

1 **Genome assembly of the Australian black tiger shrimp (*Penaeus monodon*)**
2 **reveals a fragmented IHHNV EVE sequence**

3 Roger Huerlimann^{*,†,‡,1,2}, Jeff A Cowley^{*,§,1}, Nicholas M Wade^{*,§,1}, Yinan Wang^{**}, Naga
4 Kasinadhuni^{**}, Chon-Kit Kenneth Chan^{**}, Jafar Jabbari^{**}, Kirby Siemering^{*,**}, Lavinia
5 Gordon^{**}, Matthew Tinning^{*,**}, Juan D Montenegro^{**,3}, Gregory E Maes^{††,‡‡}, Melony J
6 Sellars^{§,4}, Greg J Coman^{*,§§}, Sean McWilliam^{*,§}, Kyall R Zenger^{*,†}, Mehar S Khatkar^{*,***},
7 Herman W Raadsma^{*,***}, Dallas Donovan^{*,†††}, Gopala Krishna^{*,†††}, and Dean R Jerry^{*,†,‡}

8 * ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, Australia

9 † Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and
10 Engineering, James Cook University, Townsville, QLD 4811, Australia

11 ‡ Centre for Tropical Bioinformatics and Molecular Biology, James Cook University,
12 Townsville, QLD 4811, Australia

13 § CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia

14 ** Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer
15 Centre, 305 Grattan St, Melbourne VIC 3000, Australia

16 †† Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, 3000,
17 Belgium

18 ‡‡ Center for Human Genetics, UZ Leuven- Genomics Core, KU Leuven, Leuven, 3000,
19 Belgium

20 §§ CSIRO Agriculture and Food, Integrated Sustainable Aquaculture Program, 144 North
21 Street, Woorim, QLD 4507, Australia

22 *** Sydney School of Veterinary Science, Faculty of Science, The University of Sydney,
23 Camden, NSW 2570, Australia

24 ††† Seafarms Group Ltd, Level 11 225 St Georges Terrace, Perth, WA 6000, Australia

25 ¹ Shared first authors

26 ² Corresponding author: Roger Huerlimann; James Cook University, 145 James Cook
27 Street, Townsville, QLD 4811, Australia; roger.huerlimann@jcu.edu.au

28 ³ Current address: Genics Pty Ltd, Level 5, 60 Research Road, St Lucia, QLD, 4067,
29 Australia

30 ⁴ Current address: Department of Neurosciences and Developmental Biology,
31 University of Vienna, Vienna BioCenter, Vienna 1030, Austria

32 **Keywords:** *Penaeus monodon*, Australia, genome assembly, PacBio, IHHNV EVE

33 Running title: **Australian black tiger shrimp genome**

34 **Abstract**

35 Shrimp are a valuable aquaculture species globally; however, disease remains a major
36 hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by
37 endogenous viral elements (EVEs) have been proposed as a means by which shrimp
38 that encounter a new virus start to accommodate rather than succumb to infection over
39 time. However, evidence on the nature of such EVEs and how they mediate viral
40 accommodation is limited. More extensive genomic data on Penaeid shrimp from
41 different geographical locations should assist in exposing the diversity of EVEs. In this
42 context, reported here is a PacBio Sequel-based draft genome assembly of an
43 Australian black tiger shrimp (*Penaeus monodon*) inbred for one generation. The 1.89
44 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9%
45 of the projected genome size. The genome repeat content (61.8% with 30%
46 representing simple sequence repeats) is almost the highest identified for any species.
47 The functional annotation identified 35,517 gene models, of which 25,809 were protein-
48 coding and 17,158 were annotated using interproscan. Scaffold scanning for specific
49 EVEs identified an element comprised of a 9,045 bp stretch of repeated, inverted and
50 jumbled genome fragments of Infectious hypodermal and hematopoietic necrosis virus
51 (IHHNV) bounded by a repeated 591/590 bp host sequence. As only near complete
52 linear ~4 kb IHHNV genomes have been found integrated in the genome of *P. monodon*
53 previously, its discovery has implications regarding the validity of PCR tests designed to
54 specifically detect such linear EVE types. The existence of joined inverted IHHNV
55 genome fragments also provides a means by which hairpin dsRNAs could be expressed
56 and processed by the shrimp RNA interference (RNAi) machinery.

57

INTRODUCTION

58 Shrimp aquaculture plays a central role in producing high quality protein for human
59 consumption, with global aquaculture production of the two major species, *Penaeus*
60 *vannamei* and *P. monodon*, reaching close to six million tons in 2018 (FAO 2020).
61 However, diseases, such as those caused by highly pathogenic viruses, are currently a
62 major contributor to unfulfilled production potential (FAO 2020). Therefore, a more
63 advanced understanding of the host defense mechanisms that suppress infection will be
64 critical to finding solutions to viral diseases (Kulkarni et al. 2021; Hauton 2017; Yang et
65 al. 2021).

66 Initially described in insects, the viral accommodation mechanism has been
67 hypothesized to explain why farmed shrimp highly susceptible to morbidity and mortality
68 proceeding their initial encounter with a new virus tend to become less susceptible over
69 time (Flegel 2020). Viral accommodation is mediated through host-genome integrated
70 endogenous viral elements (EVEs) that can be inherited after integration into the germ
71 line. The expressed EVE-specific double-stranded RNA (dsRNA) is then processed by
72 the host RNA interference (RNAi) pathway, suppressing viral RNA expression levels
73 and therefore infection loads. In the case of RNA viruses, a linear copy viral DNA
74 (cvDNA) or circular copy viral DNA (ccvDNA) can be reverse transcribed by the host
75 (Taengchaiyaphum et al. 2021). These DNA copies of virus RNA can then either
76 autonomously insert into the host genome to become an EVE, or be used directly as a
77 template for dsRNA transcription as an initial step to RNAi-mediated suppression of
78 virus infection (Taengchaiyaphum et al. 2021).

79 Of the >50,000 known crustacean species, high-quality genome assemblies are only
80 available for a select few taxa, driven primarily by the commercial or unique biological
81 significance of certain species. Genome assemblies provide a reference base for
82 functional transcriptomic studies (Yue and Wang 2017; Chandhini and Rejish Kumar
83 2019), aid in the positioning of genetic markers used for selective breeding (Houston et
84 al. 2020; Zenger et al. 2017) and provide an important resource for the examination and
85 characterization of genomic regions of commercial or biological interest (Guppy et al.
86 2020; Hollenbeck and Johnston 2018). However, crustacean genomes have also

87 proved immensely challenging to assemble due to their large (>2 Gbp), highly repetitive
88 (>50%), and highly heterozygous genomes (Yuan et al. 2021a). To some extent, these
89 difficulties have been alleviated by the advent of single-molecule long-read sequencing
90 and improved genome assemblers. Extracting intact high-quality genomic DNA from
91 muscle tissue of crustaceans like shrimp has also proved problematic and exacerbated
92 difficulties in obtaining high-quality data from various NGS platforms (Angthong et al.
93 2020). Despite these challenges, genome assemblies highly fragmented into more than
94 a million contigs have been reported for the penaeid shrimp species *P. vannamei* (Yu et
95 al. 2015), *P. japonicus* (Yuan et al. 2018), and *P. monodon* (Van Quyen et al. 2020;
96 Yuan et al. 2018). Through applying long-read sequencing and HiC scaffolding, less
97 fragmented high-quality genomes have also been achieved recently for *P. vannamei*
98 (Zhang et al. 2019), *P. monodon* (pseudo-chromosome level) (Uengwetwanit et al.
99 2020) and *P. japonicus* (Kawato et al. 2021).

100 Reported here is a high-quality draft genome assembly of a single-generation inbred
101 male *P. monodon* from eastern Australia, a population genetically distinct from others
102 across their South East Asian, Indo-Pacific and East African distribution (Vu et al.
103 2021). We report and resolve the genomic structure of an EVE of Infectious hypodermal
104 and hematopoietic necrosis virus (IHHNV) comprised of repeated, inverted, and jumbled
105 IHHNV genome fragments. We discuss the disease detection implications of false PCR-
106 positives for infectious IHHNV, and how the EVE might have originated.

107 METHODS & MATERIALS

108 **Shrimp breeding and selection for sequencing:**

109 A second-generation (G2) male *Penaeus monodon* that had undergone a single cycle of
110 inbreeding was selected for genomic sequencing. The original wild-caught broodstock
111 were collected from a Queensland east coast location (approximately 17.3°S, 146.0°E)
112 in September 2013. In October 2013, 14 first-generation (G1) families were produced
113 from the brood stock at Seafarm Flying Fish Point hatchery (approximately 17.5°S,
114 146.1°E). In February 2015, pleopod tissue was sampled from 50 female and 50 male
115 G1 broodstock. These tissues were genotyped (using 2 x 60 SNP panels (Sellars et al.
116 2014) to identify the parental origin of each broodstock and to select related mating

117 pairs to generate the inbred G2 progeny. In August 2015, groups of 50 juvenile males
118 from 5 inbred G2 families were euthanized to collect muscle tissue from the first
119 abdominal segment for sequencing and the second most anterior pair of pleopods for
120 genotyping. These tissues, as well as the remainder of each shrimp (archived source of
121 tissue for sequencing) were snap frozen under dry ice pellets and stored at -80°C. Each
122 shrimp was then genotyping using the 120-SNP panel (Sellars et al. 2014) and a
123 genome-wide SNP assay based on DArTSeq (Guppy et al. 2020). After ranking the 50
124 males based on inbreeding coefficient (F) and multi-locus heterozygosity (MLH) data
125 from the 120-SNP panel, the individual (named Nigel) with the highest inbreeding
126 coefficient was chosen for genomic sequencing. The choice was confirmed using a
127 genome-wide SNP assay based on DArTSeq of the top five inbred shrimp based on the
128 120-SNP panel which recovered the same ranking (Nigel: MLH of 0.231 and F of
129 0.271).

