

1 *Wolbachia* endosymbionts in two *Anopheles* species indicates
2 independent acquisitions and lack of prophage elements
3 **Shannon Quek¹, Louise Cerdeira², Claire L Jeffries³, Sean Tomlinson² Thomas Walker^{3*}, Grant L.**
4 **Hughes^{1*}, Eva Heinz^{4*}**

5 ¹Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases,
6 Liverpool School of Tropical Medicine, Liverpool, UK

7 ²Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK

8 ³Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene
9 and Tropical Medicine, London WC1E 7HT, UK

10 ⁴Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool,
11 UK

12 *Please address correspondence to:

13 Eva.Heinz@lstm.ac.uk, Grant.Hughes@lstm.ac.uk Thomas.Walker@lstm.ac.uk

14 **Keywords:** *Wolbachia*, genomics, *Anopheles*, symbiosis, prophage

15 Abstract

16 *Wolbachia* is a genus of obligate bacterial endosymbionts that infect a diverse range of arthropod
17 species as well as filarial nematodes, with its single described species, *Wolbachia pipiensis*, divided
18 into several 'supergroups' based on multilocus sequence typing. *Wolbachia* strains in mosquitoes have
19 been shown to inhibit the transmission of human pathogens including *Plasmodium* malaria parasites
20 and arboviruses. Despite their large host range, *Wolbachia* strains within the major malaria vectors of
21 the *Anopheles* (*A.*) *gambiae* and *A. funestus* complexes appear at low density based solely on PCR-
22 based methods. Questions have been raised as to whether this represents a true endosymbiotic
23 relationship. However, recent definitive evidence for two distinct, high-density strains of supergroup
24 B *Wolbachia* within *A. demeilloni* and *A. moucheti* has opened exciting possibilities to explore naturally
25 occurring *Wolbachia* endosymbionts in *Anopheles* for biocontrol strategies to block *Plasmodium*
26 transmission. Here we utilise genomic analyses to demonstrate that both *Wolbachia* strains have
27 retained all key metabolic and transport pathways despite their smaller genome size. We further
28 confirm the presence of cytoplasmic incompatibility factor genes, despite noticeably few prophage
29 regions. Additionally, phylogenetic analysis indicates that these *Wolbachia* strains may have been
30 introduced into these two *Anopheles* species via horizontal transmission events, and unlikely to be by
31 ancestral acquisition and subsequent loss events in the *Anopheles gambiae* species complex. These
32 are the first *Wolbachia* genomes that enable us to study the relationship between natural strains
33 *Plasmodium* malaria parasites and their *Anopheline* hosts.

34 Impact statement

35 *Wolbachia* naturally infects a wide range of arthropod species, including insect vectors of human
36 pathogens, where they may play a role in inhibiting their replication. These bacteria have been
37 commonly found within *Aedes* (*Ae.*) *albopictus* and *Culex pipiens* mosquitoes but have been noticeably
38 absent in the *Anopheles* mosquito genera, which includes all species responsible for malaria
39 transmission. Recent PCR-based methods have suggested the potential for natural *Wolbachia* strains

40 within the *A. gambiae* species complex, which includes major malaria vector species including *A.*
41 *gambiae* s.s., *A. coluzzii* and *A. arabiensis*. We recently reported the presence of stable *Wolbachia*
42 strains naturally occurring within two different *Anopheles* species (*A. demeilloni* and *A. moucheti*). In
43 this study, we perform comparative genomic analysis of these two *Wolbachia* genomes against each
44 other and published *Wolbachia* strains. The current assemblies are some of the smallest sequenced
45 *Wolbachia* strains of insects, although their metabolic pathway repertoire is comparable to other
46 strains. Interestingly, prophage fragments were identified within only one of the two strains. The
47 findings of this study will be of significant interest to researchers investigating *Wolbachia* as a potential
48 malaria biocontrol strategy, giving greater insight into the evolution and diversity of this obligate
49 intracellular endosymbiont.

50 **Data summary**

51 Sequence data generated and used for this analysis are available in the National Centre for
52 Biotechnology Information Sequence Read Archive (NCBI SRA bioproject number PRJNA642000). The
53 two assembled *Wolbachia* genomes are available with genome accession numbers GCA_018491735.2
54 and GCA_018491625.2. Additional *Wolbachia* genomes used for comparative analysis are described
55 in the supplementary material.

56

57 The authors confirm all supporting data, code and protocols have been provided within the article or
58 through supplementary data files. Additional supplementary data files used to generate several
59 figures can be found at:

60 https://figshare.com/projects/Wolbachia_endosymbionts_in_two_Anopheles_species_indicates_independent_acquisitions_and_lack_of_prophage_elements/126533

62

63 Introduction

64 *Wolbachia* has a wide host range, including insects [1] where various estimates have predicted
65 between 52% to 60% of all arthropod species naturally infected [2, 3]. Attempts to characterise the
66 within-species diversity has resulted in the designation of *Wolbachia* 'supergroups' A through to T [4,
67 5], with several exceptions [6], via multilocus sequence typing (MLST) of five single-copy conserved
68 genes [7]. The relationship between *Wolbachia* and their hosts can range from obligate mutualism,
69 where the endosymbiont is essential for host survival and reproduction [8, 9], to reproductive
70 parasitism, where it manipulates the reproduction of its host to spread through the population.
71 Currently, the best-studied phenotype (which also affects mosquito hosts) is cytoplasmic
72 incompatibility (CI), which causes infected males to produce unviable offspring unless they mate with
73 an infected female, while infected females have viable offspring regardless of the males infection
74 status, thus conferring a fitness advantage to *Wolbachia*-infected females.

75 Genetic studies have previously identified a pair of cytoplasmic incompatibility factor genes, *cifA* and
76 *cifB* [10, 11], that have been correlated to this phenotype. These genes have often been found to co-
77 occur as a single operon within prophage Eukaryotic Association Modules (EAMs), and are believed to
78 spread via horizontal transmission between *Wolbachia* strains due to their localisation within
79 prophage regions [12]. Despite being part of the same operon, these genes have been observed to be
80 differentially regulated, with *cifA* having higher expression relative to *cifB* [13]. When these CI genes
81 were first identified, they were placed into three distinct phylogenetic groups. While all three were
82 recognised to maintain protein domains that had predicted nuclease activity, the catalytic residues for
83 these nuclease domains were predicted to be absent in one of the three groups [10], which instead
84 contained an additional protein domain with ubiquitin-like specific protease activity [11, 14, 15]. This
85 was later characterised as the Type I group [14]. Additionally, recent research has identified genes
86 encoding similar features in other members of the *Rickettsiales* order, often found associated with
87 mobile genetic elements, such as plasmids [14, 16]. As a result, a recent study has identified up to five

88 phylogenetic types, with one of these types being identifiable in other *Rickettsia* as well as *Wolbachia*
89 [14].

90 Utilisation of the CI phenotype has been explored as the basis for potential mosquito control strategies
91 to reduce human disease transmission. The bacterium is capable of inducing CI in both natural [5, 17,
92 18] and artificially infected lines [19–21], and possible methods to utilise them for mosquito
93 population control include release of males infected with *Wolbachia* [22], or potentially via release of
94 genetically modified mosquitoes that carry the CI genes, but not *Wolbachia* [23, 24]. In addition to
95 inducing the CI phenotype, *Wolbachia* has been shown to interfere with pathogen replication directly,
96 both in those that cause disease in the insect, as well as human pathogens that utilise the insect as a
97 vector [5, 25–27]. This has been observed to be most effective with artificial infections of *Wolbachia*
98 in non-native host mosquitoes [19–21]. Recent trials have shown that *Wolbachia* can be used to great
99 effect in preventing the spread of dengue virus [28, 29], while laboratory trials have indicated their
100 potential to block *Plasmodium* replication in artificially infected *Anopheles* mosquitoes [30–32]. While
101 there is little evidence to date of stable *Wolbachia* infections [30], a stable infection within *A. stephensi*
102 is possible [31, 32]. Infection of these mosquitoes with *Wolbachia* was associated with significantly
103 reduced hatch rates however [31, 33], possibly affecting the viability of CI as a control tool in this
104 system.

105 Despite *Wolbachia*'s presence in a wide variety of insects, natural high-density strains within the
106 *Anopheles* genus of mosquitoes have not been conclusively proven [34, 35] until recently [36].
107 Previous efforts to detect this bacterium required highly sensitive PCR techniques [37–41] that amplify
108 a select handful of *Wolbachia* genes. Unfortunately, this alone cannot confirm the presence of live
109 bacteria or stable *Wolbachia* strains within insects. Furthermore, phylogenetic placement of these
110 amplified *Wolbachia* sequences within *A. gambiae* shows multiple strains distributed across
111 supergroups A and B, with some strains not assigned to any supergroup [35].

112 We recently demonstrated high-density *Wolbachia* strains in two *Anopheles* species, *A. demeilloni* and
113 *A. moucheti* [36, 42], which we observed in wild populations collected over a large geographic range
114 in temporally-distinct populations. Importantly, we further visualized these bacteria in the germline,
115 as well as sequenced near-complete *Wolbachia* genomes from both host species [36]. Here, we
116 present reassembled and scaffolded genomes for both strains, as well as in-depth comparative
117 analyses of these two *Wolbachia* strains against each other, as well as in the broader context of
118 *Wolbachia* supergroups A through to F, with specific focus on supergroup B. We show that, in terms
119 of both size and predicted protein-coding genes, both assembled genomes are at the low end of the
120 range of *Wolbachia* strains found within insects whilst containing reduced or, in the case of wAnM, no
121 prophage WO regions. Despite this, both *Wolbachia* genomes maintained complete pathways that are
122 expected for the genus, such as complete haem and nucleotide biosynthetic pathways and type IV
123 secretion systems. Additionally, we reconstructed the phylogenetic history using whole genome
124 sequence data which indicates that these strains may originate from independent acquisitions via
125 horizontal transfer events, and not from an ancestral infection that has since been lost in other
126 *Anopheles* mosquitoes.

127 Results

128 Assembled *Wolbachia* genomes are small in size but supported by high completeness
129 scores
130 As *Wolbachia* is an obligate intracellular endosymbiont, they have a highly reduced genome and can
131 only be isolated from infected host material, posing a challenge to obtain complete, uncontaminated
132 genome sequences. The updated genome assembly of *Wolbachia* of *A. demeilloni* (wAnD) has a total
133 length of 1,231,247 base pairs (bp), while *Wolbachia* of *A. moucheti* (wAnM) has a genome length of
134 1,121,812 bp. While these genome sizes are smaller compared to other analysed *Wolbachia* strains
135 that reside within insects (particularly wAnM), they are larger than the genomes of those found in
136 filarial nematodes, which have a maximum size of 1.08 Mbp amongst those compared in our analysis

137 (Table 1). Refseq annotation of both wAnD and wAnM genomes identified 1,157 and 1,082 protein-
138 coding genes and 122 and 80 pseudogenes, respectively (Table 1). For comparison, the *Wolbachia*
139 strains of *Ae. albopictus* (wAlbB) and *Cx. quinquefasciatus* (wPip) maintained 1,180 and 1,241 protein-
140 coding genes respectively.

141 As an obligate intracellular endosymbiont that may have multiple strains infecting the same host,
142 assessing *Wolbachia* genome completeness is important to ensure contaminating reads from different
143 strains are not incorporated, and that the assembly does not have significant gaps. Despite the smaller
144 number of protein-coding genes and genome size, both wAnD and wAnM were noted to contain over
145 98% of essential single-copy genes as determined by the BUSCO program [43] (Table 1), with only
146 wAnM predicted to have one duplicated gene, indicating that both their respective hosts are infected
147 with only a single strain of *Wolbachia*. These figures are in line with previously published and complete
148 *Wolbachia* genomes of strains found within insects (Table 1), with examples such as the *Wolbachia*
149 strains of *Drosophila* flies (wMel, wRi, wHa, wAu and wNo), and mosquitoes (wAlbB, wPip) all having
150 completeness scores ranging from 97.5% to 99.5%. Additional details on these genomes and their
151 associated publications used for comparison are available in Supplementary Table 1.

152 [Different *Anopheles* species show potentially independent *Wolbachia* acquisition events](#)

154 Whole-genome phylogenetic analysis was performed to better understand how wAnD and wAnM may
155 have been acquired by *Anopheles*, utilising the most closely related genome of *Wolbachia* of
156 *Drosophila (D.) simulans* strain Noumea (wNo) as a reference [36]. Using a total of 36 genomes of
157 *Wolbachia* strains from supergroup B, a single-nucleotide variant (SNV) alignment of 2,824 base-pairs
158 was generated. The midpoint-rooted tree of the SNV alignment (Figure 1) placed both wAnD and
159 wAnM within a clade that also includes wNo, and several *Wolbachia* strains that infect *D. mauritiana*
160 [44–46]. We observed a significant number of differences in this alignment between wAnD and wAnM
161 strains, with a total of 824 SNVs between the two *Anopheles*-derived strains. By contrast, wAnM was

162 shown to have a total of 408 and 417 SNVs shared between it and the *Wolbachia* strains of *D.*
163 *mauritiana* and *wNo* respectively, suggesting that *wAnM* is more closely related to these strains than
164 to *wAnD*. Additionally, it was observed that *wAlbB* and *wPip*, two known *Wolbachia* strains of
165 mosquitoes, do not cluster together, and appear in clades separate from both *wAnM* and *wAnD*. This
166 lack of host clustering can be seen throughout the generated phylogenetic tree (Figure 1), with Insecta
167 host members from different orders appearing throughout. Exceptions to this observation come from
168 *Wolbachia* genomes that have been sequenced from the same host, e.g. *Diaphorina citri* or *Drosophila*
169 *mauritiana*. Such observations are similar to that in previous studies that predict how *Wolbachia* is
170 not solely restricted to vertical transmission ([47, 48]) and could be an indication of independent
171 horizontal acquisition of *wAnD* and *wAnM* in their current hosts, rather than an ancestral infection
172 that has since been lost in other Anopheline mosquitoes. Phylogenetic analysis of COII and ITS2
173 sequences of *A. demeilloni* and *A. moucheti* indicate significant phylogenetic distances from both the
174 *A. gambiae* and *funestus* complexes [36]. Furthermore, this study also provided no evidence of
175 resident *Wolbachia* strains within *A. marshallii*, a mosquito species closely related to *A. demeilloni* and
176 *moucheti* [36].

