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Single sentence summary: 

Kidney cancer evolution, prognosis and therapy are revealed by a single cell multi-regional study of 

the microenvironment. 

 

Abstract 

Tumour behaviour is dependent on the oncogenic properties of cancer cells and their multi-

cellular interactions. These dependencies were examined through 270,000 single cell transcriptomes 

and 100 micro-dissected whole exomes obtained from 12 patients with kidney tumours. Tissue was 

sampled from multiple regions of tumour core, tumour-normal interface, normal surrounding tissues, 

and peripheral blood. We found the principal spatial location of CD8+ T cell clonotypes largely defined 

exhaustion state, with clonotypic heterogeneity not explained by somatic intra-tumoural 
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heterogeneity. De novo mutation calling from single cell RNA sequencing data allows us to lineage-

trace and infer clonality of cells. We discovered six meta-programmes that distinguish tumour cell 

function. An epithelial-mesenchymal transition meta-programme, enriched at the tumour-normal 

interface appears modulated through macrophage expressed IL1B, potentially forming a therapeutic 

target. 

 

Main Text: 

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC), 

accounting for approximately 75% of RCC cases and the majority of deaths from kidney cancer (1). 

Many efforts have characterised the genomic landscape of ccRCC, revealing important driver events 

such as bi-allelic inactivation of VHL (most commonly via concomitant loss of chromosome 3p and 

mutation/epigenetic silencing in VHL), followed by mutations in chromatin remodelling and histone 

modification related genes PBRM1, BAP1 and SETD2 (2-6). The timing of initiating events in the 

evolution of ccRCC has been systematically studied (4). Intra-tumoural heterogeneity (ITH) of 

subsequent mutational events appears to be a salient feature of ccRCC, as revealed by previous multi-

region exome sequencing studies (5, 7, 8). In contrast, the ITH of ccRCC at a transcriptional level is less 

well understood, in part due to the complexity of the multicellular ecosystem comprising the tumour 

microenvironment (TME). In particular, the phenotypic heterogeneity of malignant and non-malignant 

cells in the TME of ccRCC and how it associates with geographical localisation remain elusive.  

ccRCC is a cancer type with heavy infiltration of immune cells (9, 10). Immune checkpoint 

blockade (ICB) therapy has been shown effective in improving the survival of patients (11, 12), 

highlighting the importance of exploring the immune microenvironment of ccRCC. Previous studies 

profiled the immune landscape of ccRCC using bulk sequencing (9, 13), which limited their power in 

dissecting the diverse immune cell population. A comprehensive immune atlas of ccRCC using mass 

cytometry shed light on immune cell diversity in the ccRCC tumour ecosystem (14). Recent advances 

in single cell RNA sequencing (scRNA-seq) and its applications in cancer research have revolutionised 

our understanding of phenotypic heterogeneity of tumour cells (15-17), immune landscape of 

tumours (18-20), complexity and plasticity of the TME (21, 22), and intercellular communications in 

the TME (23, 24). Specifically, in ccRCC, a recent scRNA-seq study provided evidence to support its 

origin from proximal tubular cells (25). Other studies utilised scRNA-seq to study the immune 

landscape of ccRCC mainly focusing on ICB therapy related cohorts (26, 27) and different disease 

stages (28), uncovering key features that are related to therapeutic efficacy or disease progression.  

In considering heterogeneity in the TME, the geographic regions of interest extend those relevant 

to mutational ITH. The wider regions of interest include circulating blood, the tumour-normal interface 
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or tumour pseudocapsule (representing the boundary between tumour and adjacent normal kidney), 

adjacent normal kidney, and perinephric adipose tissue. The fibrous connective tissue of the 

pseudocapsule appears to spatially constrain growth, and invasion is correlated with tumour stage 

and grade (29). Perinephric adiposity is of interest because of the obesity paradox in RCC, whereby 

obesity is one of the strongest risk factors for the diagnosis of kidney cancer, yet is also associated 

with improved oncological outcomes (30). Understanding the spatial heterogeneity and evolution of 

ccRCC with respect to tumour cells, various immune/stromal cells, and interactions between them in 

the wider TME is still lacking. To address this, we performed multi-region based scRNA-seq from 12 

patients, sampling peripheral blood, normal kidney, four different spatial regions of the tumour core, 

and the tumour-normal interface, alongside focally exhaustive exome sequencing of laser-capture 

microdissection (LCM) derived tumour samples.  

 

Results 

Multi-region based genomic and single-cell transcriptomic profiling of RCC 

We conducted multi-region genomic and single-cell transcriptomic profiling in 12 patients, who 

underwent surgical resection of radiologically diagnosed renal tumours. After histopathological 

examination, tumours from 10 out of the 12 patients were evaluated as ccRCC, one (PD47172) was an 

oncocytoma, and one (PD44714) was a large benign thick-walled cyst (fig. S1A and table S1). In each 

patient, we sampled tissues from peripheral blood, normal kidney, four different spatial regions of the 

tumour core, and the tumour-normal interface. Additionally, we sampled tissues from the perinephric 

fat, normal adrenal gland, adrenal metastasis, and tumour thrombus, if available (Fig. 1A). Where 

sufficient numbers of viable single cells could be retrieved from these samples, we performed droplet-

based 5’ scRNA-seq with T-cell receptor (TCR) enrichment using the 10x platform (table S2). In parallel, 

in each patient, we dissected micro-biopsy samples from each region containing tumour tissue using 

LCM prior to performing whole-exome sequencing (WES) (table S3). The LCM approach allowed us to 

explore the limit of ITH by interrogating sub-millimeter sized biopsies. Based on WES data, we 

identified genomic alterations that have been reported as recurrent/driver events in ccRCC (2, 4). 

Seven out of nine ccRCC patients (no data in one ccRCC patient) harboured VHL mutations, four had 

PBRM1 mutations, and three carried BAP1 mutations (fig. S1A and table S1). Copy number loss of 

chromosome 3p was detected in all of the nine patients (fig. S1A). The oncocytoma carried a 

characteristic copy number loss of the whole of chromosome 1 (fig. S1A).  

Using scRNA-seq, we captured transcriptomes from approximately 270,000 cells after stringent 

quality control, which can be broadly categorised into 12 major cell types based on the expression of 

canonical marker genes (Fig. 1, B and C, fig. S1, B to D). As a result of our single cell isolation protocol, 
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T cells (expressing CD3D, CD3G, and CD3E) were most abundant in our data, followed by myeloid cells 

(expressing CD68 and CD14) and natural killer (NK) cells (expressing NCR1 and KLRC1) (Fig. 1C and fig. 

S1E). We also captured significant numbers of other immune cell populations: B cells (expressing 

CD79A and MS4A1), plasma cells (expressing IGKC and IGHG1), mast cells (expressing TPSAB1 and 

TPSB2), and plasmacytoid dendritic cells (pDC; expressing IRF7 and LILRA4) (Fig. 1C and fig. S1E). Apart 

from the immune compartment, four stromal cell types were identified in our data: endothelial cells 

(EC) (expressing PLVAP and TIMP3), fibroblasts (expressing ACTA2 and TAGLN), proximal tubular (PT) 

cells (expressing SLC22A8 and GPX3), and non-PT epithelial cells (expressing DEFB1 and UMOD) (Fig. 

1C and fig. S1E). RCC tumour cells were identified within clusters that specifically expressed CA9 and 

harboured extensive copy number variations (CNVs) across their genomes, as inferred from scRNA-

seq data (Fig. 1C, fig. S1, E and F). Next, we investigated the tissue of origin of the 12 major cell types 

(Fig. 1D) and observed different tissue distributions of these cell types (four regions were combined 

in the analysis) (Fig. 1, E and F).  

We further conducted sub-clustering analyses for the major cell compartments covered in our 

study. Sub-clustering of NK cells generated 14 clusters with differentially expressed genes (DEGs) and 

heterogeneous tissues of origin (fig. S2, A to D and table S4). Among these clusters, the well-known 

CD56 (NCAM1) and CD16 (FCGR3A) expressing populations were identified (fig. S2B). An innate 

lymphoid cell (ILC) cluster was characterised by expression of IL7R and FXYD7 (fig. S2B). Two NK 

clusters (cluster 2 and 6) showed high expression of interferon gamma (IFNG) with cluster 6 also highly 

expressing cytokine CCL4L2 and potentially enriching in normal adrenal gland (fig. S2, B and D). Some 

less characterised NK clusters were identified such as cluster 4, which specifically expressed KRT81 

and KRT86 (fig. S2B). This NK cell subset was previously reported in hepatocellular carcinomas with its 

function remaining unclear (22). The B/plasma cell compartment was categorised into 13 clusters, 

among which well-known major B cell populations such as naïve, switched memory, and non-switched 

memory B cells were identified (fig. S2, E and F, table S4). Activated B cells (both AREG and RHOB high 

clusters) were potentially enriched in tumour with AREGhigh cluster being more enriched in the 

perinephric fat. Plasma IgA, IgG and cycling cells (expressing IGHA1, IGHG1 and MKI67, respectively) 

were found to be enriched in tissues compared to peripheral blood (fig. S2, F to H).  
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Fig. 1. Sampling strategy and overall tissue distribution of the major cell types in RCC. (A) Sampling 

strategy for each of 12 patient donors. a, c, d and e represent four different regions of the tumour core; 

g, tumour-normal interface; f, perinephric fat; n, normal kidney; b, peripheral blood; h, normal adrenal 

gland; i, adrenal metastasis; t, thrombus. a1, a2, a3 and a4 represent LCM biopsies in tumour region a. 

(B) Overall uniform manifold approximation and projection (UMAP) of all cells in our study. (C) Heatmap 

showing top differentially expressed genes (DEGs) in each of the major cell types. (D) UMAP showing 
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tissue distribution of the major cell types. (E and F) Barplots showing the tissue distribution of the major 

cell types. Colours in (E) correspond to those in (D), and colors in (F) correspond to those in (B). 

