388 isolation. Modular co-expression of *Pseudomonas syringae* pv. *tomato* (Pto) DC3000
389 effectors has identified multiple instances of effector interplay; for example, the effector
390 AvrPtoB is a suppressor of HopAD1-elicited ETI in *Nicotiana benthamiana* (Wei et al., 2018).
391 Similarly, HopI1 can suppress ETI elicited by HopQ1-1 (Wei et al., 2018). Along these same
392 lines, there may be further effectors that could be recognized by plant resistance proteins
393 that have not been identified in this study owing to suppression of ETI by another effector.
394 Suppression of ETI would prevent a decrease of bacterial biomass in its presence and,
395 therefore, upon deletion we may not detect a change in bacterial biomass either.

396 Another complicating factor is redundancy – many effectors are collectively essential
397 but individually redundant and can be grouped into redundant effector groups (REGs)
398 (Kvitko et al., 2009). Redundancy can exist on numerous levels – redundant effectors may
399 modify the same host target using the same molecular mechanism, or through different

400 molecular mechanisms towards the same means of plant immunity suppression (Ghosh and
401 O'Connor, 2017). Pto DC3000 possesses at least two REGs with redundant functions (Wei
402 et al., 2018). One REG contains the *CEL* effectors *hopM1* and *avrE1*, which are redundantly
403 involved in water-soaking in the apoplast, promoting bacterial growth (Wei et al., 2018).
404 Another REG contains *avrPto* and *avrPtoB*, which redundantly suppress PTI induced by
405 FLS2 perception of bacterial flagellin (Wei et al., 2018). Redundancy between effectors,
406 alongside potential effector interplay, means that avirulence effector knockouts may not
407 show significant changes in bacterial biomass if other avirulence effectors are still present
408 and act epistatically.

409 One interesting commonality between the avirulence effectors identified in this
410 research is that orthologs of several of these effectors from other *P. syringae* pathovars,
411 including AvrRpm1 and HopF2, target the RIN4 plant defence signaling hub (Ray et al.,
412 2019). RIN4 is a negative regulator of PTI and acts a molecular “phosphoswitch” to control
413 callose deposition and stomatal closure in response to pathogen perception (Ray et al.,
414 2019). Because of its role in PTI, RIN4 is the target of many *P. syringae* effectors and is
415 guarded, in turn, by a number of resistance proteins in a number of different plants: RPM1,
416 RPS2, Ptr1, Mr5, and Rpa1 (Mackey et al., 2003; Mackey et al., 2002; Mazo-Molina et al.,
417 2020; Vogt et al., 2013; Yoon and Rikkerink, 2020). Psa3 effectors AvrRpm1a and HopZ5a
418 have been shown to target RIN4 (Choi et al., 2021; Yoon and Rikkerink, 2020). As RIN4 is
419 evolutionarily conserved across monocot and dicot crops, with promising homologs identified
420 in *Actinidia*, resistance proteins guarding RIN4 and its associated proteins could be durable
421 targets for resistance breeding, with potentially broad-spectrum recognition that could be
422 deployed in a range of cultivated *Actinidia* spp.

423 The pathogenicity assays in this study of *A. chinensis* var. *chinensis* 'Hort16A' and *A.*
424 *arguta* AA07_03 are among the first to test the virulence of all five described Psa biovars.
425 Psa5 has previously been identified as weakly virulent in the field, while Psa6 has an
426 unknown degree of pathogenicity (Fujikawa and Sawada, 2016; Sawada and Fujikawa,

427 2019). Similar to Psa3, Psa6 appears to be highly pathogenic in 'Hort16A' but avirulent in
428 AA07_03. We confirmed Psa5 as being less pathogenic in 'Hort16A', similar to the
429 pathogenicities of Psa1 and Psa2 (Figure 9). The strain-specific level of resistance in
430 AA07_03 across the different Psa biovars suggests that there is a complex resistance
431 gene/avirulence effector relationship present (Salgon et al., 2017). The only partially
432 increased virulence of Psa1 J-35 and Psa2 K-28, relative to that of Psa3 V-13, suggests that
433 these strains may still carry effectors that trigger resistance in AA07_03, including those
434 shared with Psa3 V-13 (Figure 9). Notably, Psa1 carries *avrRpm1a* while Psa2 carries
435 *hopF1c* (and *avrRpm1c*), but Psa1 and Psa2 may possess other effectors that suppress ETI
436 for these effectors. Nevertheless, the effector presence/absence analysis between these
437 biovars of Psa suggests a hierarchy of recognition strengths in AA07_03. Namely, HopAW1a
438 recognition confers the strongest growth restriction; Psa1 and Psa2 lacking this effector (as
439 well as *hopZ5a*) have the most growth in AA07_03. HopZ5a/AvrRpm1a/HopF1c confer a
440 similar, lower degree of quantifiable resistance, with effector interplay playing a complex
441 role.

442 The four avirulence effectors that trigger resistance in AA07_03 can be used to
443 identify cognate resistance proteins and can contribute to effector-assisted breeding in
444 kiwifruit cultivar development programmes. Resistance genes that target "Achilles' heel"
445 effectors which are conserved across epidemic strains and biovars may confer durable,
446 broad-spectrum resistance (Vleeshouwers and Oliver, 2014). For example, *avrRpm1a* is
447 present in Psa1, Psa3 and Psa6, and the closely related *avrRpm1c* is present in Psa2 and
448 Psa5. If these effectors are recognized by the same resistance gene, this might represent a
449 true Achilles' heel for the whole Psa pathovar. Interestingly, testing of the AvrRpm1c allele
450 from Psa2 K-28 suggested that it is also recognized by AA07_03, possibly by the same
451 resistance protein recognizing AvrRpm1a (Figure S12). Resistance proteins that target
452 effectors that are variable between strains or biovars are of lower priority for resistance
453 breeding, as they are effective only against a subset of the pathogen population.

454 Unfortunately, *hopZ5a* is unique to the pandemic lineage of Psa3. Similarly, *hopF1c* is
455 absent from Psa1 and Psa6, and *hopAW1a* is absent in Psa1 and Psa2. Of further concern
456 around the utility of resistance against EEL-based effectors, genes located upon the same
457 element could easily be inactivated as a block in a single genetic event, as predicted by
458 Rikkerink et al. (2015). This has already been observed in the field isolate Psa3 X-27, with
459 the deletion of five EEL effectors. This highlights the potential for effector loss under
460 selection pressure from resistant plants in the field. This field-based adaptation underscores
461 the importance of deploying durable resistance genes that ideally target conserved effectors
462 with a virulence requirement, which would impose a fitness cost to a pathogen attempting to
463 escape host recognition.

464 In contrast, the sequential multiple-effector knockout strategy did not show an
465 additive increase in pathogenicity of Psa3 V-13 in AA07_03. In fact, the quadruple
466 avirulence-effector knockout strain (Δ *hopAW1a*/ Δ *hopF1c*/ Δ *avrRpm1a*/ Δ *hopZ5a*) also had
467 reduced pathogenicity in susceptible *A. chinensis* var. *chinensis* 'Hort16A' plants. In addition,
468 the increased pathogenicity of the different Psa biovars in *A. arguta* reflected reduced
469 pathogenicity in *A. chinensis* var. *chinensis*, suggesting a trade-off present in the effector
470 repertoire of Psa. This may be a reason for the particularly virulent disease reported during
471 the pandemic spread of Psa3, but not of Psa1 and Psa2, which were earlier emergent
472 diseases of kiwifruit (McCann et al., 2017; Sawada and Fujikawa, 2019). Here it is important
473 to point out that these earlier outbreaks occurred in Korea and Japan where the indigenous
474 *Actinidia* species include *A. arguta* and these biovars therefore presumably evolved partly in
475 the wild *Actinidia* germplasm in Korea/Japan. Taken together, these findings highlight a
476 second route to durable resistance: stacking resistance recognition in plants whereby
477 evasion of resistance through loss of multiple effectors will result in cumulative reduced
478 fitness in the plant host.

479 Breeding resistance genes into targeted kiwifruit cultivars is essential for long-term
480 management of Psa. Moreover, breeding *durable* resistance requires an understanding of

481 which pathogen effectors are required for virulence and which trigger resistance in potential
482 hosts. The optimal situation is one where resistance genes target essential effectors, as the
483 loss of an essential effector reduces pathogen fitness *in planta*. Loss of these effectors is,
484 therefore, likely to be selected against. Once identified, resistance genes can be introduced
485 into crops. Traditional breeding can be time-consuming and slow new cultivar development
486 (Kim and Kim, 2019). Alternatively, modern GM technology can efficiently introduce
487 resistance genes without linkage drag of undesirable agronomic traits, to create elite
488 transgenic cultivars (Jayaraman et al., 2016). Transgenic crops can also be used to confirm
489 the efficacy of resistance genes before traditional crosses enter pre-commercial field trials,
490 speeding up the cultivar development pipeline. Future research will entail characterizing
491 avirulence effector function, interplay and redundancy to identify which resistance genes are
492 durable breeding targets. Introducing durable Psa resistance that will be effective against the
493 broad spectrum of Psa biovars into future *Actinidia* cultivars will reduce the burden of
494 disease on the horticultural economy and allow a shift towards sustainable production.

495 **Experimental Procedures**

496 **Leaf tissue immunolabelling & microscopy**

497 Pieces of *A. chinensis* var. *chinensis* 'Hort16A' or *A. arguta* AA29_01 leaf, spray-
498 inoculated with Psa3 ICMP 18884 at 10⁸ cfu/mL and harvested at 1–5 days post-infection
499 (dpi), were fixed in 2% paraformaldehyde and 0.1% glutaraldehyde in 0.1M phosphate buffer
500 at pH 7.2 for 1 h under vacuum. Tissue was washed in buffer three times, dehydrated in an
501 ethanol series and embedded in LR White resin (London Resin, Reading, UK) (Sutherland et
502 al., 2009). Sections, 200 nm thick, were cut and dried onto Poly-L-Lysine-coated slides, and
503 left overnight on a hot plate at 45–50°C. These sections were then immunolabelled (Miles et
504 al., 2009; Rheinländer et al., 2013; Sutherland et al., 2009). Briefly, sections were rinsed in
505 Phosphate-Buffered Saline/Tween® (PBS-T), blocked with 0.1% (w/v) bovine serum albumin
506 (Bsa-c, Aurion, Wageningen) in PBS-T for 15 min, and incubated in anti-(1→3)-β-D-glucan
507 antibody (BioSupply, Parkville, Australia) diluted 1:100 in blocking buffer overnight at 4°C.
508 Sections were then washed in PBS-T, incubated for 1 h in Alexa Fluor® 488 goat anti-
509 mouse antibody (Molecular Probes, Eugene, Oreg., USA) diluted 1:600 in PBS, washed in
510 PBS-T, followed by ultrapure water and mounted in Citifluor (Leicester, UK). Sections were
511 viewed on an Olympus Vanox AHTB3 microscope using an interference blue excitation filter
512 set and images collected with a Roper Scientific CoolSnap color digital camera. To highlight
513 the leaf cell walls, sections were either stained with 0.01% (w/v) calcofluor in water (labeling
514 cellulose) or immunolabelled with LM19 (labeling pectin) in a process that followed the initial
515 labelling. The immunolabeling protocol was similar to that described above except that Alexa
516 Fluor® 594 goat anti-rat (Molecular Probes) was used as the secondary
517 antibody/fluorochrome combination. The hypersensitive response (HR) was observed by
518 destaining the tissue in acetic acid:ethanol (1:3) for 8 h, washed in 100% ethanol and
519 observed in bright field through the Olympus microscope.

520 **Field survey & Psa isolation**

521 Samples were taken from leaf spots on vines in the Plant & Food Research Te Puke
522 Research Orchard *Actinidia* germplasm collection. Infected leaves, fruit, bud, shoot and cane
523 samples were taken using secateurs sterilized with 80% ethanol. A 1-cm diameter cork borer
524 was used to punch three leaf discs from each symptomatic leaf. Leaf discs were surface-
525 sterilized in 70% ethanol for 10 s, and washed with sterile MilliQ water in a Falcon tube. For
526 each sample, three leaf discs were placed into an Eppendorf™ Microcentrifuge Safe-Lock™
527 tube (Fisher Scientific, California, United States) with 350 µL sterile 10 mM MgSO₄ and three
528 sterile 3.5-mm stainless steel beads. Samples were ground for two runs of 1 min at the
529 maximum speed in a Storm24 Bullet Blender (Next Advance, New York, United States).
530 Tubes were vigorously inverted to resuspend the leaf material pellets between each grinding
531 run. Supernatant (200 µL) was then spread onto lysogeny broth (LB) agar plates (Bertani,
532 1951) supplemented with 12.5 µg/mL nitrofurantoin and 40 µg/mL cephalexin and incubated
533 for 48 h at 22°C. The bacterial lawn was then re-streaked onto new LB agar plates
534 (supplemented with nitrofurantoin and cephalexin) until single colonies could be isolated.

535 Quantitative PCR (qPCR) was carried out on an Illumina Eco Real-Time PCR platform
536 (Illumina, Melbourne, Australia), following the protocol outlined by Barrett-Manako and
537 colleagues (Barrett-Manako et al., 2021). Single colonies were tested with Psa-ITS, Psa
538 HopZ5-F2/R2 and HopA1-F2/R1 qPCR primers to identify Psa3 strains (Andersen et al.,
539 2017; Table S1). Samples that amplified in under 35 qPCR cycles were prepared as a 20%
540 (w/v) glycerol stock for long-term storage.

541 **DNA extraction & sequencing**

542 DNA was purified following the Gentra® Puregene® protocol for Gram-negative bacteria
543 (Qiagen, Hilden, Germany). Libraries were constructed using the Nextera DNA preparation
544 kit and sequenced on an Illumina Hi-Seq 2500 platform (paired-end 125 bp reads) (Illumina).
545 Quality control reports for the raw sequencing reads were generated using FastQC
546 (Andrews, 2010). Raw sequencing reads underwent quality and adapter trimming using
547 BBduk (Bushnell, 2014) (version 38.62; parameters: ktrim=r, k=2,1 mink=11, hdist=2,

548 minlen=50, ftm=5, tpe, tbo, qtrim=r, trimq=10, minlen=50, maq=10). Trimmed reads were
549 mapped to the reference genome Psa ICMP 18884 using the bwa aligner (Li and Durbin,
550 2010) and variants were called using bcftools (Li, 2011) (version 1.9). Bedtools genomecov
551 was used to generate .bed files of regions with low or no coverage (Quinlan and Hall, 2010).
552 Bcftools was then used to generate a consensus sequence, masking regions of low or no
553 coverage (Li, 2011). Reference genome sequences for the Psa strains used in this study
554 (Templeton et al., 2015; Table 2) were obtained from the NCBI GenBank. All downstream
555 analyses were carried out in Geneious (Kearse et al., 2012; version 10.0.9).

556 **Microbiological methods**

557 Psa strains used in this study are listed in Table 1 and Table 2. All Psa strains were streaked
558 from glycerol stocks onto LB agar supplemented with appropriate antibiotics; plates were
559 sealed and grown for 48 h at 22°C. Overnight shaking cultures were grown in LB
560 supplemented with appropriate antibiotics and incubated at 22°C with 200 rpm shaking. LB
561 agar was supplemented with 12.5 µg/mL nitrofurantoin (Sigma Aldrich, New Zealand) and 40
562 µg/mL cephalexin (Sigma Aldrich) for Psa selection. To select for Psa strains carrying
563 pK18mobsacB, LB agar was supplemented with 50 µg/mL kanamycin. To counter-select
564 against Psa strains carrying pK18mobsacB, LB agar was supplemented with 12.5 µg/mL
565 nitrofurantoin, 40 µg/mL cephalexin, and 5% sucrose (Merck Millipore, New Zealand). To
566 select for Psa strains carrying pBBR1MCS-5B vectors for effector complementation, LB agar
567 was supplemented with 50 µg/mL gentamicin (Sigma Aldrich).

568 **Rooted plant inoculations and testing**

569 Experiments were conducted as described previously in Vanneste et al. (2013).
570 Briefly, a bacterial suspension for Psa3 X-27 or Psa3 ICMP 10627 (WT; clonal isolate
571 related to Psa3 ICMP 18884; Vanneste et al., 2013) was made in water from freshly grown
572 colonies on King's B agar plates (King et al., 1954) and adjusted to ~10⁸ cfu/mL.
573 Suspensions were sprayed onto the abaxial side of all leaves of three 3- to 4-month-old
574 seedlings of *A. arguta* AA07_03 or *A. chinensis* var. *chinensis* 'Hort16A'. Plants were kept at

575 approximately 20°C in plastic chambers to maintain the relative humidity. Leaf samples were
576 taken at 14 dpi to re-isolate bacterial DNA for PCR confirmation using *Psa-ITS* and *Psa-*
577 *ompP1* primers (Table S1) as described previously (Vanneste et al., 2013). Leaf
578 symptomology photographs were taken at 6 months post-infection.

579 **Psa3 effector gene knock-out library**

580 Psa3 ICMP 18884 (hereafter referred to as Psa3 V-13) was used as the WT for a
581 Psa effector knockout library using the pK18mobsacB-based system. A complete library of
582 25 Psa3 V-13 effector knockout strains was developed with effectors knocked out either
583 individually, in pairs if homologs were present (*hopAM1a-1/hopAM1a-2*) or as a functional
584 group (CEL, EEL various iterations, *hopZ5a/hopH1a*, or *hopQ1a/hopD1a*) (Table 2). Effector
585 knockout plasmids were developed for Psa3 V-13 using the methodology established by
586 Kvitko and Collmer (2011) and as described in Jayaraman et al. (2020). Briefly, flanking
587 regions 1kb upstream (UP) and 1kb downstream (DN) of the effectors of interest were PCR-
588 amplified with UP-R and DN-F cloning primers carrying an inserted *Xba*I site (Table S1),
589 digested with *Xba*I restriction enzyme (New England Biolabs/NEB, MA, USA), and ligated to
590 form a 2 kb knockout fragment. This 2 kb fragment was subsequently cloned into the
591 *Eco53kl* restriction enzyme (NEB) site of pK18B-E (Jayaraman et al., 2020). The knockout
592 fragment sequence and quality were verified by sequencing using M13F and M13R primers
593 (Macrogen, South Korea). Psa3 V-13 was transformed with each knockout vector by
594 electroporation (see Plasmid transformation section below). Transformants were plated onto
595 LB agar supplemented with kanamycin to select for strains carrying a genomic insertion of
596 the pK18B-E knockout construct. Resultant colonies were streaked onto LB agar
597 supplemented with 5% sucrose to counter-select against the *sacB* gene in pK18B-E.
598 Resulting colonies were then screened using PCR (check-F/R) primers that amplified
599 outside the knockout region (Table S1). Successful knockout strains were sub-cultured from
600 5% sucrose plates onto LB agar supplemented with or without 50 µg/mL kanamycin to
601 confirm plasmid loss and restored kanamycin sensitivity, and the ~2 kb knockout fragment

602 PCR amplicon was sequenced to confirm authenticity (Macrogen, South Korea). The Psa3
603 ΔCEL and Psa3 $\Delta hopR1$ strains included in the effector knockout strain library were
604 described and characterized earlier (Jayaraman et al., 2020).

