

1 Oxidative respiration through the *bd*-I and *cbb₃* oxidases is required for *Vibrio cholerae*
2 pathogenicity and proliferation *in vivo*.

5 Van Alst, Andrew. J.¹, Demey, Lucas M.¹, and DiRita, Victor J.^{1*}

⁹ ¹Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing
¹⁰ MI 48824, USA

13 * Corresponding author

14 E-mail: diritavi@msu.edu

17 Author Contributions

18 Conceptualization, A.J.V and V.J.D.; Methodology, A.J.V. and V.J.D.; Validation A.J.V.; Formal
19 Analysis A.J.V.; Investigation A.J.V. and L.M.D; Resources, V.J.D.; Writing – Original Draft,
20 A.J.V.; Writing – Review & Editing, A.J.V. and V.J.D.; Visualization, A.J.V.; Funding Acquisition,
21 V.J.D.

23 Data Availability

24 The authors confirm that all data underlying the findings of this work are fully available without
25 restriction.

26 Abstract

27 *Vibrio cholerae* respires both aerobically and anaerobically and, while oxygen may be
28 available to it during infection, other terminal electron acceptors are proposed for population
29 expansion during infection. Unlike gastrointestinal pathogens that stimulate significant
30 inflammation leading to elevated levels of oxygen or alternative terminal electron acceptors, *V.*
31 *cholerae* infections are not understood to induce a notable inflammatory response. To ascertain
32 the respiration requirements of *V. cholerae* during infection, we used Multiplex Genome Editing
33 by Natural Transformation (MuGENT) to create *V. cholerae* strains lacking aerobic or anaerobic
34 respiration. *V. cholerae* strains lacking aerobic respiration were attenuated in infant mice 10⁵-
35 fold relative to wild type, while strains lacking anaerobic respiration had no colonization defect,
36 contrary to earlier work suggesting a role for anaerobic respiration during infection. Using
37 several approaches, including one we developed for this work termed Comparative Multiplex
38 PCR Amplicon Sequencing (CoMPAS), we determined that the *bd*-I and *cbb*₃ oxidases are
39 essential for small intestinal colonization of *V. cholerae* in the infant mouse. The *bd*-I oxidase
40 was also determined as the primary oxidase during growth outside the host, making *V. cholerae*
41 the only example of a Gram-negative bacterial pathogen in which a *bd*-type oxidase is the
42 primary oxidase for energy acquisition inside and outside of a host.

43

44 Keywords: *Vibrio cholerae*, respiration, oxygen, oxidase, pathogen, metabolism

45

46 Author Summary

47 The bacterium that causes cholera, *Vibrio cholerae*, can grow with or without oxygen.
48 When growing without oxygen it may use other molecules that serve the same purpose as
49 oxygen, acting as a terminal electron acceptor in an energy-generating process known as
50 respiration. Given the largely anaerobic nature of the gastrointestinal tract, and the lack of
51 significant inflammation during cholera infection, a process that can stimulate elevated levels of
52 oxygen and other terminal electron acceptors, we sought to understand the respiratory
53 mechanisms of *V. cholerae* during infection. We used a powerful genome-editing method to
54 construct mutant strains of *V. cholerae* lacking some or all of the complement of proteins
55 required for aerobic or anaerobic respiration. By analyzing these mutants in the laboratory and
56 in intestinal colonization of infant mice, we determined that the ability to respire without oxygen
57 is completely dispensable for *V. cholerae* to thrive during infection. We determined that two of
58 the four oxygen-dependent respiration mechanisms are essential for *V. cholerae* to grow during
59 infection, with the other two dispensable for wild type levels of colonization.

60

61 Introduction

62 Respiration promotes growth and proliferation of bacterial cells [1]. Energy acquisition
63 through respiration relies on the metabolism of exogenously acquired substrates and the
64 presence of terminal electron acceptor molecules to generate chemical energy, which is stored
65 in the form of ATP to power cellular processes required for growth. Although not considered
66 canonical virulence factors, metabolism and energy generative processes are required by
67 pathogens to thrive during infection. Here we investigate respiration as a potent driver of
68 replication during infection by the bacterial gastrointestinal pathogen *Vibrio cholerae* [2].

69

70 *Vibrio cholerae* is a facultative anaerobe that grows in both aerobic and anaerobic
71 environments [3]. Respiration in *V. cholerae* is achieved aerobically through the terminal
72 reduction of molecular oxygen or anaerobically through the terminal reduction of various
73 alternative electron acceptors [4,5]. Recent evidence suggests there is combined contribution of
74 both aerobic and anaerobic metabolism to *V. cholerae* growth *in vivo* [6,7]. This may be
75 attributed to the radial and longitudinal gradients of oxygen availability in the intestinal tract
76 enabling metabolism through both pathways in response to *in vivo* localization [8].

77

78 We sought to investigate the relative contributions of aerobic and anaerobic respiration
79 *in vivo* using an infant mouse model of colonization. *V. cholerae* encodes four terminal oxidases
80 and four terminal reductases that support respiration [9,10]. The terminal oxidases include one
81 *cbb₃* heme-copper oxidase [11,12] and three *bd*-type oxidase complexes capable of catalyzing
82 the 4 H⁺/O₂ reduction of oxygen to water [13]. *cbb₃* oxidases [14,15] and *bd* oxidases [16–18]
83 have a low *K_m* for oxygen and are typically induced under microaerobiosis, a feature particularly
84 beneficial for pathogens colonizing near hypoxic environments of the human host [19–21]. *V.*
85 *cholerae* also carries out anaerobic respiration through four terminal reductases that use either
86 nitrate, fumarate, trimethylamine-N-oxide (TMAO) or biotin sulfoxide (BSO) [5,10,22,23].
87 Previous work found that abrogation of nitrate reductase activity reduced colonization in a
88 streptomycin-treated adult mouse by approximately 2-fold [4] and a concomitant disruption in
89 fermentative pathways further reduced colonization, revealing a dependency between nitrate
90 reduction and fermentation [7]. Additionally, TMAO influences virulence gene expression in *V.*
91 *cholerae* when added exogenously, however, whether reduction of TMAO is required for this
92 response is not clear [5,24]. In this study, we looked to more thoroughly examine the complete
93 suite of terminal electron accepting complexes encoded by *V. cholerae* and assess the
94 pertinence of each terminal electron acceptor molecule to *in vivo* infection.

95

96 By targeting terminal oxidase and terminal reductase complexes of *V. cholerae*, we can
97 better understand the respiratory processes occurring during disease and identify which
98 terminal electron accepting complexes are most critical to *in vivo* fitness. This work highlights
99 that oxygen, although present at low levels diffusing from the host epithelium, is sufficient and
100 essential to supporting *V. cholerae* growth in the infant mouse. These findings change how we
101 understand the host environment during *V. cholerae* pathogenesis and how oxygen may
102 function in the pathogenicity of other bacterial pathogen elicited diseases.

103

104 **Results**

105 **Constructing Terminal Electron Acceptor Mutant Strains**

106 *Vibrio cholerae* terminal electron acceptor mutants were generated using the multiplex
107 genome editing technique MuGENT [25] and by positive allelic exchange vector pKAS32 [26] in
108 an El Tor C6706 *V. cholerae* background. Target loci and their relative chromosomal locations
109 are depicted in Fig 1A. In MuGENT-generated mutant strains, target loci are disrupted by a
110 frameshift mutation, removal of ATG start codon, insertion of 3-frame stop codons, and offsetting
111 of the ribosomal binding site. This is combined with the insertion of a universal detection
112 sequence at each target locus and a spectinomycin cassette insert into pseudogene VC1807 for
113 naturally competent cell selection that has no *in vitro* fitness cost [27] (S1 Fig.). MuGENT
114 generated strains are designated with a superscript 'Mu' (^{Mu}). Mutant strains constructed via
115 pKAS32 have the complete coding sequence for all subunits of target terminal electron acceptor
116 complexes excised, generating isogenic deletion strains. Select strains were verified by whole
117 genome sequencing which indicated no nucleotide polymorphisms in most strains and where
118 present were found in hypothetical protein regions of the genome predicted to have no impact
119 on bacterial cell fitness (S1 Table).

120

121 **Fig 1. Verification of MuGENT generated mutant strains.**

122 (a) Chromosomal map of *V. cholerae* terminal electron reducing complex loci. (b) Multiplex
123 allele-specific PCR (MASC-PCR) of *V. cholerae* terminal electron reducing complexes MuGENT
124 mutants. Lanes are labelled with the strain name where a strain preceded by a '^{Mu+}' (Lanes 3-6)
125 indicates the oxidase complex as the sole remaining functional oxidase in that strain and strains
126 preceded by a '^{Mu}' (Lanes 7-10) indicates that the specified locus is the targeted knock out.
127 Targeted gene loci are labelled to the right of each gel image. The presence of a band indicates
128 a targeted knockout in the gene locus whereas the absence of a band indicates the wild type
129 gene is present.

130

131 *V. cholerae* encodes one *cbb₃* oxidase and three *bd*-type oxidase complexes [9].
132 Cytochrome oxidase *cbb₃* is a four subunit (VC1439-VC1442) cytochrome c containing terminal
133 oxidase of which the coding sequence for the primary subunit, CcoN (VC1442), was disrupted
134 to generate MuGENT knockout strains. CcoN is the first open reading frame in the operon and
135 contains the active site for reducing oxygen to water [28]; its disruption was sufficient for
136 abolishing *cbb₃* cytochrome c activity (S2A Fig). For each of the three *bd*-type oxidases, *bd*-I
137 (VC1844-43), *bd*-II (VCA0872-73), and *bd*-III (VC1570-71), both subunits of each complex were
138 disrupted. Mutations in each target locus were confirmed by multiplex allele-specific PCR
139 (MASC-PCR) [29] where the presence of a DNA band indicates successful genomic editing at
140 the indicated locus via MuGENT (Fig 1B). To further validate the function of each oxidase,
141 isogenic deletion strains were also generated for select terminal oxidases via pKAS32 positive
142 allelic exchange.

143

144 *V. cholerae* also encodes four alternative terminal reductase complexes [9] capable of
145 reducing alternative electron acceptors that can support respiration in the absence of oxygen.
146 The four terminal reductases include a fumarate reductase (VC2656-59), trimethylamine-N-

147 oxide (TMAO) reductase (VC1692-94), nitrate reductase (VCA0676-0680), and a biotin
148 sulfoxide reductase (BSO) (VC1950-51). For each of these multi-subunit complexes, the active
149 reducing subunit was disrupted via MuGENT and confirmed by MASC-PCR (Fig 1B).

150

151 ***In vitro* Characterization of Terminal Electron Acceptor**

152 **Complex Mutants**

153 **Terminal Oxidase Growth Characterization**

154 *V. cholerae* oxidase mutant strains were grown in LB media in aerobic and anaerobic
155 conditions. Inocula were prepared anaerobically to ensure consistent growth of oxidase-
156 deficient strains. After anaerobic preparation of inocula, both *cbb*₃ and *bd*-I oxidase complexes
157 were found to be required for wild type levels of growth in aerobic conditions whereas *bd*-II and
158 *bd*-III oxidases were not (Fig 2A). Cultures lacking the *cbb*₃ oxidase grew at a consistently lower
159 optical density and never reached the peak OD₆₀₀ of wild type. The *bd*-I oxidase was determined
160 to be the most critical oxidase complex for supporting aerobic respiration in *V. cholerae*, as cells
161 lacking it showed drastically reduced growth. This finding was unexpected as electron transport
162 and oxygen reduction by the *cbb*₃ oxidase is more efficient at generating a proton gradient (and
163 therefore ATP) for the cell [30]. Electrons passed to the *cbb*₃ oxidase are shuttled through the
164 cytochrome bc₁ complex, which accounts for a Δ6H⁺ proton gradient [31] along with
165 translocation of two additional protons coupled to the terminal reduction of oxygen by the *cbb*₃
166 complex [32]. The *bd*-I reducing pathway, as with all *bd*-type oxidases, generates a relatively
167 weaker proton gradient resulting in less ATP for the cell [13,33]. Thus our observation that it
168 serves as the primary oxidase in *V. cholerae* under atmospheric oxygen conditions was
169 unanticipated. All oxidase-disrupted mutants grew comparably to wild type in anaerobic
170 conditions (Fig 2B) suggesting the observed defect in aerobic growth is not due to a general

171 growth defect imposed by the mutations. *In vitro* competition assays were also performed,
172 demonstrating a competitive defect for both *cbb₃* and *bd-I* deficient strains in aerobic conditions
173 (Figs 2C and 2D). These growth phenotypes were recapitulated in M9 0.2% D-glucose media,
174 although *bd-I* deficient strains were further hampered for growth aerobically and showed a minor
175 shift in reaching exponential phase anaerobically (S3A and S3B Figs).

176

177 **Fig 2. Terminal oxidases support aerobic growth in *V. cholerae*.**

178 Growth characteristics of the terminal oxidases in *V. cholerae*. (a-b) Single terminal oxidase
179 mutants, both MuGENT and isogenic deletion, growth in LB. Inoculums were prepared
180 anaerobically and subsequently grown in aerobic and anaerobic conditions, respectively. (c-d)
181 Single terminal oxidase isogenic deletion strain *in vitro* LB competition assays in both aerobic
182 and anaerobic conditions, respectively. Competitive index scores were calculated as a ratio of
183 output versus input $[(\text{Target}_{\text{Output}}/\Delta\text{lacZ}_{\text{Output}}) / (\text{Target}_{\text{Input}}/\Delta\text{lacZ}_{\text{Input}})]$, where a ΔlacZ strain served
184 as a psuedo-wild type to determine relative fitness via blue-white screening. Red dots indicate
185 the limit of detection where no target strain CFUs were recovered for these trials. (e-f) Single
186 terminal oxidase isogenic deletion mutant growth in LB where inoculums were prepared
187 aerobically and subsequently grown in aerobic and anaerobic conditions, respectively. (g) *In*
188 *vitro* expression of terminal oxidases in anaerobic, microaerobic, and aerobic growth conditions.

189

190 We hypothesized that *bd-I* deficient strains grown anaerobically may experience a
191 growth lag prior to expression of alternative oxidases, such as the *cbb₃* oxidase (S2B Fig),
192 accounting for the observed growth kinetics. To test this, we prepared inocula aerobically and
193 observed the growth phenotype. In this condition, strains lacking *bd-I* oxidase grew to wild type
194 optical density (Fig 2E) indicating that delayed expression of alternative oxidases when inocula
195 are prepared anaerobically may account for the observed growth lag. Similar growth patterns
196 were observed among all strains in anaerobic growth conditions for inocula of aerobically

197 prepared oxidase mutants (Fig 2F). We examined expression patterns of wild type *V. cholerae*
198 under anaerobic, microaerobic, and aerobic conditions and determined relative quantification of
199 gene expression by an elongated Pfaffl method detailed in Materials and Methods. *recA* served
200 as the gene of reference and expression values are reported relative to *bd-III* expression in
201 anaerobic conditions which served as the comparator target for relative expression among the
202 oxidases (Fig 2G). The *cbb₃* and *bd-I* oxidases were highly expressed relative to *bd-II* and *bd-III*.
203 In anaerobic conditions, the *bd-I* oxidase was expressed nearly 10-times higher than the *cbb₃*
204 oxidase, whereas in the presence of oxygen (microaerobic or aerobic), *bd-I* oxidase was
205 expressed only marginally higher than *cbb₃* oxidase. We conclude from the growth assays and
206 expression profiles that the *bd-I* oxidase is critical for aerobic respiration in *V. cholerae* during
207 transition from an anaerobic to aerobic environment and hypothesize that expression of the *cbb₃*
208 oxidase is delayed during this transition period.