130 **DNA extraction, library preparation and genome sequencing:**

131 Multiple extraction methods were trialed to generate intact high-quality genomic DNA
132 from stored muscle tissue of the single selected inbred shrimp. All DNA extractions and
133 sequencing runs were carried out at the Australian Genome Research Facility (AGRF),
134 Melbourne, Australia. For Illumina sequencing, the MagAttract HMW DNA kit (QIAGEN)
135 was used and PCR-free fragment shotgun libraries were prepared using the 'with-bead
136 pond library' construction protocol described by Fisher et al. (Fisher et al. 2011) with
137 some modifications (Supplementary Material 1). The library was sequenced on two
138 HiSeq 2500 lanes using a 250 bp PE Rapid sequencing kit (Illumina). The same DNA
139 was also used to create a 10X Genomics Chromium library as per manufacturer
140 instructions, which was sequenced on two HiSeq 2500 lanes using a 250 bp PE Rapid
141 sequencing kit. For PacBio sequencing, the following DNA extraction methods were
142 used with varying success: MagAttract HMW DNA kit (QIAGEN), Nanobind HMW
143 Tissue DNA kit-alpha (Circulomics), and CTAB/Phenol/Chloroform (Supplementary
144 Table 1). Libraries were prepared using the SMRTbell Template Prep Kit 1.0 (PacBio),
145 loaded using either magbeads or diffusion, and sequenced using the Sequel
146 Sequencing Kits versions 2.1 and 3.0 on a PacBio Sequel (Supplementary Table 1).
147 The same muscle tissue was also used to prepare three Dovetail Hi-C libraries

148 according to manufacturer's instructions. Two libraries were sequenced on a shared
149 lane of a NovaSeq S1 flow cell, and a third library was sequenced on one lane of a
150 NovaSeq SP flow cell, with both sequencing runs generating 100 bp paired-end reads.

151 **Genome assembly:**

152 The quality of the initial short-read genome assemblies using either DISCOVAR *de*
153 *novo* (Weisenfeld et al. 2014) with Illumina data, or Supernova (Weisenfeld et al. 2017)
154 with 10X Genomics Chromium data was poor. The most contiguous assembly was
155 achieved using wtdbg2/redbean (Version 2.4, Ruan and Li 2019) with 75 X times
156 coverage of PacBio data, setting the estimated genome size to 2.2 Gb, but without
157 using the wtdbg2 inbuilt polishing. The raw assembly was subjected to two rounds of
158 polishing using the PacBio subreads data in arrow (Version 2.3.3,
159 github.com/PacificBiosciences/GenomicConsensus) and one round of polishing using
160 the Illumina short-read data in pilon (Version 1.23, Walker et al. 2014). Scaffolds were
161 constructed in two steps. Medium-range scaffolding carried out using 10X Genomics
162 Chromium data with longranger (Version 2.2.2,
163 <https://support.10xgenomics.com/genome-exome/software/downloads/latest>) and
164 ARCS (Version 1.0.6, Yeo et al. 2017), while long-range scaffolding was performed
165 using dovetail Hi-C data, and intra- and inter-chromosomal contact maps were built
166 using HiC-Pro (Version 2.11.1, Servant et al. 2015) and SALSA (commit version
167 974589f, Ghurye et al. 2017). This genome assembly was then submitted to NCBI
168 GenBank, which required the removal of two small scaffolds and the splitting of one
169 scaffold. The overall quality of the final V1.0 genome was assessed using BUSCO, and
170 through mapping of RNA-seq, and Illumina short-reads using HiSAT2 (version 2.1.0,
171 Kim et al. 2019).

172 **Repeat annotation:**

173 Repeat content was assessed with *de novo* searches using RepeatModeler (V2.0.1)
174 and RepeatMasker (V4.1.0) via Dfam TE-Tools (V1.1, [https://github.com/Dfam-
175 consortium/TETools](https://github.com/Dfam-consortium/TETools)) within Singularity (V2.5.2, Kurtzer et al. 2017). Additionally,
176 tandem repeat content was determined using Tandem Repeat Finder (V4.0.9, Benson
177 1999) within RepeatModeler. Analyses and plotting of interspersed repeats were carried

178 out as per Cooke *et al.* (2020,
179 github.com/iracooke/atenuis_wgs_pub/blob/master/09_repeats.md). Additionally, the
180 genomes of the Black tiger shrimp (Thai origin, www.biotech.or.th/pmonodon; Kim *et al.*
181 2019), Whiteleg shrimp (*P. vannamei*, NCBI accession: QCYY00000000.1; Zhang *et al.*
182 2019), Japanese blue crab (*Portunus trituberculatus*, gigadb.org/dataset/100678; Tang
183 *et al.* 2020), and Chinese mitten crab (*Eriocheir japonica sinensis*, NCBI accession:
184 LQIF00000000.1) were run through the same analyses for comparison.

185 **Gene prediction and annotation:**

186 In order to generate an RNA-seq based transcriptome, raw data from a previous study
187 (NCBI project PRJNA421400; Huerlimann *et al.* 2018) was mapped to the masked
188 genome using STAR (Version 2.7.2b; Dobin *et al.* 2013), followed by Stringtie (Version
189 2.0.6; Pertea *et al.* 2015) (Supplementary Table 2). Additionally, the IsoSeq2 pipeline
190 (PacBio) was used to process the ISO-seq data generated in this study (Supplementary
191 Table 2). Finally, the genome annotation was carried out in MAKER2 (v2.31.10;
192 Campbell *et al.* 2014; Cantarel *et al.* 2008; Holt and Yandell 2011) using the assembled
193 RNA-seq and ISO-seq transcriptomes together with protein sequences of other
194 arthropod species (Supplementary Table 3).

195 **Endogenous viral element analysis:**

196 BLASTn using a 3,832 bp IHHNV EVE Type A sequence detected in Australian *P.*
197 *monodon* (Au2005; EU675312.1) as a query identified a potential EVE in Scaffold_97 of
198 the *P. monodon* genome assembly. The EVE was unusual in that it comprised of
199 repeated, inverted and jumbled fragments of an EVE Type A sequence. The nature and
200 arrangement of EVE fragments was initially determined manually and the relative
201 sequence positions of matching fragments within the EVE and scaffold sequence was
202 determined using QIAGEN CLC Genomics Workbench 18.0
203 (<https://digitalinsights.qiagen.com/>). To confirm the authenticity of the Scaffold_97 EVE
204 (S97-EVE), six PCR primer sets were designed using Primer 3 v.0.4.0 (Koressaar and
205 Remm 2007; Untergasser *et al.* 2012) to amplify each EVE boundary and two internal
206 sequences (Supplementary Table 4). DNA was extracted from ~10 mg gill tissue stored
207 at -80°C from the *P. monodon* sequenced using DNAeasy kit spin columns (QIAGEN).

208 DNA was eluted in 50 μ L EB buffer, aliquots were checked to DNA concentration and
209 purity using a Nanodrop 8000 UV spectrophotometer and the remainder was stored at -
210 20°C. As DNA yields were low (9-38 ng/ μ L), a 1.0 μ L aliquot of each sample was
211 amplified in 10 μ L reactions incubated at 30°C for 16 h as described in the REPLI-g Mini
212 Kit (QIAGEN).

213 Each PCR (25 μ L) contained 2 μ L REPLI-g amplified gill DNA, 1 x MyTaqTM Red Mix
214 (Bioline), 10 pmoles each primer and 0.25 μ L (1.25 U) MyTaq DNA Polymerase
215 (Bioline). Thermal cycling conditions were 95°C for 1 min followed by a 5-cycle touch-
216 down (95°C for 30 s, 60°C to 56°C for 30 s, 72°C for 20 s), 30 cycles of the same using
217 an anneal of 55°C for 30 s, followed by 72°C for 7 min and a 20°C hold. For semi-
218 nested PCR using the 1b and 4b primer sets, 1 μ L each PCR (either neat or diluted 1:5
219 to 1:10 depending on PCR product amount) was amplified similarly for 30 cycles using
220 an anneal step of 55°C for 30 s. Aliquots (5-10 μ L) of each reaction were
221 electrophoresed in a 1.0% agarose-TAE gel containing 0.1 μ L mL⁻¹ ethidium bromide,
222 and a gel image was captured using a Gel Doc 2000 UV transilluminator (Bio-Rad).
223 Each amplicon was purified using a spin column (QIAGEN) and sequenced at the
224 Australian Genome Research Facility (AGRF), Brisbane. The quality of sequence
225 chromatograms was evaluated and consensus sequences for each amplicon were
226 generated using Sequencher[®] 4.9 (Gene Codes Corp.).

227 **Data availability:**

228 Raw and assembled sequence data generated by this study have been deposited in
229 GenBank BioProject PRJNA590309, BioSample SAMN13324362. PacBio and Illumina
230 raw data can be found under accession numbers SRR10713990-SRR10714025. The
231 final scaffolded assembly can be found under accession JAAFYK000000000. RNA-seq
232 data used for annotation originated from an earlier study (Huerlimann et al. 2018).