605 **Psa3 complete effector knockout**

606 A Psa3 V-13 complete effector knockout strain was generated as for the single knockouts
607 using the same pK18mobsacB-based vectors used before. The single effectors or blocks of
608 effectors were sequentially knocked out to make the 30 effector knockout strain (Psa3 V-13
609 $\Delta 30E$) in the order: *hopZ5a/hopH1a* (using the *hopZ5a/hopH1a* double knockout vector),
610 *hopBP1a* (previously *hopZ3*), *hopQ1a*, *hopAS1b*, *avrPto1b* (previously *avrPto5*), *avrRpm1a*,
611 *fEEL* (*avrD1/avrB2b/hopF4a/hopAW1a/hopF1e/hopAF1b/hopD2a/hopF1a*), *hopF1c*
612 (previously *hopF2*), *hopD1a* (using the *hopQ1a/hopD1a* double knockout vector), *CEL*
613 (*hopN1a/hopAA1d/hopM1f/avrE1d*), *hopR1b*, *hopAZ1a*, *hopS2b*, *hopY1b*, *hopAM1a-1*,
614 *hopAM1a-2*, *hopBN1a*, *hopW1c* (previously *hopAE1*), *hopAU1a*, and *hopI1c*. Knockouts
615 were confirmed by PCR. Effectors that did not have a functional type III secretion signal
616 owing to truncation or disruption, or did not possess a HrpL box promoter individually or in
617 an operon (confirmed by expression analysis in McAtee et al. (2018)) were not knocked out
618 and included the following effector loci: *avrRpm1c*, *hopA1a*, *hopAA1b*, *hopAG1f*, *hopAH1c*,
619 *hopAI1b*, *hopAT1e* (previously *hopAV1*), *hopAB1b* (previously *hopAY1*). The effector
620 *hopAA1d* was also considered a pseudogene under these criteria but was knocked out with
621 other effectors in the *CEL*.

622 **Avirulence effector cloning**

623 Psa3 V-13 avirulence effector genes *hopAW1a*, *hopZ5a*, *avrRpm1a*, or *hopF1c* (along with
624 its chaperone *shcF*) were PCR-amplified using Q5 High fidelity polymerase (NEB) from Psa3
625 V-13 genomic DNA using cloning primers (Table S1) including their HrpL box promoters.
626 PCR amplicons were gel-extracted from agarose, and cloned by blunt-end ligation into the
627 *Eco53kl* restriction enzyme site in the pBBR1MCS-5 broad host range vector. Clones were
628 confirmed by sequencing (Macrogen).

629 **Plasmid transformations into Psa3**

630 Effector genes were plasmid-complemented back into Psa3 V-13 Δ sEEL or Psa3 V-13 Δ 30E
631 following methodology established in Jayaraman et al. (2020). Psa strains were inoculated
632 into 5 mL LB supplemented with appropriate antibiotics and incubated overnight at 20°C until
633 mid-log phase was reached (3×10^8 cfu/mL). Cultures (2 mL) were collected by centrifugation
634 at 17,000 g at 4°C and washed in cold sterile water multiple times to induce electro-
635 competency according to the previously defined protocol (Choi et al., 2006). The final
636 bacterial pellets were resuspended in 100 μ L sterile 300 mM sucrose solution, and plasmid
637 DNA added (200–500 ng per reaction). Electro-competent Psa cells were transformed on the
638 Gene Pulser Xcell™ Electroporation System (Bio-Rad, New Zealand), supplemented with
639 sterile, antibiotic-free LB and incubated at 22°C for 1 h with 200 rpm shaking, before plating
640 onto LB agar supplemented with gentamicin for plasmid selection and incubated for 48–96 h
641 at 22°C.

642 **Pathogenicity assays**

643 *Actinidia* spp. plantlets were obtained from Multiflora Laboratories (Auckland, New Zealand).
644 Plants were grown in 400-mL lidded plastic 'pottles' on half-strength Murashige and Skoog
645 (MS) Agar, with 3–5 plantlets per pottle. Plantlets were grown in a climate-controlled room at
646 20°C with a 16 h/8 h light/dark cycle and used within 2–3 months. Plantlets were infected
647 using an *in planta* flooding assay, as established in McAtee et al. (2018). Briefly, kiwifruit
648 plantlets were inoculated by flooding with 500 mL Psa inoculum ($\sim 5 \times 10^6$ cfu/mL) for 3 min,
649 and grown in a climate room at 20°C with a 16 h/8 h light/dark cycle. Un-inoculated plantlets
650 were occasionally checked throughout the experiments for Psa contamination and none was
651 detected.

652 To quantify bacterial growth of Psa *in planta*, leaf samples were taken at 6 or 12 dpi.
653 A 0.8-cm diameter cork borer was used to punch four leaf discs per replicate, with four
654 pseudobiological replicates taken per pottle (n = 16), surface-sterilized, and each ground in
655 350 μ L sterile 10 mM MgSO₄ with three 3.5-mm stainless steel beads using a Storm24 Bullet

656 Blender (Next Advance, NY, USA). Leaf homogenate stored at -20°C overnight prior to
657 PDQeX DNA extraction according to a previously described protocol (Jayaraman et al.,
658 2021).

659 A serial dilution of leaf homogenate was prepared to quantify cfu/cm² by the plate
660 count method. A 10-fold dilution series of leaf homogenate in sterile 10 mM MgSO₄ was
661 made, to a final dilution of 10⁻⁵ (*A. arguta*) or 10⁻⁷ (*A. chinensis*). Each 10-fold dilution in the
662 dilution series was spot-plated (10 µL) onto LB agar supplemented with appropriate
663 antibiotics. Plates were incubated for 48 h at 20°C and resultant colonies were counted to
664 calculate the cfu/cm². To assess disease phenotypes, plantlets were inoculated at ~1 x 10⁸
665 cfu/mL and observed at 50 dpi as established by Jayaraman and colleagues (Jayaraman et
666 al., 2021). A modified PIDIQ Image-J macro script (Laflamme et al., 2016) was used to
667 assess leaf yellowing and browning.

668 **Quantitative PCR**

669 Real-time quantitative PCR (qPCR) was carried out on an Illumina Eco Real-Time PCR
670 platform, following the protocol outlined in Barrett-Manako et al. (2021), with the annealing
671 temperature lowered to 57°C to improve the efficiency of the *EF1α* SN126 L/R primers. The
672 primers used for qPCR are listed in Table S1.

673 **Ion leakage**

674 *Psa3* V-13 Δ30E (Table 1) or *P. fluorescens* (T3S or WT; Table S2) carrying empty vector or
675 effector constructs were streaked from glycerol stocks onto LB agar plates with antibiotic
676 selection, were grown for 2 days at 22°C, and were restreaked on fresh agar media, and
677 were allowed to grow overnight. Bacteria were then harvested from plates, were
678 resuspended in 10 mM MgCl₂, and were diluted to ~10⁸ cfu/mL. Vacuum-infiltrations were
679 carried out using a pump and glass bell. Leaves were harvested from the tissue culture tubs
680 and were submerged in 30 ml of bacterial inoculum. The vacuum was run until bubbles were

681 rapidly forming. The vacuum valve was then shut and the air slowly let back in. The
682 infiltration was repeated a second time for those leaves not fully infiltrated and any remaining
683 non-infiltrated leaves were removed, as determined by visual examination. For each
684 treatment, leaf discs (6 mm diameter) were harvested from the uniformly vacuum-infiltrated
685 leaf area and were washed in distilled water for 1 h. Six discs were placed in 3 ml of water,
686 and conductivity was measured over 48 h, using a LAQUAtwin EC-33 conductivity meter
687 (Horiba). The standard errors of the means were calculated from five pseudobiological
688 replicates. Data for each timepoint was analyzed by ANOVA followed by a Tukey's HSD post
689 hoc test.

690 **Reporter eclipse**

691 Freshly expanded leaves of *A. arguta* AA07_03 were co-bombarded with DNA-coated gold
692 particles carrying pRT99-GUS and pICH86988 with the effector of interest, as described in
693 Jayaraman et al. (2021).

694 **Statistical analysis**

695 Statistical analysis was conducted in R (R Core Team, 2018), and figures were produced
696 using the packages “ggplot2”(Wickham, 2016) and “ggpubr” (Kassambara, 2017). *Post hoc*
697 statistical tests were conducted using the “ggpubr” and “agricolae” packages (de Mendiburu,
698 2017; Kassambara, 2017). The `stats_compare_means()` function from the “ggpubr” package
699 was used to calculate omnibus one-way analysis of variance (ANOVA) statistics to identify
700 statistically significant differences across all treatment groups (Kassambara, 2017). For
701 normally distributed populations, Student's *t*-test was used to conduct pair-wise, parametric
702 *t*-tests between an indicated strain and a designated reference strain (Kassambara, 2017).
703 The `HSD.test()` function from the “agricolae” package was used to calculate Tukey's Honest
704 Significant Difference (de Mendiburu, 2017).

705

706 **Author Contributions**

707 J.J., C.B., and M.D.T. conceived the work and planned experiments; L.M.H., J.J., P.W.S.,
708 M.M., S.A., A.C., R.C., M.A., C.H.M., O. L., M.M.S., J.L.V., and C.B. performed experiments;
709 L.M.H., J.J., C.B., and M.D.T. analyzed data; L.M.H., J.J., and M.D.T. wrote the paper.

710

711 **Acknowledgments**

712 We would like to thank Dr Jo Bowen (PFR), Dr Erik Rikkerink (PFR), and Assoc. Prof.
713 Andrew Allan (PFR) for critical reading of this manuscript. This work was funded (including a
714 post-doctoral fellowship to JJ) by the Bio-protection Research Centre (Tertiary Education
715 Commission) and a Rutherford Foundation Post-doctoral fellowship. LMH would like to thank
716 Zespri International for an MSc scholarship.

717 **Figure legends**

718 **Figure 1: *Pseudomonas syringae* pv. *actinidiae* biovar3 (Psa3) induces the**
719 **hypersensitive response in *Actinidia arguta*.** *A. arguta* and *A. chinensis* var. *chinensis*
720 leaves displaying symptoms following infection with Psa3 V-13 at 1 day post-infection (dpi) in
721 *A. arguta* and 5 dpi in *A. chinensis* var. *chinensis*. **(A)** Visualization of macroscopically visible
722 localized cell death indicative of a hypersensitive response (HR) to in leaves of *A. arguta*, in
723 contrast to *A. chinensis* var. *chinensis*, spray-infected with Psa3 V-13 at 10^8 cfu/mL or water
724 control (left). *A. arguta* leaves were cleared in acetic acid:ethanol to better visualize brown
725 phenolic compounds indicating cell death (right; brown speckling in the images). **(B)**
726 Fluorescence microscopy of Psa3 V-13-infected *A. arguta* and *A. chinensis* var. *chinensis*
727 mesophyll tissue. Callose (β 1-3-glucan) is immuno-labelled and fluorescence indicated in
728 green; cell wall pectin is immuno-labeled and fluorescence indicated in red; yellow coloring is
729 accumulation of phenolic compounds in cells showing hypersensitive cell death (hc; left) and
730 loss of cell wall integrity. Bright field microscopy of cleared *A. arguta* leaf in **A** indicates
731 phenolic compound accumulation in cells showing hypersensitive cell death (hc; right)
732 caused by cell wall breakdown. Scale bars represent 10 μ m.

733 **Figure 2: *Pseudomonas syringae* pv. *actinidiae* biovar3 (Psa3) isolated from**
734 **symptomatic *Actinidia arguta* plants has a deletion in the exchangeable effector locus**
735 **(A)** Psa leaf spot symptoms on commercial *A. arguta* 'HortGem Tahi' plants in the Plant &
736 Food Research Te Puke Research Orchard. **(B)** The Psa3 X-27 gene deletion spans the
737 effectors *hopAW1a*, *hopF1e*, *hopAF1b*, *hopD2a*, *hopF1a*, and the non-ribosomal peptide
738 synthase (NRPS) toxin cluster. The Psa3 X-27 gene deletion was identified through whole-
739 genome sequencing on an Illumina HiSeq platform and confirmed by PCR. **(C)** Three
740 colonies of Psa3 ICMP 18884 (V13) or Psa3 X-27 were used as templates for PCR across
741 the deletion boundary *Psa-X27* (1804 bp) and the band indicating deletion (red asterisk)
742 confirmed by Sanger sequencing. DNA marker is 1Kb Plus DNA Ladder from Thermo Fisher
743 (NZ). **(D)** Psa3 X-27 or Psa3 ICMP 10627 (WT) were sprayed onto potted *A. arguta*

744 AA07_03 plants and photographs of symptoms taken 6 months post-infection. **(E)** Psa3
745 ICMP 10627 (WT) and Psa3 X-27 re-isolated from infected leaves and confirmed by
746 multiplex PCR for *Psa-ompP1* (492 bp) and the EEL effector gene *hopF1e* (883 bp). DNA
747 ladder is 100bp DNA Marker™ from Zymo Research (USA).

748 **Figure 3: Psa3 X-27 and Psa3 V-13 ΔsEEL escape host recognition in *Actinidia arguta*.**

749 *A. arguta* AA07_03 plantlets were flood-inoculated with Psa3 V-13, Psa3 X-27, and Psa3 V-
750 13 Δ sEEL at approximately 10^6 cfu/mL. Bacterial growth was quantified at 6 and 12 days
751 post-inoculation by qPCR Δ Ct analysis **A** and plate count quantification **B**. **(A)** Box and
752 whisker plots, with black bars representing the median values for the four pseudobiological
753 replicates and whiskers representing the 1.5 inter-quartile range. **(B)** Bar height represents
754 the mean number of Log_{10} cfu/cm², and error bars represent the standard error of the mean
755 (SEM) between four pseudobiological replicates. **(C)** Regression analysis comparing the two
756 quantification methods (**A** and **B**). The linear regression line is indicated in blue, the grey
757 region indicates a 95% confidence interval, and the r-value represents the correlation
758 coefficient (R^2) and its associated p-value. The experiments were repeated three times with
759 similar results. Asterisks indicate the statistically significant difference of Student's *t*-test
760 between the indicated strain and wild-type Psa3 V-13, where $p \leq .05$ (*), $p \leq .01$ (**), $p \leq .001$
761 (***) $, and $p > .05$ (ns; not significant).$

762 **Figure 4: Pathogenicity assay screen of Psa3 V-13 effector knockout strains in**
763 ***Actinidia arguta* identifies four avirulence loci.** *A. arguta* AA07_03 kiwifruit plantlets were
764 flood-inoculated at approximately 10^6 cfu/mL. Psa biomass (*ITS*) was quantified relative to
765 *AaEF1α* using the Δ Ct analysis method for three pseudobiological replicates, per strain, per
766 experimental run. Box and whisker plots, with black bars representing the median values
767 and whiskers representing the 1.5 inter-quartile range. Asterisks indicate the statistically
768 significant difference of Student's *t*-test following ANOVA between the indicated strain and
769 wild-type Psa3 V-13, where $p \leq .05$ (*), $p \leq .01$ (**), $p \leq .001$ (***) $, p \leq .0001$ (****), and $p > .05$ (ns;
770 not significant). This experiment was separately conducted three times (biological replicates)

771 with three batches of independently grown plants and data were stacked to generate the box
772 plots.

773 **Figure 5: Pathogenicity assay of Psa3 V-13 selected effector knockout strains in**
774 ***Actinidia arguta* confirming four loci recognition.** *A. arguta* AA07_03 kiwifruit plantlets
775 were flood-inoculated at approximately 10^6 cfu/mL. Bacterial pathogenicity was quantified
776 relative to Psa3 V-13 using the ΔCt analysis method and box and whisker plots, with black
777 bars representing the median values and whiskers representing the 1.5 inter-quartile range
778 (**A**) and plate count quantification and error bars representing the standard error of the mean
779 (SEM) (**B**), for four pseudobiological replicates, per strain, per experimental run. Asterisks
780 indicate the statistically significant difference of Student's *t*-test between the indicated strain
781 and wild-type Psa3 V-13, where $p \leq 0.05$ (*), $p \leq 0.01$ (**), $p \leq 0.001$ (***), and $p > 0.05$ (ns; not
782 significant). This experiment was separately conducted three times (biological replicates)
783 with three batches of independently grown plants and data were stacked to generate the box
784 plots and bar graphs shown.

785 **Figure 6: Psa3 V-13 EEL effector HopAW1a is recognized by *Actinidia arguta*.** *A. arguta*
786 AA07_03 plantlets were flood-inoculated at approximately 10^6 cfu/mL. Bacterial growth was
787 quantified 12 days post-inoculation using qPCR ΔCt analysis **A**, and plate count
788 quantification **B**, for the plasmid-complemented $\Delta sEEL$ strains. Asterisks indicate the
789 statistically significant difference of Student's *t*-test between the indicated strain and wild-
790 type Psa3 V-13, where $p \leq 0.01$ (**), $p \leq 0.0001$ (****), $p > 0.05$ (ns). (**A**) Box and whisker plots,
791 with black bars representing the median values and whiskers representing the 1.5 inter-
792 quartile range. (**B**) Bar height represents the mean number of Log_{10} cfu/cm², and error bars
793 represents the standard error of the mean (SEM) between four pseudobiological replicates.
794 Bacterial growth was quantified 12 days post-inoculation using qPCR ΔCt analysis **C**, and
795 plate count quantification **D**, for the $\Delta tEEL$ and $\Delta hopAW1a$ strains. Asterisks indicate the
796 statistically significant difference of Student's *t*-test between the indicated strain and wild-
797 type Psa3 V-13, where $p \leq 0.001$ (**), $p \leq 0.0001$ (****), and $p > 0.05$ (ns). (**C**) Box and whisker

798 plots, with black bars representing the median values and whiskers representing 1.5 inter-
799 quartile range. **(D)** Bar height represents the mean number of Log_{10} cfu/cm², and error bars
800 represents the standard error of the mean (SEM) between four pseudobiological replicates.
801 Both experiments **(A, B and C, D)** were separately conducted three times (biological
802 replicates) with three batches of independently grown plants and data were stacked to
803 generate the box plots and bar graphs shown.

