

1 YAP1 Activation by Human Papillomavirus E7 Promotes Basal Cell Identity in Squamous Epithelia

2

3 Joshua Hatterschide¹, Paola Castagnino¹, Hee Won Kim¹, Steven M. Sperry², Kathleen T.

4 Montone³, Devraj Basu¹, Elizabeth A. White^{1*}

5

6 ¹Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania

7 Perelman School of Medicine, Philadelphia, PA, USA

8

9 ²Current address: Department of Otolaryngology-Head and Neck Surgery, Aurora St. Luke's

10 Medical Center, Milwaukee, Wisconsin, U.S.A.

11

12 ³Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School

13 of Medicine, Philadelphia, PA, USA

14

15 * Correspondence: Elizabeth A. White, eawhite@pennmedicine.upenn.edu

16

17 **Abstract**

18 Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes
19 nearly five percent of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few
20 mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same
21 anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo
22 pathway and activates the Hippo effector YAP1. The HPV E7 oncoprotein is required for HPV
23 infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV
24 oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in
25 basal epithelial cells. YAP1 activation by HPV E7 required that E7 bind and degrade the tumor
26 suppressor PTPN14. E7 required YAP1 transcriptional activity to extend the lifespan of primary
27 keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining
28 infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1
29 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified
30 epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential,
31 targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis.

32 **Introduction**

33 Human papillomaviruses (HPV) are non-enveloped viruses with circular double-stranded DNA
34 genomes that infect keratinocytes in stratified squamous epithelia (Doorbar et al., 2015; Graham,
35 2017; McBride, 2017). Although most HPV infections are cleared by the immune system, some
36 infections persist and form higher grade lesions that can lead to cancer (Koshiol et al., 2008;
37 McBride, 2021; Radley et al., 2016; Rositch et al., 2013). HPV infection at mucosal epithelial sites
38 causes cancers including oropharyngeal, cervical, vaginal, penile, and anal malignancies (de
39 Martel et al., 2017; Gillison et al., 2015). Nearly 5% of human cancer cases are caused by
40 persistent infection with one of the high-risk (oncogenic) human papillomavirus genotypes (de
41 Martel et al., 2020).

42 Inactivation of host cell tumor suppressors by the high-risk HPV E6 and E7 oncoproteins
43 modulates cellular processes that enable HPV persistence. Two well-characterized instances of
44 tumor suppressor inactivation by HPV are high-risk HPV E6 proteins targeting p53 for
45 proteasome-mediated degradation and high-risk HPV E7 proteins binding and degrading the
46 retinoblastoma protein (RB1) (Heck et al., 1992; Münger et al., 1989; Scheffner et al., 1990;
47 Seavey et al., 1999; Werness et al., 1990). Both p53 degradation and RB1 inactivation are
48 required for productive HPV infection (Collins et al., 2005; Flores et al., 2000; Kho et al., 2013;
49 McLaughlin-Drubin et al., 2005; Wang et al., 2009). In addition to supporting productive infection,
50 E7 is essential for HPV-mediated carcinogenesis (Mirabello et al., 2017). The impact of the HPV
51 oncoproteins on cell growth control pathways is reflected in human cancer genomic data: genes
52 in the p53 pathway and in the RB1-related cell cycle pathway are frequently mutated in HPV-
53 negative head and neck squamous cell carcinoma (HNSCC) but infrequently mutated in HPV-
54 positive HNSCC (Sanchez-Vega et al., 2018).

55 Although some of the growth-promoting activities of high-risk HPV E6 and E7 are well
56 established, open questions remain. RB1 binding/degradation by high-risk HPV E7 is necessary
57 but insufficient for E7 transforming activity (Balsitis et al., 2006, 2005; Banks et al., 1990; Ciccolini

58 et al., 1994; Helt and Galloway, 2002; Huh et al., 2005; Ibaraki et al., 1993; Jewers et al., 1992;
59 Phelps et al., 1992; Strati and Lambert, 2007; White et al., 2015). Papillomavirus researchers
60 have sought to identify one or more activities of HPV E7 that cooperate with RB1 inactivation to
61 promote carcinogenesis and to identify the cellular pathway affected by such an activity. Human
62 cancer genomic data indicates that like the p53 and cell cycle pathways, the Hippo signaling
63 pathway is more frequently mutated in HPV-negative than in HPV-positive HNSCC. The core
64 Hippo pathway consists of a kinase cascade upstream of the effector proteins Yes-Associated
65 Protein (YAP1) and its parologue TAZ. When the Hippo kinases are inactive, YAP1 and TAZ are
66 activated and translocate to the nucleus. In stratified squamous epithelia YAP1 is primarily
67 expressed in the basal layer, where YAP1 activation is regulated by contextual cues including cell
68 density, tension in the extracellular matrix, and contact with the basement membrane (Elbediwy
69 et al., 2016; Totaro et al., 2017; Zhang et al., 2011). In normal stratified squamous epithelia,
70 activation of YAP1 and TAZ promotes expansion of the basal cell compartment, and inhibition of
71 YAP1 and TAZ allows keratinocytes to differentiate (Beverdam et al., 2013; Elbediwy and
72 Thompson, 2018; Schlegelmilch et al., 2011; Totaro et al., 2017; Yuan et al., 2020; Zhang et al.,
73 2011). Mutations in many of the tumor suppressors upstream of YAP1/TAZ are common in a
74 variety of cancer types (Moroishi et al., 2015).

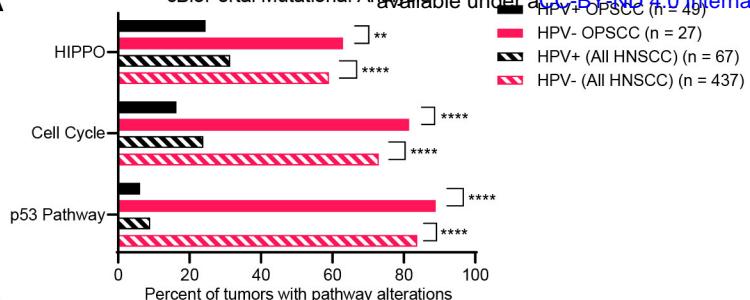
75 Non-receptor protein tyrosine phosphatase 14 (PTPN14) has been implicated as a tumor
76 suppressor and negative regulator of YAP1 (Knight et al., 2018; Mello et al., 2017; Poernbacher
77 et al., 2012; Wang et al., 2012). Diverse HPV E7 bind directly to PTPN14 and recruit the E3 ligase
78 UBR4 to direct PTPN14 for proteasome-mediated degradation (Szalmás et al., 2017; White et al.,
79 2016, 2012b; Yun et al., 2019). We have shown that PTPN14 degradation and RB1
80 binding/degradation are separable activities of HPV E7 that each contribute to E7 carcinogenic
81 activity (Hatterschide et al., 2020, 2019; White et al., 2016). However, the downstream
82 consequences of PTPN14 degradation are poorly understood, and so far we have not observed

83 that PTPN14 inactivation in human keratinocytes causes an increase in canonical YAP1 target
84 genes *CTGF* and *CYR61*.

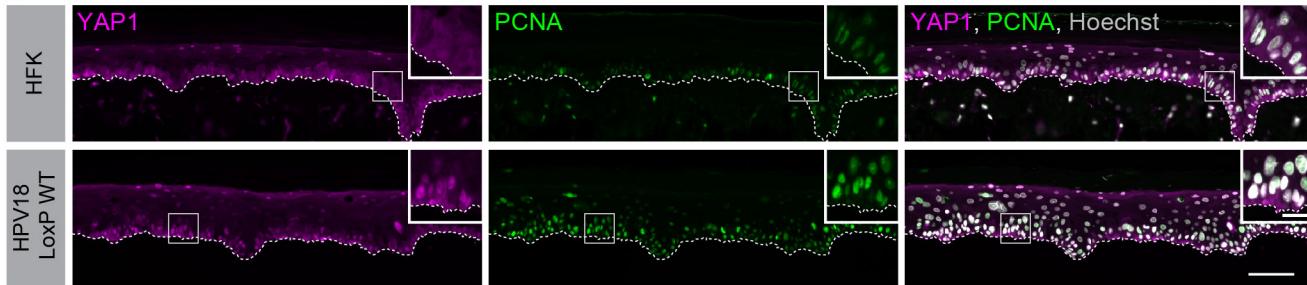
85 These observations regarding an additional transforming activity of HPV E7, the ability of
86 E7 to inactivate PTPN14, and the relative paucity of mutations in the Hippo pathway in HPV-
87 positive HNSCC led us to hypothesize that HPV E7-mediated activation of YAP1 is required for
88 the transforming activity of high-risk HPV E7. Here we show that expression of high-risk HPV E7
89 is sufficient to activate YAP1 and that HPV E7 requires YAP1/TAZ-TEAD transcriptional activity
90 to promote cell growth. We demonstrate that HPV E7 must bind PTPN14 to activate YAP1 and
91 that PTPN14 inactivation alone is sufficient to activate YAP1. YAP1 activation by HPV E7 is
92 restricted to the basal layer of the epithelium where we found *PTPN14* expression to be enriched.

93 Our finding that either HPV E7 or PTPN14 loss activate YAP1 specifically in basal
94 epithelial cells led us to investigate the role of YAP1 activation during normal HPV infection. HPV
95 infection begins in basal epithelial keratinocytes (Day and Schelhaas, 2014; Pyeon et al., 2009;
96 Roberts et al., 2007) and infected basal cells are the site of persistent HPV infection. The basal
97 cell compartment contains the only long-lived cells in the epithelium and the HPV genome can be
98 maintained in dividing basal cells without productive replication (Egawa et al., 2012; Parish et al.,
99 2006; You et al., 2004). Activation of YAP1 and TAZ has been proposed to maintain the progenitor
100 cell state in several different epithelia (Beverdam et al., 2013; Heng et al., 2020; Hicks-Berthet et
101 al., 2021; Szymaniak et al., 2015; Yimlamai et al., 2014; Zhao et al., 2014). If YAP1 activation by
102 E7 promotes the maintenance of a basal cell state in stratified squamous epithelia, YAP1
103 activation could facilitate the persistence of HPV-positive cells. Testing this hypothesis, we found
104 that YAP1 activation and PTPN14 degradation by E7 both promote the maintenance of cells in
105 the basal compartment of stratified epithelia. We propose that YAP1 activation facilitates HPV
106 persistence and contributes to the carcinogenic activity of high-risk HPV E7.

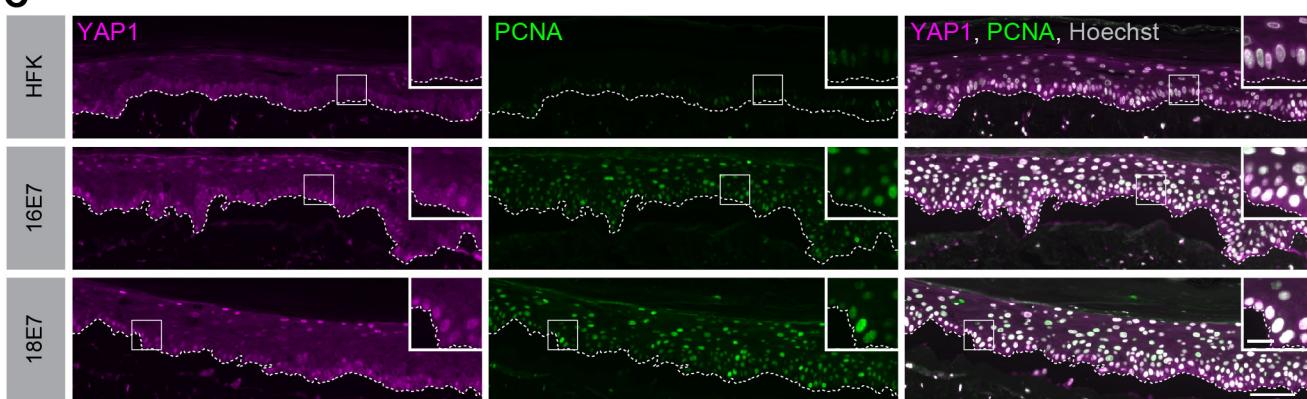
107

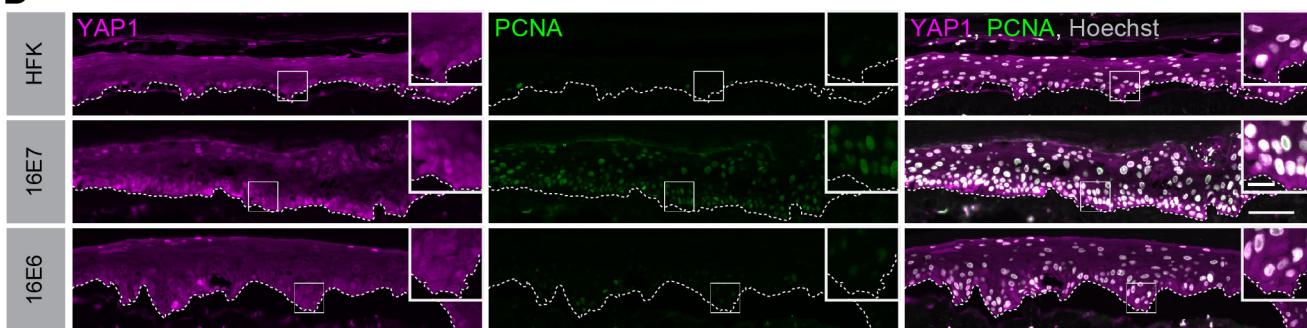

108 **Results**

109 **HPV E7 activates YAP1 in basal keratinocytes**


110 A comprehensive analysis of somatic mutations and copy number variations in human tumor
111 samples revealed that the cell cycle, p53, and Hippo pathways are the three pathways that exhibit
112 the greatest difference in alteration frequency in HPV-negative vs HPV-positive HNSCC
113 (Sanchez-Vega et al., 2018). We used data made available by The Cancer Genome Atlas (TCGA)
114 through cBioPortal (Lawrence et al., 2015) to recapitulate the finding that genes in these pathways
115 are altered at a lower frequency in HPV-positive than in HPV-negative HNSCC ([Figure 1A](#) and
116 [Figure 1—figure supplement 1](#)). However, most HPV-positive HNSCC arise in the oropharynx.
117 We repeated the analysis of pathway alteration rates using data only from HPV-positive and HPV-
118 negative oropharyngeal squamous cell carcinomas (OPSCC) ([Figure 1A](#) and [Figure 1—figure](#)
119 [supplement 1](#)). Consistent with previous findings, HPV-negative OPSCC were more frequently
120 altered in the p53, cell cycle, and Hippo pathways than HPV-positive OPSCC. Many of the Hippo
121 pathway alterations in HPV-negative HNSCC or OPSCC are amplification of the YAP1/TAZ
122 oncogenes or inactivating mutation in an upstream inhibitor of YAP1/TAZ. Either alteration type
123 is consistent with a carcinogenic role for YAP1 activation in HNSCC.

124 To test whether an HPV-encoded protein activates YAP1, we grew three dimensional (3D)
125 organotypic epithelial cultures to model the differentiation of keratinocytes into basal and
126 suprabasal compartments. Organotypic cultures of primary human foreskin keratinocytes (HFK)
127 harboring an HPV18 genome exhibited increased YAP1 staining and increased YAP1 nuclear
128 localization, indicative of YAP1 activation, particularly in the basal layer of the epithelium,
129 compared to HFK cultures ([Figure 1B](#) and [Figure 1—figure supplement 2A,B](#)). Proliferating cell
130 nuclear antigen (PCNA) transcription increases upon RB1 inactivation and is a marker of HPV E7
131 expression. In contrast to the basal layer-specific compartmentalization of YAP1 activation in the
132 HPV18 genome containing cells, PCNA levels were increased in these cultures in both the basal
133 and suprabasal layers of the epithelium.


A

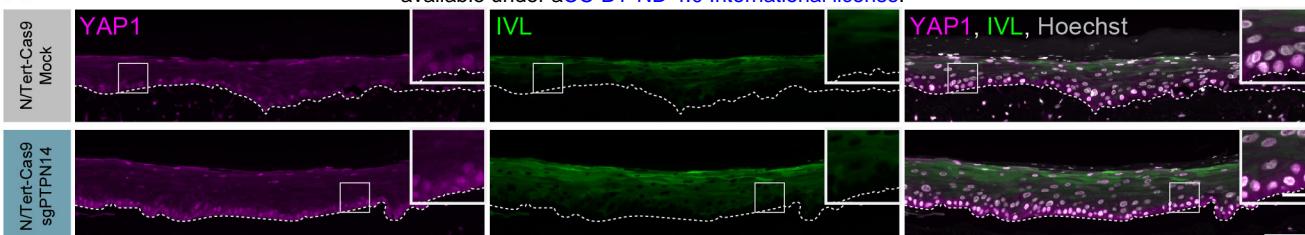

B

C

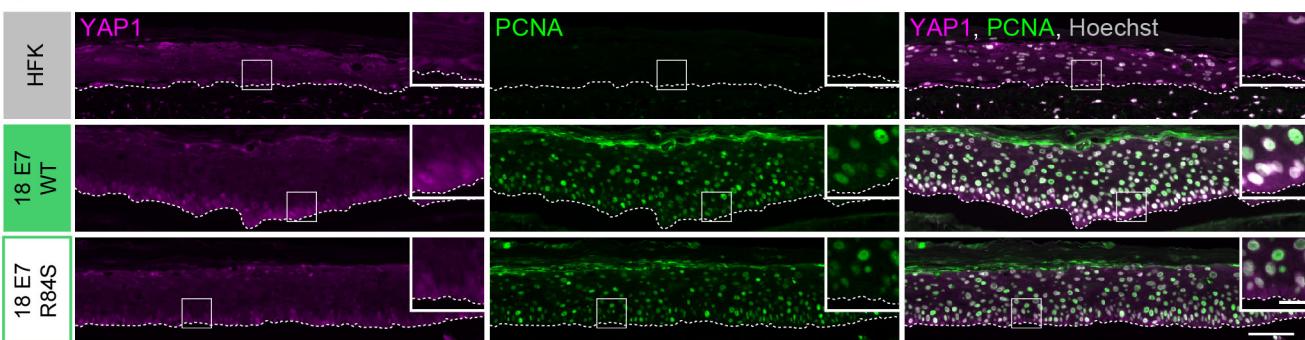
D

Figure 1 | HPV E7 activates YAP1 in basal epithelial keratinocytes. (A) cBioPortal analysis for total genomic mutations and copy number alterations in HPV+/- OPSCC and HNSCC. Graph displays the percent of tumors with alterations in each pathway. Statistical significance was determined by Fisher's exact test. (B-D) Organotypic cultures were grown from primary HFK, HFK harboring the HPV18 genome, or HFK transduced with retroviral expression encoding HPV E6 or E7 proteins. FFPE sections of cultures grown from (C) HFK or HFK harboring the HPV18 genome, (D) HFK or HFK expressing HPV16 E7 or HPV18 E7, or (E) HFK or HFK expressing HPV16 E6 or HPV16 E7 were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray). White dashed lines indicate the basement membrane. White boxes indicate the location of insets in main images. Main image scale bars = 100 μ m. Inset scale bars = 25 μ m.