177 The *Wolbachia* core genome is conserved in *wAnM* and *wAnD* orthogroup analysis
178 Orthologous gene groups are important to identify in *Wolbachia* strains due to their wide distribution
179 across supergroups and diverse hosts, whilst offering insights into the presence/absence of unique
180 pathways that may be involved in host-bacterial symbiosis. For this, we compared the RefSeq
181 annotations of *wAnD* and *wAnM* genomes against 17 *Wolbachia* genomes (Table 1). A total of 18,404
182 genes were analysed, with 96.8% of these assigned to 1,300 orthogroups, and the remainder left
183 unassigned to any orthogroup. Across the 17 *Wolbachia* strains analysed, a core genome of 9,031
184 genes distributed across 523 orthogroups was identified (i.e. 40.2% of all identified orthogroups
185 comprising 49.1% of total genes analysed can be considered as part of the core genome, defined as
186 the genes and their protein products that are present in all analysed genomes), with 501 of these
187 orthogroups containing single-copy genes. Outside of this core genome, the number of shared

188 orthogroups is noticeably lower (Figure 2a), and no orthogroups were unique to *Wolbachia*
189 supergroup B strains. For wAnD, 18 genes were not assigned to an orthogroup, and no species-specific
190 orthogroups (paralogues present in only one species) were identified (Figure 2a inset). By contrast,
191 wAnM was noted to have two species-specific orthogroups containing a total of 47 genes, as well as
192 13 unassigned genes. None of the protein products for these genes had identifiable protein domains.
193 Two orthogroups containing single-copy genes were identified that was specific to both wAnD and
194 wAnM, although again none of these had identifiable protein domains.

195 Further comparisons were performed using a wider selection of *Wolbachia* supergroup B strains,
196 including eight *Wolbachia* genomes used in the previous analysis, as well as a further 19 draft genomes
197 [44] with over 80% completeness. For consistency, all genomes were annotated using a local
198 installation of NCBI's Prokaryotic Genome Annotation Pipeline (PGAP, [49]). A total of 31,943 genes
199 annotated across the 27 genomes were used, of which 98.4% of these were assigned to 1,678
200 orthogroups (Figure 2b). A core genome (genes and their protein products that are present in all
201 analysed genomes) was identified containing 15,208 genes distributed across 618 orthogroups (47.6%
202 of total genes were assigned to 36.8% of all orthogroups). Of these 618 orthogroups, 177 contain
203 single-copy genes. A total of 34 and 21 genes were not assigned to an orthogroup for wAnD and wAnM
204 respectively. One species-specific orthogroup was identified in wAnD (containing seven genes), and
205 two species-specific orthogroups were identified in wAnM (containing 52 genes). Similar to the
206 previous comparison, one orthogroup was identified as specific to both wAnD and wAnM, containing
207 single-copy orthologues from both genomes that did not have any identifiable protein domains.

208 It was interesting to see that the number of orthogroups that could be considered as part of the core
209 genome is less than 50% for both comparisons conducted here. We observed a total of 90 orthogroups
210 that are not considered 'core' due to their absence within *Wolbachia* strains of filarial nematodes from
211 supergroups C and/or D specifically, whilst supergroup F strains has 30 unique orthogroups.
212 Additionally, the genomes of *Wolbachia* from *D. mauritiana* (wMa and wMau in Figure 2a) shared 26

213 unique orthogroups. This observation of an extensive accessory genome has been reported in the past,
214 even among closely-related *Wolbachia* strains [50].

215 Despite smaller genomes, the *Wolbachia* spp. core metabolic pathways are conserved
216 in wAnD and wAnM

217 Orthogroup analysis of wAnD and wAnM indicated a high degree of conservation of supergroup B
218 metabolic capacity, and to confirm this, the KEGG Automatic Annotation Server (KAAS, [51]) was used
219 to assign KEGG Orthology. A total of 677 and 660 protein-coding genes were assigned a KO number
220 for wAnD and wAnM respectively. Subsequent visualisation and manual annotation identified
221 complete biosynthetic pathways that have previously been considered of interest with respect to
222 *Wolbachia*-host symbiosis (Figure 3a). This includes pathways for riboflavin, purines, pyrimidines and
223 haem biosynthesis; and showed all pathways as present in other supergroup B isolates' genomes.
224 Additionally, both wAnD and wAnM also contained a suite of metabolite transport and secretion
225 systems common to other *Wolbachia* strains that includes haem, zinc, iron (III), lipoproteins and
226 phospholipids (Figure 3a). This conservation of pathways was also observed when the analysis was
227 focused to only *Wolbachia* from supergroup B strains [44] (Figure 3b). In addition to these biosynthetic
228 pathways, the Type IV and Sec-Secretion systems were also maintained in both *Wolbachia* genomes.
229 The Type IV secretion systems (T4SS) are known to play roles in infection and survival for a diverse
230 range of symbiotic and pathogenic intracellular bacteria [52, 53]. Both *Wolbachia* genomes contained
231 a total of 15 T4SS related genes, organised into two operonic regions and four individual genes spread
232 across the genome. *Wolbachia* strains in the filarial nematode *Brugia malayi* has been predicted to
233 utilise its T4SS to secrete protein effector molecules to avoid autophagy pathways and aid in actin
234 cytoskeleton reformation, allowing intracellular mobility [54]. Such processes may also be conserved
235 within *Wolbachia* strains residing within insects, such as wAnD and wAnM.

236 Prophage WO region identification

237 *Wolbachia* strains are frequently infected by a bacteriophage known as Phage WO [55], with prophage
238 sequences predicted to be common in the genomes of *Wolbachia* strains of insects [12, 56]. These can
239 be found in various states of completeness depending on the specific strain - some genomes are
240 known to maintain duplicated prophage insertions that can encode a functional phage [57, 58], whilst
241 others have been found to be degenerated [58–60]. By contrast, nematode-specific *Wolbachia* strains
242 are known to have either no, or significantly degraded, prophage sequences [61, 62]. These prophage
243 regions are known to maintain an EAM [63], a group of genes that encode protein domains
244 homologous to those found in eukaryotes. This has resulted in predictions that these genes influence
245 host-*Wolbachia* interactions by mimicking and interacting with host proteins [63]. Additionally, genes
246 that have been implicated in the mode of action for CI have typically been found localised within these
247 prophage EAM regions [10, 11, 15, 63].

248 In contrast to other *Wolbachia* strains that reside within mosquitoes, wAnM contained no prophage
249 fragments identifiable via the PHASTER web server. To confirm this, we aligned the genomes of both
250 *Wolbachia* strains from the two *Anopheles* species to their closest relative, wNo from *D. simulans*,
251 using the Blast Ring Image Generator (BRIG, [64]). The *Wolbachia* genome of wNo was previously
252 observed to have four prophage-like regions [58], ranging in size from 5.7 kbp to 47.2 kbp. Initial
253 comparisons of the genomes showed notable gaps within the wAnM genome when compared to wNo,
254 although the same regions appear partially present in wAnD (Figure 4a, 4b). Overlaying coordinates
255 for the four prophage regions that were known to be present in wNo [58] onto this comparison, it was
256 observed that the gaps in alignment with wAnM were centred on these wNo prophage regions (Figure
257 4a). When the original sequencing reads were mapped to the wNo genome, we observe very low read
258 coverage on wNo prophage segments (Supplementary Figure 1), whilst these reads showed even
259 coverage of the wAnM genome. This indicates that these prophage regions are not present in the
260 currently assembled genome of wAnM.

261 Within wAnD, analysis via the PHASTER web server and subsequent BlastX searches of surrounding
262 regions identified two prophage fragments of lengths 6.3 kbp and 22.1 kbp. BlastX searches also
263 identified an additional prophage-like region of length 11.6 kbp (Figure 4c). The total length of these
264 prophage fragments (approx. 40 kbp) is shorter than published phage WO genomes (lengths of
265 between 55 kbp to 65 kbp, [63, 65]). The two prophage regions identified by PHASTER is predicted to
266 code for a total of 50 genes, 16 of which were predicted to be interrupted by either stop-codons or
267 frameshifts. The prophage-like region identified after manual curation contained 13 genes, of which
268 seven were predicted to be interrupted. Two of these three regions contained structural phage genes
269 that were either intact or interrupted, with examples including phage tail, baseplate, head-tail
270 connectors, and capsid proteins (Supplementary Figure 2).

271 [Cytoplasmic incompatibility \(CI\) factors are conserved in wAnM and wAnD](#)

272 We previously reported that the genome of wAnD contains one intact pair of *cif* genes (JSQ73_02850,
273 JSQ73_02855), and a second pair which showed interruptions in both genes (JSQ73_02500 through to
274 JSQ73_02515) [36]. In turn, the genome of wAnM contains one pair of *cif* genes, although two internal
275 stop codons were identified within *cifB* [36]. Phylogenetic analysis of the concatenated nucleotide
276 sequences of *cifA* and *cifB* identified wAnD's intact *cif* gene pair as clustering with the Type I group,
277 and its pseudogenised pair clustering with the Type III group, in line with previous observations [14].
278 In comparison, the *cif* gene pair of wAnM clusters with the Type II group (IYZ83_00740 through to
279 IYZ83_00755, Figure 5).

280 Within wAnD, the interrupted *cif* genes were of a combined 3.6 kbp in length and were located
281 upstream of one of the prophage regions identified by the PHASTER web server (Figure 4c). Following
282 this, the intact *cif* genes of wAnD combined measured 6.0 kbp in length, and is approximately 69.5 kbp
283 downstream of the interrupted *cif* genes (Figure 4c). By contrast, the interrupted *cif* genes of wAnM
284 were of a combined 3.6 kbp in length (Figure 4b). Interestingly, none of the three identified pairs of
285 *cif* genes within wAnD and wAnM were located directly next to or within prophage regions, although

286 the two within wAnD are located close to one (Figure 4c). This is similar to wNo, whose single intact
287 pair of *cif* genes were observed to be separate from predicted prophage regions (Figure 4a).
288 Additionally, it should be noted that the *cif* gene pair of wAnM appear to be a unique insertion that is
289 also not present in wAnD (Figure 4b).

290 **Discussion**

291 This study provides a comprehensive analysis of two *Wolbachia* strains recently identified within
292 *Anopheles* mosquitoes. Their high density and prevalence rates within field populations provides an
293 opportunity to better understand *Wolbachia*-host interactions, as well as providing a potential tool to
294 aid in interrupting the spread of *Plasmodium* parasites. One of the first observations from this study
295 is that the *Anopheles*-infecting *Wolbachia* strains are not monophyletic with other *Wolbachia* strains
296 from mosquitoes (wAlB and wPip). Instead, both wAnD and wAnM were located within a clade that
297 includes several *Wolbachia* strains found within *D. simulans* and *D. mauritiana*. There have been
298 multiple studies that show horizontal transmission of *Wolbachia* occurs regularly [47, 48], and is even
299 possible via a plant intermediate [66]. This potential for horizontal transmission is further emphasised
300 by a recent survey that assembled over 1,000 *Wolbachia* genomes from existing sequence data [44].
301 These genome assemblies are primarily distributed across various *Wolbachia* strains from
302 supergroups A and B, whilst also generating multiple *Wolbachia* assemblies from the same host [44].
303 This study observed how closely related *Wolbachia* strains can be found in taxonomically unrelated
304 hosts, as well as finding no meaningful phylogenetic clustering of different hosts and their
305 corresponding resident *Wolbachia* strains. Such observations are similar with what is observed here
306 with the whole-genome phylogeny of wAnD and wAnM, in relation to the wider supergroup B strains
307 and their insect hosts.

308 When compared against these other sequenced *Wolbachia* strains, analysis of the wAnD and wAnM
309 strains indicate that they maintain relatively small genome sizes for strains found within insects.
310 Despite reduced genome sizes, both the wAnD and wAnM strains maintain similar metabolic and

311 transport pathways found in other *Wolbachia* strains. Additionally, no biosynthetic pathways were
312 identified that could indicate a previously unknown feature acquired in these two strains found in
313 *Anopheles* mosquitoes. Known pathways of relevance for *Wolbachia* include haem and nucleotide
314 biosynthetic pathways [67], as well as transport components such as the Type IV secretion system for
315 secreting potential protein effectors [52]. The observation of smaller genome sizes could be attributed
316 to a reduced number of mobile elements, specifically prophage regions, when compared to other
317 *Wolbachia* strains that reside in mosquitoes such as *wAlbB* [59] and *wPip* [57].

318 Following on from this, it is interesting to see how *wAnD* has degenerated prophage regions in
319 comparison to its closest relative *wNo*, whilst *wAnM* lacks prophage regions entirely. This is despite
320 the presence of *cif* genes within both genomes, which are separate from any prophage regions,
321 contrary to previous observations and expectations for these two features to be co-localised [10, 11,
322 24, 63, 68]. However, this separation of *cif* genes is not unique to just these two *Wolbachia* strains in
323 *Anopheles*, but also to the closely related *Wolbachia* strains *wNo*, *wMa*, and *wMau* (the first infecting
324 *D. simulans*, the latter two *D. mauritiana*), which have been shown to maintain *cif* genes that are
325 distinctly separate from any prophage WO region [45, 69] (Supplementary Figure 3). It is tempting to
326 speculate that this separation of *cif* genes and prophage regions be a unique feature of this clade of
327 *Wolbachia*. For comparison, the genomes of both *wAlbB* and *wPip* maintain *cif* genes that are
328 associated with prophage WO regions [10, 59]. In addition to this separation from prophage regions,
329 both strains *wMa* and *wMau* were observed to have an interrupted *cifB* gene [45, 69], similar to what
330 is observed in *wAnM*, and are both incapable of inducing CI, but capable of rescuing it, when crossed
331 with *wNo*-infected mates [70, 71]. Unlike *wAnM* however, all three of *wNo*, *wMa* and *wMau*'s *cif* gene
332 pairs are found within the Type III phylogenetic group, whereas the *cif* gene pair identified in *wAnM*
333 can be placed within Type II, which is unique amongst this group of five *Wolbachia*. BRIG comparisons
334 of the different genomes appear to indicate this *cif* gene pair to be a unique insertion. Furthermore,
335 whilst *wAnD*'s degenerated *cif* gene pair was noted to be a member of the Type III group, its intact *cif*
336 gene pair also appears unique among this group of *Wolbachia* as a member of Type I. Like *wAnM*'s

337 sole *cif* gene pair, this intact *cif* gene appears to be a unique insertion event, separate from prophage
338 elements.

339 How such insertion events within both wAnD and wAnM have come to happen, and where they have
340 come from, is currently an open question that warrants further investigation, alongside how this group
341 of *Wolbachia* maintain *cif* gene pairs that appear separate from identifiable prophage WO regions.
342 One possible explanation is that the recent ancestors for these strains of *Wolbachia* may have
343 acquired these *cif* genes from a recent phage WO insertion that has very recently become degenerated
344 [69]. Alternatively, these prophage regions could have been removed from the genome by phage
345 excision events. Previous publications have discussed what could happen to the *cif* gene pairs, as well
346 as the *Wolbachia* which carry them, once CI is no longer able to induce evolutionary pressure on their
347 hosts [72–75]. For instance, a recent survey of CI genes in *Wolbachia* predicted how, without
348 evolutionary pressure, these CI genes would likely degrade over time, starting with *cifB*, the 'toxin'
349 component of the phenotype, followed by *cifA*, the 'antidote' component [14]. Alternatively, it has
350 also been suggested that the degradation of the *cif* genes may be related to the absence of prophage
351 regions [14, 15], with the former being an adaptation used by the latter to spread within *Wolbachia*
352 populations. Thus, once the prophage regions are removed, it is predicted that the *cif* genes, and thus
353 the CI phenotype, will have no evolutionary pressure to maintain themselves within *Wolbachia* [14,
354 15]. We observe this occurring to some degree in this study, with the dissociation of prophage regions
355 from the *cif* genes, the interrupted Type III pair observed in wAnD, and how wAnM carries
356 interruptions in its Type II *cifB* gene specifically. Once the phenotype these *Wolbachia* strains exert
357 on their hosts can be properly elucidated, a longitudinal study on the *cif* genes within them is
358 imperative. The results of such study could allow for further insights into *Wolbachia* biology and the
359 evolution of the CI phenotype.

