

1 New neurons in old brains: A cautionary tale for the analysis of neurogenesis in post-mortem
2 tissue.

3

4

5 Dylan J. Terstege¹, Kwaku Addo-Osafo¹, G. Campbell Teskey¹, Jonathan R. Epp^{1*}

6 ¹Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of

7 Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.

8

9 *Corresponding Author

10 Dept. of Cell Biology & Anatomy

11 University of Calgary

12 HMRB 162, Health Sciences Centre

13 3330 Hospital Dr. NW

14 Calgary, AB

15 T2N 4N1

16 jonathan.epp1@ucalgary.ca

17

18 **Conflict of Interest Statement**

19 The authors declare no conflicts of interest.

20

21 **Ethics Statement:** Experiments were conducted in accordance with the policies and guidelines
22 of the Canadian Council on Animal Care Guidelines and were approved by the University of
23 Calgary Animal Care Committee

24

25 **Author contributions**

26 J.R.E. and G.C.T conceived and designed the experiments. D.J.T. and K.A. performed the
27 histological procedures. D.J.T. and J.R.E. conducted the analyses. D.J.T., J.R.E., K.A. and
28 G.C.T. wrote the paper.

29

30 **Data availability**

31 The data that support the findings of this study are available in the manuscript and available from
32 the corresponding author upon reasonable request.

33

34 **Acknowledgments:** Funding for this study was provided by an NSERC Discovery Grant
35 (RGPIN-2018-05135) to JRE and the Canadian Institutes for Health Research (MOP-130495) to
36 GCT. DJT received a fellowship from the Canadian Open Neuroscience Platform. KA received a
37 Queen Elizabeth II fellowship.

38 **Abstract (250)**

39 Adult neurogenesis has primarily been examined in two key regions in the mammalian brain, the
40 subgranular zone of the hippocampus and the subventricular zone. The proliferation and
41 integration of newly generated neurons has been observed widely in adult mammalian species
42 including the human hippocampus. Recent high-profile studies have suggested however, that this
43 process is considerably reduced in humans, occurring in children but declining rapidly and nearly
44 completely in the adult brain. In comparison, rodent studies also show age-related decline but a
45 greater degree of proliferation of new neurons in adult animals. Here, we examine whether
46 differences in tissue fixation, rather than biological difference in human versus rodent studies
47 might account for the diminished levels of neurogenesis sometimes observed in the human brain.
48 To do so we analyzed neurogenesis in the hippocampus of rats that were either perfusion-fixed
49 or the brains extracted and immersion-fixed at various post-mortem intervals. We observed an
50 interaction between animal age and the time delay between death and tissue fixation. While
51 similar levels of neurogenesis were observed in young rats regardless of fixation, older rats had
52 significantly fewer labeled neurons when fixation was not immediate. Furthermore, the
53 morphological detail of the labeled neurons was significantly reduced in the delayed fixation
54 conditions at all ages. This study highlights critical concerns that must be considered when using
55 post-mortem tissue to quantify adult neurogenesis.

56
57

58 Adult neurogenesis occurs in at least two regions of the mammalian brain, the dentate gyrus of
59 the hippocampus (HPC) and the subventricular zone. Among mammalian species, neurogenesis
60 has been most widely studied in rodents. There is a well-documented age-dependent decline in
61 adult neurogenesis in rodents but, the presence of new neurons remains detectable throughout
62 adult life. With few exceptions[1], adult neurogenesis has been observed across mammalian
63 species[2,3] suggesting that it is highly conserved. However, in humans, there is some
64 disagreement over the extent and timecourse of postnatal neurogenesis.

65

66 Adult neurogenesis in the human brain was first observed in cancer patients administered
67 Bromodeoxyuridine (BrdU) to track tumor growth[4]. BrdU, an exogenous thymidine analogue
68 is incorporated into dividing cells during DNA synthesis. Confirmation of neuronal phenotype is
69 then provided via double immunohistochemistry with neuron specific markers such as NeuN.
70 Post-mortem analysis of brains from these individuals indicated continued neurogenesis in
71 adulthood as determined by the presence of BrdU/NeuN double labeled cells in the HPC.
72 Numerous studies have confirmed these findings using several methods to identify new neurons
73 (for review see[5]). The majority of studies of neurogenesis in humans used
74 immunohistochemical labeling of endogenous markers of proliferation[6,7] such as Ki67, and/or
75 immature neurons[8]. The most commonly used marker for neurogenesis, a protein called
76 doublecortin (DCX), is highly enriched in immature neurons[9]. In most cases, adult generated
77 neurons have been identified across the lifespan from 0 – 100 years of age[10] with an age
78 related decrease similar to other species[10,11]. The methods used to identify new neurons in the
79 human brain have some caveats such as potential damage/repair induced uptake of BrdU[12].
80 However, the cumulative evidence from multiple approaches strongly suggests the presence of