233 **RESULTS AND DISCUSSION**

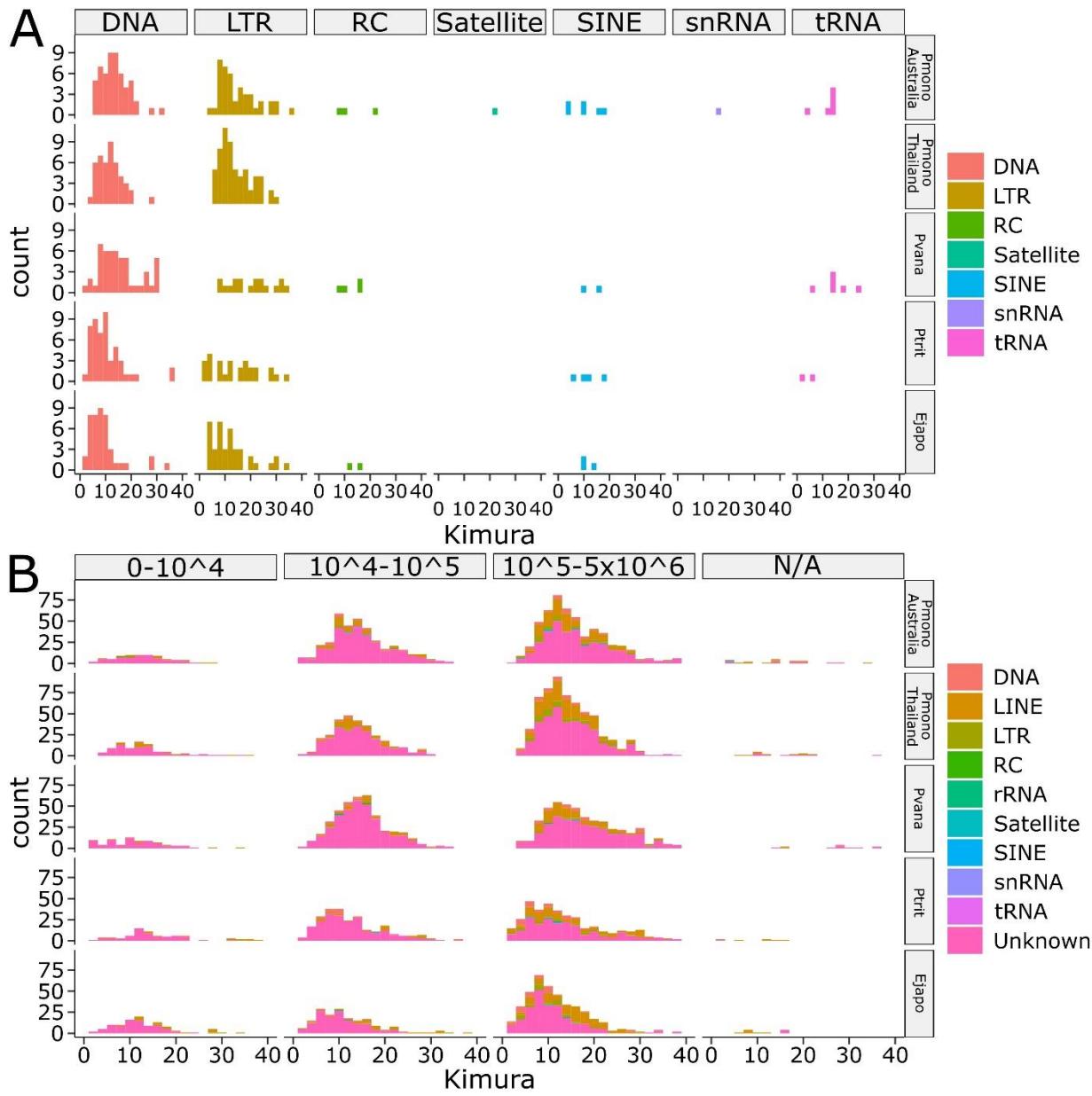
234 **DNA extraction, library preparation and genome sequencing:**

235 In total, 158 Gb (72 X coverage) of Illumina, 494 Gb (224 X coverage) of 10X Genomics
236 Chromium, 165 Gb (75 X coverage) of PacBio Sequel, and 119 Gb (54 X coverage) of

237 DoveTail data were generated (Table 1). While the MagAttract HMW DNA kit (QIAGEN)
238 was suitable for Illumina sequencing (PCR-free shotgun libraries and 10X Genomics
239 Chromium), using this DNA resulted in poor PacBio Sequel sequencing runs
240 (Supplementary Table 1). Runs consistently showed low yield and short fragment
241 lengths, despite relatively high molecular weight DNA. However, DNA extracted with the
242 Nanobind HMW Tissue DNA kit-alpha (Circulomics, Inc., Baltimore, USA) showed better
243 sequencing performance (higher yield and fragment length; Supplementary Table 1).
244 Furthermore, diffusion loading of the PB Sequel resulted in better results than magbead
245 loading. DNA derived from either extraction method was unsuitable for Oxford
246 Nanopore Technology (ONT) sequencing due to it rapidly blocking the pores (data not
247 shown).

248 Sequence quality issues associated with DNA extraction have also been noted in other
249 shrimp genome assembly reports (Zhang et al. 2019; Uengwetwanit et al. 2020). The
250 patterns seen in the PacBio sequencing results (short polymerase read lengths despite
251 high quality libraries), coupled with the inability to successfully sequence *P. monodon*
252 using ONT technology (immediate pore blockage), can be explained by high amounts of
253 polysaccharides and polyphenolic proteins co-extracting with the DNA. This has also
254 been mentioned by Angthong et al. (2020), who also present an alternative DNA
255 extraction method to the Circulomics Nanobind HWM Tissue DNA extraction kit
256 suggested here.

257 **Genome assembly and quality assessment:**


258 As reported by other Penaeid shrimp genome sequencing projects (Uengwetwanit et al.
259 2020; Zhang et al. 2019; Yuan et al. 2021a), sequencing and assembly of the Australian
260 *P. monodon* genome proved problematic due to its large size, substantial
261 heterozygosity and prevalence of repeat elements. The *de novo* assembly of the PacBio
262 data resulted in 47,607 contigs (contig N50: 77,900 bp) a total of 1.90 Gbp in size
263 (Table 2). After medium-range scaffolding with 10X Genomic Chromium data and long-
264 range scaffolding with Dovetail sequences, the resulting scaffolded assembly contained
265 1.89 Gbp across 31,922 scaffolds (scaffold N50: 496,398 bp; Table 2). Assuming a
266 genome size of 2.2 Gbp (Huang et al. 2011), this scaffolded assembly covers 85.9 % of

267 the projected *P. monodon* genome (Table 2). This is slightly lower than the 90.3%
268 recently achieved for the same species in Thailand (Uengwetwanit et al. 2020), and
269 higher than the 67.7% achieved for *P. vannamei* (Zhang et al. 2019), which has a
270 slightly larger genome. Altogether, 98.1% of the Illumina DNA short-read data mapped
271 to the raw assembly. BUSCO (V3; Simão et al. 2015), using the Arthropoda odb9
272 database (Zdobnov et al. 2017), estimated the Australian *P. monodon* genome
273 assembly to be 86.8% complete (gene n = 1,066; 85.8% single copy; 1.0% duplicated;
274 4.5% fragmented; 8.7% missing; Table 2). These assembly metrics are comparable to
275 those achieved for the Thai *P. monodon* assembly (C 87.9%, S 84.8%, D 3.1%, F 4.0%,
276 M 8.0%; Uengwetwanit et al. 2020) and slightly better than those achieved for the *P.*
277 *vannamei* assembly (C 78.0%, S 74.0%, D 4.0%, F 4.0%, M 18.0%; Zhang et al. 2019),
278 both analyzed with the same database and BUSCO version (Table 2).

279 **Functional and repeat annotation:**

280 The functional annotation using RNA-seq, ISO-seq and protein information, identified
281 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated
282 using interproscan (Table 2). Similar numbers of genes were annotated in the Thai *P.*
283 *monodon* (Uengwetwanit et al. 2020) and *P. vannamei* (Zhang et al. 2019) assemblies.
284 Repeat content in the Australian *P. monodon* assembly (61.8%) was high, like in the
285 Thai *P. monodon* assembly (62.5%; Uengwetwanit et al. 2020), and substantially higher
286 than in genome assemblies of *P. vannamei* (51.7%; Zhang et al. 2019), *Portunus*
287 *trituberculatus* (45.9%, Tang et al. 2020) or *Eriocheir japonica sinensis* (35.5%,
288 LQIF00000000.1) (Supplementary Table 5, Fig. 1). Interestingly, simple sequence
289 repeats (SSRs) that dominated in prevalence (30.0%) in the Australian *P. monodon*
290 assembly were less prevalent (23.9%) in the Thai *P. monodon* assembly (Uengwetwanit
291 et al. 2020), similarly prevalent (27.1%) in the *P. vannamei* assembly, but far less
292 prevalent in the genome assemblies of either the Japanese blue (16.9%) or Chinese
293 mitten crab (7.9%) (Supplementary Table 5, Fig. 1). Such high SSR levels have been
294 linked to genome plasticity and adaptive evolution facilitated through transposable
295 elements (Yuan et al. 2021b). In addition to SSRs, the Australian *P. monodon* assembly
296 contained 9.8% long interspersed nuclear elements (LINEs), 2.5% low complexity
297 repeats, 2.0% DNA transposons, 1.6% long terminal repeats (LTRs), 0.51% small

298 interspersed nuclear elements (SINEs), 0.1% satellites, 0.01% small RNA repeats and
299 15.4% unclassified repeat element types (Supplementary Table 5, Fig. 1). Broad
300 comparisons of the major repeat types in the genome assemblies of *P. monodon*, *P.*
301 *vannamei*, *Portunus trituberculatus* and *E. japonica sinensis* based on kimura distances
302 showed them to be relatively conserved across all four crustacean species (Fig. 1). At
303 all lengths and levels of divergence, unknown repeats dominated, with a large
304 proportion of these >100 kbp in size (Fig. 1A). Repeat patterns shared across the four
305 species were further highlighted when unknown reads were removed, and repeats split
306 into major classes (Fig. 1B).