804 **Figure 7: Reporter eclipse assays demonstrate that HopAW1a, HopZ5a, and**
805 **AvrRpm1a trigger a host-specific immunity response in *Actinidia arguta* partially**
806 **supported by ion leakage assays. (A)** Avirulence effectors cloned in binary vector
807 constructs tagged with GFP, or an empty vector (Control), were co-expressed with a β -
808 glucuronidase (GUS) reporter construct using biolistic bombardment and priming in leaves
809 from *A. arguta* AA07_03 or *A. chinensis* var. *chinensis* 'Hort16A' plantlets (Jayaraman et al.,
810 2021). The GUS activity was measured 48 hours after DNA bombardment. Error bars
811 represent the standard errors of the means for three independent biological replicates with
812 six technical replicates each (n=18). HopA1j from *Pseudomonas syringae* pv. *syringae* 61
813 was used as positive control and un-infiltrated leaf tissue (Unshot) as a negative control.
814 Tukey's HSD indicates treatment groups which are significantly different at $\alpha \leq 0.05$ with
815 different letters. **(B)** Leaf discs from *A. arguta* AA07_03 and *A. chinensis* var. *chinensis*
816 'Hort16A' plantlets were vacuum-infiltrated with Psa3 V-13 wild-type strain or Psa3 V-13
817 $\Delta 30E$ carrying empty vector (EV), or Psa3 V-13 $\Delta 30E$ carrying a plasmid-borne type III
818 secreted effector (*hopAW1a*, *hopZ5a*, *avrRpm1a* or *shcF:hopF1c*, or positive control *hopA1j*
819 from *P. syringae* pv. *syringae* 61) inoculum at $\sim 5 \times 10^8$ cfu/mL. Electrical conductivity due to
820 HR-associated ion leakage was measured at indicated times over 72 hours. The ion leakage
821 curves are faceted by plant species and stacked for three independent runs of this
822 experiment. Error bars represent the standard errors of the means calculated from the five
823 pseudobiological replicates per experiment (n=15).

824 **Figure 8: Pathogenicity assay of Psa3 V-13 multiple avirulence effector knockout**
825 **strains demonstrates lack of increasing resistance-escape due to a cumulative loss of**
826 **virulence.** *Actinidia arguta* AA07_03 and *Actinidia chinensis* var. *chinensis* 'Hort16A'
827 kiwifruit plantlets were flood-inoculated at approximately 10^6 cfu/mL. Bacterial growth was
828 quantified at 12 days post-inoculation using qPCR ΔCt analysis **A** and plate count
829 quantification **B**. The experiment was conducted three times (biological replicates) with three
830 batches of independently grown plants and data were stacked to generate the box plots and
831 bar graphs shown. Asterisks indicate significant differences from ANOVA followed by a *post*
832 *hoc* Student's *t*-test between the indicated strain and wild-type Psa3 V-13, where $p \leq 0.05$ (*),
833 $p \leq 0.01$ (**), $p \leq 0.001$ (***), and $p > 0.05$ (ns; not significant). **(A)** Box and whisker plots, with
834 black bars representing the median values, whiskers representing the 1.5 inter-quartile
835 range, and black dots indicating outliers. **(B)** Bar height represents the mean number of
836 Log_{10} cfu/cm² and error bars represents the standard error of the mean (SEM) between four
837 pseudobiological replicates.

838 **Figure 9: Pathogenicity assay of *Pseudomonas syringae* pv. *actinidiae* (Psa) biovars**
839 **in *Actinidia arguta* indicates broad recognition across biovars.** **(A)** Effectors of interest
840 across the Psa biovars. Selected effector repertoires collated from McCann et al. (2013) and
841 Sawada et al. (2016). Red indicates when an effector is present; pink indicates when an
842 effector is either incomplete or variable, i.e. present within some isolates of the biovar but not
843 others; and white indicates when an effector is absent from a given biovar. **(B)** *A. arguta*
844 AA07_03 and *A. chinensis* var. *chinensis* 'Hort16A' kiwifruit plantlets were flood-inoculated at
845 approximately 10^6 cfu/mL with Psa1 J-35, Psa2 K-28, Psa3 V-13, Psa5 MAFF212057, and
846 Psa6 MAFF212134 strains. Bacterial growth was quantified at 12 days post-inoculation
847 using plate count quantification. The experiment was conducted three times (biological
848 replicates) with three batches of independently grown plants and data were stacked to
849 generate the box plots and bar graphs shown. Asterisks indicate significant differences from
850 ANOVA followed by a *post hoc* Student's *t*-test between the indicated strain and wild-type

851 Psa3 V-13, where $p \leq .05$ (*), $p \leq .01$ (**), $p \leq .001$ (***), $p \leq .0001$ (****), and $p > .05$ (ns; not
852 significant). Bar height represents the mean number of Log_{10} cfu/cm² and error bars
853 represents the standard error of the mean (SEM) between four pseudobiological replicates.

854 **Tables**

855 **Table 1. Transgenic Psa3 V-13 effector knockout and plasmid-complemented strains.**

Strain	Description	Size of deletion	
		(bp)	Source
Psa3 V-13 $\Delta hrcC$	deleted <i>hrcC</i>	-	(Straub et al., 2018)
Psa3 V-13 ΔCEL	deleted <i>hopN1a</i> , <i>shcM</i> , <i>hopM1f</i> , <i>hrpW1</i> , <i>shcE</i> and <i>avrE1d</i>	14,168	(Jayaraman et al., 2020)
Psa3 V-13 $\Delta hopR1$	deleted <i>hopR1b</i> (extended region owing to flanking repeat sequences)	7,906	(Jayaraman et al., 2020)
Psa3 V-13 $\Delta sEEL$	deleted <i>hopAW1a</i> , <i>hopF1e</i> (and associated <i>shcF</i>), <i>hopD2a</i> , <i>hopAF1b</i> , and <i>hopF1a</i> (and associated <i>shcF</i>)	11,479	This study
Psa3 V-13 $\Delta fEEL$	deleted <i>avrD</i> , <i>hopF4a</i> (and associated <i>shcF</i>), <i>avrB2b</i> , <i>hopAW1a</i> , <i>hopF1e</i> (and associated <i>shcF</i>), <i>hopD2a</i> ,	28,594	This study

	<i>hopAF1b</i> , and <i>hopF1e</i> (and associated <i>shcF</i>)		
Psa3 V-13 $\Delta xEEL$	deleted <i>hopQ1a</i> , <i>hopD1a</i> , <i>avrD</i> , <i>hopF4a</i> (and associated <i>shcF</i>), <i>avrB2b</i> , <i>hopAW1a</i> , <i>hopF1e</i> (and associated <i>shcF</i>), <i>hopD2a</i> , <i>hopAF1b</i> , and <i>hopF1a</i> (and associated <i>shcF</i>)	38,844	This study
Psa3 V-13 $\Delta tEEL$	deleted <i>hopF1e</i> (and associated <i>shcF</i>), <i>hopD2a</i> , <i>hopAF1b</i> , and <i>hopF1a</i> (and associated <i>shcF</i>)	9,845	This study
Psa3 V-13 $\Delta hopAW1a$	deleted <i>hopAW1a</i>	707	This study
Psa3 V-13 $\Delta hopZ5a/\Delta hopH1a$	deleted <i>hopZ5a</i> and <i>hopH1a</i>	2,128	This study
Psa3 V-13 $\Delta hopAM1-1/\Delta hopAM1-2$	deleted <i>hopAM1a-1</i> (extended region) and <i>hopAM1a-2</i> ; (two separate loci)	6,913 + 2,640	This study
Psa3 V-13 $\Delta hopQ1$	deleted <i>hopQ1a</i>	1,370	This study
Psa3 V-13 $\Delta hopD1$	deleted <i>hopD1a</i>	2,201	This study
Psa3 V-13 $\Delta hopI1$	deleted <i>hopI1c</i>	1,096	This study
Psa3 V-13 $\Delta hopY1$	deleted <i>hopY1b</i>	878	This study
Psa3 V-13 $\Delta avrRpm1a$	deleted <i>avrRpm1a</i>	738	This study

Psa3 V-13 Δ <i>hopW1c</i>	deleted <i>hopW1c</i> (extended region owing to flanking repeat sequences)	5,979	This study
Psa3 V-13 Δ <i>hopBN1a</i>	deleted <i>hopBN1a</i> (and associated <i>shcF</i>)	1,436	This study
Psa3 V-13 Δ <i>hopAZ1a</i>	deleted <i>hopAZ1a</i>	681	This study
Psa3 V-13 Δ <i>hopF1c</i>	deleted <i>hopF1c</i> (and associated <i>shcF</i> ; extended region owing to flanking repeat sequences)	6,655	This study
Psa3 V-13 Δ <i>hopAU1a</i>	deleted <i>hopAU1a</i>	2,331	This study
Psa3 V-13 Δ <i>hopBP1a</i>	deleted <i>hopBP1a</i>	1,270	This study
Psa3 V-13 Δ <i>hopAS1b</i>	deleted <i>hopAS1b</i>	4,109	This study
Psa3 V-13 Δ <i>avrPto1b</i>	deleted <i>avrPto1b</i>	526	This study
Psa3 V-13 Δ <i>hopS2b</i>	deleted <i>hopS2b</i> (and associated <i>shcS2</i>)	1,237	This study
Psa3 V-13 Δ <i>hopZ5a</i>	deleted <i>hopZ5a</i>	1,016	This study
Psa3 V-13 Δ <i>sEEL</i> +	Plasmid-complemented with	-	This study
pBBR1MCS-	<i>hopF1e</i>		
5B: <i>avrRps4pro:hopF1e:H</i>			
A			
Psa3 V-13 Δ <i>sEEL</i> +	Plasmid-complemented with	-	This study
pBBR1MCS-	<i>hopD2a</i>		
5B: <i>avrRps4pro:hopD2a:H</i>			
A			
Psa3 V-13 Δ <i>sEEL</i> +	Plasmid-complemented with	-	This study
pBBR1MCS-	<i>hopAF1b</i>		

5B:*avrRps4_{pro}*:*hopAF1b*:

HA

Psa3 V-13 $\Delta 30E$	deleted all type III secreted effectors	multiple	This study
Psa3 V-13 $\Delta 30E +$	Plasmid-complemented with empty vector	-	This study
Psa3 V-13 $\Delta 30E +$	Plasmid-complemented with <i>hopAW1a</i> (cloned under native promoter)	-	This study
Psa3 V-13 $\Delta 30E +$	Plasmid-complemented with <i>hopZ5a</i> (cloned under native promoter)	-	This study
Psa3 V-13 $\Delta 30E +$	Plasmid-complemented with <i>shcF</i> and <i>hopF1c</i> (cloned under native promoter)	-	This study
Psa3 V-13 $\Delta 30E +$	Plasmid-complemented with <i>avrRpm1a</i> (cloned under native promoter)	-	This study
Psa3 V-13 $\Delta 30E +$	Plasmid-complemented with <i>hopA1j_{Psy61}</i> from <i>P. syringae</i> pv. <i>syringae</i> 61	-	This study

856

857 **Table 2. Wild-type Psa strains.** All wild-type Psa strains were sourced from ICMP/MAFF.

Biova	Strai	Collectio	GenBank	Countr	Yea	Host	Referenc
r	n	n	accession	y of	r	plant	e
			number	number		origin	

Psa1	J-35	ICMP	CM002753	Japan	198	<i>Actinidia</i>	(McCann
		9617			4	<i>chinensi</i>	et al.,
						s var.	2013)
						<i>deliciosa</i>	
						'Haywar	
						d'	
Psa2	K-28	ICMP	NZ_RBSG000000	Korea	199	<i>Actinidia</i>	(McCann
		19071	00		7	<i>chinensi</i>	et al.,
						s	2013)
Psa3	V-13	ICMP	CP011972	New	201	<i>Actinidia</i>	(Templeto
		18884		Zealan	0	<i>chinensi</i>	n et al.,
				d		s var.	2015)
						<i>deliciosa</i>	
						'Haywar	
						d'	
Psa3	X-27	ICMP	PRJNA776646	New	201	<i>Actinidia</i>	This
		24332		Zealan	7	<i>arguta</i>	study.
				d		'HortGe	
						m Tah'	
Psa3	1062	ICMP	-	New	201	<i>Actinidia</i>	(Vanneste
	7	10627		Zealan	0	<i>chinensi</i>	et al.,
				d		s	2013)
Psa5	-	MAFF	JAAEYO01000000	Japan	201	<i>Actinidia</i>	(Fujikawa
		212057	0		9	<i>chinensi</i>	and

s var. Sawada,
deliciosa 2016)

Psa6 - MAFF MSBW01000000 Japan 201 *Actinidia* (Fujikawa
212134 9 *chinensi* and
s var. Sawada,
deliciosa 2019),
(Sawada
et al.,
2016)

859 **References**

860 Alfano, J.R., Charkowski, A.O., Deng, W.-L., Badel, J.L., Petnicki-Ocwieja, T., Van Dijk, K.,
861 and Collmer, A. (2000). The *Pseudomonas syringae* Hrp pathogenicity island has a tripartite
862 mosaic structure composed of a cluster of type III secretion genes bounded by
863 exchangeable effector and conserved effector loci that contribute to parasitic fitness and
864 pathogenicity in plants. *Proceedings of the national Academy of Sciences*. 97(9), 4856-4861.

865 Andersen, M.T., Templeton, M.D., Rees-George, J., Vanneste, J.L., Cornish, D.A., Yu, J.,
866 Cui, W., Braggins, T.J., Babu, K., Mackay, J.F., et al. (2017). Highly specific assays to detect
867 isolates of *Pseudomonas syringae* pv. *actinidiae* biovar 3 and *Pseudomonas syringae* pv.
868 *actinidifoliorum* directly from plant material. *Plant Pathol.*, n/a-n/a. DOI: 10.1111/ppa.12817.

869 Andrews, S., 2010. FastQC: a quality control tool for high throughput sequence data.

870 Badel, J.L., Shimizu, R., Oh, H.-S., and Collmer, A. (2006). A *Pseudomonas syringae* pv.
871 tomato *avrE1/hopM1* mutant is severely reduced in growth and lesion formation in tomato.
872 *Mol. Plant-Microbe Interact.* 19(2), 99-111.

873 Barrett-Manako, K., Andersen, M., Martínez-Sánchez, M., Jenkins, H., Hunter, S., Reese-
874 George, J., Montefiori, M., Wohlers, M., Rikkerink, E., Templeton, M., et al. (2021). Real-
875 Time PCR and Droplet Digital PCR Are Accurate and Reliable Methods To Quantify
876 *Pseudomonas syringae* pv. *actinidiae* Biovar 3 in Kiwifruit Infected Plantlets. *Plant Dis.* 0(0),
877 PDIS-08-20-1703-RE. DOI: 10.1094/pdis-08-20-1703-re.

878 Bent, A.F., and Mackey, D. (2007). Elicitors, effectors, and R genes: the new paradigm and
879 a lifetime supply of questions. *Annu. Rev. Phytopathol.* 45, 399-436.

880 Bertani, G. (1951). Studies on lysogenesis I: the mode of phage liberation by lysogenic
881 *Escherichia coli*. *J. Bacteriol.* 62(3), 293.

882 Bull, C.T., De Boer, S., Denny, T., Firrao, G., Saux, M.F.-L., Saddler, G., Scortichini, M.,
883 Stead, D., and Takikawa, Y. (2010). Comprehensive list of names of plant pathogenic
884 bacteria, 1980-2007. *J. Plant Pathol.*, 551-592.

885 Bushnell, B., 2014. BBTools software package.

886 Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host-Microbe Interactions:
887 Shaping the Evolution of the Plant Immune Response. *Cell*. 124(4), 803-814. DOI:
888 <https://doi.org/10.1016/j.cell.2006.02.008>.

889 Choi, K.-H., Kumar, A., and Schweizer, H.P. (2006). A 10-min method for preparation of
890 highly electrocompetent *Pseudomonas aeruginosa* cells: application for DNA fragment
891 transfer between chromosomes and plasmid transformation. *J. Microbiol. Methods*. 64(3),
892 391-397.

893 Choi, S., Prokchorchik, M., Lee, H., Gupta, R., Lee, Y., Cho, B., Kim, M., Kim, S.-T., and
894 Sohn, K.H. (2021). Direct acetylation of the conserved threonine of an immune regulator by
895 bacterial effectors activates RPM1-dependent immunity in *Arabidopsis*. *bioRxiv*.

896 Colombi, E., Straub, C., Kuenzel, S., Templeton, M.D., McCann, H.C., and Rainey, P.B.
897 (2017). Evolution of copper resistance in the kiwifruit pathogen *Pseudomonas syringae* pv.
898 *actinidiae* through acquisition of integrative conjugative elements and plasmids. *Environ.*
899 *Microbiol.* 19(2), 819-832.

900 Cunty, A., Poliakoff, F., Rivoal, C., Cesbron, S., Fischer-Le Saux, M., Lemaire, C., Jacques,
901 Manceau, C., and Vanneste, J.L. (2015). Characterization of *Pseudomonas syringae*
902 pv. *actinidiae* (Psa) isolated from France and assignment of Psa biovar 4 to a de novo
903 pathovar: *Pseudomonas syringae* pv. *actinidifoliorum* pv. nov. *Plant Pathol.* 64(3), 582-596.
904 DOI: 10.1111/ppa.12297.

905 Datson, P., Nardozza, S., Manako, K., Herrick, J., Martinez-Sanchez, M., Curtis, C., and
906 Montefiori, M., 2013. Monitoring the *Actinidia* germplasm for resistance to *Pseudomonas*
907 *syringae* pv. *actinidiae*, I International Symposium on Bacterial Canker of Kiwifruit 1095. pp.
908 181-184.

909 de Mendiburu, F., 2017. *agricolae: Statistical Procedures for Agricultural Research*.