360 Despite the questions as to how this may have occurred, the observed similarities and differences
361 between wAnM and its related strains wMa, wMau and wNo are intriguing, and raises the possibility

362 that wAnM may not cause CI in its *Anopheles* host. This is perhaps counterintuitive, considering the
363 high, but variable, prevalence rates of wAnM in field populations of *A. moucheti* [36, 42]. This
364 prevalence rate is a feature shared with wAnD [36, 42], which is more likely to be capable of inducing
365 CI due to the presence of intact *cif* genes from the Type I group, of which wMel shares. For comparison,
366 our previous work had shown the prevalence rates of wAnM to be between 17.5% and 75%, which is
367 slightly lower than wAnD prevalence rates, shown to be between 38.7% and 100%. Yet the ability for
368 *Wolbachia* to persist in populations without inducing CI is known, as there are instances of *Wolbachia*
369 which stably infect host populations without any overt reproductive parasitism phenotype [8, 76, 77].
370 Explanations for this have focused on *Wolbachia* providing some form of fitness benefits to their host.
371 For instance, the *Wolbachia* strain wAu of supergroup A spread through lab-based, uninfected host
372 populations of *D. simulans* without inducing CI [78]. This persistence of wAu could be linked to an
373 ability to induce protection against viral infections [79], and it is tempting to speculate that *Wolbachia*
374 may provide protection against pathogens of the mosquito. While such studies focus on *Wolbachia* of
375 supergroup A, there has been some evidence that wMau of supergroup B may also confer a fitness
376 benefit for their host via stimulating egg production [69, 80]. Further research will still need to be done
377 to confirm if wAnM can confer similar fitness benefits to its host, or have the potential to inhibit
378 *Plasmodium* or viruses, and whether host-*Wolbachia* backgrounds may play any role in this.
379 The identification of natural *Wolbachia* infections in *Anopheles* shows promise for future control
380 strategies of *Plasmodium* parasites. Whilst these strains show no pathways that are uniquely present
381 or absent, they do exhibit unusual genomic arrangements with regards to the presence of prophage
382 and *cif* genes. This has potential implications on their relationship with their respective Anopheline
383 hosts, potentially making them good candidates for transinfection into other medically relevant
384 *Anopheles* species, such as *A. gambiae* s.s. Further studies would be required to fully examine these
385 *Wolbachia* strains and elucidate their predicted phenotypes of CI and pathogen blocking, both in the
386 context of natural and artificial associations.

387 **Methods**

388 **Sequence data collection and genome quality assessment**

389 Both genomes assemblies of wAnD and wAnM were manually curated (i.e. gaps, indels and synteny)
390 using the approach described by Tsai and colaborators 2010 [81], Mummer/Nucmer software tool
391 v4.0.0 [82], Mauve v2.4.0 [83] and Tablet v1.21.02.08 [84]. To complement the genomes of wAnD and
392 wAnM [36], whole genome sequences of 15 *Wolbachia* genomes were downloaded from the National
393 Centre for Biotechnology Information, with these genomes spanning supergroups A through to F (full
394 information available in supplementary table). An additional 25 *Wolbachia* genomes were also
395 downloaded from the European Nucleotide Archive (ENA). These additional genomes were sequenced
396 as part of a large-scale study [44] which looked at assembling *Wolbachia* genomes from a variety of
397 existing sequencing data of various insects. For the 16 published *Wolbachia* genomes downloaded
398 from NCBI, Refseq annotations were obtained via their PGAP [49]. The 25 genomes downloaded from
399 ENA were also annotated using a local installation of PGAP [49], with an additional seven genomes of
400 *Wolbachia* from supergroup B downloaded from NCBI also annotated using this local installation for
401 consistency [49]. The genomes of both wAnD and wAnM were annotated using both methods. All
402 genome accession numbers used in this study, as well as a summary of their annotations used in this
403 study are provided in supplementary table.

404 To confirm genome completeness, nucleotide sequences of all downloaded genomes, as well as the
405 assembled genomes of wAnD and wAnM, were used as input into the programs BUSCO (v5.0.0, [43])
406 with the lineage option set to “rickettsiales_odb10”. This program analyses genome completeness via
407 comparison against a selection of marker genes (total 364 genes) predicted to be present in single
408 copies based on the input genome’s lineage. Genomes that showed significantly lower completeness
409 levels, (less than 80% completeness) were excluded from orthologue and pathway analyses. This
410 resulted in six of the *Wolbachia* genomes [44] to be removed from these additional analyses.

411 [Phylogenetic, pangenome and metabolic pathway analysis](#)

412 A total of 34 *Wolbachia* genomes were used for phylogenetic analysis of supergroup B *Wolbachia*
413 (genomes of wAnD and wAnM, seven *Wolbachia* genomes from NCBI, and 25 from ENA). These
414 genomes were used as input into the program wgsim ([86, 87], version 1.9), which simulates
415 sequencing reads from a genomic template. Base error, mutation, fraction of indels and indel
416 extension probability were set to zero, read lengths set to 100 and a total of ten million reads
417 simulated for each genome. These simulated reads were then used to generate a Single-Nucleotide
418 Variant (SNV) alignment via Snippy v4.6.0 [88] using the wNo genome as reference (genome accession
419 number GCA_000376585.1). Gubbins v3.0.0 [89] was used for removing recombinant events.
420 Recombination-free alignment of all 34 genomes was then analysed with IQTree v1.6.12 [90] using
421 default parameters, with a GTR substitution model using 1000 non-parametric bootstrap replicates
422 for branch support.

423 [Orthologous group detection](#)

424 Orthologous group detection was performed in two separate parts- first was to compare coding
425 protein sequences amongst *Wolbachia* of supergroup A through to F, whilst the second was to
426 compare coding protein sequences amongst *Wolbachia* of supergroup B specifically.

427 For orthologue analysis amongst *Wolbachia* of supergroup A through to F, Refseq protein annotations
428 for the 15 genomes downloaded from NCBI were used, alongside Refseq protein annotations for
429 wAnD and wAnM. This list of 17 protein sequences were used as input into the program OrthoFinder
430 ([91], v2.5.1) using default parameters. Orthogroups that were common or unique between all 17
431 *Wolbachia* strains were subsequently plotted using the R program package 'UpsetR' ([92], v1.4.0).
432 Additional querying of the data was then performed using the R program package 'ComplexHeatmaps'
433 ([93], v2.5.5).

434 For orthologous group detection amongst a wider selection of supergroup B *Wolbachia*, a total of 31
435 *Wolbachia* genomes were used (seven from NCBI, 22 from ENA), alongside the assembled genomes

436 of wAnD and wAnM (supplementary table). Protein gene annotations for all *Wolbachia* genomes from
437 a local installation of the NCBI PGAP ([49], build5508 2021-07-01) were used as input into the program
438 Orthofinder ([91], v2.5.1) using default parameters. Orthogroups were again visualised using the R
439 program UpsetR ([92], v1.4.0), with additional data querying performed using the R program
440 ComplexHeatmaps ([93], v2.5.5). Genes of interest identified within these orthogroups, e.g. those that
441 were unique to particular genomes, were further analysed using the PFam website's sequence search
442 [94, 95] and NCBI's BlastP [96]. Comparison of the identified nucleotide regions that had similarity to
443 the *Osmia lignaria* gene XP_034172187.1 was performed by BlastN and BlastX, with visualisations
444 performed using Easyfig [97].

445 [Construction of metabolic pathways](#)

446 The genomes of both wAnD and wAnM were submitted to the NCBI Prokaryotic Annotation Pipeline,
447 with a GenBank Flatfile being generated as a result. This flatfile was then downloaded, and used as
448 input into BioCyc's Pathway Tools program ([98], v24.0) and Pathologic ([99, 100], v24.0). Pathologic
449 is able to assign protein function and pathways to annotated genes based on name and/or automated
450 blast hits. To address proteins with 'ambiguous' function within metabolic pathways, all predicted
451 protein-coding genes of both wAnD and wAnM were submitted to the EggNOG online server, which
452 allows for the automated transfer of functional annotations ([101], v2.0.1). Predicted protein-coding
453 genes were also submitted to the KEGG Automatic Annotation Server (KAAS, [51], last updated April
454 3rd 2015) as a second method for functional annotation. Any proteins identified by Pathologic as
455 having an 'ambiguous' function was then manually cross-checked with the outputs of EggNOG and
456 KAAS, and enzyme code numbers assigned. This process was repeated for a selection of *Wolbachia*
457 genomes from supergroup B (supplementary table). Once this process was completed, Pathway Tools'
458 Pathway Overview and Comparison options were then used to compare pathways between the
459 different *Wolbachia* strains. A selection of these biosynthetic and transport pathways was then made,
460 based on prior literature investigating their importance to the *Wolbachia*-host endosymbiotic

461 relationship. Gene presence and absence within these pathways was then manually scored, and
462 plotted out into a heatmap using R's GGplot2 package [102].

463 [Characterisation of Cytoplasmic Incompatibility Factor genes](#)

464 Phylogenetic placement of the three sets of *cif* gene pairs from both wAnD and wAnM were made
465 following the methods of Martinez *et al.* [14]. Briefly, nucleotide sequences for Cytoplasmic
466 Incompatibility Factor (*cif*) A and B genes for all five monophyletic types were obtained from the
467 supplementary materials of Martinez *et al.* [14]. Partially sequenced *cif* genes were discarded, and the
468 nucleotide sequences for *cifA* and *cifB* genes were aligned separately using the program MAFFT. The
469 separate alignments were then used as input into the online GBlocks server ([103], v0.91b) with
470 default 'stringent' parameters to filter out weakly conserved regions of the alignment. Once filtering
471 was done, the separate nucleotide sequence alignments were then concatenated using Seqkit ([104],
472 v0.15.0), and used as input for PhyML ([105], v3.0), using the GTR GAMMA substitution model of
473 evolution and 1,000 bootstrap replicates. The outputted newick formatted tree was then annotated
474 using the GGTTree package in R ([106], v2.2.4).

475 [Ankyrin, Prophage and IS element detection](#)

476 Ankyrin domains were detected using five HMMer profiles ([95], ID numbers PF00023.31, PF12796.8,
477 PF13606.7, PF13637.7, PF13857.7). These profiles were generated via first downloading associated
478 alignment files from the PFAM protein database [94] as Stockholm formatted seed files. The HMMer
479 suite ([95], v3.1b2) was then used to build HMM profiles from these seed files. These profiles were
480 then compared against the protein amino acid sequences annotated from wAnD and wAnM to identify
481 any protein-coding genes containing an ankyrin domain. This analysis was then repeated for a
482 selection of *Wolbachia* genomes to allow for direct comparisons to be made.

483 Prophage sequences were identified within the genomes of wAnD and wAnM using the PHASTER web
484 server [107]. Assembled contig sequences of both genomes were uploaded separately to the server,
485 checking the option to note that the input consists of multiple separate contigs. In the case of wAnD

486 where prophage regions were detected, results were downloaded and manual curation of the
487 identified prophage regions was performed using the Artemis genome browser [108] to identify
488 prophage genes overlapping these regions. Additional BlastX searches were performed on
489 neighbouring genes against Phage WOVitA1 sequences (GenBank genome reference HQ906662.1) to
490 screen for genes that may be associated with prophage WO's eukaryotic association module.

491 Insertion sequence element detection was performed by separately concatenating the contigs of
492 wAnD and wAnM, resulting in two contiguous genomes. These were then submitted to ISSaga ([109],
493 v1.0) and results tables obtained. Manual curation was then performed using the original contigs for
494 both *Wolbachia* genomes, with true-positive IS elements called by comparison of annotations from
495 ISSaga, PGAP annotation, and BLAST searches against the ISFinder database.

496 Author statements

497 **S.Q. designed methodology, conduct investigation and formal analysis, designed visuals, and wrote**
498 **the original draft. L.C. designed methodology, conduct investigation and formal analysis, and wrote**
499 **the original draft. C.L.J. conceptualised the study, conducted investigation and resource collection,**
500 **and wrote the original draft. S.T. designed methodology and software. T.W. conceptualised the**
501 **study, conducted investigation and resource collection, secured funding, and wrote the original**
502 **draft. G.L.H. conceptualised and supervised the study, secured funding, and wrote the original draft.**
503 **E.H. conceptualised and supervised the study, designed the methodology, and wrote the original**
504 **draft. All authors have read and approved the final manuscript.**

505

506 **The authors declare that there are no conflicts of interest.**

507

508

509 **Funding information**

510 EH and GLH acknowledge support from BBSRC grant BB/V011278/1. ST was supported by the
511 Wellcome SEED award 217303/Z/19/Z to EH. LC was supported by NIAID R01-AI116811. TW and CLJ
512 were supported by a Sir Henry Dale Wellcome Trust/Royal Society fellowship awarded to TW
513 (<https://wellcome.org> and <https://royalsociety.org>). TW was also supported by a Royal
514 Society challenge grant (CHG\R1\170036). GLH was also supported by the BBSRC (BB/T001240/1), a
515 Royal Society Wolfson Fellowship (RSWF\R1\180013), the NIH (R21AI138074), the EPSRC
516 (EP/V043811/1), the UKRI (20197 and 85336), and the NIHR (NIHR2000907).

517

518 References

- 519 1. **Werren JH, Baldo L, Clark ME.** Wolbachia: Master manipulators of invertebrate biology. *Nat Rev Microbiol* 2008;6:741–751.
- 520
- 521 2. **Weinert LA, Araujo-Jnr E V., Ahmed MZ, Welch JJ.** The incidence of bacterial endosymbionts in terrestrial arthropods. *Proc R Soc B Biol Sci* 2015;282:3–8.
- 522
- 523 3. **Sazama EJ, Bosch MJ, Shouldis CS, Ouellette SP, Wesner JS.** Incidence of Wolbachia in aquatic insects. *Ecol Evol* 2017;7:1165–1169.
- 524
- 525 4. **Taylor MJ, Bordenstein SR, Slatko B.** Microbe Profile : Wolbachia : a sex selector , a viral protector and a target to treat filarial nematodes. *Microbiology* 2019;1345–1347.
- 526
- 527 5. **Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, et al.** Living in the endosymbiotic world of Wolbachia: A centennial review. *Cell Host Microbe* 2021;29:879–893.
- 528
- 529 6. **Baldo L, Werren JH.** Revisiting Wolbachia Supergroup Typing Based on WSP: Spurious Lineages and Discordance with MLST. *Curr Microbiol* 2007;55:81–87.
- 530
- 531 7. **Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, et al.** Multilocus sequence typing system for the endosymbiont Wolbachia pipipientis. *Appl Environ Microbiol* 2006;72:7098–7110.
- 532
- 533
- 534 8. **Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T.** Wolbachia as a bacteriocyte-associated nutritional mutualist. *Proc Natl Acad Sci* 2010;107:769–774.
- 535
- 536 9. **Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, et al.** Evolutionary origin of insect-Wolbachia nutritional mutualism. *Proc Natl Acad Sci* 2014;111:10257–10262.
- 537
- 538 10. **Le Page DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, et al.** Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. *Nature* 2017;543:243–247.
- 539
- 540
- 541 11. **Beckmann JF, Ronau JA, Hochstrasser M.** A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. *Nat Microbiol* 2017;2:1–7.
- 542
- 543 12. **Bordenstein SR, Wernegreen JJ.** Bacteriophage flux in endosymbionts (Wolbachia): Infection frequency, lateral transfer, and recombination rates. *Mol Biol Evol* 2004;21:1981–1991.
- 544
- 545 13. **Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, et al.** Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia. *Genome Biol Evol* 2018;10:434–451.
- 546
- 547
- 548 14. **Martinez J, Klasson L, Welch JJ, Jiggins FM.** Life and Death of Selfish Genes: Comparative Genomics Reveals the Dynamic Evolution of Cytoplasmic Incompatibility. *Mol Biol Evol*. Epub ahead of print 2020. DOI: 10.1093/molbev/msaa209.
- 549
- 550
- 551 15. **Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, et al.** The Toxin–Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications. *Trends Genet* 2019;35:175–185.
- 552
- 553
- 554 16. **Gillespie JJ, Driscoll TP, Verhoeve VI, Rahman MS, Macaluso KR, et al.** A tangled web: Origins of reproductive parasitism. *Genome Biol Evol* 2018;10:2292–2309.
- 555
- 556 17. **Werren JH.** Biology of Wolbachia. *Annu Rev Entomol* 1997;124:587–609.