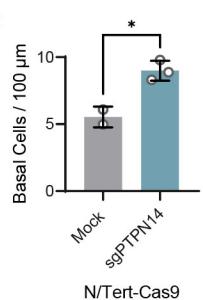
134 We next tested whether high-risk HPV E6 or E7 alone was sufficient to activate YAP1.
135 HFK transduced with retroviral expression vectors encoding HPV16 E6, HPV16 E7, or HPV18 E7
136 were used to grow organotypic cultures. YAP1 expression and nuclear localization were
137 increased in the HPV16 E7 and HPV18 E7 expressing cells relative to parental HFK cells (Figure
138 [1C](#) and [Figure 1—figure supplement 3A-C](#)). As in the HPV18 genome-containing cells, YAP1
139 activation was restricted to the basal epithelial layer. YAP1 expression or nuclear localization did
140 not increase in organotypic cultures of HPV16 E6 expressing cells ([Figure 1D](#) and [Figure 1—](#)
141 [figure supplement 4](#)). Constitutive expression of either HPV16 E7 or HPV18 E7 induced PCNA
142 expression in basal and suprabasal cells. We conclude that HPV promotes increased YAP1
143 expression and nuclear localization in basal keratinocytes and that E7 is sufficient for YAP1
144 activation.

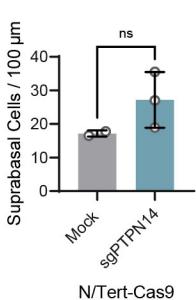

145

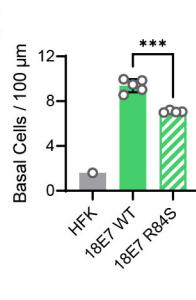
146 **HPV E7 activates YAP1 in keratinocytes through PTPN14 degradation**

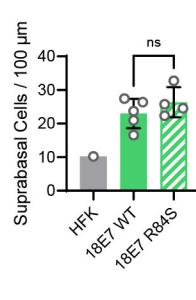

147 We previously discovered that HPV E7 targets the YAP1 inhibitor PTPN14 for proteasome-
148 mediated degradation (White et al., 2016, 2012b). We tested whether loss of PTPN14 expression
149 in keratinocytes was sufficient to activate YAP1 in stratified epithelia by growing 3D organotypic
150 cultures from previously described control and PTPN14 knockout (KO) N/Tert-Cas9 keratinocytes
151 (Hatterschide et al., 2019). We found that YAP1 levels and YAP1 nuclear localization were
152 increased in PTPN14 KO cultures compared to controls ([Figure 2A](#) and [Figure 2—figure](#)
153 [supplement 1A-C](#)). YAP1 activation in basal epithelial cells lacking PTPN14 was comparable to
154 YAP1 activation in HPV E7 cells. We conclude that loss of PTPN14 expression activates YAP1
155 in basal keratinocytes.

156 A highly conserved C-terminal arginine in E7 makes a direct interaction with the C-
157 terminus of PTPN14, and the HPV18 E7 R84S variant is unable to bind or degrade PTPN14
158 (Hatterschide et al., 2020; Yun et al., 2019). To test whether PTPN14 degradation by HPV E7 is
159 required for activation of YAP1, we grew 3D organotypic cultures using primary HFK transduced


A


B


C

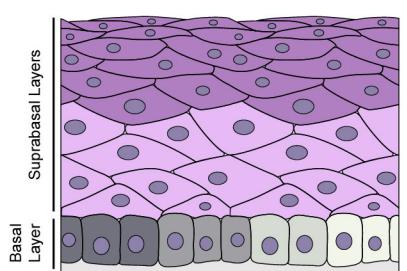

D

E

F

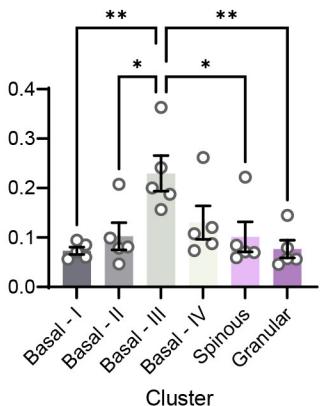
Figure 2 | HPV E7 activates YAP1 in basal keratinocytes through PTPN14 degradation. Organotypic cultures were grown from N/Tert-Cas9 keratinocytes or primary HFK transduced with retroviral expression vectors encoding HPV18 E7 WT or R84S. (A) FFPE sections of cultures grown from mock or sgPTPN14 transfected N/Tert-Cas9 keratinocytes were stained for YAP1 (magenta), IVL (green), and Hoechst (Gray). (B) FFPE sections of cultures grown from parental HFK, HPV18 E7 WT or HPV18 E7 R84S expressing HFK were stained for YAP1 (magenta), PCNA (green), and Hoechst (Gray). White dashed lines indicate the basement membrane. White boxes indicate the location of insets in main images. Main image scale bars = 100 μm. Inset scale bars = 25 μm. (C-F) Quantification of the number of (C and E) basal cells and (D and F) suprabasal cells per 100 μm of epidermis. Graphs display the mean ± SD and each individual data point (independent cultures). Statistical significance was determined by ANOVA (*p<0.05, ***p<0.001).

160 with retroviral expression vectors encoding HPV18 E7 wild type (WT) or HPV18 E7 R84S. Indeed,
161 YAP1 expression and nuclear localization in the basal layer of HPV18 E7 R84S cultures were
162 reduced compared to HPV18 E7 WT controls (Figure 2B and Figure 2—figure supplement 2).


163 In addition to activating YAP1, PTPN14 loss increased basal cell density from an average
164 of 5.5 cells per 100 μ m in control cultures to 9.0 cells per 100 μ m in PTPN14 KO cultures (Figure
165 2C). Basal cell density was higher in HPV18 E7 WT cultures (9.4 cells per 100 μ m) than in HPV18
166 E7 R84S cultures (to 7.1 cells per 100 μ m) (Figure 2E). No statistically significant difference in
167 suprabasal cell density was observed in either comparison (Figure 2D,F). We conclude that E7
168 expression or PTPN14 loss in stratified squamous epithelia is sufficient to activate YAP1 in the
169 basal layer of the epithelium and increase basal cell density.

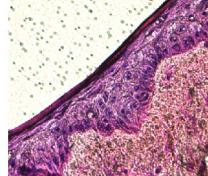
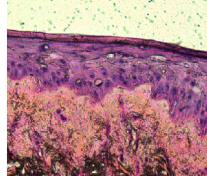
170

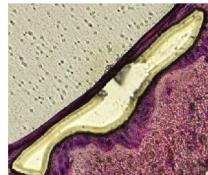
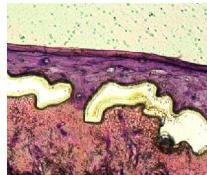
171 **PTPN14 expression is enriched in basal keratinocytes**


172 YAP1 activation was restricted to basal epithelial cells in our organotypic cultures leading us to
173 hypothesize that PTPN14 may act as a basal layer specific inhibitor of YAP1. We therefore sought
174 to determine whether *PTPN14* expression is restricted to a specific subset of cells in the stratified
175 epithelium. In a recent single cell-RNA seq analysis of human neonatal foreskin epidermis,
176 *PTPN14* mRNA expression was enriched in the basal-III cluster, a subset of basal cells predicted
177 to differentiate directly into spinous cells (Figure 3A,B) (S. Wang et al., 2020). *PTPN14* expression
178 was higher in basal-III cells than in the spinous or granular cell clusters. To test whether *PTPN14*
179 expression is higher in basal or suprabasal cells in our cultures, we used laser capture
180 microdissection to isolate basal and suprabasal layers from 3D organotypic cultures grown from
181 unmodified primary HFK (Figure 3C). We found that there was a ~5-fold enrichment of *PTPN14*
182 mRNA in the basal epithelial layer compared to the suprabasal layers (Figure 3D). As expected,
183 the basal integrins *ITGA6* and *ITGB4* were expressed in the basal layer (Figure 3E) and the
184 differentiation markers *KRT1* and *IVL* were expressed in the suprabasal layers (Figure 3F). The
185 same pattern of *PTPN14* mRNA expression was observed in an organotypic culture grown from

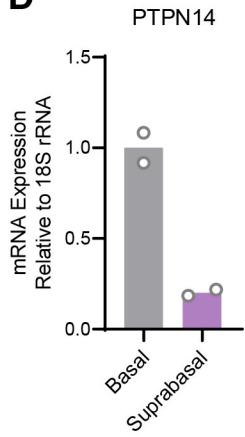
A

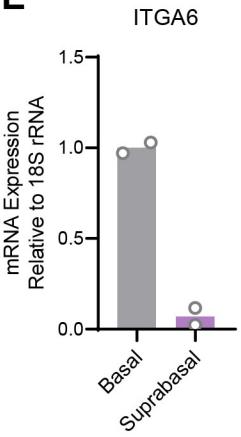
Basal I
Basal II
Basal III
Basal IV
Spinous
Granular

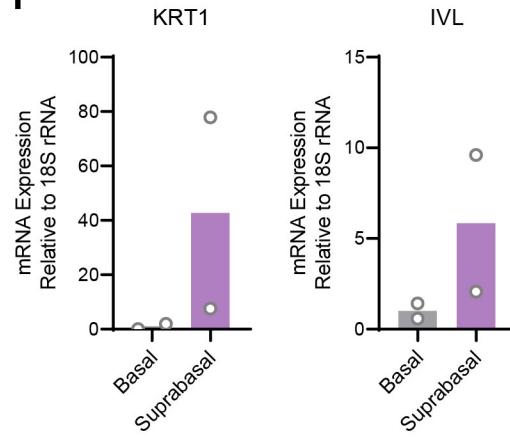


Mean of Mean mRNA Expression in Cluster for 5 Donors (Wang et al.; Single Cell RNA-seq)



Basal

Suprabasal

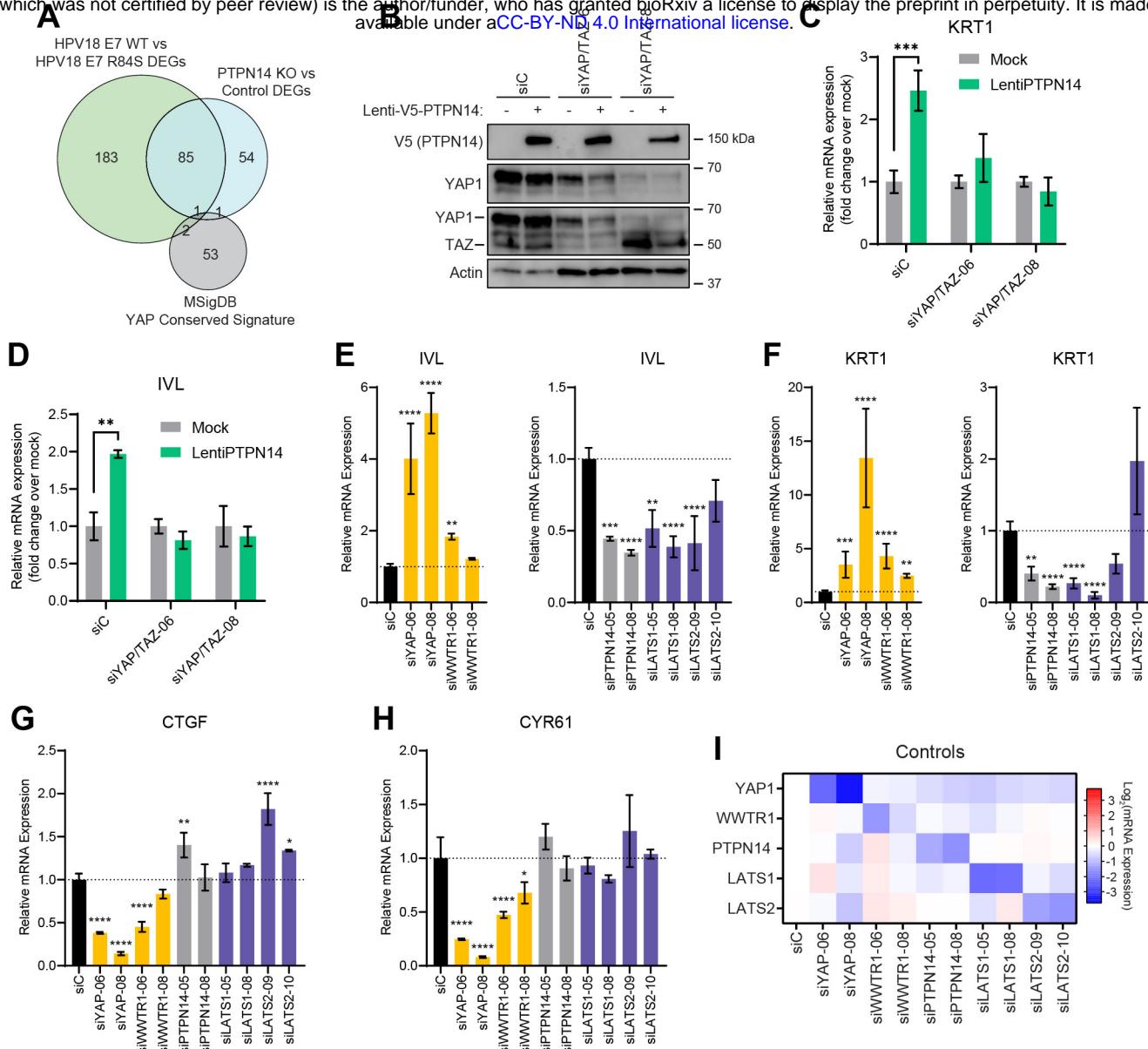

Uncut


Cut


D

E

F

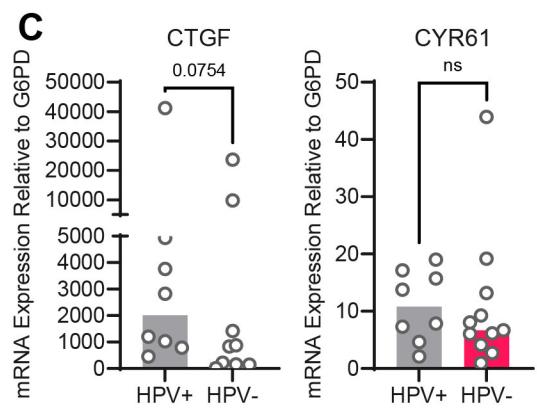
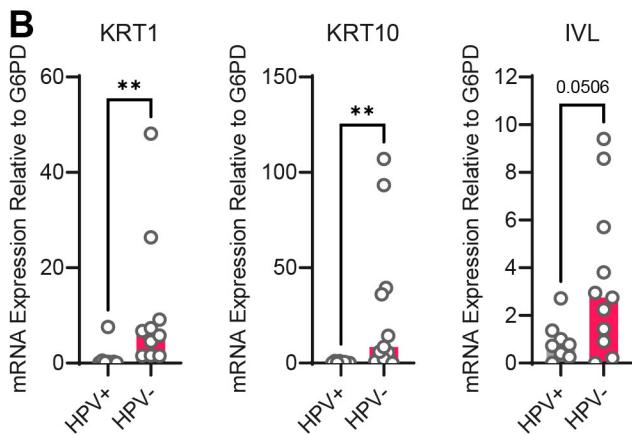
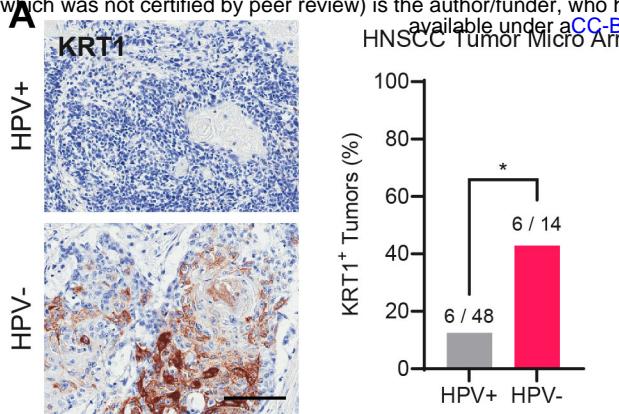

Figure 3 | PTPN14 expression is enriched in basal keratinocytes. (A-B) Single-cell RNA sequencing data and clustering analysis from Wang et al. was reanalyzed to assess PTPN14 expression in different subsets of epidermal cells. (A) Diagram of epidermis; shading depicts tissue localization of cell clusters. (B) For each donor, the mean of PTPN14 mRNA expression was calculated for each cell cluster. Graphs display the mean of PTPN14 mRNA expression for each donor (circles) as well as the mean of all five donors \pm SEM (bars and error bars). Statistical significance was determined by ANOVA (* p <0.05, ** p <0.01). (C-F) Basal and suprabasal layers from organotypic cultures were dissected using laser capture microdissection. (C) Representative images of HFK cultures before and after individual laser dissections. Hundreds of such cuts were performed per sample. (D-F) RNA was purified from isolated layers and qRT-PCR was used to assess the expression of PTPN14 (D), basal cell markers ITGA6 and ITGB4 (E), and differentiation markers KRT1 and IVL (F). Graphs display the mean and each individual data point.