81 adult neurogenesis in the human HPC. Despite this, several recent and controversial papers
82 reported the absence of adult generated neurons in humans although they did observe new
83 neurons in juveniles [13–15]. These studies concluded that if neurogenesis occurs at all in the
84 adult human brain it is a very rare event. With respect to the many other studies that documented
85 neurogenesis in the adult human HPC, it was suggested that these positive findings may actually
86 represent non-specific or non-neuronal labeling rather than adult neurogenesis[14].

87

88 One potential concern when analyzing adult neurogenesis in humans relates to the collection
89 of post-mortem tissue and the degree to which the tissue degrades prior to complete fixation.
90 Nonhuman animal studies allow for highly controlled tissue collection that normally involves
91 perfusion fixation, during which fixative is introduced through the vasculature at the time of
92 sacrifice. As a result, the interior of the brain is quickly exposed to the fixative which prevents
93 autolysis and allows for relatively rapid, and consistent fixation. In most cases, human tissue is
94 collected post-mortem and the time-window between death and tissue collection is highly
95 variable. The longer it takes to initiate fixation the greater the degree of tissue/protein
96 degradation that may occur[16–18]. In addition, penetration of the fixative (and time for
97 subsequent protein cross-linking) when an immersion fixation technique is employed, is not
98 instantaneous. Depending on tissue size it can take hours to days for the interior aspects of a
99 tissue block to be exposed and fixed by the commonly used aldehyde fixatives even if the post-
100 mortem tissue was collected rapidly[19]. Differences in fixation methods present a challenge in
101 comparing animal studies of adult neurogenesis with human studies. The goal of this study was
102 to determine in rats the effects of post-mortem delays in tissue collection, on the ability to detect
103 adult hippocampal neurogenesis.

104 We examined brains from 4-month or 9-month-old male adult Sprague Dawley rats
105 (Charles River Laboratories, Kingston, NY, USA) that were transcardially perfused to age
106 matched rats that were killed, and their brains collected at 0-, 6-, or 12-hours post-mortem. Rats
107 were chosen because their brain volume (~mm³) is similar to the minimum human tissue block
108 sizes used previously[14]. Rats in the perfused group were deeply anesthetized and perfused with
109 60 ml of PBS followed by 120 ml of 4% formaldehyde. The brains were extracted, and
110 immersion fixed in the same fixative for 48 hours. For the delay fixation conditions, rats were
111 given a lethal overdose of isoflurane (5% ISO, until death) and the brains were extracted
112 following a delay of either 6 or 12 hours (Fig. 1a). Brains were placed in 4% formaldehyde for
113 48 hours. After fixation brains were transferred to 30% sucrose solution and were sectioned on a
114 Cryostat (Leica CM1950) at a thickness of 40 µm. Tissue series (1/12) were stored at -20 °C in
115 antifreeze.

116

117 DCX labeling was performed as previously described[20] using a 1:250 dilution of primary
118 antibody (Cell Signalling 4601S Rabbit anti-DCX) followed by a 1:500 dilution of donkey anti-
119 rabbit Alexa Fluor 488 labeled secondary antibody (Jackson Immuno Research Laboratories
120 AB_2338072). Quantification of labeled cells was performed on an Olympus BX63 fluorescent
121 microscope at 60x magnification. Labeled cells were counted through the entire extent of the
122 dentate gyrus and were included only if the cell body could be clearly identified and was located
123 in the granule cell layer or subgranular zone. Areas were measured by tracing the DAPI labeled
124 outline of the granule cell layer. Slides were coded so that quantification was performed blind to
125 treatment condition.