209

210 Further characterization of the oxidase complexes was carried out using double, triple,
211 and quadruple oxidase mutant strains. Isogenic double and triple deletion strains, as well as
212 quadruple oxidase MuGENT mutant Aero7, were grown in aerobic and anaerobic conditions in
213 LB from inocula grown anaerobically (Figs 3A and 3B). Strain +*bd-I*, harboring solely a
214 functional *bd-I* oxidase, grew to near wild type levels while strains +*cbb₃* and +*bd-III*, having
215 solely the *cbb₃* or *bd-III* oxidase complex, grew after a considerable lag phase. This lag phase,
216 however, was reduced when inocula were adapted to an aerobic environment prior to the
217 growth assay (Figs 3C and 3D). Growth phenotypes were comparable to triple oxidase
218 MuGENT strains, although strain ^{Mu}+*bd-III* (encoding only *bd-III*) exited lag phase more rapidly
219 (S3C and S3D Figs). Strain Aero7, defective for production of all terminal oxidases encoded by
220 *V. cholerae*, and strain +*bd-II*, containing only the *bd-II* oxidase, were completely deficient for
221 aerobic growth. This was further exemplified for Aero7 by a near 10⁷-fold attenuation in *in vitro*
222 competition assays (Fig 3E). From these results, we conclude that *cbb₃*, *bd-I*, and *bd-III*

223 oxidases support aerobic growth of *V. cholerae* to varying degrees while *bd-II* does not. Despite
224 its low mRNA expression level in wild type cells relative to other oxidases, *bd-III* oxidase
225 supported +*bd-III* aerobic growth, particularly when culture inocula were grown aerobically.

226

227 **Fig 3. Individually, oxidases *cbb*₃, *bd*-I, and *bd*-III support aerobic growth in *V. cholerae*.**

228 (a-b) Combinatorial terminal oxidase deletion mutant growth in LB. Inoculums were prepared
229 anaerobically and subsequently grown in aerobic and anaerobic conditions, respectively. Triple
230 deletion mutant strains have a '+' with an oxidase name (e.g. +*cbb*₃), indicating the sole
231 remaining oxidase, with the other three oxidases disrupted by mutation. (c-d) Combinatorial
232 terminal oxidase deletion mutant growth in LB. Inoculums were prepared aerobically and
233 subsequently grown in aerobic and anaerobic conditions, respectively. (e) *In vitro* aerobic and
234 anaerobic competition assay between Aero7 and wild type *V. cholerae* with competitive index
235 scores calculated as $[(\text{Aero7}_{\text{Output}}/\text{WT}_{\text{Output}}) / (\text{Aero7}_{\text{Input}}/\text{WT}_{\text{Input}})]$. Growth curves are an average
236 of three biological replicates where error bars represent the standard error of the mean. Bars for
237 *in vitro* competitions and expression data represent the arithmetic mean where error bars
238 represent the standard error of the mean.

239

240 Taken together, these findings make clear that *bd*-I oxidase is the primary oxidase in *V.*
241 *cholerae*, priming a transition from anaerobic to aerobic environments and functioning as the
242 primary oxidase in atmospheric oxygen environments. To our knowledge, *V. cholerae* and
243 *Listeria monocytogenes* [34] are the only pathogens demonstrated to preferentially use a *bd*-
244 type oxidase in lieu of a heme-copper oxidase such as the *bo*₃ oxidase of *Escherichia coli* [35]
245 and *Salmonella Typhimurium* [36], the *cbb*₃ oxidase of *Psuedomonas aeruginosa* [37],
246 *Campylobacter jejuni*, and *Helicobacter pylori* [38], or the *aa*₃ oxidase of *Staphylococcus aureus*
247 [39] to support growth in atmospheric oxygen.

248

249 Growth of Mutants Lacking Terminal Reductases

250 MuGENT terminal reductase *V. cholerae* mutants were prepared aerobically and used to
251 inoculate fresh LB with and without alternative electron acceptors in both aerobic and anaerobic
252 conditions. Individual reductase MuGENT-derived mutant strains were made lacking the active
253 subunit of fumarate reductase (VC2656), TMAO reductase (VC1692), nitrate reductase
254 (VCA0678), and BSO reductase (VC1950). A combinatorial mutant was also constructed,
255 denoted Ana4, in which all reductases were disrupted.

256

257 All terminal reductase mutants, including Ana4, grew similarly to wild type in LB in both
258 aerobic and anaerobic growth conditions. However, when grown anaerobically in the presence
259 of the alternative electron acceptors fumarate, TMAO, nitrate, or DMSO, mutant strains were
260 defective for growth compared to wild type (Figs 4A-4D). This indicated that the MuGENT-
261 generated reductase mutants were defective for reductase function. As Ana4 was reduced for
262 growth in the presence of all alternative electron acceptors, we concluded it adequately
263 represented a strain incapable of utilizing these molecules to support growth via anaerobic
264 respiration and included it in our *in vivo* analysis described below. The presence of these
265 alternative electron acceptors under aerobic conditions led to varying growth responses by wild
266 type *V. cholerae*. With fumarate or DMSO, growth was boosted, however, with either nitrate or
267 TMAO growth was reduced (S4A-S4D Figs).

268

269 **Fig 4. Terminal reductase mutants are reduced for anaerobic growth in the presence of**
270 **cognate electron acceptor molecules.**

271 Growth characteristics of terminal reductases of *V. cholerae*. MuGENT generated terminal
272 reductase mutants grown in LB in the presence and absence of alternative electron acceptors
273 (a) 50mM fumarate, (b) 50mM trimethylamine-N-oxide (TMAO), (c) 50mM nitrate, and (d) 50mM

274 dimethyl sulfoxide (DMSO). Inoculums were prepared aerobically and subsequently grown in
275 anaerobic conditions. Growth curves are an average of three biological replicates where error
276 bars represent the standard error of the mean.

277

278 **Aero7 and Ana4 Infant Mouse Infections**

279 To examine the importance of aerobic and anaerobic respiration during infection, *V.*
280 *cholerae* Aero7 and Ana4 MuGENT strains were tested for their ability to colonize the infant
281 mouse intestinal tract. Single strain and competition infections in neonatal mice were performed
282 for both strains.

283

284 Aero7 was severely attenuated for colonization of the small intestine, in both single
285 strain and competition infections (Figs 5A and 5B). In single strain infections, wild type *V.*
286 *cholerae* was recovered near 10^8 CFU/g intestine whereas Aero7 was recovered near 10^3
287 CFU/g intestine, a 5-log decrease in colonization. This reduction was also observed in the
288 competition infections where the competitive index (CI) score of Aero7, calculated as
289 $[[\text{Aero7}_{\text{Output}}/\text{WT}_{\text{Output}}] / [\text{Aero7}_{\text{Input}}/\text{WT}_{\text{Input}}]]$ was approximately 10^{-5} . Aero7 competed better in the
290 large intestine, although was still at a fitness disadvantage, with a CI of 10^{-3} . Its greater fitness in
291 the large intestine may be due to the more anaerobic environment of this site (S5A and S5B
292 Figs). That Aero7 is considerably less fit in the infant mouse small intestine is relevant as this is
293 the site of infection in humans. We conclude from these findings that maintaining functional
294 terminal oxidases, and therefore aerobic respiration, is critical for *V. cholerae* to establish
295 infection and proliferate.

296

297 **Fig 5. Aerobic respiration, but not anaerobic respiration, is required for growth and**
298 **colonization of the infant mouse small intestine.**

299 Aero7 and Ana4 small intestine colonization in single strain and competition infections. (a)
300 Single strain infection of strain Aero7. (b) Competition infection of strain Aero7. (c) Single strain
301 infection of strain Ana4. (d) Competition infection of strain Ana4. Bars represent the geometric
302 mean. Horizontal dashed lines indicate the limit of detection (LOD) and red dots indicate
303 recovered CFUs were below the LOD. Competitive index scores were calculated as
304 $[(\text{Mutant}_{\text{Output}}/\text{WT}_{\text{Output}}) / (\text{Mutant}_{\text{Input}}/\text{WT}_{\text{Input}})]$. Statistical analysis was performed using GraphPad
305 PRISM. *, $P < 0.05$. A Mann-Whitney U-test was used in the determination of significance
306 between WT and Aero7. A Student's t test was performed on log transformed data in the
307 determination of significance between WT and Ana4.

308

309 In contrast to a strain lacking all terminal oxidases, the Ana4 mutant lacking all terminal
310 reductases, which is deficient for growth via anaerobic respiration (Figs 4A-4D), colonized both
311 the small and large intestines to wild type levels in both single strain and competition infections
312 (Figs 5C and 5D and S5C and S5D Figs). The lack of an observable phenotype in our
313 experiments differs from an earlier study demonstrating a two-fold reduction in colonization by a
314 mutant strain of *V. cholerae* lacking nitrate reductase (*napA*; VCA0678) in the adult
315 streptomycin-treated mouse model [4]. This two-fold reduction may be observed in adult mice,
316 but not infant, as the adult gut has greater anaerobic luminal volume compared to the limited
317 luminal space in the infant. Alternatively, nitrate availability has also been shown to increase
318 following streptomycin treatment, which may contribute to the observed colonization
319 discrepancy between wild type and *napA* *V. cholerae* [40], as lacking a functional nitrate
320 reductase may incur a greater fitness cost in the streptomycin-treated adult mouse.

321

322 Overall, our data suggests that anaerobic respiration using alternative electron acceptors
323 is not a prominent feature of *V. cholerae* growth during infection of the infant mouse. The slight
324 growth defect reported with a nitrate reductase mutant in the streptomycin-treated adult mouse

325 [4] suggests that there may be a limited role for anaerobic respiration although more work is
326 required to ascertain the effects of a mature, non-disturbed microbiota on these questions.

327

328 **Individual Oxidase Function During Infection**

329 **Comparative Multiplex PCR Amplicon Sequencing (CoMPAS)**

330 To examine the requirements of the terminal oxidases of *V. cholerae* *in vivo*, we took a
331 novel approach that combines elements of insertion-site sequencing (Tn-Seq) with targeted
332 amplification of MuGENT generated oxidase mutations (Comparative Multiplex PCR Amplicon
333 Sequencing (CoMPAS)). Individual terminal oxidase MuGENT strains were pooled along with a
334 wild type strain in equal proportions, and served as the inoculum to infect infant mice. The small
335 intestines were pooled from 6 mice and genomic DNA extracted along with the input inoculum
336 for CoMPAS analysis.

337

338 Mutant allele abundances were determined for each oxidase complex and relative
339 sequence abundances were normalized to *toxT* gene amplification (Fig 6A). Sequence
340 coverage for each pool are presented in S2 Table. Comparative index scores are reported for
341 each of the primary oxidase subunits VC1442 (*cbb₃*), VC1844 (*bd*-I), VCA0872 (*bd*-II), and
342 VC1571 (*bd*-III). Comparative index scores were calculated as $[(\text{Output Pool}_{\text{Target Reads}} / \text{Output}$
343 $\text{Pool}_{\text{toxT Reads}}) / (\text{Input Pool}_{\text{Target Reads}} / \text{Input Pool}_{\text{toxT Reads}})]$. In this experiment, ^{Mu}*bd*-I oxidase
344 knockout strain was underrepresented in the output sequencing pool approximately 10-fold
345 relative to the input. Conversely, all other MuGENT oxidase mutant strains were within a 2-fold
346 change relative to the input. Overall, the *bd*-I oxidase was at a competitive disadvantage in the
347 pooled infection and was determined to be the most important oxidase complex supporting
348 growth *in vivo*.

349

350 **Fig 6. *bd*-I oxidase is critical in competitive infection of the infant mouse small intestine,**
351 **yet colonization is supported by functional redundancy of terminal oxidases in single**
352 **strain infections.**

353 Single oxidase *in vivo* colonization dynamics in the small intestine. (a) Comparative Multiplex
354 PCR Amplification Sequencing (CoMPAS) sequence analysis. Comparative index scores were
355 calculated as $[(\text{Output Pool}_{\text{Target Reads}} / \text{Output Pool}_{\text{toxT Reads}}) / (\text{Input Pool}_{\text{Target Reads}} / \text{Input Pool}_{\text{toxT}}]$
356 $\text{Reads})]$. Vertical red dashed lines indicate a 2-fold change in output to input sequence ratios.
357 Sequence coverage for each input pool (IP) and associated mouse output pool (MP) are shown
358 in the bar plots. (b) Individual oxidase deletion single strain infections. Bars represent the
359 geometric mean. Horizontal dashed lines indicate the limit of detection (LOD) and red dots
360 indicate recovered CFUs were below the LOD. Statistical analysis was performed using
361 GraphPad PRISM. *, $P < 0.05$. A Mann-Whitney U-test was used in the determination of
362 significance between WT and Aero7 whereas an Analysis of Variance with *post hoc* Dunnett's
363 multiple comparisons test was conducted on log transformed CFU/g intestine for all other strain
364 comparisons.

365

366 **Single Oxidase Complex Deletion Infections**

367 Isogenic terminal oxidase deletion strains were also examined for colonization levels in
368 single strain infections of the infant mouse. Loss of any one of the terminal oxidases did not
369 result in a colonization defect in the small or large intestine of the infant mouse (Fig 6B and S5E
370 Fig). Wild type and mutant strains colonized to approximately 10^8 CFU/g intestine. Counter to
371 the observed defect in a ^{Mu}*bd*-I knockout strain in our CoMPAS analysis, no colonization defect
372 was present in single strain infections. These findings indicate that in single strain infections,
373 loss of the *bd*-I oxidase was not detrimental to colonization and that likely functional redundancy
374 exists among the oxidases that can support aerobic respiration during noncompetitive infection.

375 We reasoned that a *bd*-I oxidase deficient strain was capable of colonizing the infant mouse,
376 however, as cultures prepared anaerobically were delayed for aerobic growth as in Fig 2A, this
377 growth delay resulted in the *bd*-I deficient strain being outcompeted during the pooled mouse
378 infection. As multiple oxidases were shown to support aerobic growth of *V. cholerae* in our
379 growth assays, we hypothesized that the *cbb*₃, *bd*-I, and potentially the *bd*-III oxidase could all
380 be supporting growth *in vivo*. This hypothesis also reflects data present in a large Tn-Seq
381 dataset where transposon insertions into the *cbb*₃, *bd*-I, and *bd*-III oxidases showed a reduced
382 capacity for colonization [41].

383

384 For all oxidase mutants, one concern is that disruption to oxidase function may impact
385 other requirements for colonization such as virulence factor production or protection against
386 reactive oxygen species (ROS). To determine whether mutations in the oxidases alter
387 production of virulence factors required for colonization, TcpA protein levels in the mutants were
388 examined as described in Supplemental Materials and Methods and were equivalent to wild
389 type production (S6A-S6C Figs). As oxidative stress can also prevent bacterial growth *in vivo*
390 and the *bd* oxidases of *Escherichia coli* exhibit low levels of catalase activity [42], we tested the
391 minimum inhibitory concentration of hydrogen peroxide on *V. cholerae* oxidase mutants,
392 observing no growth defects for any mutant strain (S6D Fig). These findings support our
393 conclusions that observed colonization defects can be attributed to a reduction in respiratory
394 energy generation and not related to virulence factor production or increased ROS sensitivity
395 that could have also limited colonization efficiency.