 

CD8+ T cell lineages reveal evolutionary trajectories and the influence of spatial location on 

exhaustion 

T cells comprised the most abundant cell type in our data and were broadly divided into two major 

compartments: CD4+ and CD8+ T cells (including gamma delta T cells). Sub-clustering of the CD8+ T cell 

compartment resulted in the identification of 18 clusters with various DEGs and heterogeneous tissue 

locations (Fig. 2A, fig. S3, A to D). Overall, we identified typical CD8+ T cell clusters which represented 

different T cell functional states including naïve, effector, memory, pre-dysfunction and dysfunction 

based on the expression of canonical marker genes (Fig. 2A and table S4). Naïve/central memory (CM) 

CD8+ T cells, which highly expressed genes such as LEF1 and CCR7, were found to be mostly enriched 

in peripheral blood (Fig. 2A and fig. S3D). We identified resident memory (RM) T cells, as they 

expressed tissue-residency markers (i.e., ITGAE and CD69) and were mostly enriched in the normal 

kidney (Fig. 2A, fig. S3, A and D). Particularly, cluster 10 also highly expressed CXCL13, which may play 

potential roles in B cell recruitment and the formation of tertiary lymphoid structures (31). We found 

cluster 6 highly expressed FGFBP2 and CX3CR1, and was substantially enriched in peripheral blood, 

therefore this cluster may represent recently activated effector memory T cells (CD8+ T_EMRA). Two 

exhausted T cell clusters (cluster 7 and 8) were identified based on elevated expression of genes 

including LAG3, TIGIT, PDCD1, HAVCR2, and CTLA4 (Fig. 2A and fig. S3A). Interestingly, we found 

cluster 8 had the highest expression of LAG3 and specifically expressed the immunosuppressive 

cytokine IL10 (Fig. 2A). This cluster may represent CD8+ T cells with extremely high effector and 

dysfunction levels, which exert regulatory functions by producing IL-10. Mucosal-associated invariant 

T (MAIT) cells were found as highly expressing TRAV1-2 and IL7R (Fig. 2A). Two cycling cell clusters 

were identified: one (expressing MCM5 and PCNA) represented cells in the G1/S phase of cell cycle 

and the other (expressing TOP2A and MKI67) represented those in G2/M phase (Fig. 2A). Besides the 

conventional CD8+ T cell clusters, we also identified two gamma delta T cell clusters: gdT_Vd1 

(expressing TRDV1) and gdT_Vd2 (expressing TRDV2) (Fig. 2A). We also performed sub-clustering 

analysis of CD4+ T cell population, revealing various subtypes such as CD4+ naïve/CM and CD4+ 

regulatory T cells (Tregs) and their different tissue distributions (fig. S3, G to I and table S4). 

Next, we conducted a pseudotime trajectory analysis on CD8+ T cells excluding gamma delta T and 

cycling clusters using the Monocle 3 and RNA velocity analysis (Fig. 2B and fig. S3E). Along the 

pseudotime trajectory, we found that cytotoxicity related genes (i.e., KLRG1, GNLY and GZMH) were 

gradually down-regulated while dysfunction related genes (i.e., CTLA4, HAVCR2 and LAG3) were 
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gradually up-regulated (Fig. 2C). Typical T cell pre-dysfunction related genes (i.e., CXCR4, GZMK and 

GZMA) were initially up-regulated and then went down along the pseudotime trajectory (Fig. 2C). 

Therefore, this pseudotime trajectory recapitulated the progression of CD8+ T cells from a cytotoxic 

state via a pre-dysfunctional state to a dysfunctional state, along with which the degree of exhaustion 

gradually escalated. This progression was also supported by the positive correlation between the 

pseudotime and exhaustion score (fig. S3F). Further, projection of the top 10 expanded TCR clonotypes 

onto the trajectory led to an observation that individual TCR lineages were usually restricted to a 

similar phenotypic state, rather than distributing across the entire trajectory (Fig. 2D). Across all 

tumours, we found that 90% of clonotypes with 23 cells or greater were confined within a range of 

pseudotime values (Wilcoxon test, p < 0.05). Highly expanded TCR clones with over 100 cells per clone 

were observed in multiple patients, where remarkably up to 30% of CD8+ T cells can derive from a 

single clonotype (Fig. 2E). In contrast, TCR clonotypes in CD4+ populations were less expanded 

compared to those in CD8+ populations (fig. S3J). Many of the most expanded CD8+ TCR clones had 

considerable proportions of cycling cells, with the exception being observed in the less exhausted 

clonotypes (Fig. 2E). This finding demonstrates that the proliferation in highly exhausted T cells in RCC 

has not been completely arrested, similar to previous findings in melanoma (19). 

We examined whether the TCR clonotypes detected in the blood reflected those detected in other 

regions. We found the average degree of exhaustion (inferred pseudotime) and the probability of 

detecting CD8+ TCR clones in the peripheral blood were strongly anti-correlated regardless of the 

clonal size, to the extent that exhausted clonotypes are seldom detected in the blood (Fig. 2F; 

Method). This finding is unexpected and indicates that tissue-resident exhausted CD8+ T cell clones do 

not appear to recirculate in peripheral blood. To further illustrate the relationship between T cell 

exhaustion, clonal expansions and their tissue distributions, we categorised CD8+ T cells according to 

whether they were singlets or expanded, and their principal tissue locations (blood, normal tissues or 

tumour). Expanded T cells in tumour were further subcategorised into those that appeared in all 

tumour regions and those that do not (tumour homogeneous and heterogeneous). Notably, the 

phenotypic state of CD8+ T cells, in terms of the degree of exhaustion, showed a strong dependence 

on clonal expansion and tissue location (Fig. 2G; all p < 0.05, Tukey test). Meanwhile, clones that were 

private to one tumour region were not significantly more exhausted than those shared between 

different regions (Fig. 2G; p > 0.05, Tukey test). 
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Fig. 2. CD8+ T cell characterisation, clonality, exhaustion and regional enrichment. (A) Dotplot 

showing marker gene expression defines principal CD8+ cell types. EM, effector memory; Act, 

activated; EFF, effector; EX, exhausted. (B) UMAP depicting the pseudotime inference of CD8+ cells. 

(C) Expression of canonical exhaustion markers across cells ordered by pseudotime analysis. All 

marker genes are statistically significant across pseudotime values (q value = 0). (D) UMAP showing 

the 10 most expanded clones from patient PD43948. Grey dots represent cells outside the 10 most 
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expanded clones. (E) Boxplot depicting the most expanded clonotypes (>100 cells) across all 

patients, ordered by their mean pseudotime values, showing the median, interquartile range and 

outlier pseudotime values (top panel); barplots showing the maximum expansion for the most 

expanded region (middle panel) and percentage of cycling cells (lower panel). (F) The probability of 

detecting a given TCR clone in peripheral blood as a function of minimal clone size and mean 

pseudotime value of the clone. (G) Mean pseudotime values based on the categorisation of 

clonotypes according to their principal region of enrichment. 

 

Spatial localisation rather than intra-tumoural heterogeneity primarily influences CD8+ clonotypic 

heterogeneity 

Using somatic mutations called from WES data, we constructed phylogenetic trees to elucidate 

the clonal evolution and ITH in tumours in our study. Overall, we found all tumour clones shared a 

long trunk but had short branches (Fig. 3A). This indicates that most somatic mutations were 

ubiquitous in individual tumours with only a small number of private mutations being detected. The 

majority of detected driver mutations and key CNVs (i.e., VHL mutations and loss of heterozygosity 

(LOH) of chromosome 3p) were shared by all tumour clones within individual tumours, thus locating 

on the trunks of phylogenetic trees (Fig. 3A). Furthermore, the vast majority of LCM samples we 

sequenced appeared clonal according to the variant allele frequency distributions (fig. S4A). Taken 

together, the WES revealed that the extent of ITH of tumours in our cohort was limited. Previous 

studies have extensively investigated intra-tumour genetic heterogeneity in various cancers by 

comparing somatic mutations detected in samples from different spatial localisations of a tumour (7, 

32). However, the influence of somatic heterogeneity on the local tumour microenvironment at 

different spatial localisations, especially the anti-tumour immune response, remains largely 

uncharacterised. Here we systematically compared the relationship between somatic mutations, 

spatial localisations and TCR clonotypes of CD8+ T cells in individual tumours (Fig. 3B and fig. S4B). 

Unexpectedly, we found T cell clonotypes were highly heterogeneous and disparate in different spatial 

localisations, even in tumour regions where only negligible heterogeneity of somatic mutations was 

observed. Somatic mutations, which generate neoantigens on tumour cells, are considered a driving 

factor for T cell clonal expansion upon antigen presentation. Our finding suggests the heterogeneity 

of TCR clonal expansions associate more with the different spatial localisation of T cells in tissues 

rather than ITH of somatic mutations. To formally examine this, we calculated the correlation between 

T cell clonotype distance and 1) mutation distance; 2) spatial localisation distance (Fig. 3C). By 

comparing these two correlations, we found TCR heterogeneity in CD8+ T cells was more strongly 

correlated to spatial localisation rather than somatic heterogeneity (paired Wilcoxon test, p < 0.05).  
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Precise de novo somatic mutation calling from scRNA-seq data 

The detection of somatic mutations within single cells from their transcriptomic sequences may 

help infer their clonal relationships. Although it is theoretically possible to call mutations from scRNA-

seq data, no methods with high accuracy are currently available. Here we developed an 

algorithm/pipeline to perform de novo somatic mutation calling from scRNA-seq data (deSCeRNAMut; 

Methods). Briefly, we used the bcftools to call mutations from single cell BAM files prior to an initial 

filter step to remove both mutations present in a single cell and mutations shared between different 

cell lineages. We checked reference and variant allele counts at all of the loci called in the initial step, 

prior to applying a binomial filter. We then applied a final set of filtering metrics after annotation of 

the variants (Fig. 3D). To benchmark our mutation calling method, we first compared somatic 

mutations called from scRNA-seq data of tumour cells with those called from tumour WES data. All 

detected mutations were classified as true positive (either detected by the mutation caller, or not 

called by the mutation caller but with sufficient supporting evidence in the raw data), false positive, 

false negative, or indeterminate (where mutations were called in regions that did not have sufficient 

WES coverage to validate the call). Overall, our method achieved a good performance with a precision 

of 0.64 (or 0.70 when considering exonic mutations only) and a sensitivity of 0.53 (Fig. 3E). We were 

also able to benchmark the method in CD8+ T cells, showing that 84% of called mutations are restricted 

to a single TCR clone (fig. S4C). This confirms the expected finding that the majority of mutations called 

in CD8+ T cells are restricted to clonotype because of the very limited number of mutations that could 

be shared between T cell clones pre-thymic maturation. 