557 18. **Serbus LR, Casper-Lindley C, Landmann F, Sullivan W.** The Genetics and Cell Biology of
558 *Wolbachia* -Host Interactions. *Annu Rev Genet* 2008;42:683–707.

559 19. **McMeniman CJ, Lane R V., Cass BN, Fong AWC, Sidhu M, et al.** Stable introduction of a life-
560 shortening *Wolbachia* infection into the mosquito *Aedes aegypti*. *Science (80-)*
561 2009;323:141–144.

562 20. **Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, et al.** The wMel
563 *Wolbachia* strain blocks dengue and invades caged *Aedes aegypti* populations. *Nature*
564 2011;476:450–453.

565 21. **Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, et al.** Successful
566 establishment of *Wolbachia* in *Aedes* populations to suppress dengue transmission. *Nature*
567 2011;476:454–459.

568 22. **Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D, et al.** Efficient production of male
569 *Wolbachia*-infected *Aedes aegypti* mosquitoes enables large-scale suppression of wild
570 populations. *Nat Biotechnol* 2020;38:482–492.

571 23. **Shropshire JD, On J, Layton EM, Zhou H, Bordenstein SR.** One prophage WO gene rescues
572 cytoplasmic incompatibility in *Drosophila melanogaster*. *Proc Natl Acad Sci* 2018;115:4987–
573 4991.

574 24. **Shropshire JD, Bordenstein SR.** Two-By-One model of cytoplasmic incompatibility: Synthetic
575 recapitulation by transgenic expression of *cifA* and *cifB* in *Drosophila*. *PLOS Genet*
576 2019;15:e1008221.

577 25. **McGraw EA, O'Neill SL.** Beyond insecticides: New thinking on an ancient problem. *Nat Rev
578 Microbiol* 2013;11:181–193.

579 26. **Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, et al.** Harnessing mosquito-*Wolbachia*
580 symbiosis for vector and disease control. *Acta Trop* 2014;132:S150–S163.

581 27. **Johnson KN.** The impact of *Wolbachia* on virus infection in mosquitoes. *Viruses* 2015;7:5705–
582 5717.

583 28. **Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, et al.** Efficacy of *Wolbachia*-
584 Infected Mosquito Deployments for the Control of Dengue. *N Engl J Med* 2021;384:2177–
585 2186.

586 29. **Indriani C, Tantowijoyo W, Rancès E, Andari B, Prabowo E, et al.** Reduced dengue incidence
587 following deployments of *Wolbachia* -infected *Aedes aegypti* in Yogyakarta , Indonesia : a
588 quasi-experimental trial using controlled interrupted time series analysis. *Gates Open Res*
589 2020;1–13.

590 30. **Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL.** *Wolbachia* infections are virulent and inhibit
591 the human malaria parasite *Plasmodium falciparum* in *Anopheles gambiae*. *PLOS Pathog*
592 2011;7:3–10.

593 31. **Bian G, Joshi D, Dong Y, Lu P, Zhou G, et al.** *Wolbachia* invades *Anopheles stephensi*
594 populations and induces refractoriness to *Plasmodium* infection. *Science (80-)*
595 2013;340:748–751.

596 32. **Joshi D, Pan X, McFadden MJ, Bevins D, Liang X, et al.** The maternally inheritable *Wolbachia*
597 wAlbB induces refractoriness to *Plasmodium berghei* in *Anopheles stephensi*. *Front Microbiol*
598 2017;8:1–11.

599 33. **Joshi D, McFadden MJ, Bevins D, Zhang F, Xi Z.** *Wolbachia* strain wAlbB confers both fitness

600 costs and benefit on *Anopheles stephensi*. *Parasites and Vectors* 2014;7:1–9.

601 34. **Walker T, Moreira LA.** Can Wolbachia be used to control malaria? *Mem Inst Oswaldo Cruz*
602 2011;106:212–217.

603 35. **Chrostek E, Gerth M.** Is *Anopheles gambiae* a Natural Host of Wolbachia ? *MBio* 2019;10:1–
604 10.

605 36. **Walker T, Quek S, Jeffries CL, Bandibabone J, Dhokiya V, et al.** Stable high-density and
606 maternally inherited Wolbachia infections in *Anopheles moucheti* and *Anopheles demeilloni*
607 mosquitoes. *Curr Biol* 2021;2020.10.29.357400.

608 37. **Baldini F, Segata N, Pompon J, Marcenac P, Shaw WR, et al.** Evidence of natural Wolbachia
609 infections in field populations of *Anopheles gambiae*. *Nat Commun* 2014;1:1–7.

610 38. **Gomes FM, Hixson BL, Tyner MDW, Ramirez JL, Canepa GE, et al.** Effect of naturally
611 occurring Wolbachia in *Anopheles gambiae* s.l. mosquitoes from Mali on *Plasmodium*
612 *falciparum* malaria transmission. *Proc Natl Acad Sci U S A* 2017;114:12566–12571.

613 39. **Niang EHA, Bassene H, Makoundou P, Fenollar F, Weill M, et al.** First report of natural
614 Wolbachia infection in wild *Anopheles funestus* population in Senegal. *Malar J* 2018;17:1–6.

615 40. **Ayala D, Akone-Ella O, Rahola N, Kengne P, Ngangue MF, et al.** Natural Wolbachia infections
616 are common in the major malaria vectors in Central Africa. *Evol Appl* 2019;12:1583–1594.

617 41. **Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, et al.** Natural
618 Wolbachia infection in field-collected *Anopheles* and other mosquito species from Malaysia.
619 *Parasit Vectors* 2020;13:414.

620 42. **Jeffries CL, Lawrence GG, Golovko G, Kristan M, Orsborne J, et al.** Novel Wolbachia strains in
621 *Anopheles* malaria vectors from Sub-Saharan Africa. *Wellcome Open Res* 2018;3:113.

622 43. **Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM.** BUSCO: Assessing
623 genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*
624 2015;31:3210–3212.

625 44. **Scholz M, Albanese D, Tuohy K, Donati C, Segata N, et al.** Large scale genome
626 reconstructions illuminate Wolbachia evolution. *Nat Commun* 2020;11:5235.

627 45. **Baião GC, Janice J, Galinou M, Klasson L.** Comparative Genomics Reveals Factors Associated
628 with Phenotypic Expression of Wolbachia. *Genome Biol Evol* 2021;13:1–20.

629 46. **Lefoulon E, Vaisman N, Frydman HM, Sun L, Foster JM, et al.** Large Enriched Fragment
630 Targeted Sequencing (LEFT-SEQ) Applied to Capture of Wolbachia Genomes. *Sci Rep* 2019;1–
631 10.

632 47. **O'Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM.** 16S rRNA phylogenetic analysis
633 of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. *Proc
634 Natl Acad Sci U S A* 1992;89:2699–2702.

635 48. **Werren JH, Zhang W, Guo LR.** Evolution and phylogeny of Wolbachia : reproductive parasites
636 of arthropods. *Proc R Soc London Ser B Biol Sci* 1995;261:55–63.

637 49. **Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, et al.** NCBI prokaryotic
638 genome annotation pipeline. *Nucleic Acids Res* 2016;44:6614–6624.

639 50. **Ishmael N, Hotopp JCD, Loanidis P, Biber S, Sakamoto J, et al.** Extensive genomic diversity of
640 closely related wolbachia strains. *Microbiology* 2009;155:2211–2222.

641 51. **Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M.** KAAS: An automatic genome
642 annotation and pathway reconstruction server. *Nucleic Acids Res* 2007;35:182–185.

643 52. **Rancès E, Voronin D, Tran-Van V, Mavingui P.** Genetic and functional characterization of the
644 type IV secretion system in Wolbachia. *J Bacteriol* 2008;190:5020–5030.

645 53. **Christie PJ, Whitaker N, González-Rivera C.** Mechanism and structure of the bacterial type IV
646 secretion systems. *Biochim Biophys Acta - Mol Cell Res* 2014;1843:1578–1591.

647 54. **Carpinone EM, Li Z, Mills MK, Foltz C, Brannon ER, et al.** Identification of putative effectors
648 of the type IV secretion system from the wolbachia endosymbiont of brugia malayi. *PLoS One*
649 2018;13:1–24.

650 55. **Kent BN, Bordenstein SR.** Phage WO of Wolbachia: Lambda of the endosymbiont world.
651 *Trends Microbiol* 2010;18:173–181.

652 56. **Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S, et al.** A survey of the bacteriophage
653 WO in the endosymbiotic bacteria Wolbachia. *Mol Biol Evol* 2007;24:427–435.

654 57. **Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, et al.** Genome Evolution of
655 Wolbachia Strain wPip from the Culex pipiens Group. *Mol Biol Evol* 2008;25:1877–1887.

656 58. **Ellegaard KM, Klasson L, Näslund K, Bourtzis K, Andersson SGE.** Comparative Genomics of
657 Wolbachia and the Bacterial Species Concept. *PLoS Genet*;9. Epub ahead of print 2013. DOI:
658 10.1371/journal.pgen.1003381.

659 59. **Sinha A, Li Z, Sun L, Carlow CKS, Cordaux R.** Complete Genome Sequence of the Wolbachia
660 wAlbB Endosymbiont of Aedes albopictus. *Genome Biol Evol* 2019;11:706–720.

661 60. **Miao YH, Xiao JH, Huang DW.** Distribution and Evolution of the Bacteriophage WO and Its
662 Antagonism With Wolbachia. *Front Microbiol* 2020;11:1–13.

663 61. **Foster J, Ganatra M, Kamal I, Ware J, Makarova K, et al.** The Wolbachia genome of Brugia
664 malayi: Endosymbiont evolution within a human pathogenic nematode. *PLoS Biol*
665 2005;3:0599–0614.

666 62. **Lefoulon E, Clark T, Guerrero R, Cañizales I, Cardenas-Callirgos JM, et al.** Diminutive,
667 degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a
668 single paradigm. *Microb Genomics* 2020;3:1–45.

669 63. **Bordenstein SR, Bordenstein SR.** Eukaryotic association module in phage WO genomes from
670 Wolbachia. *Nat Commun* 2016;7:1–10.

671 64. **Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA.** BLAST Ring Image Generator (BRIG):
672 Simple prokaryote genome comparisons. *BMC Genomics*;12. Epub ahead of print 2011. DOI:
673 10.1186/1471-2164-12-402.

674 65. **Kupritz J, Martin J, Fischer K, Curtis KC, Fauver JR, et al.** Isolation and characterization of a
675 novel bacteriophage WO from Allonemobius socius crickets in Missouri. *PLoS One*
676 2021;16:e0250051.

677 66. **Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL.** Horizontal transmission of intracellular
678 insect symbionts via plants. *Front Microbiol* 2017;8:1–8.

679 67. **Gill AC, Darby AC, Makepeace BL.** Iron Necessity: The Secret of Wolbachia's Success? *PLoS*
680 *Negl Trop Dis*;8. Epub ahead of print 2014. DOI: 10.1371/journal.pntd.0003224.

681 68. **Shropshire JD, Rosenberg R, Bordenstein SR.** The impacts of cytoplasmic incompatibility

682 factor (cifA and cifB) genetic variation on phenotypes. *Genetics*;217. Epub ahead of print
683 2021. DOI: 10.1093/GENETICS/IYAA007.

684 69. **Meany MK, Conner WR, Richter S V., Bailey JA, Turelli M, et al.** Loss of cytoplasmic
685 incompatibility and minimal fecundity effects explain relatively low Wolbachia frequencies in
686 *Drosophila mauritiana*. *Evolution (N Y)* 2019;73:1278–1295.

687 70. **Bourtzis K, Dobson SL, Braig HR, O'Neill SL**. Rescuing Wolbachia have been overlooked''.
688 *Nature* 1998;391:852–853.

689 71. **Charlat S, Le Chat L, Merçot H**. Characterization of non-cytoplasmic incompatibility inducing
690 Wolbachia in two continental African populations of *Drosophila simulans*. *Heredity (Edinb)*
691 2003;90:49–55.

692 72. **Turelli M**. Evolution of incompatibility-inducing microbes and their hosts. *Evolution (N Y)*
693 1994;48:1500–1513.

694 73. **Hurst LD, McVean GT**. Clade selection, reversible evolution and the persistence of selfish
695 elements: The evolutionary dynamics of cytoplasmic incompatibility. *Proc R Soc B Biol Sci*
696 1996;263:97–104.

697 74. **Koehcke A, Telschow A, Werren JH, Hammerstein P**. Life and death of an influential
698 passenger: Wolbachia and the evolution of CI-modifiers by their hosts. *PLoS One*;4. Epub
699 ahead of print 2009. DOI: 10.1371/journal.pone.0004425.

700 75. **Haygood R, Turelli M**. Evolution of incompatibility-inducing microbes in subdivided host
701 populations. *Evolution (N Y)* 2009;63:432–447.

702 76. **Dedeine F, Boulétreau M, Vavre F**. Wolbachia requirement for oogenesis: Occurrence within
703 the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in *A.*
704 *tabida*. *Heredity (Edinb)* 2005;95:394–400.

705 77. **Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR**. Rapid Sequential Spread of Two
706 Wolbachia Variants in *Drosophila simulans*. *PLoS Pathog*;9. Epub ahead of print 2013. DOI:
707 10.1371/journal.ppat.1003607.

708 78. **Kriesner P, Hoffmann AA**. Rapid spread of a Wolbachia infection that does not affect host
709 reproduction in *Drosophila simulans* cage populations. *Evolution (N Y)* 2018;72:1475–1487.

710 79. **Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins P**. The Wolbachia strain w Au provides
711 highly efficient virus transmission blocking in *Aedes aegypti*. 2018;1–19.

