

1 **FRONT MATTER**

3 **Title**

4 Cortical-subcortical structural connections support transcranial magnetic stimulation engagement
5 of the amygdala

7 **Short Title**

8 A pathway for amygdala TMS neuromodulation

9 **Authors**

11 Valerie J. Sydnor^{1,2}, Matthew Cieslak^{1,2}, Romain Duprat³, Joseph Deluisi³, Matthew W.
12 Flounders³, Hannah Long³, Morgan Scully³, Nicholas L. Balderston³, Yvette I. Sheline³, Dani S.
13 Bassett^{2,4-8}, Theodore D. Satterthwaite^{1,2,9}, Desmond J. Oathes^{3*}

14

15 **Affiliations**

16 ¹ Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of
17 Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

18 ² Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania,
19 Philadelphia, PA, 19104, USA.

20 ³ Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry,
21 Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

22 ⁴ Department of Bioengineering, School of Engineering & Applied Science, University of
23 Pennsylvania, Philadelphia, PA, 19104, USA.

24 ⁵ Department of Electrical & Systems Engineering, School of Engineering & Applied Science,
25 University of Pennsylvania, Philadelphia, PA, 19104, USA.

26 ⁶ Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania,
27 Philadelphia, PA, 19104, USA.

28 ⁷ Department of Neurology, Perelman School of Medicine, University of Pennsylvania,
29 Philadelphia, PA, 19104, USA.

30 ⁸ Santa Fe Institute, Santa Fe, NM, 87501, USA.

31 ⁹ Center for Biomedical Image Computing and Analytics, University of Pennsylvania,
32 Philadelphia, PA, 19104, USA.

33 * Corresponding author: oathes@pennmedicine.upenn.edu

34

35 **Abstract**

36 The amygdala processes valenced stimuli, influences affective states, and exhibits aberrant
37 activity across anxiety disorders, depression, and PTSD. Interventions that modulate amygdala
38 activity hold promise for treating transdiagnostic affective symptoms. We investigated ($N=45$)
39 whether transcranial magnetic stimulation (TMS) elicits indirect changes in amygdala activity
40 when applied to ventrolateral prefrontal cortex (vlPFC), a region important for affect regulation.
41 Harnessing in-scanner interleaved TMS/functional MRI (fMRI), we reveal that vlPFC
42 neurostimulation evoked acute, dose-dependent modulations of amygdala fMRI BOLD signal.
43 Larger TMS-evoked changes in amygdala fMRI signal were associated with higher fiber density
44 in a vlPFC-amygdala white matter pathway, suggesting this pathway facilitated stimulation-
45 induced communication between cortex and subcortex. This work provides evidence of amygdala
46 engagement by TMS, highlighting stimulation of vlPFC-amygdala circuits as a candidate
47 treatment for affective psychopathology. More broadly, it indicates that targeting cortical-
48 subcortical connections may enhance the impact of TMS on subcortical neural activity and, by
49 extension, subcortex-subserved behaviors.

50

51 **Teaser**

52 Individualized, connectivity-guided transcranial magnetic stimulation modulates the amygdala,
53 demonstrating therapeutic potential.

54

55 **MAIN TEXT**

56

57 **Introduction**

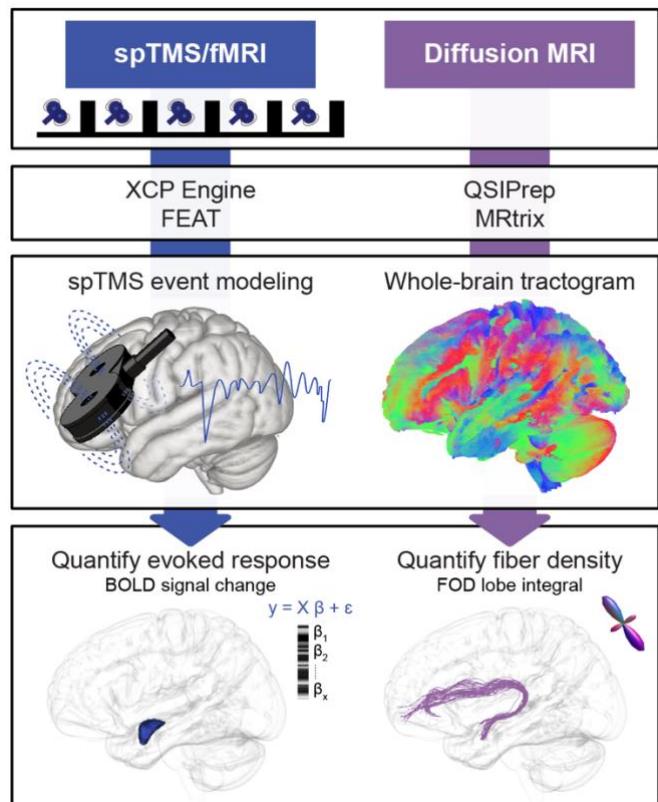
58 The amygdala is a critical neural structure for determining an individual's physiological,
59 emotional, and behavioral responses to affective stimuli. This medial temporal subcortical brain
60 region assigns valence to rewards and threats, facilitates appetitive and aversive conditioning, and
61 influences positive and negative internal affective states as well as associated behaviors (1–4).
62 Conscious recognition and regulation of amygdala-linked affective states recruits the prefrontal
63 cortex (PFC), including ventrolateral prefrontal (vLPFC) areas subserving voluntary emotional
64 control and affect inhibition (5–11). Aberrant activity within the amygdala and the vLPFC
65 contributes to symptoms of affective psychopathology observed across many psychiatric
66 diagnoses (11–14). Indeed, a meta-analysis of task functional MRI data collected from over
67 11,000 individuals revealed that during emotional processing, patients with mood and anxiety
68 disorders consistently exhibit amygdala hyperactivity and vLPFC hypoactivity—classifying these
69 as two of the most striking and reliable neural phenotypes associated with emotional dysfunction
70 (11). Treatments capable of modulating amygdala activity, especially those that simultaneously
71 engage the vLPFC, therefore hold promise for mitigating transdiagnostic affective
72 psychopathology.

73 Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation tool that
74 produces changes in neural firing through electromagnetic induction, and that may be capable of
75 eliciting indirect changes in amygdala activity through direct stimulation of functionally or
76 structurally connected cortical locations. Clinically, repetitive TMS administered to the
77 dorsolateral PFC is FDA cleared as a treatment for medication-resistant major depression and
78 obsessive compulsive disorder, and has been studied in clinical trials for post-traumatic stress
79 disorder and anxiety disorders (15, 16)—all disorders characterized by amygdala hyperactivity
80 (11, 13, 14, 17). Still, despite demonstrated efficacy for many patients with affective symptoms,
81 clinical responses to TMS are variable and not all individuals experience symptom remission.
82 Recent work suggests that the efficacy of prefrontal TMS for affective and post-traumatic stress
83 disorders may depend in part upon the strength of PFC-amygdala functional connections (18–21),
84 further suggesting that efficacy may vary according to TMS's ability to alter amygdala
85 functioning. However, to date there is limited direct evidence that prefrontal TMS can specifically
86 modulate amygdala activity (19, 22, 23). Furthermore, the extent to which TMS applied to the
87 vLPFC is capable of evoking immediate, reliable changes in amygdala activity remains sparsely
88 investigated, despite the fact that this psychopathology-linked cortical territory is hypothesized to
89 exert top-down control over amygdala neuronal firing (6, 10).

90 TMS alters neural activity by depolarizing somas and large diameter axons, generating
91 action potentials (24). Although TMS can only directly depolarize neurons at the cortical surface
92 beneath the device's magnetic coil (25, 26), empirical evidence suggests that TMS can
93 additionally elicit indirect activity changes in “downstream” regions. Perhaps the strongest
94 evidence of this phenomenon comes from motor-evoked potentials: hand muscle electrical
95 potentials recorded in response to TMS of the contralateral motor cortex. These potentials
96 establish that TMS-induced action potentials can propagate along multi-synaptic axonal pathways
97 to elicit activity distant from the cortical site of stimulation (24). Additional evidence is provided
98 by studies combining TMS with invasive electrode recordings (27) or non-invasive functional
99 MRI (fMRI) recordings (28) that have revealed how TMS-induced activity can propagate
100 throughout the brain in a pattern predicted by the stimulated cortex's structural connectome (29).

101 Combining TMS with fMRI represents a powerful experimental manipulation method, as
102 single pulses of TMS (spTMS) can be delivered inside the MRI scanner interleaved with fMRI
103 functional readouts (spTMS/fMRI). Accordingly, spTMS/fMRI allows one to alter neural activity
104 underneath the TMS coil with stimulation probes while quantitatively measuring effects in the
105 rest of the brain, including in subcortex, constituting a causal “probe-and-measure” approach (28,
106 30). The success of this approach is underpinned by compatibility between TMS-elicited
107 physiological responses and fMRI acquisition properties. Specifically, TMS-elicited changes in
108 neural activity are reliably captured by hemodynamic changes (25), which drive the fMRI blood
109 oxygen level-dependent (BOLD) signal. The acute fMRI BOLD response to TMS takes several
110 seconds to peak, thus a time delay can be incorporated prior to the fMRI readout to prevent
111 compromising functional recordings. Moreover, single pulses of TMS briefly evoke neural
112 activity without exerting cumulative effects on firing (30), enabling the averaging of single trial
113 fMRI responses to TMS.

114 In a recent pilot study, our group employed spTMS/fMRI while stimulating a spatially
115 diverse range of lateral PFC sites, and demonstrated feasibility for TMS to evoke downstream
116 changes in the fMRI BOLD signal in the subgenual anterior cingulate cortex and the amygdala
117 (23). Critically, in this pilot we observed that stimulation of sites located within or near the vLPFC
118 produced the largest decreases in amygdala BOLD signal. Rhesus macaque tract-tracing work has
119 shown that while the medial PFC is extensively connected to the amygdala (31, 32), the majority
120 of lateral PFC areas are only lightly connected—with the exception of the vLPFC (7). The vLPFC
121 sends dense, monosynaptic inputs to the amygdala, and thus is the only PFC region with a
122 substantial (as opposed to sparse) amygdala projection that is directly accessible to TMS (7, 10).
123 These data support the hypothesis that vLPFC TMS may be particularly capable of modulating
124 amygdala activity due to stimulation-induced action potential propagation along vLPFC-to-
125 amygdala white matter connections. Yet, vLPFC-amygdala structural connections have been
126 scarcely studied in humans (33). It therefore remains unknown whether they could comprise one
127 key pathway for cortical-amygdala signal propagation during neuromodulation.


128 The current study endeavored to causally interrogate whether TMS can exert
129 neuromodulatory effects on the amygdala through the engagement of cortical-subcortical circuits.
130 To accomplish this, we first employed a stimulation-based probe-and-measure approach to
131 validate our preliminary finding that stimulation applied near the vLPFC (“probe”) elicits an acute
132 functional response in the amygdala (“measure”). We next sought to elucidate the structural
133 scaffolding that could allow cortical stimulation to generate a targeted downstream amygdala
134 response. We expected to identify a vLPFC-to-amygdala white matter pathway that is homologous
135 between human and non-human primates; moreover, we hypothesized that pathway properties
136 influencing signal conduction would impact the degree to which TMS affected amygdala activity.
137 The results of our evaluation can be harnessed to guide future TMS protocols that aim to
138 modulate cortical-subcortical circuits involved in affective psychopathology, and are thus readily
139 translatable to TMS clinical trials.