396

397 Determining Functionally Redundant Oxidases During

398 Infection

399 To identify which oxidases primarily support growth *in vivo*, triple oxidase isogenic
400 deletion strains were used to colonize the infant mouse. By infecting with triple mutants, we
401 could determine the importance of the single remaining oxidase. Strain +*bd*-I expressing solely
402 the *bd*-I oxidase colonized comparable to wild type and strain +*cbb*₃ with a functional *cbb*₃
403 oxidase colonized at a ~1.5-fold reduction compared to wild type (Fig 7A). This finding further
404 supports *bd*-I oxidase as the primary oxidase of *V. cholerae*. Strains containing solely the *bd*-II
405 or *bd*-III oxidase were unable to colonize (Fig 7A). This pattern of colonization was also
406 reflected in the large intestine, however with higher levels of recovered CFU/g intestine, again
407 likely due to the more anaerobic environment (S5F Fig). As the *cbb*₃ oxidase was determined to
408 be less expressed and inactive in anaerobic conditions (Fig 2G and S2B Fig), and mouse
409 inocula were prepared anaerobically prior to infection, we investigated whether preparation in
410 aerobic conditions could prime expression and activation of the *cbb*₃ oxidase to better support
411 growth *in vivo*. However, despite preparing +*cbb*₃ oxidase cultures aerobically, we still observed
412 a significant ~1-log reduction in colonization (Fig 7B). The colonization efficiency of aerobically
413 grown +*cbb*₃ cultures was improved compared to anaerobically prepared +*cbb*₃ cultures but was
414 not enough to support wild type levels of colonization. No significant difference was detected in
415 the large intestine, which was also previously observed in the anaerobically prepared culture
416 infections (S5G Fig).

417

418 **Fig 7. *bd*-I oxidase alone supports wild type levels of colonization in the infant mouse**
419 **small intestine with *cbb*₃ supporting colonization to a lesser extent.**

420 (a) Combinatorial oxidase deletion *in vivo* colonization dynamics in the small intestine. (b)
421 Colonization of aerobically prepared wild type and +*cbb*₃ oxidase inoculums in the small

422 intestine. Triple deletion mutant strains have a '+' with an oxidase name (e.g. +*cbb*₃), indicating
423 the sole remaining oxidase, with the other three oxidases disrupted by mutation. Bars represent
424 the geometric mean. Horizontal dashed lines indicate the limit of detection (LOD) and red dots
425 indicate recovered CFUs were below the LOD. Statistical analysis was performed using
426 GraphPad PRISM. *, *P* < 0.05. A Mann-Whitney U-test was used in the determination of
427 significance between WT and +*bd*-II, +*bd*-III, and Δ*cbb*₃Δ*bd*-I whereas an Analysis of Variance
428 with *post hoc* Dunnett's multiple comparisons test was conducted on log transformed CFU/g
429 intestine for all other strain comparisons. *, *P* < 0.05.

430

431 As the +*bd*-III oxidase strain grew *in vitro* in aerobic LB conditions following aerobic
432 overnight preparation while lacking both *cbb*₃ and *bd*-I oxidases, we looked to determine
433 whether wild type expression levels of *bd*-III oxidase could support aerobic growth in this strain.
434 By relative quantification of gene expression using an elongated Pfaffl method, +*bd*-III aerobic
435 growth was found to be supported by increased expression of *bd*-III transcript, minimally 80x
436 higher than wild type (S7A Fig). We hypothesized that this increased expression may be due to
437 selective pressure for mutations that increase *bd*-III expression. A variant strain, +*bd*-III^V was
438 isolated that supported high levels of aerobic growth, had no defect for anaerobic growth, and
439 exhibited increased expression of the *bd*-III oxidase (S7B-S7D Figs). We determined the
440 genome sequence of this variant, identifying a mutation in *chrR* (VC2301), encoding an anti-
441 sigma factor for SigmaE, which controls *bd*-III expression (S1 Table) [43]. In infant mouse
442 infections, +*bd*-III^V colonized near one order of magnitude lower than wild type in the small
443 intestine of the infant mouse and was comparable to wild type in the large intestine (S7E and
444 S7F Figs). Comparatively in infant mouse infections, the +*bd*-III^V strain performed significantly
445 better than +*bd*-III in the initial colonization infections (Fig 7A). In wild type *V. cholerae*, we
446 found that the *bd*-III oxidase is not typically expressed and does not contribute to *in vivo*

447 colonization, however, in scenarios where the *bd*-III oxidase is the sole remaining oxidase and
448 is expressed, it can support aerobic growth and *in vivo* colonization.

449

450 Discussion

451 Terminal oxidases *cbb*₃, and particularly *bd*-I, serve as the major terminal reducing
452 complexes to support the oxidative respiration required for population expansion of *V. cholerae*
453 in the infant mouse. This is the first instance where a *bd*-type oxidase was determined to be the
454 primary oxidase supporting growth of a Gram-negative bacterial pathogen in both atmospheric
455 and *in vivo* oxygen environments. In *V. cholerae*, the *bd*-I oxidase facilitated aerobic growth and
456 was critical for a rapid shift to aerobic respiration metabolism when transitioning from an
457 anaerobic to aerobic environment. The finding that the *cbb*₃ and *bd*-I oxidases of *V. cholerae*
458 are necessary for aerobic respiration in the low oxygen environment of the small intestine aligns
459 with the typically low *K_m* observed for each of these oxidase classes [19–21,44–46]. Our
460 findings highlight that the low oxygen level in the small intestine is sufficient and essential for *V.*
461 *cholerae* growth and implicates oxygen as a key electron acceptor for bacterial pathogenesis in
462 the gut.

463

464 Investigating oxygen availability *in vivo* over the course of infection is important for
465 understanding oxygen dynamics that shape *V. cholerae* pathogenesis. In *V. cholerae* infant
466 rabbit infection, signatures of aerobic metabolism were observed as TCA cycle gene expression
467 was upregulated due to the presence of cholera toxin [47], indicating the cholera toxin may
468 induce oxygen influx into the intestinal lumen. Gut microbial succession following *V. cholerae*
469 infection also suggests conversion to a more oxygenated gut during the course of disease as
470 facultative anaerobes predominate following human infection and display increased
471 transcriptional abundance of the high-affinity *cbb*₃ oxidase during infection that became less

472 abundant in the recovery period [48]. However, the direct relationship between *V. cholerae* and
473 its cholera toxin on luminal oxygen availability has yet to be explored. In newly emergent strains
474 of *V. cholerae*, intestinal cell damage has been found to occur with elevated bacterial loads in
475 both mouse and rabbit models compared to previous pandemic strains [49]. Emergent strains
476 capable of eliciting and withstanding inflammatory conditions of the intestine may benefit from
477 increased oxygen availability, supporting enhanced population expansion. The findings of these
478 studies support the conclusions made from this work, however, direct measurement of oxygen
479 concentrations over the time course of disease remains to be determined.

480

481 In addition to the essential role of oxygen in growth and proliferation of *V. cholerae*,
482 oxygen also serves as a signaling molecule regulating virulence gene expression in differentially
483 oxygenated environments. *V. cholerae* maintains thiol-based switch regulators AphB and OhrR
484 along with a two-component sensor ArcAB that respond to the presence of oxygen. Cysteine
485 disulfide linkages that form within AphB and OhrR in reducing environments, such as the more
486 anaerobic gut lumen, may prime *V. cholerae* cells for attachment by upregulating expression of
487 the toxin coregulated pilus [50]. ArcAB also responds to oxygen, although indirectly through the
488 action of redox active quinone electron carriers [51]. ArcA is typically activated in anaerobic
489 conditions, yet in an experimental setup that favored microaerobic conditions, ArcA was needed
490 for optimal virulence gene expression in the Classical biotype [52]. However, the contribution of
491 ArcA to El Tor *V. cholerae* colonization and pathogenicity has yet to be explored. It is not
492 unlikely there may be different mechanisms of ArcA regulation between Classical and El Tor *V.*
493 *cholerae*, as the Classical biotype is incapable of producing cholera toxin under anaerobiosis
494 [53] whereas the El Tor biotype can produce cholera toxin anaerobically [6]. Oxygen sensing
495 may also drive a chemotactic response in *V. cholerae* through aerotactic chemoreceptors Aer1
496 [54] and Aer2 [55], however this oxygen response pathway is unlikely to be required *in vivo* as
497 non-chemotactic *V. cholerae* nevertheless colonize the infant mouse intestine [56].

498

499 Oxygen has also been shown to be needed for growth and pathogenicity of other
500 gastrointestinal pathogens including *E. coli* [57], *S. Typhimurium* [36], *L. monocytogenes* [34],
501 and *C. jejuni* [58]. Infection with these pathogens leads to epithelial damage and gastroenteritis,
502 which correlates with increases in luminal oxygen availability [59]. This influx of oxygen in the
503 case of *E. coli* and *S. Typhimurium* further drives proliferation of these pathogens, exacerbating
504 disease. In contrast, cholera is not typically characterized as an inflammatory disease, lacking
505 gross pathological damage on host tissue, although *V. cholerae* does induce inflammatory
506 markers in murine bone marrow-derived macrophages [60]. A question that emerges from our
507 work is whether *V. cholerae* has a mechanism for driving oxygen into the gut to enhance growth
508 and proliferation as do other intestinal bacterial pathogens. Our observation that oxidative
509 respiration is critical for pathogen growth in the absence of tissue invasion, inflammation, and
510 intestinal destruction is a novel finding in bacterial pathogenicity, although whether other
511 microbes that thrive on inflammation-induced electron acceptors can acquire oxygen during
512 infection prior to when inflammation occurs is not clear.

513

514 Through this work, we determine that oxidative respiration is essential to the replicative
515 fitness of *V. cholerae* during infection. Despite the overall low concentrations of oxygen within
516 the intestinal space, replication of *V. cholerae* is supported almost entirely by oxidative
517 respiration to colonize the infant mouse small intestine. As oxygen in the human intestine is
518 modulated by interactions between the host tissue and commensal microbial populations [36],
519 new disease models of *V. cholerae* infection would be beneficial to investigate gut oxygen
520 perturbations during disease. To enable colonization, *V. cholerae* mouse models require either
521 the naïve intestine of the neonate with its limited microbiota, or antibiotic treatment of the adult
522 [61,62]. In both instances, oxygen levels are predicted to be elevated compared to steady-state
523 physiological hypoxia in the mature adult intestine [63,64]. Oxygen availability in these models,

524 and likely in human infection, is therefore positively correlated to successful colonization of the
525 intestine. Monitoring oxygen concentrations *in vivo* over the course of infection is challenging
526 but may be important for understanding oxygen dynamics that shape *V. cholerae* pathogenesis.

527

528 **Acknowledgements**

529 A.J.V. was supported in part by the Eleanor L. Gilmore Endowed Excellence Award in
530 the Department of Microbiology and Molecular Genetics at Michigan State University. This work
531 was supported in part by the Rudolph Hugh Endowment (V.J.D.) at Michigan State University.

532

533 **Declaration of Interests**

534 The authors declare no competing interests.

535

536 **Materials and Methods**

537 **Ethics Statement**

538 All animal experiments in this study were conducted in accordance with all necessary
539 regulations and requirements and was approved by the Institutional Animal Care and Use
540 Committee at Michigan State University (PROTO201900421). Per the IACUC approved
541 protocols, dam mice were euthanized by carbon dioxide inhalation and secondary cervical
542 dislocation, and neonatal mice were euthanized by lethal dose of isoflurane and secondary
543 cervical dislocation.

544

545 **Bacterial Strains and Growth Conditions**

546 Bacterial strains used in this study are listed in S3 Table. *Vibrio cholerae* El Tor C6706
547 was used as the wild type strain in this study and served as the strain background for all *V.*
548 *cholerae* mutant derivatives. Strains were grown primarily on LB agar and used to inoculate 4ml
549 LB media in preparation for subsequent assays. Antibiotics when required were in given
550 concentrations: streptomycin (100 μ g/ml), spectinomycin (200 μ g/ml), and ampicillin (100 μ g/ml).
551 Strains were grown at 37°C for all growth assays. Aerobic growth assays were performed at
552 atmospheric oxygen concentrations whereas anaerobiosis for anaerobic growth was maintained
553 using a Coy anaerobic chamber.

554

555 **MuGENT Mutant Strain Construction**

556 MuGENT generated mutant strains were constructed using Enhanced Multiplex Genome
557 Editing by Natural Transformation [25]. Linear segments of *V. cholerae* genomic DNA were
558 amplified using a primer with intentional base changes designed to introduce a frameshift
559 mutation, removal of ATG start codon, insertion of 3-frame stop codons, and offsetting of the
560 ribosomal binding site while also inserting a universal primer binding site. These fragments,
561 along with a fragment containing an antibiotic resistance cassette in pseudogene VC1807 were
562 transformed into a *V. cholerae* Δ recJ Δ xseA pMMB-tfoX strain. Once all mutants were integrated
563 into the genome of carrier strains, a more traditional MuGENT approach [27] was used to
564 amplify ~2Kb arms of homology on either side of the mutated site in each carrier strain to
565 introduce into wild type *V. cholerae* by natural transformation, which maintains functional *recJ*
566 and *xseA*. Candidate colonies were screened via colony PCR for target loci in a multiplex PCR
567 reaction and confirmed by screening purified genomic DNA of each isolate. Strains were serially
568 passaged in LB media to cure the pMMB-tfoX plasmid, where cured strains became sensitive to

569 ampicillin 100 μ g/ml. Primers used to generate and confirm MuGENT mutant strains are listed in
570 S4 Table.

571

572 **Isogenic Deletion Mutant Strain Construction**

573 To confirm the phenotypes associated with MuGENT generated strains, isogenic
574 deletion strains were also constructed. Growth phenotypes of isogenic deletion strains largely
575 phenocopied MuGENT generated strains, thus we anticipated no off-target effects as equivalent
576 growth was observed between mutant strains generated by two distinct DNA editing techniques.
577 Whole genome sequencing was also used to validate select mutant strain genomes (See
578 Supplemental Material). Isogenic deletion strain constructs were generated using the positive
579 allelic exchange vector pKAS32 [26]. Plasmid constructs were generated by first amplifying and
580 purifying 1Kb DNA fragments upstream and downstream of target loci that contain homology
581 base pairing to pKAS32. The pKAS32 vector was isolated from *E. coli* pKAS32 cultures using a
582 QIAprep Spin Miniprep Kit (Qiagen) and restriction digested with SacI and XbaI. DNA fragments
583 and digested pKAS32 backbone were combined using Gibson Assembly (New England Biolabs)
584 and transformed into *E. coli* ET12567 Δ dapA diaminopimelic acid auxotroph mating strain.
585 Newly formed pKAS32 constructs were sequenced and correct vectors conjugated into *V.*
586 *cholerae*. *V. cholerae*-pKAS32 strains were outgrown in LB at 37°C 210rpm and subjected to
587 >2500 μ g/ml streptomycin to select for strains that have excised the plasmid from its genome.
588 Candidate mutant strains were screened by colony PCR and confirmed by screening purified
589 genomic DNA. Primers to generate and confirm pKAS32 deletion strains are listed in S4 Table.

590

591 ***V. cholerae* Terminal Oxidase Strain Growth Curves**

592 Bacterial strains were grown either aerobically or anaerobically on LB streptomycin
593 (100 μ g/ml) agar media and after 16-18h used to inoculate 4ml LB media. After 16h, bacterial

594 strains were concentrated to a 1.0 OD₆₀₀. 700µl LB media was inoculated 1:1000 (0.7µl) with the
595 1.0 OD₆₀₀ resuspensions, vortexed, and aliquoted in triplicate 200µl volumes in a 96-well plate.
596 Optical density was recorded every hour for the duration of the growth curve. Deoxygenated LB
597 was used for anaerobic growth and benchtop LB used for aerobic growth.

