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1 Abstract

The increasing amount of spatial transcrip-
tomics data prompts for means to amalgamate
observations from distinct experiments, espe-
cially attractive is to cast quantities from differ-
ent sources into a common coordinate frame-
work (CCF) to relate signals across space. We
here present a method that enables transfer of
information from multiple samples to a refer-
ence representing a CCF, and show its utility by
analyzing an assortment of real and synthetic
data sets.

2 Main

During the last years, there’s been an ever
increasing amount of interest in the field of
spatially resolved transcriptomics, epitomized
by its “Method of the Year 2020” award.[1}
2| The field has also experienced a trend
of democratization, where techniques have
spread beyond the groups originally devel-
oping them, a phenomenon reflected by the
growing corpus of spatial transcriptomics data.
Indeed, some of the spatial transcriptomics
techniques have already been adopted as
commercial products and embraced by the

scientific community, thus facilitating the
production of consistent high-quality data by a
diverse set of labs. Spatial transcriptomics is
also more frequently appearing as a modality
of interest in ambitious international initiatives
such as the Human Cell Atlas.[3] While
quantity is key to delineate the many nuances
of transcriptomics data, it also brings with it
certain challenges; perhaps most notably the
need to integrate observations from multiple
sources.

For single cell transcriptomics data the
concept of integration is often strongly associ-
ated with the process of constructing a shared
space based on gene expression, to then embed
the data therewithin. However, in contrast
to single cell data, spatial transcriptomics
data possess an inherent low-dimensional
space, being the physical domain from which
it'’s collected. Thus, when building spatial
transcriptomics atlases or summarizing larger
studies, the idea of integration should be
extended beyond elimination of unwanted
batch effects. More specifically, it ought to
encompass the transfer of data to a shared
reference, where observations from different
samples can be related in physical space.
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Such references are commonly referred to as
common coordinate frameworks (CCFs), a
concept which Rood et al. thoroughly discuss
in their perspective.[4]

Considering this need for spatially aware
integration methods, we here present a
landmark-based approach to transfer spatial
transcriptomics data to a defined reference.
Our method relies on Gaussian Process
(GP) regression, which previously has been
successfully applied to identify spatially
variable genes and cell interactions.[5| 6] With
this method we seek to overcome both the
limitations of traditional alignment methods
relying on linear transformations (e.g., rotation
and translation) as well as the need for an
extensive preexisting reference system to
which the data can be registered. We also
provide an implementation of our method as
a Python package, named “effortless generic
GP landmark transfer”, or eggplant for short.
To promote easy incorporation into already
existing workflows and increase accessibility,
eggplant is designed to be compatible with the
popular analysis framework scanpy and its
derivatives.[7]]

To be more precise, our method focuses
on the specific task of transferring observed
spatial features from one coordinate system to
a given reference system, using a set of shared
spatial landmarks. The reference can be any
arbitrary structure that represents a spatial
domain onto which one seeks to transfer infor-
mation, see Methods. Meanwhile, we define
a spatial landmark as a feature that can be
consistently located with fairly high precision
across individuals. Samples where spatial
landmarks (for brevity, we hereafter drop the
prefix “spatial”) have been identified will be
referred to as “charted”. Landmarks can be
derived from any - to the tissue — associated
information including morphological and
molecular structures (e.g., gene expression or
protein signals). Furthermore, the charting
process can be manual, unsupervised (using
computational methods) or a mixture of both;

since our method is agnostic to this choice,
we consider a deeper discussion regarding
landmark annotation and identification to be
outside the scope of this work. We also assume
that the spatial data has been appropriately
normalized and had eventual batch effects
corrected for.

Our method is simple in its design and
can be described in a few steps, see Figure
for a schematic overview. As input it requires
charted spatial transcriptomics data containing
one or more features of interest (FOI) together
with a reference. The reference represents the
domain to which the FOI's distribution should
be transferred and should also be charted.
Next, the domain of the observed data is trans-
formed to make landmark distances match
those of the reference. The transformation can
either be linear (multiplication with a scaling
factor), or non-linear (using thin plate splines)
if one suspects a non-homogeneous distortion
of the spatial domain. Finally, we formulate
a multivariate regression problem where the
value of the FOI is considered a function
of the distance to respective landmark. We
employ a GP framework, commonly described
as a distribution over functions, to learn the
relationship between feature value and dis-
tances. A transfer of any FOI to the reference
is seamless once the relationship is established;
the function is simply applied to each location
in the reference to obtain an estimate of the
FOI value. Evidently, multiple samples can
be transferred to the same reference, either
one-by-one or jointly. Notably, there is no need
for alignment or further processing once the
samples have been charted. We also provide
a strategy to determine a lower bound for
the number of landmarks to be used in the
process, see Methods.