140

141 Results

142 We leveraged a unique, multimodal dataset to causally probe amygdala fMRI responses to
143 cortical stimulation, and to retrospectively investigate whether the magnitude of response was
144 associated with structural properties of cortical-amygdala white matter connections (Fig. 1). This
145 dataset consisted of resting fMRI, structural and diffusion MRI, and in-scanner interleaved
146 spTMS/fMRI data collected from 45 healthy individuals ages 18-55 years (mean age 28 ± 8.6
147 years; 27 female). This sample of participants was non-overlapping with our pilot TMS/fMRI
148 sample (23). To study how non-invasive cortical stimulation affects the amygdala, we applied
149 pulses of TMS in the scanner to individual-specific stimulation sites informed by functional
150 connectivity, and examined fMRI readouts in the subcortex. To explore links between amygdala

151 TMS/fMRI responses and cortical-subcortical structural connectivity, we reconstructed white
152 matter connections between the area of stimulation and the amygdala using fiber orientation
153 distribution (FOD) tractography.
154

155
156 **Fig. 1. Multimodal Analysis Workflows.** *spTMS/fMRI*: Single pulses (sp) of TMS were
157 administered in between fMRI volume acquisitions. TMS pulses were delivered to fMRI-guided,
158 personalized left prefrontal sites of stimulation. Functional timeseries were analyzed with FEAT
159 via XCP Engine's task module; each TMS pulse was modeled as an instantaneous event. TMS
160 evoked responses were quantified in the left amygdala for each participant by averaging event-
161 related BOLD signal changes induced by stimulation. *Diffusion MRI*: Diffusion data were
162 preprocessed with QSIPrep. Preprocessed images were reconstructed with MRtrix's single-shell
163 3-tissue constrained spherical deconvolution pipeline to generate fiber orientation distribution
164 (FOD) images, and a whole-brain tractogram was generated with FOD tractography. A structural
165 pathway connecting the left amygdala to the prefrontal area of TMS stimulation was isolated, and
166 pathway fiber density was quantified.

167 168 **Ventrolateral prefrontal cortex TMS modulates fMRI BOLD activity in the amygdala**

169 We employed in-scanner interleaved spTMS/fMRI in order to replicate our prior
170 preliminary study (23) in a larger, independent sample and confirm that cortical stimulation exerts
171 neuromodulatory effects on the amygdala, our downstream target of interest. For each participant,
172 a personalized left prefrontal TMS site of stimulation was chosen that exhibited strong functional
173 connectivity to the left amygdala (based on resting fMRI; see Methods) and that was located
174 within, or in closest proximity to, the vLPFC (**Fig. 2A**). A functional connectivity-guided approach
175 was chosen given prior evidence that cortical TMS will elicit larger biobehavioral changes
176 associated with a downstream region, if that region is strongly functionally connected to the
177 cortical stimulation site (23, 34–38). High functional connectivity sites near the vLPFC were given
178 priority based on our pilot study (23), the accessibility of this cortical area to TMS, and monkey
179 tract-tracing work (7).

180 To empirically assess the impact of single pulses of TMS on ipsilateral amygdala activity,

181 we measured the percent change in BOLD signal elicited by stimulation events, relative to an

182 implicit baseline of no stimulation. We refer to this TMS-evoked change in the fMRI BOLD

183 signal as the TMS “evoked response”. Importantly, both positive and negative evoked responses

184 provide evidence of a transient change in subcortical activity in response to cortical stimulation,

185 and therefore evidence for a cortical-subcortical pathway supporting TMS signal propagation. We

186 thus analyze the unsigned magnitude of the TMS evoked response unless otherwise indicated.

187 Across the 45 study participants, the average absolute value left amygdala evoked response was

188 $0.21\% \pm 0.14$. A BOLD signal change of 0.20% is comparable in magnitude to BOLD effects

189 produced by tasks that functionally engage the amygdala (39–41), supporting that single pulses of

190 TMS to cortically-accessible sites elicited a functional response in the amygdala (Fig. 2B).

191 Examining the direction of each participant’s TMS evoked response revealed that TMS decreased

192 BOLD signal in the amygdala in 30 of 45 individuals, possibly indicative of amygdala inhibition;

193 as a result, the population estimated raw TMS evoked response was negative and significantly

194 different from 0 (*average raw evoked response* = $-0.09\% \pm 0.24$, $t_{44} = -2.51$, 95% $CI = [-0.16$ to $-$

195 $0.02]$, $p = 0.0160$). Importantly, left amygdala TMS evoked response estimates were highly

196 similar when the amygdala was defined with the Harvard Oxford subcortical atlas (primary

197 approach, reported above) and with individual Freesurfer segmentations, indicating that

198 parcellation choice did not impact quantification of our outcome measure of interest (correlation

199 between approaches: *Pearson’s r* = 0.96 , $CI = [0.93$ to $0.98]$, $p < .0001$).

200 For all participants, TMS was applied to the left PFC at 120% of the individual’s pre-scan

201 resting motor threshold. However, the distance between the scalp and the cortex—which

202 influences the effective magnitude of cortical stimulation—typically differs between an

203 individual’s primary motor cortex and PFC. Consequently, the strength of neurostimulation

204 ultimately delivered to the PFC may be less than 120% of motor threshold (if scalp-to-cortex

205 distance is greater at the PFC) or greater than 120% (if scalp-to-cortex distance is greater at M1).

206 We therefore corrected the estimated TMS dose for within-individual differences in scalp-to-

207 cortex distance at the stimulation site relative to M1⁴⁶. We observed that the effective strength of

208 neurostimulation varied across participants (distance-adjusted average dose = 110% of motor

209 threshold $\pm 15\%$). Moreover, the effective strength of neurostimulation was significantly

210 positively correlated with the magnitude of the left amygdala TMS evoked response ($r_s = 0.35$,

211 95% $CI = [0.06$ to $0.59]$, $p = 0.0173$), providing evidence for a dose-dependent effect of TMS on

212 amygdala fMRI responses. Absolute stimulator output (% of max) was not correlated with the

213 amygdala evoked response ($r_s = -0.09$, 95% $CI = [-0.38$ to $0.22]$, $p = 0.5764$) suggesting that

214 individually-determined motor thresholds corrected for distance provide a more suitable

215 approximation of dose than raw stimulator output.

216 Next, we sought to assess the specificity of downstream TMS effects within the subcortex.

217 We expected TMS to elicit larger functional responses in the left amygdala than in non-targeted

218 left hemisphere subcortical structures. We thus compared the magnitude of the TMS evoked

219 response in the left amygdala to the magnitude of response in the left caudate, hippocampus,

220 nucleus accumbens, pallidum, putamen, and thalamus (all other Harvard Oxford left hemisphere

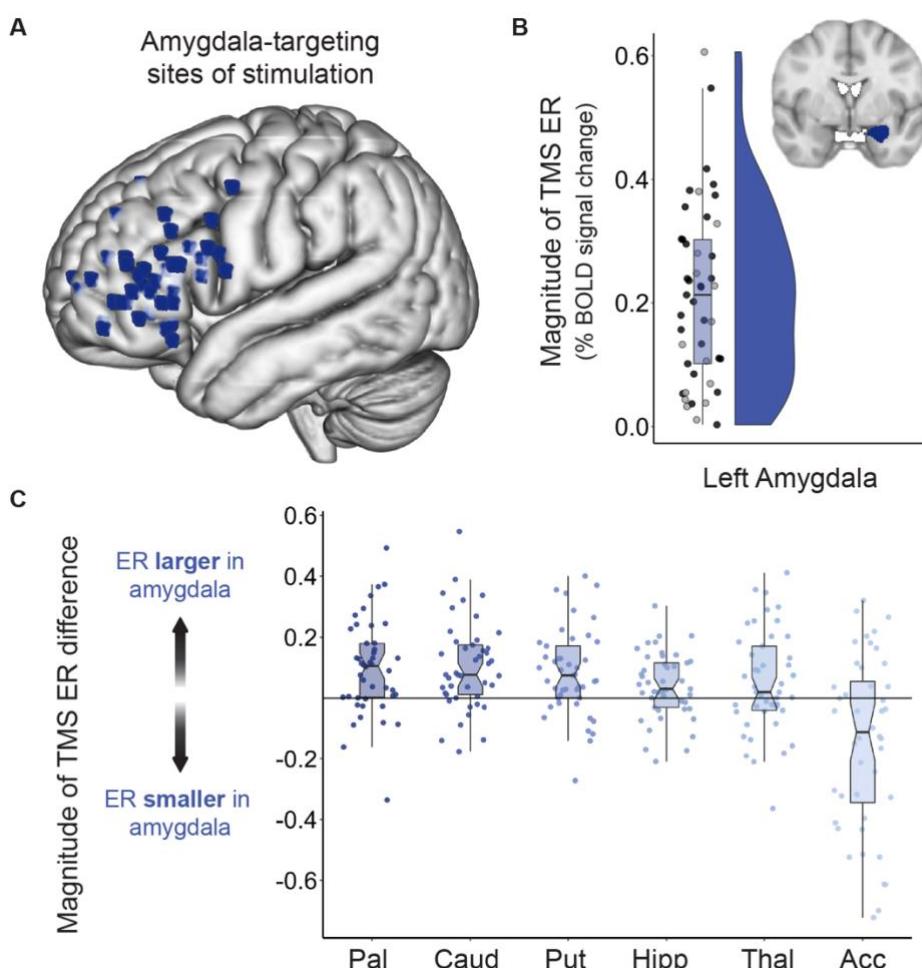
221 subcortical structures). Analyses were conducted on absolute valued TMS evoked responses using

222 a within-subjects design, and focused on subcortical regions ipsilateral to the TMS stimulation.

223 We analyzed absolute valued evoked responses as we were interested in whether the overall size

224 of the TMS effect differed between the amygdala and other subcortical structures, rather than

225 whether response direction (positive versus negative) differed between structures. Single pulses of


226 TMS delivered to amygdala functional connectivity peaks within the left vLPFC induced larger

227 changes in BOLD signal in the left amygdala than in the left caudate ($t_{44} = 4.9$, *Cohen’s d* = 0.72 ,

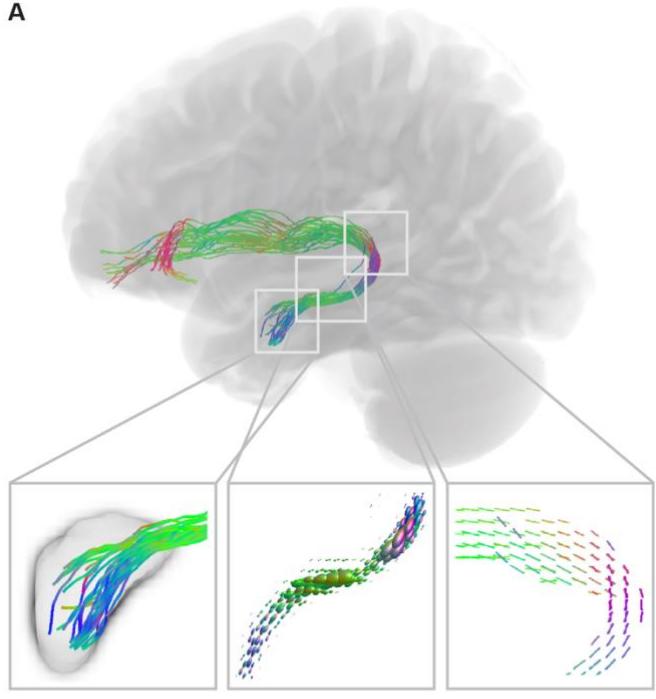
228 95% $CI = [0.06$ to $0.15]$, $p_{FDR} < 0.0001$), the left hippocampus ($t_{44} = 2.5$, *Cohen’s d* = 0.37 , 95%

229 $CI = [0.01$ to $0.07]$, $p_{FDR} = 0.0201$), the left pallidum ($t_{44} = 4.3$, *Cohen’s d* = 0.64 , 95% $CI = [0.05$