186 primary HFK expressing HPV18 E7 WT ([Figure 3—figure supplement 1A-C](#)). We conclude that
187 *PTPN14* mRNA is enriched in basal keratinocytes in the presence or absence of HPV E7. Our
188 data support that *PTPN14* acts as a YAP1 inhibitor specifically in the basal compartment of
189 stratified epithelia.

190

191 **YAP1/TAZ regulate differentiation downstream of PTPN14**

192 In previous unbiased experiments we found that the primary effect of *PTPN14* inactivation on
193 transcription is to repress epithelial differentiation gene expression (Hatterschide et al., 2020,
194 2019). However, we also observed that *PTPN14* inactivation did not increase expression of the
195 canonical YAP1/TAZ targets *CTGF* and *CYR61*. Consistent with this difference there was minimal
196 overlap between *PTPN14*-dependent differentially expressed genes and the genes listed in the
197 MSigDB conserved YAP1 signature ([Figure 4A](#)). We therefore asked whether the ability of
198 *PTPN14* to regulate differentiation gene expression requires YAP1/TAZ as intermediates.
199 Transduction of keratinocytes with a *PTPN14* lentivirus induced the expression of the
200 differentiation markers *KRT10* and *IVL* in a dose-dependent manner ([Figure 4—figure supplement](#)
201 [1A-C](#)). To test whether *PTPN14* required YAP1/TAZ to increase *KRT1* and *IVL*, we transfected
202 HFK with siRNAs targeting *YAP1* and *WWTR1* then transduced the cells with *PTPN14* lentivirus
203 ([Figure 4B](#)). HFK transfected with control siRNA exhibited the expected increase in *KRT1* and
204 *IVL* after transduction with *PTPN14* lentivirus ([Figure 4C,D](#) and [Figure 4—figure supplement](#)
205 [2A,B](#)). However, keratinocytes depleted of YAP1/TAZ did not express relatively more *KRT1* or
206 *IVL* when *PTPN14* was overexpressed than when it was not. We conclude that *PTPN14* requires
207 YAP1 and/or TAZ to regulate differentiation gene expression in keratinocytes. Both pairs of
208 YAP1/TAZ siRNA had the same effect on differentiation in response to *PTPN14* overexpression
209 yet only one pair efficiently depleted TAZ protein levels ([Figure 4B](#)), leading us to speculate that
210 YAP1 is the key intermediate connecting *PTPN14* levels to differentiation gene expression.

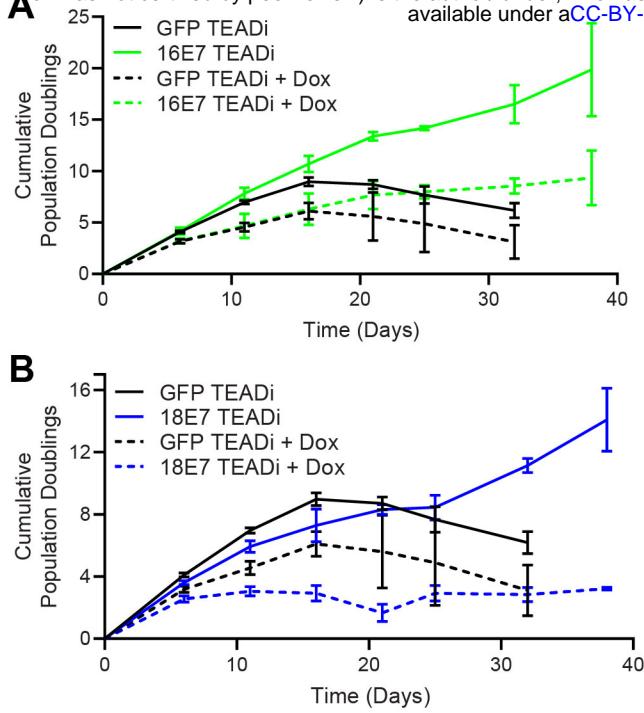



Figure 4 | YAP1/TAZ regulate differentiation downstream of PTPN14. (A) Venn diagram comparing the MSigDB YAP conserved signature to the differentially expressed genes (DEG) from our two published experiments that reflect PTPN14 loss in keratinocytes. (B-D) YAP1 and WWTR1 were simultaneously knocked down by siRNA transfection in HFK. Transfected HFK were then transduced with PTPN14 lentivirus at 24h post transfection. Cells were lysed for protein and total cellular RNA at 72h post transfection. (B) Cell lysates were subjected to SDS/PAGE/Western analysis and probed with antibodies to PTPN14, YAP1, TAZ, and Actin. (C and D) qRT-PCR was used to measure the expression of the differentiation markers KRT1 and IVL relative to G6PD. Graphs display fold change in gene expression relative to the mock transduced cells. (E-I) Primary HFK were transfected with siRNAs targeting YAP1, WWTR1 (TAZ), PTPN14, LATS1, and LATS2. Two siRNAs were used per target. qRT-PCR was used to measure gene expression for: the differentiation markers IVL (E) and KRT1 (F), and the canonical YAP1/TAZ targets CTGF (G) and CYR61 (H). Data confirming that individual siRNA transfections depleted intended transcripts is summarized in a heatmap of log2(fold-change) levels (I). Bar graphs display the mean \pm SD of three independent replicates. Statistical significance was determined by ANOVA (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

211 Next, we tested whether repression of keratinocyte differentiation occurs upon loss of
212 LATS1 and LATS2, the core Hippo pathway kinases that phosphorylate and inhibit YAP1 and
213 TAZ. We used siRNAs to deplete *PTPN14*, *LATS1*, or *LATS2* and measured the expression of
214 the differentiation markers *KRT1* and *IVL* (Figure 4E,F). Depletion of *PTPN14*, *LATS1*, or *LATS2*
215 all decreased differentiation gene expression to a similar degree. Consistent with our previous
216 experiments, none of the three knockdowns significantly affected the levels of *CTGF* or *CYR61*
217 (Figure 4G-H). Direct depletion of *YAP1* or *WWTR1* affected both differentiation gene expression
218 and *CTGF/CYR61* levels. *YAP1* knockdown always had a stronger effect than did *WWTR1*
219 knockdown and our qRT-PCR analyses supported that *WWTR1* transcript levels were low in HFK.
220 This result shows that inactivation of three different YAP1 inhibitors dampens differentiation gene
221 expression and does not increase canonical YAP1 target gene expression in keratinocytes. Taken
222 together, these data support that *PTPN14* promotes differentiation through inhibition of YAP1/TAZ
223 despite not affecting canonical YAP1/TAZ target genes.

224

225 **HPV-positive HNSCC are less differentiated than HPV-negative HNSCC**

226 We next asked whether the gene expression pattern observed downstream of *PTPN14* loss is
227 reflected in HPV-positive cancers. HPV-positive HNSCC have a strong propensity toward poorly
228 differentiated, basaloid histology (Mendelsohn et al., 2010; Pai and Westra, 2009), which is
229 reflected in their transcriptional profile (Hatterschide et al., 2019). We confirmed the relationship
230 between HPV positivity and greater impairment of differentiation by immunohistochemical
231 analysis of the differentiation marker *KRT1* in sections of 14 HPV-negative tumors and 48 HPV-
232 positive tumors (Figure 5A). 43% of HPV-negative tumors and 12.5% of HPV-positive tumors
233 stained positive for *KRT1*. We additionally measured gene expression in patient-derived xenograft
234 (PDX) models generated from human HNSCC. We measured *KRT1*, *KRT10*, and *IVL* levels using
235 RNA extracted from 11 HPV-negative and 8 HPV-positive HNSCC PDX. Each differentiation
236 marker was expressed at a markedly lower level in HPV-positive PDX than in HPV-negative PDX


Figure 5 | HPV-positive HNSCC are less differentiated than HPV-negative HNSCC. (A) Human HNSCC tumor samples were stained for KRT1 (left). Scale bar = 100 μ m. Graph displays the percentage of tumors that were KRT1+ (right). Statistical significance was determined by Fisher's exact test. (B-C) Total RNA was purified from PDX samples and qRT-PCR was used to assess gene expression of (B) the differentiation markers KRT1, KRT10, and IVL and (C) the canonical YAP1/TAZ targets CTGF and CYR61. Statistical significance was determined by Mann-Whitney nonparametric test. (* p <0.05, ** p <0.01, **** p <0.0001).

237 (Figure 5B). We observed the same pattern of differentiation marker gene expression in an
238 analysis of transcriptomic data from other cohorts (Figure 5—figure supplement 1A-C) (Lawrence
239 et al., 2015). Having confirmed that HPV-positive HNSCC exhibit reduced expression of
240 differentiation markers than do HPV-negative HNSCC, we measured *CTGF* and *CYR61* levels.
241 We found no significant difference in expression of these canonical YAP1/TAZ target genes in
242 HPV-positive vs HPV-negative PDX, although there was a trend towards higher *CTGF* in the HPV-
243 positive PDX (Figure 5C and Figure 5—figure supplement 1D,E). The pattern of low expression
244 of differentiation markers and unchanged canonical YAP1/TAZ target gene expression in HPV-
245 positive versus HPV-negative patient samples is consistent with the effects of PTPN14
246 inactivation in cultured cells.

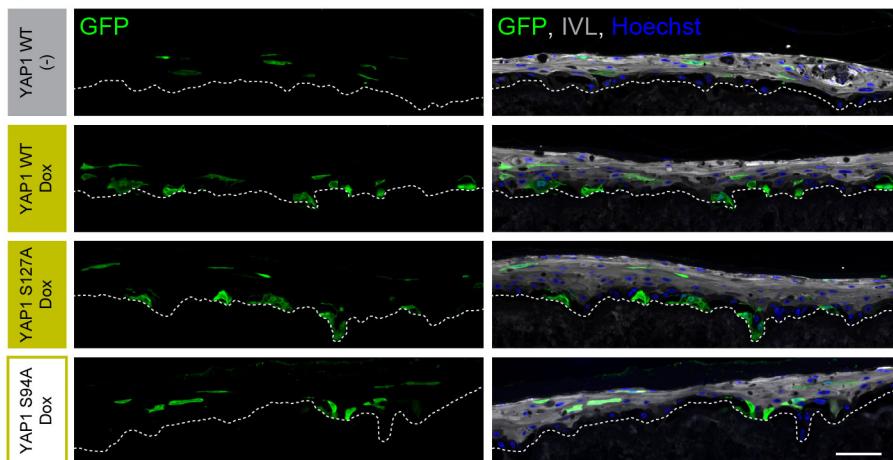
247

248 **High-risk HPV E7 require YAP1/TAZ-TEAD transcriptional activity to extend the lifespan of
249 primary keratinocytes.**

250 High-risk but not low-risk HPV E7 proteins can extend the lifespan of primary keratinocytes
251 (Halbert et al., 1991). The TEADi protein is a genetically encoded competitive inhibitor that
252 prevents binding between YAP1/TAZ and TEAD transcription factors (Yuan et al., 2020). We used
253 TEADi to test whether YAP1/TAZ-TEAD transcriptional activity was required for high-risk HPV E7
254 to extend the lifespan of primary HFK. We transduced HFK with retroviral vectors encoding GFP,
255 HPV16 E7, or HPV18 E7 plus a lentiviral vector encoding doxycycline-inducible GFP-TEADi. As
256 anticipated, HPV16 E7 or HPV18 E7 extended the lifespan of primary HFK based on cumulative
257 population doublings (Figures 6A,B). TEADi induction upon doxycycline treatment decreased the
258 lifespan of primary HFK in the presence or absence of E7, but the effect of YAP1/TAZ-TEAD
259 inhibition was greater in the HPV16 E7 and HPV18 E7 cells, where E7 had minimal ability to
260 promote growth in the presence of TEADi. We conclude that high-risk HPV E7 proteins require
261 YAP1/TAZ-TEAD transcriptional activity for their lifespan extending capacity in primary
262 keratinocytes.

Figure 6 | High-risk HPV E7 requires YAP1/TAZ-TEAD transcriptional activity to extend the lifespan of primary keratinocytes. Primary HFK were transduced with retroviruses encoding HPV16 E7, HPV18 E7, or GFP, plus pInducer20 TEADI lentivirus. Each cell population was cultured with or without 1 μ g/mL doxycycline in the media for 38 days and population doublings were tracked with each passage. Graph displays the mean \pm SD of two independently transduced cell populations per condition.

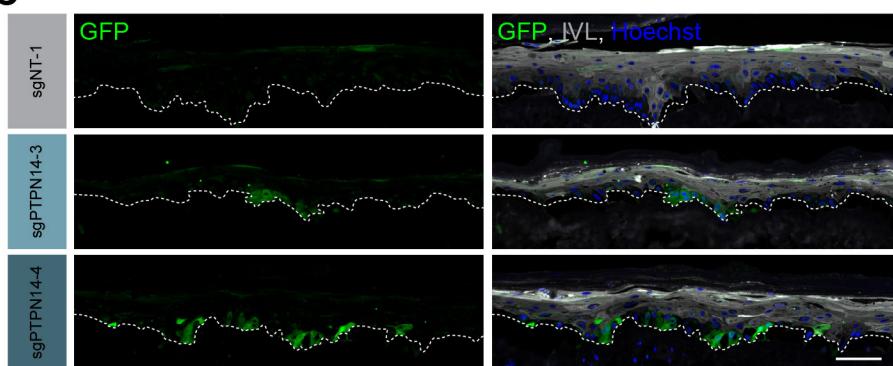
263

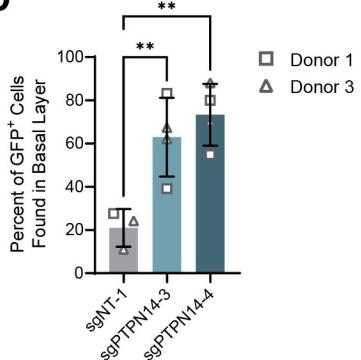

264 **PTPN14 loss and YAP1 activation promote basal cell retention in organotypic cultures**

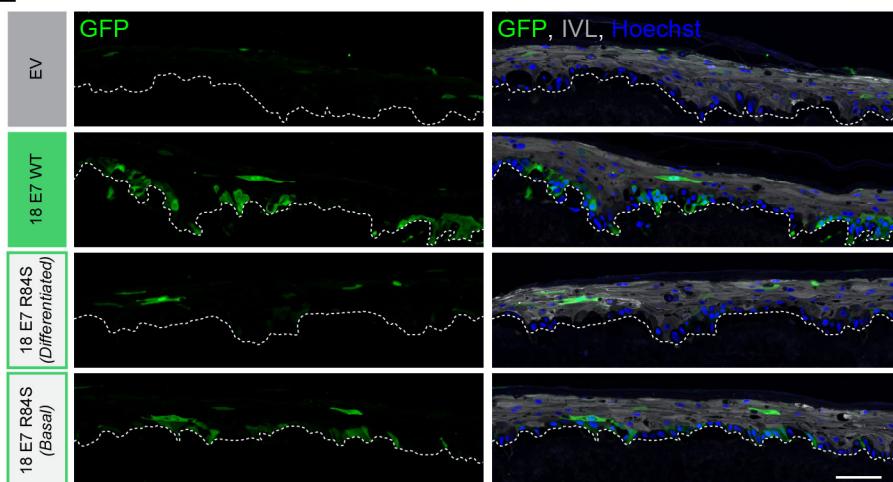
265 YAP1 overexpression impairs differentiation and promotes progenitor cell identity in squamous
266 and non-squamous epithelia. HPV infection is maintained in a reservoir of infected basal cells and
267 productive virus replication begins upon commitment to differentiation. To better understand how
268 repression of differentiation downstream of YAP1 activation affects HPV viral biology, we
269 developed an assay to measure cell retention in the basal epithelial layer. We hypothesized that
270 YAP1 activation by HPV E7 might promote the adoption of a basal cell identity in stratified
271 squamous epithelia. In our cell fate monitoring assay, a small proportion of GFP-labeled cells
272 were mixed with unmodified, parental HFK, and the pool was used to generate organotypic
273 cultures in which normal labeled cells are randomly distributed throughout the epithelium.

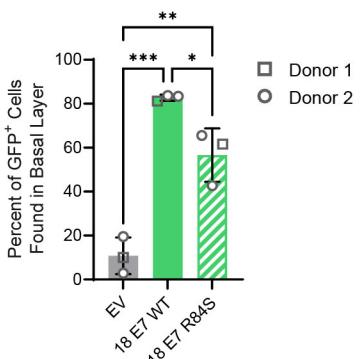

274 Our initial experiment tested whether YAP1 activation altered cell fate in stratified
275 squamous epithelia. We used GFP-labeled tracing cells that expressed doxycycline-inducible
276 YAP1 WT, YAP1 S127A (hyperactive), or YAP1 S94A (cannot bind TEAD transcription factors)
[\(Figure 7—figure supplement 1A,B\)](#). In organotypic cultures grown from a 1:25 mixture of GFP-
277 labeled cells and unmodified HFK, about 20% of uninduced GFP+ cells were found in the basal
278 layer. Induction of YAP1 WT or YAP1 S127A expression was sufficient to promote the retention
279 of nearly 60% of labeled cells in the basal layer of the epithelium [\(Figure 7A,B\)](#). Only around 40%
280 of GFP+ cells were found in the basal layer when YAP1 S94A was induced. These data indicate
281 that YAP1 activation causes cells to be retained in the basal layer of a stratified squamous
282 epithelium. The ability of YAP1 to bind TEAD transcription factors contributed to its activity in the
283 cell fate assay.

285 We next tested whether loss of PTPN14 expression was sufficient to promote basal cell
286 identity. We grew organotypic cultures from mixtures of unmodified primary HFK and GFP-labeled
287 control or PTPN14 KO HFK [\(Figure 7—figure supplement 1C,D\)](#). 60-70% of PTPN14 KO tracer
288 cells were found in the basal layer when either of two PTPN14 guide RNAs were used whereas


A


B


C


D

E

F

Figure 7 | PTPN14 loss and YAP1 activation by HPV E7 promote basal cell retention in organotypic cultures.