Using these mutation calls, we investigated the numbers of mutations expressed by different cell 

types, which can potentially shed light on their degree of clonal expansion. We calculated the 

proportion of cells with one, two, three, or greater than three mutations. We required at least 100 

cells from each cell lineage and patient to account for the lack of discriminatory power in rarer cell 

populations (fig. S4D). As expected, the lineage with the highest number of cells expressing called 

mutations were the tumour cells, mainly explained by the known clonal structure of the lineage, but 

also due to the likelihood of increased mutational burden when compared to the normal cell types. 

For similar reasons, stromal cells did not typically have discernible numbers of cells with more than 

one called mutation. However, we observed a surprisingly large number of myeloid cells expressing 

mutations, indicating that a sizable proportion of these cells are clonally related. These were followed 

by fibroblasts, and CD8+ T cells (which we know are clonally expanded based on the TCR sequencing 

results). A very small proportion of CD4+ T cells expressed mutations, consistent with the low degree 

of clonality based on TCR analysis (fig. S3J).  
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Fig. 3. Somatic mutation calling and the relationship with TCR clonotypic heterogeneity. (A) 

Reconstructed phylogenies from WES of multi-regional LCM biopsies. Each node represents a 

mutant clone present in one or more of the biopsies. (B) Comparison of WES derived phylogenies 

(left) with geographic location (centre) and CD8+ TCR clonotype expansion (right). Colours reference 
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somatic clones to spatial localisation. Each column in the right panel represents a TCR clonotype, 

those with significant regional enrichment are highlighted in red. a, c, d, and e represents four 

different regions of the tumour core; g, tumour-normal interface; n, normal kidney; b, peripheral 

blood; h, normal adrenal gland. (C) Scatter plot of the Mantel correlation between tree distances. 

x-axis represents the correlation coefficient between WES derived clones and TCR clonotype 

distances. y-axis represents the correlation coefficient between spatial localisation and TCR 

clonotype distances. (D) Schematic of the de novo mutation calling algorithm. (E) Benchmarking 

results for scRNA-seq derived calls against WES data for each patient donor. 

 

Regional characterisation and evolution of myeloid populations 

Overall, we captured transcriptomes from 50,603 myeloid cells in our dataset, which were 

categorised into 19 clusters in sub-clustering analysis (Fig. 4A, fig. S5A and table S4). We first broadly 

annotated these clusters based on the expression of canonical markers and the tissue origins of cells 

(Fig. 4B, fig. S5, B to D). Clusters 1, 2, 3, and 4 were predominantly present in the blood with high 

expression of CD14 but lack of FCGR3A expression, thus representing circulating classical monocytes. 

Cluster 5 represented circulating non-classical monocytes with high expression of FCGR3A but lack of 

CD14 expression (fig. S5D). We identified three dendritic cell (DC) clusters: pDC, type 1 and 2 

conventional DC (cDC1 and cDC2), characterised by specific expression of JCHAIN, CLEC9A and CD1C, 

respectively (fig. S5D). cDC1, among the three DC clusters, showed an enrichment in the tumour core 

compared with other regions (Fig. 4B). We found mast cells, which were characterised by specific 

expression of TPSAB1, potentially enriched in the tumour core (Fig. 4B and fig. S5D), consistent with 

previous reports (33). Notably, we identified nine macrophage clusters (clusters 6-8, 11-16) based on 

the high expression of CD163 and C1QC (fig. S5D), reflecting the pronounced heterogeneity of the 

macrophage population in RCC. 

To further characterise the heterogeneous macrophage population in our dataset, we explored 

DEGs and the tissue enrichment of the nine macrophage clusters. We found six macrophage clusters 

(clusters 11-16) preferentially enriched in the tumour core/interface compared to other normal 

tissues, thus being defined as tumour-associated macrophages (TAMs). The remaining three clusters 

(clusters 6, 7, 8) showed enrichment in normal tissues and were regarded as tissue-resident 

macrophages (TR Mac) (Fig. 4B). Among the six TAM clusters, MHC-II TAM (cluster 14) highly expressed 

HLA-DRB5, APOE and APOC1, and was more enriched in tumour core versus tumour-normal interface. 

In contrast, the other five TAM clusters showed comparable degrees of enrichments in both tumour 

core and the interface (Fig. 4B). Pro-inflammatory TAM (cluster 11) highly expressed chemokines 

CXCL9/10 and activators of NLRP3 inflammasome assembly GBP1/5, exhibiting a predominant feature 
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of M1 polarisation (Fig. 4, C and D, fig. S5E). FN1+ TAM (cluster 15) highly expressed fibronectin 1 (FN1) 

and scavenger receptor MARCO, which has been previously reported as a specific macrophage subset 

in kidney cancer (33). We found that FN1+ TAM was likely pro-tumour in ccRCC, as reflected by the 

high expression of a myeloid-derived suppressor cell (MDSC) signature and of M2 polarization genes 

(Fig. 4D and fig. S5E). We identified a SPP1+ TAM cluster (cluster 16) in our dataset, which has been 

reported in various cancer types but as absent in kidney cancer (33). Interestingly, we found SPP1+ 

TAM in ccRCC expressed GPNMB and showed a high similarity to the GPNMB+ TAM identified by the 

previous study (33) (fig. S5F). Considering we also identified a GPNMB+ TAM cluster (cluster 15) and 

the expression of GPNMB can be detected in multiple TAM clusters (Fig. 4C and fig. S5G), this finding 

suggests SPP1+ TAM may represent a subset of GPNMB+ TAM. Besides expressing SPP1, we found 

SPP1+ TAM also expressed TREM2 and harboured a high angiogenesis score (Fig. 4, C and D). TREM2+ 

macrophages have been implicated in various biological and pathological processes, such as obesity 

and cancer (34, 35).  

Among the three TR Mac clusters, TR Mac.2 highly expressed interleukin IL1B and the epidermal 

growth factor receptor ligand AREG, which may reflect its likely role in tissue repair in homeostasis 

(Fig. 4C). TR Mac.3, which showed high expression of SEPP1 and MRC1 and was extremely enriched in 

normal adrenal gland (Fig. 4, B and C). Interestingly, TR Mac.3 exhibited extremely high expression of 

M2 and phagocytotic signatures, and showed similar pathway activations to the pro-tumour TAM 

clusters (i.e., FN1+ TAM) (Fig. 4, D and E, fig. S5E). We were not able to clearly separate embryologically 

seeded versus monocyte derived tissue macrophages in this dataset (36). 

Next, we explored the potential origin of different TR Mac and TAM clusters identified in our 

study. Using RNA velocity analysis, we found two obvious directional flows from circulating monocytes 

to macrophages in the tissue: (1) classical mono.3 to TR Mac.2 and (2) non-classical monocytes toward 

TR Mac.1 (Fig. 4F). TR Mac.1 and TR Mac.2 then potentially gave rise to other macrophages in the 

tissues (Fig. 4F). To determine how macrophage subsets were related to circulating monocytes, we 

leveraged the somatic mutations for lineage tracing, in a similar way to how the relationship of T cell 

phenotypic states have been determined from the sharing of TCR clonotypes. Here, we constructed a 

neighbour-joining tree to depict the relationship of different monocyte and macrophage clusters, 

utilising the somatic mutations called from scRNA-seq data (Methods; Fig. 4G). We found circulating 

monocytes were separate from macrophages in tissues and non-classical monocytes (cluster 5) 

showed a closer relationship with macrophages in tissues compared to other classical monocytes. Our 

data supports non-classical monocytes representing an intermediary state between circulating 

monocytes and macrophages, with the majority of macrophages appearing to arise from monocyte 

progenitor rather than yolk sac origin. 
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Fig. 4. Myeloid cell characterisation, regional enrichment and evolution. (A) UMAP representation 

of all myeloid cells, their annotation and regional contribution. Mono, monocyte; TR Mac, tissue-

resident macrophage; TAM, tumour-associated macrophage. (B) The relative enrichment of 

different myeloid cell subsets across different regions sampled. (C) Dot plot depicting top DEGs for 

macrophage clusters. (D) Heatmap showing mean scaled scores for macrophage subsets by 

macrophage function of M1/M2 polarisation, suppressive, angiogenesis and phagocytosis activity. 

(E) Heatmap showing the results of pathway enrichments of macrophage subsets using GSVA 

analysis. (F) UMAP with superimposed RNA velocity analysis of the monocyte and macrophage 

subsets with zoomed windows highlighting possible directional flows from monocytes to 
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macrophages. (G) Neighbour-joining tree depicting the relationship of different monocyte and 

macrophage clusters, utilising the somatic mutations called from scRNA-seq data. The numbers of 

supporting votes in bootstrapping (100 times) are labelled.  