598

599 ***V. cholerae* Terminal Reductase Strain Growth Curves**

600 Bacterial strains were grown on LB streptomycin (100µg/ml) agar media and after 16-
601 18h used to inoculate 4ml LB media. After 16h, bacterial strains were concentrated to a 1.0
602 OD₆₀₀. 700µl LB media was inoculated 1:1000 (0.7µl) with the 1.0 OD₆₀₀ resuspensions,
603 vortexed, and aliquoted in triplicate 200µl volumes in a 96-well plate. Optical density was
604 recorded every hour for the duration of the growth curve. Deoxygenated LB was used for
605 anaerobic growth curves and benchtop LB used for aerobic growth curves. Concentrations of
606 alternative electron acceptors supplemented to LB media were as follows: 50mM sodium
607 fumarate (Sigma), 50mM trimethylamine-N-oxide (TMAO) (Sigma), 50mM sodium nitrate
608 (Sigma), and 50mM dimethyl sulfoxide (DMSO) (Sigma). For strains grown in 50mM LB Nitrate
609 media, after 3h, 5µM sodium hydroxide (Fisher Chemical) final concentration was added to
610 alkalinize the growth media to support continued nitrate respiration.

611

612 **Wild Type Aerobic, Microaerobic, and Anaerobic RNA**

613 **Isolation and Real-Time Quantitative PCR (RT-qPCR)**

614 For each growth condition (aerobic / microaerobic / anaerobic) 4ml of LB media was
615 placed in each environment at 37°C to temper the media prior to inoculation in an effort to
616 equalize the oxygen content and to pre-warm the media. Media was inoculated 1:1000 (4µl) with
617 a 1.0 OD₆₀₀ wild type *V. cholerae* inoculum and grew shaking 210rpm for the aerobic culture and

618 static for both microaerobic and anaerobic cultures. After 4h, culture tubes were centrifuged
619 4000rpm, 4°C, for 10min and cell pellets were resuspended in 1ml TRIzol (Invitrogen). RNA was
620 isolated from TRIzol suspensions using an RNeasy kit (Qiagen) coupled with an on-column
621 DNase digestion (Qiagen) and Turbo DNase digestion (Invitrogen). RNA concentrations were
622 measured with a UV/VIS Spectrophotometer and visualized on a 2% agarose gel.

623

624 cDNA was generated from RNA using Superscript III reverse transcriptase (Thermo
625 Scientific). RT-qPCRs were performed using SYBR green master mix (Applied Biosystems) with
626 5ng of cDNA. Primers used to detect *recA* (VC0543), *cbb₃* (VC1442), *bd-I* (VC1844), *bd-II*
627 (VCA0872), and *bd-III* (VC1571) are listed in S4 Table. Relative quantification of oxidase
628 expression was internally normalized to *recA* as the gene of reference and reported as relative
629 fold change to *bd-III* oxidase expression in anaerobic conditions which served as the
630 comparator target for analysis. Fold change was calculated using an elongated Pfaffl method for
631 gene expression analysis, which is described in detail in Supplemental Materials [65].

632

633 Infant Mouse Colonization Assays

634 Infant mice were infected as described previously [66]. Briefly, three- to five-day-old
635 mouse neonates (Charles River, Wilmington, MA) were orogastrically infected with
636 approximately 10⁶ bacterial cells following 2 hours of separation from dam mice and maintained
637 at 30°C for 20h. After 20h, mice were euthanized, and intestinal segments weighed and
638 homogenized in 4ml phosphate buffered saline (PBS). Intestinal homogenates were serially
639 diluted and plated for CFU counts.

640

641 For single strain infections, dilutions were plated on LB streptomycin (100 µg/ml) for
642 growth and enumeration. For MuGENT strain competition assays, dilutions were additionally
643 plated on LB spectinomycin (200 µg/ml) for differentiation from co-infected wild type *V. cholerae*.
644

645 **CoMPAS Infant Mouse Infection and Sequencing**

646 Wild type, ^{Mu}*cbb*₃, ^{Mu}*bd*-I, ^{Mu}*bd*-II, and ^{Mu}*bd*-III MuGENT strains were combined in equal
647 ratios and a total of 6 infant mice were infected with a final 0.01 OD₆₀₀ inoculum, approximately
648 ~10⁶ CFU. Remaining inoculum volume was spun down at 4°C, 4000rpm, for 10min and DNA of
649 the inoculum pool (IP) was isolated using a QIAamp PowerFecal Pro DNA Kit (Qiagen). After
650 20h infection, small intestinal segments were homogenized and pooled from the 6 infant mice.
651 Pooled homogenates were filtered on ice using a 70µm filter to remove residual intestinal tissue.
652 From here, DNA of the mouse pool (MP) was isolated using a QIAamp PowerFecal Pro DNA Kit
653 (Qiagen).

654

655 Recovered DNA samples were normalized to 100ng/µl using Qubit dsDNA HS analysis
656 and subsequently, multiplex amplicon sequencing was performed on both inoculum and mouse
657 pools. Amplification targets included the primary subunit of each MuGENT oxidase complex
658 (VC1442, VC1844, VCA0872, and VC1571) as well as *toxT* (VC0838) which is present in all
659 input strains. Primers used are listed in S4 Table, amplification was carried out for 30 cycles.
660 PCR products were purified using the QIAquick PCR Purification Kit (Qiagen) and quantified by
661 Qubit dsDNA HS and normalized to 20ng/µl for MiSeq amplicon sequencing by the MSU RTSF
662 Genomics Core (Michigan State University). Sequencing was conducted on a MiSeq Nano v2
663 flow cell using a 2x250bp paired end format. Sequence barcodes were trimmed and target loci
664 read counts were quantified using Geneious software.

665

666 ***In vitro Competition Assays***

667 Bacterial strains were grown in 4ml LB media for 16-18h and resuspended to 1.0 OD₆₀₀.
668 Wild type and an individual target strain were combined in a 1:1 ratio and used to inoculate
669 deoxygenated LB for anaerobic competitions or benchtop LB for aerobic competitions.
670 Anaerobic competitions were grown at 37°C static and aerobic competitions were grown 37°C
671 210rpm shaking. After 20h of growth, cultures were serially diluted and plated for colony forming
672 units. WT vs. Aero7 and WT vs. Ana4 competitions were plated on LB streptomycin (100µg/ml),
673 and LB spectinomycin (200µg/ml) to determine strain ratios. Individual deletion strain
674 competitions were plated on LB streptomycin (100µg/ml) plus 5-bromo-4-chloro-3-indolyl β-D-
675 galactopyranoside (X-Gal; 40µg/ml) for blue-white screening to determine strain ratios between
676 a target strain and a $\Delta lacZ$ strain that served as a wild type comparison in the competition
677 assays.

679 References

680 [1] Kaila VRI, Wikström M. Architecture of bacterial respiratory chains. *Nat Rev Microbiol*
681 2021;19:319–30. <https://doi.org/10.1038/s41579-020-00486-4>.

682 [2] Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. *Lancet*, vol. 379,
683 Lancet Publishing Group; 2012, p. 2466–76. <https://doi.org/10.1016/S0140->
684 6736(12)60436-X.

685 [3] Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF. The genomic code: inferring
686 *Vibronaceae* niche specialization. *Nat Rev Microbiol* 2006;4:697–704.
687 <https://doi.org/10.1038/nrmicro1476>.

688 [4] Bueno E, Sit B, Waldor MK, Cava F. Anaerobic nitrate reduction divergently governs
689 population expansion of the enteropathogen *Vibrio cholerae*. *Nat Microbiol* 2018;3:1346–
690 53. <https://doi.org/10.1038/s41564-018-0253-0>.

691 [5] Lee K-M, Park Y, Bari W, Yoon MY, Go J, Kim SC, et al. Activation of cholera toxin
692 production by anaerobic respiration of trimethylamine N-oxide in *Vibrio cholerae*. *J Biol*
693 *Chem* 2012;287:39742–52. <https://doi.org/10.1074/jbc.M112.394932>.

694 [6] Van Alst AJ, DiRita VJ. Aerobic metabolism in *Vibrio cholerae* is required for population
695 expansion during infection. *MBio* 2020;11:1–15. <https://doi.org/10.1128/mBio.01989-20>.

696 [7] Bueno E, Sit B, Waldor MK, Cava F. Genetic dissection of the fermentative and
697 respiratory contributions supporting *Vibrio cholerae* hypoxic growth. *J Bacteriol* 2020;202:
698 <https://doi.org/10.1128/JB.00243-20>.

699 [8] Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the
700 healthy intestine. A review in the theme: Cellular responses to hypoxia. *Am J Physiol -*
701 *Cell Physiol* 2015;309:C350–60. <https://doi.org/10.1152/ajpcell.00191.2015>.

702 [9] Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, et al. DNA
703 sequence of both chromosomes of the cholera pathogen *Vibrio cholerae*. *Nature*

704 2000;406:477–83.

705 [10] Bueno E, Pinedo V, Cava F. Adaptation of *Vibrio cholerae* to hypoxic environments. *Front*
706 *Microbiol* 2020;11:739. <https://doi.org/10.3389/fmicb.2020.00739>.

707 [11] Hemp J, Christian C, Barquera B, Gennis RB, Martínez TJ. Helix switching of a key
708 active-site residue in the cytochrome cbb3 oxidases. *Biochemistry* 2005;44:10766–75.
709 <https://doi.org/10.1021/bi050464f>.

710 [12] Ahn YO, Lee HJ, Kaluka D, Yeh SR, Rousseau DL, Ädelroth P, et al. The two
711 transmembrane helices of CcoP are sufficient for assembly of the cbb3-type heme-
712 copper oxygen reductase from *Vibrio cholerae*. *Biochim Biophys Acta - Bioenerg*
713 2015;1847:1231–9. <https://doi.org/10.1016/j.bbabio.2015.06.013>.

714 [13] Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen
715 reductases. *Biochim Biophys Acta* 2011;1398–413.
716 <https://doi.org/10.1016/j.bbabio.2011.06.016>.

717 [14] Durand A, Bourbon ML, Steunou AS, Khalfaoui-Hassani B, Legrand C, Legrand A, et al.
718 Biogenesis of the bacterial cbb3 cytochrome c oxidase: Active subcomplexes support a
719 sequential assembly model. *J Biol Chem* 2018;293:808–18.
720 <https://doi.org/10.1074/jbc.M117.805184>.

721 [15] Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H. A high-affinity cbb3-
722 type cytochrome oxidase terminates the symbiosis-specific respiratory chain of
723 *Bradyrhizobium japonicum*. *J Bacteriol* 1996;178:1532–8.
724 <https://doi.org/10.1128/jb.178.6.1532-1538.1996>.

725 [16] Rice CW, Hempfling WP. Oxygen limited continuous culture and respiratory energy
726 conservation in *Escherichia coli*. *J Bacteriol* 1978;134:115–24.
727 <https://doi.org/10.1128/jb.134.1.115-124.1978>.

728 [17] Cotter PA, Melville SB, Albrecht JA, Gunsalus RP. Aerobic regulation of cytochrome d
729 oxidase (cydAB) operon expression in *Escherichia coli*: roles of Fnr and ArcA in

730 repression and activation. *Mol Microbiol* 1997;25:605–15. <https://doi.org/10.1046/j.1365-2958.1997.5031860.x>.

731

732 [18] Smith A, Hill S, Anthony C. The purification, characterization and role of the d-type cytochrome oxidase of *Klebsiella pneumoniae* during nitrogen fixation. *J Gen Microbiol* 1990;136:171–80. <https://doi.org/10.1099/00221287-136-1-171>.

733

734

735 [19] Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. *Cell Host Microbe* 2017;21:208–19. <https://doi.org/10.1016/j.chom.2017.01.005>.

736

737

738

739 [20] Chanin RB, Winter MG, Spiga L, Hughes ER, Zhu W, Taylor SJ, et al. Epithelial-derived reactive oxygen species enable AppBCX-mediated aerobic respiration of *Escherichia coli* during intestinal inflammation. *Cell Host Microbe* 2020;28. <https://doi.org/10.1016/j.chom.2020.09.005>.

740

741

742

743 [21] Pitcher RS, Watmough NJ. The bacterial cytochrome cbb3 oxidases. *Biochim Biophys Acta - Bioenerg* 2004;1655:388–99. <https://doi.org/10.1016/j.bbabi.2003.09.017>.

744

745 [22] Jones SA, Gibson T, Maltby RC, Chowdhury FZ, Stewart V, Cohen PS, et al. Anaerobic respiration of *Escherichia coli* in the mouse intestine. *Infect Immun* 2011;79:4218–26. <https://doi.org/10.1128/IAI.05395-11>.

746

747

748 [23] Ito T, Gallegos R, Matano LM, Butler NL, Hantman N, Kaili M, et al. Genetic and biochemical analysis of anaerobic respiration in *Bacteroides fragilis* and its importance in vivo. *MBio* 2020;11. <https://doi.org/10.1128/mBio.03238-19>.

749

750

751 [24] Oh YT, Park Y, Yoon MY, Bari W, Go J, Min KB, et al. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in *Vibrio cholerae*. *J Biol Chem* 2014;289:13232–42. <https://doi.org/10.1074/jbc.M113.540088>.

752

753

754 [25] Dalia TN, Yoon SH, Galli E, Barre F-X, Waters CM, Dalia AB. Enhancing multiplex genome editing by natural transformation (MuGENT) via inactivation of ssDNA

755

756 exonucleases. *Nucleic Acids Res* 2017;45:7527–37. <https://doi.org/10.1093/nar/gkx496>.

757 [26] Skorupski K, Taylor RK. Positive selection vectors for allelic exchange. *Gene*
758 1996;169:47–52. [https://doi.org/10.1016/0378-1119\(95\)00793-8](https://doi.org/10.1016/0378-1119(95)00793-8).

759 [27] Dalia AB, McDonough E, Camilli A. Multiplex genome editing by natural transformation.
760 *Proc Natl Acad Sci U S A* 2014;111:8937–42. <https://doi.org/10.1073/pnas.1406478111>.

761 [28] Ahn YO, Albertsson I, Gennis RB, Ädelroth P. Mechanism of proton transfer through the
762 KC proton pathway in the *Vibrio cholerae* cbb3 terminal oxidase. *Biochim Biophys Acta -*
763 *Bioenerg* 2018;1859:1191–8. <https://doi.org/10.1016/j.bbabi.2018.08.002>.

764 [29] Hayes CA, Dalia TN, Dalia AB. Systematic genetic dissection of PTS in *Vibrio cholerae*
765 uncovers a novel glucose transporter and a limited role for PTS during infection of a
766 mammalian host. *Mol Microbiol* 2017;104:568–79. <https://doi.org/10.1111/mmi.13646>.

767 [30] Thöny-Meyer L. Biogenesis of respiratory cytochromes in bacteria. *Microbiol Mol Biol Rev*
768 1997;61:337–76. <https://doi.org/10.1128/mmbr.61.3.337-376.1997>.

769 [31] Xia D, Esser L, Tang WK, Zhou F, Zhou Y, Yu L, et al. Structural analysis of cytochrome
770 bc1 complexes: Implications to the mechanism of function. *Biochim Biophys Acta -*
771 *Bioenerg* 2013;1827:1278–94. <https://doi.org/10.1016/j.bbabi.2012.11.008>.

772 [32] Blomberg MRA. The mechanism for oxygen reduction in the C family cbb3 cytochrome c
773 oxidases - Implications for the proton pumping stoichiometry. *J Inorg Biochem*
774 2020;203:110866. <https://doi.org/10.1016/j.jinorgbio.2019.110866>.

775 [33] Jasaitis A, Borisov VB, Belevich NP, Morgan JE, Konstantinov AA, Verkhovsky MI.
776 Electrogenic reactions of cytochrome bd. *Biochemistry* 2000;39:13800–9.
777 <https://doi.org/10.1021/bi001165n>.