910 Dillon, M.M., Almeida, R.N., Laflamme, B., Martel, A., Weir, B.S., Desveaux, D., and
911 Guttman, D.S. (2019). Molecular evolution of *Pseudomonas syringae* type III secreted
912 effector proteins. *Frontiers in plant science*. 10, 418.

913 Everett, K.R., Taylor, R.K., Romberg, M.K., Rees-George, J., Fullerton, R.A., Vanneste, J.L.,
914 and Manning, M.A. (2011). First report of *Pseudomonas syringae* pv. *actinidiae* causing
915 kiwifruit bacterial canker in New Zealand. *Austral. Plant Dis. Notes.* 6(1), 67-71.
916 Fujikawa, T., and Sawada, H. (2016). Genome analysis of the kiwifruit canker pathogen
917 *Pseudomonas syringae* pv. *actinidiae* biovar 5. *Scientific Reports.* 6.
918 Fujikawa, T., and Sawada, H. (2019). Genome analysis of *Pseudomonas syringae* pv.
919 *actinidiae* biovar 6, which produces the phytotoxins, phaseolotoxin and coronatine. *Scientific*
920 *reports.* 9(1), 1-11.
921 Ghosh, S., and O'Connor, T.J. (2017). Beyond paralogs: the multiple layers of redundancy in
922 bacterial pathogenesis. *Frontiers in cellular and infection microbiology.* 7, 467.
923 Hoyte, S., Reglinski, T., Elmer, P., Mauchline, N., Stannard, K., Casonato, S., Ah Chee, A.,
924 Parry, F., Taylor, J., and Wurms, K., 2013. Developing and using bioassays to screen for
925 Psa resistance in New Zealand kiwifruit, I International Symposium on Bacterial Canker of
926 Kiwifruit 1095. pp. 171-180.
927 Jayaraman, J., Chatterjee, A., Hunter, S., Chen, R., Stroud, E.A., Saei, H., Hoyte, S.,
928 Deroles, S., Tahir, J., Templeton, M.D., et al. (2021). Rapid methodologies for assessing
929 *Pseudomonas syringae* pv. *actinidiae* colonization and effector-mediated hypersensitive
930 response in kiwifruit. *Mol. Plant-Microbe Interact.* DOI: 10.1094/mpmi-02-21-0043-r.
931 Jayaraman, J., Segonzac, C., Cho, H., Jung, G., and Sohn, K.H. (2016). Effector-assisted
932 breeding for bacterial wilt resistance in horticultural crops. *Horticulture, Environment, and*
933 *Biotechnology.* 57(5), 415-423.
934 Jayaraman, J., Yoon, M., Applegate, E.R., Stroud, E.A., and Templeton, M.D. (2020). AvrE1
935 and HopR1 from *Pseudomonas syringae* pv. *actinidiae* are additively required for full
936 virulence on kiwifruit. *Mol. Plant Pathol.* 21(11), 1467-1480. DOI:
937 <https://doi.org/10.1111/mpp.12989>.
938 Kassambara, A., 2017. *ggpubr: 'ggplot2' Based Publication Ready Plots.*
939 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S.,
940 Cooper, A., Markowitz, S., and Duran, C. (2012). Geneious Basic: an integrated and

941 extendable desktop software platform for the organization and analysis of sequence data.

942 *Bioinformatics*. 28(12), 1647-1649.

943 Kim, J.-I., and Kim, J.-Y. (2019). New era of precision plant breeding using genome editing.

944 *Plant Biotechnology Reports*. 13(5), 419-421. DOI: 10.1007/s11816-019-00581-w.

945 King, E.O., Ward, M.K., and Raney, D.E. (1954). Two simple media for the demonstration of

946 pyocyanin and fluorescin. *The Journal of laboratory and clinical medicine*. 44(2), 301-307.

947 Koh, Y.J., Chung, H.J., Cha, B.J., and Lee, D.H. (1994). Outbreak and spread of bacterial

948 canker in Kiwifruit. v. 10.

949 Koh, Y.J., and Nou, I.S. (2002). DNA markers for identification of *Pseudomonas syringae* pv.

950 *actinidiae*. *Mol. Cells*. 13(2), 309-314.

951 Kvitko, B.H., and Collmer, A. (2011). Construction of *Pseudomonas syringae* pv. *tomato*

952 DC3000 mutant and polymutant strains. In: *Plant Immunity*, (Springer), pp. 109-128.

953 Kvitko, B.H., Park, D.H., Velásquez, A.C., Wei, C.-F., Russell, A.B., Martin, G.B., Schneider,

954 D.J., and Collmer, A. (2009). Deletions in the repertoire of *Pseudomonas syringae* pv.

955 *tomato* DC3000 type III secretion effector genes reveal functional overlap among effectors.

956 *PLoS Path.* 5(4), e1000388.

957 Laflamme, B., Dillon, M.M., Martel, A., Almeida, R.N., Desveaux, D., and Guttman, D.S.

958 (2020). The pan-genome effector-triggered immunity landscape of a host-pathogen

959 interaction. *Science*. 367(6479), 763-768.

960 Laflamme, B., Middleton, M., Lo, T., Desveaux, D., and Guttman, D.S. (2016). Image-based

961 quantification of plant immunity and disease. *Mol. Plant-Microbe Interact.* 29(12), 919-924.

962 Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association

963 mapping and population genetical parameter estimation from sequencing data.

964 *Bioinformatics*. 27(21), 2987-2993.

965 Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler

966 transform. *Bioinformatics*. 26(5), 589-595.

967 Lindeberg, M., Cunnac, S., and Collmer, A. (2012). *Pseudomonas syringae* type III effector

968 repertoires: last words in endless arguments. *Trends Microbiol.* 20(4), 199-208.

969 Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L. (2003). *Arabidopsis*
970 RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated
971 resistance. *Cell*. 112(3), 379-389.

972 Mackey, D., Holt III, B.F., Wiig, A., and Dangl, J.L. (2002). RIN4 interacts with *Pseudomonas*
973 *syringae* type III effector molecules and is required for RPM1-mediated resistance in
974 *Arabidopsis*. *Cell*. 108(6), 743-754.

975 Mazo-Molina, C., Mainiero, S., Haefner, B.J., Bednarek, R., Zhang, J., Feder, A., Shi, K.,
976 Strickler, S.R., and Martin, G.B. (2020). Ptr1 evolved convergently with RPS2 and Mr5 to
977 mediate recognition of AvrRpt2 in diverse solanaceous species. *The Plant Journal*. 103(4),
978 1433-1445.

979 McAtee, P.A., Brian, L., Curran, B., van der Linden, O., Nieuwenhuizen, N.J., Chen, X.,
980 Henry-Kirk, R.A., Stroud, E.A., Nardozza, S., and Jayaraman, J. (2018). Re-programming of
981 *Pseudomonas syringae* pv. *actinidiae* gene expression during early stages of infection of
982 kiwifruit. *BMC Genomics*. 19(1), 822.

983 McCann, H.C., Li, L., Liu, Y., Li, D., Pan, H., Zhong, C., Rikkerink, E.H.A., Templeton, M.D.,
984 Straub, C., Colombi, E., et al. (2017). Origin and Evolution of the Kiwifruit Canker Pandemic.
985 *Genome Biology and Evolution*. 9(4), 932-944.

986 McCann, H.C., Rikkerink, E.H.A., Bertels, F., Fiers, M., Lu, A., Rees-George, J., Andersen,
987 M.T., Gleave, A.P., Haubold, B., Wohlers, M.W., et al. (2013). Genomic Analysis of the
988 Kiwifruit Pathogen *Pseudomonas syringae* pv. *actinidiae* Provides Insight into the Origins of
989 an Emergent Plant Disease. *PLoS Path*. 9(7).

990 Miles, A., Akinsanmi, O., Sutherland, P., Aitken, E., and Drenth, A. (2009). Infection,
991 colonisation and sporulation by *Pseudocercospora macadamiae* on macadamia fruit.
992 *Australas. Plant Pathol.* 38(1), 36-43.

993 Morris, C.E., Lamichhane, J.R., Nikolić, I., Stanković, S., and Moury, B. (2019). The
994 overlapping continuum of host range among strains in the *Pseudomonas syringae* complex.
995 *Phytopathology Research*. 1(1), 4.

996 Nardozza, S., Boldingh, H.L., Osorio, S., Höhne, M., Wohlers, M., Gleave, A.P., MacRae,
997 E.A., Richardson, A.C., Atkinson, R.G., and Sulpice, R. (2013). Metabolic analysis of kiwifruit
998 (*Actinidia deliciosa*) berries from extreme genotypes reveals hallmarks for fruit starch
999 metabolism. *J. Exp. Bot.* 64(16), 5049-5063.

1000 Ngou, B.P.M., Ahn, H.-K., Ding, P., and Jones, J.D. (2021). Mutual potentiation of plant
1001 immunity by cell-surface and intracellular receptors. *Nature*. 592(7852), 110-115.

1002 Nunes da Silva, M., Vasconcelos, M., Gaspar, M., Balestra, G., Mazzaglia, A., and Carvalho,
1003 S.M. (2020). Early Pathogen Recognition and Antioxidant System Activation Contributes to
1004 *Actinidia arguta* Tolerance Against *Pseudomonas syringae* Pathovars *actinidiae* and
1005 *actinidiifoliorum*. *Frontiers in Plant Science*. 11, 1022.

1006 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing
1007 genomic features. *Bioinformatics*. 26(6), 841-842.

1008 R Core Team, 2018. R: A Language and Environment for Statistical Computing. R
1009 Foundation for Statistical Computing, Vienna, Austria.

1010 Ray, S.K., Macoy, D.M., Kim, W.-Y., Lee, S.Y., and Kim, M.G. (2019). Role of RIN4 in
1011 regulating PAMP-triggered immunity and effector-triggered immunity: current status and
1012 future perspectives. *Mol. Cells*. 42(7), 503.

1013 Rees-George, J., Vanneste, J.L., Cornish, D.A., Pushparajah, I.P.S., Yu, J., Templeton,
1014 M.D., and Everett, K.R. (2010). Detection of *Pseudomonas syringae* pv. *actinidiae* using
1015 polymerase chain reaction (PCR) primers based on the 16S-23S rDNA intertranscribed
1016 spacer region and comparison with PCR primers based on other gene regions. *Plant Pathol.*
1017 59(3), 453-464.

1018 Rheinländer, P., Sutherland, P., and Fullerton, R. (2013). Fruit infection and disease cycle of
1019 *Botrytis cinerea* causing cosmetic scarring in persimmon fruit (*Diospyros kaki* Linn.).
1020 *Australas. Plant Pathol.* 42(5), 551-560.

1021 Rikkerink, E.H.A., McCann, H.C., Rees-George, J., Lu, A., Gleave, A.P., Andersen, M.T.,
1022 Rainey, P.B., and Templeton, M.D. (2015). Transposition, Insertion, Deletion and
1023 Recombination Drive Variability in the Type 3 Secretome of *Pseudomonas syringae* pv.

1024 actinidiae, the Transition from Global Effector Comparisons to Kiwifruit Resistance Breeding
1025 Strategies. In: I International Symposium on Bacterial Canker of Kiwifruit, pp. 65-74.
1026 Salgon, S., Jourda, C., Sauvage, C., Daunay, M.-C., Reynaud, B., Wicker, E., and Dintinger,
1027 J. (2017). Eggplant resistance to the *Ralstonia solanacearum* species complex involves both
1028 broad-spectrum and strain-specific quantitative trait loci. *Frontiers in plant science*. 8, 828.
1029 Sawada, H., and Fujikawa, T. (2019). Genetic diversity of *Pseudomonas syringae* pv.
1030 actinidiae, pathogen of kiwifruit bacterial canker. *Plant Pathol.* 68(7), 1235-1248.
1031 Sawada, H., Kondo, K., and Nakaune, R. (2016). Novel biovar (biovar 6) of *Pseudomonas*
1032 *syringae* pv. *actinidiae* causing bacterial canker of kiwifruit (*Actinidia deliciosa*) in Japan
1033 (*Japanese Journal of Phytopathology*).
1034 Scorticini, M. (1994). Occurrence of *Pseudomonas syringae* pv. *actinidiae* on kiwifruit in
1035 Italy. *Plant Pathol.* 43(6), 1035-1038.
1036 Serizawa, S., Ichikawa, T., Takikawa, Y., Tsuyumu, S., and Goto, M. (1989). Occurrence of
1037 bacterial canker of kiwifruit in japan. *Japanese Journal of Phytopathology*. 55(4), 427-436.
1038 Straub, C., Colombi, E., Li, L., Huang, H., Templeton, M.D., McCann, H.C., and Rainey, P.B.
1039 (2018). The ecological genetics of *Pseudomonas syringae* from kiwifruit leaves. *Environ.*
1040 *Microbiol.* 20(6), 2066-2084.
1041 Sutherland, P., Hallett, I., and Jones, M. (2009). Probing cell wall structure and development
1042 by the use of antibodies: a personal perspective. *New Zeal J For Sci.* 39, 197-205.
1043 Takikawa, Y., Serizawa, S., Ichikawa, T., Tsuyumu, S., and Goto, M. (1989). *Pseudomonas*
1044 *syringae* pv. *actinidiae* pv. nov. the causal bacterium of canker of kiwifruit in Japan.
1045 *Japanese Journal of Phytopathology*. 55(4), 437-444.
1046 Templeton, M.D., Warren, B.A., Andersen, M.T., Rikkerink, E.H., and Fineran, P.C. (2015).
1047 Complete DNA sequence of *Pseudomonas syringae* pv. *actinidiae*, the causal agent of
1048 kiwifruit canker disease. *Genome announcements*. 3(5), e01054-01015.
1049 Thomas, W.J., Thireault, C.A., Kimbrel, J.A., and Chang, J.H. (2009). Recombineering and
1050 stable integration of the *Pseudomonas syringae* pv. *syringae* 61 *hrp/hrc* cluster into the

1051 genome of the soil bacterium *Pseudomonas fluorescens* Pf0-1. *The Plant Journal*. 60(5),
1052 919-928.

1053 Vanneste, J.L. (2017). The scientific, economic, and social impacts of the New Zealand
1054 outbreak of bacterial canker of kiwifruit (*Pseudomonas syringae* pv. *actinidiae*). *Annu. Rev.*
1055 *Phytopathol.* 55, 377-399.

1056 Vanneste, J.L., Cornish, D.A., Yu, J., and Stokes, C.A. (2014). First Report of *Pseudomonas*
1057 *syringae* pv. *actinidiae* the Causal Agent of Bacterial Canker of Kiwifruit on *Actinidia arguta*
1058 Vines in New Zealand. *Plant Dis.* 98(3), 418-418.

1059 Vanneste, J.L., Yu, J., Cornish, D.A., Tanner, D.J., Windner, R., Chapman, J.R., Taylor,
1060 R.K., Mackay, J.F., and Dowlut, S. (2013). Identification, Virulence, and Distribution of Two
1061 Biovars of *Pseudomonas syringae* pv. *actinidiae* in New Zealand. *Plant Dis.* 97(6), 708-719.

1062 Vleeshouwers, V.G., and Oliver, R.P. (2014). Effectors as tools in disease resistance
1063 breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. *Mol. Plant-*
1064 *Microbe Interact.* 27(3), 196-206.

1065 Vogt, I., Wöhner, T., Richter, K., Flachowsky, H., Sundin, G.W., Wensing, A., Savory, E.A.,
1066 Geider, K., Day, B., and Hanke, M.V. (2013). Gene-for-gene relationship in the host–
1067 pathogen system *M alus* × *robusta* 5–*E rwinia amylovora*. *New Phytol.* 197(4), 1262-1275.

1068 Wei, H.-L., Chakravarthy, S., Mathieu, J., Helmann, T.C., Stodghill, P., Swingle, B., Martin,
1069 G.B., and Collmer, A. (2015). *Pseudomonas syringae* pv. *tomato* DC3000 type III secretion
1070 effector polymutants reveal an interplay between HopAD1 and AvrPtoB. *Cell host & microbe.*
1071 17(6), 752-762.

1072 Wei, H.-L., Zhang, W., and Collmer, A. (2018). Modular study of the type III effector
1073 repertoire in *Pseudomonas syringae* pv. *tomato* DC3000 reveals a matrix of effector
1074 interplay in pathogenesis. *Cell reports.* 23(6), 1630-1638.

1075 Wei, H.L., and Collmer, A. (2018). Defining essential processes in plant pathogenesis with
1076 *Pseudomonas syringae* pv. *tomato* DC3000 disarmed polymutants and a subset of key type
1077 III effectors. *Mol. Plant Pathol.* 19(7), 1779-1794.

1078 Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

1079 Xin, X.-F., Kvitko, B., and He, S.Y. (2018). *Pseudomonas syringae*: what it takes to be a
1080 pathogen. *Nature Reviews Microbiology*. 16(5), 316.

1081 Yoon, M., and Rikkerink, E.H. (2020). Rpa1 mediates an immune response to avrRpm1Psa
1082 and confers resistance against *Pseudomonas syringae* pv. *actinidiae*. *The Plant Journal*.
1083 102(4), 688-702.

1084 Yuan, M., Ngou, B.P.M., Ding, P., and Xin, X.-F. (2021). PTI-ETI crosstalk: an integrative
1085 view of plant immunity. *Curr. Opin. Plant Biol.* 62, 102030.

1086 Zipfel, C. (2009). Early molecular events in PAMP-triggered immunity. *Curr. Opin. Plant Biol.*
1087 12(4), 414-420.