 

Regional heterogeneity of endothelial cells, fibroblasts and epithelial cells 

We observed heterogeneous stromal cell populations in our dataset. Sub-clustering of the 

endothelial cell (EC) compartment revealed 11 clusters with different DEGs and preference in tissue 

locations (Fig. 5, A to C and table S4). Pericytes (cluster 11), as characterised by the expression of RGS5 

and TAGLN, preferentially enriched in the tumour core. A small cluster (cluster 9) was found to be 

extremely enriched in the perinephric fat and highly express TFF3 and PDPN, thus representing 

lymphatic EC. The remaining nine clusters represented vascular ECs, among which cluster 10 

represented cycling EC as highly expressing TOP2A and MKI67. We identified three potential tumour 

associated EC clusters: collagen EC, IGFBP3+ EC and ACKR1+ EC, as they showed considerable 

enrichments in tumour tissues (Fig. 5, A and C). Among the three clusters, collagen EC (expressing 

COL4A1 and COL15A1) was found to be more enriched in the interface, which may play roles in 

interacting with other cells through extracellular matrix (ECM) production. ACKR1+ EC specifically 

expressed atypical chemokine receptor ACKR1 which supports adhesion and tissue migration of 

immune cells (37). We found IGFBP3+ EC also expressed a high level of immunosuppressive enzyme 

IDO1, implying its immune regulation roles in the TME. We identified CRHBP+ EC and IGF2+ EC 

preferentially enriching in the normal kidney tissues, while DNASEL3+ EC showed an enrichment in the 

normal adrenal gland (Fig. 5C). 

We identified nine clusters of fibroblasts (Fibro) in the sub-clustering analysis (Fig. 5D and table 

S4). Similar to EC, we found a cluster of fibroblasts (cluster 8) highly expressed collagen-related genes 

(COL1A1 and COL6A2) and preferentially enriched in the interface (Fig. 5, E and F). This suggests that 

different ECM-producing stromal cells tend to enrich and co-localise in the interface, exerting diverse 

functions including extracellular context remodeling and cell-cell interactions. MMP fibro was 

characterised by high expression of matrix metalloproteinase MMP2, complement factor CFD and 

lumican LUM. MMP fibro was found to be enriched in perinephric fat and adrenal gland (Fig. 5F). 

Cluster 7 highly expressed MYH11, SNCG and RERGL, thus being considered as smooth muscle cell 

(SMC) like fibroblasts. SMC-like fibro was found to be enriched in the normal kidney tissue (Fig. 5F). 

The normal epithelial cell population in our dataset exhibited expected diversity (38) and was 

categorized into 13 clusters in the sub-clustering analysis (Fig. 5, G and H, table S4). We identified two 

proximal tubular (PT) cell clusters (both expressing NAT8 and PDZK1IP1): cluster 1 had higher 

expression of metallothionein MT1H and MT1G, thus may representing PT3 cells, while cluster 2 may 
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represent PT1/2 cells as it showed higher expression of PT2 marker SLC22A6, and PT1 markers 

SLC5A12 and SLC5A2 (Fig. 5H and table S4). Two Loop of Henle (LoH) clusters: cluster 3 represented 

ascending thin limb (ATL) cells as expressing CLDN3 and TACSTD2; cluster 8 represented thick 

ascending limb (TAL) cells, as characterised by expression of SLC12A1 and UMOD (Fig. 5H and table 

S4). Three collecting duct (CD) epithelial cell clusters were identified: type A intercalated cells 

(expressing SLC4A1), type B intercalated cells (expressing SLC4A9) and CD principal cells (expressing 

AQP2 and FXYD4). We identified distal convoluted tubule (DCT) cells (cluster 7) specifically expressing 

SLC12A3, connecting tubule cells (cluster 10) highly expressing SLC8A1 and CALB1, pelvic urothelial 

cells (cluster 13) showing specific expression of PSCA and KRT17, and podocytes (cluster 11) exclusively 

expressing PTGDS and PTPRO (Fig. 5H and table S4). 
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Fig 5. Spatial and transcriptomic heterogeneity of endothelial cells, fibroblasts and epithelial cells. 

(A) UMAP showing the sub-clustering result, (B) dot plot depicting top DEGs, and (C) regional 

enrichment of cell clusters of all endothelial cells. (D) UMAP showing the sub-clustering result, (E) 

dot plot depicting top DEGs, and (F) regional enrichment of all fibroblasts. (G) UMAP showing the 

sub-clustering result and (H) dot plot depicting top DEGs of all epithelial cells. 

 

RCC expression meta-programmes show differential abundance at the tumour-normal interface and 

affects prognosis 

To explore the intra-tumour expression heterogeneity in the tumour cell population, we first 

defined intra-tumour expression programmes that consist of co-expressed genes in each tumour using 

non-negative matrix factorization (NMF) (Methods). These expression programmes represented gene 

modules that were highly expressed by only subsets of tumour cells in each tumour, as exemplified by 

the NMF result in a representative tumour PD45816 (Fig. 6A). In total, we dissected 45 intra-tumour 

expression programmes from the ten ccRCC tumours (table S5). Some of these programmes, although 

subpopulation events in individual tumours, were found to be shared by different tumours, thus being 

defined as meta-programmes expressed by tumour cells in ccRCC. Six meta-programmes were 

identified through clustering analysis (Fig. 6B and table S5). The first meta-programme (MP1) was 

characterised by expression of genes such as FOS and JUN, thus representing a stress response related 

signature in tumour cells. MP2 consisted of genes (i.e., NAT8 and ACSM2B) that were specifically 

expressed by proximal tubular (PT) cells. The presence of PT signature among tumour cells confirmed 

the previous finding that PT cells are the cell type of origin of ccRCC (25). Interestingly, we found a 

third meta-programme (MP3) was enriched for genes such as TGFBI and MT2A (Fig. 6B and table S5), 

which are related to the epithelial-to-mesenchymal transition (EMT). This indicates that MP3 may 

recapitulate the EMT process in ccRCC, which has not been reported in previous scRNA-seq studies of 

RCC (26-28). MP4 consisted of noncoding RNA genes like NEAT1 and HCG18, probably reflecting some 

stress or cell death (CD) related cell state. MP5 was characterised by expression of MHC-II related 

genes such as CD74 and HLA-DRA. Genes such as TOP2A and MKI67 were found in MP6, indicating this 

meta-programme is related to the proliferation of tumour cells. 

Next, we integrated tumour cells from the ten tumours, mitigating the inter-patient 

heterogeneity through batch effect removal (Fig. 6C, fig. S6A, and table S4). Through sub-clustering 

and DEG analysis, we validated the presence of the six meta-programmes among tumour cells (fig. 

S6B). We calculated gene scores of the six meta-programmes deciphered using NMF and mapped 

them onto the UMAP of tumour cells (fig. S6C). This again reflected the expression of the meta-

programmes that were sub-populational among tumour cells. Interestingly, we found the expression 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.12.468373doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468373
http://creativecommons.org/licenses/by/4.0/


18 

of PT and EMT programmes showed an inverted pattern (fig. S6C), which was further confirmed by 

the anti-correlation between PT and EMT scores calculated in bulk RNA-seq data of TCGA samples (fig. 

S6D). Further, we found that EMThigh tumour cells were more abundant at the tumour-normal 

interface (the leading edge of a tumour) compared to the tumour core (Fig. 6D), which reflects the 

fact that the EMT state represents a more invasive and migratory state of tumour cells. The 

heterogeneous expression of PT/EMT programmes coupling the spatial location preference of tumour 

cells was exemplified by individual tumours (Fig. 6E and fig. S6E). For example, in tumour PD45815, 

we found PT programme was inversely expressed when ranking tumour cells by EMT scores. 

Meanwhile, EMThigh tumour cells were inclined to locate at the interface while PThigh cells were 

relatively more enriched at region R1 and R2 of the tumour core (Fig. 6E). Finally, by scoring bulk RNA-

seq data of TCGA samples, we found that the TCGA molecular subtype m3, which displays the worst 

prognosis according to TCGA study (2), showed significantly higher EMT scores but lower PT scores 

compared to other subtypes (Fig. 6F). This finding indicates that our meta-programmes can be 

potential indicators of the survival of patients (fig. S6F). 
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Fig 6. RCC cell expression programmes, regional enrichment and prognosis. (A) Heatmap showing 

expression programmes derived in a representative patient using NMF. (B) Heatmap depicting 

shared expression meta-programmes across all patients. (C) UMAP representing clusters of tumour 

cell population. (D) Relative expression scores of meta-programmes in each RCC cell cluster (left) 

and the distributions of cells with different meta-programmes in tumour core and tumour-normal 

interface. (E) Cells from patient donors PD45815 and PD45816, ranked by decreasing EMT score 

with corresponding PT score and cell location. (F) Box plots showing the EMT and PT scores of TCGA 

samples in different molecular subtypes. ***, P < 0.001 (Wilcoxon rank sum test). 

 

Cellular interactions associated with spatial location reveal biological insights and promising 

therapeutic targets 

To characterise intercellular communications in different spatial locations in the RCC 

microenvironment, we assessed cell–cell interactions between the major cell types in the normal 

kidney, tumour-normal interface and tumour core using CellPhoneDB (39, 40). Interestingly, the 

numbers of cell–cell interactions occurring among the 12 major cell types in the interface and the 

tumour core were relatively comparable, which was about two-fold greater than that in the normal 

kidney tissue even when we excluded those interactions involving tumour cells (Fig. 7A). Next, we 

compared cell–cell interactions mediated by specific ligand–receptor pairs expressed on different cell 

types in the normal kidney, tumour-normal interface and tumour core (Fig. 7B). First, this analysis 

revealed remarkable differences in interactions between the tumour and normal microenvironment. 

For example, between CD8+ T cells and ECs, we found the EC recruitment (CCL5–ACKR1) and immune 

inhibitory (LGALS9–HAVCR2) signals were more active in the interface and tumour core, reflecting 

escalated levels of angiogenesis and immunosuppression in the tumour compared to the normal 

tissue (Fig. 7B). Second, we consistently observed differences between the edge and the core of the 

tumour. For example, a potentially immunosuppressive interaction mediated by PVR–TIGIT between 

ECs and CD8+ T cells respectively was more active in the tumour core, while a cell growth/migration-

related interaction, IGF–IGF2R, was more active in the interface (Fig. 7B). Third, tumour cells at the 

interface expressed transcripts predicted to mediate unique intercellular interactions that may 

potentially promote tumorigenesis. For example, in the interface, myeloid cells express an enhanced 

cell migration-related signal that can interact with tumour cells (THBS1–integrin α3β1) compared to 

that in the tumour core (Fig. 7B).  