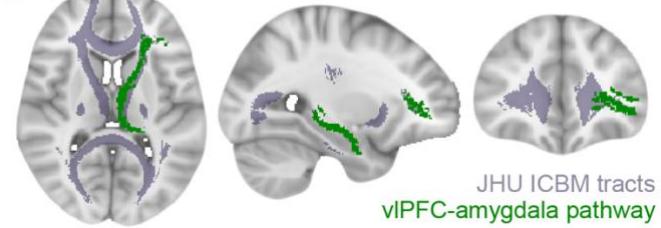
230 to 0.14], $p_{FDR} = 0.0004$), the left putamen ($t_{44} = 4.1$, Cohen's $d = 0.61$, 95% CI = [0.04 to 0.13],
231 $p_{FDR} = 0.0004$), and the left thalamus ($t_{44} = 2.1$, Cohen's $d = 0.32$, 95% CI = [0.003 to 0.10], p_{FDR}
232 = 0.0381) (Fig. 2C). In contrast, evoked responses were smaller in magnitude in the left amygdala
233 than in the left nucleus accumbens, suggesting that the amygdala and accumbens may share TMS-
234 targetable cortical representations ($t_{44} = -3.5$, Cohen's $d = 0.52$, 95% CI = [-0.27 to -0.07], $p_{FDR} =$
235 0.0018, negative accumbens evoked response in 28/45 individuals). To additionally explore
236 whether other subcortical responses to TMS were functionally linked to the amygdala evoked
237 response, we correlated the magnitude of BOLD signal change in the left amygdala with the
238 magnitude of signal change in the aforementioned subcortical structures. Evoked response
239 magnitude in the left amygdala strongly correlated with evoked response magnitude in the left
240 hippocampus ($r_s = 0.59$, 95% CI = [0.35 to 0.76], $p_{FDR} = 0.0001$), potentially a result of well-
241 known inter-regional connections or spatially proximal cortical inputs. Left amygdala evoked
242 responses did not, however, correlate with evoked responses in the left caudate, nucleus
243 accumbens, pallidum, putamen, or thalamus (all $p_{FDR} > 0.15$), indicating that individual
244 subcortical regions largely display unique functional responses to vIPFC TMS. Together, these
245 findings reveal that the effects of spTMS on the fMRI signal were not only differentiable across
246 subcortical regions, but additionally were almost universally larger in the amygdala—the
247 subcortical structure we aimed to target through cortical functional connectivity.
248

249
250 **Fig. 2. Amygdala BOLD Signal Change Following TMS Administered to vIPFC**
251 **Connectivity Peaks.** (A) Each participant's amygdala-targeting TMS stimulation site visualized
252 in standard (MNI) space. Individual-specific stimulation sites were localized to a left PFC area
253 that was strongly functionally connected to the left amygdala and that was located within the
254 vIPFC (or in closest proximity to the vIPFC of all connectivity peaks). (B) TMS elicited a sizable

255 fMRI response in the ipsilateral amygdala. The absolute magnitude of the left amygdala TMS
256 evoked response (TMS ER) is plotted for all participants, along with corresponding box and
257 violin plots. Black circles represent participants ($N = 30$) that exhibited a negative TMS ER,
258 defined as a TMS-induced decrease in fMRI activity. Grey circles represent participants ($N = 15$)
259 that exhibited a positive TMS ER, defined as an increase in BOLD signal following stimulation
260 pulses. The box plot displays the median (0.21) and first (0.10) and third (0.30) quantiles of
261 amygdala TMS ERs, with whiskers extending 1.5x the interquartile range. **(C)** TMS evoked
262 responses were overwhelmingly larger in the left amygdala than in other left hemisphere
263 subcortical structures. For each participant, differences in the magnitude (absolute value) of the
264 TMS ER in the left amygdala versus in other left hemisphere subcortical structures were
265 calculated by subtracting each structure's ER from the amygdala ER; this was done for the left
266 pallidum (Pal), caudate (Caud), putamen (Put), hippocampus (Hipp), thalamus (Thal), and
267 nucleus accumbens (Acc). The magnitude of this evoked response difference is plotted for each
268 subcortical region. Individual participant data points and a notched group boxplot are shown. Data
269 points falling above the $y = 0$ line indicate that a participant had a larger TMS ER in the amygdala
270 than in the indicated subcortical region.


271

272 **A white matter connection provides a pathway for amygdala modulation**


273 We hypothesized that TMS-induced activation of cortical neurons could exert a
274 downstream influence on the amygdala as a result of action potential propagation along a left
275 prefrontal-amygdala white matter pathway. To retrospectively explore this hypothesis, we first
276 created a group TMS stimulation sites mask that combined the 45 individualized amygdala-
277 targeting sites from all participants. We next generated a whole-brain tractogram from a study-
278 specific FOD template, and extracted streamlines with endpoints in the group stimulation mask
279 and the left amygdala. The use of a study-specific FOD template for white matter delineation and
280 feature analysis offers numerous advantages within the context of this study (see Methods for
281 extended discussion). Briefly, compared to individual FOD images, the FOD template has
282 increased signal-to-noise and reduced reconstruction uncertainty, and thereby enables superior
283 tractography algorithm performance and more accurate pathway identification. The template
284 furthermore optimizes anatomical correspondence of the studied pathway across participants,
285 eliminating variability in pathway definitions that can be aliased as between-individual
286 differences in microstructural measures. Finally, the template approach allows for identification
287 of a population representative pathway that can be compared across species.

288 Our diffusion MRI analysis identified a white matter pathway connecting anterior portions
289 of the left vIPFC to the left amygdala (**Fig. 3**). The human vIPFC-amygdala pathway exhibited
290 close correspondence to the main lateral prefrontal-amygdala pathway identified with invasive
291 tract-tracing in rhesus macaques (7). Specifically, non-human primate tract tracing work has
292 shown that the strongest direct (monosynaptic) projection from the lateral PFC to the amygdala
293 originates within area L12 of the vIPFC in macaques, largely corresponding to Brodmann area
294 (BA) 47 and anterior BA 45 in humans (10). Using a Brodmann atlas reconstructed in MRI space
295 (42), we determined that 60% of pathway streamline endpoints localized to BA47 and BA45
296 (27% localizing to BA10, 13% to anterior/ventral BA46), confirming that our *in vivo* work
297 recapitulated the spatial pattern of connectivity observed with tract tracing in macaques.
298 Critically, this left vIPFC-amygdala pathway could function as a causal pathway through which
299 TMS-induced modulation of vIPFC activity produced downstream changes in the amygdala.

A

B

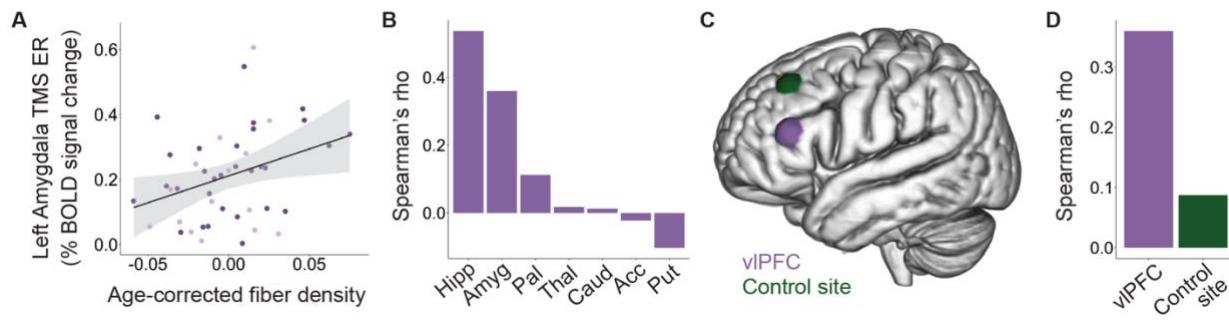
300
301

302 **Fig. 3: vLPFC-Amygdala White Matter Pathway Anatomy.** (A) A white matter pathway
303 connecting the left vLPFC stimulation area to the left amygdala could provide a structural scaffold
304 for downstream modulation of the amygdala. This pathway was identified from fiber orientation
305 distribution (FOD) tractography, and pathway streamlines were mapped to individual fiber bundle
306 elements (fixels) for the calculation of fiber density. The left box displays pathway streamlines
307 terminating in the amygdala. The center box displays pathway FODs scaled by fiber density. The
308 right box displays pathway fixels. Colors represent fiber direction. (B) The vLPFC-amygdala
309 white matter pathway trajectory is shown. The identified vLPFC-amygdala pathway is shown in
310 green, overlaid on major white matter tracts from the JHU ICBM tract atlas, displayed in purple.
311 The core of the pathway travels with the left anterior thalamic radiation.

312

313 **Pathway fiber density is associated with the magnitude of the TMS-evoked amygdala**
314 **response**

315 If neurostimulation at the cortex leads to downstream changes in the amygdala fMRI
316 signal by engaging this vLPFC-amygdala white matter pathway, then pathway-derived measures
317 should be associated with the amplitude of the amygdala evoked response. In particular, higher
318 pathway fiber density should enable a larger amygdala evoked response by allowing for more
319 effective signal propagation and enhanced cortical input to the amygdala. To quantify fiber
320 density in the vLPFC-amygdala pathway for each study participant, pathway streamlines were
321 mapped to individual fiber bundle elements (also known as “fixels”) in each voxel the pathway
322 traversed, and mean fiber density was estimated across pathway fixels. In support of a circuit-
323 based model of cortical-subcortical TMS signal propagation, individuals with higher fiber density
324 in the left vLPFC-left amygdala white matter pathway exhibited left amygdala TMS evoked


325 responses of significantly greater magnitude (Spearman's partial correlation, controlling for age:
326 $r_{s,\text{partial}} = 0.36$, 95% CI = [0.07 to 0.60], $p = 0.0164$) (**Fig. 4A**). Fiber cross-section, a macroscopic,
327 morphological measure of pathway cross-sectional diameter, was not associated with the
328 magnitude of amygdala evoked response (Spearman's partial correlation, controlling for age and
329 intracranial volume: $r_{s,\text{partial}} = -0.12$, 95% CI = [-0.40 to 0.19], $p = 0.4610$).

330 In a series of sensitivity analyses, we confirmed that the association between larger left
331 amygdala TMS evoked response and greater left vIPFC-amygdala pathway fiber density was not
332 driven by the strength of neurostimulation, the strength of baseline stimulation site-amygdala
333 functional connectivity, head motion during scanning, head size, or sex. Sensitivity analyses were
334 conducted with independent Spearman's rank partial correlations controlling for age plus each
335 potential confounder. The association between pathway fiber density and magnitude of the left
336 amygdala TMS evoked response remained significant when controlling for TMS dose ($r_{s,\text{partial}} =$
337 0.31, 95% CI = [0.004 to 0.56], $p = 0.0461$) and the TMS site of stimulation in MNI Y and Z
338 coordinates ($r_{s,\text{partial}} = 0.39$, 95% CI = [0.10 to 0.62], $p = 0.0108$). These observations support that
339 individual-tailored elements of the TMS administration did not explain our finding. Given that
340 stimulation sites were selected based on their resting-state functional connectivity with the left
341 amygdala, we verified that the fiber density-evoked response association could not be attributed
342 to inter-individual differences in the strength of this functional connection ($r_{s,\text{partial}} = 0.31$, 95% CI
343 = [0.01 to 0.56], $p = 0.0398$). In addition, we showed that the fiber density-evoked response
344 association was not affected by controlling for head motion during the diffusion scan ($r_{s,\text{partial}} =$
345 0.36, 95% CI = [0.06 to 0.60], $p = 0.0179$), head motion during the TMS/fMRI scan ($r_{s,\text{partial}} =$
346 0.37, 95% CI = [0.08 to 0.61], $p = 0.0139$), total intracranial volume ($r_{s,\text{partial}} = 0.37$, 95% CI =
347 [0.08 to 0.61], $p = 0.0142$), or participant sex ($r_{s,\text{partial}} = 0.37$, 95% CI = [0.08 to 0.61], $p =$
348 0.0140). Finally, we verified that using an alternate method for amygdala parcellation did not
349 have an effect on our findings: the fiber density-evoked response association was significant when
350 the amygdala was identified using participant Freesurfer segmentations ($r_{s,\text{partial}} = 0.36$, 95% CI =
351 [0.06 to 0.60], $p = 0.0171$), with an effect size equal to that obtained with the Harvard Oxford
352 atlas.