1088 **Supplementary tables**

1089 **Table S1 | Plasmid cloning and confirmation primers used in this study.**

Gene	Sense	Primer Sequence (5'-3')	Product size	Reference
<i>Psa-</i>	A1F2	GCCTCGATGTCGGCGC	132 bp	(Andersen
<i>hopA1</i>	A1R1	ATTCGATAGAAGAACCTCTTGCCTT		et al., 2017)
		T		
<i>Psa-</i>	Z5F2	ACAACCTCAGGCTACAATACTTACG	102 bp	(Andersen
<i>hopZ5</i>		C		et al., 2017)
	Z5R2	CTCAGGATGCGTTTCGGTTAC		
<i>Psa-X27</i>	Forward	CAGGGCTGCCGATTGATT	1804 bp	This study
	Reverse	CAAAGGCTATGACGCAGAACAC		
<i>Psa-ITS</i>	PsaF1	TTTGCTTGCACACCCGATT	280 bp	(Rees-
	PsaR2	CACGCACCCCTCAATCAGGATG		George et al., 2010)

<i>Psa-</i>	Forward	CACGATACATGGGCTTATGC	492 bp	(Koh and
<i>ompP1</i>	Reverse	CTTTCATCCACACACTCCG		Nou, 2002)
<i>AcEF1α</i>	Forward	GCAC TGT CATTGATGCTCCT	118 bp	(Nardozza
	Reverse	CCAGCTTCAAAACCACCACT		et al., 2013)
<i>hopAF1b_</i>	Forward	ATGGTTCTTGTAGACGCTTATC	642 bp	This study
<i>check</i>	Reverse	TTAGGCCAGTCACCAAATGTT		
<i>hopD2a_c</i>	Forward	ATGCAGAATCATGTCATTACTT	1020 bp	This study
<i>heck</i>	Reverse	CTAAAAGCGTTGTTGAGAGG		
<i>hopAW1a</i>	Forward	ATGCGCGTGAGAGTATCAAAC	663 bp	This study
<i>_check</i>	Reverse	TTACGAGCGCACAGGCAGAA		
<i>hopF1e_c</i>	Forward	GTGGGCAATATTGTGGTAC	843 bp	This study
<i>heck</i>	Reverse	CTATCCATCAGACCGAGAAT		
<i>hopAW1a</i>	Forward	CCCTCTGGTAAACTGGCG	885 bp	This study
	Reverse	CCCGAGCTGATGCGCAT		
<i>hopF1c</i>	Forward	GCCTGTCCTAACGAAAGATCATC	1225 bp	This study
	Reverse	CACCGAAAAACCTAACATGC		
<i>hopZ5a</i>	Forward	GACAAGCCAGCGATAACACCTA	1455 bp	This study
	Reverse	CGCTCACGAGAAAGTCTCAATTG		
<i>avrRpm1</i>	Forward	GCGTGTCCAGACCTGTAGATT	876 bp	This study

a

Reverse TCGGTTTTTCAGACGAATTCTTGAA

1090

1091 **Table S2 | *Pseudomonas fluorescens* plasmid-complemented strains used in this**
1092 **study.**

Strain	Description	Source
<i>Pfo</i> (T3S)	<i>P. fluorescens</i> Pf0-1 carrying an artificial type III secretion system from <i>P. syringae</i> pv. <i>syringae</i> 61	(Thomas et al., 2009)
<i>Pfo</i> (WT)	<i>P. fluorescens</i> Pf0-1 WT strain	(Thomas et al., 2009)
<i>Pfo</i> (T3S) or <i>Pfo</i> (WT) + EV	Plasmid-complemented with empty vector (pBBR1MCS-5)	(Jayaraman et al., 2020)
<i>Pfo</i> (T3S) or <i>Pfo</i> (WT) + <i>hopAW1a</i>	Plasmid-complemented with <i>hopAW1a</i> (cloned under <i>avrRps4</i> promoter and tagged with HA)	This study
<i>Pfo</i> (T3S) or <i>Pfo</i> (WT) + <i>hopZ5a</i>	Plasmid-complemented with <i>hopZ5a</i> (cloned under <i>avrRps4</i> promoter and tagged with HA)	This study
<i>Pfo</i> (T3S) or <i>Pfo</i> (WT) + <i>hopF1c</i>	Plasmid-complemented with <i>hopF1c</i> (cloned under <i>avrRps4</i> promoter and tagged with HA)	This study

<i>Pfo</i> (T3S) or <i>Pfo</i> (WT) +	Plasmid-complemented with	This study
avrRpm1a	avrRpm1a (cloned under avrRps4 promoter and tagged with HA)	
<i>Pfo</i> (T3S) or <i>Pfo</i> (WT) +	Plasmid-complemented with	(Jayaraman et al., 2021)
<i>hopA1j</i> _{Psy61}	<i>shcA</i> and <i>hopA1j</i> from <i>P.</i> <i>syringae</i> pv. <i>syringae</i> 61	

1093

1094 **Supplementary Figures**

1095 **Figure S1: Symptom development of Psa3 V-13, Psa3 X-27, and Psa3 V-13 ΔsEEL in**
1096 ***Actinidia arguta* and *A. chinensis* var. *chinensis*.** *A. arguta* AA07_03 kiwifruit plantlets
1097 were flood-inoculated at approximately 10⁷ cfu/mL. Photographs of symptom development in
1098 representative pottles were taken at 50 days post-infection.

1099 **Figure S2: Quantification of symptom development of Psa3 V-13, Psa3 X-27, and Psa3**
1100 **V-13 ΔsEEL in *Actinidia arguta* and *A. chinensis* var. *chinensis*.** A modified PIDIQ
1101 image-based analysis of leaf yellowing and browning, expressed as a normalized arcsine-
1102 transformed percentage for symptomology photographs taken at 50 days post-infection
1103 (Figure S1). Methodology adapted and modified from that in Laflamme et al. (2020).

1104 **Figure S3: The non-canonical extended exchangeable effector locus (xEEL)**
1105 **encompassing the full EEL (fEEL), short EEL (sEEL), and tiny EEL (tEEL) loci.**
1106 Schematic of the effectors comprising the xEEL (I-V; *hopQ1a* – *hopF1a*), fEEL (II-V; *avrD1* –
1107 *hopF1a*), sEEL (III-V; *hopAW1a* – *hopF1a*), and tEEL (IV-V; *hopF1e* – *hopF1a*) loci in Psa3
1108 V-13 ICMP 18884 strain are indicated. Potential recombination sites are indicated: Miniature
1109 Inverted Repeat Transposable Element (MITE; grey diamonds), DDE terminal inverted
1110 repeats (black diamonds).

1111 **Figure S4: Pathogenicity assay of Psa3 V-13 selected effector knockout strains in**
1112 ***Actinidia arguta* AA07_03 confirming lack of contribution towards avirulence.** *A. arguta*
1113 AA07_03 kiwifruit plantlets were flood-inoculated at approximately 10^6 cfu/mL. Bacterial
1114 pathogenicity was quantified relative to Psa3 V-13 using plate count quantification for four
1115 pseudobiological replicates, per strain, per experimental run and error bars represent the
1116 standard error of the mean (SEM). Asterisks indicate the statistically significant difference of
1117 Student's *t*-test between the indicated strain and wild-type Psa3 V-13, where $p \leq .001$ (****),
1118 and $p > .05$ (ns; not significant). This experiment was separately conducted twice (biological
1119 replicates) with two batches of independently grown plants and data were stacked to
1120 generate the bar graphs shown.

1121 **Figure S5: Biolistic transformation reporter eclipse assay demonstrates that HopZ5a,**
1122 **and not HopH1a, triggers a host-specific immunity response in *Actinidia arguta*.**
1123 Avirulence effectors cloned into binary vector constructs tagged with GFP, or an empty
1124 vector (Control), were co-expressed with a β -glucuronidase (GUS) reporter construct using
1125 biolistic bombardment and priming in leaves from *A. arguta* AA07_03 plantlets (Jayaraman
1126 et al., 2021). The GUS activity was measured 48 hours after DNA bombardment. Error bars
1127 represent the standard errors of the means for three independent biological replicates with
1128 six technical replicates each ($n=18$). HopI1c was used as the positive control and un-
1129 infiltrated leaf tissue (Unshot) as the negative control. Tukey's HSD indicates treatment
1130 groups that are significantly different at $\alpha \leq 0.1$ with different letters.

1131 **Figure S6: qPCR-based pathogenicity assay of Psa3 V-13 selected effector knockout**
1132 **strains in *Actinidia arguta* confirming recognition of four avirulence loci.** *A. arguta*
1133 AA07_03 kiwifruit plantlets were flood-inoculated at approximately 10^6 cfu/mL. Bacterial
1134 pathogenicity was quantified relative to Psa3 V-13 using the ΔCt analysis method for four
1135 pseudobiological replicates, per strain, per experimental run. Data are presented as box and
1136 whisker plots, with black bars representing the median values and whiskers representing the
1137 1.5 inter-quartile range. The data have been faceted by experimental run. Asterisks indicate

1138 the statistically significant difference of Student's *t*-test between the indicated strain and wild-
1139 type Psa3 V-13, where $p \leq .05$ (*), $p \leq .01$ (**), $p \leq .001$ (***), and $p > .05$ (ns; not significant).
1140 These three experiments (biological replications) were separately conducted with three
1141 batches of independently grown plants.

1142 **Figure S7: Agarose plate-based pathogenicity assay of Psa3 V-13-selected effector**
1143 **knockout strains in *Actinidia arguta* confirming recognition of four avirulence loci.** *A.*
1144 *arguta* AA07_03 kiwifruit plantlets were flood-inoculated at approximately 10^6 cfu/mL.
1145 Bacterial pathogenicity was quantified relative to Psa3 V-13 using plate count quantification
1146 for four pseudobiological replicates, per strain, per experimental run. The data have been
1147 faceted by experimental run. Asterisks indicate the statistically significant difference of
1148 Student's *t*-test between the indicated strain and wild-type Psa3 V-13, where $p \leq .05$ (*),
1149 $p \leq .01$ (**), $p \leq .001$ (***), and $p > .05$ (ns; not significant). These three experiments (biological
1150 replications) were separately conducted with three batches of independently grown plants.

1151 **Figure S8: Symptom development of Psa3 V-13 Δ sEEL strains complemented with**
1152 **plasmids carrying individual sEEL effectors and Psa3 V-13 Δ tEEL and Δ hopAW1a**
1153 **strains in *Actinidia arguta*.** *A. arguta* AA07_03 kiwifruit plantlets were flood-inoculated at
1154 approximately 10^7 cfu/mL. Photographs of symptom development with representative pottles
1155 were taken at 50 days post-infection.

1156 **Figure S9: Quantification of symptom development of Psa3 V-13 Δ sEEL strains**
1157 **complemented with plasmids carrying individual sEEL effectors and Psa3 V-13 Δ tEEL**
1158 **and Δ hopAW1a strains in *Actinidia arguta*.** A modified PIDIQ image-based analysis of
1159 leaf yellowing and browning, expressed as a normalized arcsine-transformed percentage for
1160 symptomology photographs taken at 50 days post-infection (Figure S7). Methodology
1161 adapted and modified from that of Laflamme et al. (2020).

1162 **Figure S10: Biolistic transformation reporter eclipse assays demonstrate that**
1163 **HopAW1a is the sole sEEL effector triggering a hypersensitive response in *Actinidia***

1164 ***arguta AA07_03***. *sEEL* effectors in cloned binary vector constructs tagged with GFP, or an
1165 empty vector (Control), were co-expressed with a β -glucuronidase (GUS) reporter construct
1166 using biolistic bombardment and priming in leaves from *A. arguta AA07_03* plantlets
1167 (Jayaraman et al., 2021). The GUS activity was measured 48 hours after DNA
1168 bombardment. Error bars represent the standard errors of the means for three independent
1169 biological replicates with six technical replicates each (n=18). Un-infiltrated leaf tissue
1170 (Unshot) was used as a negative control. Tukey's HSD indicates treatment groups which are
1171 significantly different at $\alpha \leq 0.1$ with different letters.

1172 **Figure S11: Measurement of hypersensitive response (HR) by ion leakage.** Leaf discs
1173 from *A. arguta AA07_03* and *A. chinensis* var. *chinensis* 'Hort16A' plantlets were vacuum-
1174 infiltrated with Psa3 inoculum at $\sim 5 \times 10^8$ cfu/mL. Electrical conductivity due to HR-
1175 associated ion leakage was measured at selected time points over 48 hours. The ion
1176 leakage curves are faceted by plant species and stacked for three independent runs of this
1177 experiment. Error bars represent the standard errors of the means calculated from the five
1178 pseudobiological replicates per experiment (n=15).

1179 **Figure S12: Biolistic transformation reporter eclipse assays demonstrate that**
1180 **AvrRpm1c from Psa2 K-28 triggers a host-specific immunity response in *Actinidia***
1181 ***arguta AA07_03***. Effectors in cloned binary vector constructs tagged with Green
1182 Fluorescent Protein (GFP), or an empty vector (Control), were co-expressed with a β -
1183 glucuronidase (GUS) reporter construct using biolistic bombardment and priming in leaves
1184 from *A. arguta AA07_03* plantlets (Jayaraman et al., 2021). The GUS activity was measured
1185 48 hours after DNA bombardment. Error bars represent the standard errors of the means for
1186 three independent biological replicates with six technical replicates each (n=18). HopA1 from
1187 *Pseudomonas syringae* pv. *syringae* 61 was used as the positive control and un-infiltrated
1188 leaf tissue (Unshot) as the negative control. Tukey's HSD indicates treatment groups which
1189 are significantly different at $\alpha \leq 0.1$ with different letters.

A*A. chinensis* var. *chinensis*

Psa3

*A. arguta***B***A. chinensis* var. *chinensis*

Psa3

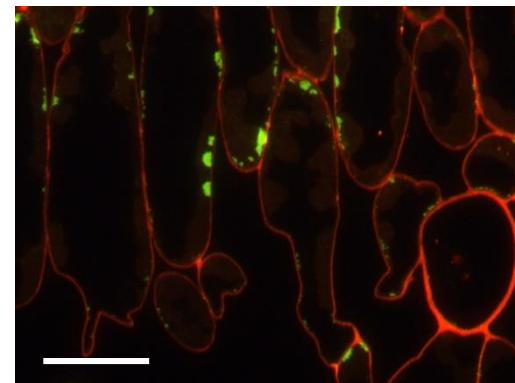
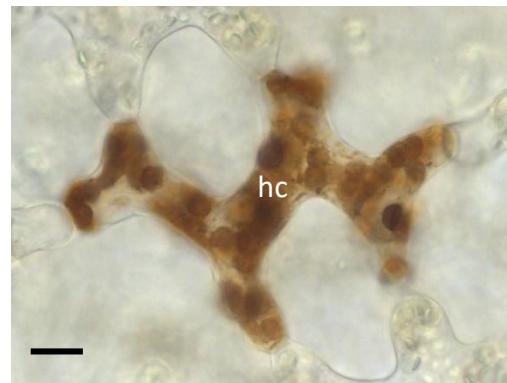