778 [34] Corbett D, Goldrick M, Fernandes VE, Davidge K, Poole RK, Andrew PW, et al. *Listeria*
779 *monocytogenes* has both cytochrome bd-type and cytochrome aa 3 -type terminal
780 oxidases, which allow growth at different oxygen levels, and both are important in
781 infection. *Infect Immun* 2017;85:e00354-17. <https://doi.org/10.1128/IAI.00354-17>.

782 [35] Tseng CP, Albrecht J, Gunsalus RP. Effect of microaerophilic cell growth conditions on
783 expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD,
784 and dmsABC) respiratory pathway genes in *Escherichia coli*. *J Bacteriol* 1996;178:1094–
785 8. <https://doi.org/10.1128/jb.178.4.1094-1098.1996>.

786 [36] Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, et al.
787 Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic
788 luminal expansion of *Salmonella*. *Cell Host Microbe* 2016;19:443–54.
789 <https://doi.org/10.1016/j.chom.2016.03.004>.

790 [37] Arai H, Kawakami T, Osamura T, Hirai T, Sakai Y, Ishii M. Enzymatic characterization
791 and in vivo function of five terminal oxidases in *Pseudomonas aeruginosa*. *J Bacteriol*
792 2014;196:4206. <https://doi.org/10.1128/JB.02176-14>.

793 [38] Smith M, Finel M, Korolik V, Mendz G. Characteristics of the aerobic respiratory chains of
794 the microaerophiles *Campylobacter jejuni* and *Helicobacter pylori*. *Arch Microbiol*
795 2000;174:1–10. <https://doi.org/10.1007/S002030000174>.

796 [39] Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO, Hood MI, et al. Two heme-
797 dependent terminal oxidases power *Staphylococcus aureus* organ-specific colonization of
798 the vertebrate host. *MBio* 2013;4. <https://doi.org/10.1128/mBio.00241-13>.

799 [40] Spees AM, Wangdi T, Lopez CA, Kingsbury DD, Xavier MN, Winter SE, et al.
800 Streptomycin-induced inflammation enhances *Escherichia coli* gut colonization through
801 nitrate respiration. *MBio* 2013;4:430–43. <https://doi.org/10.1128/MBIO.00430-13>.

802 [41] Fu Y, Waldor MK, Mekalanos JJ. Tn-seq analysis of *vibrio cholerae* intestinal colonization
803 reveals a role for T6SS-mediated antibacterial activity in the host. *Cell Host Microbe*
804 2013;14:652–63. <https://doi.org/10.1016/j.chom.2013.11.001>.

805 [42] Borisov VB, Forte E, Davletshin A, Mastronicola D, Sarti P, Giuffrè A. Cytochrome bd
806 oxidase from *Escherichia coli* displays high catalase activity: An additional defense
807 against oxidative stress. *FEBS Lett* 2013;587:2214–8.

808 https://doi.org/10.1016/j.febslet.2013.05.047.

809 [43] Tardu M, Bulut S, Kavakli IH. MerR and ChrR mediate blue light induced photo-oxidative
810 stress response at the transcriptional level in *Vibrio cholerae*. *Sci Rep* 2017;7.
811 https://doi.org/10.1038/srep40817.

812 [44] Arjona D, Wikström M, Ädelroth P. Nitric oxide is a potent inhibitor of the *cbb* ₃ -type
813 heme-copper oxidases. *FEBS Lett* 2015;589:1214–8.
814 https://doi.org/10.1016/j.febslet.2015.03.033.

815 [45] Jiménez de Bagüés MP, Loisel-Meyer S, Liautard J-P, Jubier-Maurin V. Different roles of
816 the two high-oxygen-affinity terminal oxidases of *Brucella suis*: cytochrome c oxidase, but
817 not ubiquinol oxidase, is required for persistence in mice. *Infect Immun* 2007;75:531–5.
818 https://doi.org/10.1128/IAI.01185-06.

819 [46] Jünemann S. Cytochrome bd terminal oxidase. *Biochim Biophys Acta - Bioenerg*
820 1997;1321:107–27. https://doi.org/10.1016/S0005-2728(97)00046-7.

821 [47] Rivera-Chávez F, Mekalanos JJ. Cholera toxin promotes pathogen acquisition of host-
822 derived nutrients. *Nature* 2019;572:244–8. https://doi.org/10.1038/s41586-019-1453-3.

823 [48] David LA, Weil A, Ryan ET, Calderwood SB, Harris JB, Chowdhury F, et al. Gut microbial
824 succession follows acute secretory diarrhea in humans. *MBio* 2015;6:1–14.
825 https://doi.org/10.1128/MBIO.00381-15.

826 [49] Ghosh P, Sinha R, Samanta P, Saha DR, Koley H, Dutta S, et al. Haitian variant *Vibrio*
827 *cholerae* O1 strains manifest higher virulence in animal models. *Front Microbiol*
828 2019;10:110. https://doi.org/10.3389/fmicb.2019.00111.

829 [50] Liu Z, Wang H, Zhou Z, Naseer N, Xiang F, Kan B, et al. Differential thiol-based switches
830 jump-start *Vibrio cholerae* pathogenesis. *Cell Rep* 2016;14:347–54.
831 https://doi.org/10.1016/J.CELREP.2015.12.038.

832 [51] Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D. Identification of a quinone-
833 sensitive redox switch in the ArcB sensor kinase. *Proc Natl Acad Sci U S A*

834 2004;101:13318–23. <https://doi.org/10.1073/pnas.0403064101>.

835 [52] Sengupta N, Paul K, Chowdhury R. The global regulator ArcA modulates expression of
836 virulence factors in *Vibrio cholerae*. *Infect Immun* 2003;71:5583–9.

837 [53] Krishnan HH, Ghosh A, Paul K, Chowdhury R. Effect of anaerobiosis on expression of
838 virulence factors in *Vibrio cholerae*. *Infect Immun* 2004;72:3961–7.
839 <https://doi.org/10.1128/IAI.72.7.3961-3967.2004>.

840 [54] Murphy SG, Johnson BA, Ledoux CM, Dörr T. *Vibrio cholerae*’s mysterious Seventh
841 Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in
842 chemotaxis and cell congregation. *PLOS Genet* 2021;17:e1009624.
843 <https://doi.org/10.1371/JOURNAL.PGEN.1009624>.

844 [55] Boin MA, Häse CC. Characterization of *Vibrio cholerae* aerotaxis. *FEMS Microbiol Lett*
845 2007;276:193–201. <https://doi.org/10.1111/j.1574-6968.2007.00931.x>.

846 [56] Butler SM, Camilli A. Both chemotaxis and net motility greatly influence the infectivity of
847 *Vibrio cholerae*. *Proc Natl Acad Sci U S A* 2004;101:5018–23.
848 <https://doi.org/10.1073/pnas.0308052101>.

849 [57] Jones SA, Chowdhury FZ, Fabich AJ, Anderson A, Schreiner DM, House AL, et al.
850 Respiration of *Escherichia coli* in the mouse intestine. *Infect Immun* 2007;75:4891–9.
851 <https://doi.org/10.1128/IAI.00484-07>.

852 [58] Sellars MJ, Hall SJ, Kelly DJ. Growth of *Campylobacter jejuni* supported by respiration of
853 fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. *J
854 Bacteriol* 2002;184:4187–96. <https://doi.org/10.1128/JB.184.15.4187-4196.2002>.

855 [59] Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in
856 the gut. *Mucosal Immunol* 2017;10:18–26. <https://doi.org/10.1038/mi.2016.75>.

857 [60] Mamantopoulos M, Frising UC, Asaoka T, van Loo G, Lamkanfi M, Wullaert A. El Tor
858 Biotype *Vibrio cholerae* activates the caspase-11-independent canonical Nlrp3 and pyrin
859 inflammasomes. *Front Immunol* 2019;10:2463.

860 https://doi.org/10.3389/FIMMU.2019.02463.

861 [61] Klose KE. The suckling mouse model of cholera. *Trends Microbiol* 2000;8:189–91.
862 https://doi.org/10.1016/S0966-842X(00)01721-2.

863 [62] Nygren E, Li BL, Holmgren J, Attridge SR. Establishment of an adult mouse model for
864 direct evaluation of the efficacy of vaccines against *Vibrio cholerae*. *Infect Immun*
865 2009;77:3475–84. https://doi.org/10.1128/IAI.01197-08.

866 [63] Chong CYL, Bloomfield FH, O'Sullivan JM. Factors affecting gastrointestinal microbiome
867 development in neonates. *Nutrients* 2018;10. https://doi.org/10.3390/NU10030274.

868 [64] Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk
869 between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments
870 tissue barrier function. *Cell Host Microbe* 2015;17:662–71.
871 https://doi.org/10.1016/j.chom.2015.03.005.

872 [65] Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR.
873 *Nucleic Acids Res* 2001;29:e45. https://doi.org/10.1093/NAR/29.9.E45.

874 [66] Anthouard R, DiRita VJ. Small-molecule inhibitors of *toxT* expression in *Vibrio cholerae*.
875 *MBio* 2013;4:e00403-13. https://doi.org/10.1128/mBio.00403-13.

876

877

878 **Supporting Information**

879 **Supplemental Methods**

880

881 **S1 Fig. MuGENT spectinomycin selective marker shows no fitness defect *in vitro*.**

882 Comparison of wild type and $\Delta lacZ$ C6706 *V. cholerae* strains with and without MuGENT
883 spectinomycin selective marker in pseudogene VC1807. (a) Aerobic *in vitro* competition assay
884 after 20h. (b) Aerobic growth curve assay. (c) Anaerobic *in vitro* competition assay after 20h. (d)
885 Anaerobic growth curve assay. All assays were performed in LB media. Bars in *in vitro*
886 competitions represent the arithmetic mean where error bars represent the standard error of the
887 mean. Growth curves are an average of three biological replicates where error bars represent
888 the standard error of the mean.

889

890 **S2 Fig. *cbb₃* deficient strains and wild type grown anaerobically do not maintain a**
891 **functional *cbb₃* oxidase complex.** *V. cholerae* cultures were grown on LB agar plates and
892 spotted onto a rapid test DrySlide containing N₁N₁N'N'-tetramethyl-*p*-phenylene-diamine
893 dihydrochloride (Wurster's blue; TMPD) that turns blue when reduced by cytochrome c
894 oxidases. (a) *V. cholerae* *cbb₃* mutant strain spots and *E. coli* (cytochrome c deficient) control.
895 (b) Wild type *V. cholerae* grown in aerobic, microaerobic, and anaerobic conditions.

896

897 **S3 Fig. *V. cholerae* oxidases generally support the same pattern of growth in minimal M9**
898 **0.2% D-glucose media as seen in LB and combinatorial MuGENT mutants closely**
899 **recapitulate triple isogenic deletion mutant growth in LB.** (a-b) Single terminal oxidase
900 deletion mutants grown in M9 0.2% D-glucose, aerobically and anaerobically, respectively.
901 Inoculums for all growth experiments were prepared in anaerobic conditions. (c-d)
902 Combinatorial terminal oxidase deletion mutant growth in LB. Inoculums were prepared

903 anaerobically and subsequently grown in aerobic and anaerobic conditions, respectively. Triple
904 deletion mutant strains have a '+' with an oxidase name (e.g. +*cbb*₃), indicating the sole
905 remaining oxidase, with the other three oxidases disrupted by mutation. Growth curves are an
906 average of three biological replicates where error bars represent the standard error of the mean.

907

908 **S4 Fig. Terminal reductase mutants are variable for aerobic growth in the presence of**
909 **cognate electron acceptor molecules.** *V. cholerae* terminal reductase aerobic growth
910 characteristics in LB in the presence and absence of alternative electron acceptors (a) 50mM
911 fumarate, (b) 50mM trimethylamine-N-oxide (TMAO), (c) 50mM nitrate, and (d) 50mM dimethyl
912 sulfoxide (DMSO). Inoculums were prepared aerobically. Closed symbols indicate LB growth
913 media lacked an alternative electron acceptor whereas open symbols indicate LB growth media
914 was supplemented with a given alternative electron acceptor. Growth curves are an average of
915 three biological replicates where error bars represent the standard error of the mean.

916

917 **S5 Fig. Functional terminal oxidases, but not alternative terminal reductases, are**
918 **required for optimal colonization of the large intestine.** Aero7 and Ana4 colonization of the
919 large intestine in both single strain and competition infections. (a) Single strain infection of strain
920 Aero7. (b) Competition infection of strain Aero7. (c) Single strain infection of strain Ana4. (d)
921 Competition infection of strain Ana4. Bars represent the geometric mean. Horizontal dashed
922 lines indicate the limit of detection (LOD) and red dots indicate recovered CFUs were below the
923 LOD. Competitive index scores were calculated as [(Mutant_{Output}/WT_{Output}) / (Mutant_{Input}/WT_{Input})].
924 Statistical analysis was performed using GraphPad PRISM. *, P < 0.05. A Mann-Whitney U-test
925 was used in the determination of significance between WT and Aero7. A Student's t test was
926 performed on log transformed data in the determination of significance between WT and Ana4.
927 Single strain *in vivo* colonization assays in the large intestine for (e) individual and (f)
928 combinatorial oxidase deletion strains. (g) Single strain colonization of aerobically prepared wild

929 type and $+cbb_3$ oxidase inoculums in the large intestine. Triple deletion mutant strains have a '+'
930 with an oxidase name (e.g. $+cbb_3$), indicating the sole remaining oxidase, with the other three
931 oxidases disrupted by mutation. Bars represent the geometric mean. Horizontal dashed lines
932 indicate LOD, and red dots indicate recovered CFUs were below the LOD. Statistical analysis
933 was performed using GraphPad PRISM. *, $P < 0.05$. A Mann-Whitney U-test was used in the
934 determination of significance between WT and Aero7 and WT and $+bd$ -III whereas an Analysis
935 of Variance with *post hoc* Dunnett's multiple comparisons test was conducted on log
936 transformed CFU/g intestine for all other strain comparisons.

937

938 **S6 Fig. TcpA production is functional and hydrogen peroxide tolerance is equivalent**
939 **among individual oxidase deletion mutants.** (a) Western blot visualization of TcpA, a
940 required virulence factor in *V. cholerae* pathogenesis, in both standard and anaerobic AKI
941 conditions. (b) Densitometry analysis of TcpA production in standard AKI conditions. (c)
942 Densitometry analysis of TcpP production in anaerobic AKI conditions. TcpA levels are
943 displayed as relative to TcpA production in wild type cells. ImageJ was used to perform the
944 densitometry analysis across three biological replicates. Horizontal bars represent the arithmetic
945 mean where error bars represent the standard deviation of the mean. (d) Hydrogen peroxide
946 minimum inhibitory concentration determination of individual oxidase deletion strains. Growth
947 percentage was calculated as a function of optical density for test strains in various
948 concentrations of H_2O_2 (0.15625mM, 0.3125mM, 0.625mM, 1.25mM, 2.5mM, 5mM, and 10mM)
949 divided by the optical density for wild type *V. cholerae* grown in LB media without H_2O_2 . All
950 strains showed signs of growth reduction at 1.25mM H_2O_2 and were all entirely inhibited for
951 growth at 2.5mM H_2O_2 . Data points represent the arithmetic mean of three biological replicates
952 with error bars representing the standard error of the mean.