353

354 **The identified pathway is differentially associated with neurostimulation-induced** 355 **subcortical responses**

356 Having demonstrated that the size of the amygdala TMS evoked response was related to
357 fiber density in the delineated pathway, we aimed to establish the specificity of this relationship.
358 We thus examined the association between left vIPFC-amygdala pathway fiber density and
359 spTMS/fMRI BOLD responses in other subcortical structures. Higher vIPFC-amygdala pathway
360 fiber density was also significantly associated with a greater magnitude evoked response in the
361 left hippocampus (Spearman's partial correlation, controlling for age: $r_{s,\text{partial}} = 0.54$, 95% CI =
362 [0.28 to 0.72], $p_{\text{FDR}} = 0.0010$), in line with the observation that amygdalar and hippocampal TMS
363 evoked responses were correlated. However, vIPFC-amygdala pathway fiber density was not
364 associated with the magnitude of the evoked response in the left caudate, nucleus accumbens,
365 pallidum, putamen, or thalamus (all $p_{\text{FDR}} > 0.90$), suggesting substantial specificity for the
366 influence of the pathway on neurostimulation-induced evoked brain responses in the subcortex
367 (**Fig. 4B**).
368

369
370
371 **Fig. 4: vIPFC-Amygdala White Matter Pathway Fiber Density Impacts Subcortical TMS**
372 **Evoked Responses.** (A) Across all participants, higher vIPFC-amygdala white matter pathway
373 fiber density was associated with a greater magnitude left amygdala TMS evoked response (TMS
374 ER). Dark purple circles represent participants that exhibited a negative TMS ER; lighter purple
375 circles represent those that exhibited a positive TMS ER. (B) vIPFC-amygdala pathway fiber
376 density was most strongly associated with TMS/fMRI responses in medial temporal subcortical
377 structures, as revealed by the Spearman's rank partial correlation coefficient (Rho) for each
378 subcortical region. Subcortical regions include the left hippocampus (Hipp), amygdala (Amyg),
379 pallidum (Pal), thalamus (Thal), caudate (Caud), nucleus accumbens (Acc), and putamen (Put).
380 (C) In addition to the primary vIPFC spTMS/fMRI scan, each participant received an additional
381 spTMS/fMRI scan during which TMS pulses were applied to an active control site. The intensity-
382 weighted center of gravity of all personalized stimulation sites is shown for vIPFC sites (purple)
383 and control sites (green). (D) The strength of the association (Rho) between vIPFC-amygdala
384 pathway fiber density and left amygdala TMS ER magnitude was smaller when TMS was applied
385 to the control site.

386
387 **Pathway fiber density is not related to the TMS-evoked amygdala response when
388 stimulating a distant control site**

389 In a last analysis, we investigated whether fiber density in the left vIPFC-amygdala
390 pathway was associated with left amygdala TMS evoked response magnitude when TMS was
391 applied to a spatially distant, active control site not thought to have direct connections to the
392 amygdala. Control site spTMS/fMRI data were acquired from all individuals on the same day as
393 the amygdala-targeting spTMS/fMRI data, in a pseudorandom counter-balanced design. Control
394 sites of stimulation were located dorsal and posterior to the amygdala-targeting stimulation sites;
395 control and amygdala-targeting sites were located on average $4.4 (\pm 1.5)$ cm apart (Fig. 4C).
396 Single pulses of TMS applied to the control site elicited an average absolute value left amygdala
397 evoked response of $0.19\% \pm 0.25$, with a negative evoked response observed in 28 of 45
398 participants. The absolute magnitude of the left amygdala evoked response was larger when
399 stimulating the vIPFC than when stimulating the control site in 62% of participants (0.15% larger
400 on average), although this did not represent a statistically significant difference in magnitude ($V =$
401 653, 95% CI = [-0.01 to 0.10], $p = 0.1284$). As expected, we did not identify structural
402 connections between the amygdala and control TMS sites (using a group mask that combined all
403 participants' control stimulation sites), suggesting that control site TMS could have affected
404 amygdala activity by engaging poly-synaptic connections (10). Finally, we hypothesized that
405 because control site stimulation would be unlikely to directly engage the left vIPFC-amygdala
406 pathway, there would not be a relationship between the microstructure of this white matter
407 pathway and changes in left amygdala activity elicited by control site TMS. Indeed, when TMS
408 was applied to the control site, vIPFC-amygdala pathway fiber density was not significantly
409 associated with the magnitude of the left amygdala TMS evoked response (Spearman's partial
410 correlation, controlling for age: $r_{s,\text{partial}} = 0.09$, 95% CI = [-0.22 to 0.38], $p = 0.5729$) (Fig. 4D).

411 **Discussion**

412 A substantial percentage of individuals experiencing affective psychiatric symptoms do
413 not experience a satisfactory clinical response to currently available treatments, necessitating
414 modified or new treatment protocols. A promising, experimental therapeutics based approach for
415 developing translatable protocols is to identify interventions that are capable of engaging brain
416 regions (targets) strongly linked to symptomatology (43), such as the amygdala. TMS represents
417 both a psychiatric treatment that can be further optimized and—when combined with fMRI—a
418 tool for measuring target engagement. In the present study, we harnessed interleaved
419 spTMS/fMRI to examine the impact of prefrontal TMS on the amygdala, and established that
420 single pulses of TMS delivered within or near the vLPFC elicit acute, dose-dependent modulations
421 of the amygdala fMRI BOLD signal. We additionally delineated a phylogenetically-conserved
422 white matter pathway connecting the vLPFC to the amygdala with the potential to transmit TMS-
423 induced neural activity from the stimulated cortical surface to the medial temporal lobe. Higher
424 fiber density in the identified pathway was associated with larger magnitude TMS-evoked fMRI
425 BOLD responses in the amygdala when stimulating the vLPFC, but not when stimulating an active
426 control site, supporting a specific role for this pathway in vLPFC-to-amygdala TMS signal
427 transduction. Broadly, this spTMS/fMRI probe-and-measure study demonstrates proof of
428 amygdala engagement by TMS, and furthermore highlights a potential structural mechanism
429 facilitating engagement of this subcortical target.

430 Studies investigating the neural bases of psychiatric treatment response have repeatedly
431 reported that reductions in depressive, anxiety, obsessive-compulsive, and post-traumatic stress
432 symptoms occur concomitantly with a normalization of amygdala activity (17, 40, 44–48).
433 Associations between clinical improvement and modified amygdala functioning have been
434 observed following treatment with psychotropics, cognitive behavioral therapy, electroconvulsive
435 therapy, and surgical interventions, convergently suggesting that neuromodulation of the
436 amygdala may facilitate efficacious reductions in affective psychopathology. Here we provide
437 neuromodulation-relevant evidence that TMS applied to left prefrontal-amygdala functional
438 connectivity peaks can evoke a downstream change in ipsilateral amygdala fMRI activity, with a
439 degree of anatomical specificity. In particular, our data show that TMS tended to induce a
440 negative evoked response, or a decrease in BOLD signal, in the amygdala. Given that heightened
441 amygdala BOLD activity is consistently observed in persons with psychiatric disorders (11, 13,
442 14) this may putatively be the clinically preferred direction of TMS response in this region. It is
443 possible, however, that enhancing amygdala activity may prove beneficial in some contexts.
444 Increases in amygdala neuronal activity are required, for example, for the extinction of
445 conditioned fear (4, 49, 50). Accordingly, it will be important for future work to examine
446 whether positive versus negative amygdala TMS evoked responses are associated with differential
447 behavioral or clinical outcomes, for example with dissociable changes in fear conditioning,
448 negative affect, valence evaluation, or emotion regulation.

449 This study additionally demonstrated that non-invasive brain stimulation engages the
450 amygdala when specifically applied to the vLPFC, a cortical region that is recruited for emotional
451 regulation and transdiagnostically hypoactive in patients with affective psychopathology (11, 14).
452 This represents a replication of our prior preliminary study (23) and provides further brain-based
453 evidence identifying the vLPFC territory with axonal projections to the amygdala as a candidate
454 TMS treatment target for affective psychiatric disorders. Behavior-based evidence corroborating
455 the potential utility of brain stimulation through this circuit is offered by two independent
456 investigations into vLPFC stimulation. In the first investigation, vLPFC TMS facilitated the
457 regulation and reduction of negative emotions in healthy individuals (51). In the second, direct
458 electrode stimulation of the anterior vLPFC produced acute improvements in mood in individuals
459 with depression (52). Complementary evidence thus indicates that vLPFC stimulation can impact
460 both neural and clinical features that are disrupted in mood and anxiety disorders. Of note, the

461 medial PFC is also robustly implicated in affective symptomatology and interconnected with the
462 amygdala, and is thus a cortical territory of interest for some forms of stimulation-based
463 treatments in psychiatry (20, 21, 31, 32, 53, 54). However the induced electric field produced by
464 TMS cannot directly penetrate the medial PFC, highlighting the practical utility of stimulating the
465 vIPFC with TMS to preferentially engage the amygdala.

466 The vIPFC's structural pathway to the amygdala may allow TMS to synchronously affect
467 neural activity in both of these regions due to direct depolarization of their axonal connections.
468 The putative importance of directly modulating this vIPFC-amygdala pathway is informed by
469 reports from deep brain stimulation (DBS) in psychiatry: subcortical DBS is significantly more
470 effective at reducing psychiatric symptoms when the electrodes contact cortical-subcortical white
471 matter connections (54–58). The relevance of this pathway is further underscored by the finding
472 that higher pathway fiber density was associated with larger TMS-induced fMRI activity
473 modulations—yet only within medial temporal lobe subcortical structures, and only when
474 stimulating the vIPFC. Our diffusion MRI findings thus provide *in vivo* evidence that greater
475 white matter conductance enhances the ability of TMS-elicited neural signals to travel to distant
476 brain regions, with white matter connectivity profiles in part determining the pathway of signal
477 travel. A central role for white matter in shaping downstream responses to TMS highlights the
478 potential for structural connectivity to be harnessed to engage psychopathology-relevant
479 subcortical structures effectively and focally.

480 To date, cortical-subcortical functional connectivity has principally been used to target
481 subcortical structures with TMS, with a notable degree of clinical success within the context of
482 major depression (35, 37, 38, 59). Nevertheless, cortical functional connectivity weights for a
483 given subcortical target can vary over time in the same individual, impacting the reproducibility
484 of TMS stimulation site selection (60). White matter pathways form by early childhood and
485 remain in existence for one's lifetime, thus potentially offering a complementary approach to
486 guide TMS coil positioning. Integrative strategies harnessing both structural and functional
487 connectivity are thus particularly worthy of future study. These personalizable, precision
488 connectomics strategies could be applied not just to enhance the ability of TMS to modulate the
489 amygdala, but to reach additional subcortical targets that contribute to diverse forms of
490 psychopathology.

491 The present work must be considered within the context of conventional limitations
492 associated with the *in vivo* neuroimaging measures employed. TMS-evoked fMRI BOLD
493 responses only indirectly index changes in neuronal activity, and can additionally be influenced
494 by changes in metabolism, cerebrovascular reactivity, and neurovascular coupling. The white
495 matter fiber density measure employed here is not an explicit measure of the number of axons
496 present. However, increases in axon count or packing density (or, potentially, decreases in
497 extracellular space) within a voxel will be reflected as an increase in fiber density. As with all
498 tractography methods, we cannot unequivocally determine whether the structural pathway
499 identified between the left vIPFC and the left amygdala represents a direct or a polysynaptic
500 connection, although tract-tracing data compellingly suggest it may be monosynaptic (7). Two
501 additional limitations represent key avenues for future investigations. First, this study was not
502 designed to identify factors related to whether an individual exhibited a positive or negative TMS
503 evoked response in the amygdala; future work should explore the impact of TMS stimulation
504 parameters, TMS coil orientation, and the participant's cognitive or emotional state on response
505 directionality (61–64). Second, we employed a retrospective study design to examine associations
506 between vIPFC-amygdala white matter pathway features and TMS evoked BOLD responses.
507 Consequently, the TMS coil was not always precisely positioned over the center of the pathway's
508 cortical fiber terminations, as could be accomplished in a future, prospective structural
509 connectivity-based targeting study.