A. arguta

Figure 2

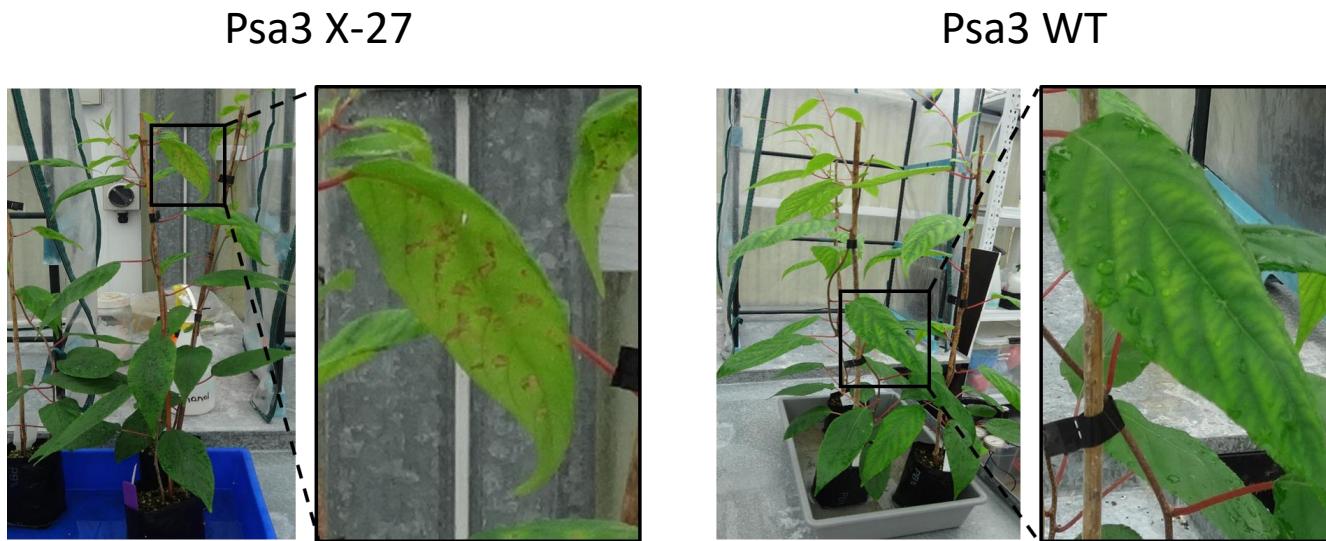
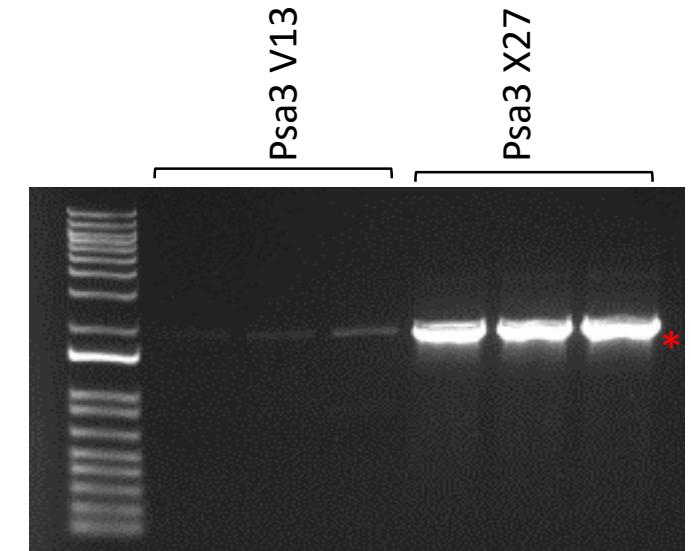
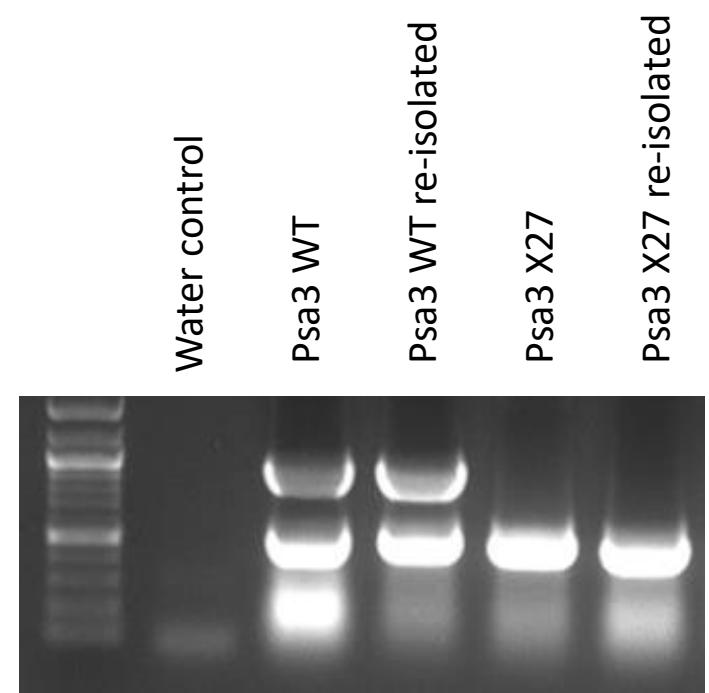
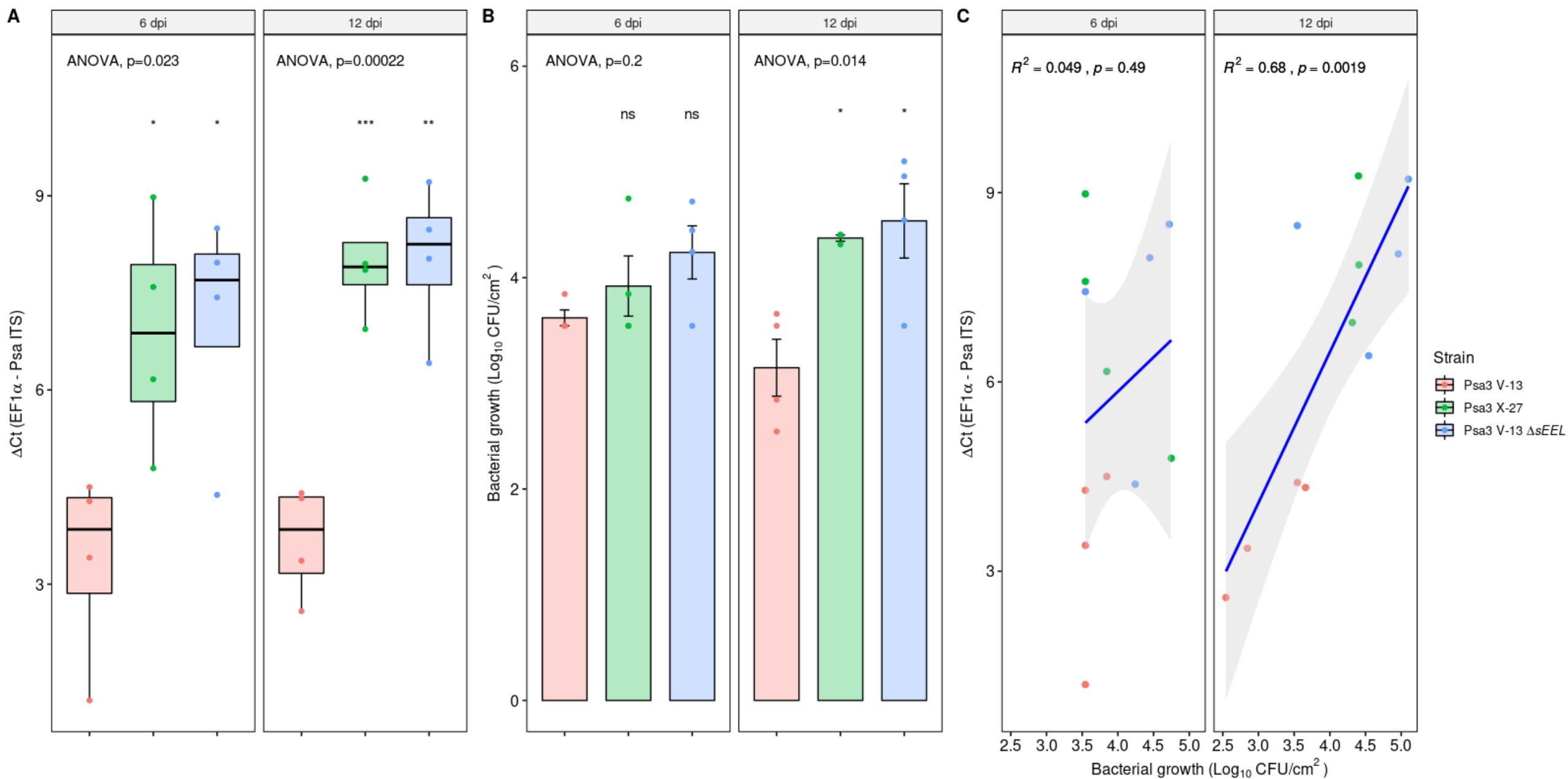




A**B****D****C****E**

Figure 3

Psa3 V-13

Psa3 X-27

Psa3 V-13 Δ sEEL



A. arguta AA07_03

A. chinensis var. *chinensis* 'Hort16A'

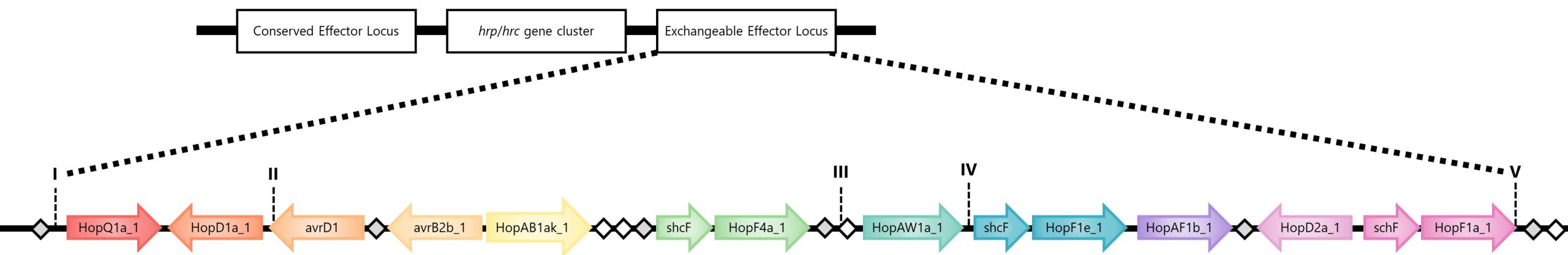
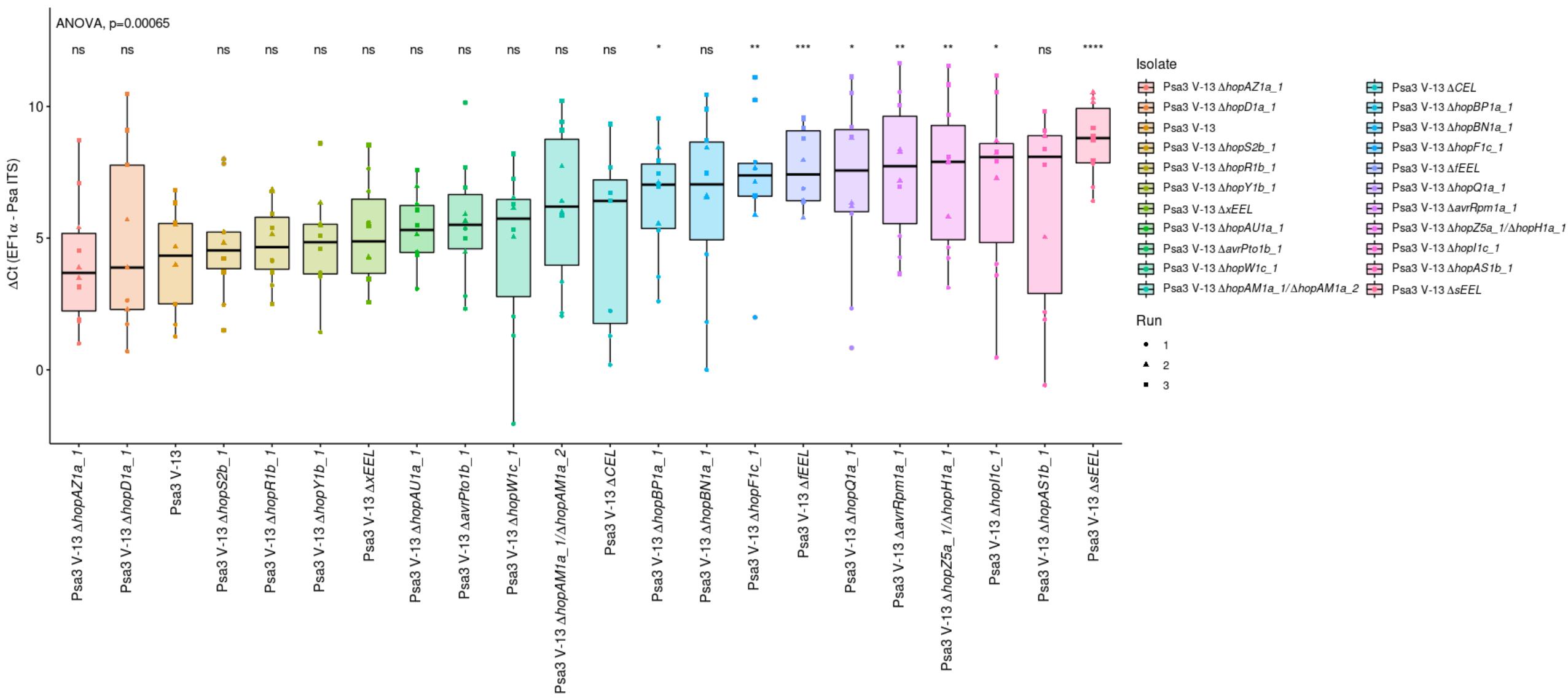
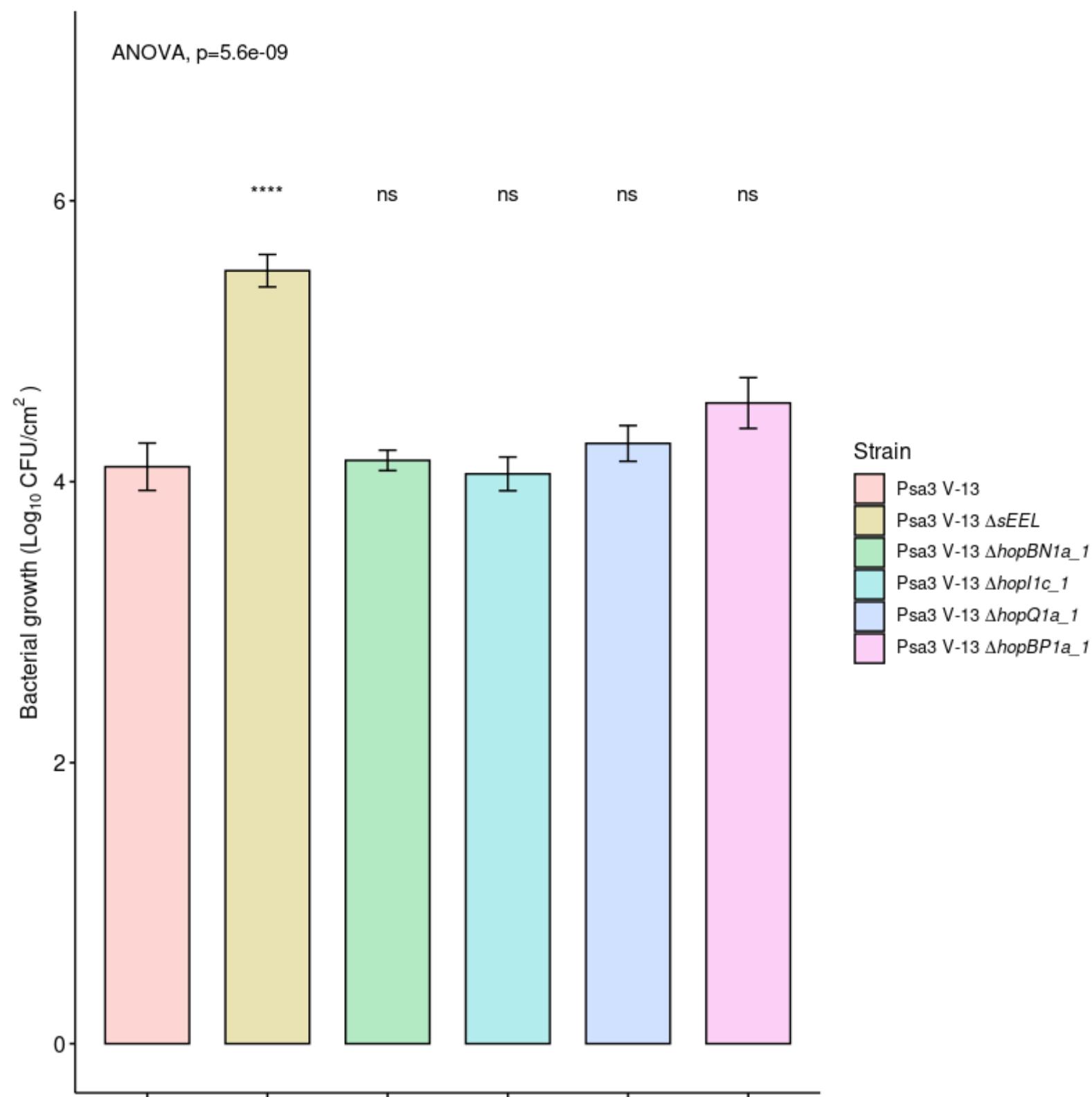




Figure 4

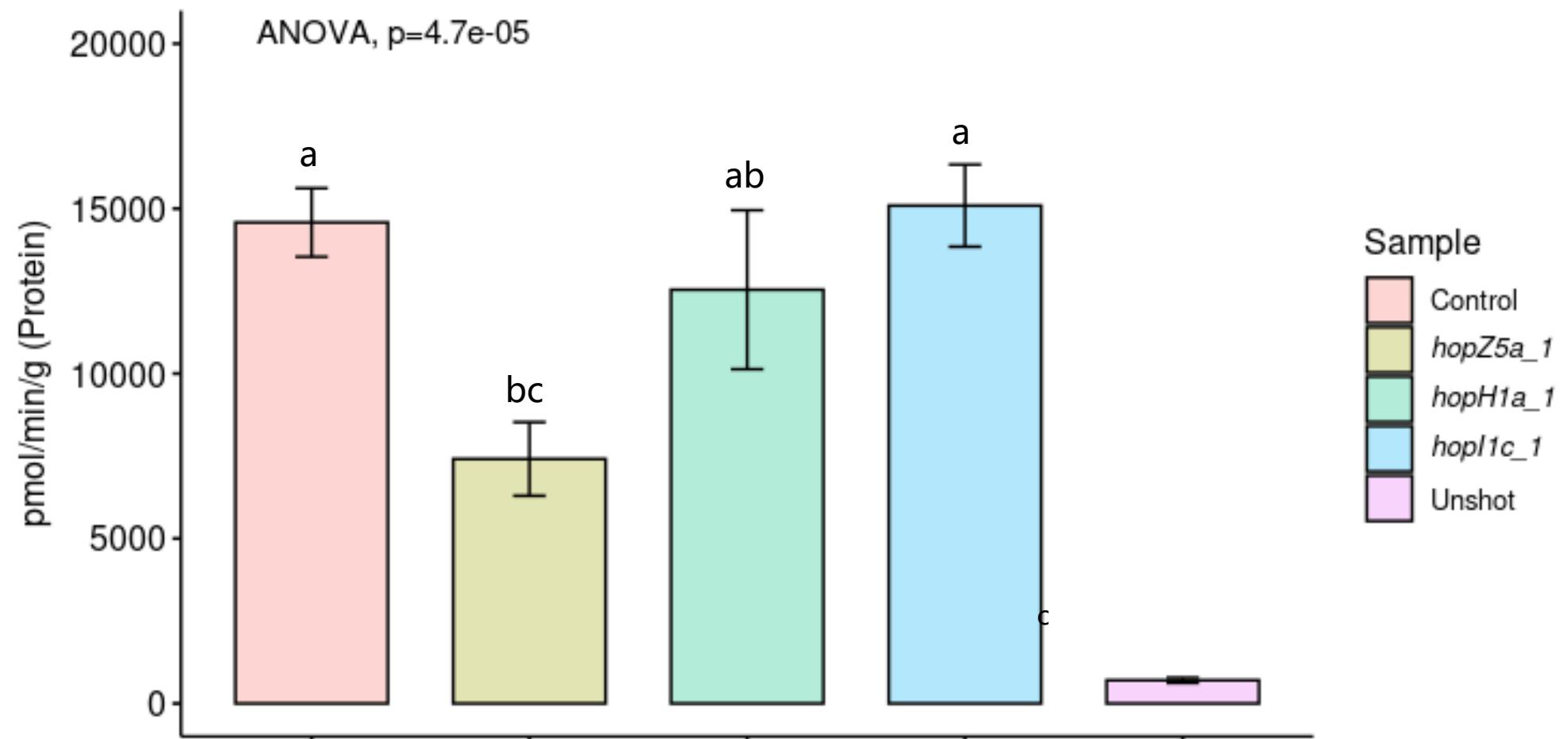
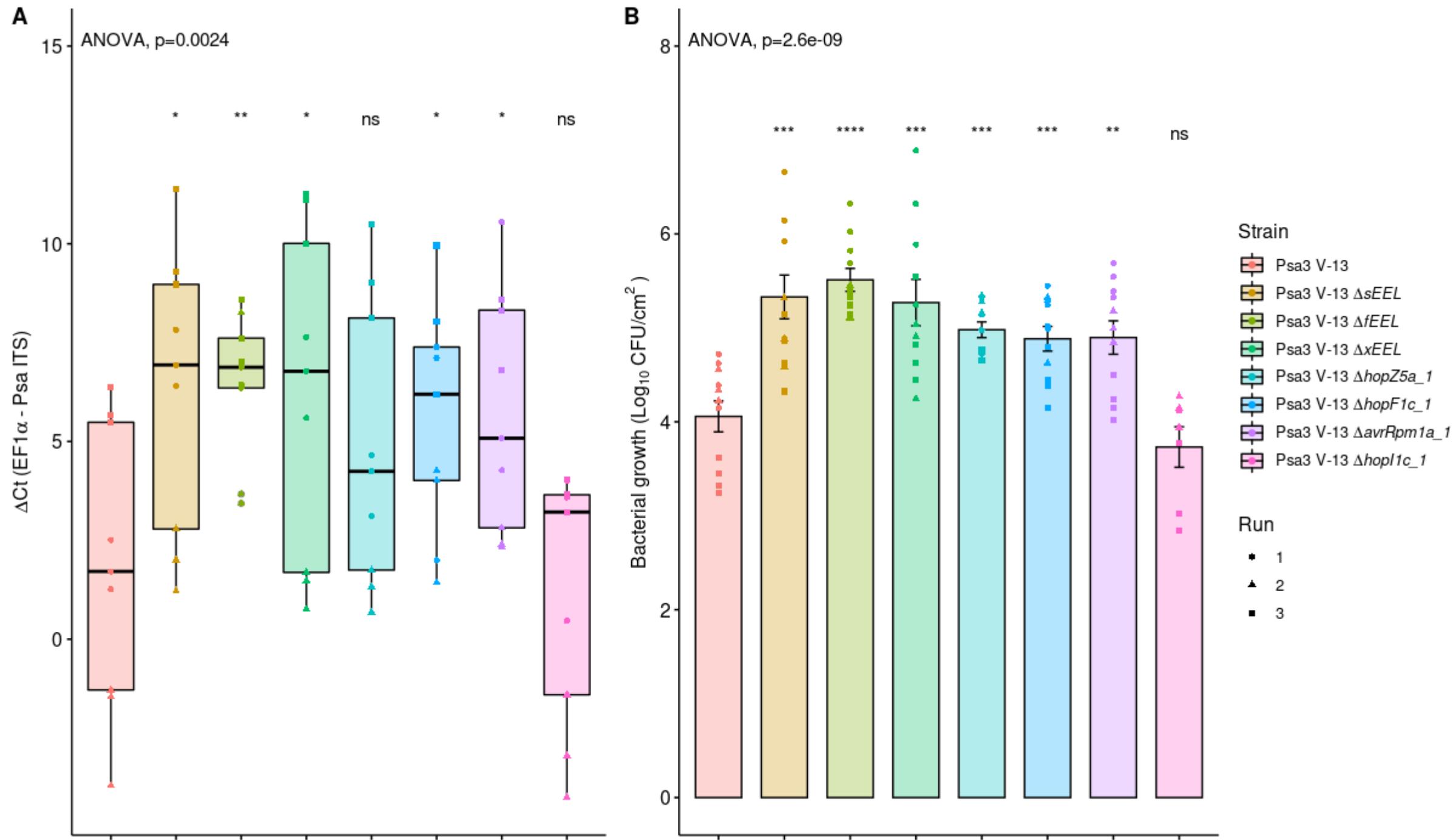