Organotypic cultures were grown from GFP-labeled HFK mixed with unmodified HFK. (A-B) GFP-labeled HFK were transduced with lentiviral vectors encoding YAP1 WT, YAP1 S127A, or YAP1 S94A under the control of a doxycycline inducible promoter. GFP-labeled YAP1 cells were mixed 1:25 into unmodified HFK and organotypic cultures were grown from the mixture. Cultures were grown +/- 1 μ g/mL doxycycline. (C-D) GFP-labeled HFK were transduced with LentiCRISPR v2 vectors encoding control or PTPN14 targeting sgRNAs. GFP-labeled cells were mixed 1:25 into unmodified HFK and organotypic cultures were grown from the mixture. (E-F) GFP-labeled HFK were transduced with HPV18 E7 WT, HPV18 E7 R84S, or the empty vector (EV). GFP-labeled HPV18 E7 cells were mixed 1:50 into unmodified HFK and organotypic cultures were grown from the mixture. (A, C, E) FFPE sections of cultures were stained for GFP (green), IVL (grey), and Hoechst (blue). Scale bar = 100 μ m. (B, D, F) Quantification of the percentage of GFP+ cells found in the basal layer. Graphs display the mean \pm SD and each individual data point (independent cultures). Shapes indicate cultures grown from different HFK donors. Statistical significance was determined by ANOVA. (*p<0.05, **p<0.01).

289 about 20% of control tracer cells were retained in the basal layer ([Figure 7C,D](#)). Thus, PTPN14
290 knockout is sufficient to promote basal cell fate determination in keratinocytes.

291 Next, we tested whether HPV E7 promoted basal cell retention and if so, whether its cell
292 retention activity required PTPN14 degradation. We grew organotypic cultures from mixtures of
293 GFP-labeled HFK expressing HPV18 E7 WT, HPV18 E7 R84S, or the empty vector control diluted
294 1:50 into unmodified primary HFK ([Figure 7—figure supplement 1E,F](#)). We found that nearly 80%
295 of GFP-labeled HPV18 E7 WT tracer cells were retained in the basal layer compared to about
296 10% of labeled control cells ([Figure 7E,F](#)). HPV18 E7 WT labeled cells were numerous and
297 grouped in clusters in the basal layer, suggesting that E7 promoted the clonal expansion of
298 labeled basal cells. Both effects were dampened in experiments using HPV18 E7 R84S tracer
299 cells (cannot degrade PTPN14). Labeled HPV18 E7 R84S cells exhibited varying degrees of
300 basal cell expansion and basal cell retention and approximately 60% of labeled cells were in the
301 basal layer. HPV18 E7 R84S retains the ability to inactivate RB1 and we interpret these data to
302 mean that the proliferation of labeled basal cells resulted from RB1 inactivation. Finally, HPV18
303 E7 Δ DLLC cannot bind RB1 but can bind and degrade PTPN14. In a cell fate experiment using
304 GFP-labeled HPV18 E7 Δ DLLC tracer cells, the labeled cells were present mainly as single cells
305 in the basal layer ([Figure 7—figure supplement 2A-B](#)). The behavior of the two mutant HPV E7
306 proteins supports that PTPN14 degradation is required for basal cell retention and RB1
307 inactivation is required for basal cell expansion. We conclude that PTPN14 degradation and YAP1
308 activation by HPV18 E7 promote basal cell retention.

309

310 **Discussion**

311 YAP1 and TAZ are oncogenes that promote growth and inhibit differentiation in stratified
312 squamous epithelia (Elbediwy et al., 2016; Schlegelmilch et al., 2011; Totaro et al., 2017; Yuan
313 et al., 2020; Zhang et al., 2011). Here we report that HPV E7 activates YAP1 ([Figure 1](#)).
314 YAP1/TAZ-TEAD transcriptional activity is required for the carcinogenic activity of HPV E7 ([Figure](#)

315 6) and YAP1 activation by E7 biases HPV E7-expressing cells to be retained in the basal epithelial
316 layer ([Figure 7](#)). Based on these findings we propose that YAP1 activation by HPV E7 enables
317 HPV-infected cells to persist in stratified epithelia. There is substantial evidence that RB1
318 inactivation is necessary but insufficient for the transforming activity of high-risk HPV E7 (Balsitis
319 et al., 2006, 2005; Banks et al., 1990; Ciccolini et al., 1994; Helt and Galloway, 2002; Huh et al.,
320 2005; Ibaraki et al., 1993; Jewers et al., 1992; Phelps et al., 1992; Strati and Lambert, 2007; White
321 et al., 2015). We propose that YAP1 activation cooperates with RB1 inactivation to enable the
322 transforming activity of HPV E7.

323 PTPN14 binding by HPV18 E7 was required for activation of YAP1 in the basal layer and
324 PTPN14 KO was sufficient for the same effect ([Figure 2](#)). Highly conserved amino acids in E7
325 participate in binding to PTPN14 (Hatterschide et al., 2020; Yun et al., 2019), indicating that YAP1
326 activation and maintenance of basal cell state is likely shared among diverse papillomavirus E7
327 proteins. Some minor genotype-specific differences were apparent. HPV18 E7 depletes PTPN14
328 protein levels more efficiently than HPV16 E7 (Hatterschide et al., 2020; White et al., 2016), which
329 is consistent with the observed stronger effect of HPV18 E7 on YAP1 nuclear localization in basal
330 cells ([Figure 1](#)). Genotype-specific differences could also explain the stronger effect of TEADi on
331 HPV18 E7 in lifespan extension assays ([Figure 6](#)). Although other reports have suggested that
332 HPV might activate YAP1 (He et al., 2015; Morgan et al., 2020; Olmedo-Nieva et al., 2020; Webb
333 Strickland et al., 2018), no specific activity of an HPV protein has previously been shown to enable
334 YAP1 activation. Other groups have proposed that HPV E6 activates YAP1 (He et al., 2015; Webb
335 Strickland et al., 2018), but we did not observe YAP1 activation by HPV E6. We conclude that
336 activation of YAP1 by HPV E7 is contingent upon its ability to bind and degrade PTPN14.

337 Even when HPV E7 was expressed in all layers of a stratified epithelium, YAP1 levels and
338 nuclear localization increased only in basal epithelial cells. We found that E7 required PTPN14
339 degradation to activate YAP1 and that PTPN14 was expressed predominantly in basal
340 keratinocytes ([Figure 3](#)). Basal cell-specific expression of PTPN14 is consistent with the

341 observation that it is regulated by p63, the master regulator of basal cell identity in stratified
342 epithelia (Perez et al., 2007). We propose that PTPN14 inhibits YAP1 primarily in basal cells and
343 that unlike the effects of E7 on RB1 in both differentiated and undifferentiated cells, E7 activates
344 YAP1 primarily in basal cells.

345 Degradation of PTPN14 by HPV E7 represses keratinocyte differentiation but does not
346 induce canonical Hippo pathway target genes (Hatterschide et al., 2020, 2019). Nonetheless, we
347 found that PTPN14 overexpression promoted differentiation only in the presence of YAP1/TAZ
348 ([Figure 4C,D](#)). Few studies have tested how YAP1 inhibitor inactivation alters gene expression
349 downstream of YAP1. Here we demonstrate that inactivation of LATS1 or LATS2, two well-
350 characterized inhibitors of YAP1/TAZ, also repressed differentiation genes but did not induce
351 canonical YAP1/TAZ targets ([Figure 4E-I](#)). Taken together, these experiments indicate that
352 PTPN14 acts through YAP1/TAZ to regulate differentiation in keratinocytes. It is so far unclear
353 why *CTGF* and *CYR61* expression is sensitive to large changes in total levels of YAP1 or TAZ
354 yet is unaffected by alterations in regulators upstream of YAP1/TAZ. Nonetheless, the pattern of
355 low differentiation gene expression and unchanged expression of canonical YAP1/TAZ target
356 genes caused by PTPN14 loss is consistent with gene expression differences between HPV-
357 positive and HPV-negative HNSCC.

358 PTPN14 knockout and knockdown reduced differentiation gene expression in monolayer
359 culture. Even so, we did not observe reduced differentiation in suprabasal layers of organotypic
360 cultures grown from PTPN14 knockout cells ([Figure 2A and Figure 2—figure supplement 1A-C](#)).
361 Using our cell fate monitoring assay, we determined that instead, HPV18 E7 promotes basal cell
362 retention and that either YAP1 overexpression or PTPN14 KO are sufficient for this activity ([Figure](#)
363 [7](#)). The effect of YAP1 activation on cell fate in our assay resembles several experiments in which
364 YAP1 promotes progenitor cell identity in airway and liver epithelia (Yimlamai et al., 2014; Zhao
365 et al., 2014). Our findings demonstrate that YAP1 activation enables basal cell fate determination
366 in stratified squamous epithelia and show that loss of an inhibitor of YAP1 has the same effect.

367 We conclude that one consequence of YAP1 activation by HPV E7 is that E7-expressing cells are
368 retained in the basal layer of stratified squamous epithelia.

369 Although persistent infection is a prerequisite for HPV-mediated carcinogenesis, the
370 mechanisms used by papillomaviruses to establish persistent infections remain incompletely
371 understood. Maintaining infection in the basal cell compartment is critical for papillomavirus
372 persistence. Substantial effort has been devoted to the mechanistic understanding of how the
373 papillomavirus genome is stably maintained in the basal layer upon cell division. However, much
374 less is known about how papillomaviruses manipulate epithelial cell fate to establish and expand
375 the pool of infected basal cells. Previously, HPV E7 was believed to be primarily required to
376 establish a cellular environment conducive to HPV DNA replication in suprabasal cells. We
377 propose that a so far unappreciated role of E7 is that it activates YAP1 to facilitate HPV
378 persistence by biasing infected cells to remain in the basal layer of the epithelium. Not every HPV
379 E7-expressing cell was retained in the basal layer, so we do not anticipate that YAP1 activation
380 would block differentiation-dependent HPV replication. HPV E6 also represses differentiation
381 gene expression in keratinocytes and has been proposed to promote basal cell retention (Kranjec
382 et al., 2017). Further research is needed to determine the extent to which different HPV genotypes
383 depend on the activities of E6 or E7 for basal cell retention activity.

384 To the best of our knowledge, no other viruses are recognized to modulate cell fate
385 decisions in solid tissues in a way that facilitates persistence. Some herpesviruses impact the
386 choice between progenitor/differentiated cell fates in infected immune cells, for example Epstein-
387 Barr Virus (EBV) restricts B-cell differentiation to facilitate viral latency (Knox and Carrigan, 1992;
388 Niiya et al., 2006; Onnis et al., 2012; Romeo et al., 2019; Styles et al., 2017). Herpesviruses,
389 polyomaviruses, and hepadnaviruses encode proteins proposed to activate YAP1/TAZ or alter
390 Hippo signaling (Hwang et al., 2014; Liu et al., 2014, 2015; Nguyen et al., 2014; Shanzer et al.,
391 2015; Tian et al., 2004; Z. Wang et al., 2020). Not all of the mechanisms used by these viruses
392 to activate YAP1 nor the downstream consequences of YAP1 activation have been well defined.

393 Our finding that HPV E7 activates YAP1 to manipulate cell fate opens up an exciting new line of
394 inquiry into how YAP1, TAZ, and the Hippo signaling pathway could impact viral infections by
395 regulating tissue developmental processes.

396 YAP1 activation and PTPN14 are relevant to both viral and non-viral cancers. We found
397 that a genetically encoded inhibitor of YAP1/TAZ-TEAD transcription inhibited the growth of high-
398 risk HPV E7 expressing cells (Figure 6), indicating that high-risk HPV E7 proteins require YAP1
399 or TAZ for carcinogenesis. YAP1/TAZ activation is sufficient to drive carcinogenesis in mouse
400 models of cervical and oral cancer (He et al., 2019; Nishio et al., 2020; Omori et al., 2020), and
401 the YAP1 inhibitor verteporfin reduced the growth of HPV-positive tumors in a xenograft model
402 (Liu et al., 2019). YAP1 activation correlates with the clinical stage of HPV infection (Nishio et al.,
403 2020), and YAP1 localizes to the nucleus in HPV-positive cancers (Alzahrani et al., 2017). Basal
404 cell carcinoma (BCC) is the non-viral cancer that is most clearly linked to PTPN14. Germline
405 inactivating mutations in *PTPN14* are associated with a 4- to 8-fold increase in risk of BCC by age
406 70 (Olafsdottir et al., 2021) and somatic mutations in *PTPN14* are frequent in BCC (Bonilla et al.,
407 2016). YAP1/TAZ-TEAD transcriptional activity also restricts differentiation in BCC cells (Yuan et
408 al., 2021). We propose that the specific association of PTPN14 with BCC is related to our
409 observation that PTPN14 loss activates YAP1 in basal epithelial cells. YAP1 inhibition is of major
410 clinical interest for several cancer types, and it is appealing to speculate that targeting YAP1 could
411 treat persistent HPV infection and/or HPV-positive cancers.

412
413

414 **Materials and Methods**

415 **Plasmids and cloning.** pInducer20 EGFP-TEADi was a gift from Ramiro Iglesias-Bartolome
416 (Addgene plasmid # 140145) (Yuan et al., 2020). pQCXIH-Myc-YAP (Addgene plasmid # 33091),
417 pQCXIH-Flag-YAP-S127A (Addgene plasmid # 33092), and pQCXIH-Myc-YAP-S94A (Addgene
418 plasmid # 33094) were gifts from Kun-Liang Guan (Zhao et al., 2007). Each YAP1 ORF was
419 amplified by PCR from pQCXIH, cloned into pDONR223, and transferred into pLIX_402 lentiviral
420 backbone using Gateway recombination. pLIX_402 was a gift from David Root (Addgene plasmid
421 # 41394). pLenti CMV GFP Hygro (656-4) was a gift from Eric Campeau & Paul Kaufman
422 (Addgene plasmid # 17446) (Campeau et al., 2009). PHAGE-P-CMVt N-HA GFP was previously
423 described (Galligan et al., 2014). pNeo-loxP-HPV18 was the kind gift of Thomas Broker and
424 Louise Chow (Wang et al., 2009). The Δ DLLC mutation was introduced into the pDONR HPV18
425 E7 vector using site-directed mutagenesis. HPV18 E7 Δ DLLC and GFP ORFs were cloned into
426 MSCV-P C-FlagHA GAW or MSCV-Neo C-HA GAW destination vectors using Gateway
427 recombination. The remaining MSCV-P C-FlagHA and MSCV-Neo C-HA HPV E6 and HPV E7
428 retroviral plasmids and pHAGE lentiviral plasmids have been previously described (Hatterschide
429 et al., 2020; White et al., 2016, 2012a, 2012b). A complete list of all plasmids used in this study
430 is in [Supplemental File 1](#).

431

432 **Cell culture, retrovirus production, and lentivirus production.** Deidentified primary human
433 foreskin keratinocytes (HFK) and human foreskin fibroblasts (HFF) were provided by the
434 University of Pennsylvania Skin Biology and Disease Resource-Based Center (SBDRC). N/Tert-
435 1 cells are hTert-immortalized HFK (Dickson et al., 2000), and N/Tert-Cas9 mock and sgPTPN14-
436 1 are N/Tert-1 cells further engineered to constitutively express Cas9 (Hatterschide et al., 2019).
437 Keratinocytes for cell fate experiments were cultured in keratinocyte serum-free media (KSFM)
438 (Life Technologies, Carlsbad, California) mixed 1:1 with Medium 154 (Thermo Fisher Scientific,
439 Waltham, Massachusetts) with the human keratinocyte growth supplement (HKGS) (Thermo

440 Fisher Scientific) (Duperret et al., 2015; Egolf et al., 2019). Keratinocytes for all other experiments
441 were cultured as previously described (White et al., 2012a). HFF were cultured in Dulbecco's
442 Modified Eagle Medium (DMEM) (Thermo Fisher Scientific) supplemented with antibiotic and
443 antimycotic. HFK harboring the HPV18 genome were previously described (Hatterschide et al.,
444 2020), and were generated by transfecting cells with the pNeo-loxP-HPV18 vector (Wang et al.,
445 2009) along with NLS-Cre and selecting with G418 to generate a stable population. Lentiviruses
446 and retroviruses were produced in 293T or 293 Phoenix cells respectively as previously described
447 (White et al., 2016). Stable keratinocyte populations were generated following transduction by
448 selection with puromycin, G418, or hygromycin alone or in combination.

449

450 **Lifespan extension assay.** Primary HFK were engineered and cultured as described in cell
451 culture, retrovirus production, and lentivirus production. The growth of engineered HFK was
452 monitored in culture for 38 days. Population doublings were calculated using the number of cells
453 at the beginning and end of each passage.

454

455 **Organotypic epithelial culture.** Devitalized human dermis was provided as deidentified material
456 from the University of Pennsylvania SBDRC. Stands for organotypic epithelial cultures were
457 printed using high temperature, autoclavable resin at the University of Pennsylvania Biotech
458 Commons 3D-printing facility. Organotypic cultures were generated as previously described
459 (Duperret et al., 2015; Egolf et al., 2019). Devitalized dermis was seeded with primary HFF on
460 the dermal side at a density of 3×10^4 cells per cm^2 of culturing area and cultured for four days.
461 Dermis and fibroblasts were then stretched across 3D-printed stands. The epidermal side of the
462 dermis was seeded with unmodified or engineered keratinocytes at a density of 1×10^6 cells per
463 cm^2 . Organotypic cultures were cultured in E media (Fehrmann and Laimins, 2005) with the
464 dermal layer maintained at the air-liquid interface starting on the day of seeding keratinocytes.
465 Cultures were allowed to stratify for 12-14 days, then trimmed and fixed in 10% neutral buffer

466 formalin for 24 hours. Tissues were embedded in paraffin and sectioned by the SBDRC Core A.