510 This study demonstrates that spTMS/fMRI and diffusion MRI can be jointly harnessed to
511 examine how cortical neurostimulation affects activity in brain regions associated with the
512 manifestation and treatment of transdiagnostic affective psychopathologies. Our findings
513 underscore the relevance of examining downstream, subcortical effects of TMS, and the
514 importance of mapping causal circuits underlying these effects. Circuit mapping approaches have
515 been applied in DBS to increase the clinical efficacy of stimulation protocols (54–58), and, as
516 shown here, can be translated to TMS with the goal of informing treatment protocols. Ultimately,
517 integrating insights derived from spTMS/fMRI brain-based readouts and diffusion-based
518 connectivity into TMS protocols may help to increase the impact of TMS on both brain activity
519 and behavior—thus enhancing the efficacy of therapeutic TMS for psychiatric conditions.
520

521 Materials and Methods

522 Experimental Design

523 Healthy participants ages 18 to 55 years with no present or prior reported neurological or
524 psychiatric conditions and no psychotropic medication use participated in this study. All
525 participants gave informed consent prior to study participation, and all procedures were approved
526 by the University of Pennsylvania Institutional Review Board. All research procedures were
527 performed in accordance with the Declaration of Helsinki. The 45 individuals included in the final
528 study sample had T1-weighted, diffusion, resting state fMRI, and interleaved spTMS/fMRI data
529 (both amygdala-targeting site and control site data) that passed stringent visual and quantitative
530 quality control procedures. Nine additional individuals had neuroimaging data acquired at the
531 time of analysis but were excluded from the study due to excessive motion or image artifacts.
532 Exclusion criteria included an average relative motion root mean square > 0.15 during
533 spTMS/fMRI scans (4 excluded) or an average framewise displacement > 0.20 during the
534 diffusion scan coupled with motion-induced patterned slice drop out observed in diffusion
535 gradients (2 excluded) or reconstructed FOD images (3 excluded). All neuroimaging data were
536 acquired on the same 3 Tesla Siemens Prisma MRI scanner over two separate scanning days,
537 including a baseline scan day and a TMS/fMRI scan day. During the baseline scan, data from
538 resting state fMRI, diffusion MRI, and T1-weighted structural MRI sequences were acquired. The
539 resting state data were collected in order to identify participant-specific regions in or near the left
540 vLPFC that exhibited strong functional connectivity to the left amygdala. These personalized PFC-
541 amygdala functional connectivity peaks were used as sites of stimulation on the TMS/fMRI scan
542 day. The diffusion MRI data were utilized to retrospectively evaluate the hypothesis that TMS-
543 induced changes in cortical activity could have a downstream effect on amygdala activity due to a
544 prefrontal-amygdala white matter pathway. Baseline T1-weighted data were used in both fMRI
545 and diffusion analysis streams. During the TMS/fMRI scan day, TMS was applied in the scanner
546 interleaved with fMRI volume acquisitions in order to quantify evoked changes in amygdala
547 activity in response to single pulses of cortical neurostimulation.
548

549 TMS site of stimulation localization: resting state functional MRI

550 Baseline resting state fMRI data were collected to enable fMRI-guided selection of TMS
551 sites of stimulation. Two baseline eyes-open (fixation cross focus) multiband resting state fMRI
552 scans were acquired with reverse phase encoding directions in 72 interleaved axial slices with the
553 following acquisition parameters: repetition time = 800 ms, echo time = 37 ms, flip angle = 52° ,
554 field of view = 208 mm, voxel size = 2 mm^3 , 420 measurements. A multi-echo T1-weighted
555 MPRAGE scan was additionally acquired with the following parameters: repetition time = 2400
556 ms, echo time = 2.24 ms, inversion time = 1060 ms, flip angle = 8° , voxel size = 0.8 mm^3 , field of
557 view = 256 mm, slices = 208, PAT mode GRAPPA.

558 T1-weighted scans were processed with the Advanced Normalization Tools (ANTS)
559 Cortical Thickness Pipeline (65). Resting state fMRI data were preprocessed with the eXtensible

560 Connectivity Pipeline Engine (XCP Engine) (66) in order to implement a well validated, top
561 performing pipeline for mitigating motion-related artifacts and noise in fMRI data (67).
562 Preprocessing steps for the fMRI data included merging of AP and PA acquisitions, removal of
563 the first 2 volumes from each run to allow for scanner equilibration, realignment of all volumes to
564 an average reference volume, identification and interpolation of time series intensity outliers with
565 AFNI's 3dDespike, demeaning and both linear and polynomial detrending, and registration of
566 fMRI data to T1-weighted data using boundary-based registration. Artifactual variance was
567 modeled as a linear combination of 36 parameters, including 6 motion-related realignment
568 parameters estimated during preprocessing, the mean signal in deep white matter, the mean signal
569 in the cerebrospinal fluid compartment, the mean signal across the entire brain, the first temporal
570 derivatives of the prior 9 parameters, and quadratic terms of both the prior 9 parameters and their
571 derivatives. These 36 nuisance parameters were regressed from the BOLD signal with a general
572 linear model. Last, simultaneous with confound regression, the BOLD time series and the
573 artifactual model time series were temporally filtered (first-order Butterworth) using high-pass-
574 only and low-pass-only filters of > 0.01 Hz and < 0.08 Hz, respectively. In order to transform
575 preprocessed fMRI data to MNI space for functional connectivity analysis, T1-weighted images
576 were non-linearly registered to the MNI T1 template using ANTS symmetric diffeomorphic
577 image normalization (SyN), and transforms were applied to the functional image.

578 Following preprocessing, functional connectivity—defined as the Fisher's z-transformed
579 Pearson correlation coefficient between two BOLD time series—was computed between left
580 frontal cortex voxels and a left amygdala seed, as in prior work (23). The amygdala functional
581 connectivity map was then transformed back to participant T1 space and stereotactically
582 visualized on each participant's curvilinear reconstructed brain surface with a state-of-the-art
583 neuronavigation system (Brainsight; Rogue Research, Montreal, Quebec, Canada). This process
584 allowed for identification of a cortically-accessible stimulation site for the in-scanner TMS/fMRI
585 session that exhibited high functional connectivity to the left amygdala and that localized to (or
586 nearest to) the vIPFC. On the TMS/fMRI scan day, the Brainsight neuronavigation system was
587 used to pinpoint the location on the scalp (marked on a secured lycra swim cap) perpendicular to
588 the amygdala-targeting cortical stimulation site; the TMS coil was centered on this location.
589 Preprocessed resting state fMRI data were additionally used to define the active control sites of
590 stimulation for this study. Each participant's control site was located in the left middle or superior
591 frontal gyrus, distant from the amygdala-targeting site (4.4 cm on average). Control sites were
592 selected for exhibiting high functional connectivity to the left subgenual anterior cingulate cortex,
593 rather than selected for low functional connectivity to the amygdala per se. Control sites were
594 selected in Brainsight using seed-to-voxel functional connectivity maps generated with a
595 subgenual seed, as in prior work (23).

596 **TMS evoked response quantification: in-scanner, interleaved spTMS/functional MRI**
597 We acquired in-scanner interleaved spTMS/fMRI scans while applying TMS to the scalp
598 location that focused stimulation to PFC-amygdala functional connectivity peaks located in
599 closest proximity to the vIPFC. An MRI-compatible TMS coil (Magventure MRI-B91 air cooled
600 coil) was positioned to induce a posterior to anterior current, and stimulation intensity was applied
601 at 120% of an individual's resting motor threshold. Resting motor threshold was determined
602 within the MRI room immediately prior to scanning, and defined as the stimulation intensity
603 required to elicit visually observable motor activity in the right hand (in abductor pollicis brevis
604 or first dorsal interosseous muscles) on 5 out of 10 consecutive trials. spTMS/fMRI scans were
605 acquired using a TMS-compatible birdcage head coil (RAPID quad T/R single channel; Rimpar,
606 Germany). During scanning, the MRI-B91 TMS coil was connected to a Magpro X100 stimulator
607 (Magventure Farum, Denmark) and held firmly in place by a custom-built TMS coil holder. The
608 spTMS/fMRI acquisition parameters included: repetition time = 2000 ms, echo time = 30 ms, flip
609

angle = 75°, field of view = 192 mm, voxels = 3×3×4 mm, 32 interleaved axial slices, 174 measurements. Transistor-transistor logic (TTL) trigger pulses sent through a parallel port with E-prime 2.0 (Psychology Software Tools, Sharpsburg, Pennsylvania, USA) were used to control the timing of fMRI volume acquisitions and single TMS pulses³⁴. Individual fMRI volume acquisitions were spaced by a 400 ms window during which a single pulse of TMS was delivered (triggered at 200 ms). This temporal spacing allows for administration of TMS pulses in a manner that does not contaminate the magnetic field during the subsequent volume acquisition. The TMS/fMRI scan was broken into 12 spTMS/fMRI mini-blocks throughout which a total of 71 TMS pulses were administered. Each mini-block consisted of 7 400-ms windows during which TMS could be delivered interleaved with 7 fMRI volume acquisitions. TMS was administered during 5 to 7 of the mini-block 400 ms windows in order to incorporate 0-2 catch trials, preventing prediction of when TMS would be delivered. Mini-blocks were separated by 7 fMRI volume acquisitions.

Amygdala-targeting spTMS/fMRI data were preprocessed with XCP Engine's task module, which executes the FMRI Expert Analysis Tool (FEAT, version 6.0.0). The functional data were motion corrected using six standard motion regressors with FSL MCFLIRT, high-pass temporally filtered (cut off of 100), spatially smoothed (5 mm FWHM kernel), registered to baseline T1-weighted images using boundary-based registration, and transformed to MNI space using pre-computed T1-MNI registration transforms. For event modeling, each TMS pulse was considered an instantaneous event and convolved with a gamma-shaped hemodynamic response function. Following model estimation, parameter estimates and contrast values were used to calculate the percent change in BOLD signal from no stimulation (implicit baseline) to stimulation. The average percent BOLD signal change was then quantified in left hemisphere subcortical structures using the Harvard Oxford subcortical atlas, yielding region-specific TMS evoked responses. A positive evoked response indicates a TMS-induced increase in BOLD signal, whereas a negative evoked response indicates a TMS-induced decrease in BOLD signal. The magnitude of the evoked response indexes the overall size of the response regardless of direction (i.e., the absolute value), and provides insight into the strength of the functional response elicited by neurostimulation—thereby capturing the main neurobiological effect of interest in this study. On the TMS/fMRI scan day, a second spTMS/fMRI scan was acquired in a counter-balanced design with TMS targeted to the control site. The control site spTMS/fMRI scan was acquired and processed exactly as detailed above for the amygdala-targeting scan.

643 **Prefrontal-amygdala white matter pathway delineation: diffusion MRI**

644 Our diffusion MRI analytic workflow sought to determine whether white matter
645 connections originating in the area of cortical stimulation could serve as pathways for TMS-
646 induced signal travel to the amygdala. Diffusion data were acquired in 64 gradient directions with
647 $b = 1000 \text{ s/mm}^2$ (and one $b = 0$ volume) with the following parameters: repetition time = 4000
648 ms, echo time = 72.60 ms, flip angle = 90°, voxel size = 2 mm³, slice number = 76. The data were
649 preprocessed with QSIprep 0.6.3RC3, a containerized pipeline that integrates algorithms from
650 diverse software and implements critical preprocessing steps with the best tools available in the
651 field (68). In QSIprep, the data were denoised with Marchenko-Pastur principal component
652 analysis (MP-PCA) (69), head motion and eddy currents were corrected using FSL eddy with
653 outlier replacement (70), and susceptibility distortions were corrected with fieldmaps generated
654 from magnitude and phase difference images. A non-diffusion weighted reference image ($b=0$)
655 from the preprocessed diffusion data was registered to a skull-stripped, AC-PC aligned T1-
656 weighted image. A single BSpline interpolation was then applied to both upsample the diffusion
657 data to a 1.3 mm³ voxel resolution and align it with the AC-PC realigned T1-weighted image.