953

954 **S7 Fig. Variant +*bd-III* strain (+*bd-III*^V) indicates that the *bd-III* oxidase, when expressed, is**

955 **capable of supporting aerobic respiration in *V. cholerae* and colonization of the infant**

956 **mouse.** (a) Wild type and +*bd-III* strain (Δcbb_3 $\Delta bd\text{-I}$ $\Delta bd\text{-II}$) *bd-III* expression. Expression was

957 determined for the primary subunit of the *bd-III* oxidase VC1571. Dots represent biological

958 replicates of relative *bd-III* expression between +*bd-III* and wild type strains. Bars represent

959 arithmetic mean with error bars representing the standard error of the mean. (b-c) Wild type and

960 +*bd-III*^V growth in LB. Inoculums were prepared aerobically and subsequently grown in aerobic

961 and anaerobic conditions, respectively. Data points represent the mean of triplicate growth

962 curves with error bars representing the standard error of the mean. (d) *In vitro* expression of

963 terminal oxidases in +*bd-III*^V strain. Expression was determined for the primary subunit of each

964 oxidase complex (VC1442, VC1844, VCA0872, VC1571). Bars represent the arithmetic mean

965 with error bars representing the standard error of the mean. (e) Single strain infection of +*bd-III*^V

966 in the small intestine. (f) Single strain infection of +*bd-III*^V in the large intestine. Bars in single

967 strain infections represent the geometric mean. Statistical analysis was performed using

968 GraphPad PRISM. *, $P < 0.05$. A Student's *t* test was performed on log transformed data in the

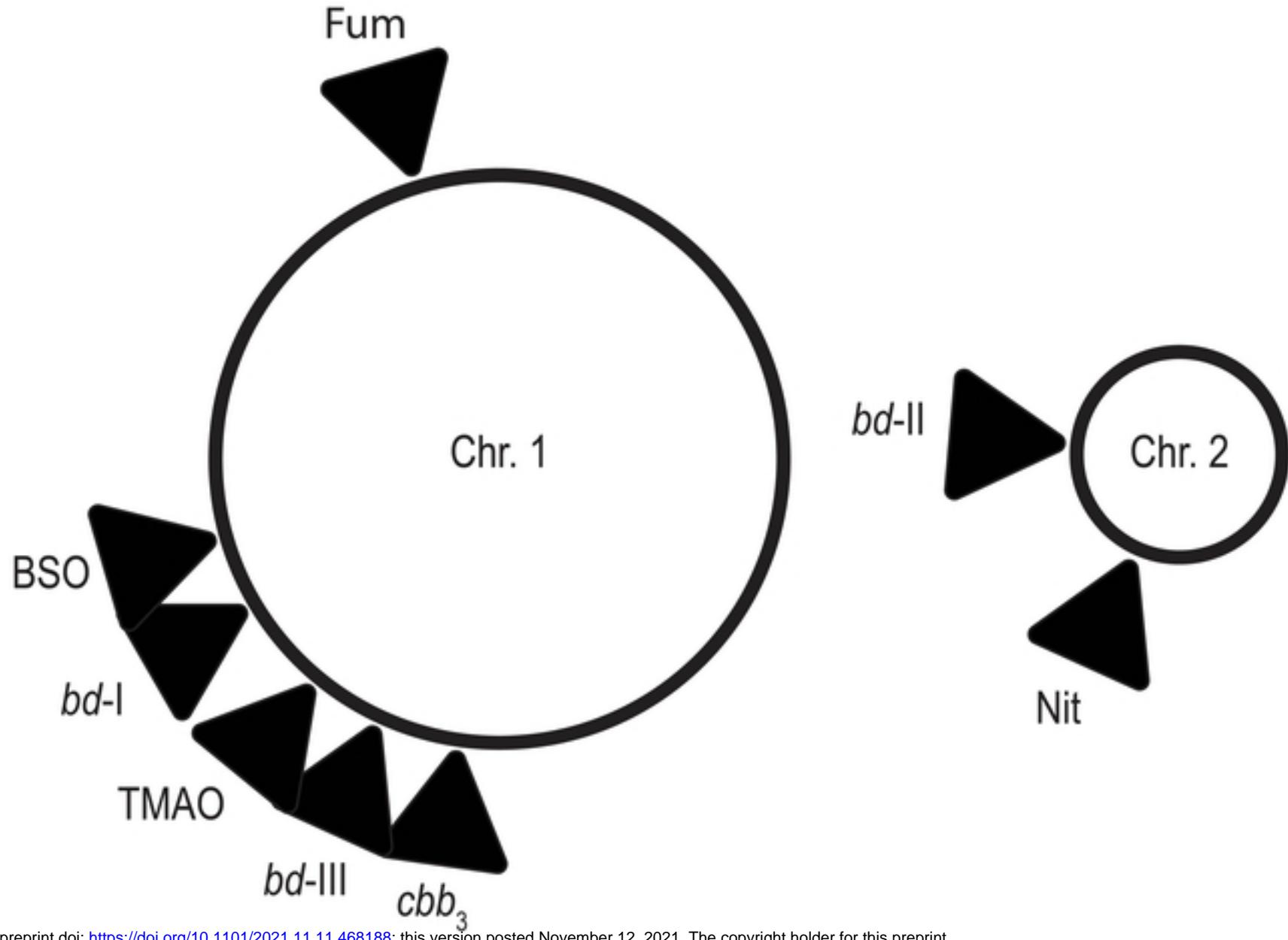
969 determination of significance between WT and +*bd-III*^V in both the small and large intestine.

970

971 **S1 Table. Whole genome sequencing single nucleotide polymorphism analysis**

972 **annotation.**

973


974 **S2 Table. CoMPAS sequencing reads.**

975

976 **S3 Table. Bacteria strain list.**

977

978 **S4 Table. Primer list.**

a

bioRxiv preprint doi: <https://doi.org/10.1101/2021.11.11.468188>; this version posted November 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

b

Wild Type
Ana4
Mu+Nit
Mu+Fum
Mu+TMAO
Mu+BSO
*Mu*Nit
*Mu*Fum
*Mu*TMAO
*Mu*BSO

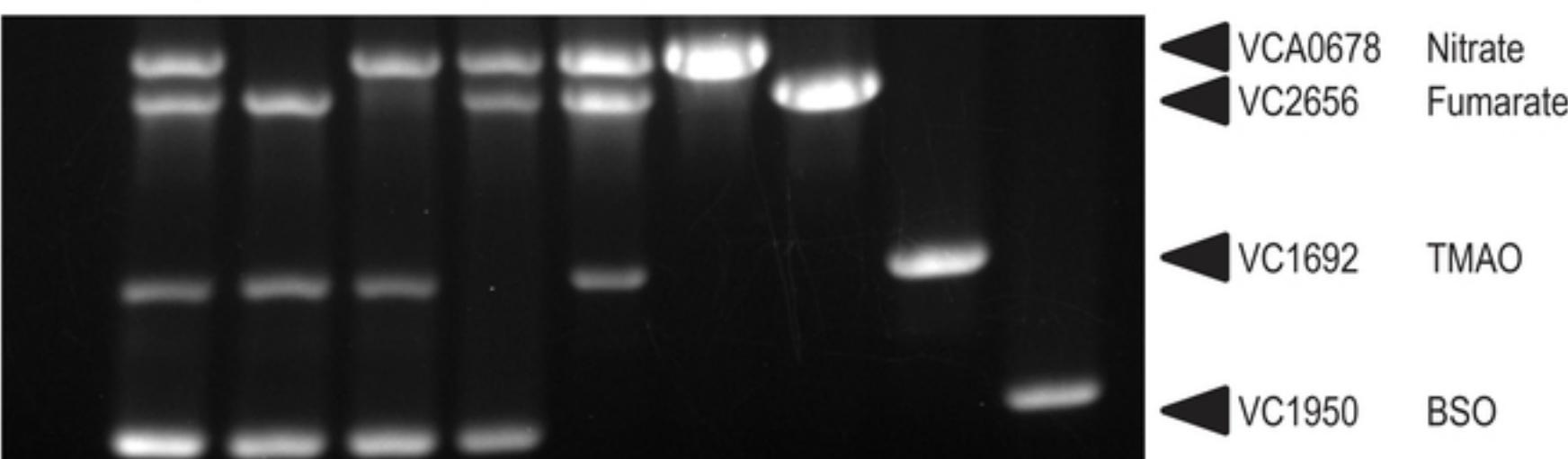
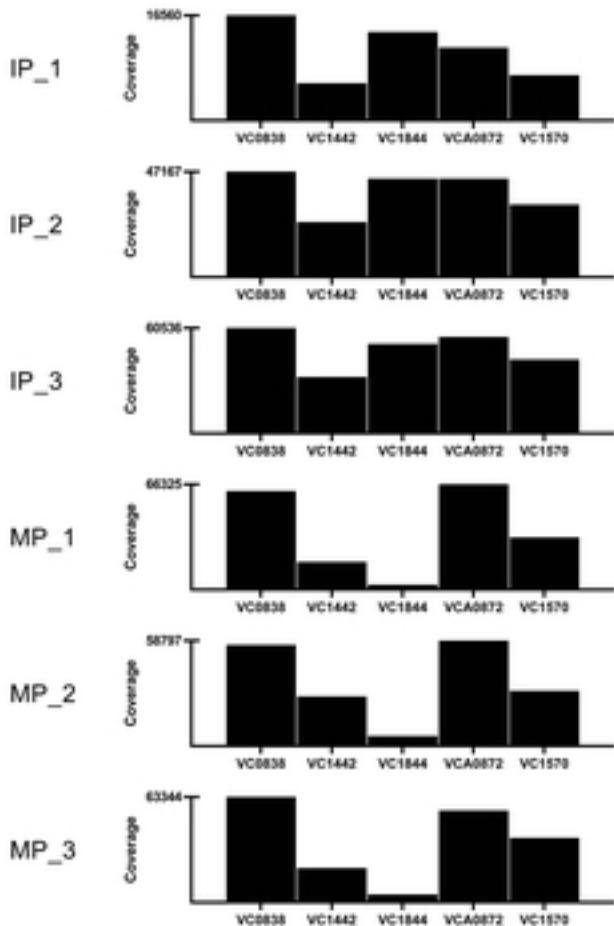
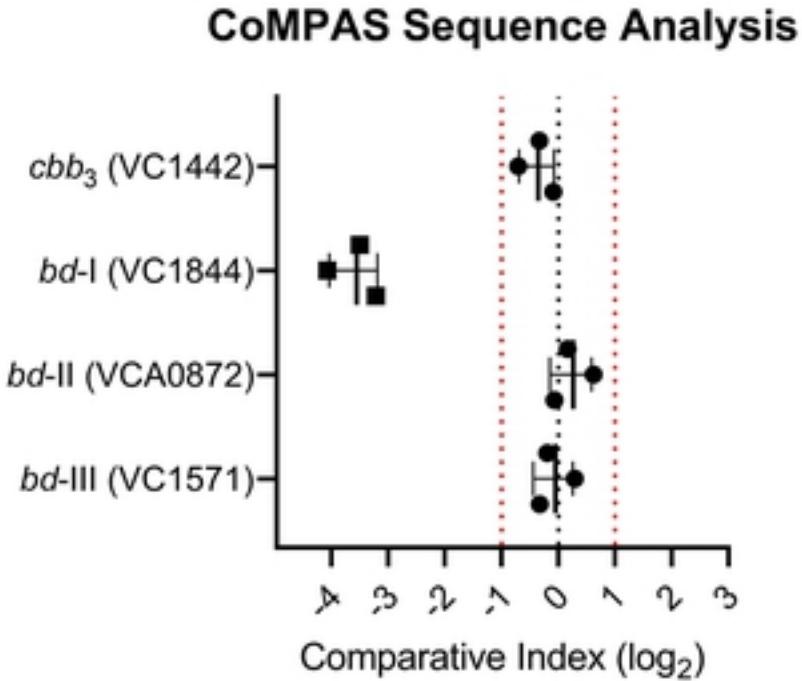
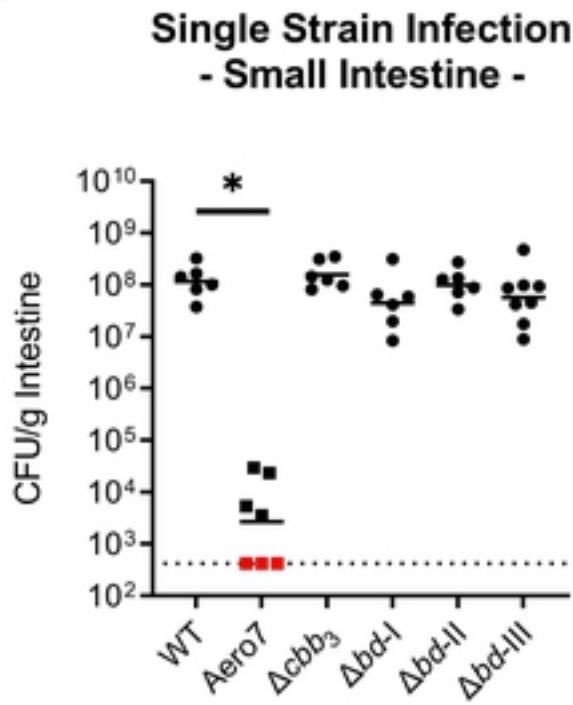
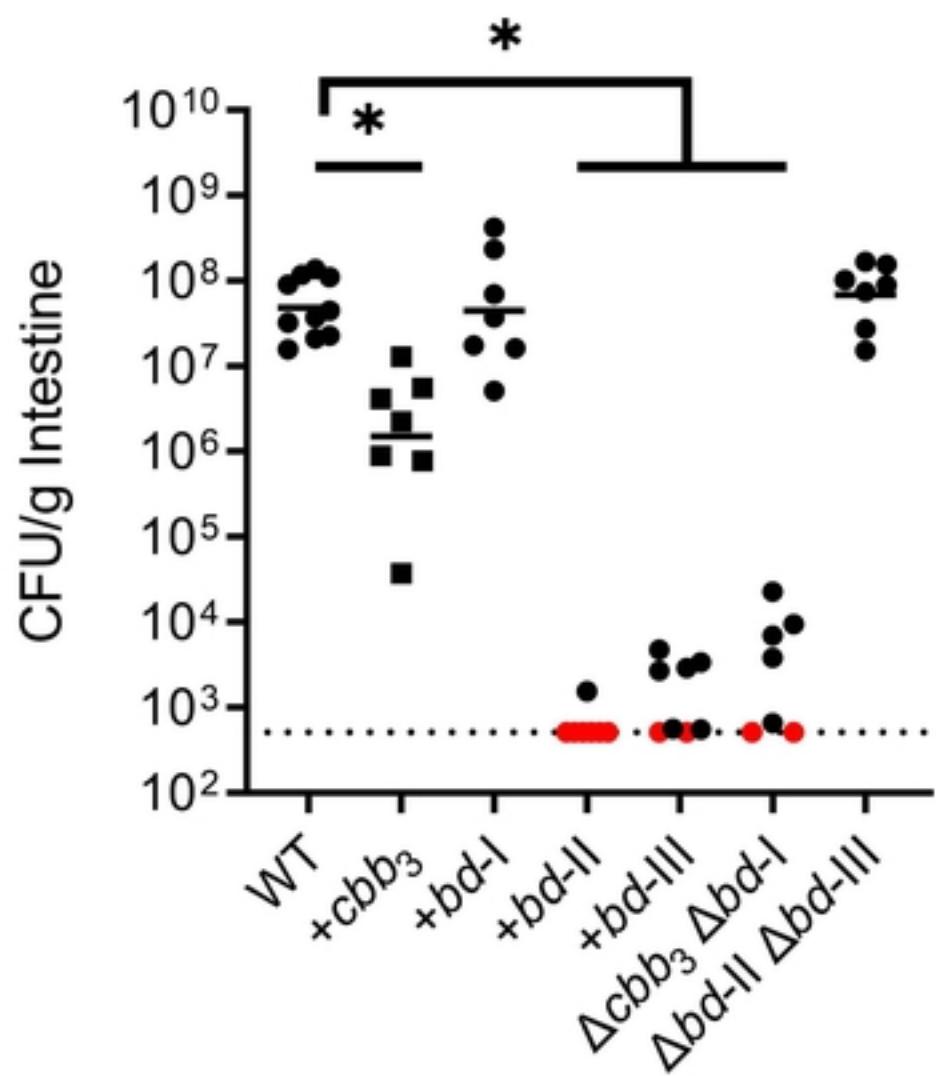