467 A complete list of all organotypic cultures used in this study is in [Supplemental File 2](#).

468

469 **siRNA transfection.** Primary HFK were transfected with siRNAs using the Dharmafect 1

470 transfection reagent. All siRNA experiments were collected 72 h post transfection. Two siRNAs

471 were used to target each gene in an experiment. The siRNAs used in this study were all

472 purchased from Dharmacon (Lafayette, Colorado): nontargeting siRNA, siYAP1-06, siYAP1-08,

473 siWWTR1-06, siWWTR1-08, siPTPN14-05, siPTPN14-08, siLATS1-05, siLATS1-08, siLATS2-

474 09, siLATS2-10.

475

476 **Laser capture microdissection.** Formalin-fixed paraffin-embedded (FFPE) organotypic cultures

477 were sectioned onto polyethylene naphthalate (PEN) membrane glass slides by the SBDRC Core

478 A. Laser capture microdissection was performed on a Leica LMD 7000 microscope. Hundreds of

479 microdissections were made per sample amounting to ~1.5 mm² of total dissected area per

480 sample. RNA was isolated using the RNeasy FFPE kit (Qiagen, Germantown, Maryland). RNA

481 concentration was determined using Qubit RNA HS assay kit (Life Technologies).

482

483 **Patient derived xenografts.** The PDXs were previously established from surgical resections of

484 treatment-naive HPV-positive OPSCC as described (Facompre et al., 2020). Human tumors were

485 engrafted subcutaneously in NSG mice and passaged at least twice before cryopreservation

486 when they reached a volume of 0.5-1.0 cm³. Total tumor RNA was isolated using the QIAamp

487 RNA Blood Mini Kit (Qiagen).

488

489 **Western blotting.** Western blots were performed using Mini-PROTEAN (Bio-Rad Laboratories,

490 Hercules, California) or Criterion (Bio-Rad) Tris/Glycine SDS-PAGE gels and transfers were

491 performed onto polyvinylidene difluoride (PVDF). Membranes were blocked with 5% nonfat dried

492 milk in Tris-buffered saline with 0.05% Tween 20 (TBST). Membranes were incubated with
493 primary antibodies as specified in [Supplemental File 1](#). Following TBST washes, membranes
494 were incubated with horseradish peroxidase-coupled secondary antibodies and imaged using
495 chemiluminescent substrate on an Amersham Imager 600 (GE Healthcare, Chicago, Illinois).

496

497 **qRT-PCR.** Unless otherwise specified, total cellular RNA was isolated using the NucleoSpin RNA
498 extraction kit (Macherey-Nagel/Takara, San Jose, California). cDNA was generated from bulk
499 RNA with the high-capacity cDNA reverse transcription kit (Applied Biosystems, Waltham,
500 Massachusetts). cDNAs were used as a template for qPCR using Fast SYBR green master mix
501 (Applied Biosystems) and a QuantStudio 3 system (Thermo Fisher Scientific). 18S rRNA qRT-
502 PCR primers were ordered from Integrated DNA Technologies (Integrated DNA Technologies,
503 Inc., Coralville, Iowa): FWD, 5- CGCCGCTAGAGGTGAAATTCT; REV, 5-
504 CGAACCTCCGACTTTCGTTCT (Roh et al., 2005). KiCqStart SYBR green primers for qRT-PCR
505 (MilliporeSigma, St. Louis, Missouri) were used for the remaining genes assayed in this study:
506 KRT1, KRT10, IVL, ITGB4, ITGA6, CYR61, CTGF, PTPN14, YAP1, WWTR1, LATS1, LATS2,
507 G6PD, and GAPDH.

508

509 **Immunofluorescence, immunohistochemistry, and microscopy.** FFPE sections were
510 prepared for immunofluorescence by deparaffinization with xylene washes, rehydration through
511 an ethanol gradient, and heat induced epitope retrieval (HIER). Tissue sections were blocked with
512 PBS containing 1% bovine serum albumin, 10% normal goat serum, and 0.3% Triton X-100.
513 Tissue sections were incubated with primary antibodies at 4°C overnight, washed with PBS with
514 0.05% Tween 20, and incubated with fluorescently labeled secondary antibodies and Hoechst
515 33342 at room temperature. Antibody dilutions and HIER conditions are specified in [Supplemental](#)
516 [File 1](#). Fluorescent micrographs were captured using an Olympus IX81 microscope. All

517 fluorescent micrograph images within the same figure panels were captured using the same
518 exposure time and batch processed using the same contrast settings.

519 The TMA was constructed from surgical resection specimens of 120 HNSCC that vary by
520 TNM stage and HPV status ([Supplemental File 3](#)). Archival FFPE tumors of the oral cavity and
521 oropharynx were identified retrospectively and oropharyngeal tumors were evaluated for HPV
522 status as per College of American Pathologists criteria (Lewis et al., 2018) using IHC for p16.
523 When present, lymph node metastases were included in association with the primary tumor of
524 origin. All FFPE specimens were represented in the TMA by at least three tissue cores that
525 incorporate both non-necrotic central tumor regions and invasive margins. Tumor materials and
526 clinical data were accessed under University of Pennsylvania IRB protocol 417200. Staining for
527 KRT1 was performed by the Clinical Services Laboratory in the University of Pennsylvania
528 Department of Pathology and Laboratory Medicine. Antibody information can be found in
529 [Supplemental File 1](#). The KRT1 stained slides were reviewed with a standard light microscope,
530 and evaluation was based on the presence or absence of staining in the cytoplasm of tumor cells.

531

532 **Bioinformatic analysis.** Genomic mutation and copy number variation data as well as tumor
533 RNA-seq gene expression data from TCGA (Lawrence et al., 2015) were analyzed using the
534 cBioPortal.org graphical interface (Cerami et al., 2012; Gao et al., 2013). RNA-seq V2 RSEM
535 (RNA-Seq by Expectation Maximization) normalized expression values for individual genes were
536 downloaded directly from cBioPortal.org. OPSCC were distinguished from HNSCC by clinical
537 annotation of primary tumor site and HPV-positive and HPV-negative status was assigned based
538 on previously reported HPV transcript status (Chakravarthy et al., 2016). Genes included as a
539 part of each pathway analysis are listed in [Supplemental File 4](#). Missense, truncating, and splice
540 mutations of unknown significance as well as amplifications of tumor suppressor genes and
541 deletion of oncogenes were excluded from total alteration tallies.

542 Single cell-RNA sequencing dataset derived from the human neonatal foreskin epidermis
543 and subsequent clustering analysis were retrieved from GitHub (S. Wang et al., 2020) and
544 reanalyzed with MATLAB. PTPN14 expression was calculated by averaging mRNA expression
545 for all cells by cluster and donor.

546

547 **Acknowledgments**

548 We thank the members of our laboratories, particularly Pavithra Rajagopalan, for helpful
549 discussions. We thank Stephen M. Prouty, Ph.D. from the SBDRC for help with tissue processing
550 and sectioning. Stands for organotypic cultures were printed courtesy of the University of
551 Pennsylvania Libraries' Biotech Commons. This work was supported by American Cancer Society
552 grant 131661-RSG-18-048-01-MPC and NIH/NIAID R01 AI148431 to EAW. DB is supported by
553 NIH/NIDCR R01 DE027185. JH was supported by NIH/NIAID T32 AI007324 and NIH/NIDCR F31
554 DE030365. SBDRC was funded by NIH grant P30 AR068589.

555

556 **Author Contributions**

557 Conception and design: JH, EAW. Acquisition of data: JH, PC, HWK, KTM, EAW. Analysis and
558 interpretation of data: JH, PC, KTM, DB, EAW. Drafting or revising the article: JH, PC, DB, EAW.
559 Contributing unpublished essential data or reagents: SMS, KTM, DB.

560 **Figure Legends**

561 **Figure 1 | HPV E7 activates YAP1 in basal epithelial keratinocytes.** (A) cBioPortal analysis
562 for total genomic mutations and copy number alterations in HPV+/- OPSCC and HNSCC. Graph
563 displays the percent of tumors with alterations in each pathway. Statistical significance was
564 determined by Fisher's exact test. (B-D) Organotypic cultures were grown from primary HFK, HFK
565 harboring the HPV18 genome, or HFK transduced with retroviral expression encoding HPV E6 or
566 E7 proteins. FFPE sections of cultures grown from (C) HFK or HFK harboring the HPV18 genome,
567 (D) HFK or HFK expressing HPV16 E7 or HPV18 E7, or (E) HFK or HFK expressing HPV16 E6
568 or HPV16 E7 were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray). White dashed
569 lines indicate the basement membrane. White boxes indicate the location of insets in main
570 images. Main image scale bars = 100 μ m. Inset scale bars = 25 μ m.

571

572 **Figure 2 | HPV E7 activates YAP1 in basal keratinocytes through PTPN14 degradation.**
573 Organotypic cultures were grown from N/Tert-Cas9 keratinocytes or primary HFK transduced with
574 retroviral expression vectors encoding HPV18 E7 WT or R84S. (A) FFPE sections of cultures
575 grown from mock or sgPTPN14 transfected N/Tert-Cas9 keratinocytes were stained for YAP1
576 (magenta), IVL (green), and Hoechst (Gray). (B) FFPE sections of cultures grown from parental
577 HFK, HPV18 E7 WT or HPV18 E7 R84S expressing HFK were stained for YAP1 (magenta),
578 PCNA (green), and Hoechst (Gray). White dashed lines indicate the basement membrane. White
579 boxes indicate the location of insets in main images. Main image scale bars = 100 μ m. Inset scale
580 bars = 25 μ m. (C-F) Quantification of the number of (C and E) basal cells and (D and F) suprabasal
581 cells per 100 μ m of epidermis. Graphs display the mean \pm SD and each individual data point
582 (independent cultures). Statistical significance was determined by ANOVA (*p<0.05, ***p<0.001).

583

584 **Figure 3 | PTPN14 expression is enriched in basal keratinocytes.** (A-B) Single-cell RNA
585 sequencing data and clustering analysis from Wang et al. was reanalyzed to assess PTPN14

586 expression in different subsets of epidermal cells. (A) Diagram of epidermis; shading depicts
587 tissue localization of cell clusters. (B) For each donor, the mean of PTPN14 mRNA expression
588 was calculated for each cell cluster. Graphs display the mean of PTPN14 mRNA expression for
589 each donor (circles) as well as the mean of all five donors \pm SEM (bars and error bars). Statistical
590 significance was determined by ANOVA (* $p<0.05$, ** $p<0.01$). (C-F) Basal and suprabasal layers
591 from organotypic cultures were dissected using laser capture microdissection. (C) Representative
592 images of HFK cultures before and after individual laser dissections. Hundreds of such cuts were
593 performed per sample. (D-F) RNA was purified from isolated layers and qRT-PCR was used to
594 assess the expression of PTPN14 (D), basal cell markers ITGA6 and ITGB4 (E), and
595 differentiation markers KRT1 and IVL (F). Graphs display the mean and each individual data point.

596

597 **Figure 4 | YAP1/TAZ regulate differentiation downstream of PTPN14.** (A) Venn diagram
598 comparing the MSigDB YAP conserved signature to the differentially expressed genes (DEG)
599 from our two published experiments that reflect PTPN14 loss in keratinocytes. (B-D) *YAP1* and
600 *WWTR1* were simultaneously knocked down by siRNA transfection in HFK. Transfected HFK
601 were then transduced with PTPN14 lentivirus at 24h post transfection. Cells were lysed for protein
602 and total cellular RNA at 72h post transfection. (B) Cell lysates were subjected to
603 SDS/PAGE/Western analysis and probed with antibodies to PTPN14, YAP1, TAZ, and Actin. (C
604 and D) qRT-PCR was used to measure the expression of the differentiation markers *KRT1* and
605 *IVL* relative to *G6PD*. Graphs display fold change in gene expression relative to the mock
606 transduced cells. (E-I) Primary HFK were transfected with siRNAs targeting *YAP1*, *WWTR1*
607 (TAZ), *PTPN14*, *LATS1*, and *LATS2*. Two siRNAs were used per target. qRT-PCR was used to
608 measure gene expression for: the differentiation markers *IVL* (E) and *KRT1* (F), and the canonical
609 YAP1/TAZ targets *CTGF* (G) and *CYR61* (H). Data confirming that individual siRNA transfections
610 depleted intended transcripts is summarized in a heatmap of \log_2 (fold-change) levels (I). Bar

611 graphs display the mean \pm SD of three independent replicates. Statistical significance was
612 determined by ANOVA (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

613

614 **Figure 5 | HPV-positive HNSCC are less differentiated than HPV-negative HNSCC. (A)**
615 Human HNSCC tumor samples were stained for KRT1 (left). Scale bar = 100 μ m. Graph displays
616 the percentage of tumors that were KRT1⁺ (right). Statistical significance was determined by
617 Fisher's exact test. (B-C) Total RNA was purified from PDX samples and qRT-PCR was used to
618 assess gene expression of (B) the differentiation markers KRT1, KRT10, and IVL and (C) the
619 canonical YAP1/TAZ targets CTGF and CYR61. Statistical significance was determined by Mann-
620 Whitney nonparametric test. (*p<0.05, **p<0.01, ****p<0.0001).

621

622 **Figure 6 | High-risk HPV E7 requires YAP1/TAZ-TEAD transcriptional activity to extend the**
623 **lifespan of primary keratinocytes.** Primary HFK were transduced with retroviruses encoding
624 HPV16 E7, HPV18 E7, or GFP, plus pInducer20 TEADi lentivirus. Each cell population was
625 cultured with or without 1 μ g/mL doxycycline in the media for 38 days and population doublings
626 were tracked with each passage. Graph displays the mean \pm SD of two independently transduced
627 cell populations per condition.

628

629 **Figure 7 | PTPN14 loss and YAP1 activation by HPV E7 promote basal cell retention in**
630 **organotypic cultures.** Organotypic cultures were grown from GFP-labeled HFK mixed with
631 unmodified HFK. (A-B) GFP-labeled HFK were transduced with lentiviral vectors encoding YAP1
632 WT, YAP1 S127A, or YAP1 S94A under the control of a doxycycline inducible promoter. GFP-
633 labeled YAP1 cells were mixed 1:25 into unmodified HFK and organotypic cultures were grown
634 from the mixture. Cultures were grown +/- 1 μ g/mL doxycycline. (C-D) GFP-labeled HFK were
635 transduced with LentiCRISPR v2 vectors encoding control or PTPN14 targeting sgRNAs. GFP-

636 labeled cells were mixed 1:25 into unmodified HFK and organotypic cultures were grown from the
637 mixture. (E-F) GFP-labeled HFK were transduced with HPV18 E7 WT, HPV18 E7 R84S, or the
638 empty vector (EV). GFP-labeled HPV18 E7 cells were mixed 1:50 into unmodified HFK and
639 organotypic cultures were grown from the mixture. (A, C, E) FFPE sections of cultures were
640 stained for GFP (green), IVL (grey), and Hoechst (blue). Scale bar = 100 μ m. (B, D, F)
641 Quantification of the percentage of GFP+ cells found in the basal layer. Graphs display the mean
642 \pm SD and each individual data point (independent cultures). Shapes indicate cultures grown from
643 different HFK donors. Statistical significance was determined by ANOVA. (*p<0.05, **p<0.01).

644

645 **Figure 1—figure supplement 1 | HPV-positive HNSCC have fewer Hippo pathway**
646 **alterations and lower expression of differentiation genes.** cBioPortal analysis for genomic
647 mutations and copy number alterations in HPV+/- HNSCC and OPSCC. Oncoprint displays
648 specific genomic alterations in individual tumor samples.

649

650 **Figure 1—figure supplement 2 | HPV18 E7 activates YAP1 in basal keratinocytes. (A-B)**
651 Additional replicates of organotypic cultures grown from primary HFK or HFK harboring the
652 HPV18 genome. FFPE sections were stained for YAP1 (magenta), PCNA (green), and Hoechst
653 (gray). White dashed lines indicate the basement membrane. White boxes indicate the location
654 of insets in main images. Main image scale bars = 100 μ m. Inset scale bars = 25 μ m.

655

656 **Figure 1—figure supplement 3 | HPV E7 activates YAP1 in basal keratinocytes.** Additional
657 replicates of organotypic cultures grown from primary HFK or HFK transduced with retroviral
658 expression encoding HPV E7 proteins. FFPE sections of cultures grown from (A) HFK or HFK
659 expressing HPV16 E7 or HPV18 E7, (B) HFK or HFK transduced with HPV16 E7, or (E) HFK and
660 HFK expressing HPV18 E7 were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray).

661 White dashed lines indicate the basement membrane. White boxes indicate the location of insets
662 in main images. Main image scale bars = 100 μ m. Inset scale bars = 25 μ m.

663

664 **Figure 1—figure supplement 4 | HPV E6 does not activate YAP1 in basal keratinocytes.**

665 Additional replicates of organotypic cultures grown from primary HFK or HFK transduced with
666 retroviral expression encoding HPV E6 or E7 proteins. FFPE sections were stained for YAP1
667 (magenta), PCNA (green), and Hoechst (gray). White dashed lines indicate the basement
668 membrane. White boxes indicate the location of insets in main images. Main image scale bars =
669 100 μ m. Inset scale bars = 25 μ m.

670

671 **Figure 2—figure supplement 1 | PTPN14 knockout activates YAP1 in basal keratinocytes.**

672 Additional replicates of organotypic cultures grown from N/Tert-Cas9 keratinocytes (A-C) FFPE
673 sections from mock or sgPTPN14 transfected N/Tert-Cas9 keratinocytes were stained for YAP1
674 (magenta), IVL (green), and Hoechst (Gray). White dashed lines indicate the basement
675 membrane. White boxes indicate the location of insets in main images. Main image scale bars =
676 100 μ m. Inset scale bars = 25 μ m.

677

678 **Figure 2—figure supplement 2 | HPV E7 activates YAP1 in basal keratinocytes through**

679 **PTPN14 degradation.** Additional replicates of organotypic cultures grown from primary HFK
680 transduced with retroviral expression vectors encoding HPV18 E7 WT or R84S. FFPE sections
681 from parental HFK, HPV18 E7 WT or HPV18 E7 R84S expressing HFK were stained for YAP1
682 (magenta), PCNA (green), and Hoechst (Gray). White dashed lines indicate the basement
683 membrane. White boxes indicate the location of insets in main images. Main image scale bars =
684 100 μ m. Inset scale bars = 25 μ m.