307

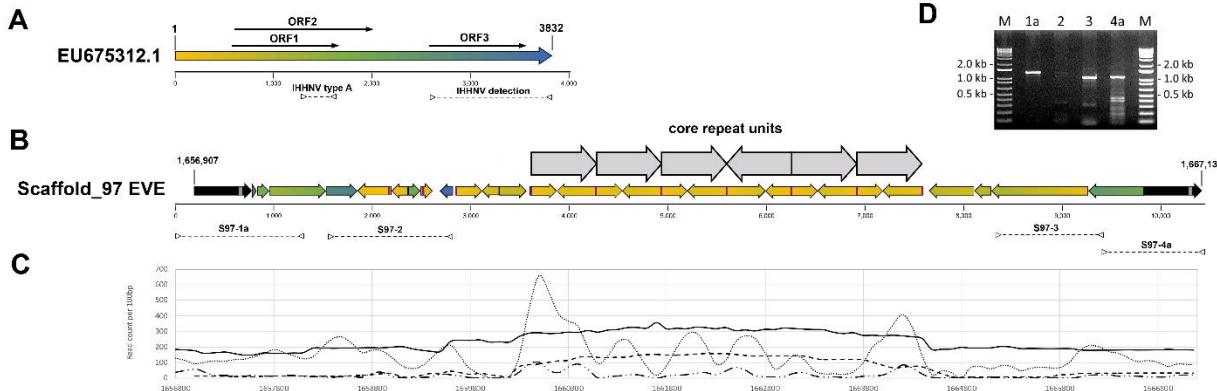
308 **Fig. 1** Kimura distances of repetitive sequences in the genome assemblies of Australian
309 black tiger shrimp (*P. monodon*, NCBI accession: JAAFYK0000000000, Pmono
310 Australia, this study) Thai black tiger shrimp (Pmono Thailand, *P. monodon*, Pmono
311 Thailand, Uengwetwanit et al. 2020), Whiteleg shrimp (Pvana, *Penaeus vannamei*,
312 NCBI accession: QCYY00000000.1, Zhang et al. 2019), Japanese blue crab (Ptrit,
313 *Portunus trituberculatus*, gigadb.org/dataset/100678, Tang et al. 2020), and Chinese
314 mitten crab (Ejapo, *Eriocheir japonica sinensis*, NCBI accession: LQIF00000000.1)
315 determined by using either (A) repeat length or (B) repeat class.

316 **IHHNV-EVE rearrangement in the Australian *P. monodon* genome:**

317 Sequences homologous to a 3,832 bp linear IHHNV-EVE (Au2005, Type A) found to
318 occur in some Australian *P. monodon* (Krabssetsve et al. 2004) were identified in
319 Scaffold_97 (S97, 2,608,951 nt). However, rather than representing an intact linear
320 copy of this EVE, the S97-EVE comprised a 9,045 bp stretch of jumbled, repeated, and
321 inverted IHHNV fragments flanked by two repeated 591/590 bp (flanking repeat)
322 sequences (Fig. 2). Alignments identified most fragments to be jumbled relative to their
323 location in the Au2005 IHHNV-EVE sequence, and the expanded EVE length to be due
324 to replicated short sequences originating from 5'-terminal genome regions. Fragments
325 positioned at the S97-EVE extremities generally originated from the central and
326 downstream regions of the Au2005 IHHNV-EVE sequence and were consistently
327 orientated inwards. The central S97-EVE region comprised a block of at least six 661 bp
328 repeat units (RUs). Each RU was comprised of two inward-facing sequences either (A)
329 398 bp or (B) 263 bp in length that mapped to the same region (94-501 and 94-368,
330 respectively) at the 5'-terminus of the Au2005 IHHNV-EVE (Fig. 2B, grey arrows). In
331 total, 83% of the Au2005 IHHNV-EVE sequence was identified to be covered by
332 genome fragments present in the S97-EVE, with those present being on average 99.3%
333 identical.

334 The inverted A and B sequences comprising each RU contain RNA transcription
335 regulatory signals of the IHHNV P2 promoter (Shike et al. 2000; Dhar et al. 2011; Dhar
336 et al. 2010; Dhar et al. 2007). Both initiated at a sequence (5'-GTCATAGGT...) mapping
337 precisely to a G nucleotide residing immediately downstream of the inversion point (|) of
338 an 18 bp inverted repeat (5'..TTACAACCTATGAC|GTCATAGGTCCTATATAAGAGT..-
339 3') located 2 bp upstream of the TATA-box element (5'-TATATAA-3') of the P2
340 transcriptional promoter (Dhar et al. 2011; Dhar et al. 2010; Dhar et al. 2007). The A
341 and B repeat components in each RU of the six blocks were orientated 5'|B-A|B-A|B-
342 A|A-B|B-A|B-A|3', with those in RU4 being reversed compared to the others. Due to the
343 A and B repeat components being inverted, the 18 bp inverted repeat (ie.
344 5'..ACTCTTTATATAGGACCTATGAC|GTCATAGGTCCTATATAAGAGT..-3') was
345 reconstructed at each of the 5 RU junction sites irrespective of which 2 repeat
346 components (A|A, A|B or B|B) were joined (Fig. 2B, purple bars). This arrangement

347 generated a 544 bp inverted repeat (263 x 2 + 18) for sequences extending from either
348 A|B or B|B RU junctions, or a 1,902 bp inverted repeat (661 x 2 + 263 x 2 + 18 x 3) for
349 the long complimentary sequence stretches extending outwards from the A|A
350 components at the RU3|RU4 junction to the end of repeat component A of RU2 and the
351 equivalent position of repeat component B in RU5. However, relating to the descriptions
352 of this unusual EVE segment, it is important to note that no single long read was
353 obtained that traversed the entire six RU blocks into flanking unique S97-EVE
354 sequences (Fig. 2). Combined with short read numbers generated using various
355 sequencing methods being substantially elevated at positions mapping to each block
356 RU (Fig. 2C), the likelihood of the block comprising more than six RUs remains to be
357 established.


358 DNAFold and RNAfold analyses showed the 18 bp inverted repeat, the inverted A and B
359 repeat components of each RU and the longer complimentary sequences that stretched
360 through multiple RUs to all have potential to form highly stable simple to complex
361 secondary structures as either ssDNA or ssRNA (data not shown). Discrete DNA
362 secondary structures are known to have roles in mediating recombination in mobile
363 genetic elements (Bikard et al. 2010) and in the genomes of parvoviruses like the
364 extensively studied adeno-associated virus (AAV), structures formed by inverted
365 terminal repeat (ITR) sequences play critical roles in initiating genomic ssDNA
366 replication, genomes forming circular extrachromosomal dsDNA episomes and genomic
367 integrating into host chromosomal DNA (Cotmore and Tattersall 1996, Kotin et al. 1991,
368 Schnepp et al. 2005, Yang et al. 1997). The mechanisms leading to the A and B
369 inverted repeat sequences forming the 661 bp RUs and their apparent multiplication in
370 the central region of the S97-EVE remains unknown. However, their existence is
371 consistent with integrated AAV proviral DNA structures being observed to contain head-
372 to-tail tandem arrays of partial ITR sequences and for genomic rearrangements
373 occurring via deletion and/or rearrangement-translocation at the integration site (Yang
374 et al. 1997).

375 The 18 bp inverted repeat at the S97-EVE RU junctions also occurred at the upstream
376 RU1 and downstream RU6 boundaries of the RU block. However, unlike those at the
377 internal RU junctions which extended into the same downstream Au2005-EVE

378 sequence including the TATA-box element (Dhar et al. 2011; Dhar et al. 2010; Dhar et al. 2007; Krabsetsve et al. 2004), the outer half of each inverted repeat flanking the RU-block extended into sequences toward the 5' end of the IHHNV genome (Supplementary Figure 1). Three disparate partial RU sequences (pRUa, pRUb, pRUC) 381 associated with four 18 bp inverted repeats also resided just upstream of the 6 RU 382 block. Like RU1 and RU6, one side of each inverted repeat possessed variable lengths 383 of sequence extending toward the IHHNV genome 5'-terminus (Supplementary Figure 384 1).

385 In some IHHNV strains, the sequence immediately upstream of the 18 bp inverted 386 repeat comprises a second imperfect 39-40 bp inverted repeat. With an IHHNV strain 387 detected in Pacific blue shrimp (*Penaeus stylirostris*) sampled from the Gulf of California 388 in 1998 (Shike et al. 2000, AF273215.1), the 5'-genome terminus upstream of it 389 consisted of an 8 bp portion of the downstream 18 bp inverted repeat (Supplementary 390 Figure 1). In the S97-EVE, the 18 bp inverted repeats associated with each terminal RU 391 or upstream pRU extended 18-38 bp into the 39-40 bp inverted repeat (Supplementary 392 Figure 1). Of interest, with the first pRU occurring in the S97-EVE (5'-pRUa), the 93 bp 393 sequence abutting the 18 bp inverted repeat was also identical to the 5'-terminal 394 sequence reported for the Au2005 IHHNV-EVE found in *P. monodon* sampled from 395 farms in Australia in 1993/1997 (Krabsetsve et al. 2004; EU675312.1).