Our results indicated that tumour cells with high expression of EMT signature (EMThigh tumour 

cells) preferentially localised to the leading edge of tumour (Fig. 6, D and E). This prompted us to 

explore if there were any active intercellular interactions at the interface that potentially promoted 
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EMT in tumour cells. We used the NicheNet (41) analysis to link ligands from cells in the TME and the 

EMT programme in tumour cells. From this analysis, we found ligands expressed by macrophages 

potentially regulated a substantial set of EMT genes expressing on tumour cells (Fig. 7C). Particularly, 

macrophage-derived IL1B showed a high and wide regulatory potential to these EMT genes (Fig. 7C), 

possibly via the receptor IL1R1 expressed in tumour cells. Interestingly, we found that IL1B was 

specifically expressed by TR Mac.2 (Fig. 4C), which again was preferentially enriched at the tumour-

normal interface (Fig. 4B). Taken together, our findings indicate that IL1B expressing macrophages (TR 

Mac.2) preferentially residing at the tumour-normal interface up-regulate the EMT programme in 

tumour cells at the leading edge of tumours through producing IL1B. Such an oncogenic pathway may 

eventually promote the migration and invasion of tumour cells (Fig. 7D).  
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Fig 7.  Cellular interactions in the ccRCC micro-environment. (A) Comparison of the number of cell–

cell interactions between cells present in the adjacent normal kidney, tumour-normal interface, and 

the tumour core. (B) Dot plots representing mean expression levels and significance of important 

differentially expressed ligand receptor pairs by spatial region. (C) Heatmap depicting the potential 

regulation of genes expressed by the EMT meta-programme and ligands expressed by 

macrophages. (D) Schematic illustrating the importance of IL1B signalling between IL1B+ 

macrophages and RCC cells in promoting EMT. 

 

DISCUSSION 

We used multi-region based genomic and single-cell transcriptomic sequencing to characterise 

the phenotypic heterogeneity and the multicellular ecosystem of ccRCC. Overall, our study depicts a 

comprehensive atlas of the TME of ccRCC alongside the established ITH in ccRCC, including the 

phenotypic categorisation of tumour cells and immune/stromal cells, and their intercellular 

communications in the TME, largely associating with their geographical localisation. 

Cells within expanded CD8+ TCR clonotypes were largely restricted by exhaustion score. Similar 

observations were recently reported in melanoma (42). The phenotypic restriction of clonotypes may 

be related primarily to temporal maturation of given clones, rather than environmental factors as 

individual tumours harboured clonotypes across the full diversity of states. In addition to the 

phenotypic restriction, we also found that expanded TCR clonotypes were also frequently spatially 

restricted within one or more of the macroscopic tumour biopsies. This spatial restriction of TCR clonal 

expansion cannot be entirely accounted for through the exposure to different mutation-associated 

neoantigens because of the limited ITH of somatic mutations observed in our study. We were unable 

to define any other factors within the TME that could predict this clonotypic spatial heterogeneity. 

The perceived stochastic localisation of T cell clonotypes may be a result of physical and environmental 

factors driving the initial migration of the cells from peripheral circulation to tumour residence. 

Longitudinal sampling strategies or methods to determine accurate T cell phylogenies could be 

employed to interrogate the precise timing of T cell expansion and migration. Whether our 

observation of regional restriction of expanded TCR clones is found more widely in other cancer types 

may require additional studies deploying similar sampling and sequencing strategies. 

The utility of peripheral TCRs for non-invasive cancer detection and surveillance shows promise 

(43), especially in RCC where circulating tumour DNA fragments are scarce (44). Although we found 

many expanded clonotypes were represented both in blood and tumour regions, we observed that 

the degree of exhaustion and the probability of detecting TCR clones in the peripheral blood were 

inversely correlated, to the extent that exhausted clonotypes are seldom detected in the blood (Fig. 
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2F). This finding suggests that once T cell clones infiltrate into tumours and undergo phenotypic 

transition from activation to dysfunction they seldomly recirculate, possibly due to a tissue residency 

phenotype as evidenced by CD69 (Fig. 2A). Peripheral sampling of tumour-reactive TCRs is therefore 

more likely to detect antecedents of exhausted tumour-resident clones, rather than those currently 

active in the tumour. 

We developed a strategy (deSCeRNAMut) to accurately detect somatic mutations in different cell 

populations based on droplet-based scRNA-seq data. The principal challenges of the lack of consistent 

coverage, low read depth, and error-prone sequencing reads, were abrogated using a number of 

filtering metrics including the implausibility of shared post-embryonic mutations between different 

cell-type lineages. We detected somatic mutations in different cell lineages covered in our dataset and 

identified a high degree of clonal expansion in myeloid cells. We used somatic mutations called from 

this method to construct neighbour-joining trees in macrophages and monocytes to infer that non-

classical monocytes are the likely intermediary state between circulating monocytes and the majority 

of tissue resident macrophages in kidney cancer. We envisage that in the future, the use of spatial 

imaging techniques to visualise called mutations in expressed genes across a range of cell types will 

help to decipher the phylogenetic organisation of the multicellular TME. 

An EMT meta-programme was defined through its expression by a subpopulation of tumour cells 

in each patient and shared by multiple ccRCC tumours in our study. The more abundant tumour cell 

populations and the use of methods to help circumvent challenging batch variations allowed us to 

uncover this previously unreported feature (26-28). Expression of the EMT program in ccRCC tumour 

cells was inversely correlated with that of the PT programme, an epithelial expression signature. 

Meanwhile, EMThigh tumour cells in ccRCC tended to localise to the tumour-normal interface, which is 

the leading and migration edge of a tumour. These findings, similar to those have been reported in 

the scRNA-seq study of head and neck cancer (16), reflect the defining feature of EMT: the loss of 

epithelial characteristic in cells in favour of promoting their migration and invasion abilities (45).  

Analysing cell–cell interactions revealed the heterogeneity of predicted intercellular 

communications associated with different spatial localisations in the TME of ccRCC. Particularly, by 

linking ligands and target genes of interest using NicheNet, we found that IL1B, specifically expressed 

by a subset of tissue resident macrophage cells enriched at the tumour-normal interface (TR Mac.2), 

could potentially promote tumour cells undergoing EMT (Fig. 7D). Expression of IL1B has been 

reported to positively correlate with tumour stages of RCC (46) and is associated with worse prognosis 

of patients with RCC in patients recruited to The Cancer Genome Atlas. In addition, inhibition of IL1B 

in RCC has been shown to induce tumour regression in a syngeneic murine model of RCC (47). IL1B 

blockade was also shown to reduce incident lung cancer in patients with atherosclerosis (48), and its 
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use is now being investigated in several clinical trials. In our data, we indicate that the underlying 

mechanism that results in the unfavourable role of IL1B in RCC acts through the promotion of EMT 

through macrophage derived IL1B signalling. Exploiting this pathway could be therapeutically useful. 
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Supplementary materials 

Experimental model and subject details 

Human kidney and tumour tissues were collected through studies approved by UK NHS 

research ethics committees. All adult kidneys samples, except PD44967 were collected from patients 

enrolled in the DIAMOND study; Evaluation of biomarkers in urological disease (NHS National 

Research Ethics Service reference 03/018). Tumour PD44967 was collected from a patient enrolled in 

Characterisation of the immunological and biological markers of Renal cancer progression (NHS 

National Research Ethics Service reference 16/WS/0039).  

 

Tissue sampling 

Peripheral blood was sampled on the day of the surgery prior to removal of the kidney tumour 

and placed on ice. The surgical specimen was directly taken from the operating room to 

histopathology in order to minimise the warm ischaemia time. Biopsies were sampled by local 

pathologists to include (where available) multiregional tumour biopsies from 4 macroscopically 

disparate regions, the tumour-normal interface, normal kidney (distant to the tumour and close to 

cortico-medullary border), perinephric adipose tissue, and adrenal gland. The biopsy locations from 

the bivalved kidney were annotated. Tissue samples were divided and either placed on wet ice for 

immediate transfer for generation of single cell suspensions, or underwent formalin-free fixation for 

24 hours in PAXgene Tissue FIX containers before being 20 transferred to PAXgene STABILIZER solution 

for storage at -20 °C. 

 

Generation of single cell suspensions 

The fresh tissue samples were coarsely dissected using a single edged razor blade prior to 

digestion for 30 min at 37°C with agitation in a digestion solution containing 25μg/ml Liberase TM 

(Roche) and 50μg/ml DNase (Sigma) in RPMI (Gibco). Following incubation samples were transferred 

to a C tube (Miltenyi Biotec) and processed on a gentle MACS (Miltenyi Biotec) on programme spleen 

4 and subsequently lung 2. The resulting suspension was passed through a 70μm cells strainer (Falcon), 

and washed with PBS. Percoll (Sigma-Aldrich) density separation was used both as a strategy to 

remove dead cells and cellular debris, and also to enrich stromal components of the TME, whilst still 

being permissive for a proportion of RCC cells themselves. We added the cell pellet to 44% Percoll in 

phosphate buffered saline (PBS) prior to centrifugation at 800G for 20 min. The supernatant was 

removed and the pellet suspended in PBS prior to centrifugation for 5 min at 800G. The concentration 

of enriched live cells was calculated after counting with a hemocytometer with trypan blue staining. 
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Cell loading and 10x library preparation 

Cells were loaded according to standard protocol of the Chromium single cell 5’mRNA kit with 

TCR library enrichment in order to capture approximately 14000 cells/chip position. All the following 

steps were performed according to the standard manufacturer protocol. Sequencing of libraries used 

either the Illumina HiSeq or NovaSeq systems. 

 

Initial processing of scRNA-seq data 

After the conversion of CRAMs files into FASTQs using samtools (49), we used the 10X 

software package cellranger (version 2.1.1 and vdj) and the GRCh38 reference genome for processing 

the 5’ sequencing data. We used SoupX (50) to return an adjusted count matrix to account for ambient 

RNA contamination per channel using the adjustCounts() function. We then used DoubletFinder (51) 

to estimate the probability of a given droplet containing RNA from more than one cell. Given that our 

cell loading aimed to recover 14000 cells per lane, we assumed an 11% doublet formation rate. 