685

686 **Figure 3—figure supplement 1 | PTPN14 expression is enriched in basal keratinocytes in**
687 **HPV 18 E7 expressing organotypic cultures.** Basal and suprabasal layers from a 3D
688 organotypic culture grown from HFK transduced with a retroviral expression vector encoding
689 HPV18 E7 were dissected using laser capture microdissection. RNA was purified from isolated
690 layers and qRT-PCR was used to assess the expression of PTPN14 (A), the basal cell markers
691 ITGA6 and ITGB4 (B), and the differentiation marker IVL (C). Graphs display individual data
692 points.

693

694 **Figure 4—figure supplement 1 | PTPN14 overexpression promotes differentiation in**
695 **keratinocytes.** NTert-Cas9 Mock and sgPTPN14-1 keratinocytes were transduced with
696 lentiviruses encoding GFP or PTPN14 or the empty vector control. (A) Cell lysates were subjected
697 to SDS/PAGE/Western analysis and probed with antibodies to PTPN14, V5-tag, Involucrin, and
698 Actin. (B) qRT-PCR was used to measure the expression of the differentiation markers IVL and
699 KRT10 relative to G6PD. Graphs display the mean \pm SD of two independent replicates.

700

701 **Figure 4—figure supplement 2 | YAP1 and TAZ are required for PTPN14 to promote**
702 **keratinocyte differentiation.** Primary HFK were transfected with control or YAP1 and WWTR1
703 targeting siRNAs then transduced with PTPN14 encoding lentivirus. qRT-PCR was used to
704 measure the expression of the differentiation markers (A) KRT1 and (B) IVL relative to G6PD.
705 Graphs portray the change in gene expression relative to siC. Graphs display the mean \pm SD of
706 three independent replicates. Statistical significance was determined by ANOVA (**p<0.01,
707 ***p<0.001).

708

709 **Figure 5—figure supplement 1 | HPV-positive HNSCC express lower levels of**
710 **differentiation genes.** RNA-seq data from TCGA were accessed through cBioPortal. Violin plots
711 display the distribution in \log_2 mRNA expression of differentiation markers (A) KRT1, (B) KRT10,

712 and (C) IVL, and the canonical YAP1/TAZ targets (D) CTGF and (E) CYR61. Statistical
713 significance was determined by Mann-Whitney nonparametric test. (**p<0.01, ***p<0.001,
714 ****p<0.0001).

715

716 **Figure 7—figure supplement 1 | PTPN14 degradation by HPV E7 promotes basal cell**
717 **retention.** (A-B) GFP-labeled HFK were transduced with YAP1 WT, YAP1 S127A, or YAP1 S94A
718 under the control of a doxycycline inducible promoter. (A) GFP expression was confirmed by
719 fluorescence microscopy. Scale bar = 100 μ m. (B) Total RNA was purified from monolayer cells
720 +/- treatment with 1 μ g/mL doxycycline for 72h. qRT-PCR was used to assess gene expression
721 of YAP1 and CTGF. (C-D) GFP-labeled HFK were transduced with retroviral vectors encoding
722 HPV18 WT, HPV18 Δ DLLC, HPV18 E7 R84S, or the empty vector control (EV). (C) GFP
723 expression was confirmed by fluorescence microscopy. Scale bar = 100 μ m. (D) Cell lysates were
724 subjected to SDS/PAGE/Western analysis and probed with antibodies to PTPN14, RB1, and
725 Actin. (E-F) GFP-labeled HFK were transduced with LentiCRISPR v2 sgNT-1, sgPTPN14-3, or
726 sgPTPN14-4 vectors. (E) GFP expression was confirmed by fluorescence microscopy. Scale bar
727 = 100 μ m (F) Cell lysates were subjected to SDS/PAGE/Western analysis and probed with
728 antibodies to PTPN14 and Actin.

729

730 **Figure 7—figure supplement 2 | HPV18 E7 can promote basal cell retention in the absence**
731 **of RB1 binding.** Organotypic cultures were grown from GFP-labeled cells mixed with unmodified
732 HFK. GFP-labeled HFK were transduced with HPV18 E7 Δ DLLC or the empty vector (EV). GFP-
733 labeled cells were mixed 1:50 into unmodified HFK. (A) FFPE sections were stained for GFP
734 (green), IVL (grey), and Hoechst (blue). Scale bar = 100 μ m (B) Quantification of the percentage
735 of GFP+ cells found in the basal layer. Graphs display the mean \pm SD and each individual data
736 point (independent cultures). Statistical significance was determined by t-test. (**p<0.01).

737

738 **References**

739 Alzahrani F, Clattenburg L, Muruganandan S, Bullock M, MacIsaac K, Wigerius M, Williams BA,
740 Graham MER, Rigby MH, Trites JRB, Taylor SM, Sinal CJ, Fawcett JP, Hart RD. 2017.
741 The Hippo component YAP localizes in the nucleus of human papilloma virus positive
742 oropharyngeal squamous cell carcinoma. *Journal of Otolaryngology - Head and Neck*
743 *Surgery* **46**. doi:10.1186/s40463-017-0187-1

744 Balsitis S, Dick F, Dyson N, Lambert PF. 2006. Critical Roles for Non-pRb Targets of Human
745 Papillomavirus Type 16 E7 in Cervical Carcinogenesis. *Cancer Res* **66**:9393–400.
746 doi:10.1158/0008-5472.CAN-06-0984

747 Balsitis S, Dick F, Lee D, Farrell L, Hyde RK, Griep AE, Dyson N, Lambert PF. 2005.
748 Examination of the pRb-Dependent and pRb-Independent Functions of E7 In Vivo. *Journal*
749 *of Virology* **79**:11392–11402. doi:10.1128/jvi.79.17.11392-11402.2005

750 Banks L, Edmonds C, Vousden KH. 1990. Ability of the HPV16 E7 protein to bind RB and
751 induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells.
752 *Oncogene* **5**:1383–9.

753 Beverdam A, Claxton C, Zhang X, James G, Harvey KF, Key B. 2013. Yap Controls
754 Stem/Progenitor Cell Proliferation in the Mouse Postnatal Epidermis. *Journal of*
755 *Investigative Dermatology* **133**:1497–1505. doi:10.1038/JID.2012.430

756 Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy VB, Sharpe HJ,
757 McKee T, Letourneau A, Ribaux PG, Popadin K, Basset-Seguin N, Chaabene R ben,
758 Santoni FA, Andrianova MA, Guipponi M, Garieri M, Verdan C, Grosdemange K, Sumara
759 O, Eilers M, Aifantis I, Michielin O, de Sauvage FJ, Antonarakis SE, Nikolaev SI. 2016.
760 Genomic analysis identifies new drivers and progression pathways in skin basal cell
761 carcinoma. *Nature Genetics* **48**:398–406. doi:10.1038/ng.3525

762 Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P,
763 Cooper PK, Kaufman PD. 2009. A Versatile Viral System for Expression and Depletion of
764 Proteins in Mammalian Cells. *PLOS ONE* **4**:e6529. doi:10.1371/JOURNAL.PONE.0006529

765 Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer
766 ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. 2012. The cBio
767 Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer
768 Genomics Data. *Cancer Discovery* **2**:401–404. doi:10.1158/2159-8290.CD-12-0095

769 Chakravarthy A, Henderson S, Thirdborough SM, Ottensmeier CH, Su X, Lechner M, Feber A,
770 Thomas GJ, Fenton TR. 2016. Human Papillomavirus Drives Tumor Development
771 Throughout the Head and Neck: Improved Prognosis Is Associated With an Immune
772 Response Largely Restricted to the Oropharynx. <https://doi.org/10.1200/JCO2016682955>
773 **34**:4132–4141. doi:10.1200/JCO.2016.68.2955

774 Ciccolini F, di Pasquale G, Carlotti F, Crawford L, Tommasino M. 1994. Functional studies of E7
775 proteins from different HPV types. *Oncogene* **9**:2633–8.

776 Collins AS, Nakahara T, Do A, Lambert PF. 2005. Interactions with pocket proteins contribute to
777 the role of human papillomavirus type 16 E7 in the papillomavirus life cycle. *J Virol*
778 **79**:14769–80. doi:10.1128/JVI.79.23.14769-14780.2005

779 Day PM, Schelhaas M. 2014. Concepts of papillomavirus entry into host cells. *Current Opinion*
780 *in Virology* **4**:24–31. doi:10.1016/J.COVIRO.2013.11.002

781 de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. 2020. Global burden of cancer
782 attributable to infections in 2018: a worldwide incidence analysis. *The Lancet Global Health*
783 **8**:e180–e190. doi:10.1016/S2214-109X(19)30488-7/ATTACHMENT/BC543EDD-015D-
784 48D3-A3FB-6DFCF0BCDE7F/MMC1.PDF

785 de Martel C, Plummer M, Vignat J, Franceschi S. 2017. Worldwide burden of cancer attributable
786 to HPV by site, country and HPV type. *International Journal of Cancer* **141**:664–670.
787 doi:10.1002/ijc.30716

788 Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald
789 JG. 2000. Human Keratinocytes That Express hTERT and Also Bypass a p16INK4a-
790 Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth
791 and Differentiation Characteristics. *Molecular and Cellular Biology* **20**:1436–1447.
792 doi:10.1128/mcb.20.4.1436-1447.2000

793 Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. 2015. Human papillomavirus molecular
794 biology and disease association. *Reviews in Medical Virology* **25**:2–23.
795 doi:10.1002/rmv.1822

796 Duperret EK, Dahal A, Ridky TW. 2015. Focal-adhesion-independent integrin-av regulation of
797 FAK and c-Myc is necessary for 3D skin formation and tumor invasion. *Journal of Cell*
798 *Science* **128**:3997–4013. doi:10.1242/jcs.175539

799 Egawa N, Nakahara T, Ohno S -i., Narisawa-Saito M, Yugawa T, Fujita M, Yamato K, Natori Y,
800 Kiyono T. 2012. The E1 Protein of Human Papillomavirus Type 16 Is Dispensable for
801 Maintenance Replication of the Viral Genome. *Journal of Virology*. doi:10.1128/JVI.06450-
802 11

803 Egolf S, Aubert Y, Doepner M, Anderson A, Maldonado-Lopez A, Pacella G, Lee J, Ko EK, Zou
804 J, Lan Y, Simpson CL, Ridky T, Capell BC. 2019. LSD1 Inhibition Promotes Epithelial
805 Differentiation through Derepression of Fate-Determining Transcription Factors. *Cell*
806 *Reports* **28**:1981-1992.e7. doi:10.1016/j.celrep.2019.07.058

807 Elbediwy A, Thompson BJ. 2018. Evolution of mechanotransduction via YAP/TAZ in animal
808 epithelia. *Current Opinion in Cell Biology*. doi:10.1016/j.ceb.2018.02.003

809 Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, Cordero J,
810 Tan EH, Ridgway R, Brunton VG, Sahai E, Gerhardt H, Behrens A, Malanchi I, Sansom
811 OJ, Thompson BJ. 2016. Integrin signalling regulates YAP and TAZ to control skin
812 homeostasis. *Development (Cambridge, England)* **143**:1674–87. doi:10.1242/dev.133728

813 Facompre ND, Rajagopalan P, Sahu V, Pearson AT, Montone KT, James CD, Gleber-Netto FO,
814 Weinstein GS, Jalaly J, Lin A, Rustgi AK, Nakagawa H, Califano JA, Pickering CR, White
815 EA, Windle BE, Morgan IM, Cohen RB, Gimotty PA, Basu D. 2020. Identifying predictors of
816 HPV-related head and neck squamous cell carcinoma progression and survival through

817 patient-derived models. *International Journal of Cancer* **147**:3236–3249.
818 doi:10.1002/IJC.33125

819 Fehrmann F, Laimins LA. 2005. Human Papillomavirus Type 31 Life Cycle Methods for
820 Studying Using Tissue Culture Models. *Methods in Molecular Biology* **292**:317–330.

821 Flores ER, Allen-Hoffmann BL, Lee D, Lambert PF. 2000. The human papillomavirus type 16 E7
822 oncogene is required for the productive stage of the viral life cycle. *Journal of virology*
823 **74**:6622–31. doi:10.1128/JVI.74.14.6622-6631.2000

824 Galligan JT, Martinez-Noël G, Arndt V, Hayes S, Chittenden TW, Harper JW, Howley PM. 2014.
825 Proteomic Analysis and Identification of Cellular Interactors of the Giant Ubiquitin Ligase
826 HERC2. *Journal of Proteome Research* **14**:953–966. doi:10.1021/PR501005V

827 Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R,
828 Larsson E, Cerami E, Sander C, Schultz N. 2013. Integrative Analysis of Complex Cancer
829 Genomics and Clinical Profiles Using the cBioPortal. *Science Signaling* **6**:1–1.
830 doi:10.1126/SCISIGNAL.2004088

831 Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. 2015. Epidemiology of Human
832 Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. *J Clin Oncol* **33**:3235–
833 3242. doi:10.1200/JCO.2015.61.6995

834 Graham S v. 2017. The human papillomavirus replication cycle, and its links to cancer
835 progression: a comprehensive review. *Clinical Science* **131**:2201–2221.
836 doi:10.1042/CS20160786

837 Halbert CL, Demers GW, Galloway DA. 1991. The E7 gene of human papillomavirus type 16 is
838 sufficient for immortalization of human epithelial cells. *Journal of virology* **65**:473–8.

839 Hatterschide J, Bohidar AE, Grace M, Nulton TJ, Kim HW, Windle B, Morgan IM, Munger K,
840 White EA. 2019. PTPN14 degradation by high-risk human papillomavirus E7 limits
841 keratinocyte differentiation and contributes to HPV-mediated oncogenesis. *Proceedings of
842 the National Academy of Sciences of the United States of America* **116**:7033–7042.
843 doi:10.1073/pnas.1819534116

844 Hatterschide J, Brantly AC, Grace M, Munger K, White EA. 2020. A Conserved Amino Acid in
845 the C Terminus of Human Papillomavirus E7 Mediates Binding to PTPN14 and Repression
846 of Epithelial Differentiation. *Journal of Virology* **94**. doi:10.1128/jvi.01024-20

847 He C, Lv X, Huang C, Angeletti PC, Hua G, Dong J, Zhou J, Wang Z, Ma B, Chen X, Lambert
848 PF, Rueda BR, Davis JS, Wang C. 2019. A Human Papillomavirus-Independent Cervical
849 Cancer Animal Model Reveals Unconventional Mechanisms of Cervical Carcinogenesis.
850 *Cell Reports* **26**. doi:10.1016/j.celrep.2019.02.004

851 He C, Mao D, Hua G, Lv X, Chen X, Angeletti PC, Dong J, Remmenga SW, Rodabaugh KJ,
852 Zhou J, Lambert PF, Yang P, Davis JS, Wang C. 2015. The Hippo/YAP pathway interacts
853 with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. *EMBO
854 molecular medicine* **7**:1426–49. doi:10.15252/emmm.201404976

855 Heck D v, Yee CL, Howley PM, Münger K. 1992. Efficiency of binding the retinoblastoma protein
856 correlates with the transforming capacity of the E7 oncoproteins of the human

857 papillomaviruses. *Proceedings of the National Academy of Sciences of the United States of*
858 *America* **89**:4442–6. doi:10.1073/PNAS.89.10.4442

859 Helt A-MA-M, Galloway DA. 2002. Destabilization of the Retinoblastoma Tumor Suppressor by
860 Human Papillomavirus Type 16 E7 Is Not Sufficient To Overcome Cell Cycle Arrest in
861 Human Keratinocytes. *JOURNAL OF VIROLOGY* **75**:6737–6747.
862 doi:10.1128/JVI.75.15.6737-6747.2001

863 Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. 2020. Role of
864 YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. *Frontiers in*
865 *Cell and Developmental Biology* **0**:735. doi:10.3389/FCELL.2020.00735

866 Hicks-Berthet J, Ning B, Federico A, Tilston-Lunel A, Matschulat A, Ai X, Lenburg ME, Beane J,
867 Monti S, Varelas X. 2021. Yap/Taz inhibit goblet cell fate to maintain lung epithelial
868 homeostasis. *Cell Reports* **36**. doi:10.1016/J.CELREP.2021.109347

869 Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Münger K. 2005. Association of the
870 human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-
871 associated factor, p600. *Proceedings of the National Academy of Sciences of the United*
872 *States of America* **102**:11492–11497. doi:10.1073/pnas.0505337102

873 Hwang JH, Pores Fernando AT, Faure N, Andrabi S, Adelman G, Hahn WC, Marto JA,
874 Schaffhausen BS, Roberts TM. 2014. Polyomavirus small T antigen interacts with yes-
875 associated protein to regulate cell survival and differentiation. *Journal of virology*
876 **88**:12055–64. doi:10.1128/JVI.01399-14

877 Ibaraki T, Satake M, Kurai N, Ichijo M, Ito Y. 1993. Transacting activities of the E7 genes of
878 several types of human papillomavirus. *Virus Genes* **7**:187–196. doi:10.1007/BF01702398

879 Jewers RJ, Hildebrandt P, Ludlow JW, Kell B, McCance DJ. 1992. Regions of human
880 papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes.
881 *Journal of virology* **66**:1329–35.