396 To confirm that the fragmented and jumbled nature of the S97-EVE was not an 397 assembly artefact, regions spanning each EVE extremity to unique host sequences 398 positioned just beyond the 591/590 bp flanking repeats, as well as two internal regions 399 each spanning conjoined non-repeated EVE fragments were amplified by PCR 400 (Supplementary Table 4; Fig. 2D). Amplicons of the expected sizes were clearly 401 amplified by each extremity PCR test (S97-1a and S97-4a) and the S97-3 internal PCR 402 test (Fig. 2D). The other internal PCR test (S97-2) also generated a 1,337 bp amplicon 403 of the expected size, as well as one ~200 bp shorter, but in relatively lower abundance. 404 Using each extremity PCR product as template, semi-nested PCR tests using an 405 alternative internal EVE-specific primer also produced amplicons of the expected 406 shorter sizes, and their authenticity was confirmed by sequence analysis (data not 407 shown).

409

410 **Fig. 2** (A) Schematic diagram of a 3,832 bp ssDNA genome of Infectious hypodermal
411 and hematopoietic necrosis virus (IHHNV) showing the relative positions of coding
412 sequences (arrows) for the virus replicase (ORF1), NS1 non-structural protein (ORF2)
413 and viral capsid protein (ORF3). A colour gradient was applied to visualize relative
414 genome positions. (B) Schematic diagram of the positions and orientations of IHHNV
415 genome fragments comprising the Scaffold_97 EVE (S97-EVE). The orientations of the
416 IHHNV fragments (coloured arrows) and the flanking repeated 591/590 bp host
417 sequence (black arrows) are shown by arrow directions. The origins of the S97-EVE
418 fragments relative to their positions in a linear IHHNV-EVE (see A) are identified by
419 colour. The 10,226 bp S97-EVE resided between positions 1,656,907 and 1,667,132 in
420 the 2,608,951 bp Scaffold_97 sequence. The larger grey arrows identify the positions
421 and orientations of at least 6 core repeat blocks comprising of 2 smaller inverted
422 repeats. Grey vertical bars show the location of a 34 bp sequence in each flanking
423 repeat capable of folding into a stable secondary structure. The purple vertical bars
424 show the locations of the 18 bp palindromic sequence present at the boundaries of each
425 repeat unit (RU) and partial RU. Dashed lines (>--<) identify the regions amplified by the
426 4 PCR tests S97-1a, S97-2, S97-3, and S97-4a. (C) Coverage depth across the S97-
427 EVE sequence of raw short reads used to assemble genome scaffolds of *P. monodon*
428 from Australia (this study), Thailand (Uengwetwanit et al. 2020), Vietnam (Van Quyen et
429 al. 2020) and China (Yuan et al. 2018). (D) Agarose gel image showing DNA products
430 amplified by the S97-1a, S97-2, S97-3, and S97-4a PCR tests.

431 ***P. monodon* repeat sequences flanking the IHHNV-EVE:**

432 BLASTn and BLASTx searches did not identify any homologues of the 591/590 bp
433 flanking repeat sequence in GenBank. However, searches of the *P. monodon* genome
434 assembly identified long closely-related sequences in hundreds of other scaffolds (data
435 not shown). The searches also highlighted the presence of a 34 bp sequence
436 (5'..ATGACTCCTCCCCCATAGATAGGGGCGGAGTCAT..-3') in each flanking repeat
437 (Fig. 2B, grey bars, upstream repeat position 1,657,364-1,657,397; downstream repeat
438 position 1,667,000-1,667,033) that was also present in 178 other scaffolds at >80%
439 identity. DNAFold and RNAfold analyses showed the sequence and its reverse
440 compliment to fold into stable hairpin structures as either ssDNA ($\Delta G = -10.44/-11.92$,
441 $T_m = 83.8/85.7^\circ\text{C}$) or ssRNA ($\Delta G = -20.40/-23.70$). However, whether this or other
442 sequences in the host flanking repeat interact with IHHNV genome sequences and
443 proteins to facilitate recombination and site-specific integration remains to be
444 investigated. In this regard, the flanking host repeat possessed a
445 5'..CTTACTTACACTTG..3' tetramer repeat, which to the 5'-side of the S97-EVE was
446 located 33 bp upstream of the IHHNV CTTA.. sequence at the host/S97-EVE junction,
447 much like the host tetramer repeats well characterised to be pivotal to the AAV genome
448 integrating at a specific location in human chromosome 19 (Kotin et al. 1992, Linden et
449 al. 1996).

450 **Comparison to jumbled IHHNV-EVEs in other *P. monodon* genome assemblies:**

451 BLASTn searches of the most comprehensive genome assembly of a *P. monodon* from
452 Thailand (NSTDA_Pmon_1, GCA_015228065.1, Uengwetwanit et al. 2020) identified
453 Scaffold_35 (S35) containing two disparate aggregations of jumbled IHHNV-EVE Type
454 A fragments (S35-EVE1 = 7,888 bp; S35-EVE2 = 16,310 bp) each flanked by >500 bp
455 host repeats near identical in sequence to those flanking the S97-EVE (Table 3).
456 Compared to the S97-EVE, 2,328 bp of S35-EVE1 sequence immediately downstream
457 of the 5' 592 bp host repeat, except for a 166 bp deletion, and 647 bp of sequence
458 immediately upstream of the 3' 591 bp host repeat, were identical. Further inwards,
459 however, the order and arrangement of EVE fragments diverged.
460 As in the S97-EVE, the central region of the S35-EVE1 contained a block of 4 x 661 bp
461 RUs each comprised of the same inward facing (A) 398 bp and (B) 263 bp repeats but

462 ordered 5'|A-B|B-A|A-B|B-A|3', thus making a 2877 bp inverted repeat with an inversion
463 point at the RU2-RU3 boundary. Also, like the 97-EVE, each S35-EVE RU was flanked
464 by same 18 bp inverted repeat sequence, with those upstream of RU1 and downstream
465 of RU4 extending 17-33 bp into a 41 bp imperfect inverted repeat sequence located
466 immediately upstream toward the 5'-genome termini in some IHHNV strains
467 (Supplementary Figure 2). However, unlike the RU block in the S97-EVE, each of the
468 three internal S35-EVE RU boundaries comprised of 2 x 18 bp inverted repeats flanking
469 the complete 41 bp imperfect inverted repeat (Supplementary Figure 2). This revised
470 the RU junction to the inversion point in longer imperfect inverted repeat, rather than the
471 inversion point of the 18 bp inverted repeat. DNAfold and RNAfold analyses showed
472 that the 41 bp inverted repeat and its reverse compliment sequence could fold into
473 stable hairpin structures as either ssDNA ($\Delta G = -14.18/-14.86$, $T_m = 73.6/75.6^\circ\text{C}$) or
474 ssRNA ($\Delta G = -22.50/-25.00$).

475 The larger S35-EVE2 sequence differed in the arrangement and homology of up to
476 eight RUs, possibly composed of two entirely duplicated inward-facing EVE fragments
477 (Table 3). The IHHNV-EVE fragments in S35-EVE1 contained 72% of the Au2005
478 IHHNV-EVE sequence with 98.8% homology, on average. In contrast, IHHNV-EVE
479 fragments in S35-EVE2 region only contained 53% of the IHHNV-EVE sequence with
480 97.5% homology, on average.

481 BLASTn searches of the genome assembly of a *P. monodon* from Vietnam
482 (Pmod26D_v1, GCA_007890405.1, Van Quyen et al. 2020), using the 9,045 bp S97-
483 EVE and 3,832 bp linear Au2005 Type A IHHNV-EVE sequences identified 3 short
484 contigs (*VIGR010059916.1*, 4,003 nt; *VIGR010168684.1*, 2,220 nt; *VIGR010211091.1*,
485 1,917 bp) also comprised of jumbled IHHNV-EVE Type A-like fragments (Table 3). In
486 two of the contigs, the stretches of jumbled EVE fragments neighbored either a
487 complete (590 bp) or incomplete (356 bp) host repeat sequences like those flanking the
488 S97-EVE. BLASTn searches of a genome assembly of a *P. monodon* from Shenzhen,
489 China (Pmon_WGS_v1, GCA_002291185.1) also identified evidence of an EVE
490 comprised of jumbled IHHNV genome fragments (Table 3), and despite contig lengths
491 being short, it was also being flanked by the same repeated host sequence flanking the
492 S97-EVE (data not shown). While more complete higher quality genome assemblies

493 would add confidence, the insertion locations of the jumbled EVEs present in the
494 genome assemblies of the *P. monodon* from Vietnam and China appear shared with
495 those the Australian S97-EVE and Thai S35-EVE1, with the second less-related
496 jumbled S35-EVE2 in the Thai genome residing at a nearby site. Interestingly, BLASTn
497 searches of the genome assemblies of *P. monodon* from Australia, Thailand, Vietnam,
498 or China identified no evidence of linear IHHNV-EVE forms.