659 All subsequent diffusion analyses, including signal reconstruction with a higher-order diffusion
660 model, tractography, and fixel metric quantification, were employed following recommended
661 pipelines in MRtrix3 (71)
662 (https://mrtrix.readthedocs.io/en/3.0.0/fixel_based_analysis/st_fibre_density_cross-section.html)
663 using MRtrix3Tissue version 5.2.8 (<https://3Tissue.github.io>). With MRtrix3Tissue, diffusion
664 images were reconstructed with single-shell 3-tissue constrained spherical deconvolution (72)
665 using a set of group-average white matter, gray matter, and cerebrospinal fluid response functions
666 estimated with the *dhollander* algorithm (73). Constrained spherical deconvolution was
667 implemented for reconstruction as it allows for the delineation of multiple anatomically-accurate
668 fiber populations per voxel through estimation of a fiber orientation distribution. Each set of
669 antipodally symmetric FOD lobes represents a distinct fiber population; the shape and amplitude
670 of the lobes provides information about fiber microstructure. Critically, the use of 3-tissue
671 response functions during deconvolution removes extra-axonal signal contributions from gray
672 matter and cerebrospinal fluid, increasing the precision of the FOD and the biological specificity
673 of the fiber density metric.

674 Following construction of participant FOD images, images underwent 3-tissue bias field
675 correction and global intensity normalization to ensure that absolute FOD amplitudes were
676 directly comparable across all images. A study-specific FOD template was then created using
677 normalized data from all participants. The template was used to conduct FOD-based tractography
678 (iFOD2 algorithm, MRtrix3 default parameters, 2.5 million streamlines), producing a whole-brain
679 tractogram (74). Subsequently, streamlines with endpoints in a group TMS stimulation sites mask
680 and a left amygdala mask were extracted—delineating a vIPFC-amygdala structural pathway that
681 could support TMS-induced actional potential propagation. The TMS stimulation sites mask was
682 a study-specific mask comprised of dilated amygdala-targeting TMS sites (Fig. 2A). The left
683 amygdala was delineated using the Harvard Oxford subcortical atlas. In order to quantify
684 participant-specific measures within the fiber populations that constitute the extracted vIPFC-
685 amygdala pathway, a fixel-based analysis pipeline was implemented as previously described in
686 detail (75). vIPFC-amygdala pathway streamlines were mapped to individual fixels, and each
687 participant's average fiber density and average fiber cross-section was calculated across fixels
688 corresponding to the pathway. A primary streamline-to-fixel mapping threshold of 5 streamlines
689 was used to ensure the robustness of the pathway, in accordance with prior publications (76). We
690 verified, however, that findings were reproducible at mapping thresholds of 2, 4, 6, and 8. Fiber
691 density, quantified by the integral of the FOD lobe, is a microstructural measure of a pathway's
692 intra-axonal volume per unit volume of tissue (accounting for crossing fibers) that is sensitive to
693 axon count and packing density (77). Fiber cross-section is a morphological measure, computed
694 from the Jacobian determinant of a participant-to-template non-linear warp, that is affected by
695 pathway diameter. Fiber cross-section was log transformed to ensure normality, as advised in the
696 MRtrix3 documentation.

697 Conducting tractography on a study-specific FOD template rather than on individual
698 participant FOD images confers numerous advantages within the framework of the present study.
699 As compared to individual FOD images, the study-specific FOD template has greatly enhanced
700 signal-to-noise and reduced uncertainty associated with each FOD (77). The superior FOD
701 reconstruction quality supports improved tractography performance and lowers susceptibility to
702 spurious streamlines, thus likely increasing the anatomical validity of identified pathways.
703 Extracting streamlines of interest based on a study-specific tractogram also ensures that only
704 white matter pathways that are well represented across the entire study population are analyzed.
705 The delineation of tracts that are highly representative of the population allows for both more
706 apposite across-species comparisons (i.e., between human tractography and macaque tract-
707 tracing) and for more appropriate comparisons across individuals. Specifically, by optimizing
708 anatomical correspondence of the vIPFC-amygdala pathway across individuals, the template

709 approach ensures that inter-individual differences in pathway fiber density cannot simply be
710 attributed to differences in delineation of the pathway itself. This is critical as past work from our
711 group has shown how variability in the extraction of a white matter pathway's streamlines can
712 produce artifactual differences in microstructural measures of interest (78). Finally, the template
713 approach additionally enables the examination of macrostructural morphological measures that
714 are based on the participant-to-template FOD warp.
715

716 Statistical Analysis

717 Statistics were conducted in R 4.0.2. A two-sided, one-sample t-test was conducted to
718 determine if, on average, raw TMS evoked responses in the left amygdala were significantly
719 greater or less than 0 when stimulating near the vLPFC. Differences between amygdala evoked
720 response magnitude and evoked response magnitude in other subcortical structures were
721 evaluated with two-sided, paired-samples t-tests, after confirming normality of paired differences.
722 T-tests were performed with the `t.test` function (stats package in R); corresponding effect sizes
723 were estimated with the `cohensD` function (lsr package). To compare left amygdala evoked
724 response magnitudes when targeting vLPFC sites versus active control sites, a two-sided paired
725 Wilcoxon signed rank test ($mu = 0$) was utilized, given that the paired differences were non-
726 normally distributed (`wilcox.test` function, stats package). Non-parametric Spearman's rank
727 correlations (denoted by r_s) were carried out to determine how correlated the magnitude of the
728 amygdala TMS evoked response was with TMS dose and with response magnitude in other
729 subcortical structures. Spearman's rank partial correlations (denoted by $r_{s,partial}$) controlling for age
730 were employed to quantify associations between TMS evoked response magnitude and white
731 matter fiber density or fiber cross section. The fiber cross-section analysis additionally included
732 intracranial volume as a covariate, given that this morphological measure is strongly correlated
733 with brain size (79). Full and partial Spearman's correlations were implemented with `cor.test`
734 (stats package in R) and `pcor.test` functions (ppcor package), respectively; correlation coefficient
735 confidence intervals were estimated with the `cor_to_ci` function (correlation package).
736 Throughout, false discovery rate correction was applied to correct for multiple comparisons
737 (denoted by p_{FDR}) when multiple subcortical structures were examined in an analysis.
738

739 Code Availability

740 All study analytic code and a guide to code implementation are available at
741 https://pennlinc.github.io/ZAPR01_dMRI_TMSfMRI/.
742

743 References

- 744 1. J. Gründemann, Y. Bitterman, T. Lu, S. Krabbe, B. F. Grewe, M. J. Schnitzer, A. Lüthi, Amygdala ensembles encode behavioral states. *Science*. **364**, eaav8736 (2019).
- 745 2. P. H. Janak, K. M. Tye, From circuits to behaviour in the amygdala. *Nature*. **517**, 284–292 (2015).
- 746 3. M. Pignatelli, A. Beyeler, Valence coding in amygdala circuits. *Current Opinion in Behavioral Sciences*. **26**, 97–106 (2019).
- 747 4. A. Adhikari, T. N. Lerner, J. Finkelstein, S. Pak, J. H. Jennings, T. J. Davidson, E. Ferenczi, L. A. Gunaydin, J. J. Mirzabekov, L. Ye, S.-Y. Kim, A. Lei, K. Deisseroth, Basomedial amygdala mediates top-down control of anxiety and fear. *Nature*. **527**, 179–185 (2015).
- 748 5. C. Agustín-Pavón, K. Braesicke, Y. Shiba, A. M. Santangelo, Y. Mikheenko, G. Cockroft, F. Asma, H. Clarke, M.-S. Man, A. C. Roberts, Lesions of Ventrolateral Prefrontal or Anterior

756 Orbitofrontal Cortex in Primates Heighten Negative Emotion. *Biol Psychiatry*. **72**, 266–272
757 (2012).

758 6. J. T. Buhle, J. A. Silvers, T. D. Wager, R. Lopez, C. Onyemekwu, H. Kober, J. Weber, K. N.
759 Ochsner, Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies.
760 *Cereb Cortex*. **24**, 2981–2990 (2014).

761 7. H. T. Ghashghaei, C. C. Hilgetag, H. Barbas, Sequence of information processing for
762 emotions based on the anatomic dialogue between prefrontal cortex and amygdala.
763 *Neuroimage*. **34**, 905–923 (2007).

764 8. R. Langner, S. Leiberg, F. Hoffstaedter, S. B. Eickhoff, Towards a human self-regulation
765 system: Common and distinct neural signatures of emotional and behavioural control.
766 *Neurosci Biobehav Rev*. **90**, 400–410 (2018).

767 9. K. N. Ochsner, J. A. Silvers, J. T. Buhle, Functional imaging studies of emotion regulation:
768 A synthetic review and evolving model of the cognitive control of emotion. *Ann N Y Acad
769 Sci*. **1251**, E1-24 (2012).

770 10. R. Ray, D. H. Zald, Anatomical insights into the interaction of emotion and cognition in the
771 prefrontal cortex. *Neurosci Biobehav Rev*. **36**, 479–501 (2012).

772 11. L. M. McTeague, B. M. Rosenberg, J. W. Lopez, D. M. Carreon, J. Huemer, Y. Jiang, C. F.
773 Chick, S. B. Eickhoff, A. Etkin, Identification of Common Neural Circuit Disruptions in
774 Emotional Processing Across Psychiatric Disorders. *Am J Psychiatry*. **177**, 411–421 (2020).

775 12. E. Ashworth, S. J. Brooks, H. B. Schiöth, Neural activation of anxiety and depression in
776 children and young people: A systematic meta-analysis of fMRI studies. *Psychiatry
777 Research: Neuroimaging*. **311**, 111272 (2021).

778 13. A. Etkin, T. D. Wager, Functional neuroimaging of anxiety: a meta-analysis of emotional
779 processing in PTSD, social anxiety disorder, and specific phobia. *Am J Psychiatry*. **164**,
780 1476–1488 (2007).

781 14. D. Janiri, D. A. Moser, G. E. Doucet, M. J. Luber, A. Rasgon, W. H. Lee, J. W. Murrough,
782 G. Sani, S. B. Eickhoff, S. Frangou, Shared Neural Phenotypes for Mood and Anxiety
783 Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies. *JAMA
784 Psychiatry*. **77**, 172–179 (2020).

785 15. Q. Guo, C. Li, J. Wang, Updated Review on the Clinical Use of Repetitive Transcranial
786 Magnetic Stimulation in Psychiatric Disorders. *Neurosci Bull*. **33**, 747–756 (2017).

787 16. J.-P. Lefaucheur, A. Aleman, C. Baeken, D. H. Benninger, J. Brunelin, V. Di Lazzaro, S. R.
788 Filipović, C. Grefkes, A. Hasan, F. C. Hummel, S. K. Jääskeläinen, B. Langguth, L.
789 Leocani, A. Londero, R. Nardone, J.-P. Nguyen, T. Nyffeler, A. J. Oliveira-Maia, A.
790 Oliviero, F. Padberg, U. Palm, W. Paulus, E. Poulet, A. Quararone, F. Rachid, I. Rektorová,
791 S. Rossi, H. Sahlsten, M. Schecklmann, D. Szekely, U. Ziemann, Evidence-based guidelines
792 on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update
793 (2014–2018). *Clinical Neurophysiology*. **131**, 474–528 (2020).

794 17. Y. I. Sheline, D. M. Barch, J. M. Donnelly, J. M. Ollinger, A. Z. Snyder, M. A. Mintun,
795 Increased amygdala response to masked emotional faces in depressed subjects resolves with
796 antidepressant treatment: an fMRI study. *Biol Psychiatry*. **50**, 651–658 (2001).