To demonstrate our method, we first ap-
ply it to a set of synthetic data containing
eight samples from different time points in a
dynamically changing system. The samples
represent the same physical domain, but — like
real data — exhibit differences in structure and
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orientation. Expression from each time point
was transferred to a reference with the help
of nine landmarks, Figure . For this, and
all subsequent analyses, we used non-linear
landmark adjustment. This transfer of data
to a CCF permits a multitude of downstream
analyses, of which we will give two examples
below.

The first example focuses on characterization
of the system’s underlying spatiotemporal
dynamics. The dynamical model used to gen-
erate the synthetic data is a two-compartment
system, in which expression fluctuates accord-
ing to a set of ordinary differential equations
(ODEs). For the sake of simplicity, we assume
that the model’s structure is known prior to the
analysis, and therefore only aim to estimate the
model’s parameters. The two compartments
between which expression varies (C1 and C2)
are defined in our reference, allowing us to
approximate the total amount of expression
in each compartment at every time point.
From this aggregated data, we estimated the
ODE-model parameters; the corresponding
dynamics are shown in Figure where
they are also compared to the ground truth
values. With the system dynamics established,
we could also reconstruct the exchange of
expression between the two compartments,
see Supplementary Figure |1} In a biological
system, this type of flux-analysis could for
example elucidate how cells migrate between
different regions in a tissue.

In a second example of downstream analysis,
we leverage the fact that all data now inhabits
the same reference, thus making coordinates
comparable between time points. This allows
us to perform “spatial arithmetics” from which
information about local up-or downregulation
of features between time points or condi-
tions can be deduced and tested, see Figure .

For additional evaluation of our method, a
second set of synthetic data was generated
to assess the influence of the number of

landmarks on its performance and com-
pare it to alternative strategies. In short, a
non-homogeneous distortion was applied
to a collection of spatial observations and
associated landmarks, see Supplementary
Figures [2JA-B. We then assessed how well each
strategy could recover the original spatial
distribution of the distorted signals, where
our approach exhibited the best performance,
Supplementary Figure 2IC. As expected, for
landmark-based approaches, the number of
landmarks was positively correlated with
performance; however, this trend quickly
diminished as the number of landmarks
increased.

Having established confidence in our method,
we next analyzed several sets of real spatial
transcriptomics data. In the first analysis,
we examined twelve first generation Spatial
Transcriptomics (ST1K) samples of the mouse
olfactory bulb (MOB), collected from different
individuals and sexes.[8] Here we chose 14
landmarks, identified by morphological cues
in the accompanying Hematoxylin and Eosin
(HE) images, and charted the corresponding
sites in our reference. Having prepared the
data, we applied our method and transferred
the expression of three genes to the reference:
Nrgn, Apoe and Omp, see Figure PA and
Supplementary Figure [3| and @} We also
assembled “composite” expression profiles for
each of the aforementioned genes, allowing
us to represent information from all twelve
samples jointly. We also conducted a “spatial
differential expression analysis” (sDEA)
between the three genes, to examine how
their local expression differed. The composite
representations and the sDEA results are both
presented in Figure 2B.