499 **Origins and implications of jumbled IHHNV-EVEs:**

500 While varying in lengths, the amalgamations of reordered, inverted, and repeated
501 IHHNV genome fragments comprising the EVEs detected in Scaffold_97 (S97) of the
502 Australian *P. monodon* assembly (this study) and in Scaffold_35 (S35) of the Thai *P.*
503 *monodon* assembly (Uengwetwanit et al. 2020) share an integration site as well as
504 structural and sequence similarities with the partial EVE sequences detected in short
505 contigs of genome assemblies of *P. monodon* originating from Vietnam and China (as
506 outlined above). These similarities are suggestive of a progenitor IHHNV genome
507 becoming stably integrated as an EVE prior to *P. monodon* becoming dispersed widely
508 across its current distribution range. Such an ancient event would also support
509 differences noted for example in EVE fragment composition, central RU numbers, and
510 the nature of the conserved inverted-repeat sequences defining the boundaries of the
511 RUs. Furthermore, the conservation of the inverted-repeat sequences at the RU
512 boundaries and their potential to form stable ssDNA folding structures suggests a
513 potential role in their apparent multiplication.

514 The IHHNV P2 RNA transcriptional promoter motifs, including the 18 bp inverted repeat
515 sequences and TATA-box (Dhar et al. 2014; Shike et al. 2000; Silva et al. 2014), at the
516 RU boundaries have potential to facilitate transcription of various virus-specific sense
517 and antisense ssRNA sequences. RNA transcribed from them would then be capable of
518 forming long virus-specific dsRNA or hairpin dsRNAs, potentially in high abundance due
519 to their repeated nature. If so, such virus-specific antisense RNAs or dsRNA forms
520 processed through the RNA interference (RNAi) machinery of *P. monodon* (Attasart et
521 al. 2010; Attasart et al. 2011; Dhar et al. 2014; Su et al. 2008) could provide resilience
522 against IHHNV infections progressing to become acute and cause disease. Such an

523 advantage might promote the selection of *P. monodon* carrying this form of IHHNV-
524 EVE, particularly in circumstances when shrimp are specifically selected or bred for
525 aquaculture robustness. Selection for the EVE over several years would also be
526 consistent with the viral accommodation model hypothesized to involve farmed shrimp
527 acquiring and/or selected for an ability to mount elevated antisense ssRNA-based
528 and/or dsRNA-based anti-viral responses (Flegel 2007, 2020; Flegel 2009).
529 EVEs comprised of reordered, inverted, repeated and missing IHHNV genome
530 fragments would be expected to invalidate many PCR tests either designed specifically,
531 or found through use, to amplify IHHNV-EVE dsDNA sequences (Cowley et al. 2018;
532 Rai et al. 2009; Rai et al. 2012; Saksmerprome et al. 2011; Tang et al. 2007). As
533 examples, the 356 bp sequence targeted by the 77102F/77353R primer set (Nunan et
534 al. 2000) found to amplify both viral ssDNA and EVE dsDNA sequences existed in the
535 S97-EVE and S35-EVE1, but not in the S35-EVE2 sequence. However, nucleotide
536 mismatches at the 3' terminal position of both primers and at four other positions in the
537 18-mer 77353R primer would likely compromise the capacity of this primer set test to
538 amplify these EVEs. In contrast, neither EVE sequence possessed intact fragments
539 spanning regions amplified by primer sets 392F/R (392 bp) and 389F/R (389 bp)
540 recommended by the OIE as useful for amplifying divergent IHHNV strains as well as
541 IHHNV-EVE Type A and B sequences, or primer set MG831F/R (831 bp) designed
542 specifically to amplify known linear IHHNV-EVE types (Tang et al. 2007). Similarly, the
543 region targeted by a real-time PCR primer set designed to specifically amplify IHHNV-
544 EVE Type A sequences was absent from the S97-EVE and S35-EVE1, but present,
545 albeit with some primer mismatches, in the S35-EVE2 sequence (Cowley et al., 2018).
546 Variability among individual *P. monodon* in EVE sequences amplified by a suite of 10
547 PCR primer sets covering overlapping regions of complete linear IHHNV-EVE sequence
548 have been interpreted to suggest the random integration of IHHNV genome fragments
549 (Saksmerprome et al. 2011). While the jumbled fragments in the IHHNV-EVEs
550 described here might explain these, the diversity in EVE makeup suggested by these
551 data would require jumbled EVEs to be characterized in larger numbers of *P. monodon*,
552 or other penaeid species susceptible to IHHNV infection. Such broader information will

553 also be important to devising PCR methods to detect jumbled IHHNV-EVE sequences
554 more reliably.

555 **Conclusions:**

556 Using PacBio long-read data with Illumina short-read polishing together with 10X
557 Genomics and Hi-C scaffolding, this study generated a draft genome assembly and
558 annotation of a black tiger shrimp (*Penaeus monodon*) originating from Australia. The
559 assembly represents the first to be produced from this geographically isolated and
560 genetically distinct population (Vu et al. 2021). The assembly therefore adds to the
561 genetic resources available for *P. monodon* and Penaeid shrimp in general, and will
562 assist investigations into their evolution and genome expansion resulting from
563 transposable elements. Of the *P. monodon* genome features, the high prevalence of
564 general repeats is the most remarkable, and especially the high content of SSRs even
565 in comparison to other crustacean species. Another unexpected feature was the
566 existence of a previously undescribed IHHNV endogenous viral element (EVE) located
567 between a repeated host sequence. Rather than being comprising of a linear sequence
568 of all or part of the ~3.9 kb IHHNV genome, the EVE comprised of a conglomerate of
569 reordered, inverted, and repeated IHHNV genome fragments. Searches of genome
570 assemblies available for *P. monodon* from Thailand, Vietnam and China indicated with
571 variable confidence, depending on assembly quality, that each contained a similarly
572 jumbled IHHNV-EVE inserted at the same genome location. The fragmented and
573 rearranged nature of these EVEs has implications for detecting them with currently
574 available PCR tests. The presence of multiple inverted sequences including multiple
575 IHHNV RNA transcription promoter elements also has implications for them expressing
576 virus-specific dsRNA capable of interfering with exogenous IHHNV replication. The
577 complexity of the rearranged IHHNV genome fragments comprising the EVEs begs
578 many questions related to how long they have existed in the genomes of genetically
579 diverse *P. monodon*, as well as to what processes have led to their integration at a
580 specific genome location, to the IHHNV genome fragments becoming rearranged and to
581 the apparent multiplication of a repeat unit comprised of highly defined inverted
582 sequences derived from the 5'-terminal region of the IHHNV genome.

583 ***Acknowledgments***

584 This research would not have been possible without the significant in-kind contribution
585 and support by Seafarms Group Ltd, including the acquisition of the G1 animals,
586 carrying out the breeding and providing the necessary facilities and expertise. The
587 authors also thank Min Rao for technical assistance in generating and sequencing S97-
588 EVE PCR amplicons.

589 ***Funding***

590 This work was funded by the Australian Research Council (ARC) Industrial
591 Transformation Research Hub scheme, awarded to James Cook University (Grant ID:
592 IH130200013) and in collaboration with the Commonwealth Scientific Industrial
593 Research Organisation (CSIRO), the Australian Genome Research Facility (AGRF), the
594 University of Sydney and Seafarms Group Pty Ltd. AGRF is supported by the Australian
595 Government National Collaborative Research Infrastructure Initiative through
596 Bioplatforms Australia".

597

598 **Table 1** Illumina, PacBio, 10X Genomics, and DoveTail sequencing data used for the
599 assembly and scaffolding of the black tiger shrimp genome.

Sequencing Platform	Paired End Reads	Yield (Gb)	Coverage	GenBank accessions
Illumina (250 bp PE)	315 M	158	72 X	SRR10713996, SRR10713997
PacBio Sequel	N/A	165	75 X	SRR10713990 - SRR10713995 SRR10713998 - SRR10714025
10X Genomics (250 bp PE)	987 M	494	224 X	N/A
DoveTail (100 bp PE)	1.2 B	119	54 X	N/A

600
601 **Table 2** Summary of assembly statistics for the Australian and Thai *P. monodon*, and *P.*
602 *vannamei* genomes.

Metrics	<i>P. monodon</i> (Australia)	<i>P. monodon</i> (Thailand)	<i>P. vannamei</i>
# contigs	47,607	70,380	50,304
Largest contig	1,147,530	1,387,722	739,419
Total length of contigs	1.89 Gb	2.39 Gb	1.62 Gb
Contig N50	78 kb	79 kb	58 kb
# Scaffolds	31,922	44	-
Largest scaffold	21.70 Mb	65.87 Mb	-
Total length of scaffolds	1.89 Gb	1.99 Gb	1.66 Gb
Scaffold N50	0.50 Mb	49.0 Mb	0.60 Mb
Projected Genome Size	2.20 Gb	2.20 Gb	2.45 Gb
Percentage Covered By Scaffolds	86.1%	90.3%	67.7%
GC (%)	35.6	36.6	35.7
Complete BUSCOs (C)	86.8	87.9	78.0
Complete and single-copy BUSCOs	85.8	84.8	74.0
Complete and duplicated BUSCOs	1.0	3.1	4.0
Fragmented BUSCOs (F)	4.5	4.0	4.0
Missing BUSCOs (M)	8.7	8.0	18.0
No. predicted gene models	35,517	31,640	25,596
No. of protein coding genes	25,809	30,038	-
No. genes annotated in	17,158	20,615	-
References	This study	Uengwetwanit et al. (2020)	Zhang et al. (2019)

603
604

605 **Table 3** Detection and notable features of IHHNV-EVE sequences identified in other
606 genomes of *P. monodon*.