126

127 The optical density of DCX labelling in the granule cell layer and subgranular zone was
128 performed on an Olympus FV3000 confocal microscope using a 10x objective (0.4 NA). Three
129 images, each from different tissue sections, were collected at a z-spacing of 3.96 μm .
130 Illumination settings and z-range were consistent across all images. Background mean grey pixel
131 intensity values of the z-projected DCX images were recorded from the outer molecular cell
132 layer using ImageJ. These values were subtracted from mean pixel intensity recorded in the
133 upper blade of the dentate gyrus.

134

135 We predicted that post-mortem protein degradation might influence the detection of adult
136 generated neurons and, due to a higher level of protein expression in younger brains, might have
137 a greater influence on detection in older brains. Our results confirm this prediction (Fig. 1b). We
138 found a significant age by fixation interaction effect. Post-hoc analysis of the data using Tukey's
139 tests indicated the expected reduction in DCX between 4 months and 9 months in perfused rats.
140 Importantly, there was a significant impact of the post-mortem interval on our ability to detect
141 DCX. At the shortest delay of 6 hours there was no significant difference between perfused and
142 non-perfused 4-month-old rats. However, in 9-month-old rats there was a significant decrease in
143 DCX in non-perfused rats. At 12 hours there were significant decreases in DCX in both 4- and 9-
144 month-old rats but, overall, the decrease was considerably greater in the older rats.

145

146 We also examined the appearance of DCX labeled cells in each condition (Fig. 2). Perfusion
147 fixation resulted in labeled cells with clear morphology and consistent labeling, while the
148 delayed fixation resulted in poor morphological detail. Dendrites, normally visible following
149 perfusion were less visible, and the cytoplasmic labeling often appeared weak and speckled.

150 Thus, identifying the new neurons based on the morphology of the labeling itself becomes
151 increasingly difficult as fixation is compromised. This was further supported by decreased
152 optical density of DCX staining in the combined granule cell layer and subgranular zone of the
153 dentate gyrus (Fig. 1c).

154

155 In conclusion, our results demonstrate that age related changes in adult neurogenesis in post-
156 mortem collected tissue must be interpreted with caution as there is potential for
157 misinterpretation of decreased or absent neurogenesis in older subjects. This is especially
158 important if younger tissue is to be used as a positive control. We suspect that the interaction
159 between age and fixation is likely driven by lower levels of DCX protein expression in older
160 animals that are detectable with optimized fixation but more rapidly fall below detection limits as
161 the protein begins to degrade post-mortem. This may occur due to protein loss or conformational
162 changes that prevent antibody binding. The extent to which such an effect may occur with other
163 proteins is unclear but should be considered in future studies. Our current approach may provide
164 a strategy to determine age-related stability of different proteins prior to post-mortem analysis.

165
166
167
168
169
170
171
172
173
174
175
176
177

178 **References:**

179 1. Patzke N, Spoerter MA, Karlsson KÆ, Bertelsen MF, Haagensen M, Chawana R, et al. In
180 contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack
181 adult neurogenesis. *Brain Struct Funct.* 2015;220:361–83.

182 2. Epp JR, Barker JM, Galea LAM. Running wild: neurogenesis in the hippocampus across the
183 lifespan in wild and laboratory-bred Norway rats. *Hippocampus.* Wiley; 2009;19:1040–9.

184 3. Charvet CJ, Finlay BL. Comparing adult hippocampal neurogenesis across species:
185 Translating time to predict the tempo in humans. *Front Neurosci.* 2018;12:706.

186 4. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al.
187 Neurogenesis in the adult human hippocampus. *Nat Med.* Springer Science and Business Media
188 LLC; 1998;4:1313–7.

189 5. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, et al. Human adult
190 neurogenesis: Evidence and remaining questions. *Cell Stem Cell.* Elsevier BV; 2018;23:25–30.

191 6. Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL. Evidence for
192 reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. *Aging*
193 *Cell.* Wiley; 2017;16:1195–9.

194 7. Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, et al. Human hippocampal
195 neurogenesis persists in aged adults and Alzheimer’s disease patients. *Cell Stem Cell.* Elsevier
196 BV; 2019;24:974-982.e3.

197 8. Epp JR, Beasley CL, Galea LA. Increased hippocampal neurogenesis and p21 expression in
198 depression: dependent on antidepressants, sex, age, and antipsychotic exposure.

199 *Neuropsychopharmacology*. Springer Science and Business Media LLC; 2013;38:2297–306.

200 9. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al.
201 Doublecortin expression levels in adult brain reflect neurogenesis. *Eur J Neurosci*. Wiley;
202 2005;21:1–14.