797 18. A. T. Drysdale, L. Grosenick, J. Downar, K. Dunlop, F. Mansouri, Y. Meng, R. N. Fethcho,
798 B. Zebley, D. J. Oathes, A. Etkin, A. F. Schatzberg, K. Sudheimer, J. Keller, H. S. Mayberg,
799 F. M. Gunning, G. S. Alexopoulos, M. D. Fox, A. Pascual-Leone, H. U. Voss, B. J. Casey,
800 M. J. Dubin, C. Liston, Resting-state connectivity biomarkers define neurophysiological
801 subtypes of depression. *Nat Med*. **23**, 28–38 (2017).

802 19. N. Eshel, C. J. Keller, W. Wu, J. Jiang, C. Mills-Finnerty, J. Huemer, R. Wright, G. A.
803 Fonzo, N. Ichikawa, D. Carreon, M. Wong, A. Yee, E. Shpigel, Y. Guo, L. McTeague, A.
804 Maron-Katz, A. Etkin, Global connectivity and local excitability changes underlie
805 antidepressant effects of repetitive transcranial magnetic stimulation.
806 *Neuropsychopharmacology*. **45**, 1018–1025 (2020).

807 20. N. S. Philip, J. Barredo, M. van 't Wout-Frank, A. R. Tyrka, L. H. Price, L. L. Carpenter,
808 Network Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in
809 Posttraumatic Stress Disorder and Major Depressive Disorder. *Biol Psychiatry*. **83**, 263–272
810 (2018).

811 21. S. J. H. van Rooij, L. M. Sippel, W. M. McDonald, P. E. Holtzheimer, Defining focal brain
812 stimulation targets for PTSD using neuroimaging. *Depression and Anxiety*. **38**, 768–785
813 (2021).

814 22. G. A. Fonzo, M. S. Goodkind, D. J. Oathes, Y. V. Zaiko, M. Harvey, K. K. Peng, M. E.
815 Weiss, A. L. Thompson, S. E. Zack, S. E. Lindley, B. A. Arnow, B. Jo, J. J. Gross, B. O.
816 Rothbaum, A. Etkin, Brain Activation During Emotional Reactivity and Regulation Predicts
817 Psychotherapy Outcome in Posttraumatic Stress Disorder. *Am J Psychiatry*. **174**, 1163–1174
818 (2017).

819 23. D. J. Oathes, J. P. Zimmerman, R. Duprat, S. S. Japp, M. Scully, B. M. Rosenberg, M. W.
820 Flounders, H. Long, J. A. Deluisi, M. Elliott, G. Shandler, R. T. Shinohara, K. A. Linn,
821 Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by
822 interleaved TMS/fMRI. *Exp Brain Res*. **239**, 1165–1178 (2021).

823 24. P. M. Rossini, D. Burke, R. Chen, L. G. Cohen, Z. Daskalakis, R. Di Iorio, V. Di Lazzaro, F.
824 Ferreri, P. B. Fitzgerald, M. S. George, M. Hallett, J. P. Lefaucheur, B. Langguth, H.
825 Matsumoto, C. Miniussi, M. A. Nitsche, A. Pascual-Leone, W. Paulus, S. Rossi, J. C.
826 Rothwell, H. R. Siebner, Y. Ugawa, V. Walsh, U. Ziemann, Non-invasive electrical and
827 magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles
828 and procedures for routine clinical and research application. An updated report from an
829 I.F.C.N. Committee. *Clin Neurophysiol*. **126**, 1071–1107 (2015).

830 25. E. A. Allen, B. N. Pasley, T. Duong, R. D. Freeman, Transcranial Magnetic Stimulation
831 Elicits Coupled Neural and Hemodynamic Consequences. *Science*. **317**, 1918–1921 (2007).

832 26. M. C. Romero, M. Davare, M. Armendariz, P. Janssen, Neural effects of transcranial
833 magnetic stimulation at the single-cell level. *Nat Commun*. **10**, 2642 (2019).

834 27. T. Ortuño, K. L. Grieve, R. Cao, J. Cudeiro, C. Rivadulla, Bursting thalamic responses in
835 awake monkey contribute to visual detection and are modulated by corticofugal feedback.
836 *Front Behav Neurosci.* **8**, 198 (2014).

837 28. T. O. Bergmann, R. Varatheswaran, C. A. Hanlon, K. H. Madsen, A. Thielscher, H. R.
838 Siebner, Concurrent TMS-fMRI for causal network perturbation and proof of target
839 engagement. *Neuroimage*. **237**, 118093 (2021).

840 29. D. Momi, R. A. Ozdemir, E. Tadayon, P. Boucher, M. M. Shafi, A. Pascual-Leone, E.
841 Santarnecchi, Network-level macroscale structural connectivity predicts propagation of
842 transcranial magnetic stimulation. *Neuroimage*. **229**, 117698 (2021).

843 30. D. J. Oathes, N. L. Balderston, K. P. Kording, J. A. DeLuisi, G. M. Perez, J. D. Medaglia, Y.
844 Fan, R. J. Duprat, T. D. Satterthwaite, Y. I. Sheline, K. A. Linn, Combining transcranial
845 magnetic stimulation with functional magnetic resonance imaging for probing and
846 modulating neural circuits relevant to affective disorders. *Wiley Interdiscip Rev Cogn Sci*,
847 e1553 (2021).

848 31. J. L. Price, W. C. Drevets, Neural circuits underlying the pathophysiology of mood
849 disorders. *Trends Cogn Sci.* **16**, 61–71 (2012).

850 32. D. G. Amaral, J. L. Price, Amygdalo-cortical projections in the monkey (*Macaca*
851 *fascicularis*). *Journal of Comparative Neurology*. **230**, 465–496 (1984).

852 33. L. G. Goetschius, T. C. Hein, W. I. Mattson, N. Lopez-Duran, H. L. Dotterer, R. C. Welsh,
853 C. Mitchell, L. W. Hyde, C. S. Monk, Amygdala-prefrontal cortex white matter tracts are
854 widespread, variable and implicated in amygdala modulation in adolescents. *Neuroimage*.
855 **191**, 278–291 (2019).

856 34. M. Avissar, F. Powell, I. Ilieva, M. Respino, F. M. Gunning, C. Liston, M. J. Dubin,
857 Functional connectivity of the left DLPFC to striatum predicts treatment response of
858 depression to TMS. *Brain Stimulation*. **10**, 919–925 (2017).

859 35. M. D. Fox, R. L. Buckner, M. P. White, M. D. Greicius, A. Pascual-Leone, Efficacy of
860 Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional
861 Connectivity with the Subgenual Cingulate. *Biol Psychiatry*. **72**, 595–603 (2012).

862 36. L. J. Volz, M. Hamada, J. C. Rothwell, C. Grefkes, What Makes the Muscle Twitch: Motor
863 System Connectivity and TMS-Induced Activity. *Cereb Cortex*. **25**, 2346–2353 (2015).

864 37. A. Weigand, A. Horn, R. Caballero, D. Cooke, A. P. Stern, S. F. Taylor, D. Press, A.
865 Pascual-Leone, M. D. Fox, Prospective Validation That Subgenual Connectivity Predicts
866 Antidepressant Efficacy of Transcranial Magnetic Stimulation Sites. *Biol Psychiatry*. **84**,
867 28–37 (2018).

868 38. R. F. H. Cash, A. Zalesky, R. H. Thomson, Y. Tian, L. Cocchi, P. B. Fitzgerald, Subgenual
869 Functional Connectivity Predicts Antidepressant Treatment Response to Transcranial
870 Magnetic Stimulation: Independent Validation and Evaluation of Personalization. *Biol*
871 *Psychiatry*. **86**, e5–e7 (2019).

872 39. S. Wang, R. Yu, J. M. Tyszka, S. Zhen, C. Kovach, S. Sun, Y. Huang, R. Hurlemann, I. B.
873 Ross, J. M. Chung, A. N. Mamelak, R. Adolphs, U. Rutishauser, The human amygdala

874 parametrically encodes the intensity of specific facial emotions and their categorical
875 ambiguity. *Nat Commun.* **8**, 14821 (2017).

876 40. B. R. Godlewska, R. Norbury, S. Selvaraj, P. J. Cowen, C. J. Harmer, Short-term SSRI
877 treatment normalises amygdala hyperactivity in depressed patients. *Psychol Med.* **42**, 2609–
878 2617 (2012).

879 41. T. A. Hare, N. Tottenham, M. C. Davidson, G. H. Glover, B. J. Casey, Contributions of
880 amygdala and striatal activity in emotion regulation. *Biol Psychiatry*. **57**, 624–632 (2005).

881 42. R. Pijnenburg, L. H. Scholtens, D. J. Ardesch, S. C. de Lange, Y. Wei, M. P. van den
882 Heuvel, Myelo- and cytoarchitectonic microstructural and functional human cortical atlases
883 reconstructed in common MRI space. *Neuroimage*. **239**, 118274 (2021).

884 43. T. R. Insel, N. Gogtay, National Institute of Mental Health Clinical Trials: New
885 Opportunities, New Expectations. *JAMA Psychiatry*. **71**, 745–746 (2014).

886 44. K. R. Bijanki, S. J. H. van Rooij, T. D. Ely, J. S. Stevens, C. S. Inman, R. E. Fasano, S. E.
887 Carter, S. J. Winters, J. R. Baman, D. L. Drane, T. Jovanovic, J. T. Willie, Case Series:
888 Unilateral Amygdala Ablation Ameliorates Post-Traumatic Stress Disorder Symptoms and
889 Biomarkers. *Neurosurgery*. **87**, 796–802 (2020).

890 45. H. Klumpp, J. M. Fitzgerald, Neuroimaging Predictors and Mechanisms of Treatment
891 Response in Social Anxiety Disorder: an Overview of the Amygdala. *Curr Psychiatry Rep.*
892 **20**, 89 (2018).

893 46. I. Labuschagne, K. L. Phan, A. Wood, M. Angstadt, P. Chua, M. Heinrichs, J. C. Stout, P. J.
894 Nathan, Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety
895 disorder. *Neuropsychopharmacology*. **35**, 2403–2413 (2010).

896 47. R. Redlich, C. Bürger, K. Dohm, D. Grotegerd, N. Opel, D. Zaremba, S. Meinert, K. Förster,
897 J. Repple, R. Schnelle, C. Wagenknecht, M. Zavorotnyy, W. Heindel, H. Kugel, M.
898 Gerbaulet, J. Alferink, V. Arolt, P. Zwanzger, U. Dannlowski, Effects of electroconvulsive
899 therapy on amygdala function – a longitudinal functional magnetic
900 resonance imaging study. *Psychol Med.* **47**, 2166–2176 (2017).

901 48. P. R. Szeszko, R. Yehuda, Magnetic resonance imaging predictors of psychotherapy
902 treatment response in post-traumatic stress disorder: A role for the salience network.
903 *Psychiatry Res.* **277**, 52–57 (2019).

904 49. N. W. Lingawi, V. Laurent, R. F. Westbrook, N. M. Holmes, The role of the basolateral
905 amygdala and infralimbic cortex in (re)learning extinction. *Psychopharmacology*. **236**, 303–
906 312 (2019).

907 50. D. C. Knight, C. N. Smith, D. T. Cheng, E. A. Stein, F. J. Helmstetter, Amygdala and
908 hippocampal activity during acquisition and extinction of human fear conditioning. *Cogn
909 Affect Behav Neurosci.* **4**, 317–325 (2004).

910 51. D. Cao, Y. Li, Y. Tang, Functional specificity of the left ventrolateral prefrontal cortex in
911 positive reappraisal: A single-pulse transcranial magnetic stimulation study. *Cogn Affect
912 Behav Neurosci.* **21**, 793–804 (2021).