In a second analysis, to show cross-platform
compatibility, we also transfer gene expression
in the mouse hippocampal area from data
collected using both the Slide-seqV2 and
Visium platforms. The Visium sample was
charted with the help of the associated HE-
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Figure 1: A) Schematic overview of the method. 1. We, select a number (here two) of samples representing the
same spatial domain together with a reference. 2. We then chart the samples and reference (annotating landmarks).
Here, landmarks are represented by colored markers. 3. Next, a feature of interest (FOI) that should be transferred to
the reference is selected. 4. We learn the function that relates FOI values to landmark distances by using Gaussian
Process (GP) Regression. 5. Finally, the FOI is transferred to reference using the learnt relationship between expression
and landmark distances. B) Top : Observed synthetic data across eight different time points. Bottom : Results from
transferring the observed data to a reference using our method. C) Spatiotemporal analysis of material (gene expression)
transfer between the two compartments in the reference, the graph shows how the expression varies in each compartment
as a function of time. D) An example of spatial arithmetics, subtraction of values at tq from values at t7 shows local
up-and downregulation of the feature between the two time points.
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Figure 2: A) Top left: observed spatial gene expression of Nrgn in the mouse olfactory bulb (MOB) sections (n=12).
Top right : charted HE-images of the MOB sections, landmarks are indicated by colored markers, for a larger image
see Supplementary Figure[I0] Bottom left: results from transferring the observed MOB data to a common reference.
Bottom right : the charted reference to which the MOB expression data is transferred. B) Left : Composite profiles
for each of the three genes Apoe, Nrgn and Omp. The composite expression profiles are formed by computing the
location-wise mean across all twelve MOB sections, see Methods. Right : spatial differential expression analysis (SDEA)
between the three genes, see Methods. Gray areas indicate locations where there’s no differential expression between
the two compared genes. At locations with differential expression, the values for comparison A(g1,82) are obtained
by subtracting the composite profile of go from g1. C) Results related to the human developmental heart data. The
“HE-images” panel shows the charted HE-images, landmarks are represented with colored markers. The ‘Composite”
panel gives the composite representation (across samples, n = 7) of the transferred data for each gene. The “Reference
panel shows the reference to which data was transferred together with the four different regions, landmarks are indicated
with colored markers. The “Enrichment” panel depicts the predicted expression values of each transferred sample (black
dots) within respective region. Mean values are represented with a red marker.
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image, while we relied on total UMI-counts
for the Slide-seqV2 data, exemplifying how
both morphology and molecular information
may be used in the charting process (see
Supplementary Figure [II). As shown in
Supplementary Figures [13] (Observed) and
(Transferred), data from the two platforms
were successfully integrated while preserving
the intricate structure of the expression
patterns.

Finally, we produced a new set of 10x
Genomics Visium data consisting of seven
sections (A-F) a two individuals from human
developmental heart (dh) tissue (collected at
the tenth postconceptional week). We then
transferred the expression profiles of four
genes (COL2A1, ELN, MYH6 and MYH?7)
from all seven sections in this data set to a
single reference. Despite vast inter-individual
differences in the structure, the transferred
data correlated well between patients; the
mean between-individual correlation was 0.88 ,
while the mean within-individual correlation
was 096 for individual 1 and 091 for
individual 2, see Supplementary Figure 15| We
also generated gene-specific composite profiles,
see Figure PIC. Separate representations of
each combination of gene and section pairs are
found in Supplementary Figure [5| (Observed)
and E] (Transferred). We also segmented the
reference into four distinct spatial regions,
which allowed us to assess region-specific
enrichment of genes. Importantly, the enrich-
ment analysis does not require any additional
annotation of the original tissue samples, and
the regions can be redefined without any need
to repeat the transfer process. As expected,
MYH6 expression was highest in the atrial
regions (Region 2 and 3), MYH7 expression
was elevated in the ventricular body (Region
0), and ELN in the outflow tract (Region 1).[9]
The atria also were enriched for COL2A1 but
we, interestingly, observed a preserved and
statistically significant left-right asymmetry
in its expression (pyaue < 0.05, two-sided
permutation test).

Gene expression may be the primary
information that spatial transcriptomics
techniques produce, but there’s now a panoply
of methods to infer second order insights from
said data. Thus, to demonstrate the flexibility
of our method, we transferred inferred (by the
tool stereoscope) cell type proportion values
between two Visium sections of human breast
cancer, see Supplementary Figure [7}[10]

In this study we have presented a new
and general method to transfer spatial tran-
scriptomics data from multiple samples to a
shared reference, something that previously
only has been conceptually described. The
method is versatile and effortless to use.
Furthermore, the implementation leverages the
GPyTorch framework, which supports GPU
acceleration together with efficient algorithms
to reduce the inference’s complexity.[11] Our
tool is useful for visualization purposes, but
also prepares the data for more extensive anal-
ysis, such as spatiotemporal modeling, spatial
arithmetics, and regional enrichment. We are
currently relying on manual identification of
landmarks, but see a great opportunity for
future research to explore different venues
for unsupervised landmark detection. Taken
together, we consider this an important first
step towards harmonizing and integrating
spatial transcriptomics data in a common
coordinate framework.
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3 Methods

3.1 Code Availability

An implementation of our method is provided
as a Python package named eggplant, short
for effortless generic GP landmark transfer. The
package can be accessed at the GitHub reposi-
tory https://github.com/almaan/eggplant.
The repository also contains a set of Jupyter
notebooks outlining all the presented analyses
as well as generation of the synthetic data
associated with this study. The repository also
contains scripts to download and curate the
public data that we’ve used. We have also
deposited a clone of the repository together
with the charted data at Zenodo, accessible via
https://doi.org/10.5281/zenodo.5659093|.