712 80. **Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, et al.** Wolbachia enhance
713 *Drosophila* stem cell proliferation and target the germline stem cell niche. *Science (80-)*
714 2011;334:990–992.

715 81. **Tsai IJ, Otto TD, Berriman M**. Improving draft assemblies by iterative mapping and assembly
716 of short reads to eliminate gaps. *Genome Biol*;11. Epub ahead of print 2010. DOI: 10.1186/gb-
717 2010-11-4-r41.

718 82. **Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, et al.** MUMmer4: A fast and
719 versatile genome alignment system. *PLoS Comput Biol* 2018;14:1–14.

720 83. **Darling ACE, Mau B, Blattner FR, Perna NT**. Mauve: Multiple Alignment of Conserved
721 Genomic Sequence With Rearrangements. *Genome Res* 2004;14:1394–1403.

722 84. **Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, et al.** Using tablet for visual exploration
723 of second-generation sequencing data. *Brief Bioinform* 2013;14:193–202.

724 85. **Seemann T.** Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 2014;30:2068–
725 2069.

726 86. **Li H.** Wgsim for simulating sequence reads from a reference genome.
727 <https://github.com/lh3/wgsim> (2011).

728 87. **Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al.** The Sequence Alignment/Map format
729 and SAMtools. *Bioinformatics* 2009;25:2078–2079.

730 88. **Seemann T.** Snippy: Fast bacterial variant calling from NGS reads.
731 <https://github.com/tseemann/snippy> (2015).

732 89. **Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, et al.** Rapid phylogenetic analysis of
733 large samples of recombinant bacterial whole genome sequences using Gubbins. *Nucleic
734 Acids Res* 2015;43:e15.

735 90. **Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ.** IQ-TREE: A fast and effective stochastic
736 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* 2015;32:268–274.

737 91. **Emms DM, Kelly S.** OrthoFinder: solving fundamental biases in whole genome comparisons
738 dramatically improves orthogroup inference accuracy. *Genome Biol* 2015;16:157.

739 92. **Conway JR, Lex A, Gehlenborg N.** UpSetR: An R package for the visualization of intersecting
740 sets and their properties. *Bioinformatics* 2017;33:2938–2940.

741 93. **Gu Z, Eils R, Schlesner M.** Complex heatmaps reveal patterns and correlations in
742 multidimensional genomic data. *Bioinformatics* 2016;32:2847–2849.

743 94. **El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, et al.** The Pfam protein families
744 database in 2019. *Nucleic Acids Res* 2019;47:D427–D432.

745 95. **Howard Hughes Medical Institute.** HMMER: biosequence analysis using profile hidden
746 Markov models. <http://hmmer.org/> (2013).

747 96. **Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.** Basic local alignment search tool. *J Mol
748 Biol* 1990;215:403–10.

749 97. **Sullivan MJ, Petty NK, Beatson SA.** Easyfig: A genome comparison visualizer. *Bioinformatics*
750 2011;27:1009–1010.

751 98. **Karp PD, Midford PE, Billington R, Kothari A, Krummenacker M, et al.** Pathway Tools version
752 23.0 update: software for pathway/genome informatics and systems biology. *Brief Bioinform*
753 2021;22:109–126.

754 99. **Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, et al.** The MetaCyc database
755 of metabolic pathways and enzymes-a 2019 update. *Nucleic Acids Res* 2020;48:D455–D453.

756 100. **Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, et al.** The BioCyc collection of
757 microbial genomes and metabolic pathways. *Brief Bioinform* 2018;20:1085–1093.

758 101. **Huerta-Cepas J, Forlund K, Coelho LP, Szklarczyk D, Jensen LJ, et al.** Fast genome-wide
759 functional annotation through orthology assignment by eggNOG-mapper. *Mol Biol Evol*
760 2017;34:2115–2122.

761 102. **Wickham H.** *ggplot2: Elegant Graphics for Data Analysis*. New York: Springer-Verlag.
762 <https://ggplot2.tidyverse.org> (2016).

763 103. **Talavera G, Castresana J.** Improvement of phylogenies after removing divergent and
764 ambiguously aligned blocks from protein sequence alignments. *Syst Biol* 2007;56:564–577.

765 104. **Shen W, Le S, Li Y, Hu F.** SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File
766 Manipulation. *PLoS One* 2016;11:e0163962.

767 105. **Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al.** New algorithms and
768 methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML
769 3.0. *Syst Biol* 2010;59:307–321.

770 106. **Yu G, Smith DK, Zhu H, Guan Y, Lam TTY.** Ggtree: an R Package for Visualization and
771 Annotation of Phylogenetic Trees With Their Covariates and Other Associated Data. *Methods*
772 *Ecol Evol* 2017;8:28–36.

773 107. **Arndt D, Grant JR, Marcu A, Sajed T, Pon A, et al.** PHASTER : a better, faster version of the
774 PHAST phage search tool. *Nucleic Acids Res* 2016;44:16–21.

775 108. **Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA.** Artemis: An integrated platform for
776 visualization and analysis of high-throughput sequence-based experimental data.
777 *Bioinformatics* 2012;28:464–469.

778 109. **Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M.** ISsaga is an ensemble of web-
779 based methods for high throughput identification and semi-automatic annotation of insertion
780 sequences in prokaryotic genomes. *Genome Biol*;12. Epub ahead of print 2011. DOI:
781 10.1186/gb-2011-12-3-r30.

782

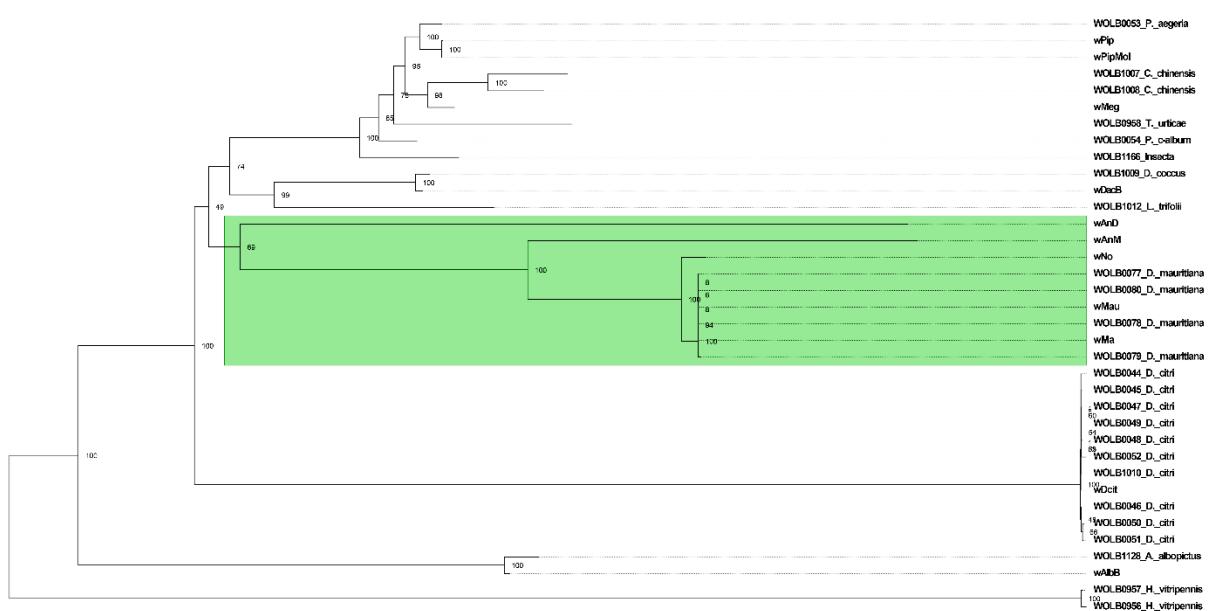
783 **Figures**

784 **Figure 1: Maximum likelihood phylogenetic tree of whole-genome alignments of a selection of**
785 ***Wolbachia* genomes, using 1000 bootstrap replicates.** Genomes beginning with WOLB followed by
786 four digits were assembled by [44]. Other genomes, with the exception of wAnM and wAnD (which
787 are bolded and underlined) are the results of previous sequencing efforts, with acronyms as described
788 in Table 1. Tree is midpoint-rooted. Note how wAnM and wAnD are present within a clade alongside
789 wNo and several assembled genomes of *Wolbachia* from *Drosophila mauritiana*, (green highlight). By
790 contrast, previously sequenced *Wolbachia* of mosquitoes wPip/wPipMol, and wAlbB, are present in
791 separate clades.

792 **Figure 2: Overview of identified orthogroups amongst *Wolbachia*. (A)** Graphical representation of
793 set notation of 17 near-complete *Wolbachia* genomes from six of the main supergroups using UpsetR,
794 and the protein orthologues that they encode. Each genome (one per row at the bottom half of the
795 image) is treated as a ‘set’ containing a certain number of orthogroups (denoted by the bar graph on
796 the bottom left of the image). The various permutations of intersections are denoted by the ball-and-
797 stick diagram at the bottom of the image, and the size of these intersections denoted by the bar graph
798 at the top of the image. *Wolbachia* genomes are colour-coded based on their supergroup organisation,
799 with wAnM and wAnD sets highlighted by a red outline with no fill. Note how an intersect of all 17
800 *Wolbachia* genomes was identified as containing the vast majority of orthogroups- a ‘core’ proteome
801 total of 523 orthogroups (first bar from left). All other subsequent permutations of intersects contain
802 less than 53 orthogroups. There were no intersects that uniquely contained wAnM and wAnD, or
803 uniquely contained only supergroup B *Wolbachia*. The inset stacked bar chart shows the distribution
804 of singleton, i.e. genes that do not belong to an orthogroup, dark red bar segment, and strain-specific
805 orthogroups, i.e. genes that belong to a orthogroup unique to that *Wolbachia* strain, light red segment.
806 **(B)** Graphical representation of set notation of 27 supergroup B *Wolbachia* genomes, using the format
807 as described for **(A)**. *Wolbachia* genomes includes eight existing published complete genomes, and 19

808 recently assembled genomes from Scholz et al., alongside the two recently assembled genomes wAnM
809 and wAnD (highlighted with a red box). Analysis was performed on local PGAP annotations of all 27
810 *Wolbachia* genomes. Note how the intersect of all 27 *Wolbachia* genomes shows a core proteome of
811 595 orthogroups, with the second largest intersect containing 221 orthogroups shared between the
812 Scholz et al. genome assembly for *Wolbachia* of *D. coccus* and an unidentified Insecta. There were no
813 intersects that uniquely contained wAnD and wAnM.

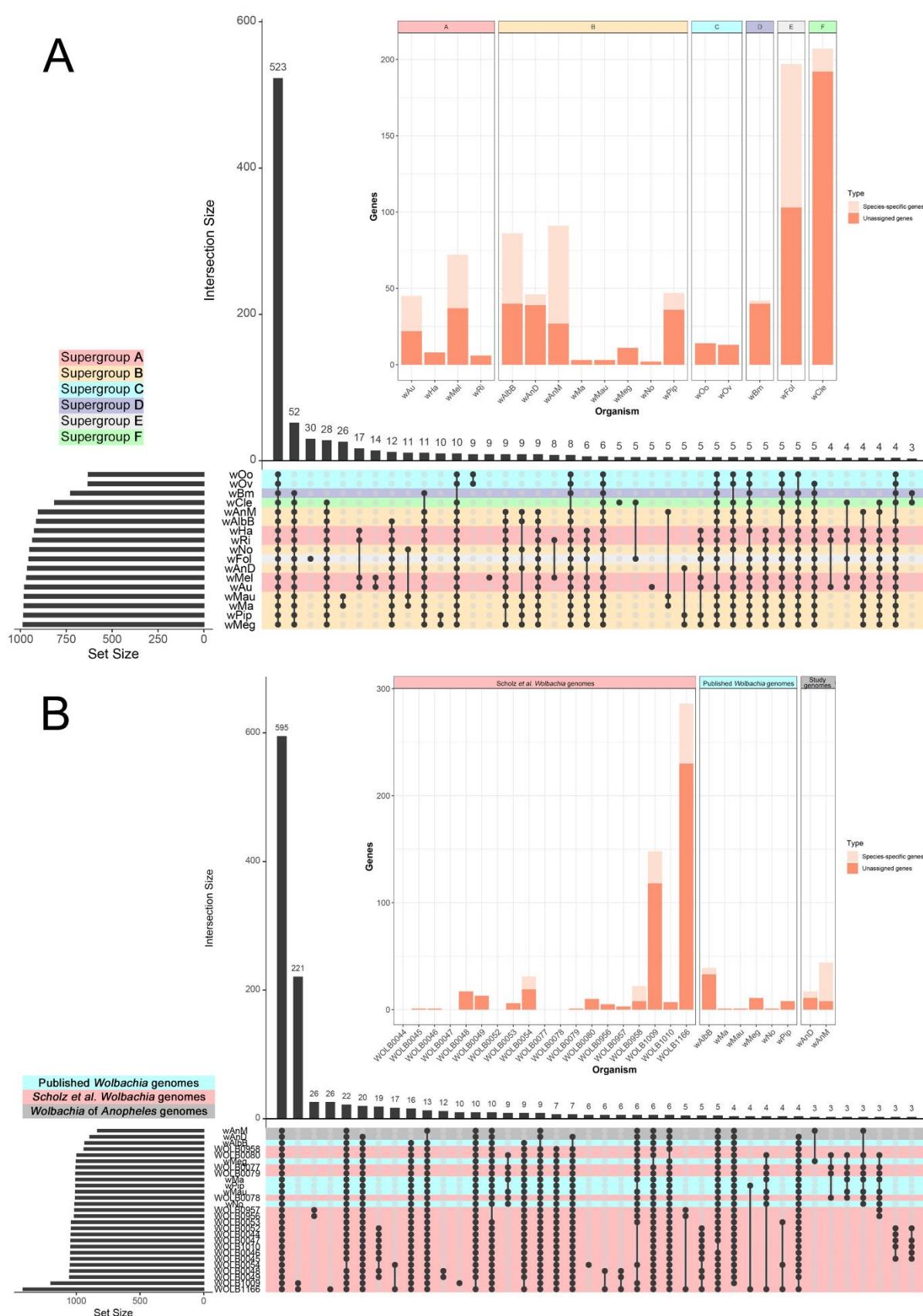
814 **Figure 3: Heatmap representation of presence-absence of various genes in metabolic and**
815 **secretion/transport system pathways amongst a selection of *Wolbachia* genomes.** The analysed
816 genomes are arrayed on the x-axis, with colours of the heatmap representing the various analysed
817 supergroups. The y-axis in turn represents different genes and metabolic pathways of interest to
818 Wolbachia studies. Greys in the heatmap represent an absence of a gene within the respective
819 genome. **(A)** Comparative illustration of 16 near-complete *Wolbachia* genomes. Column colours are
820 based on *Wolbachia* supergroup using a similar scheme to Figure 2, with columns representing the
821 genomes of wAnD and wAnM are highlighted with a more intense colour of the heatmap. These
822 genomes were observed to maintain all the genes and pathways common to supergroup B *Wolbachia*.
823 **(B)** Comparative illustration of 29 *Wolbachia* genomes of supergroup B. Columns are coloured based
824 on their origin, with blue columns being genomes from the study by Scholz et al. [44], and red being
825 genomes from existing *Wolbachia*, including wAnD and wAnM.