Figure 5

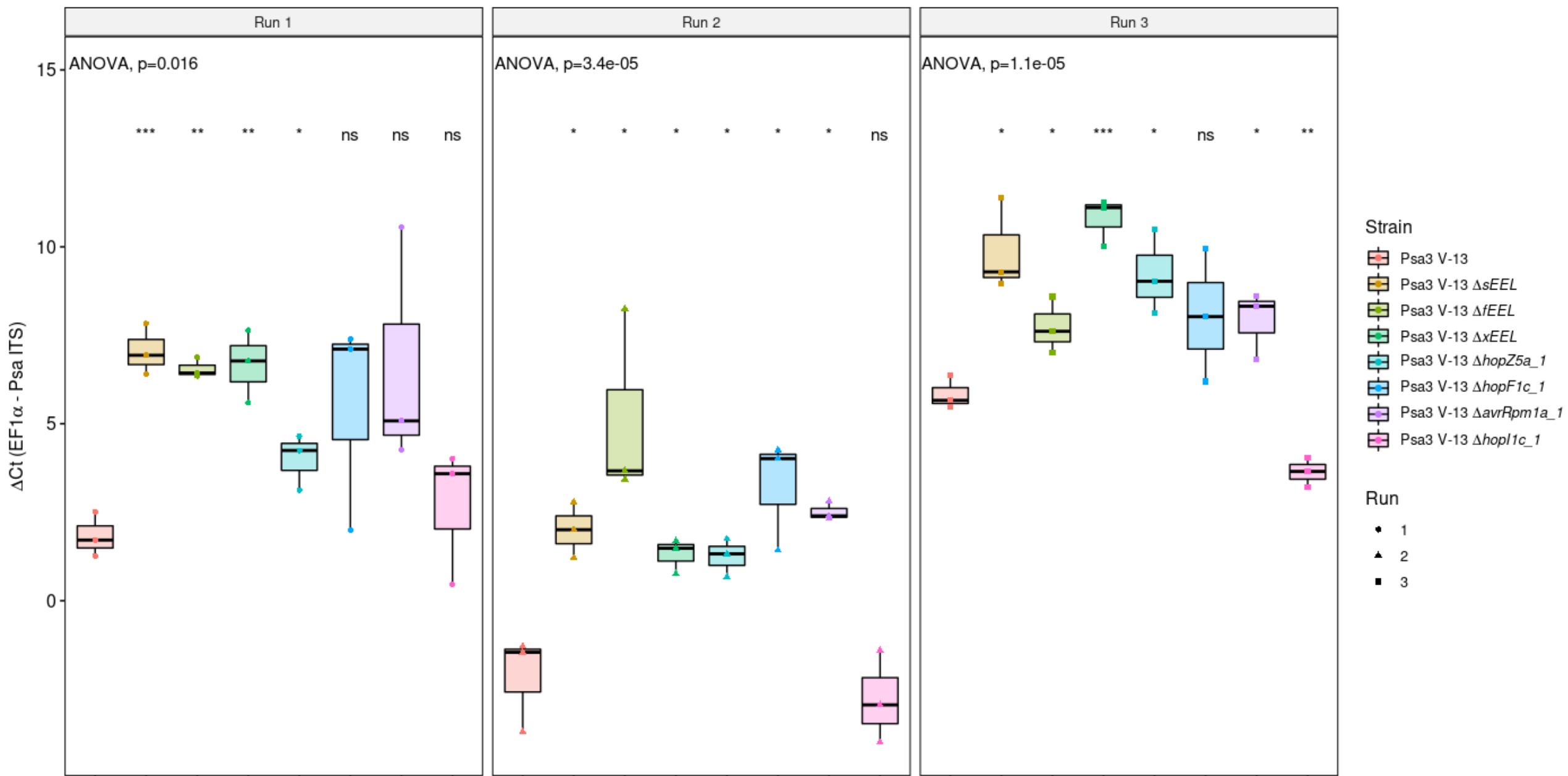
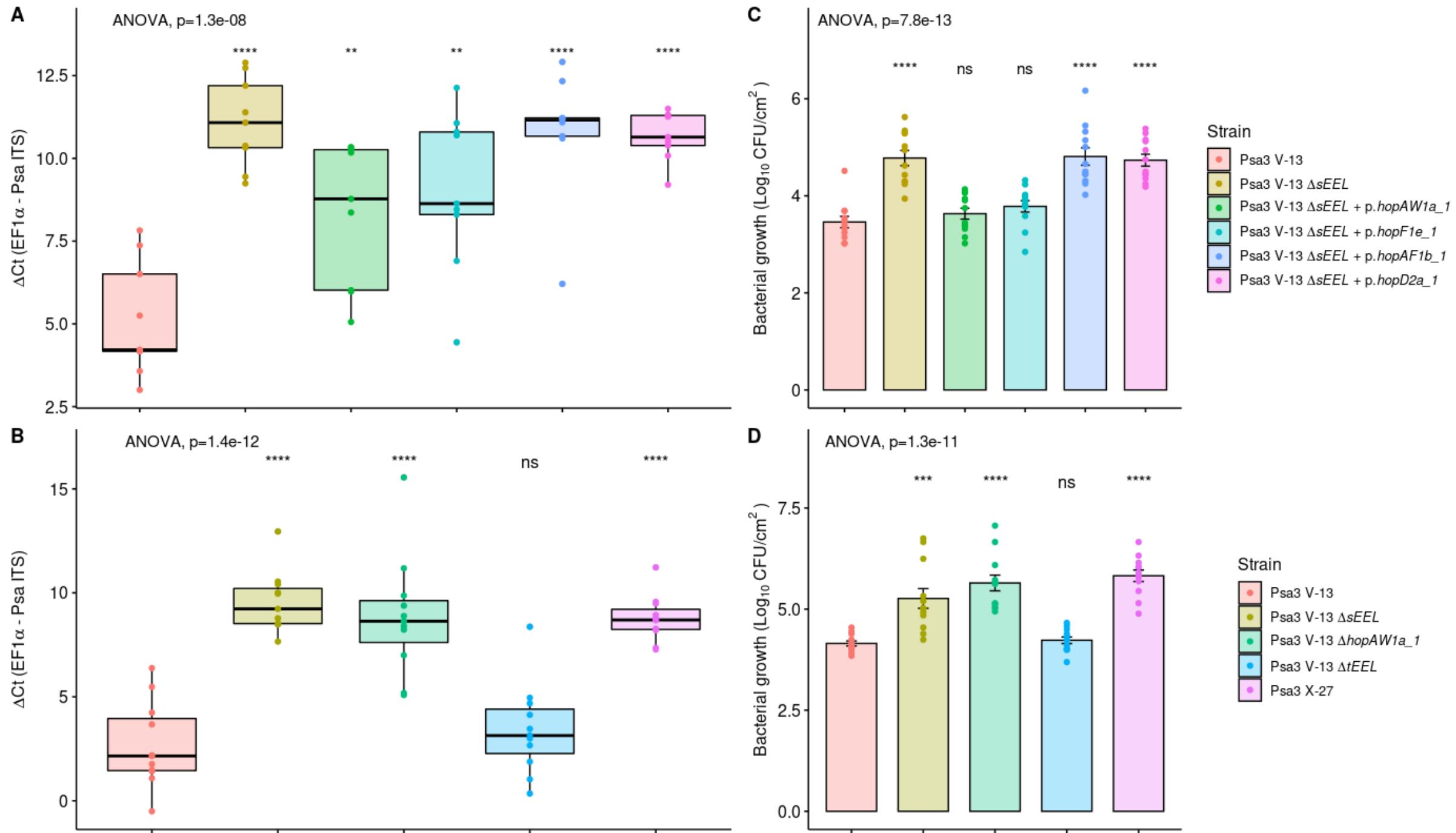