882 Kho E-Y, Wang H-K, Banerjee NS, Broker TR, Chow LT. 2013. HPV-18 E6 mutants reveal p53
883 modulation of viral DNA amplification in organotypic cultures. *Proceedings of the National*
884 *Academy of Sciences* **110**:7542–7549. doi:10.1073/PNAS.1304855110

885 Knight JF, Sung VYC, Kuzmin E, Couzens AL, de Verteuil DA, Ratcliffe CDH, Coelho PP,
886 Johnson RM, Samavarchi-Tehrani P, Gruosso T, Smith HW, Lee W, Saleh SM, Zuo D,
887 Zhao H, Guiot MC, Davis RR, Gregg JP, Moraes C, Gingras AC, Park M. 2018. KIBRA
888 (WWC1) Is a Metastasis Suppressor Gene Affected by Chromosome 5q Loss in Triple-
889 Negative Breast Cancer. *Cell Reports* **22**:3191–3205. doi:10.1016/j.celrep.2018.02.095

890 Knox KK, Carrigan DR. 1992. In Vitro Suppression of Bone Marrow Progenitor Cell
891 Differentiation by Human Herpesvirus 6 Infection. *The Journal of Infectious Diseases*
892 **165**:925–928. doi:10.1093/INFDIS/165.5.925

893 Koshiol J, Lindsay L, Pimenta JM, Poole C, Jenkins D, Smith JS. 2008. Persistent human
894 papillomavirus infection and cervical neoplasia: A systematic review and meta-analysis.
895 *American Journal of Epidemiology*. doi:10.1093/aje/kwn036

896 Kranjec C, Holleywood C, Libert D, Griffin H, Mahmood R, Isaacson E, Doorbar J. 2017.
897 Modulation of basal cell fate during productive and transforming HPV-16 infection is
898 mediated by progressive E6-driven depletion of Notch. *The Journal of Pathology* **242**:448–
899 462. doi:10.1002/path.4917

900 Lawrence MS, Sougnez C, Lichtenstein L, Cibulskis K, Lander E, Gabriel SB, Getz G, Ally A,
901 Balasundaram M, Birol I, Bowlby R, Brooks D, Butterfield YSN, Carlsen R, Cheng D, Chu
902 A, Dhallan N, Guin R, Holt RA, Jones SJM, Lee D, Li HI, Marra MA, Mayo M, Moore RA,
903 Mungall AJ, Robertson AG, Schein JE, Sipahimalani P, Tam A, Thiessen N, Wong T,
904 Protopopov A, Santoso N, Lee S, Parfenov M, Zhang Jianhua, Mahadeshwar HS, Tang J,
905 Ren X, Seth S, Haseley P, Zeng D, Yang Lixing, Xu AW, Song X, Pantazi A, Bristow CA,
906 Hadjipanayis A, Seidman J, Chin L, Park PJ, Kucherlapati R, Akbani R, Casasent T, Liu W,
907 Lu Y, Mills G, Motter T, Weinstein J, Diao L, Wang J, Hong Fan Y, Liu J, Wang K, Auman
908 JT, Balu S, Bodenheimer T, Buda E, Hayes DN, Hoadley KA, Hoyle AP, Jefferys SR,
909 Jones CD, Kimes PK, Liu Yufeng, Marron JS, Meng S, Mieczkowski PA, Mose LE, Parker
910 JS, Perou CM, Prins JF, Roach J, Shi Y, Simons J v., Singh D, Soloway MG, Tan D,
911 Veluvolu U, Walter V, Waring S, Wilkerson MD, Wu J, Zhao N, Cherniack AD,
912 Hammerman PS, Tward AD, Pedamallu CS, Saksena G, Jung J, Ojesina AI, Carter SL,
913 Zack TI, Schumacher SE, Beroukhim R, Freeman SS, Meyerson M, Cho J, Noble MS,
914 DiCara D, Zhang H, Heiman DI, Gehlenborg N, Voet D, Lin P, Frazer S, Stojanov P, Liu
915 Yingchun, Zou L, Kim J, Muzny D, Doddapaneni HV, Kovar C, Reid J, Morton D, Han Y,
916 Hale W, Chao H, Chang K, Drummond JA, Gibbs RA, Kakkar N, Wheeler D, Xi L, Ciriello
917 G, Ladanyi M, Lee W, Ramirez R, Sander C, Shen R, Sinha R, Weinhold N, Taylor BS,
918 Aksoy BA, Dresdner G, Gao J, Gross B, Jacobsen A, Reva B, Schultz N, Sumer SO, Sun
919 Y, Chan TA, Morris LG, Stuart J, Benz S, Ng S, Benz C, Yau C, Baylin SB, Cope L,
920 Danilova L, Herman JG, Bootwalla M, Maglinte DT, Laird PW, Triche T, Weisenberger DJ,
921 van den Berg DJ, Agrawal N, Bishop J, Boutros PC, Bruce JP, Byers LA, Califano J, Carey
922 TE, Chen Z, Cheng H, Chiosea SI, Cohen E, Diergaardt B, Egloff AM, El-Naggar AK,
923 Ferris RL, Frederick MJ, Grandis JR, Guo Y, Haddad RI, Harris T, Hui ABY, Lee JJ,
924 Lippman SM, Liu FF, McHugh JB, Myers J, Ng PKS, Perez-Ordonez B, Pickering CR,
925 Prystowsky M, Romkes M, Saleh AD, Sartor MA, Seethala R, Seiwert TY, Si H, van Waes
926 C, Waggott DM, Wiznerowicz M, Yarbrough WG, Zhang Jiebin, Zuo Z, Burnett K, Crain D,
927 Gardner J, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton C, Shelton T,
928 Sherman M, Yena P, Black AD, Bowen J, Frick J, Gastier-Foster JM, Harper HA, Leraas K,
929 Lichtenberg TM, Ramirez NC, Wise L, Zmuda E, Baboud J, Jensen MA, Kahn AB, Pihl TD,
930 Pot DA, Srinivasan D, Walton JS, Wan Y, Burton RA, Davidsen T, Demchok JA, Eley G,
931 Ferguson ML, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z,
932 Yang Liming, Zenklusen JC, Saller C, Tarvin K, Chen C, Bollag R, Weinberger P,
933 Golusiński W, Golusiński P, Ibbs M, Korski K, Mackiewicz A, Suchorska W, Szybiak B,
934 Curley E, Beard C, Mitchell C, Sandusky G, Ahn J, Khan Z, Irish J, Waldron J, William WN,
935 Egea S, Gomez-Fernandez C, Herbert L, Bradford CR, Chepeha DB, Haddad AS, Jones
936 TR, Komarck CM, Malakh M, Moyer JS, Nguyen A, Peterson LA, Prince ME, Rozek LS,
937 Taylor EG, Walline HM, Wolf GT, Boice L, Chera BS, Funkhouser WK, Gulley ML,
938 Hackman TG, Hayward MC, Huang M, Rathmell WK, Salazar AH, Shockley WW, Shores
939 CG, Thorne L, Weissler MC, Wrenn S, Zanation AM, Brown BT, Pham M. 2015.
940 Comprehensive genomic characterization of head and neck squamous cell carcinomas.
941 *Nature* 2015 **517**:576–582. doi:10.1038/nature14129

942 Lewis JS, Beadle B, Bishop JA, Chernock RD, Colasacco C, Lacchetti C, Moncur JT, Rocco
943 JW, Schwartz MR, Seethala RR, Thomas NE, Westra WH, Faquin WC. 2018. Human
944 Papillomavirus Testing in Head and Neck Carcinomas: Guideline From the College of
945 American Pathologists. *Archives of Pathology & Laboratory Medicine* **142**:559–597.
946 doi:10.5858/ARPA.2017-0286-CP

947 Liu G, Yu F-X, Kim YC, Meng Z, Naipauer J, Looney DJ, Liu X, Gutkind JS, Mesri EA, Guan K-
948 L. 2014. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating
949 the Hippo pathway. *Oncogene* **34**:27 34:3536–3546. doi:10.1038/onc.2014.281

950 Liu K, Du S, Gao P, Zheng J. 2019. Verteporfin suppresses the proliferation, epithelial-
951 mesenchymal transition and stemness of head and neck squamous carcinoma cells via
952 inhibiting YAP1. *Journal of Cancer* **10**:4196–4207. doi:10.7150/jca.34145

953 Liu P, Zhang H, Liang X, Ma H, Luan F, Wang B, Bai F, Gao L, Ma C. 2015. HBV preS2
954 promotes the expression of TAZ via miRNA-338-3p to enhance the tumorigenesis of
955 hepatocellular carcinoma. *Oncotarget* **6**:29048. doi:10.18632/ONCOTARGET.4804

956 McBride AA. 2021. Human papillomaviruses: diversity, infection and host interactions. *Nature
957 Reviews Microbiology*. doi:10.1038/s41579-021-00617-5

958 McBride AA. 2017. Mechanisms and strategies of papillomavirus replication. *Biological
959 Chemistry* **398**:919–927. doi:10.1515/hsz-2017-0113

960 McLaughlin-Drubin ME, Bromberg-White JL, Meyers C. 2005. The role of the human
961 papillomavirus type 18 E7 oncoprotein during the complete viral life cycle. *Virology* **338**:61–
962 68. doi:10.1016/j.virol.2005.04.036

963 Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, Bieging-Rolett KT, Lee J,
964 Ivanochko D, Kozak MM, Chang DT, Longacre TA, Koong AC, Arrowsmith CH, Kim SK,
965 Vogel H, Wood LD, Hruban RH, Curtis C, Attardi LD. 2017. A p53 Super-tumor Suppressor
966 Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. *Cancer Cell*
967 **32**:460-473.e6. doi:10.1016/j.ccr.2017.09.007

968 Mendelsohn AH, Lai CK, Shintaku IP, Elashoff DA, Dubinett SM, Abemayor E, st. John MA.
969 2010. Histopathologic findings of HPV and p16 positive HNSCC. *The Laryngoscope*
970 **120**:1788–1794. doi:10.1002/lary.21044

971 Mirabello L, Yeager M, Yu K, Clifford GM, Xiao Y, Zhu B, Cullen M, Boland JF, Wentzensen N,
972 Nelson CW, Raine-Bennett T, Chen Z, Bass S, Song L, Yang Q, Steinberg M, Burdett L,
973 Dean M, Roberson D, Mitchell J, Lorey T, Franceschi S, Castle PE, Walker J, Zuna R,
974 Kreimer AR, Beachler DC, Hildesheim A, Gonzalez P, Porras C, Burk RD, Schiffman M.
975 2017. HPV16 E7 Genetic Conservation Is Critical to Carcinogenesis. *Cell* **170**:1164–
976 1174.e6.

977 Morgan EL, Patterson MR, Ryder EL, Lee SY, Wasson CW, Harper KL, Li Y, Griffin S, Blair GE,
978 Whitehouse A, Macdonald A. 2020. MicroRNA-18a targeting of the STK4/MST1 tumour
979 suppressor is necessary for transformation in HPV positive cervical cancer. *PLOS
980 Pathogens* **16**:e1008624. doi:10.1371/journal.ppat.1008624

981 Moroishi T, Hansen CG, Guan K-L. 2015. The emerging roles of YAP and TAZ in cancer.
982 *Nature Reviews Cancer* **15**:73–79. doi:10.1038/nrc3876

983 Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. 1989. Complex formation
984 of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene
985 product. *The EMBO Journal* **8**:4099–4105. doi:10.1002/j.1460-2075.1989.tb08594.x

986 Nguyen HT, Hong X, Tan S, Chen Q, Chan L, Fivaz M, Cohen SM, Voorhoeve PM. 2014. Viral
987 Small T Oncoproteins Transform Cells by Alleviating Hippo-Pathway-Mediated Inhibition of
988 the YAP Proto-oncogene. *Cell Reports* **8**:707–713. doi:10.1016/J.CELREP.2014.06.062

989 Niiya H, Lei J, Guo Y, Azuma T, Yakushijin Y, Sakai I, Hato T, Tohyama M, Hashimoto K,
990 Yasukawa M. 2006. Human herpesvirus 6 impairs differentiation of monocytes to dendritic
991 cells. *Experimental Hematology* **34**:642–653. doi:10.1016/J.EXPHEM.2006.02.001

992 Nishio M, To Y, Maehama T, Aono Y, Otani J, Hikasa H, Kitagawa A, Mimori K, Sasaki T,
993 Nishina H, Toyokuni S, Lydon JP, Nakao K, Mak TW, Kiyono T, Katabuchi H, Tashiro H,
994 Suzuki A. 2020. Endogenous YAP1 activation drives immediate onset of cervical
995 carcinoma in situ in mice. *Cancer Science* **111**:3576. doi:10.1111/CAS.14581

996 Olafsdottir T, Stacey SN, Sveinbjornsson G, Thorleifsson G, Norland K, Sigurgeirsson B,
997 Thorisdottir K, Kristjansson AK, Tryggvadottir L, Sarin KY, Benediktsson R, Jonasson JG,
998 Sigurdsson A, Jonasdottir A, Kristmundsdottir S, Jonsson H, Gylfason A, Oddsson A,
999 Fridriksdottir R, Gudjonsson SA, Zink F, Lund SH, Rognvaldsson S, Melsted P,
1000 Steinhorsdottir V, Gudmundsson J, Mikaelsdottir E, Olason PI, Stefansdottir L, Eggertsson
1001 HP, Halldorsson B v., Thorsteinsdottir U, Agustsson TT, Olafsson K, Olafsson JH, Sulem
1002 P, Rafnar T, Gudbjartsson DF, Stefansson K. 2021. Loss-of-Function Variants in the
1003 Tumor-Suppressor Gene PTPN14 Confer Increased Cancer Risk. *Cancer Research*
1004 **81**:1954–1964. doi:10.1158/0008-5472.CAN-20-3065

1005 Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. 2020. New insights in Hippo
1006 signalling alteration in human papillomavirus-related cancers. *Cellular Signalling* **109**:815.
1007 doi:10.1016/j.cellsig.2020.109815

1008 Omori H, Nishio M, Masuda M, Miyachi Y, Ueda F, Nakano T, Sato K, Mimori K, Taguchi K,
1009 Hikasa H, Nishina H, Tashiro H, Kiyono T, Mak TW, Nakao K, Nakagawa T, Maehama T,
1010 Suzuki A. 2020. YAP1 is a potent driver of the onset and progression of oral squamous cell
1011 carcinoma. *Science Advances* **6**:eaay3324. doi:10.1126/sciadv.aay3324

1012 Onnis A, Navari M, Antonicelli G, Morettini F, Mannucci S, de Falco G, Vigorito E, Leoncini L.
1013 2012. Epstein-Barr nuclear antigen 1 induces expression of the cellular microRNA hsa-
1014 miR-127 and impairing B-cell differentiation in EBV-infected memory B cells. New insights
1015 into the pathogenesis of Burkitt lymphoma. *Blood Cancer Journal* **2012** **2**:e84–e84.
1016 doi:10.1038/bcj.2012.29

1017 Pai SI, Westra WH. 2009. Molecular Pathology of Head and Neck Cancer: Implications for
1018 Diagnosis, Prognosis, and Treatment. *Annual Review of Pathology: Mechanisms of*
1019 *Disease* **4**:49–70. doi:10.1146/annurev.pathol.4.110807.092158

1020 Parish JL, Bean AM, Park RB, Androphy EJ. 2006. ChlR1 Is Required for Loading
1021 Papillomavirus E2 onto Mitotic Chromosomes and Viral Genome Maintenance. *Molecular*
1022 *Cell* **24**:867–876. doi:10.1016/j.molcel.2006.11.005

1023 Perez CA, Ott J, Mays DJ, Pietenpol JA. 2007. p63 consensus DNA-binding site: identification,
1024 analysis and application into a p63MH algorithm. *Oncogene* **26**:7363–7370.
1025 doi:10.1038/sj.onc.1210561

1026 Phelps WC, Münger K, Yee CL, Barnes JA, Howley PM. 1992. Structure-function analysis of the
1027 human papillomavirus type 16 E7 oncoprotein. *Journal of Virology* **66**:2418–2427.
1028 doi:10.1128/jvi.66.4.2418-2427.1992

1029 Poernbacher I, Baumgartner R, Marada SK, Edwards K, Stocker H. 2012. *Drosophila* Pez acts
1030 in Hippo signaling to restrict intestinal stem cell proliferation. *Current biology : CB* **22**:389–
1031 96. doi:10.1016/j.cub.2012.01.019

1032 Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF. 2009. Establishment of human
1033 papillomavirus infection requires cell cycle progression. *PLoS Pathogens* **5**:e1000318.
1034 doi:10.1371/journal.ppat.1000318

1035 Radley D, Saah A, Stanley M. 2016. Persistent infection with human papillomavirus 16 or 18 is
1036 strongly linked with high-grade cervical disease. *Human Vaccines & Immunotherapeutics*
1037 **12**:768–772. doi:10.1080/21645515.2015.1088616

1038 Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT.
1039 2007. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and
1040 inhibited by carrageenan. *Nature Medicine* 2007 **13**:857–861. doi:10.1038/nm1598

1041 Roh M, Song C, Kim J, Abdulkadir SA. 2005. Chromosomal Instability Induced by Pim-1 Is
1042 Passage-dependent and Associated with Dysregulation of Cyclin B1 *. *Journal of Biological
1043 Chemistry* **280**:40568–40577. doi:10.1074/JBC.M509369200

1044 Romeo MA, Gilardini Montani MS, Falcinelli L, Gaeta A, Nazzari C, Faggioni A, Cirone M. 2019.
1045 HHV-6B reduces autophagy and induces ER stress in primary monocytes impairing their
1046 survival and differentiation into dendritic cells. *Virus Research* **273**:197757.
1047 doi:10.1016/J.VIRUSRES.2019.197757

1048 Rositch AF, Koshiol J, Hudgens MG, Razzaghi H, Backes DM, Pimenta JM, Franco EL, Poole
1049 C, Smith JS. 2013. Patterns of persistent genital human papillomavirus infection among
1050 women worldwide: A literature review and meta-analysis. *International Journal of Cancer*
1051 **133**:1271–1285. doi:10.1002/ijc.27828