Reference Genome IDs	Notable EVE features				
	Start	End	Length (bp)	Orientation	Homology (%)
<i>P. monodon</i> Thailand (Uengwetwanit et al. 2020)					
<i>Scaffold 35 EVE-1</i>	770,236	778,124	7,888		
RU1	772,730	773,391	661	minus	99.9
RU2	773,450	774,111	661	plus	100.0
RU3	774,170	774,831	661	minus	99.9
RU4	774,890	775,551	661	plus	97.9
<i>Scaffold 35 EVE-2</i>	862,618	878,928	16,310		
RU1	866,534	867,145	611	minus	79.4
RU2	867,204	867,791	587	plus	81.3
RU3	867,840	868,467	627	minus	83.5
RU4	868,515	869,130	615	plus	80.0
RU5	872,127	872,754	627	plus	78.9
RU6	872,799	873,434	635	minus	90.0
RU7	873,492	874,152	660	plus	97.2
RU8	875,469	876,168	699	plus	92.1
<i>P. monodon</i> Vietnam (Pmod26D_v1; GCA_007890405.1)					
VIGR010059916.1 EVE (4,003 bp)			4,003		98.4
VIGR010211091.1 EVE (1,917 bp)			1,917		99.0
VIGR010168684.1 EVE (2,220 bp)			2,220		98.9
<i>P. monodon</i> China (Pmon_WGS_v1, GCA_002291185.1)					
gb NIUS011382605.1 (645 bp)			645		98.9
gb NIUS011109800.1 (848 bp)			848		98.3

607

608

609 **References**

610 Angthong, P., T. Uengwetwanit, W. Pootakham, K. Sittikankaew, C. Sonthirod *et al.*,
611 2020 Optimization of high molecular weight DNA extraction methods in shrimp
612 for a long-read sequencing platform. *PeerJ* 8:e10340.

613 Attasart, P., R. Kaewkhaw, C. Chimwai, U. Kongphom, O. Namramoon *et al.*, 2010
614 Inhibition of *Penaeus monodon* densovirus replication in shrimp by double-
615 stranded RNA. *Archives of virology* 155 (6):825-832.

616 Attasart, P., R. Kaewkhaw, C. Chimwai, U. Kongphom, and S. Panyim, 2011 Clearance
617 of *Penaeus monodon* densovirus in naturally pre-infected shrimp by combined
618 ns1 and vp dsRNAs. *Virus research* 159 (1):79-82.

619 Benson, G., 1999 Tandem repeats finder: a program to analyze DNA sequences.
620 *Nucleic acids research* 27 (2):573-580.

621 Bikard, D., S. Julie-Galau, G. Cambray, and D. Mazel, 2010 The synthetic integron: an
622 in vivo genetic shuffling device. *Nucleic acids research* 38 (15):e153-e153.

623 Campbell, M.S., C. Holt, B. Moore, and M. Yandell, 2014 Genome annotation and
624 curation using MAKER and MAKER-P. *Current protocols in bioinformatics* 48
625 (1):4.11. 11-14.11. 39.

626 Cantarel, B.L., I. Korf, S.M. Robb, G. Parra, E. Ross *et al.*, 2008 MAKER: an easy-to-
627 use annotation pipeline designed for emerging model organism genomes.
628 *Genome research* 18 (1):188-196.

629 Chandhini, S., and V.J. Rejis Kumar, 2019 Transcriptomics in aquaculture: current
630 status and applications. *Reviews in Aquaculture* 11 (4):1379-1397.

631 Cooke, I.R., H. Ying, S. Foret, P. Bongaerts, J.M. Strugnell *et al.*, 2020 Signatures of
632 selection in the coral holobiont reveal complex adaptations to inshore
633 environments driven by Holocene climate change. *bioRxiv*.

634 Cotmore, S., and P. Tattersall, 1996 Parvovirus DNA replication. *DNA replication in
635 eukaryotic cells*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
636 NY:799-813.

637 Cowley, J.A., M. Rao, and G.J. Coman, 2018 Real-time PCR tests to specifically detect
638 IHHNV lineages and an IHHNV EVE integrated in the genome of *Penaeus*
639 monodon. *Diseases of aquatic organisms* 129 (2):145-158.

640 Dhar, A.K., K.N. Kaizer, Y.M. Betz, T.N. Harvey, and D.K. Lakshman, 2011
641 Identification of the core sequence elements in *Penaeus stylirostris* densovirus
642 promoters. *Virus genes* 43 (3):367-375.

643 Dhar, A.K., K.N. Kaizer, and D.K. Lakshman, 2010 Transcriptional analysis of *Penaeus*
644 *stylirostris* densovirus genes. *Virology* 402 (1):112-120.

645 Dhar, A.K., D.K. Lakshman, S. Natarajan, F.T. Allnutt, and N.A. van Beek, 2007
646 Functional characterization of putative promoter elements from infectious
647 hypodermal and hematopoietic necrosis virus (IHHNV) in shrimp and in insect
648 and fish cell lines. *Virus research* 127 (1):1-8.

649 Dhar, A.K., R. Robles-Sikisaka, V. Saksmerpome, and D.K. Lakshman, 2014 Biology,
650 genome organization, and evolution of parvoviruses in marine shrimp. *Advances*
651 *in virus research* 89:85-139.

652 Dobin, A., C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski *et al.*, 2013 STAR:
653 ultrafast universal RNA-seq aligner. *Bioinformatics* 29 (1):15-21.

654 FAO, 2020 *The state of world fisheries and aquaculture 2020: Sustainability in action*:
655 Food and Agriculture Organization of the United Nations.

656 Fisher, S., A. Barry, J. Abreu, B. Minie, J. Nolan *et al.*, 2011 A scalable, fully automated
657 process for construction of sequence-ready human exome targeted capture
658 libraries. *Genome Biol* 12 (1):R1.

659 Flegel, T., 2007 Update on viral accommodation, a model for host-viral interaction in
660 shrimp and other arthropods. *Developmental & Comparative Immunology* 31
661 (3):217-231.

662 Flegel, T., 2020 Research progress on viral accommodation 2009 to 2019.
663 *Developmental & Comparative Immunology*:103771.

664 Flegel, T.W., 2009 Hypothesis for heritable, anti-viral immunity in crustaceans and
665 insects. *Biology Direct* 4 (1):1-8.

666 Ghurye, J., M. Pop, S. Koren, D. Bickhart, and C.-S. Chin, 2017 Scaffolding of long read
667 assemblies using long range contact information. *BMC genomics* 18 (1):1-11.

668 Guppy, J.L., D.B. Jones, S.R. Kjeldsen, A. Le Port, M.S. Khatkar *et al.*, 2020
669 Development and validation of a RAD-Seq target-capture based genotyping

670 assay for routine application in advanced black tiger shrimp (*Penaeus monodon*)
671 breeding programs.

672 Hauton, C., 2017 Recent progress toward the identification of anti-viral immune
673 mechanisms in decapod crustaceans. *Journal of invertebrate pathology* 147:111-
674 117.

675 Hollenbeck, C.M., and I.A. Johnston, 2018 Genomic tools and selective breeding in
676 molluscs. *Frontiers in genetics* 9:253.

677 Holt, C., and M. Yandell, 2011 MAKER2: an annotation pipeline and genome-database
678 management tool for second-generation genome projects. *BMC bioinformatics*
679 12 (1):491.

680 Houston, R.D., T.P. Bean, D.J. Macqueen, M.K. Gundappa, Y.H. Jin *et al.*, 2020
681 Harnessing genomics to fast-track genetic improvement in aquaculture. *Nature*
682 *Reviews Genetics* 21 (7):389-409.

683 Huang, S.-W., Y.-Y. Lin, E.-M. You, T.-T. Liu, H.-Y. Shu *et al.*, 2011 Fosmid library end
684 sequencing reveals a rarely known genome structure of marine shrimp *Penaeus*
685 *monodon*. *BMC genomics* 12 (1):242.

686 Huerlimann, R., N.M. Wade, L. Gordon, J.D. Montenegro, J. Goodall *et al.*, 2018 De
687 novo assembly, characterization, functional annotation and expression patterns
688 of the black tiger shrimp (*Penaeus monodon*) transcriptome. *Scientific reports* 8
689 (1):1-14.

690 Kawato, S., K. Nishitsuji, A. Arimoto, K. Hisata, M. Kawamitsu *et al.*, 2021 Genome and
691 transcriptome assemblies of the kuruma shrimp, *Marsupenaeus japonicus*. *G3*
692 *Genes/ Genomes/ Genetics*.

693 Kim, D., J.M. Paggi, C. Park, C. Bennett, and S.L. Salzberg, 2019 Graph-based
694 genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature*
695 *biotechnology* 37 (8):907-915.

696 Koressaar, T., and M. Remm, 2007 Enhancements and modifications of primer design
697 program Primer3. *Bioinformatics* 23 (10):1289-1291.

698 Krabsetsve, K., B.R. Cullen, and L. Owens, 2004 Rediscovery of the Australian strain of
699 infectious hypodermal and haematopoietic necrosis virus. *Diseases of aquatic*
700 *organisms* 61 (1-2):153-158.

701 Kulkarni, A., S. Krishnan, D. Anand, S. Kokkattunivarthil Uthaman, S.K. Otta *et al.*, 2021
702 Immune responses and immunoprotection in crustaceans with special reference
703 to shrimp. *Reviews in Aquaculture* 13 (1):431-459.

704 Kurtzer, G.M., V. Sochat, and M.W. Bauer, 2017 Singularity: Scientific containers for
705 mobility of compute. *PLoS one* 12 (5).