203 10. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, et al. Murine features of
204 neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. *PLoS One*.
205 Public Library of Science (PLoS); 2010;5:e8809.

206 11. Ben Abdallah NM-B, Slomianka L, Vyssotski AL, Lipp H-P. Early age-related changes in
207 adult hippocampal neurogenesis in C57 mice. *Neurobiol Aging*. United States; 2008;31:151–61.

208 12. Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls,
209 limitations, and validation. *Brain Res Rev*. Elsevier BV; 2007;53:198–214.

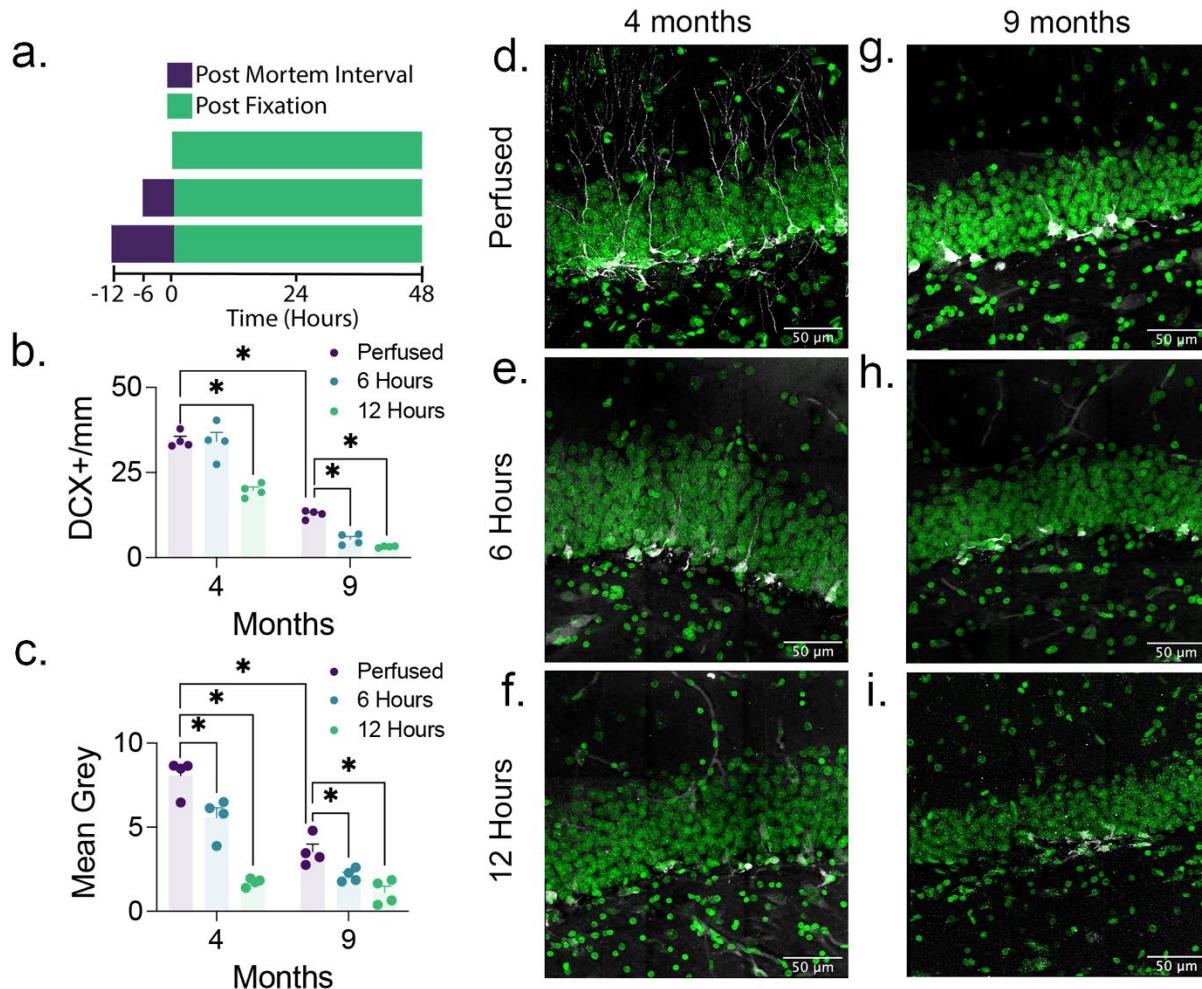
210 13. Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis
211 across the ages: An immunohistochemical study. *Neuropathol Appl Neurobiol*. 2016;42:621–38.