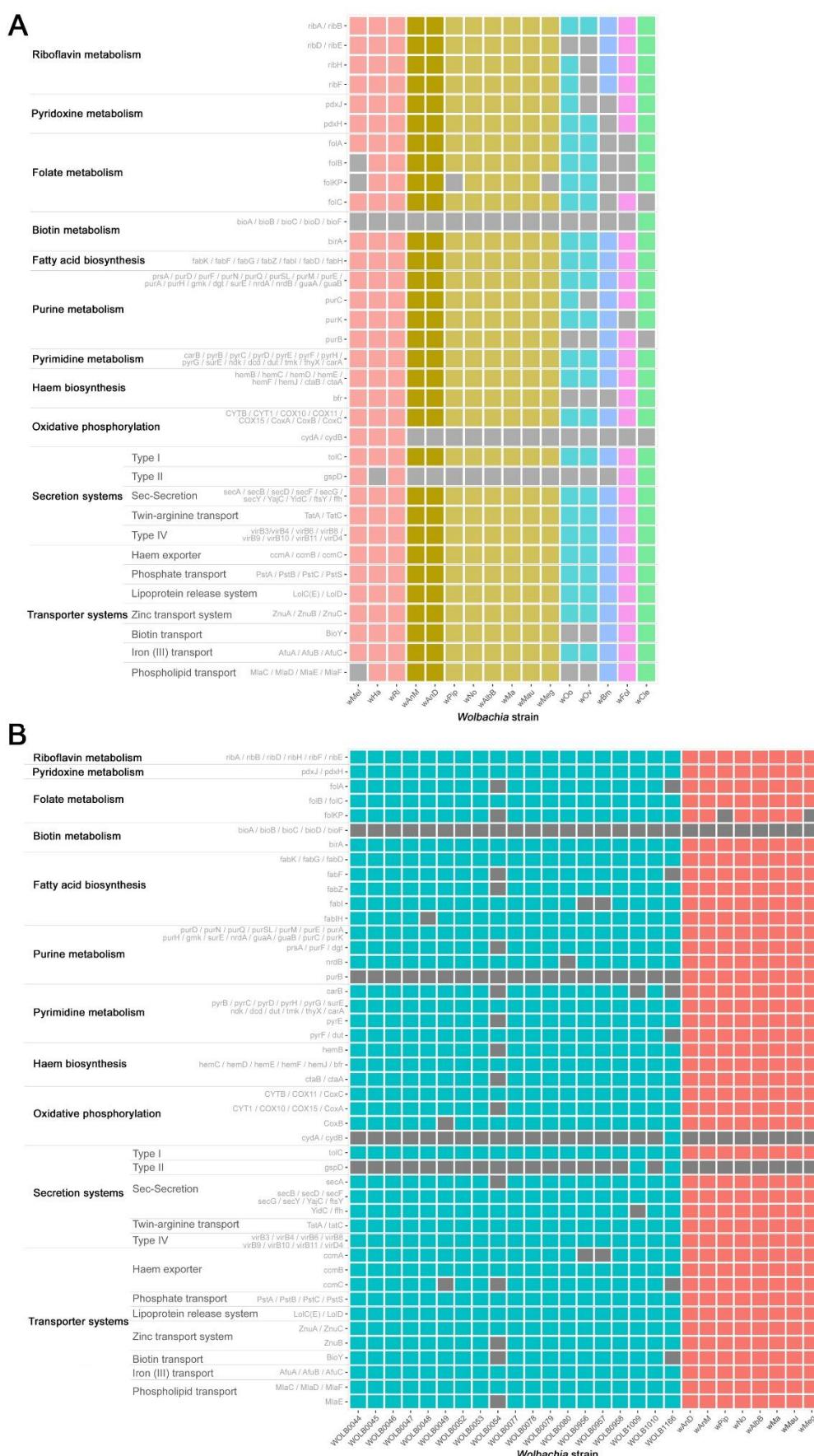

826 **Figure 4: BLAST Ring Image Generator (BRIG) visualisation of prophage regions in the genomes of**
827 **wNo, wAnM and wAnD when compared to one another.** Each individual ring represents the BLAST
828 similarity score for a particular genome (represented by the different colours as defined by the key on
829 the right of panel A) against a template (represented by the innermost solid colour ring, and the name
830 at the centre of the circle). Differences in opacity of the rings represents the BLAST similarity score (as
831 represented by the key on the right of panel A), with solid colours representing 100% similarity, and
832 blank regions representing 0% similarity. The outer-most ring contains information on predicted

833 prophage and *cif* gene localisations **(A)** Comparison of *wAnM* and *wAnD* against a *wNo* template
834 genome. Note how the black bars representing predicted prophage regions by Ellegaard *et al.* [58]
835 overlap areas with no similarity against the *wAnM* genome, whilst having some similarity to the *wAnD*
836 genome. Also note how its single, intact *cif* gene pair is located separate from previously predicted
837 prophage regions. **(B)** Comparison against a *wAnM* template genome. Note how this genome was
838 noted to contain no prophage regions, and its single pseudogeised *cif* gene pair is located in an area
839 with no similarity to both *wNo* and *wAnD*. **(C)** Comparison against a *wAnD* template genome.
840 Predicted prophage segments 1 and 2 were predicted by the PHASTER web server, with segment 3
841 predicted by Blastx searches against the prophage regions WOVitA1 and WOCauB1 through to B3, as
842 identified by Bordentstein *et al.* [63]. Note how of the three predicted prophage regions, two showed
843 similarity to the *wNo* genome, and one showed no similarity to either genome. Also note how its two
844 *cif* gene pairs are located separate from, but close to, predicted prophage segment 3. Also note how
845 the intact *cif* gene pair appears within a region that shows weak to no similarity against both *wAnM*
846 and *wNo*.

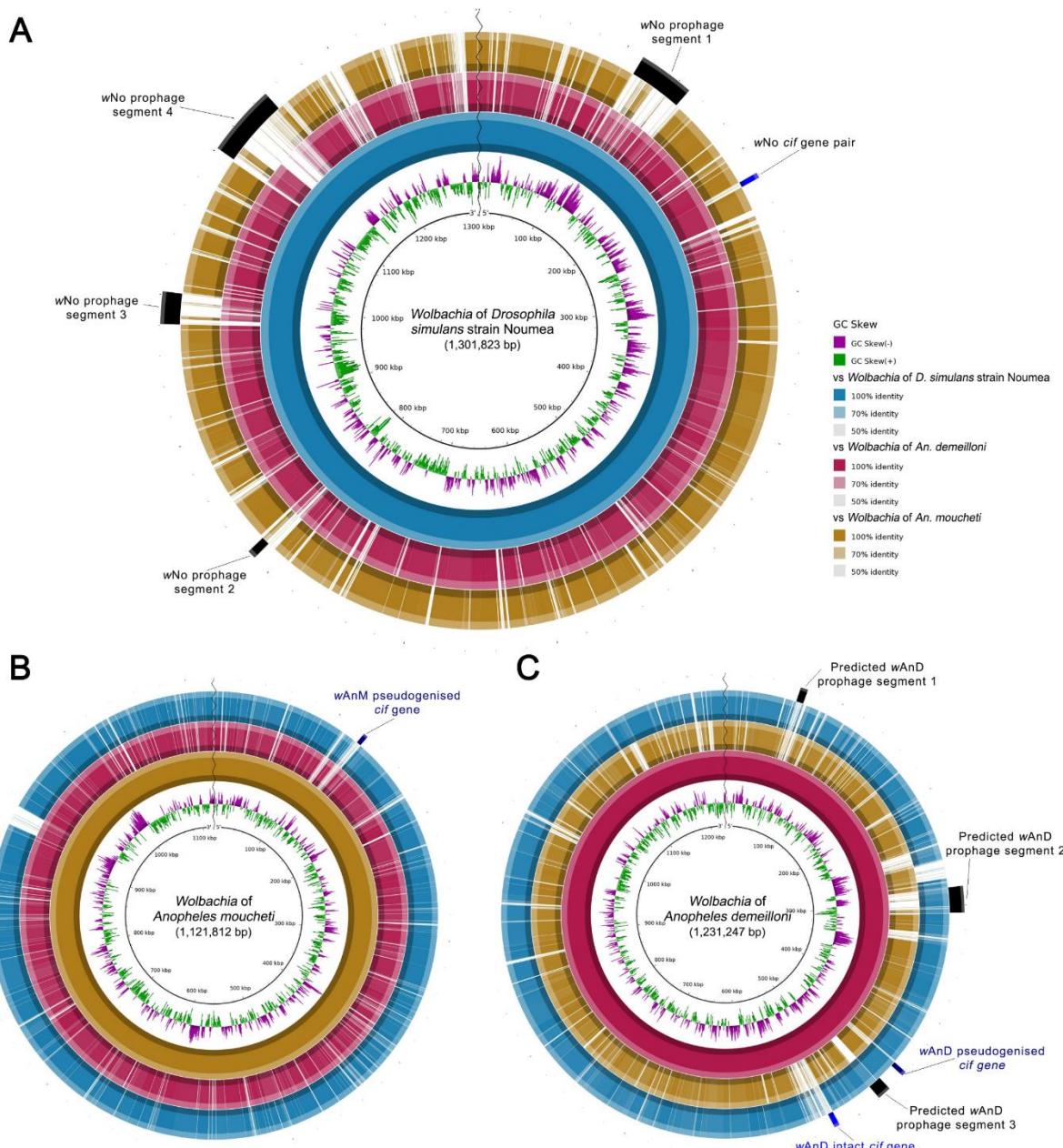
847
848 **Figure 5: Maximum likelihood phylogenetic tree of concatenated *cif* gene nucleotide alignments,**
849 **built following the methods of Martinez *et al.* [14] with 1,000 bootstrap replicates.** Only bootstrap
850 values of over 80% are shown. The five types' of concatenated *cif* genes are highlighted with different
851 colours, and their corresponding types annotated on them. Tree is midpoint-rooted. The two pairs of
852 *cif* genes of *wAnD* were previously noted to be members of Type I and Type III, which is confirmed by
853 this repeated analysis. The pair of *cif* genes in *wAnM* can be found in the well-supported Type II clade.

854


855 **Figure 1**



856


857

858 **Figure 2**

862 **Figure 4**

864 **Figure 5**

865

Tables

Strain	Host organism	Supergroup	Size	GC%	Total	Proteins	Pseudogenes	tRNA	rRNA	Other	Ankyrin	BUSCO Score
Name			(Mb)		genes				rRNA	proteins (out of 364)		
wAu	<i>Drosophila simulans</i>	A	1.27	35.22%	1,265	1,099	125	34	3	4	35	362 (99.5%)
wHa	<i>Drosophila simulans</i>	A	1.30	35.09%	1,242	1,110	91	34	3	4	36	362 (99.5%)
wMel	<i>Drosophila melanogaster</i>	A	1.27	35.23%	1,247	1,144	103	34	3	4	27	361 (99.2%)
wRi	<i>Drosophila simulans</i>	A	1.45	35.16%	1,340	1,245	95	35	3	4	33	360 (98.9%)
wAlbB	<i>Aedes albopictus</i>	B	1.49	34.50%	1,442	1,180	221	34	3	4	38	355 (97.5%)
wAnD	<i>Anopheles demeilloni</i>	B	1.23	33.58%	1,320	1,157	122	34	3	4	55	360 (98.9%)
wAnM	<i>Anopheles moucheti</i>	B	1.12	33.59%	1,203	1,082	80	34	3	4	37	360 (98.9%)
wMa	<i>Drosophila mauritiana</i>	B	1.27	34.00%	1,196	1,055	100	34	3	4	49	360 (98.9%)
wMau	<i>Drosophila mauritiana</i>	B	1.27	34.00%	1,194	1,054	99	34	3	4	49	361 (99.2%)

wMeg	<i>Chrysomya megacephala</i>	B	1.38	33.95%	1,268	1,116	111	34	3	4	52	363 (99.7%)
wNo	<i>Drosophila simulans</i>	B	1.30	34.01%	1,208	1,062	105	34	3	4	53	363 (99.7%)
wPip	<i>Culex quinquefasciatus</i>	B	1.48	34.19%	1,385	1,241	103	34	3	4	63	362 (99.5%)
wOo	<i>Onchocerca ochengi</i>	C	0.96	32.07%	733	645	47	34	3	4	2	346 (95.1%)
wOv	<i>Onchocerca volvulus</i>	C	0.96	32.07%	734	648	45	34	3	4	3	345 (94.8%)
wBm	<i>Brugia malayi</i>	D	1.08	34.18%	1,029	845	143	34	3	4	18	357 (98.1%)
wFol	<i>Folsomia candida</i>	E	1.80	34.35%	1,662	1,541	79	35	3	4	94	362 (99.5%)
wCle	<i>Cimex lectularius</i>	F	1.25	36.25%	1,238	1,023	174	34	3	4	42	356 (97.8%)

867 **Table 1:** Summary table of a selection of different near-complete *Wolbachia* genomes and their general genome properties. Note the genomes of wAnd
 868 and wAnM (black box highlight), the similar genome properties compared to other *Wolbachia* genomes, but their relatively lower protein-coding gene
 869 number when compared against *Wolbachia* strains of supergroups A and B. BUSCO scores were calculated using the Rickettsiales_odb10 lineage, created
 870 on 2020-03-06 with a marker gene list total of 364.