3.2 Data Availability

Except for the synthetic and developmental
heart data, we used publicly available data sets
in this study. We thus refer to the original data
sources for access, which we list below:

e Synthetic data:
https://github.com/almaan/eggplant

e MOB data:
https://www.spatialresearch.org/resources-
published-datasets/doi-10-1126science-aaf2
403/

e Hippocampal region Visium:
https://support.10xgenomics.com/spatial-ge
ne-expression/datasets/1.1.0/V1_Adult_Mouse
_Brain

e Hippocampal region Slide-seqV2 (Puck_200115_08):
https://singlecell.broadinstitute.org/sing
le_cell/study/SCP815/highly-sensitive-spat
ial-transcriptomics-at-near-cellular-resol
ution-with-slide-seqv2

e bcA:
https://support.10xgenomics.com/spatial-ge
ne-expression/datasets/1.1.0/V1_Breast_Can
cer_Block_A_Section_1

e bcB:
https://support.10xgenomics.com/spatial-ge
ne-expression/datasets/1.1.0/V1_Breast_Can
cer_Block_A_Section_2

o Single cell HER2 data : https://zenodo.org/recor
d/47397394# . YPF2D5KxXVhE

For the human developmental heart, raw
sequencing data can be accessed at the Gene
Expression Omnibus (GEO) with access code
GSEXXXXXX (*). All processed data together
with the presented results are available at the
GitHub and Zenodo repositories associated
with this manuscript.(*)

*Note: all new data will be publicly available
upon publication of the manuscript.

3.3 Data Acquisition
3.3.1 Human Developmental Heart

After collection, the human developmental
heart tissue was fresh-frozen and embedded
in Tissue-Tek (OCT). The tissues samples were
cryosectioned at 10 ym thickness and placed
on 10X Visium spatial gene expression slides,
to then be stored at —80°C prior the library
preparation. Libraries were generated from the
samples using Visium Spatial Gene Expression
kit from 10x Genomics. Every barcoded Vi-
sium array contains four capture areas 4 4992
spots, where each spot contains probes con-
sisting of: a spatial barcode, an UMI sequence,
and a poly-dT-VN sequence enabling mRNA
capture. Sections were fixed for 30 min in
Methanol, stained with Hematoxylin and Eosin
and imaged using Metafer Slide Scanning sys-
tem (Metasystem, Altlussheim, Germany). The
10x Genomics Visium Tissue Optimization Kit
was used to determine the optimal perme-
ablization time, rendering an estimate of 20
mins. The generated libraries were sequenced
using the Illumina Platform. The lengths for
read 1 and read 2 were 28 bp respectively 120
bp. The sequencing data was processed with
spaceranger v.1.2.0.

3.4 Data Processing

In the Slide-seqV2 data, we removed all beads
with less than 100 UMI’s and then subsampled
the remainder to 20% of its size. For Visium
and first generation Spatial Transcriptomics
(ST1K) data, we used all spots identified to be
under the tissue (for public data sets we used
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the original annotations).

When analyzing gene expression data,
we applied a simple normalization strategy
compiled of functions from the scanpy (v. 1.8.1)
package, the recipe is given below:

1. scanpy.pp.filter_genes(...,min_cells = 0.1)

2. scanpy.pp.normalize_total(...,1e4,
exclude_highly_expressed = True)

3. scanpy.pp.loglp(...)
4. scanpy.pp.scale(...)

When cell type proportions acted as the feature
of interest we only used standard scaling
(subtraction by mean and division by standard
deviation).