Figure 1

a**b****Figure 6**

a

Single Strain Infection
- Small Intestine -

b

Single Strain Infection
- Aerobic Overnight -
- Small Intestine -

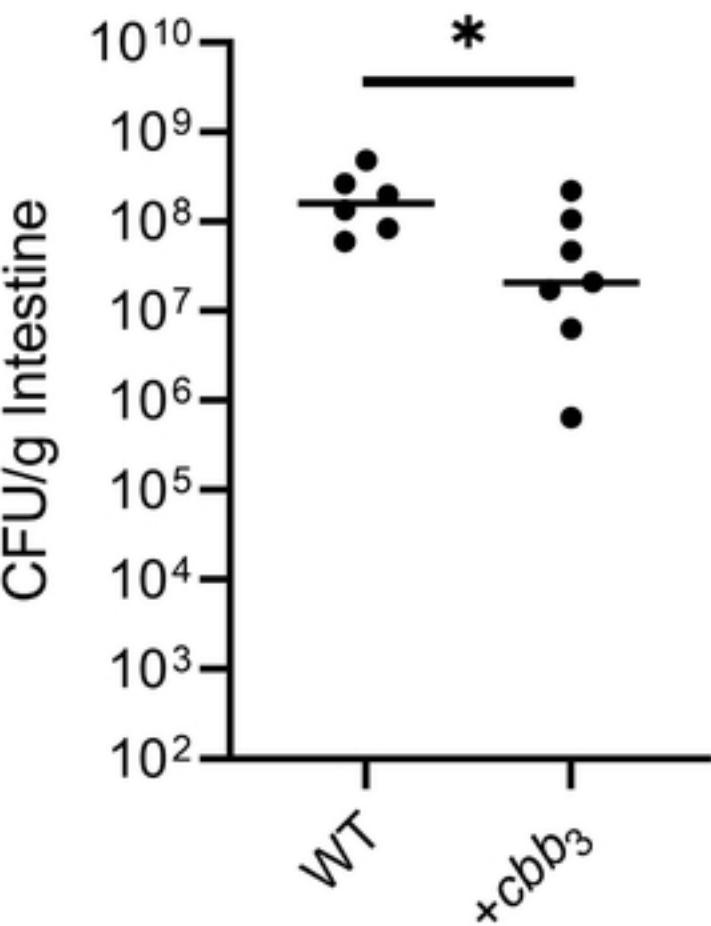


Figure 7

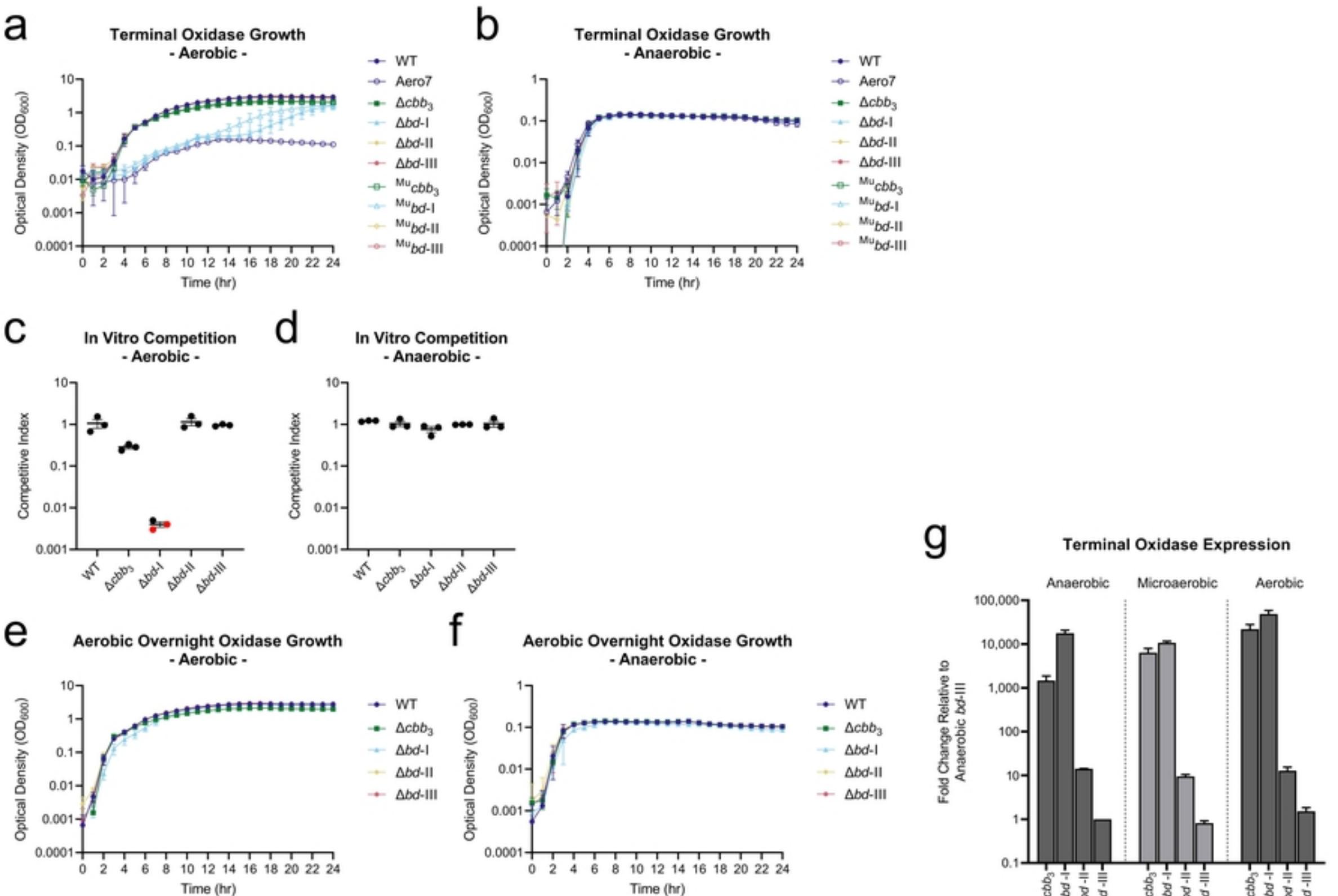
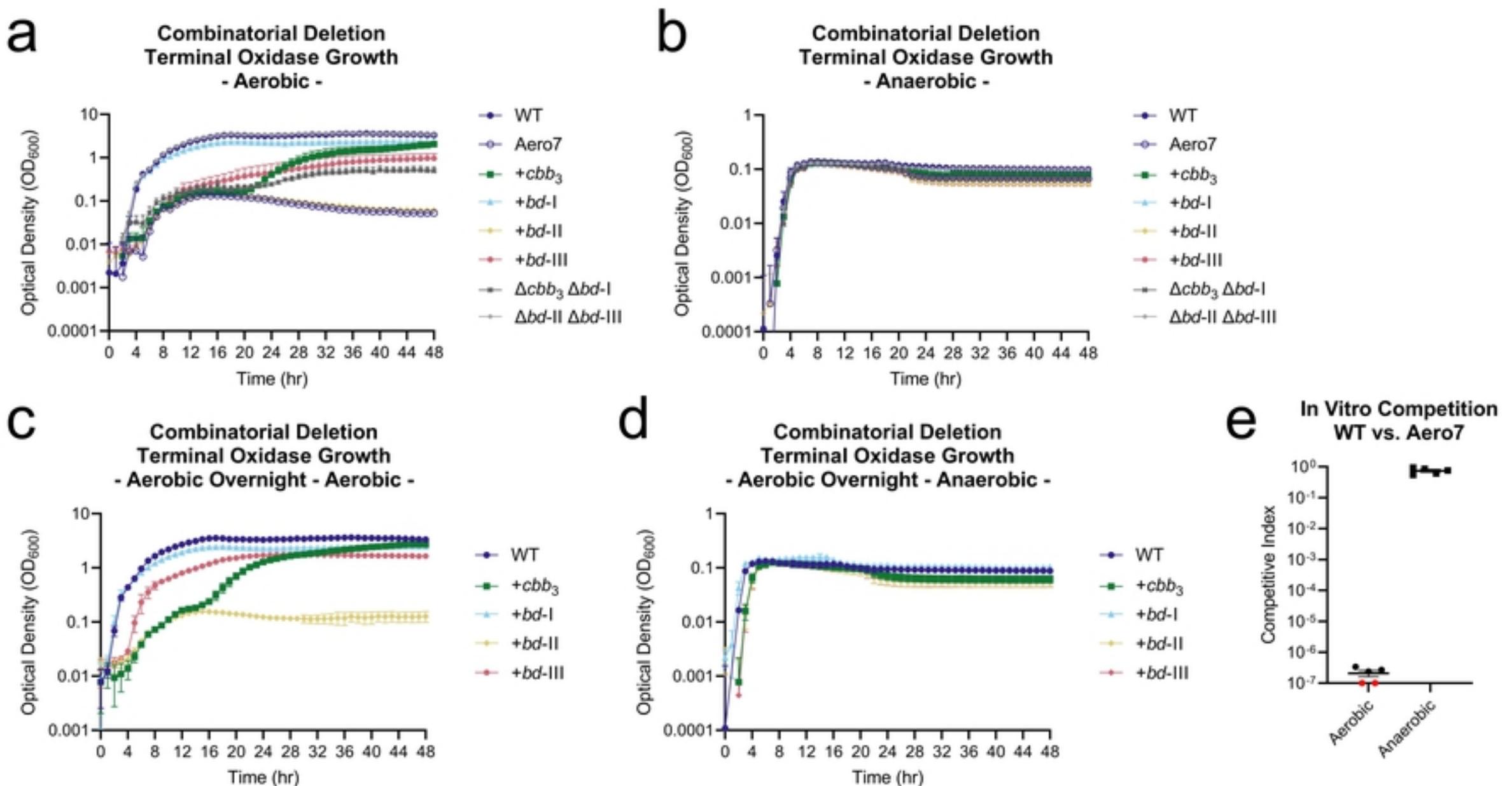
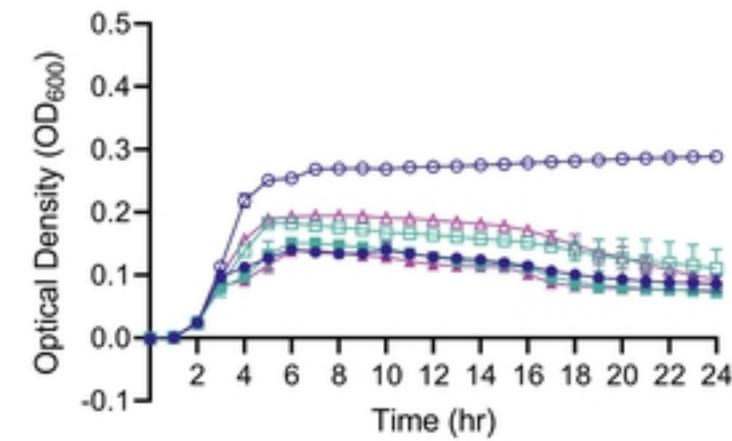
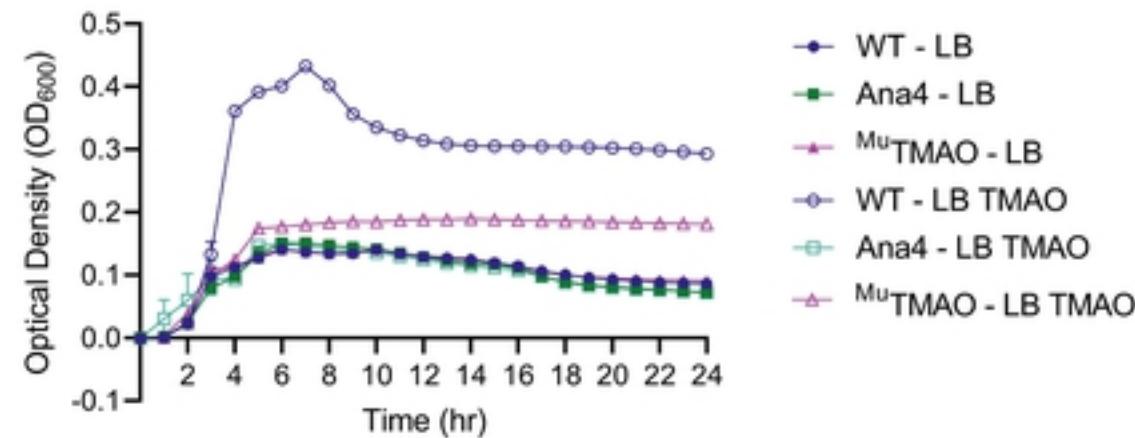
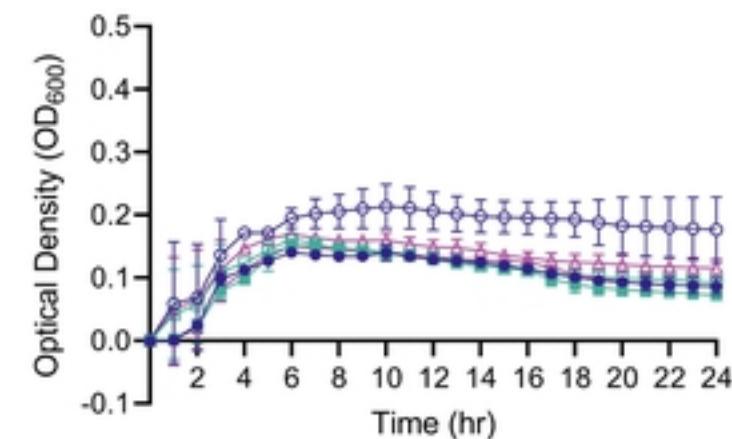