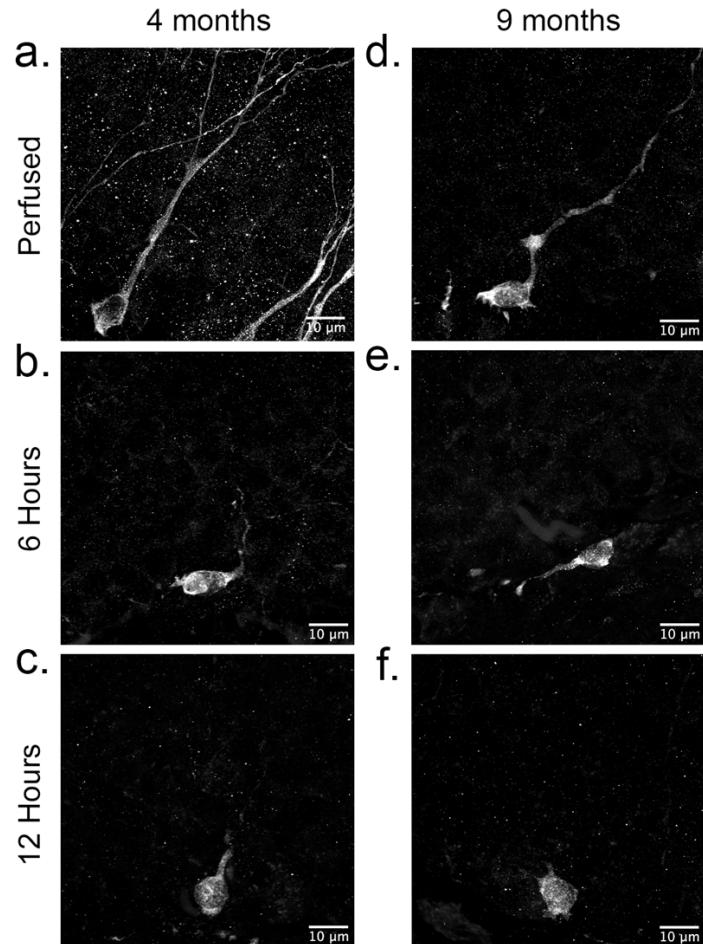
212 14. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human
213 hippocampal neurogenesis drops sharply in children to undetectable levels in adults. *Nature*.
214 Springer Science and Business Media LLC; 2018;555:377–81.

215 15. Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, et al. Positive
216 controls in adults and children support that very few, if any, new neurons are born in the adult
217 human hippocampus. *J Neurosci. Society for Neuroscience*; 2021;41:2554–65.

218 16. Fountoulakis M, Hardmeier R, Höger H, Lubec G. Postmortem changes in the level of brain
219 proteins. *Exp Neurol. Elsevier BV*; 2001;167:86–94.

220 17. Bryant BH, Boekelheide K. Time-dependent changes in post-mortem testis histopathology in
221 the rat. *Toxicol Pathol. SAGE Publications*; 2007;35:665–71.


222 18. Lavenex P, Lavenex PB, Bennett JL, Amaral DG. Postmortem changes in the
223 neuroanatomical characteristics of the primate brain: hippocampal formation. *J Comp Neurol.*
224 Wiley; 2009;512:27–51.


225 19. Hewlett BR. Penetration rates of formaldehyde. *Micros Today. Cambridge University Press*
226 (CUP); 2002;10:30–1.

227 20. Scott GA, Terstege DJ, Roebuck AJ, Gorzo KA, Vu AP, Howland JG, et al. Adult
228 neurogenesis mediates forgetting of multiple types of memory in the rat. *Mol Brain*. 2021;14:97.

229
230

231 **FIGURES:**

242

243 **Figure 2 | Dendritic morphology in doublecortin-labelled neurons is reduced with increased**
244 **post-mortem time.** Representative images of doublecortin in 4- (a-c) and 9-month-old (d-f) rats
245 with post-mortem intervals of 0 (a,d), 6 (b,e), and 12 (c,f) hours prior to fixation.