Working with the older ST1K data, we
also added a spatial smoothing step to the above
recipe (as a last step), to counteract “holes”
caused by tears or ruptures of the tissue as
well as steep gradients and variation in the
capture efficacy across the tissue. The spatial
smoothing is a form of weighted average of the
feature values observed in a given location’s
neighborhood. The neighborhood of spot s
is denoted as N (s) and contains said spot
together with its four nearest neighbors. If
Ys is the prior feature value associated with
spot s, then the smoothed equivalent y$m°°th ig
defined as:

h _
yngOt = _Z:S’GN(S) Wy Yt
Wy = 1)
5 Yken(s) Dk

Wy = exp(—||ug —us||/0)

Where u; are the coordinates of spot s and ||.||
represents the L2-norm (euclidean distance).
In our analysis we used o = 50.

3.5 Model

The method we propose transfers a feature
of interest from one coordinate system to a
given reference system, below we describe the
process in more detail.

Let O be the domain from which the ob-
served data is collected, while ()’ represents
the reference domain onto which we seek to
transfer information. Similarly, £ C Q) is the
set of landmarks in the observed data, while
L' C Y represents the landmark positions in
the reference. Here, |£| = |£'| = L, where
L is the number of landmarks and |.| is the
cardinality operator. Importantly, £ and
L' are ordered in the same way. We also
define U C Q and U’ C () as the sets of
coordinate tuples containing the location of
each observation (#;) and reference points
(u;-). Every observation i has a target value y;
associated with it, and our primary objective
is to find the corresponding values y} for the
reference points.

First, we will transform the coordinate tuples
in U and £, to put distances between objects in
the two sets at the same lengthscale as between
their reference counterparts (U’ and £'). The
transformation # can either be a simple linear
scaling: h(u;) = heonst(#;) = a - u;, or a more
complex transformation relying on thin plate
splines (TPS). In the case of the former, a will
be given as the average of ratios between
landmark-pair distances, that is:

2 Lk -

R

i j#i

a =

LeLll el

(2)
In the second case, 1 will be a composite func-
tion given as h(u;) = hps(heonst(#;)), where
hrps restricted to a family of TPSs parametrized
by minimizing the cost C:

L
C=Y [lI; = h(l;)|]2 3)
=

The transformed versions of U and £, obtained
by applying h to every element in respective
set, are referred to as U* and £*. In our
implementation, we use the Python package
Morphops (v. 0.1.12) for the TPS warping .

Next, for all members of U* and U’, we
compute the distances to L* respectively £/,
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forming the two new sets X and X’ defined as:

Xip = Huf —l;||2
!/ / !
Xip = ||”j_lp”2

(4)

We then seek a function ¢ that will allow us
find the feature values associated with each
location in our reference:

(X)) =y (5)

To learn ¢, we use Gaussian Process Regression
(see Section [3.6) where the observed data is
used to learn said function.

3.6 Gaussian Process Regression

Gaussian Process (GP) Regression is funda-
mental to our method, and we will therefore
briefly describe it in the context of our work.
However, for a more elaborate account of
GP regression we refer to any of the (many)
already existing works on the subject, for
example the canonical text by Rasmussen and
Williams.[12]

A GP is defined as a collection of ran-
dom variables, of which any finite subset have
a joint Gaussian distribution. Hence, a GP may
be interpreted as a distribution over functions
that fit a certain set of points. We denote a
function f that is distributed according to a
GP as:

f() ~ GP(u(.),k(.,-)) (6)

Here, u(.) and k(.,.) represent the mean
respectively covariance function (also referred
to as the kernel).

In our model, the function f relates landmark
distances to the feature of interest’s values. We
represent the complete set of observed data
as the tuple (X,y), where X € RM*L is the
matrix representing the distances to each of
the L landmarks for all of the M observations,
and y € RM is the value of the feature of
interest associated with each observation.
Distances and feature values are related via
f, that is f(X) = y. The distances from the
locations to the landmarks (in the reference)

are represented by X’ while y' indicates the
reference target values (which we seek to
approximate).

Due to the properties of GPs, the joint
distribution p(y,y’| X, X’; o) thus becomes:

HE N({m],{k(x,xww kk((;f;))}) %

y n(x") k(X', X)
Where we account for noise in the training data
according to the model : y = f(X) +¢, €~
N(0,0?). Using standard Gaussian identities
and the assumption y(.) = ¢ -1 = ¢, where c is
some real number, the conditional distribution
p(y'|X’, X,y; ®) becomes:

Yy, X, X ~ N(p,k)
fl=c+Ki(y—rc)

k=KX, X" - K.k(X, X

K. = k(X', X)(k(X,X) +0?)71

(8)