Figure 2

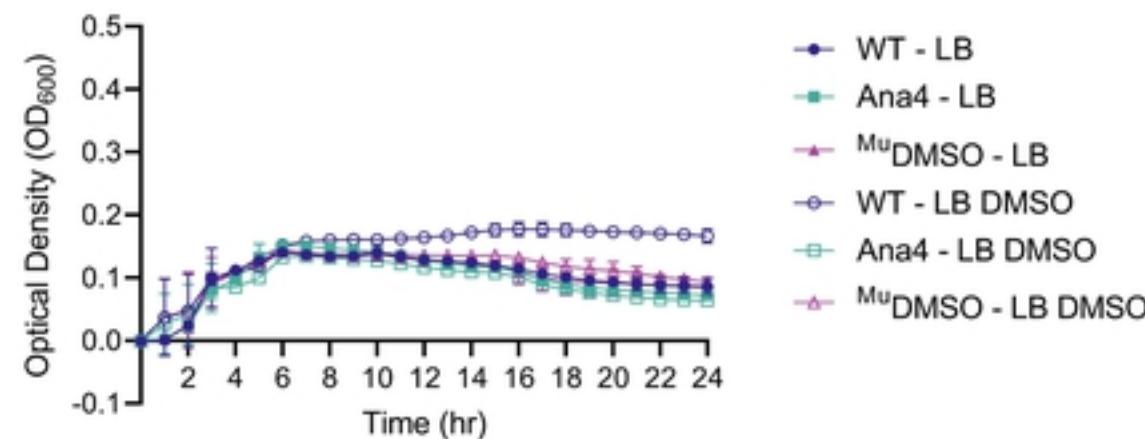




Figure 3

a


Terminal Reductase Growth
- Anaerobic Fumarate -

b


Terminal Reductase Growth
- Anaerobic TMAO -

c

Terminal Reductase Growth
- Anaerobic Nitrate -

d

Terminal Reductase Growth
- Anaerobic DMSO -

Figure 4

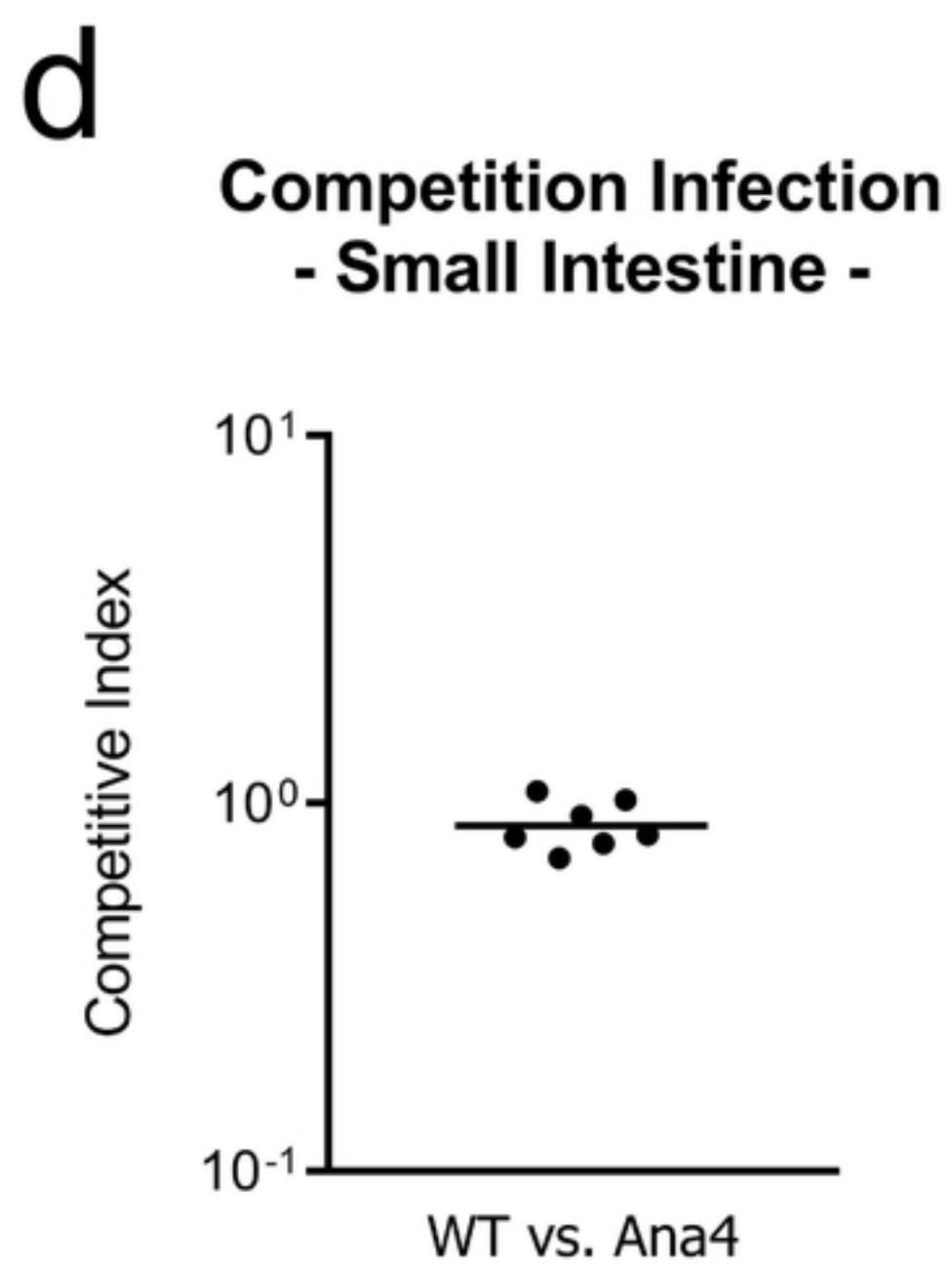
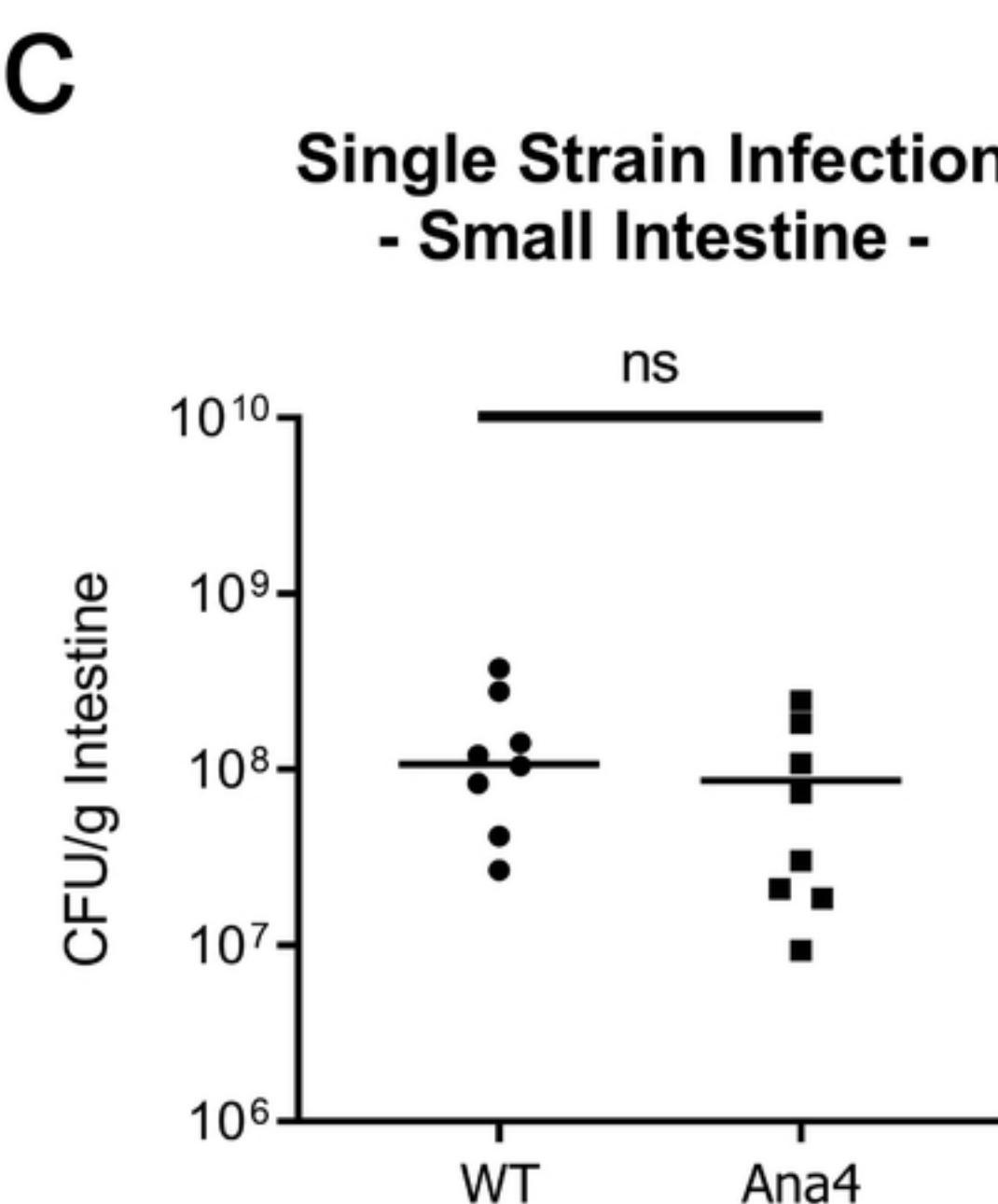
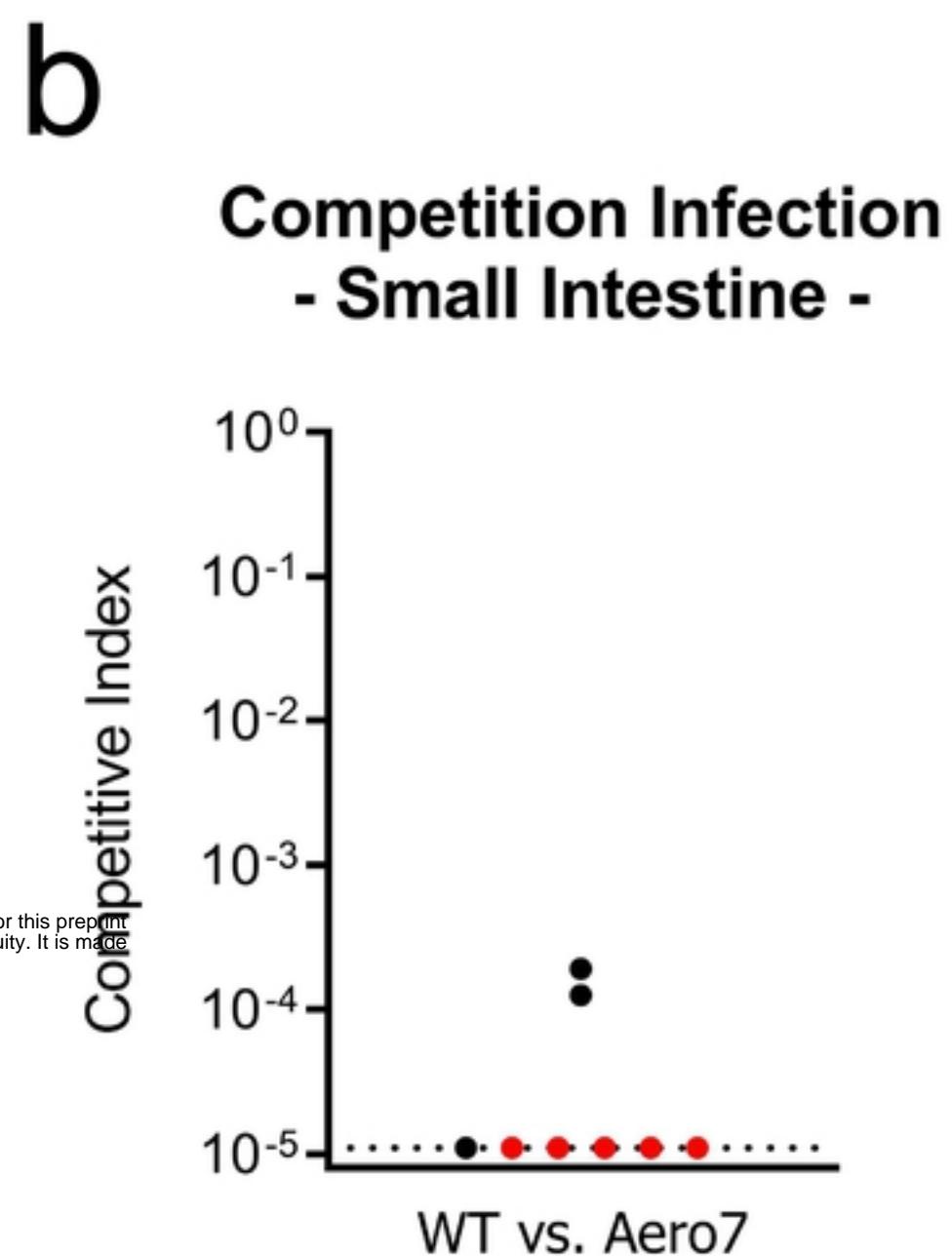
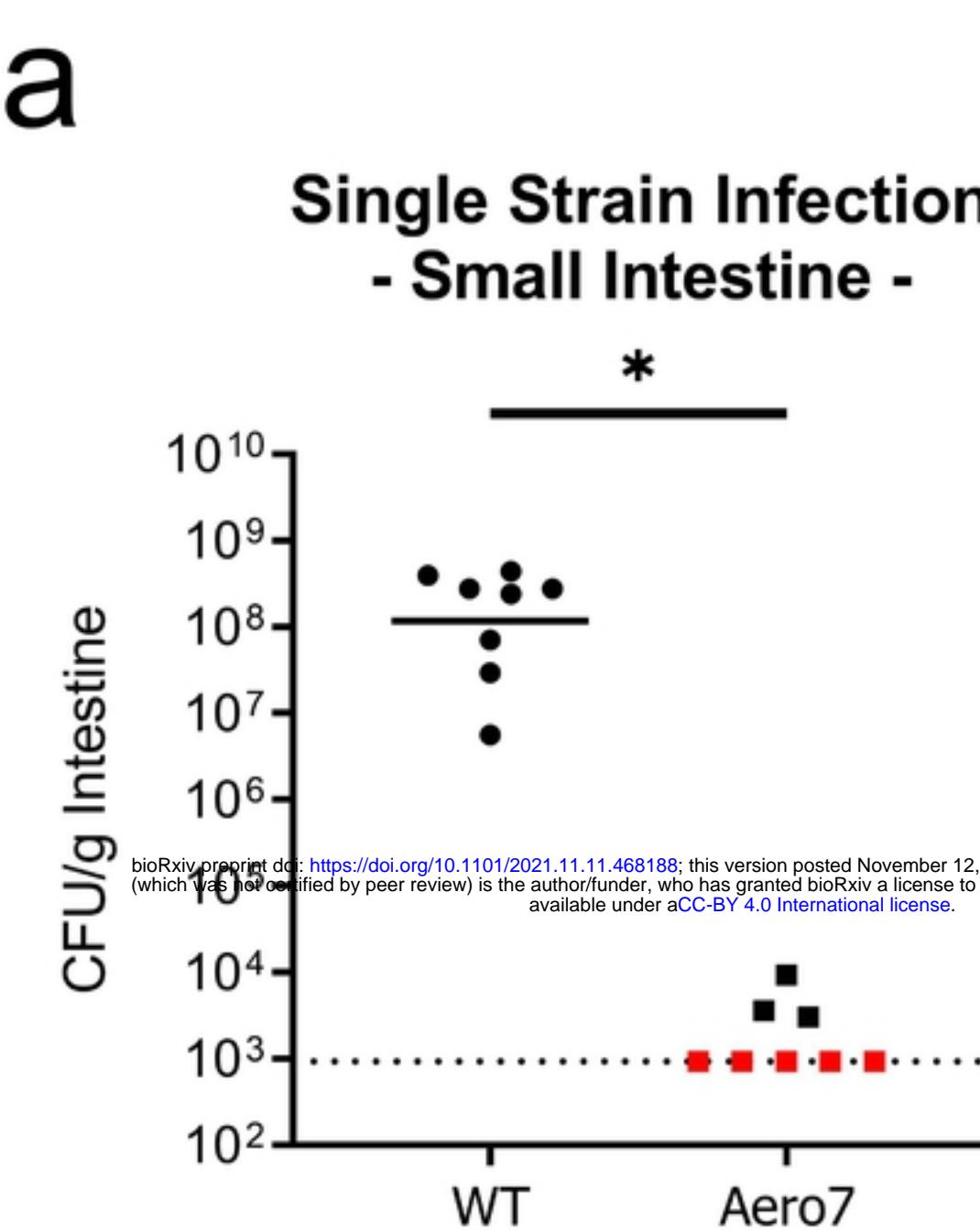





Figure 5