 

scRNA-seq merge and QC 

Seurat V3’s (52) implementation of Reciprocal PCA (RPCA) was used to reduce the 

computational expense in merging the patient specific scRNA-seq data. Cells with greater than 30% 

mitochondrial content, or expression of fewer than 200 genes were excluded from further analysis. 

We used relatively permission thresholds to avoid removing renal epithelial cells that are known to 

have relatively high mitochondrial contents. We used standard clustering metrics and the expression 

of canonical marker genes to broadly classify cells into the principal cell subsets; T and NK cells, B and 

plasma cells, myeloid cells, endothelial cells, epithelial cells (non-cancerous), fibroblasts, and 

cancerous RCC cells. Cell clusters expressing implausible combinations of cell lineage specific marker 

genes were labelled as doublets and were excluded from further analysis. 

 

Cell type sub-clustering and annotation 

We performed sub-clustering analysis of various cell compartments using the Seurat pipeline. 

Briefly, we first pulled out each cell compartment using the subset() function based on the broad 

classification of cells. We then used regularized negative binomial regression to normalize UMI counts 

using the SCTransform() function in Seurat, with the percentage of mitochondria genes being 

regressed out. Principal component analysis (PCA) was performed using the RunPCA() function based 

on highly variable features generated by using the VariableFeatures() function. For the PCA of T cell 

population, we excluded TCR encoding genes from the list of highly variable features so that to avoid 

clusters driven by the expression of different TCR genes. Batch correction was performed in each cell 
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compartment using the RunHarmony() function implemented in the R package harmony, with the 

batch key (parameter ‘group.by.vars’) being set as patients and the assay (parameter ‘assay.use’) 

being set as ‘SCT’. Next, we performed nearest-neighbor graph construction, cluster determination 

and nonlinear dimensionality reduction using the FindNeighbors(), FindClusters() and RunUMAP() 

functions, respectively. The ‘reduction’ parameter in the FindNeighbors() and FindClusters() was set 

as ‘harmony’. DEGs of different clusters were extracted using the FindAllMarkers() function. Cell 

clusters expressing implausible combinations of cell lineage specific marker genes were labelled as 

doublets and were excluded from the analysis. Cell type annotation was based on the expression of 

canonical markers and DEGs in various clusters. The annotation of cell cycle phases in the T cell 

population was based on the previously reported phase specific genes (17).  

Pseudotime inference, TCR analysis 

Single cell count data and associated metadata of CD8+ T cells was analysed using Monocle3 

(https://github.com/cole-trapnell-lab/monocle3) after removal of cycling, gamma delta and MAIT 

cells. Pre-processing used the function preprocess_cds() with a dimensionality of 100, prior to 

alignment with ‘align_cds’ and batch correcting by individual sample. Dimension reduction used the 

function reduce_dimension(), prior to fitting the principal graph using ‘learn_graph’ and then ordering 

the cells using ‘order_cells’, all using the default parameters. To visualise the relationship of canonical 

marker genes of CD8+ T cell exhaustion we used the function plot_genes_in_pseudotime(). All such 

genes were found to be differentially expressed across the single cell trajectory using the function 

‘graph_test’ at a q value of 0.  

To demonstrate the differentiation properties of cells within clonotypes, we selected the most 

expanded clonotypes. For ease of interpretation we selected those clonotypes that contained at least 

100 CD8+ T cells. The median, interquartile range, minimum, maximum values, and outlier values of 

psuedotime were plotted by clonotype, ordered by mean pseudotime values. The percentage 

maximum expansion was calculated from the region that contributed the maximum percentage of 

CD8+ T cells for each clonotype. The percentage of cells cycling in either the G1/S or G2/M phases 

were also calculated for each clonotype. We sought to quantify the degree of restriction of TCR 

clonotypes to a range of pseudotime values, by calculating the Wilcoxon test statistic for each clonally 

expanded CD8+ T cell clone (clones with more than one cell), compared to all of the other CD8+ T cells. 

To determine the likelihood of detecting expanded TCR clones in the blood as a function of 

pseudotime we computed the conditional density of detection of any cells with a given TCR in the 

blood, with psuedotime, for minimal clone sizes of 2, 4, 8, 16, 32, and 64 cells.  

 

Laser capture microdissection, library preparation, and low-input DNA sequencing 
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Laser capture microdissection and low-input DNA sequencing followed the protocol 

previously reported (53). Briefly, PAXgene fixed samples were subsequently embedded in paraffin 

using standard histological tissue processing. 16μm sections were cut, mounted onto PEN-membrane 

slides, and stained with Gill’s haematoxylin and eosin. Using the LCM (Leica LMD7), tumour regions 

were selected in order to perform focally exhaustive tumour sampling. The dissected cells were 

collected into separate wells in a 96-well plate. Tissue lysis was performed using Arcturus PicoPure Kit 

(Applied Biosystems). 

Libraries were constructed using enzymatic fragmentation as described previously and 

subsequently submitted for whole-exome sequencing on the Illumina HiSeq X platform. Short insert 

(500bp) genomic libraries were constructed, flowcells prepared and 150 base pair paired-end 

sequencing clusters generated on the Illumina HiSeq X platform without PCR amplification. The 

average sequence coverage was 84X and 92X for tumour and normal dissection samples, respectively 

(table S3). 

Mutation calling from whole-exome sequencing 

DNA sequencing reads were aligned to the GRCh 37d5 reference genome using the Burrows-

Wheeler transform (BWA-MEM) (54). Single base somatic substitutions were called using an in-house 

version of CaVEMan v1.11.2 (Cancer Variants through Expectation Maximization, 

https://github.com/cancerit/CaVEMan). CaVEMan compares sequencing reads from tumour and 

matched normal samples and uses a naïve Bayesian model and expectation-maximization approach 

to calculate the probability of a somatic variant at each base. Small insertions and deletions (indels) 

were called using an in-house version of Pindel (github.com/cancerit/cgpPindel). Post-processing 

filters required that the following criteria were met to call a somatic substitution: 

1. At least a third of the reads calling the variant had a base quality of 25 or higher. 

2. If coverage of the mutant allele was less than 8, at least one mutant allele was detected in the 

first 2/3 of the read. 

3. Less than 5% of the mutant alleles with base quality ≥ 15 were found in the matched normal. 

4. Bidirectional reads reporting the mutant allele. 

5. Not all mutant alleles reported in the second half of the read. 

6. Mean mapping quality of the mutant allele reads was ≥ 21. 

7. Mutation does not fall in a simple repeat or centromeric region. 

8. Position does not fall within a germline insertion or deletion. 

9. Variant is not reported by ≥ 3 reads in more than one percent of samples in a panel of 

approximately 400 unmatched normal samples. 
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10. A minimum 2 reads in each direction reporting the mutant allele. 

11. At least 10-fold coverage at the mutant allele locus. 

12. Minimum variant allele fraction 5%. 

13. No insertion or deletion called within a read length (150bp) of the putative substitution. 

14. No soft-clipped reads reporting the mutant allele. 

15. Median BWA alignment score of the reads reporting the mutant allele ≥ 140. 

The following variants were flagged for additional inspection for potential artefacts, germline 

contamination or index-jumping event: 

16. Any mutant allele reported within 150bp of another variant. 

17. Mutant allele reported in >1% of the matched normal reads. 

18. The median alignment score of reads that support a mutation should be greater than or equal 

to 140 (ASMD ≥ 140) 

19. Fewer than half of the reads should be clipped (CLPM = 0).  

We then tested for true presence or absence of the somatic variants that passed the above flags 

using an approach previously described (55). Briefly, counts were re-calculated using AlleleCounter 

(https://github.com/cancerit/alleleCount) across all the samples in this study. For each patient, the 

non-tumour samples in this study not belonging to that patient were used as a reference to obtain the 

locus-specific error rate. To minimize the false positive rate, the presence of the variant in the sample 

was accepted if the multiple-testing corrected p-value was less than 0.001. 

The ascatNGS (56) algorithm was used to estimate tumour purity and ploidy and to construct copy 

number profiles. A penalty of 200 was used with the prior knowledge that copy number events in RCC 

tended to be either arm or chromosome level. 

 

DNA mutational clustering 

Mutations were clustered using a Bayesian Dirichlet based algorithm as described previously 

(57). Briefly, the expected number of reads for a given mutation if present in one allelic copy of 100% 

of tumour cells may be estimated based upon the ASCAT derived tumour cell fraction, the copy 

number at that locus and the total read-depth. The fraction of cells carrying a given mutation is 

modelled by a Dirichlet process with an adjustment for the decreased sensitivity in identifying 

mutations in lower tumour fractions. Mutations were thus assigned to clusters according to the 

calculated fraction of clonality. The hierarchical ordering of these clusters was determined by applying 

the pigeonhole principle. 

 

De Novo Mutation Calling from scRNA-seq Data 
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The code for this method is available at https://github.com/ThomasJamesMitchell/deSCeRNAMut. 

The steps are described below: 

1. Initial variant calling 

In order to call cell specific mutations, indexed BAM files from the cellranger pipeline were first 

split into cell specific BAM files and were indexed using samtools (49). Mutations were initially called 

using bcftools mpileup. The choice of mutation caller was primarily influenced by the need for high 

sensitivity calls of variants with few supporting reads (58). Unsurprisingly, a huge number of mutations 

were called - with between 800,000 and 4,000,000 mutations called per patient. To facilitate more 

efficient downstream filtering of putative mutations, we perform the first filter step at this point: 

● Removal of singlet variants only called in a single cell as it will be challenging to accurately 

determine whether these mutations are real or artefact. 

● Removal of variants that are shared between the main cell lineages of T and NK cells, B and 

plasma cells, myeloid cells, endothelial cells, epithelial cells (non-cancerous), fibroblasts, and 

cancerous RCC cells. The vast majority of somatic mutations are acquired post embryonic 

differentiation, and therefore any true degree of sharing is implausible. 