With (X, y) being given, we consider the condi-
tional mean a function of X’ and will use this
as ¢ described in Section 3.5} that is:

p(X') = c+ kX, X)(k(X,X) + %) (y —c)
©)
We support several different kernel functions
but use the RQKernel as default, which is de-
fined as:
ko (X, X = (14 5 (e = )T 20— )7
(10)
Where x; and x;- refers to the i:th respectively
j:th row of X and X/, while « € Rand I' € RE
are kernel parameters. To find optimal val-
ues of the parameters ® = [c, 0, a, T], we opti-
mize the marginal likelihood p(y|X; ®) using
stochastic optimization. Once these parameters
have been estimated, ¢ can be used to estimate
y'. Implementation-wise we leverage the GPy-
Torch (v. 1.5.0) framework for both inference
and prediction.

3.7 Synthetic Data

Here we outline the process by which each
synthetic data set was created, the time series
data refers to the set analyzed in Figure 2] while
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the distortion data refers to the set presented
in Supplementary Figure [2}

3.7.1 Time series data

Eight two-colored images (see Supplementary
Figure [J) were used to generate the spatial do-
main for each time point. To convert images to
array data, eggplant’s reference_to_grid function
from the preprocess module was used, this also
assigned each spot in the array to one of two
groups (Compartment 1/C1 and Compartment
2/C2). The number of transcripts in each
compartment was dictated by the dynamical
system; from which expression values at select
time points were extracted and rounded to
the nearest integer value. The transcripts
were then randomly distributed between array
nodes in the associated compartment. Below
we describe the dynamical model in more
detail.

The dynamical model describes a two-

compartment system governed by the
following set of equations:
d
TG = (r—rp)ei+rac 1)
d
T = (rn—rn)c2+rpcy
Where ¢ is the amount of material in

compartment 1 and ¢, the same but for
compartment 2. From a given set of initial
values, (c1(0),c2(0)), the system was then
propagated in time for a pre-determined
number of steps (T). Here the following
parameter values — arbitrarily chosen — were
used: (7’11, 12,721, 7’22) (02, 0.1,0.8, —03)
together with the initial values (¢1(0),c2(0))
(5000,100). The eight time points from which
we extracted expression values were equally
spaced in in the interval [0,500].

In figures, tables and text we refer to
this synthetic data set as “Synthetic 1”.
3.7.2 Distorted data

First, a p x p grid where each node repre-
sented a spatial capture location (e.g., spot)

10

was generated, to figure as the domain in
which signals will be collected. Next, to
produce a spatial expression pattern, an i
iterations long random walk was performed
(the initial position also being randomly
sampled from the domain). The number of
times a node was visited in the walk was let
to represent its observed expression level; this
data represent the “ground truth”. From the
ground truth, a “distorted” representation
of the same sample was produced by first
applying a distortion field (F(x,y)) to the
node positions while keeping their values
constant. Then, we placed a new p x p grid
identical to the first over the distorted data,
and interpolated its node values by a nearest
neighbor approach. For a depiction of the
process see Supplementary Figure For

our data we let p = 32, i = 1 x 10%, and
_ 2
F(x,y) = Vo (—y+x,x+y).

In figures, tables and text we refer to
this synthetic data set as “Synthetic 2”.

3.8 Choosing the number of land-
marks

While including more landmarks generally will
render a better result, this gain in performance
tends to be marginal after a certain number of
landmarks have been included in the analysis.
Hence, we aim to provide means to estimate a
lower bound of the number of landmarks that
should be used when transferring information
to a reference. Below, we describe the steps to
derive this lower bound.

First, we select one representative sample from
our data set and position L landmarks in the
(spatial) domain which the sample inhabits.
Then, landmarks are randomly placed in
the domain using Poisson Disk Sampling,
where the first landmark always is located
at the domain center.[13] We denote the set
of all landmarks as £, this set is considered
as ordered. Next we specify a sequence
(Np = {l1,.Ip}, 11 > 1,1, < L) of the numbers
of landmarks that should be evaluated. Then,
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for each entry /; we randomly choose /; of the
L landmarks, and learn the transfer function
using the representative sample. In this
analysis, the normalized total-UMI count
figures as the feature of interest. For each
number of landmarks /;, we compute the mean
negative marginal log likelihood (nMLL) for
the last T iterations when fitting the model,
and compare the mean values between all
numbers in Np. This process is repeated for
nrep times, which allows us to compute an
average for each element /;. By inspecting
the graph obtained by plotting the average
nMLL values as a function of the number
of landmarks and applying a Savitzky—Golay
filter for smoothing, we let the lower bound
be defined as the number of landmarks where
the average nMLL starts to plateau.