871

WOLB053_P_aegeria

wPip

wPipMol

WOLB1007_C_chinensis

WOLB1008_C_chinensis

wMeg

WOLB0958_T_uricae

WOLB0054_P_c-album

WOLB1166_Insecta

WOLB1009_D_coccus

wDacB

WOLB1012_L_trifoli

wAnD

wAnM

wNo

WOLB0077_D_mauritiana

WOLB0080_D_mauritiana

wMau

WOLB0078_D_mauritiana

wMa

WOLB0079_D_mauritiana

WOLB0044_D_citri

WOLB0045_D_citri

WOLB0047_D_citri

WOLB0049_D_citri

WOLB0048_D_citri

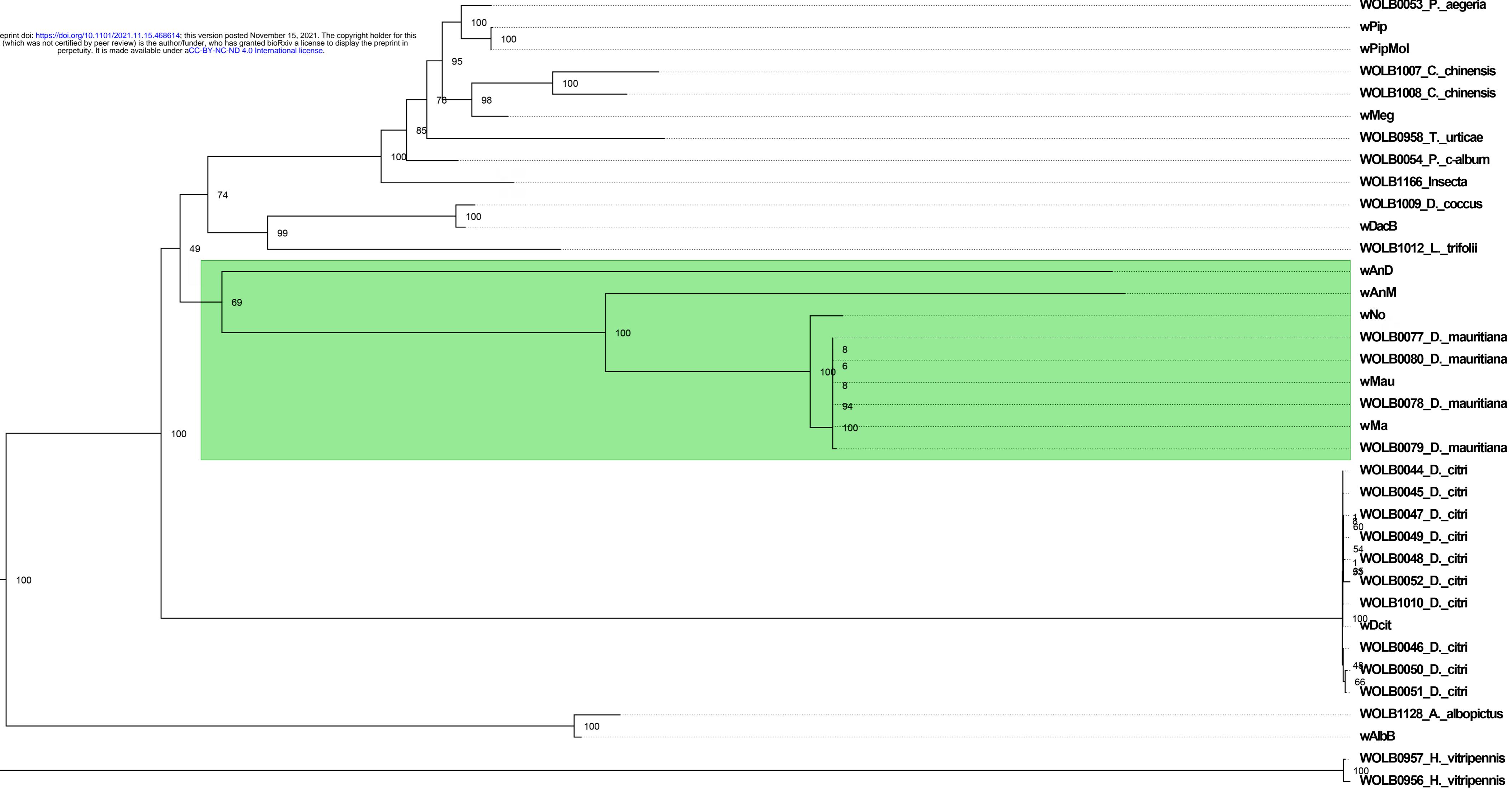
WOLB0052_D_citri

WOLB1010_D_citri

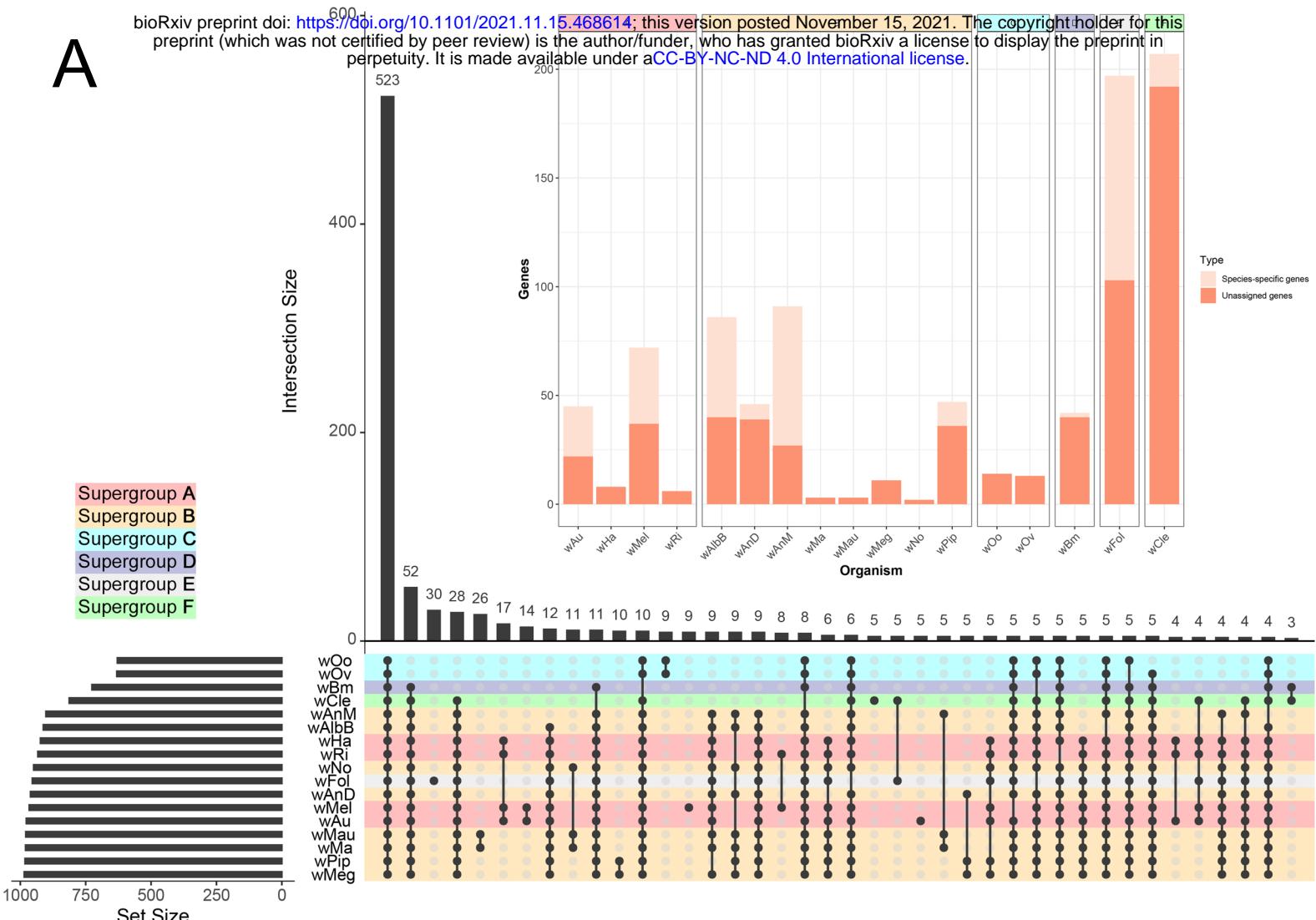
wDcit

WOLB0046_D_citri

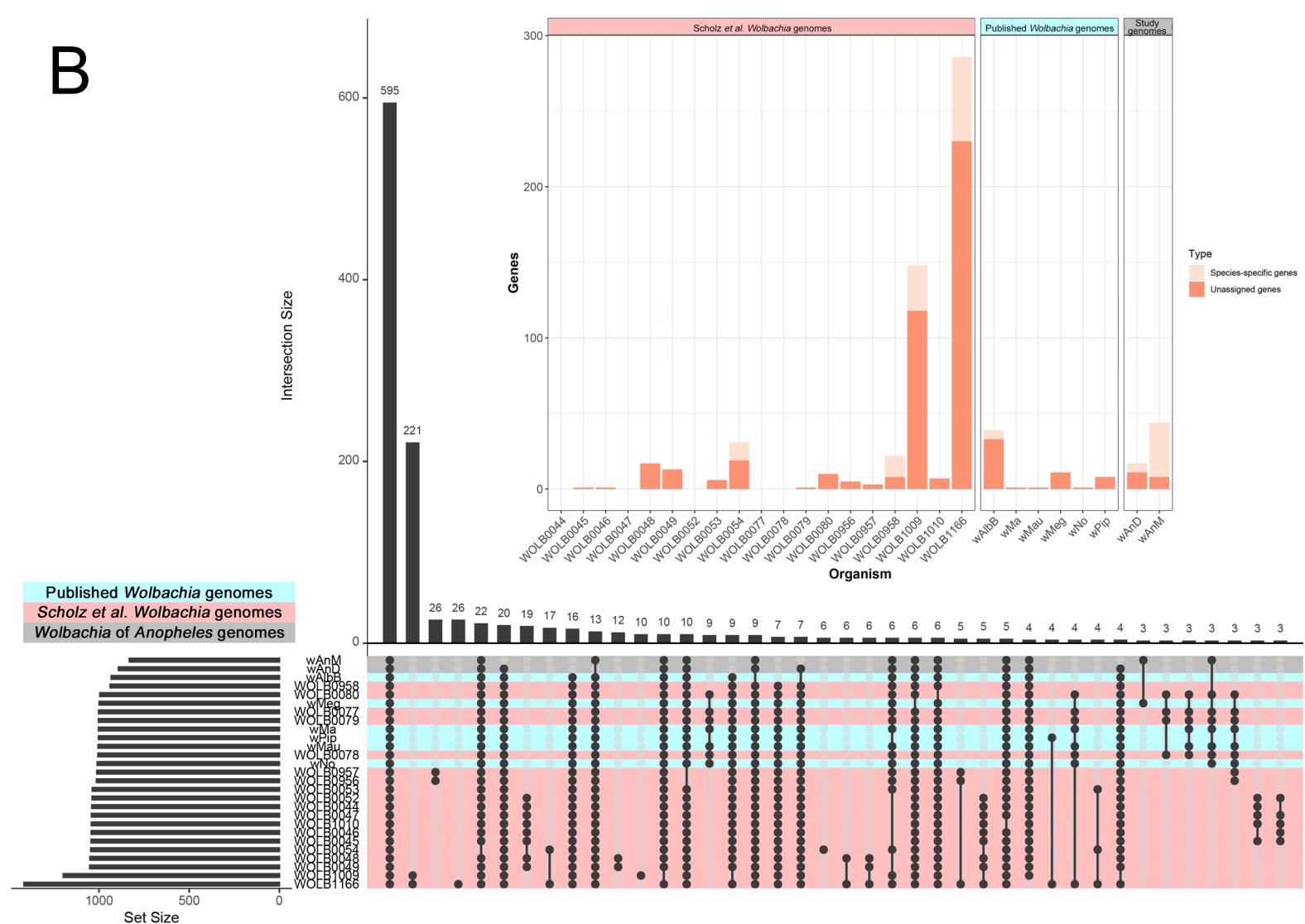
WOLB0050_D_citri

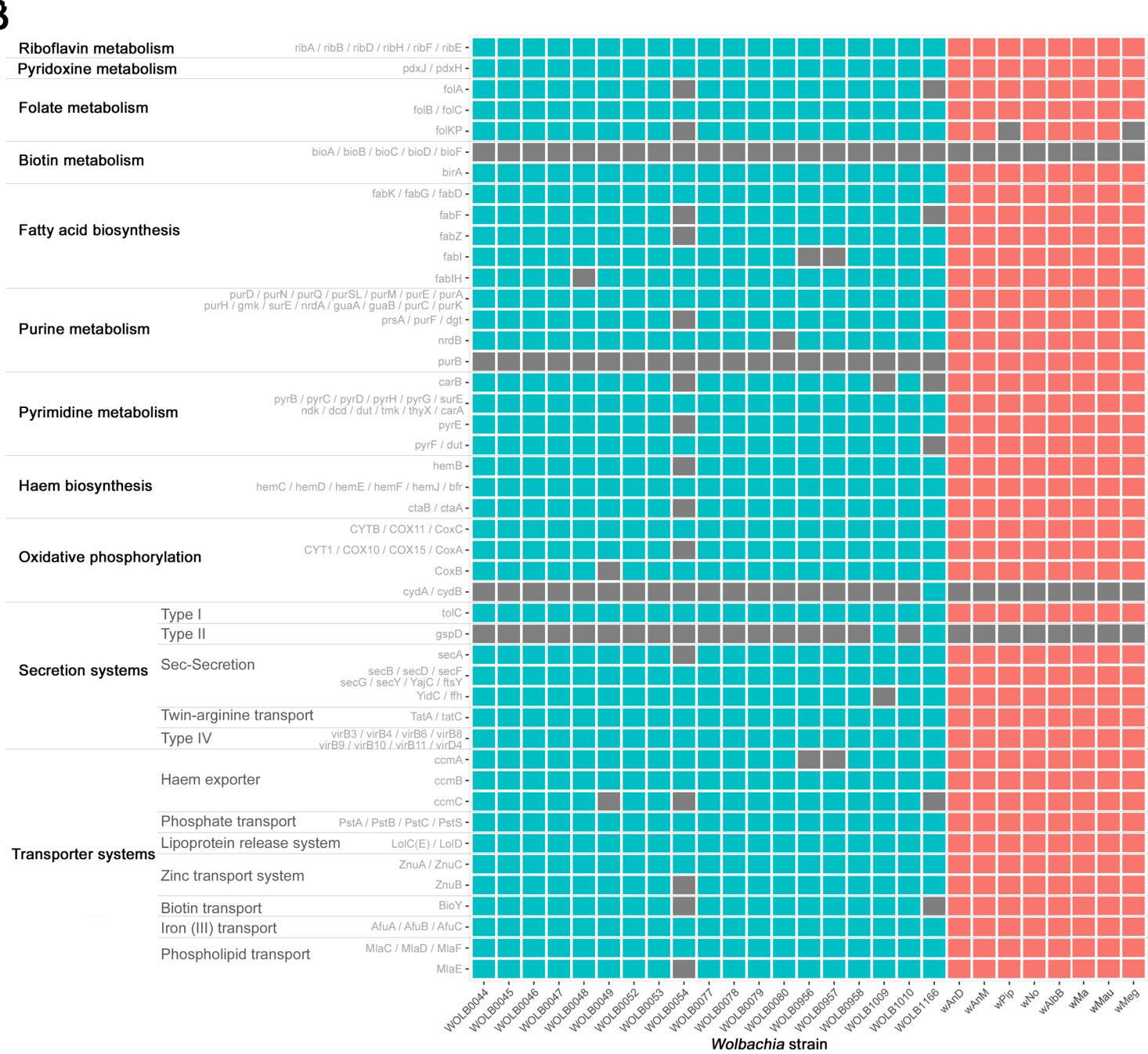
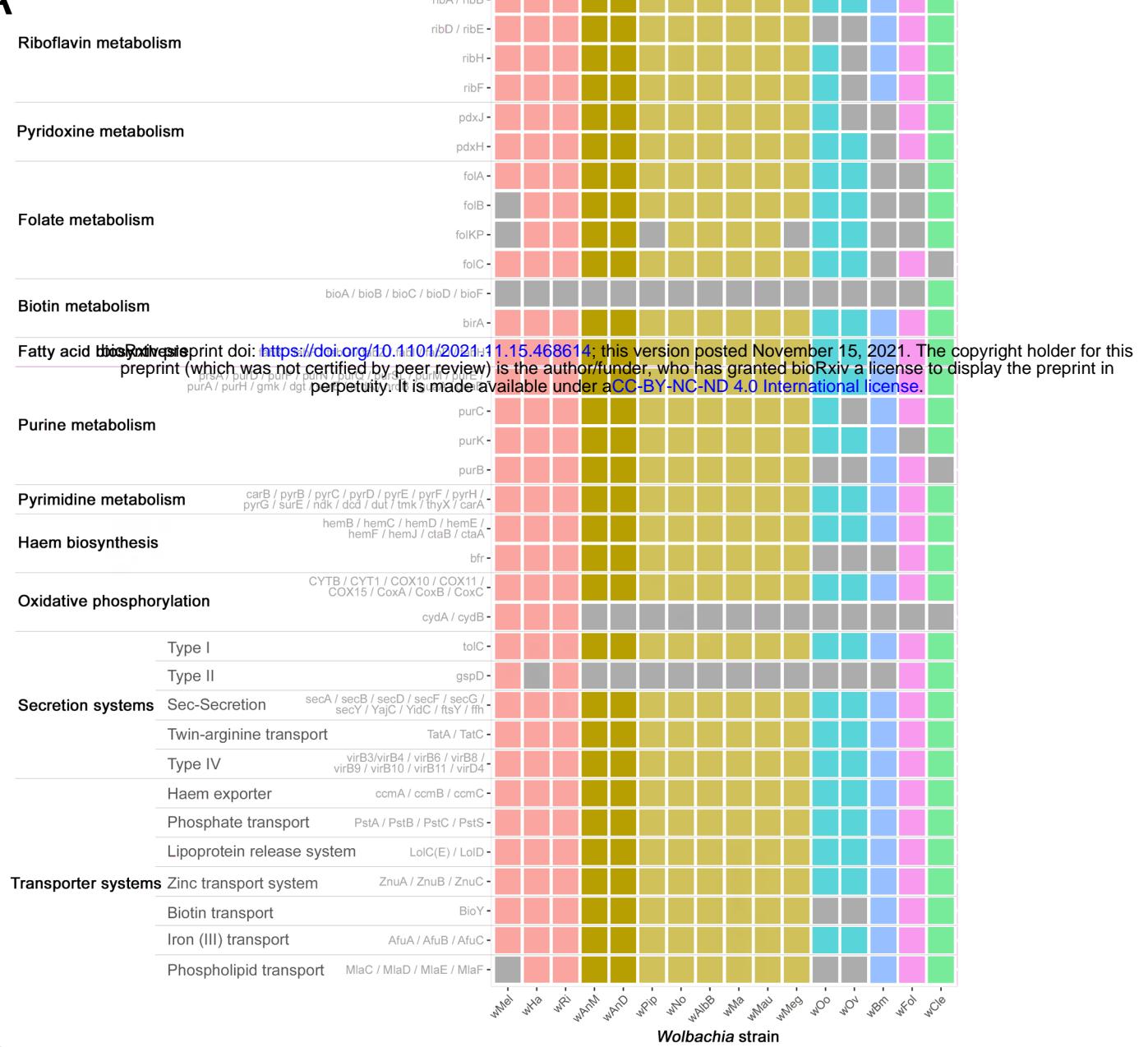