913 52. V. R. Rao, K. K. Sellers, D. L. Wallace, M. B. Lee, M. Bijanzadeh, O. G. Sani, Y. Yang, M.
914 M. Shanechi, H. E. Dawes, E. F. Chang, Direct Electrical Stimulation of Lateral
915 Orbitofrontal Cortex Acutely Improves Mood in Individuals with Symptoms of Depression.
916 *Current Biology*. **28**, 3893–3902.e4 (2018).

917 53. T. D. Satterthwaite, P. A. Cook, S. E. Bruce, C. Conway, E. Mikkelsen, E. Satchell, S. N.
918 Vandekar, T. Durbin, R. T. Shinohara, Y. I. Sheline, Dimensional depression severity in
919 women with major depression and post-traumatic stress disorder correlates with fronto-
920 amygdalar hypoconnectivity. *Mol Psychiatry*. **21**, 894–902 (2016).

921 54. P. Riva-Posse, K. S. Choi, P. E. Holtzheimer, C. C. McIntyre, R. E. Gross, A. Chaturvedi, A.
922 L. Crowell, S. J. Garlow, J. K. Rajendra, H. S. Mayberg, Defining Critical White Matter
923 Pathways Mediating Successful Subcallosal Cingulate Deep Brain Stimulation for
924 Treatment-Resistant Depression. *Biol Psychiatry*. **76**, 963–969 (2014).

925 55. J. C. Baldermann, C. Melzer, A. Zapf, S. Kohl, L. Timmermann, M. Tittgemeyer, D. Huys,
926 V. Visser-Vandewalle, A. A. Kühn, A. Horn, J. Kuhn, Connectivity Profile Predictive of
927 Effective Deep Brain Stimulation in Obsessive-Compulsive Disorder. *Biol Psychiatry*. **85**,
928 735–743 (2019).

929 56. N. Li, J. C. Baldermann, A. Kibleur, S. Treu, H. Akram, G. J. B. Elias, A. Boutet, A. M.
930 Lozano, B. Al-Fatly, B. Strange, J. A. Barcia, L. Zrinzo, E. Joyce, S. Chabardes, V. Visser-
931 Vandewalle, M. Polosan, J. Kuhn, A. A. Kühn, A. Horn, A unified connectomic target for
932 deep brain stimulation in obsessive-compulsive disorder. *Nat Commun*. **11**, 3364 (2020).

933 57. P. E. Mosley, F. Windels, J. Morris, T. Coyne, R. Marsh, A. Giorni, A. Mohan, P. Sachdev,
934 E. O’Leary, M. Boschen, P. Sah, P. A. Silburn, A randomised, double-blind, sham-
935 controlled trial of deep brain stimulation of the bed nucleus of the stria terminalis for
936 treatment-resistant obsessive-compulsive disorder. *Transl Psychiatry*. **11**, 1–17 (2021).

937 58. P. Riva-Posse, K. S. Choi, P. E. Holtzheimer, A. L. Crowell, S. J. Garlow, J. K. Rajendra, C.
938 C. McIntyre, R. E. Gross, H. S. Mayberg, A connectomic approach for subcallosal cingulate
939 deep brain stimulation surgery: prospective targeting in treatment-resistant depression. *Mol
940 Psychiatry*. **23**, 843–849 (2018).

941 59. E. J. Cole, K. H. Stimpson, B. S. Bentzley, M. Gulser, K. Cherian, C. Tischler, R. Nejad, H.
942 Pankow, E. Choi, H. Aaron, F. M. Espil, J. Pannu, X. Xiao, D. Duvio, H. B. Solvason, J.
943 Hawkins, A. Guerra, B. Jo, K. S. Raj, A. L. Phillips, F. Barmak, J. H. Bishop, J. P. Coetzee,
944 C. DeBattista, J. Keller, A. F. Schatzberg, K. D. Sudheimer, N. R. Williams, Stanford
945 Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. *Am J
946 Psychiatry*. **177**, 716–726 (2020).

947 60. L. Ning, N. Makris, J. A. Camprodon, Y. Rathi, Limits and reproducibility of resting-state
948 functional MRI definition of DLPFC targets for neuromodulation. *Brain Stimulation*. **12**,
949 129–138 (2019).

950 61. F. Blankenburg, C. C. Ruff, S. Bestmann, O. Bjoertomt, N. Eshel, O. Josephs, N. Weiskopf,
951 J. Driver, Interhemispheric Effect of Parietal TMS on Somatosensory Response Confirmed
952 Directly with Concurrent TMS–fMRI. *Neurosci*. **28**, 13202–13208 (2008).

953 62. S. Borgomaneri, S. Battaglia, S. Garofalo, F. Tortora, A. Avenanti, G. di Pellegrino, State-
954 Dependent TMS over Prefrontal Cortex Disrupts Fear-Memory Reconsolidation and
955 Prevents the Return of Fear. *Current Biology*. **30**, 3672–3679.e4 (2020).

956 63. M. S. Hermiller, Y. F. Chen, T. B. Parrish, J. L. Voss, Evidence for Immediate Enhancement
957 of Hippocampal Memory Encoding by Network-Targeted Theta-Burst Stimulation during
958 Concurrent fMRI. *Neurosci.* **40**, 7155–7168 (2020).

959 64. J. Silvanto, N. G. Muggleton, Testing the validity of the TMS state-dependency approach:
960 targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and
961 V5/MT+. *Neuroimage*. **40**, 1841–1848 (2008).

962 65. N. J. Tustison, P. A. Cook, A. Klein, G. Song, S. R. Das, J. T. Duda, B. M. Kandel, N. van
963 Strien, J. R. Stone, J. C. Gee, B. B. Avants, Large-scale evaluation of ANTs and FreeSurfer
964 cortical thickness measurements. *Neuroimage*. **99**, 166–179 (2014).

965 66. R. Ceric, A. F. G. Rosen, G. Erus, M. Cieslak, A. Adebimpe, P. A. Cook, D. S. Bassett, C.
966 Davatzikos, D. H. Wolf, T. D. Satterthwaite, Mitigating head motion artifact in functional
967 connectivity MRI. *Nat Protoc.* **13**, 2801–2826 (2018).

968 67. R. Ceric, D. H. Wolf, J. D. Power, D. R. Roalf, G. L. Baum, K. Ruparel, R. T. Shinohara, M.
969 A. Elliott, S. B. Eickhoff, C. Davatzikos, R. C. Gur, R. E. Gur, D. S. Bassett, T. D.
970 Satterthwaite, Benchmarking of participant-level confound regression strategies for the
971 control of motion artifact in studies of functional connectivity. *Neuroimage*. **154**, 174–187
972 (2017).

973 68. M. Cieslak, P. A. Cook, X. He, F.-C. Yeh, T. Dhollander, A. Adebimpe, G. K. Aguirre, D. S.
974 Bassett, R. F. Betzel, J. Bourque, L. M. Cabral, C. Davatzikos, J. A. Detre, E. Earl, M. A.
975 Elliott, S. Fadnavis, D. A. Fair, W. Foran, P. Fotiadis, E. Garyfallidis, B. Giesbrecht, R. C.
976 Gur, R. E. Gur, M. B. Kelz, A. Keshavan, B. S. Larsen, B. Luna, A. P. Mackey, M. P.
977 Milham, D. J. Oathes, A. Perrone, A. R. Pines, D. R. Roalf, A. Richie-Halford, A. Rokem,
978 V. J. Sydnor, T. M. Tapera, U. A. Tooley, J. M. Vettel, J. D. Yeatman, S. T. Grafton, T. D.
979 Satterthwaite, QSIprep: an integrative platform for preprocessing and reconstructing
980 diffusion MRI data. *Nat Methods*. **18**, 775–778 (2021).

981 69. J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, E. Fieremans, Denoising
982 of diffusion MRI using random matrix theory. *Neuroimage*. **142**, 394–406 (2016).

983 70. J. L. R. Andersson, M. S. Graham, E. Zsoldos, S. N. Sotiropoulos, Incorporating outlier
984 detection and replacement into a non-parametric framework for movement and distortion
985 correction of diffusion MR images. *Neuroimage*. **141**, 556–572 (2016).

986 71. J.-D. Tournier, R. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens,
987 B. Jeurissen, C.-H. Yeh, A. Connelly, MRtrix3: A fast, flexible and open software
988 framework for medical image processing and visualisation. *Neuroimage*. **202**, 116137
989 (2019).

990 72. J.-D. Tournier, F. Calamante, A. Connelly, Robust determination of the fibre orientation
991 distribution in diffusion MRI: Non-negativity constrained super-resolved spherical
992 deconvolution. *Neuroimage*. **35**, 1459–1472 (2007).

993 73. T. Dhollander, D. Raffelt, A. Connelly, Unsupervised 3-tissue response function estimation
994 from single-shell or multi-shell diffusion MR data without a co-registered T1 image in
995 *ISMRM Workshop on Breaking the Barriers of Diffusion MRI* (2016).

996 74. J.-D. Tournier, F. Calamante, A. Connelly, MRtrix: Diffusion tractography in crossing fiber
997 regions. *International Journal of Imaging Systems and Technology*. **22**, 53–66 (2012).

998 75. D. A. Raffelt, J.-D. Tournier, R. E. Smith, D. N. Vaughan, G. Jackson, G. R. Ridgway, A.
999 Connelly, Investigating white matter fibre density and morphology using fixel-based
1000 analysis. *Neuroimage*. **144**, 58–73 (2017).

1001 76. D. Dimond, C. S. Rohr, R. E. Smith, T. Dhollander, I. Cho, C. Lebel, D. Dewey, A.
1002 Connelly, S. Bray, Early childhood development of white matter fiber density and
1003 morphology. *Neuroimage*. **210**, 116552 (2020).

1004 77. D. A. Raffelt, R. E. Smith, G. R. Ridgway, J.-D. Tournier, D. N. Vaughan, S. Rose, R.
1005 Henderson, A. Connelly, Connectivity-based fixel enhancement: Whole-brain statistical
1006 analysis of diffusion MRI measures in the presence of crossing fibres. *Neuroimage*. **117**, 40–
1007 55 (2015).

1008 78. V. J. Sydnor, A. M. Rivas-Grajales, A. E. Lyall, F. Zhang, S. Bouix, S. Karmacharya, M. E.
1009 Shenton, C.-F. Westin, N. Makris, D. Wassermann, L. J. O'Donnell, M. Kubicki, A
1010 comparison of three fiber tract delineation methods and their impact on white matter
1011 analysis. *Neuroimage*. **178**, 318–331 (2018).

1012 79. S. Genc, C. B. Malpas, A. Gulenc, E. Sciberras, D. Efron, T. J. Silk, M. L. Seal,
1013 Longitudinal patterns of white matter fibre density and morphology in children are
1014 associated with age and pubertal stage. *Dev Cogn Neurosci*. **45**, 100853 (2020).

1015 Acknowledgments

1016 Funding:

National Science Foundation Graduate Research Fellowship DGE-1845298 (VJS)

National Institutes of Mental Health R01MH111886 (DJO)

National Institutes of Mental Health RF1MH116920 (TDS, DSB, DJO)

1017 1018 Author contributions:

VJS and DJO conceived of the study. RD, JD, HL, and MS acquired the MRI data. RD and MWF processed the structural and resting state functional MRI data and identified TMS stimulation sites, with guidance from DJO. VJS processed the diffusion MRI data, with guidance from MC. VJS implemented all statistical analyses and generated all figures. MC conducted an internal code review and technical replication. NLB, YIS, DSB, TDS, and DJO helped with data interpretation and clinical applicability. VJS and DJO wrote the manuscript. All authors revised the manuscript.

1019 1020 Competing interests:

1021 The authors declare that they have no competing interests.

1022 1023 Data and materials availability:

1024 1025 The neuroimaging data collected and analyzed for the current study are available upon reasonable request with a data use agreement. All code written for TMS evoked response quantification,

1026 diffusion MRI analysis, statistical analysis, and visualization is available at
1027 https://github.com/PennLINC/ZAPR01_dMRI_TMSfMRI.