Table [1] shows the estimated lower bounds
together with the actual number of used land-
marks in the analysis, the graphs from which
the lower bounds were determined are shown
in Supplementary Figure In all of our
analyses we aimed to use as many landmarks
as we could confidently identify, with the
requirement that this number should be higher
than the — to each sample — associated lower
bound.

The following parameter values were
used: Np {1,3,5,7,9,11,13,15,17,20},
T = 200, nyep = 5, for the Savitzky-Golay filter
we used the function savgol_filter from the
scipy.signal module (v. 1.7.1) with parameters
window_length=5 and polyorder=4.

3.9 ODE parameter estimation

To estimate the parameters of the ODE system
representing the dynamical model, after the
synthetic data had been transferred to the ref-
erence, we used the BFGS algorithm with a
cost function dependent on the system model
(Equation [TT). First we aggregated the data in
each compartment to get an expression tuple

11

for every time point, that is:

c(t) = (cr(t) e2(t) = (0 ws(t), ) we(®) (12)
seCy se€Cy

Where C; is the set of spots in compartment i,
y. is the transferred expression value at array
point s, and ¢ represents time point f. Next, let
p(.,r; T) represent a function that propagates
the first argument according to the dynamics
given in Equation (11| T steps forward in time
with parameter values r. From this, the cost (C)
for a given set of parameters r takes the form:

=27

Where T is the set of observed time points.
We used the minimize function from scipy’s op-
timization module for the optimization, and
odeint function from the integrate module to
solve the ODE system; with scipy (v. 1.7.1)

3.10 Spatial Arithmetics

Conducting any form of spatial arithmetics is
straightforward once observed data has been
transferred to the same reference. If we let
A(.,.) represent an arbitrary arithmetic oper-
ation, and ygl) denotes transferred data from
sample 7 at location s in the reference, then:

= Ml
gives the expression for the spatial arithmetic
ij)

(14)

calculation, where Q’é
with location s.

is the output associated

3.11 Spatial Differential Expression
Analysis

From the Gaussian Process Regression, we ob-
tain both mean and variance estimates of the
feature values at each location, together these
can be used to perform spatial differential expres-
sion analysis (SDEA) between groups of samples
(e.g., disease vs. control). First, we compute the
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local group mean (i) and variance (¢?) values
for a FOIL, which for any group G and location
s are defined as:

w = ¥ 0@
8€G

(15)

And
(02)(C) = Y w®) (02)(8) 4
geG

Y 0l ()

geG

(Y w®pul&))?
g€G

(16)

Where w(8) denotes the weight that should be
given to sample ¢ when computing the mean,
and } o w(8) =1 if nothing else is stated we
assign equal weights to all samples within the
same group. Next, for each group G and loca-

tion s we construct an interval (IS(G)) according
to:

(G) (G)

(G),Hs

—zZx0 +zx0)%)] 17)
Where z relates to the number of samples that
would fall into the interval if we were to sam-
ple new values from the mixed distribution, if
nothing else is stated we use z = 2. Finally,
we consider the FOI to be to be spatially dif-
ferentially expressed at location s between the
two groups G; and G; if the two intervals Is(Gi)

and IS(Gj ) do not overlap. Evidently, a larger

value of z will require that the two groups are
more distinct in their expression of the FOI to
be considered spatially differentially expressed
at a given location.

3.12 Analysis
3.12.1 Transfer to reference with eggplant

In all analysis steps we used 1000 epochs,
an RQKernel, and the Adam optimizer with
a learning rate of 0.01. The references were
all represented by approximately 1000 array
points, except for the human developmental
heart data where 10000 array points were
used. The number of landmarks used in each
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analysis are listed in I} The landmarks did not
correspond to any “established” anatomical
features but were rather selected based on their
ease of identification from the morphology or
gene expression pattern across the examined
samples.

All references used in our analyses are
found in Supplementary Figure |8 together
with their respective landmark annotation.
The charted observed data is displayed in Sup-
plementary Figure All this information
is also available in the — to this manuscript —
associated GitHub repository.