WOLB0051_D_citri

WOLB1128_A_albopictus

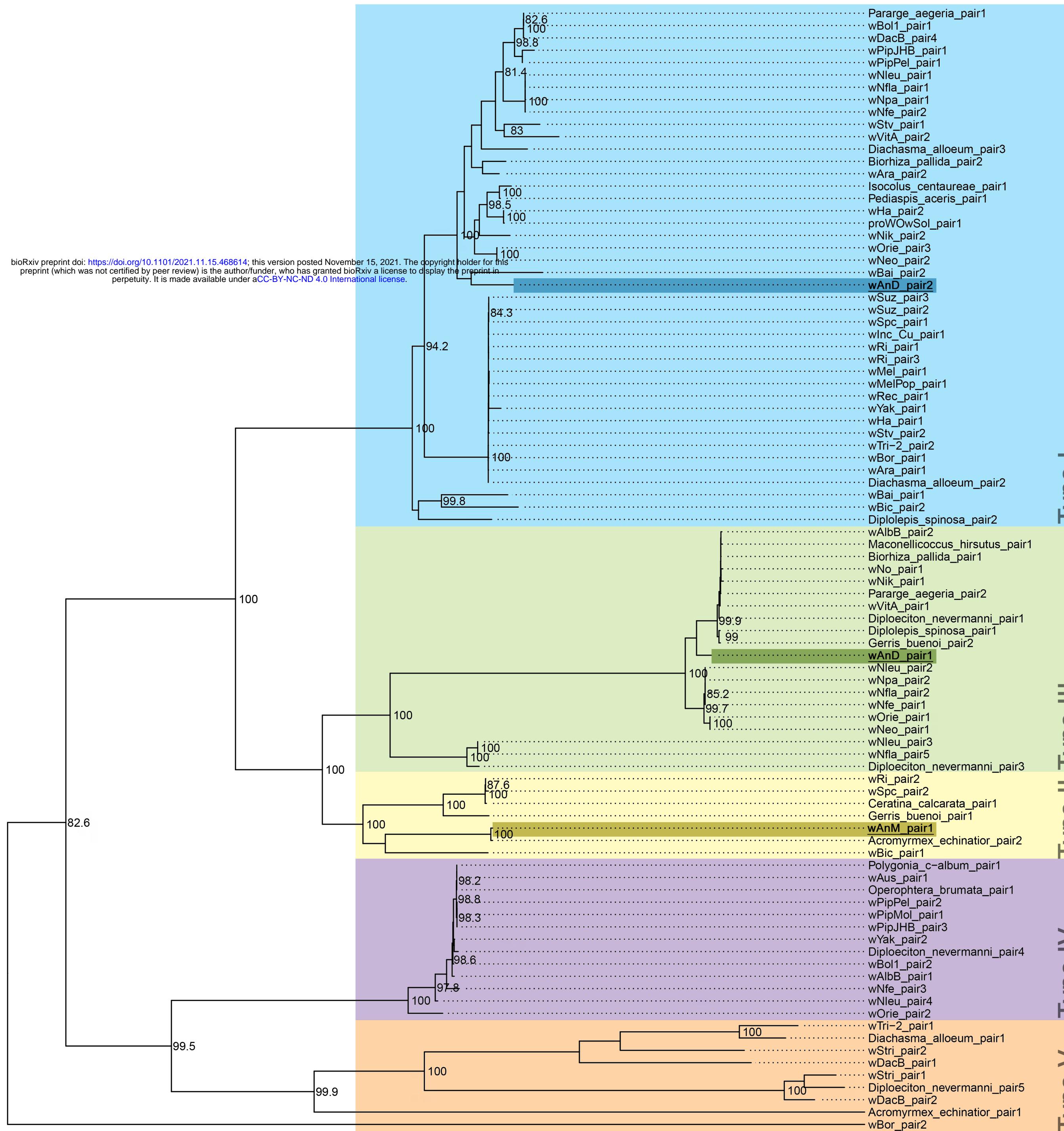

wAlbB

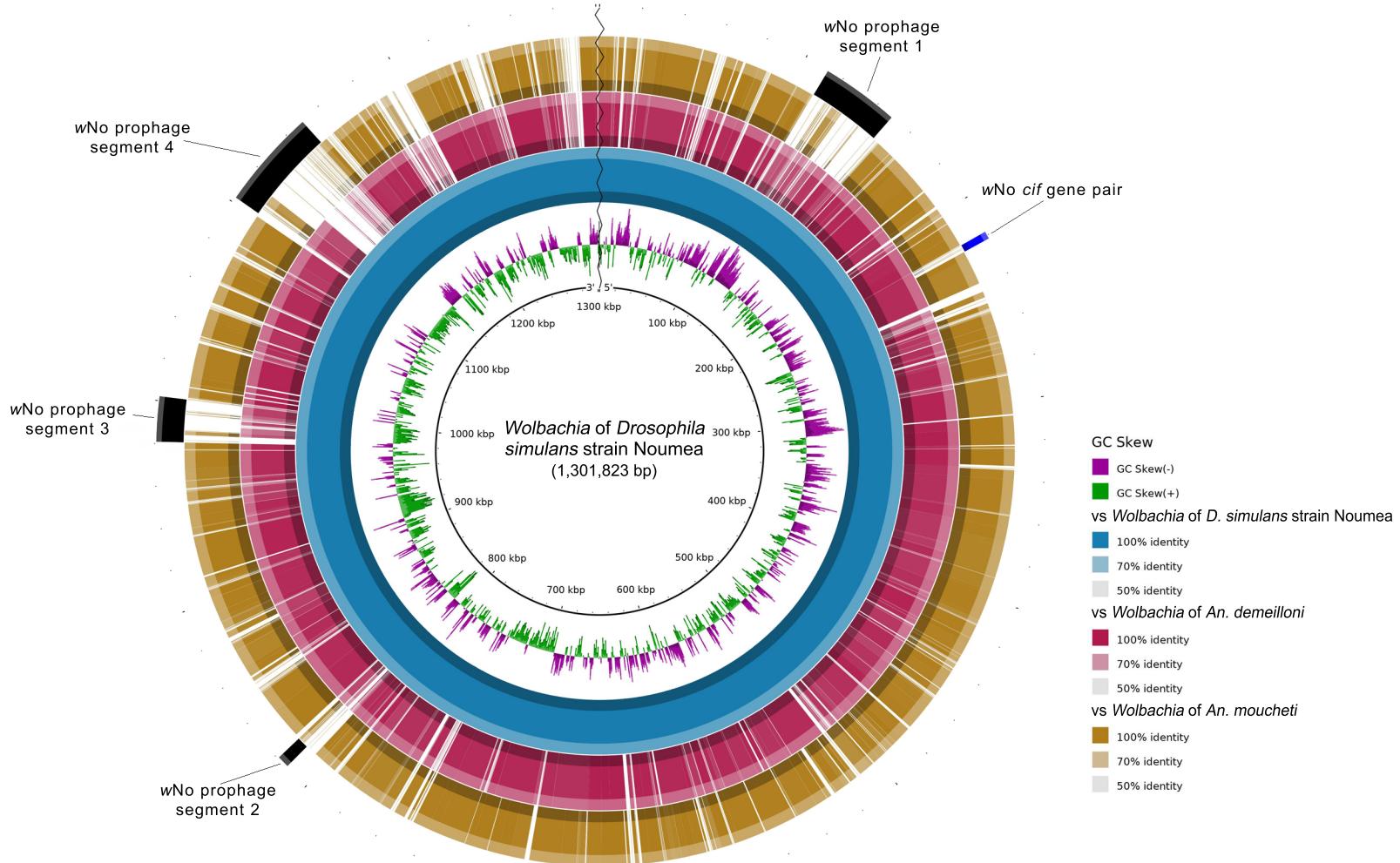
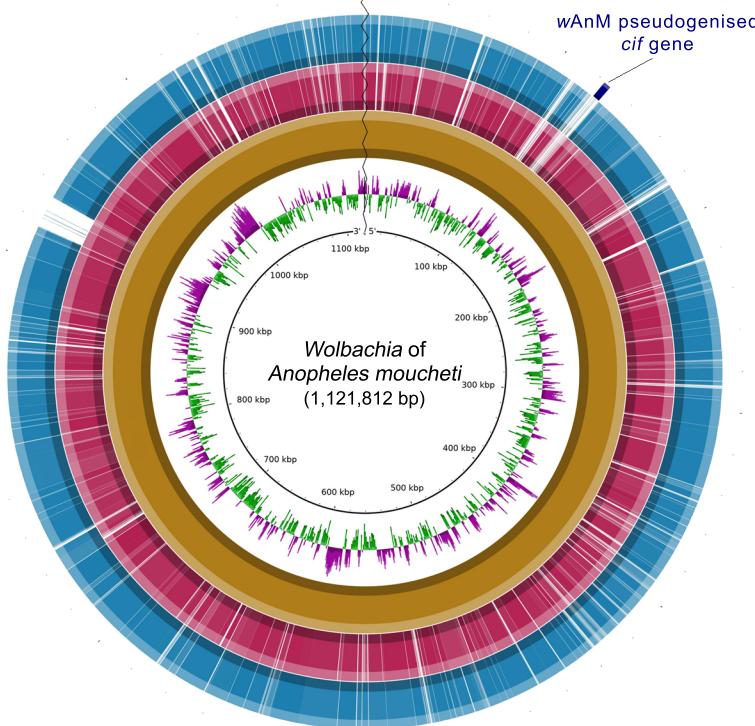
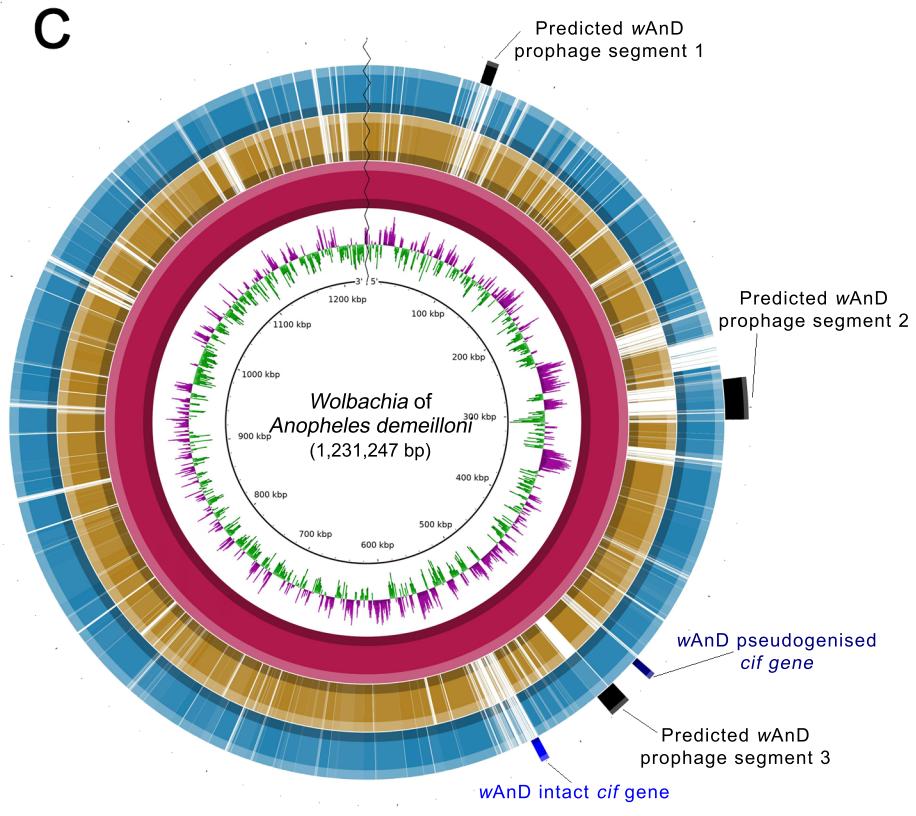
WOLB0957_H_vitripennis


WOLB0956_H_vitripennis

A






B

bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.15.468614>; this version posted November 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A**B****C**