After these steps, we are left with between 40,000 and 300,000 mutations per patient. We have 

generated a list of putative variant sites, but we are unaware how many variants may have been 

missed at each loci, and we have no information regarding reference calls at those loci. We therefore 

run alleleCount (https://github.com/cancerit/alleleCount) to generate count tables of each base for 

all cells at every putative patient-specific loci. 

2. Collation and annotation of counts 

Reference and variant counts were collated for all of the loci called above to create a sparse matrix 

of counts for all cells. In the absence of copy number variants, if an autosomal chromosome harbours 

a true mutation, one expects an approximately equal number of reference and variant calls. The 

exception is for genes that exhibit a high degree of allelic specific expression, or that typically 

transcribe a particular allele in concentrated bursts. Alternatively, a high ratio of reference to variant 

counts in a cell base may imply artefact associated with high depth sequencing/ poorly mapped 

regions. A binomial filter (p < 0.05) was therefore applied in each cell, with calls ignored in future 

analyses if there are significantly higher reference than variant counts. 

Each genomic loci was annotated using ANNOVAR (59) and the trinucleotide context of the 

variant. 

The number of cells containing either the reference or variant base were collated for: 

● The cell lineage with the greatest number of mutations. 
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● All of the other cell lineages. 

● The TCR clonotype with the greatest number of mutations. 

● All other TCR clonotypes 

Fisher's exact test was used to compute whether there are proportionally greater numbers of 

mutations in the cell lineage/ clonotype with the greatest number of mutations. An enrichment factor 

was also calculated for each mutation that represents the multiple of the increased prevalence in the 

predominant cell type compared to all others. 

3. Final filter 

We applied the following thresholds to filter all possible mutations 

● Fisher’s exact significance of enrichment by cell lineage, p < 0.0001 with proportionally at least 

5 times greater mutations in the most enriched lineage. 

● Absence of any known single nucleotide polymorphisms from either ExAC or dbSNP. 

● No shared mutations between patients 

● Adequate coverage with at least 5 cells with variant base from the mutated cell lineage and 

at least 20 cells with reference base from the reference population 

We then examined the trinucleotide context of called mutations after this filtering step. Note is 

made of high levels of mutations that are otherwise unexplained from published catalogues of 

mutational signatures (particularly in a GCN>GGN and GTN>GGN context). By separating the 

trinucleotide context into the positive versus negative transcribed strands, we see differences that are 

otherwise unexplained by DNA derived mutational signatures, implying artefact either through library 

prep, sequencing, or RNA editing. 

The striking strand bias cannot be accounted for by known mutational processes. Given the 

disparity between transcribed strands, mutations that have arisen with a highly biased context are 

removed (binomial filter, p < 0.005). We finally removed all mutations that are clustered within 4 bases 

in a given patient, to yield the final mutation calls. 

4. Benchmarking Data by whole-exome sequencing 

Multi-regional whole exome sequencing data has been processed for tumour tissue adjacent to 

the regions that have undergone single cell RNA sequencing. The exonic mutations may therefore be 

used as a benchmark to determine the precision and sensitivity of the single cell mutation calling 

method above. To provide a fair comparison between single cell RNA and bulk exonic DNA mutation 

calls, and to account for differences in coverage between the methods, we also examine whether 

there is evidence of a given mutation using the reciprocal technology by performing a pileup at that 

mutation locus. 
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We can therefore classify mutations called using the above pipeline as: 

● True positive - The mutation has been called in both in the scRNA-seq pipeline and CaVEMan. 

● True positive, pileup only - The mutation has been called in the scRNA-seq pipeline, and there 

is evidence of the mutation in exome sequencing from tumour regions, with no mutations in 

the normal sample BAM files. The most common reasons for these mutations not being called 

by CaVEMan is low coverage or the mutation being called in mitochondrial DNA. 

● False positive - The mutation has been called in the scRNA-seq pipeline, but there are fewer 

than 5 supporting reads for the variant base, and more than 20 reads for the reference base 

in the exome data. 

● False negative - The mutation has been called by CaVEMan from the exome data, and has not 

been called from the scRNA-seq data, despite there being adequate coverage of at least 5 cells 

with the variant and at least 20 cells with the reference base. 

● Indeterminate - The mutation has been called by the scRNA-seq pipeline, but there is not 

sufficient depth in the exome data to corroborate the call. 

Note that it is possible that some of the false positive results may be real mutations that simply have 

not been captured spatially as adjacent tissue was sequenced. Overall, this scenario is unlikely as the 

majority of mutations are clonal and present throughout the tumour. 

5. Benchmarking Data by clonotype 

In adult tumours, one expects a high proportion of somatic mutations in expanded CD8+ T cells to have 

been acquired post thymic selection. Most called mutations should therefore be restricted to a single 

T cell receptor clonotype. By using identical metrics to those used to select mutations across all cell 

types, we examined the proportion of CD8+ T cell mutations that are restricted to a single clonotype. 

Again, in order to call a mutation, we use thresholds requiring at least 5 cells with the variant in the 

most prevalent clonotype, with a least 20 cells covering the reference allele in the other clonotypes 

 

Inferring copy number variations based on scRNA-seq data 

To effectively distinguish malignant and non-malignant cells, we inferred the large-scale 

chromosomal CNVs of single cells based on scRNA-seq data using the tool InferCNV 

(https://github.com/broadinstitute/inferCNV) with default parameters. Briefly, InferCNV first orders 

genes according to their genomic positions (first from chromosome 1 to X and then by gene start 

position) and then uses a previously described sliding-average strategy to normalize gene expression 

levels in genomic windows with a fixed length. Multiple putative non-malignant cells are chosen as 

the reference to further denoise the CNV result. In our analysis, we chose epithelial cells (including 
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both PT and non-PT cells), endothelial cells and fibroblasts as the reference cell types to define a 

baseline in inferring CNVs. 

 

Cell subtype abundance in different tissues 

To explore the potential enrichments of cell subtypes in different tissues, we compared the 

observed and expected number of cells in each subtype across different tissues. The ratio of 

observation to expectation (RO/E) was calculated as follows: 

RO/E = Observed /Expected 

where the expected number of cells were calculated based on the Chi-square test. In this analysis, we 

excluded cells from the adrenal metastasis and tumour thrombus because we only captured cells from 

these two tissues from single patients. A specific cluster was considered as being enriched in a specific 

tissue if Ro/e > 1. 

 

Correlation between spatial, somatic RCC evolution and TCR clonotype evolution 

Tree structures relating to somatic ITH, spatial localisation of the tissue samples, and CD8+ 

clonotype enrichment for each region sampled were generated. The distance matrix relating regions 

to their somatic ITH was generated using pairwise distances from the mutational cluster output from 

the Bayesian Dirichlet based algorithm from the WES data for each of the (clonally) derived LCM 

samples. The spatial localisation distance matrix was calculated from the pairwise distances from tree 

structures determined either by: 

1)   The approximate absolute distance between LCM biopsies: This metric is not meaningful for 

normal tissue samples, particularly for peripheral blood and therefore the normal samples were 

excluded using this absolute distance metric. 

2)   A categorical distance: The first level equates to adjacent LCM biopsies, whose centres lie 

approximately 0.2mm apart. The second level for LCM biopsies taken from the same histologically 

mounted section, approximately 2mm distant. The third level relates to biopsies from small 

macroscopically separate biopsies, separated by approximately 6mm. The fourth level relates to 

macroscopic tumour biopsies taken approximately 30mm apart. The fifth level encompasses all of 

the adjacent normal tissue samples. 

The Euclidian CD8+ T cell clonotype distance matrix was calculated using the relative 

expansions of the CD8+ clonotypes for each region sampled. Regions were removed where there was 

incomplete data – for instance if there were no viable cells in the single cell sequencing data. However, 

any regions where there was overlapping data, for instance multiple WES data from adjacent LCM cuts 
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relating to a single region for single cell RNA sequencing were all included. 

The pairwise correlation between the above distance matrices was computed using the 

Mantel test. A paired Wilcoxon test was used to determine whether somatic ITH or spatial localisation 

correlated with CD8+ clonotypic heterogeneity. 

 

Gene set enrichment analysis and gene signature scoring in macrophage population 

We performed gene set variation analysis among macrophage subsets using the GSVA R 

package. The gene sets we used were the C2 collection (curated gene sets) downloaded from the 

MsigDB database (https://www.gsea-msigdb.org/gsea/msigdb). The differences in activities pathways 

between clusters were calculated using the Limma R package. Significantly disturbed pathways were 

identified with Benjamini-Hochberg–corrected P value of <0.01. Some representative pathways that 

related to tumour progression, immune response and regulation were selected to make a heatmap. 

We investigated the phenotypes of different macrophage subsets by scoring them based on four 

previously reported gene signatures, including M1 and M2 polarization (18), signature of myeloid-

derived suppressor cells (MDSC) (60), and signatures of angiogenesis and phagocytosis (33)  

RNA velocity analysis 

We conducted RNA velocity analysis using velocyto (61). We first ran the command line 

‘velocyto run10x’ to annotate spliced and unspliced reads using the cellranger output (the BAM file) 

as the input, generating loom files for each cellranger output. We then merged these loom files and 

pre-processed the velocity data using the scVelo python package (62). We projected the velocity 

information onto pre-generated UMAP and visualized the results using the function 

scvelo.pl.velocity_embedding_grid(). 

 

Similarity analysis of myeloid clusters 

To compare the similarities of myeloid clusters to the previously published data (33), we 

trained a logistic regression model using elastic net regularization as previously described (25). The 

previous kidney cancer data were obtained from Gene Expression Omnibus (GEO: GSE154763) and 

were used as training data.  