Data set Lower Used
Bound | Landmarks
Synthetic 1 5 9
MOB 9 14
Mouse Hippocampus 5 6
Human Breast Cancer 5 10
Human Developmental Heart 5 16

Table 1: Landmark lower bounds and number of used
landmarks. The column “Lower bound” gives the esti-
mated lower bound for the number of landmarks to be
used in each data set. The column “Used Landmarks”
lists the number of landmarks actually used in the anal-
ysis. The representative sample (S) from each data set
(D) are given as (D,S): (Synthetic 1, t7), (MOB, Rep1),
(Mouse Hippocampus, Visium), (Human Breast Cancer,
bcA), (Human Developmental Heart, dhA).

3.12.2 Benchmarking and Landmark Influ-
ence

We compared the transfer made by eggplant
with three alternative strategies: “no correc-
tion”, “constant mean”, and thin plate spline
interpolation (TPS). The task designed to mea-
sure performance consisted of trying to trans-
fer distorted data back to its original (ground
truth) distribution in a data set generated ac-
cording to the procedure described in Meth-
ods Section The Root Mean Squared
Value (RMSE) value between the ground truth
and the corrected values was used as a met-
ric to assess performance. In the “no correc-
tion” strategy, the grid values in the distorted
data is immediately compared to the ground
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truth values. This strategy emulates a scenario
where tissue sections would be aligned, but
non-linear distortions not accounted for. In the
“constant mean” approach, we assign all grid
points the same value, being the mean value.
Notably, the expected RMSE value for this ap-
proach is 1 since we applied standard scaling
to the data. Finally, with the TPS method,
the same landmarks as provided to eggplant
were used to correct for the distortion; then ev-
ery grid point in the reference domain was as-
signed the value of its nearest neighbor among
the shifted data points. We compared the
strategies with different number of landmarks
(L € {3,7,11,15,19,23,27,31,35,39}) and re-
peated each comparison 3 times to asses vari-
ance of the outcome. In each iteration, the
landmarks were selected from a set of 40 ran-
dom positions — sampled by the same Poisson
Disc Sampling strategy as referenced above —
in the spatial domain and then distorted by the
same field F as the grid points during genera-
tion of the distorted set. For the TPS strategy
we use the Morphops (v. 0.1.12) package , for
the 2d interpolation we used scipy.interpolate’s
griddata function (v. 1.7.1).

3.12.3 Statistical Tests

In our study we perform a permutation
test to asses whether there’s an asymmetry
between the two different atria (Region 2 and
3) wr.t. COL2A1 expression in the human
developmental heart data set. We favored a
permutation test since our observations violate
the i.i.d. assumption that most statistical tests
rely on. We outline how this test is constructed
below.

For two arbitrary regions A and B, we
let R4 and Rp denote the sets of feature
values associated with the locations contained
within respective region. Without loss of
generality, we here assume that our objective
is to determine whether the expression of
a feature of interest differs between region
A and region B. We define the mean region
difference (A4 p) as the mean of the difference
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in feature value across all combinations of
observations from each set. That is:

Y Tox

e e (18)
|RA’ * ‘RB| XER4 yERp

Ay -y

Our objective is then equivalent to testing
whether the observed mean region difference is
more extreme than what is expected by chance.
To perform this test we shuffle the observations’
region labels and compute the A4 g value for
each permutation. We then compute the p-
value as:

_ 1 Mperm perm,i obs
P1= e Lt A[Ay g < A
1 Mperm perm,i obs
P2 = mem L H[AA,B > AA,B} (19

Pval = 2 X min(plr PZ)

Where I is the indicator function. If py, < «,
the difference in expression between the two
regions is considered statistically significant.
Here « is the significance level, and the test is
two-sided in its character. In our analysis of the
COL2A1 right-left asymmetry, we let &« = 0.05
and ran 1000 permutations.[14] The test was
applied to the composite representation of the
COL2A1 expression.

3.12.4 Single cell mapping with stereoscope

For the stereoscope (v. 0.3.1) analysis we used
the major cell type tier found in the single cell
data, only including cells from HER2-positive
patients. Cell types with less than 25 members
were excluded, for cell types with more than
500 members, a subset consisting of 500 cells
were randomly sampled from these. We also
used a curated list of genes in the analysis con-
sisting of 5540 members, representing a union
of the 5000 highest expressed genes and cell
type specific marker genes, see Supplementary
Data 13 in [15]. We used 50000 epochs and a
batch size of 2048 for the single cell parameter
estimation as well as the proportion inference.
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