Figure 6

Psa3 V-13

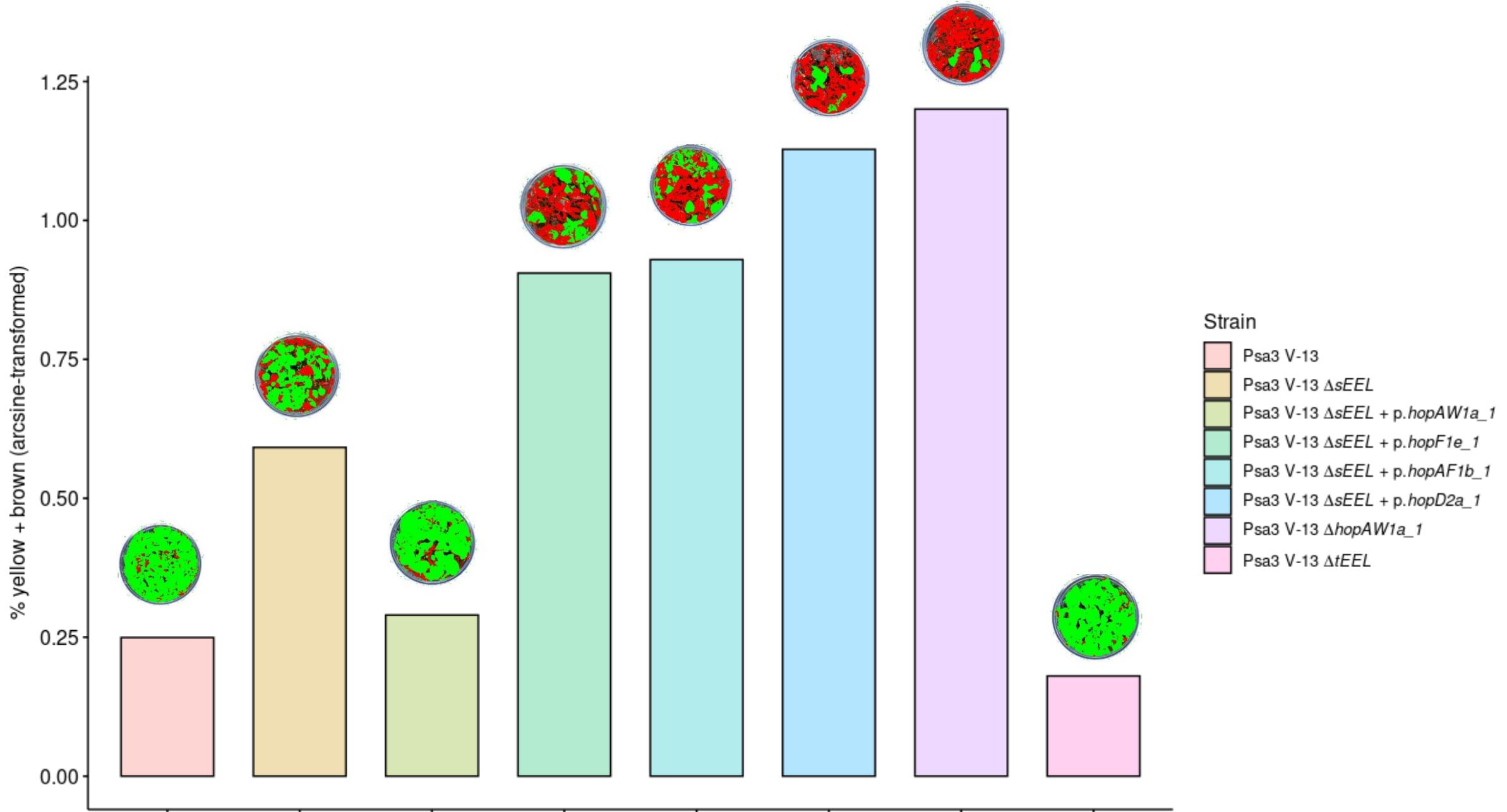
Psa3 V-13 Δ sEEL

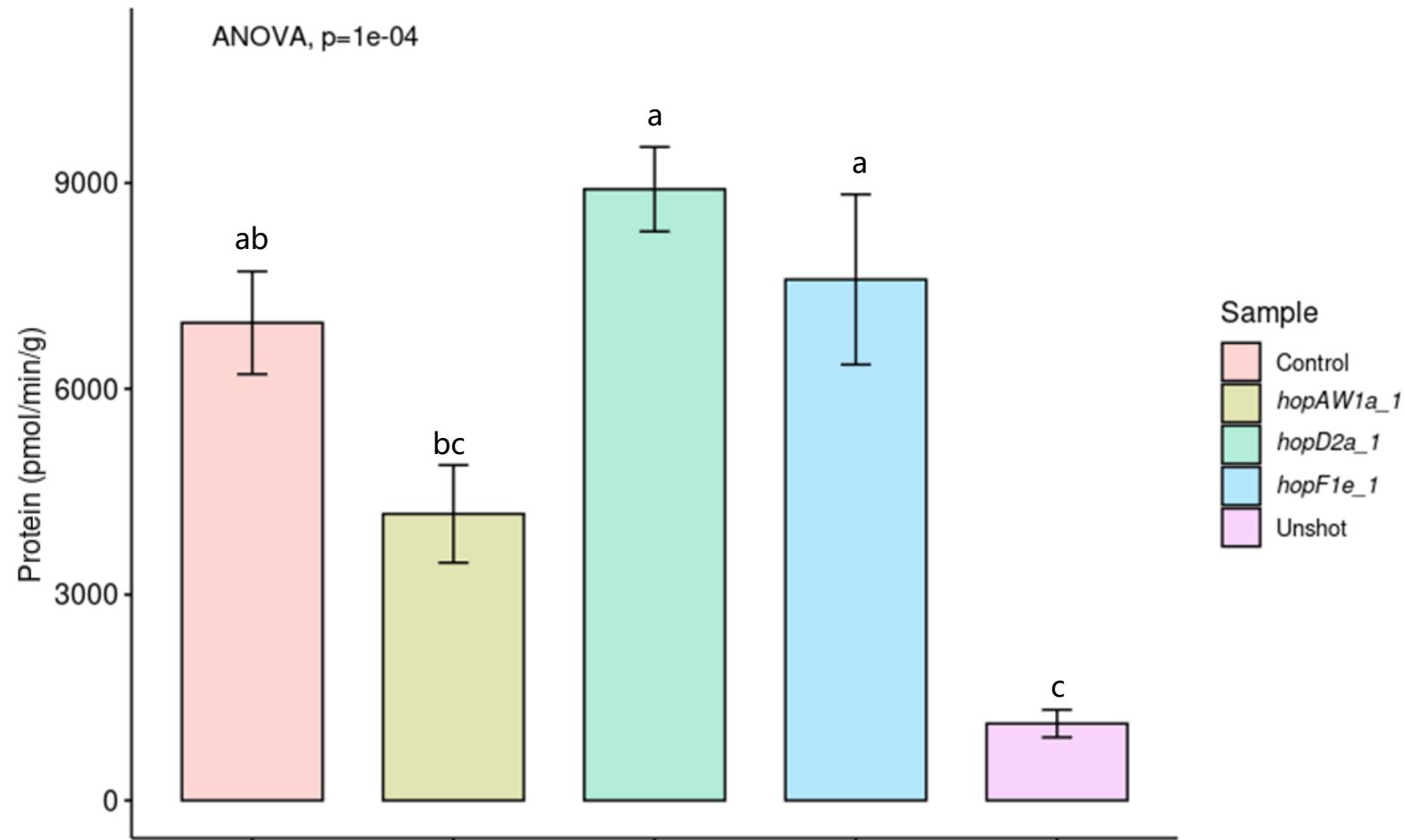
Psa3 V-13 Δ sEEL + p.hopAF1b_1

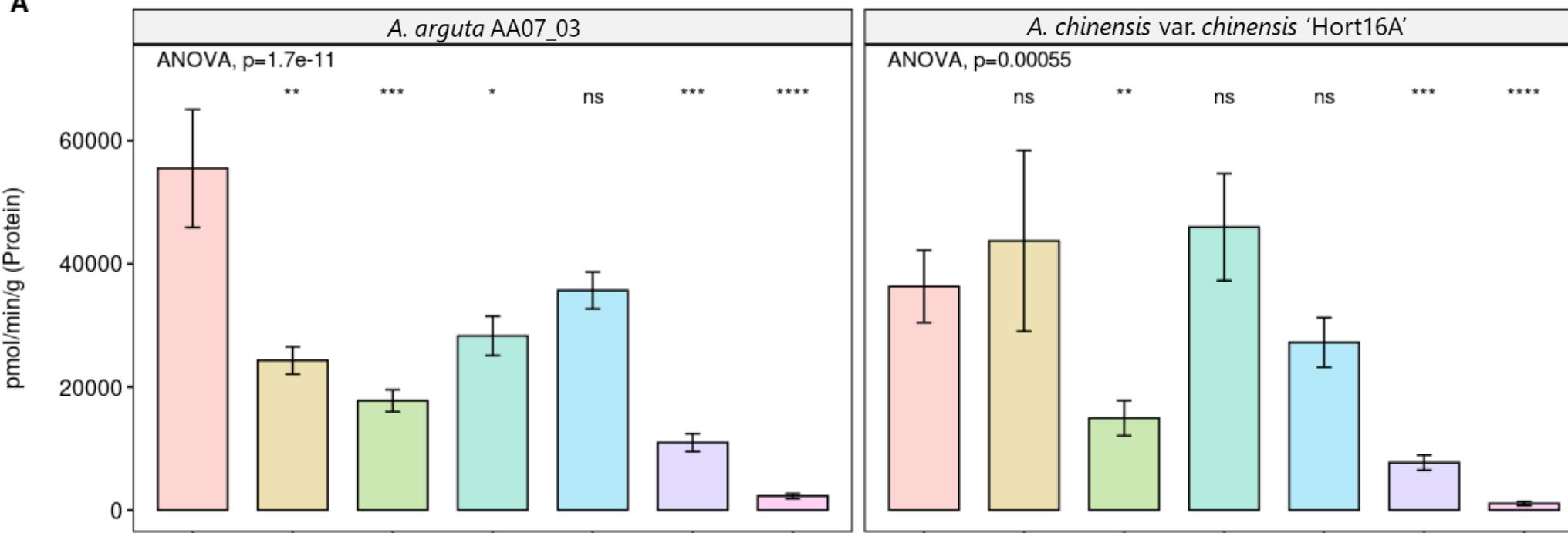
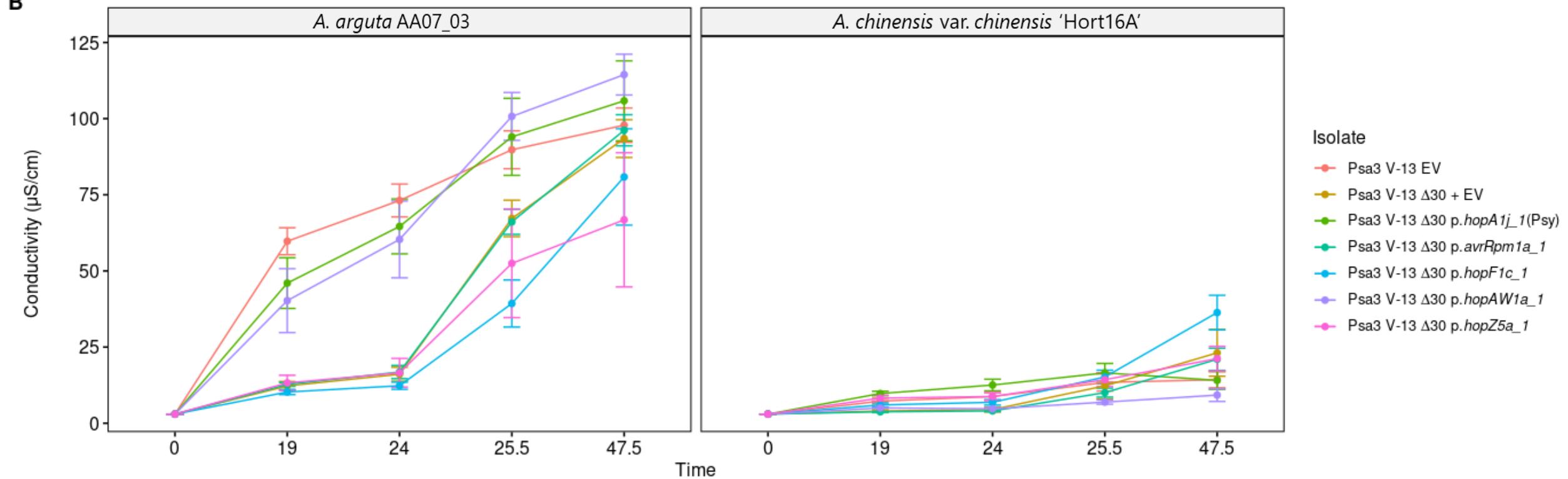
Psa3 V-13 Δ sEEL + p.hopD2a_1

Psa3 V-13 Δ sEEL + p.hopAW1a_1

Psa3 V-13 Δ sEEL + p.hopF1e_1




Psa3 V-13 Δ tEEL

Psa3 V-13 Δ hopAW1a_1

A**B**

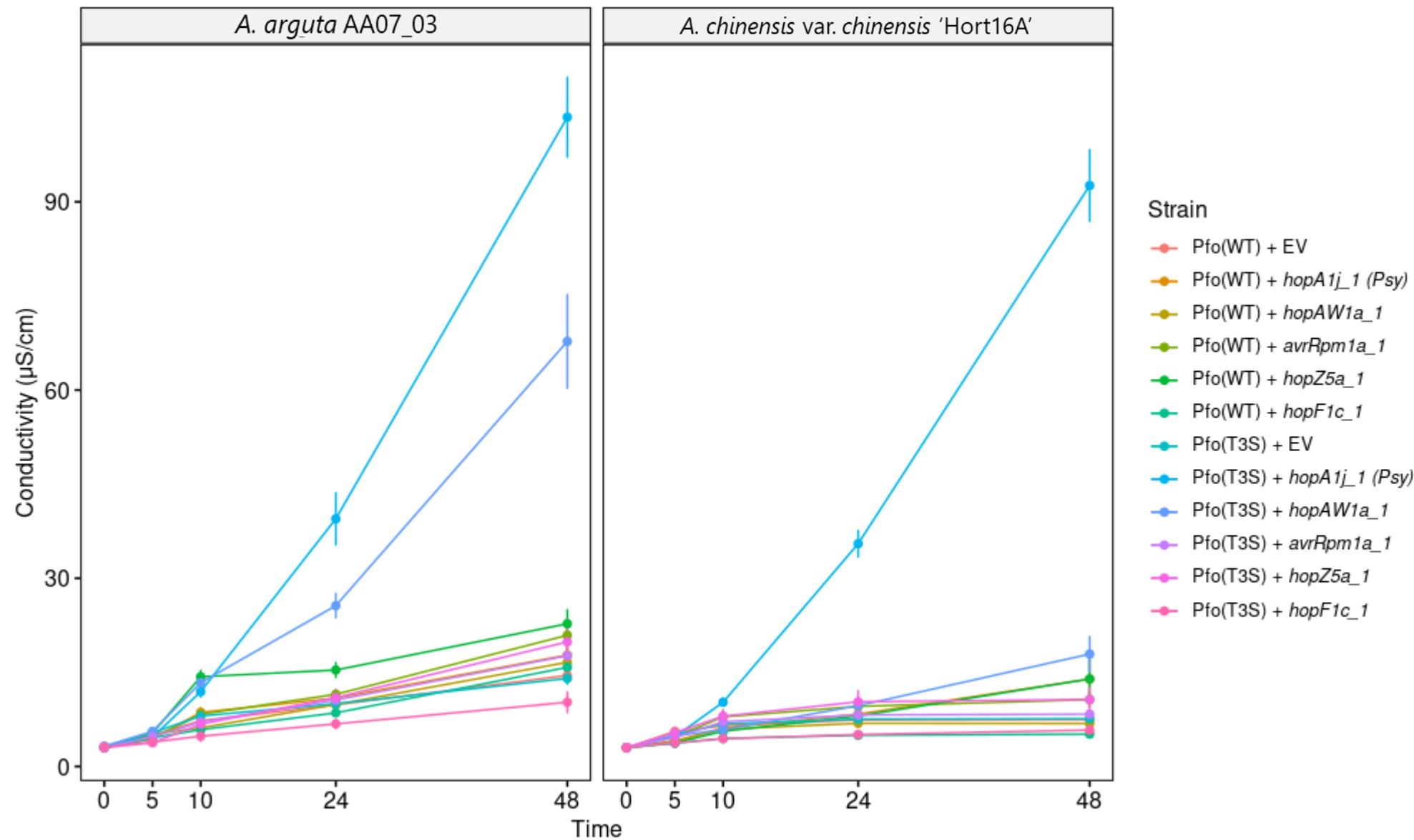


Figure 8

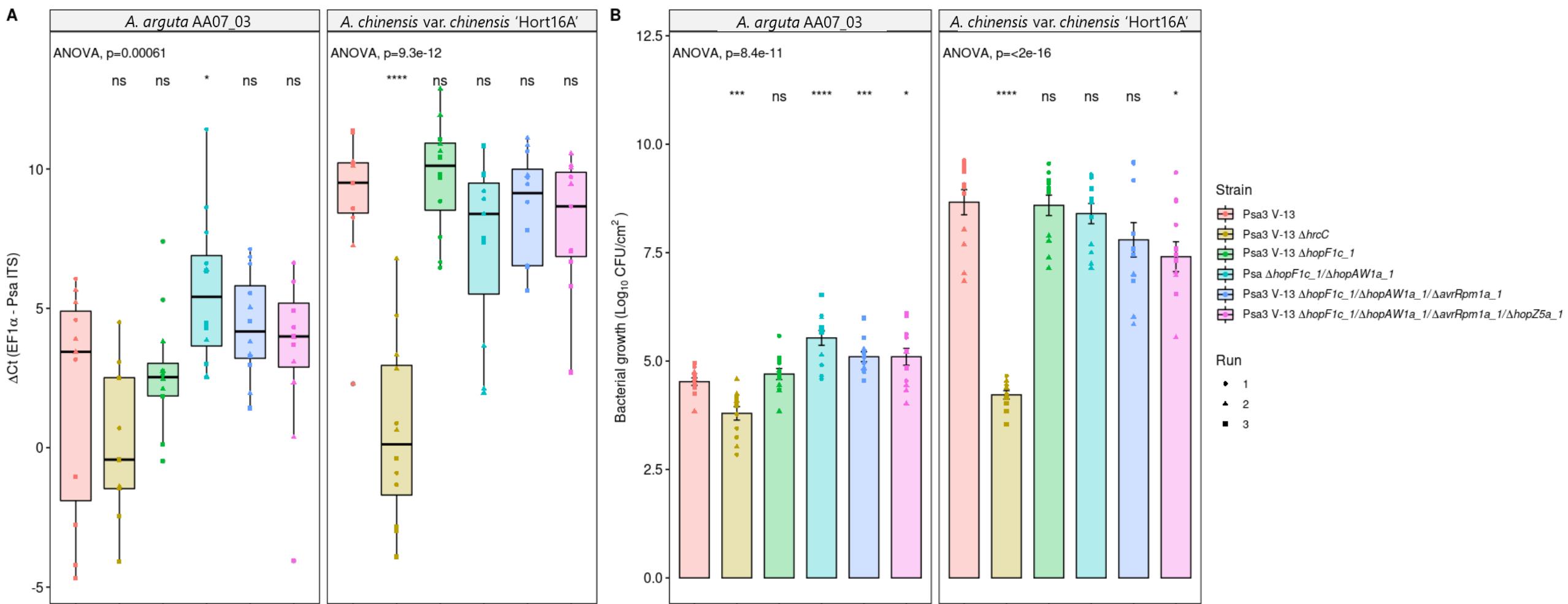
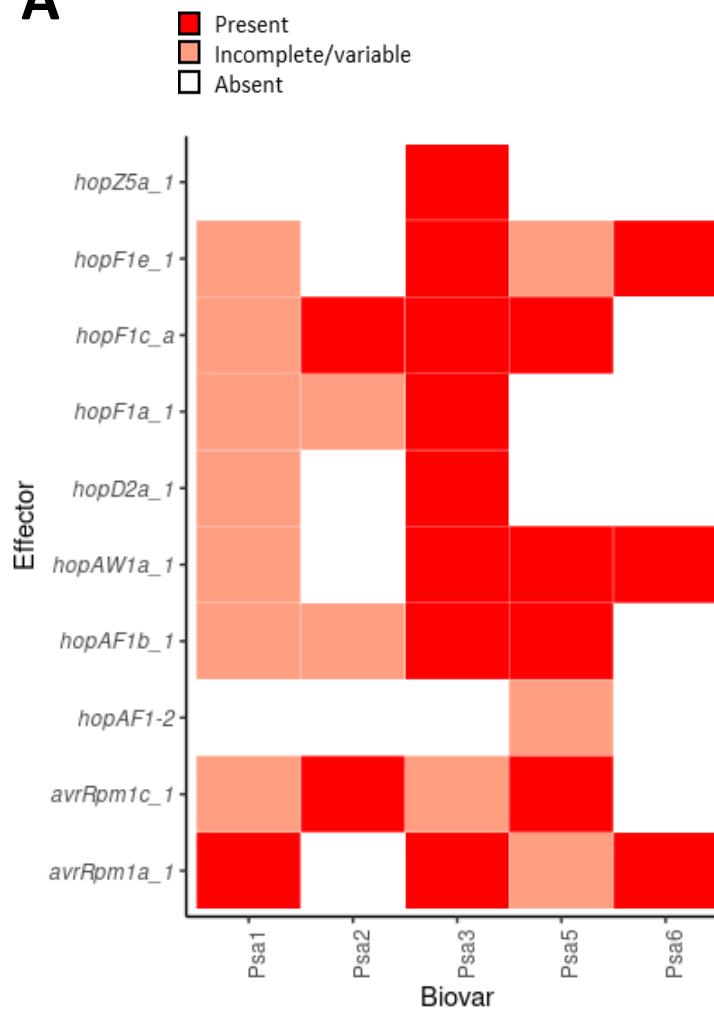
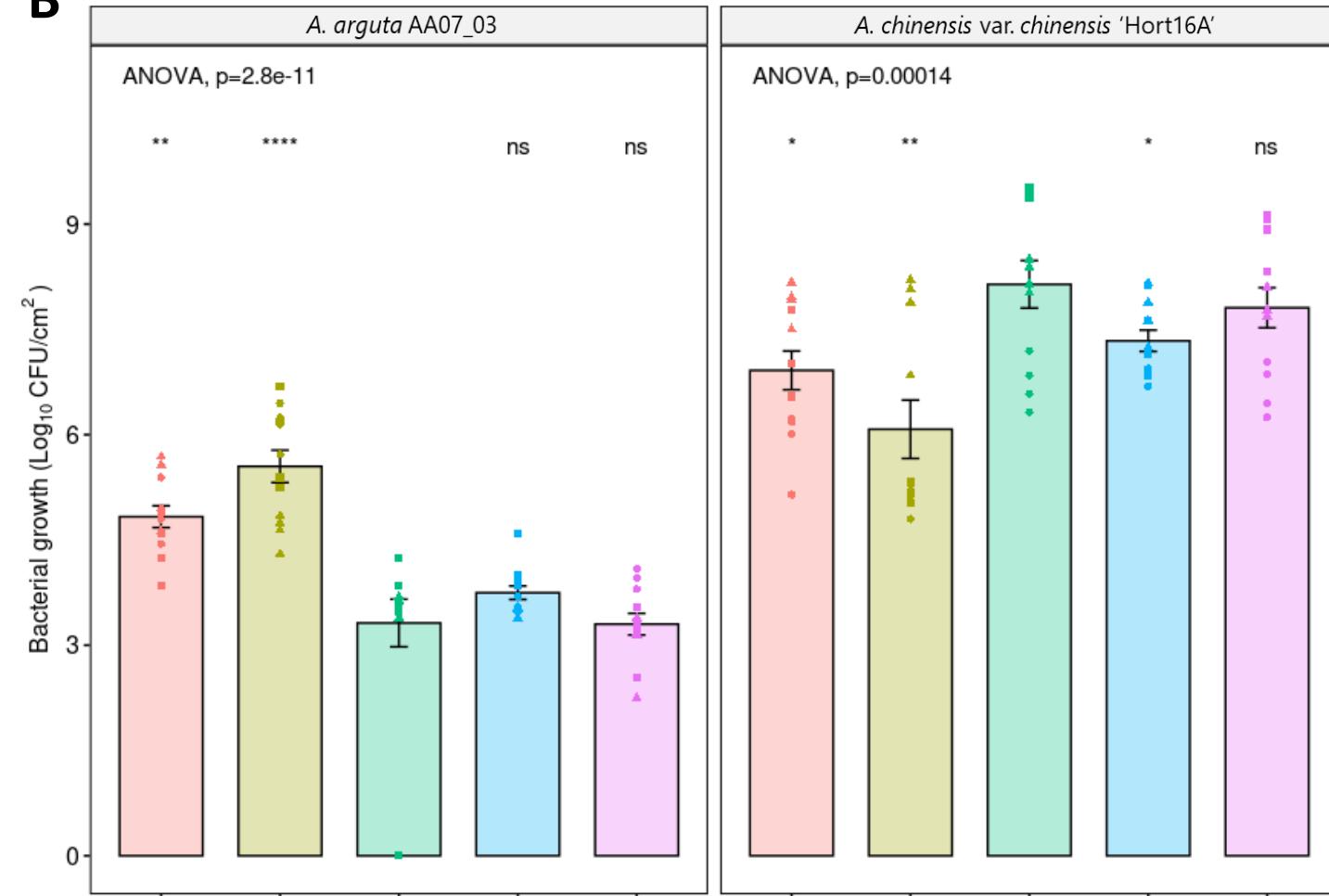




Figure 9


A**B**

Isolate

- Psa1 J-35
- Psa2 K-28
- Psa3 V-13
- Psa BV-5
- Psa BV-6

Run

- 1
- 2
- 3