 

Lineage tracing using scRNA-seq called somatic mutations 

Based on the somatic mutations called from scRNA-seq data, we constructed a neighbor-

joining tree to elucidate the relationship of different monocyte and macrophage subtypes (the low-
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quality cluster was excluded). Since our somatic mutations were called from gene expression data, we 

realized that the expression levels of genes may impact on the detection of mutations in different 

clusters, thus potentially making cell subtypes with more similar expression profiles cluster closer 

while those with less similar expression profiles segregate farther in the tree structure. To mitigate 

this, we excluded mutations that were detected in the top 100 DEGs of every cluster from the tree 

construction process. Based on the remaining mutations, we created a mutation matrix (mutation × 

subtype) considering whether a specific mutation appears in specific subtypes or not. Next, we 

calculated the binary distance between any two cell subtypes based on the mutation matrix and 

constructed the neighbor-joining tree using the ‘NJ’ function in the R package ‘phangorn’. A 

bootstrapping analysis was performed using the ‘boot.phylo’ function implemented in the R package 

‘ape’, with the number of bootstrap replicates being set as 100. The final tree structure was displayed 

using the ‘plotBS’ function in the R package ‘phangorn’. 

 

Deciphering intra-tumour expression programmes and meta-programmes 

To explore underlying intra-tumour expression signatures of tumour cell population in RCC, 

we applied non-negative factorization (implemented in the R NMF package) to the tumour cells in ten 

patients (PD44714 and PD47172 were excluded from this analysis because they were histologically 

evaluated as benign and oncocytoma). Briefly, for each tumour, we first normalized the expression 

counts using Seurat NormalizeData() function with default parameter settings. We selected highly 

variable genes (HVGs) using Seurat FindVariableFeatures() function and only focused on the 2000 

HVGs in downstream analysis Then, we performed center-scale for HVSs using Seurat ScaleData() 

function with the percentage of mitochondria genes being regressed out, and replaced all negative 

values in the expression matrix by zero. The top 10 ranked co-expressed gene modules in each tumour 

sample were dissected by using the nmf() function in the NMF package. For each gene module, we 

extracted the top 50 genes with the highest weight and used them to define a specific intra-tumour 

expression programme. Finally, we only included those expression programmes with standard 

deviations larger than 0.2 among tumours cells, thus generating 3 to 6 intra-tumour expression 

programmes in the 10 tumours. 

         To investigate if some intra-tumour expression programmes were actually shared by multiple 

tumours, we applied a clustering analysis to all programmes based on the pair-wised Jaccard index 

calculated as follows, where A and B represent two intra-tumour programmes. 

Jaccard index = A⋂B/A⋃B 

We defined those intra-tumour programmes shared by multiple tumours as meta-

programmes. Genes that are shared by at least 50% tumours with a specific meta-programme were 
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used to define the meta-programme except for the cell cycle programme, which is only shared by two 

tumours and thus we used genes shared by the two tumours to define the cell cycle programme. 

Integrating and analyzing tumour cells from different patients 

To mitigate the effect brought by the strong inter-tumour heterogeneity in integration, we 

used the Seurat scRNA-seq integration pipeline to integrate tumour cells from 10 patients (PD44714 

and PD47172 were excluded from this analysis because they were histologically evaluated as benign 

and oncocytoma). Briefly, for each tumour, we first used regularized negative binomial regression to 

normalize UMI counts based on the SCTransform() function in Seurat with the percentage of 

mitochondria genes being regressed out. The pre-processed individual objects were then added to a 

list, based on which we further performed selection of integration features using the 

SelectIntegrationFeatures() function with the number of features being set as 3000. We next 

performed integration preparation using the PrepSCTIntegration() function and found the integration 

anchors using the FindIntegrationAnchors() function with the normalization method being set as ‘SCT’ 

and the ‘k.filter’ parameter being set as 50. Finally, these objects were integrated by using the 

IntegrateData() function. Based on this integrated object of tumour cells, we further performed 

downstream analyses including clustering and differentially expressed gene analysis. Gene signature 

scores of the six identified meta-programmes were calculated with the AddModuleScore() function 

using featured genes in these programmes.  

TCGA data and prognosis analysis 

We used TCGA expression and prognostic data to calculate meta-programme scores and 

investigate how the meta-programmes correlate with survival of patients with ccRCC. We processed 

the gene expression matrix by log-transforming and centralizing. Gene scores of each meta-

programme were calculated as the average expression of genes in the specific programme. TCGA 

samples with records of age, gender, stage, survival data and tumour purity information were further 

used for survival analysis.  For the expression of each meta-programme, patient cohorts were grouped 

into high and low groups by the optimal cut point determined using the cutp() function documented 

in the survMisc R package. We performed multivariate analyses using the Cox proportional hazards 

model (coxph() function in the survival R package) to correct clinical covariates including age, gender, 

tumour stage and tumour purity for all survival analyses in our study. Kaplan-Meier survival curves 

were plotted to show differences in survival time using the ggsurvplot() function in the survminer R 

package. 
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Cell-cell interaction analysis 

We inferred putative cell-cell interactions based on the expression of ligand-receptor pairs on 

different types of cells using CellPhonDB (39, 40). We investigated cell-cell interactions occurring 

between any two of the 12 major cell types in our study, and compared the numbers and types of 

interactions among the normal kidney, tumour-normal interface and tumour core. Next, we 

conducted a deeper analysis of cell-cell interaction by linking ligands expression on one cell type to 

some target genes of interest expressing another cell type using NicheNet (41). This analysis uses 

public databases (KEGG, ENCODE, PhoshoSite) to track downstream effectors such as transcription 

factors and receptor’s target in the provided dataset. Specifically, we were interested in what ligands 

from non-malignant cells in the TME can potentially trigger EMT programme in tumour cells, thus 

considering the gene list of deciphered EMT meta-programme as the target genes. Genes were 

considered as expressed when they have non-zero values in at least 5% of the cells in a specific cell 

type.  

Data and software availability 

The accession number for the genome sequence data reported in this paper is European 

Genome-Phenome Archive: EGAD00001008029 for whole-exome sequencing data, and 

EGAD00001008030 for the single cell RNA sequencing data. Code and pipeline for deSCeRNAmut is 

available at https://github.com/ThomasJamesMitchell/deSCeRNAMut. 
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Fig. S1. Basic information of the study cohort and the data. (A) Heatmap illustrating the clinical 

features (left panel) and the genomic landscape (middle panel) and copy number profiles (right panel) 
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of the tumours sequenced. (B) UMAP, (C) cell type, and (D) sampled region depicting the interpatient 

variability of scRNA-seq results. (E) UMAP showing marker gene expression for all cells. (F) Copy 

number inference based on scRNA-seq data. 
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Fig. S2. Spatial and transcriptomic heterogeneity of NK and B cell compartments. (A&E) UMAPs, 

(B&F) dotplots of marker genes, (C&G) tissue distribution, and (D&H) regional enrichment of NK and 

B cells. 

 

 
Fig. S3. Spatial and transcriptomic heterogeneity of T cell compartment. (A) UMAP of the sub-

clustering result, (B) UMAP  and (C) barplot showing tissue distribution, and (D) regional enrichment 

of CD8+ T cell population. (E) UMAP showing the RNA velocity result and (F) exhaustion score across 
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the pseudotime trajectory of CD8+ T cells. (G) UMAP of the sub-clustering result, (H) dotplot showing 

marker gene expression, and (I) UMAP of tissue distribution of CD4+ T cells. (J) Barplot showing the 

comparison of TCR clonal expansion between CD8+ and CD4+  T cells, breaking down into three 

different locations: blood, tumour and other regions. 
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Fig. S4. Somatic mutation analysis and the relationship with TCR heterogeneity. (A) Density plots 
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showing the VAF distribution of mutations called from WES data from LCM biopsies of tumour 

samples. (B) Comparison of WES derived phylogenies (left) with geographic location (centre) and CD8+ 

TCR clonotype expansion (right) for each patient with matching data. Colours reference somatic clones 

to spatial localisation. Each column in the right panel represents a TCR clonotype, those with 

significant regional enrichment are highlighted in red. a, c, d, and e represents four different regions 

of the tumour core; g, tumour-normal interface; f, perinephric fat; n, normal kidney; b, peripheral 

blood; h, normal adrenal gland; i, adrenal metastasis; t, thrombus. (C) Bar chart showing benchmarking 

results of the number of called mutations in CD8+ T cells derived from scRNA-seq data that are 

restricted to individual TCR clonotypes. (D) Comparison of the proportion of cells with one, two, three, 

and more than three mutations across the major cell types. 

 

 
 

Fig. S5. Sub-clustering analysis of myeloid cell compartment. (A) UMAP depicting interpatient 

variation, (B) tissue distribution, and (C) patient contribution to the different regions sampled. (D) 

UMAPs showing marker gene expression in myeloid cells. (E) Scatter plot of M1 versus M2 polarisation 
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for all of the macrophages showing individual cells (grey), and mean values for each subtype 

(coloured). (F) Heatmap plotting the similarity of myeloid clusters derived in our study with those 

published in ref. 33. (G) Violin plots showing expression levels of SPP1 and GPNMB across all myeloid 

cell subtypes. 

 

 
Fig. S6. Tumour cell expression programmes. (A) UMAP showing the patients that RCC cells derived 

from. (B) Heatmap depicting the top DEG expression and assignment to meta-programmes for RCC 

cell clusters. (C) UMAPs showing the relative expression of each meta-programme for all RCC cells. (D) 

Correlation of EMT versus PT scores from bulk RNA sequencing data of the TCGA. (E) Cells from patient 

donors PD43948, ranked by decreasing EMT score with corresponding PT score and cell location. Tu-

c, tumour core. (F) Survival probability of patients according to stratification of bulk RNA sequencing 

from TCGA with single-cell derived meta-programmes. HR, hazard ratio.  
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Supplementary Tables 

Table S1. Clinicopathological information 

Table_S1.xlsx 

Table S2. Information of scRNA-seq 

Table_S2.xls 

Table S3. Information of LCM samples and WES 

Table_S3.xlsx 

Table S4. Top differentially expressed genes in the sub-clustering analysis of different cell lineages 

Table_S4.xlsx 

Table S5. Information of expression programmes 

Table_S5.xlsx 
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