706 Kotin, R.M., R.M. Linden, and K.I. Berns, 1992 Characterization of a preferred site on
707 human chromosome 19q for integration of adeno-associated virus DNA by non-
708 homologous recombination. *The EMBO journal* 11 (13): 5071-5078.

709 Linden, R.M., E. Winocour, and K.I. Berns (1996). The recombination signals for adeno-
710 associated virus site-specific integration. *PNAS USA* 93 (15): 7966-7972.

711 Nunan, L.M., B.T. Poulos, and D.V. Lightner, 2000 Use of Polymerase Chain Reaction
712 for the Detection of Infectious Hypodermal and Hematopoietic Necrosis Virus in
713 Penaeid Shrimp. *Marine Biotechnology* 2 (4):319-328.

714 Pertea, M., G.M. Pertea, C.M. Antonescu, T.-C. Chang, J.T. Mendell *et al.*, 2015
715 StringTie enables improved reconstruction of a transcriptome from RNA-seq
716 reads. *Nature biotechnology* 33 (3):290.

717 Rai, P., B. Pradeep, I. Karunasagar, and I. Karunasagar, 2009 Detection of viruses in
718 Penaeus monodon from India showing signs of slow growth syndrome.
719 *Aquaculture* 289 (3):231-235.

720 Rai, P., M.P. Safeena, K. Krabsetsve, K. La Fauce, L. Owens *et al.*, 2012 Genomics,
721 Molecular Epidemiology and Diagnostics of Infectious hypodermal and
722 hematopoietic necrosis virus. *Indian J Virol* 23 (2):203-214.

723 Ruan, J., and H. Li, 2019 Fast and accurate long-read assembly with wtdbg2. *Nature
724 Methods*:1-4.

725 Saksmerprome, V., S. Jitrakorn, K. Chayaburakul, S. Laiphrom, K. Boonsua *et al.*, 2011
726 Additional random, single to multiple genome fragments of Penaeus stylostris
727 densovirus in the giant tiger shrimp genome have implications for viral disease
728 diagnosis. *Virus research* 160 (1-2):180-190.

729 Schnepp, B C., R.L. Jensen, C.L. Chen, P.R. Johnson and K.R. Clark, 2005
730 Characterization of adeno-associated virus genomes isolated from human
731 tissues. *Journal of virology* 79(23): 14793-14803.

732 Sellars, M.J., L. Dierens, S. McWilliam, B. Little, B. Murphy *et al.*, 2014 Comparison of
733 microsatellite and SNP DNA markers for pedigree assignment in Black Tiger
734 shrimp, *Penaeus monodon*. *Aquaculture Research* 45 (3):417-426.

735 Servant, N., N. Varoquaux, B.R. Lajoie, E. Viara, C.-J. Chen *et al.*, 2015 HiC-Pro: an
736 optimized and flexible pipeline for Hi-C data processing. *Genome biology* 16
737 (1):1-11.

738 Shike, H., A.K. Dhar, J.C. Burns, C. Shimizu, F.X. Jousset *et al.*, 2000 Infectious
739 hypodermal and hematopoietic necrosis virus of shrimp is related to mosquito
740 brevidensoviruses. *Virology* 277 (1):167-177.

741 Silva, D.C., A.R. Nunes, D.I. Teixeira, J.P.M. Lima, and D.C. Lanza, 2014 Infectious
742 hypodermal and hematopoietic necrosis virus from Brazil: Sequencing,
743 comparative analysis and PCR detection. *Virus research* 189:136-146.

744 Simão, F.A., R.M. Waterhouse, P. Ioannidis, E.V. Kriventseva, and E.M. Zdobnov, 2015
745 BUSCO: assessing genome assembly and annotation completeness with single-
746 copy orthologs. *Bioinformatics* 31 (19):3210-3212.

747 Su, J., D.T. Oanh, R.E. Lyons, L. Leeton, M.C. van Hulten *et al.*, 2008 A key gene of the
748 RNA interference pathway in the black tiger shrimp, *Penaeus monodon*:
749 identification and functional characterisation of Dicer-1. *Fish & shellfish
750 immunology* 24 (2):223-233.

751 Taengchaiyaphum, S., P. Buathongkam, S. Sukthaworn, P. Wongkhaluang, K.
752 Sritunyalucksana *et al.*, 2021 Shrimp parvovirus circular DNA fragments arise
753 from both endogenous viral elements (EVE) and the infecting virus. *bioRxiv*.

754 Tang, B., D. Zhang, H. Li, S. Jiang, H. Zhang *et al.*, 2020 Chromosome-level genome
755 assembly reveals the unique genome evolution of the swimming crab (*Portunus
756 trituberculatus*). *GigaScience* 9 (1):giz161.

757 Tang, K.F., S.A. Navarro, and D.V. Lightner, 2007 PCR assay for discriminating
758 between infectious hypodermal and hematopoietic necrosis virus (IHHNV) and
759 virus-related sequences in the genome of *Penaeus monodon*. *Diseases of
760 aquatic organisms* 74 (2):165-170.

761 Uengwetwanit, T., W. Pootakham, I. Nookaew, C. Sonthirod, P. Angthong *et al.*, 2020 A
762 chromosome-level assembly of the black tiger shrimp (*Penaeus monodon*)
763 genome facilitates the identification of novel growth-associated genes. *bioRxiv*.
764 Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth *et al.*, 2012
765 Primer3—new capabilities and interfaces. *Nucleic acids research* 40 (15):e115-
766 e115.
767 Van Quyen, D., H.M. Gan, Y.P. Lee, D.D. Nguyen, T.H. Nguyen *et al.*, 2020 Improved
768 genomic resources for the black tiger prawn (*Penaeus monodon*). *Marine*
769 *Genomics*:100751.
770 Vu, N.T., K.R. Zenger, C.N. Silva, J.L. Guppy, and D.R. Jerry, 2021 Population
771 structure, genetic connectivity, and signatures of local adaptation of the Giant
772 Black tiger shrimp (*Penaeus monodon*) throughout the Indo-Pacific region.
773 *Genome biology and evolution* 13 (10):evab214.
774 Walker, B.J., T. Abeel, T. Shea, M. Priest, A. Abouelliel *et al.*, 2014 Pilon: an integrated
775 tool for comprehensive microbial variant detection and genome assembly
776 improvement. *PLoS one* 9 (11).
777 Weisenfeld, N.I., V. Kumar, P. Shah, D.M. Church, and D.B. Jaffe, 2017 Direct
778 determination of diploid genome sequences. *Genome research* 27 (5):757-767.
779 Weisenfeld, N.I., S. Yin, T. Sharpe, B. Lau, R. Hegarty *et al.*, 2014 Comprehensive
780 variation discovery in single human genomes. *Nature genetics* 46 (12):1350.
781 Yang, W., N.T. Tran, C.-H. Zhu, D.-F. Yao, J.J. Aweya *et al.*, 2021 Immune priming in
782 shellfish: A review and an updating mechanistic insight focused on cellular and
783 humoral responses. *Aquaculture* 530:735831.
784 Yang, C.C., X. Xiao, X. Zhu, D.C. Ansardi, N.D. Epstein *et al.*, 1997 Cellular
785 recombination pathways and viral terminal repeat hairpin structures are sufficient
786 for adeno-associated virus integration *in vivo* and *in vitro*. *Journal of virology* 71
787 (12): 9231-9247.
788 Yeo, S., L. Coombe, J. Chu, R.L. Warren, and I. Birol, 2017 ARCS: assembly roundup
789 by chromium scaffolding. *bioRxiv*:100750.

790 Yu, Y., X. Zhang, J. Yuan, F. Li, X. Chen *et al.*, 2015 Genome survey and high-density
791 genetic map construction provide genomic and genetic resources for the Pacific
792 White Shrimp *Litopenaeus vannamei*. *Scientific reports* 5 (1):1-14.

793 Yuan, J., X. Zhang, F. Li, and J. Xiang, 2021a Genome sequencing and assembly
794 strategies and a comparative analysis of the genomic characteristics in penaeid
795 shrimp species. *Frontiers in genetics* 12.

796 Yuan, J., X. Zhang, C. Liu, Y. Yu, J. Wei *et al.*, 2018 Genomic resources and
797 comparative analyses of two economical penaeid shrimp species, *Marsupenaeus*
798 *japonicus* and *Penaeus monodon*. *Marine Genomics* 39:22-25.

799 Yuan, J., X. Zhang, M. Wang, Y. Sun, C. Liu *et al.*, 2021b Simple sequence repeats
800 drive genome plasticity and promote adaptive evolution in penaeid shrimp.
801 *Communications biology* 4 (1):1-14.

802 Yue, G., and L. Wang, 2017 Current status of genome sequencing and its applications
803 in aquaculture. *Aquaculture* 468:337-347.

804 Zdobnov, E.M., F. Tegenfeldt, D. Kuznetsov, R.M. Waterhouse, F.A. Simao *et al.*, 2017
805 OrthoDB v9. 1: cataloging evolutionary and functional annotations for animal,
806 fungal, plant, archaeal, bacterial and viral orthologs. *Nucleic acids research* 45
807 (D1):D744-D749.

808 Zenger, K., M. Khatkar, D. Jerry, and H. Raadsma, 2017 The next wave in selective
809 breeding: implementing genomic selection in aquaculture, pp. 105-112 in *Proc.*
810 *Assoc. Advmt. Anim. Breed. Genet.*

811 Zhang, X., J. Yuan, Y. Sun, S. Li, Y. Gao *et al.*, 2019 Penaeid shrimp genome provides
812 insights into benthic adaptation and frequent molting. *Nature communications* 10
813 (1):1-14.

814

815