1052 Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL,
1053 Kantheti HS, Saghafinia S, Chakravarty D, Daian F, Gao Q, Bailey MH, Liang WW, Foltz
1054 SM, Shmulevich I, Ding L, Heins Z, Ochoa A, Gross B, Gao J, Zhang Hongxin, Kundra R,
1055 Kandoh C, Bahcecici I, Dervishi L, Dogrusoz U, Zhou W, Shen H, Laird PW, Way GP,
1056 Greene CS, Liang H, Xiao Y, Wang C, Iavarone A, Berger AH, Bivona TG, Lazar AJ,
1057 Hammer GD, Giordano T, Kwong LN, McArthur G, Huang C, Tward AD, Frederick MJ,
1058 McCormick F, Meyerson M, Caesar-Johnson SJ, Demchok JA, Felau I, Kasapi M,
1059 Ferguson ML, Hutter CM, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Zhang J
1060 (Julia), Chudamani S, Liu J, Lolla L, Naresh R, Pihl T, Sun Q, Wan Y, Wu Y, Cho J,
1061 DeFreitas T, Frazer S, Gehlenborg N, Getz G, Heiman DI, Kim J, Lawrence MS, Lin P,
1062 Meier S, Noble MS, Saksena G, Voet D, Zhang Hailei, Bernard B, Chambwe N, Dhankani
1063 V, Knijnenburg T, Kramer R, Leinonen K, Liu Y, Miller M, Reynolds S, Shmulevich I,
1064 Thorsson V, Zhang W, Akbani R, Broom BM, Hegde AM, Ju Z, Kanchi RS, Korkut A, Li J,

1065 Liang H, Ling S, Liu W, Lu Y, Mills GB, Ng KS, Rao A, Ryan M, Wang Jing, Weinstein JN,
1066 Zhang J, Abeshouse A, Armenia J, Chakravarty D, Chatila WK, de Brujin I, Gross BE,
1067 Heins ZJ, Kundra R, La K, Ladanyi M, Luna A, Nissan MG, Ochoa A, Phillips SM, Reznik
1068 E, Sanchez-Vega F, Sander C, Schultz N, Sheridan R, Sumer SO, Sun Y, Taylor BS,
1069 Wang Jiaoajiao, Zhang Hongxin, Anur P, Peto M, Spellman P, Benz C, Stuart JM, Wong
1070 CK, Yau C, Hayes DN, Parker JS, Wilkerson MD, Ally A, Balasundaram M, Bowlby R,
1071 Brooks D, Carlsen R, Chuah E, Dhalla N, Holt R, Jones SJM, Kasaian K, Lee D, Ma Y,
1072 Marra MA, Mayo M, Moore RA, Mungall AJ, Mungall K, Robertson AG, Sadeghi S, Schein
1073 JE, Sipahimalani P, Tam A, Thiessen N, Tse K, Wong T, Berger AC, Beroukhim R,
1074 Cherniack AD, Cibulskis C, Gabriel SB, Gao GF, Ha G, Meyerson M, Schumacher SE,
1075 Shih J, Kucherlapati MH, Kucherlapati RS, Baylin S, Cope L, Danilova L, Bootwalla MS, Lai
1076 PH, Maglente DT, van den Berg DJ, Weisenberger DJ, Auman JT, Balu S, Bodenheimer T,
1077 Fan C, Hoadley KA, Hoyle AP, Jefferys SR, Jones CD, Meng S, Mieczkowski PA, Mose
1078 LE, Perou AH, Perou CM, Roach J, Shi Y, Simons J v., Skelly T, Soloway MG, Tan D,
1079 Veluvolu U, Fan H, Hinoue T, Laird PW, Shen H, Zhou W, Bellair M, Chang K, Covington
1080 K, Creighton CJ, Dinh H, Doddapaneni HV, Donehower LA, Drummond J, Gibbs RA, Glenn
1081 R, Hale W, Han Y, Hu J, Korchina V, Lee S, Lewis L, Li W, Liu X, Morgan M, Morton D,
1082 Muzny D, Santibanez J, Sheth M, Shinbrot E, Wang L, Wang M, Wheeler DA, Xi L, Zhao F,
1083 Hess J, Appelbaum EL, Bailey M, Cordes MG, Ding L, Fronick CC, Fulton LA, Fulton RS,
1084 Kandoth C, Mardis ER, McLellan MD, Miller CA, Schmidt HK, Wilson RK, Crain D, Curley
1085 E, Gardner J, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton C, Shelton T,
1086 Sherman M, Thompson E, Yena P, Bowen J, Gastier-Foster JM, Gerken M, Leraas KM,
1087 Lichtenberg TM, Ramirez NC, Wise L, Zmuda E, Corcoran N, Costello T, Hovens C,
1088 Carvalho AL, de Carvalho AC, Fregnani JH, Longatto-Filho A, Reis RM, Scapulatempo-
1089 Neto C, Silveira HCS, Vidal DO, Burnette A, Eschbacher J, Hermes B, Noss A, Singh R,
1090 Anderson ML, Castro PD, Ittmann M, Huntsman D, Kohl B, Le X, Thorp R, Andry C, Duffy
1091 ER, Lyadov V, Paklina O, Setdikova G, Shabunin A, Tavobilov M, McPherson C, Warnick
1092 R, Berkowitz R, Cramer D, Feltmate C, Horowitz N, Kibel A, Muto M, Raut CP, Malykh A,
1093 Barnholtz-Sloan JS, Barrett W, Devine K, Fulop J, Ostrom QT, Shimmel K, Wolinsky Y,
1094 Sloan AE, de Rose A, Giulante F, Goodman M, Karlan BY, Hagedorn CH, Eckman J, Harr
1095 J, Myers J, Tucker K, Zach LA, Deyarmin B, Hu H, Kvecher L, Larson C, Mural RJ, Somiari
1096 S, Vicha A, Zelinka T, Bennett J, Iacocca M, Rabeno B, Swanson P, Latour M, Lacombe L,
1097 Tétu B, Bergeron A, McGraw M, Staugaitis SM, Chabot J, Hibshoosh H, Sepulveda A, Su
1098 T, Wang T, Potapova O, Voronina O, Desjardins L, Mariani O, Roman-Roman S, Sastre X,
1099 Stern MH, Cheng F, Signoretti S, Berchuck A, Bigner D, Lipp E, Marks J, McCall S,
1100 McLendon R, Secord A, Sharp A, Behera M, Brat DJ, Chen A, Delman K, Force S, Khuri F,
1101 Magliocca K, Maithel S, Olson JJ, Owonikoko T, Pickens A, Ramalingam S, Shin DM, Sica
1102 G, van Meir EG, Zhang Hongzheng, Eijckenboom W, Gillis A, Korpershoek E, Looijenga L,
1103 Oosterhuis W, Stoop H, van Kessel KE, Zwarthoff EC, Calatozzolo C, Cuzzubbo
1104 S, DiMeco F, Finocchiaro G, Mattei L, Perin A, Pollo B, Chen C, Houck J, Lohavanichbutr
1105 P, Hartmann A, Stoehr C, Stoehr R, Taubert H, Wach S, Wullich B, Kyeler W, Murawa D,
1106 Wiznerowicz M, Chung K, Edenfield WJ, Martin J, Baudin E, Bubley G, Bueno R, de
1107 Rienzo A, Richards WG, Kalkanis S, Mikkelsen T, Noushmeir H, Scarpace L, Girard N,
1108 Aymerich M, Campo E, Giné E, Guillermo AL, van Bang N, Hanh PT, Phu BD, Tang Y,
1109 Colman H, Evasion K, Dottino PR, Martignetti JA, Gabra H, Juhl H, Akeredolu T, Stepa S,
1110 Hoon D, Ahn K, Kang KJ, Beuschlein F, Breggia A, Birrer M, Bell D, Borad M, Bryce AH,
1111 Castle E, Chandan V, Cheville J, Copland JA, Farnell M, Flotte T, Giama N, Ho T, Kendrick

1112 M, Kocher JP, Kopp K, Moser C, Nagorney D, O'Brien D, O'Neill BP, Patel T, Petersen G,
1113 Que F, Rivera M, Roberts L, Smallridge R, Smyrk T, Stanton M, Thompson RH, Torbenson
1114 M, Yang JD, Zhang L, Brimo F, Ajani JA, Gonzalez AMA, Behrens C, Bondaruk J,
1115 Broaddus R, Czerniak B, Esmaeli B, Fujimoto J, Gershenwald J, Guo C, Logothetis C,
1116 Meric-Bernstam F, Moran C, Ramondetta L, Rice D, Sood A, Tamboli P, Thompson T,
1117 Troncoso P, Tsao A, Wistuba I, Carter C, Haydu L, Hersey P, Jakrot V, Kakavand H,
1118 Kefford R, Lee K, Long G, Mann G, Quinn M, Saw R, Scolyer R, Shannon K, Spillane A,
1119 Stretch J, Synott M, Thompson J, Wilmott J, Al-Ahmadie H, Chan TA, Ghossein R,
1120 Gopalan A, Levine DA, Reuter V, Singer S, Singh B, Tien NV, Broudy T, Mirsaldi C, Nair P,
1121 Drwiega P, Miller J, Smith J, Zaren H, Park JW, Hung NP, Kebebew E, Linehan WM,
1122 Metwalli AR, Pacak K, Pinto PA, Schiffman M, Schmidt LS, Vocke CD, Wentzensen N,
1123 Worrell R, Yang H, Moncrieff M, Goparaju C, Melamed J, Pass H, Botnariuc N, Caraman I,
1124 Cernat M, Chemencedji I, Clipca A, Doruc S, Gorincioi G, Mura S, Pirtac M, Stancul I,
1125 Tcaciu D, Albert M, Alexopoulou I, Arnaout A, Bartlett J, Engel J, Gilbert S, Parfitt J,
1126 Sekhon H, Thomas G, Rassl DM, Rintoul RC, Bifulco C, Tamakawa R, Urba W, Hayward
1127 N, Timmers H, Antenucci A, Facciolo F, Grazi G, Marino M, Merola R, de Krijger R,
1128 Gimenez-Roqueplo AP, Piché A, Chevalier S, McKercher G, Birsoy K, Barnett G, Brewer
1129 C, Farver C, Naska T, Pennell NA, Raymond D, Schilero C, Smolenski K, Williams F,
1130 Morrison C, Borgia JA, Liptay MJ, Pool M, Seder CW, Junker K, Omberg L, Dinkin M,
1131 Manikhas G, Alvaro D, Bragazzi MC, Cardinale V, Carpino G, Gaudio E, Chesla D,
1132 Cottingham S, Dubina M, Moiseenko F, Dhanasekaran R, Becker KF, Janssen KP, Slotta-
1133 Huspenina J, Abdel-Rahman MH, Aziz D, Bell S, Cebulla CM, Davis A, Duell R, Elder JB,
1134 Hilty J, Kumar B, Lang J, Lehman NL, Mandt R, Nguyen P, Pilarski R, Rai K, Schoenfield
1135 L, Senecal K, Wakely P, Hansen P, Lechan R, Powers J, Tischler A, Grizzle WE, Sexton
1136 KC, Kastl A, Henderson J, Porten S, Waldmann J, Fassnacht M, Asa SL, Schadendorf D,
1137 Couce M, Graefen M, Huland H, Sauter G, Schlomm T, Simon R, Tennstedt P, Olabode O,
1138 Nelson M, Bathe O, Carroll PR, Chan JM, Disaia P, Glenn P, Kelley RK, Landen CN,
1139 Phillips J, Prados M, Simko J, Smith-McCune K, VandenBerg S, Roggin K, Fehrenbach A,
1140 Kendler A, Sifri S, Steele R, Jimeno A, Carey F, Forgie I, Mannelli M, Carney M,
1141 Hernandez B, Campos B, Herold-Mende C, Jungk C, Unterberg A, von Deimling A, Bossler
1142 A, Galbraith J, Jacobus L, Knudson M, Knutson T, Ma D, Milhem M, Sigmund R, Godwin
1143 AK, Madan R, Rosenthal HG, Adebamowo C, Adebamowo SN, Boussioutas A, Beer D,
1144 Giordano T, Mes-Masson AM, Saad F, Bocklage T, Landrum L, Mannel R, Moore K,
1145 Moxley K, Postier R, Walker J, Zuna R, Feldman M, Valdivieso F, Dhir R, Luketich J,
1146 Pinero EMM, Quintero-Aguilo M, Carlotti CG, dos Santos JS, Kemp R, Sankarankutty A,
1147 Tirapelli D, Catto J, Agnew K, Swisher E, Creaney J, Robinson B, Shelley CS, Godwin EM,
1148 Kendall S, Shipman C, Bradford C, Carey T, Haddad A, Moyer J, Peterson L, Prince M,
1149 Rozek L, Wolf G, Bowman R, Fong KM, Yang I, Korst R, Rathmell WK, Fantacone-
1150 Campbell JL, Hooke JA, Kovatich AJ, Shriver CD, DiPersio J, Drake B, Govindan R, Heath
1151 S, Ley T, van Tine B, Westervelt P, Rubin MA, Lee J il, Aredes ND, Mariamidze A, van
1152 Allen EM, Cherniack AD, Ciriello G, Sander C, Schultz N. 2018. Oncogenic Signaling
1153 Pathways in The Cancer Genome Atlas. *Cell* **173**:321-337.e10.
1154 doi:10.1016/J.CELL.2018.03.035

1155 Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein
1156 encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. *Cell*
1157 **63**:1129–1136. doi:10.1016/0092-8674(90)90409-8

1158 Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin
1159 V, Avruch J, Brummelkamp TR, Camargo FD. 2011. Yap1 acts downstream of α -catenin to
1160 control epidermal proliferation. *Cell* **144**:782–795. doi:10.1016/j.cell.2011.02.031

1161 Seavey SE, Holubar M, Saucedo LJ, Perry ME. 1999. The E7 Oncoprotein of Human
1162 Papillomavirus Type 16 Stabilizes p53 through a Mechanism Independent of p19ARF.
1163 *Journal of Virology* **73**:7590–7598. doi:10.1128/jvi.73.9.7590-7598.1999

1164 Shanzer M, Ricardo-Lax I, Keshet R, Reuven N, Shaul Y. 2015. The polyomavirus middle T-
1165 antigen oncogene activates the Hippo pathway tumor suppressor Lats in a Src-dependent
1166 manner. *Oncogene* **34**:4190–4198. doi:10.1038/onc.2014.347

1167 Strati K, Lambert PF. 2007. Role of Rb-dependent and Rb-independent functions of
1168 papillomavirus E7 oncogene in head and neck cancer. *Cancer Research* **67**:11585–11593.
1169 doi:10.1158/0008-5472.CAN-07-3007

1170 Styles CT, Bazot Q, Parker GA, White RE, Paschos K, Allday MJ. 2017. EBV epigenetically
1171 suppresses the B cell-to-plasma cell differentiation pathway while establishing long-term
1172 latency. *PLOS Biology* **15**:e2001992. doi:10.1371/JOURNAL.PBIO.2001992

1173 Szalmás A, Tomaić V, Basukala O, Massimi P, Mittal S, Kónya J, Banks L. 2017. The PTPN14
1174 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7. *Journal of*
1175 *Virology* **91**:e00057-17. doi:10.1128/jvi.00057-17

1176 Szymaniak AD, Mahoney JE, Cardoso W v., Varelas X. 2015. Crumbs3-Mediated Polarity
1177 Directs Airway Epithelial Cell Fate through the Hippo Pathway Effector Yap. *Developmental*
1178 *Cell* **34**:283–296. doi:10.1016/J.DEVCEL.2015.06.020

1179 Tian Y, Li D, Dahl J, You J, Benjamin T. 2004. Identification of TAZ as a Binding Partner of the
1180 Polyomavirus T Antigens. *Journal of Virology* **78**:12657–12664.
1181 doi:10.1128/jvi.78.22.12657-12664.2004

1182 Totaro A, Castellan M, Battilana G, Zanconato F, Azzolin L, Giulitti S, Cordenonsi M, Piccolo S.
1183 2017. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate.
1184 *Nature Communications* **8**:1–13. doi:10.1038/ncomms15206

1185 Wang H-K, Duffy AA, Broker TR, Chow LT. 2009. Robust production and passaging of
1186 infectious HPV in squamous epithelium of primary human keratinocytes. *Genes &*
1187 *development* **23**:181–94. doi:10.1101/gad.1735109

1188 Wang S, Drummond ML, Guerrero-Juarez CF, Tarapore E, MacLean AL, Stabell AR, Wu SC,
1189 Gutierrez G, That BT, Benavente CA, Nie Q, Atwood SX. 2020. Single cell transcriptomics
1190 of human epidermis identifies basal stem cell transition states. *Nature Communications*
1191 **2020** **11**:1 **11**:1–14. doi:10.1038/s41467-020-18075-7

1192 Wang W, Huang J, Wang X, Yuan J, Li X, Feng L, Park J il, Chen J. 2012. PTPN14 is required
1193 for the density-dependent control of YAP1. *Genes and Development* **26**:1959–1971.
1194 doi:10.1101/gad.192955.112

1195 Wang Z, Lu W, Zhang Y, Zou F, Jin Z, Zhao T. 2020. The Hippo Pathway and Viral Infections.
1196 *Frontiers in Microbiology* **0**:3033. doi:10.3389/FMICB.2019.03033

1197 Webb Strickland S, Brimer N, Lyons C, vande Pol SB. 2018. Human Papillomavirus E6
1198 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. *Virology*
1199 **516**:127–138. doi:10.1016/J.VIROL.2018.01.003

1200 Werness BA, Levine AJ, Howley PM. 1990. Association of human papillomavirus types 16 and
1201 18 E6 proteins with p53. *Science* **248**:76–79. doi:10.1126/science.2157286

1202 White EA, Kramer RE, Hwang JH, Pores Fernando AT, Naetar N, Hahn WC, Roberts TM,
1203 Schaffhausen BS, Livingston DM, Howley PM. 2015. Papillomavirus E7 Oncoproteins
1204 Share Functions with Polyomavirus Small T Antigens. *Journal of Virology* **89**:2857–2865.
1205 doi:10.1128/jvi.03282-14

1206 White EA, Kramer RE, Tan MJA, Hayes SD, Harper JW, Howley PM. 2012a. Comprehensive
1207 Analysis of Host Cellular Interactions with Human Papillomavirus E6 Proteins Identifies
1208 New E6 Binding Partners and Reflects Viral Diversity. *Journal of Virology* **86**:13174–13186.
1209 doi:10.1128/JVI.02172-12

1210 White EA, Münger K, Howley PM. 2016. High-Risk Human Papillomavirus E7 Proteins Target
1211 PTPN14 for Degradation. *mBio* **7**:e01530-16. doi:10.1128/mBio.01530-16

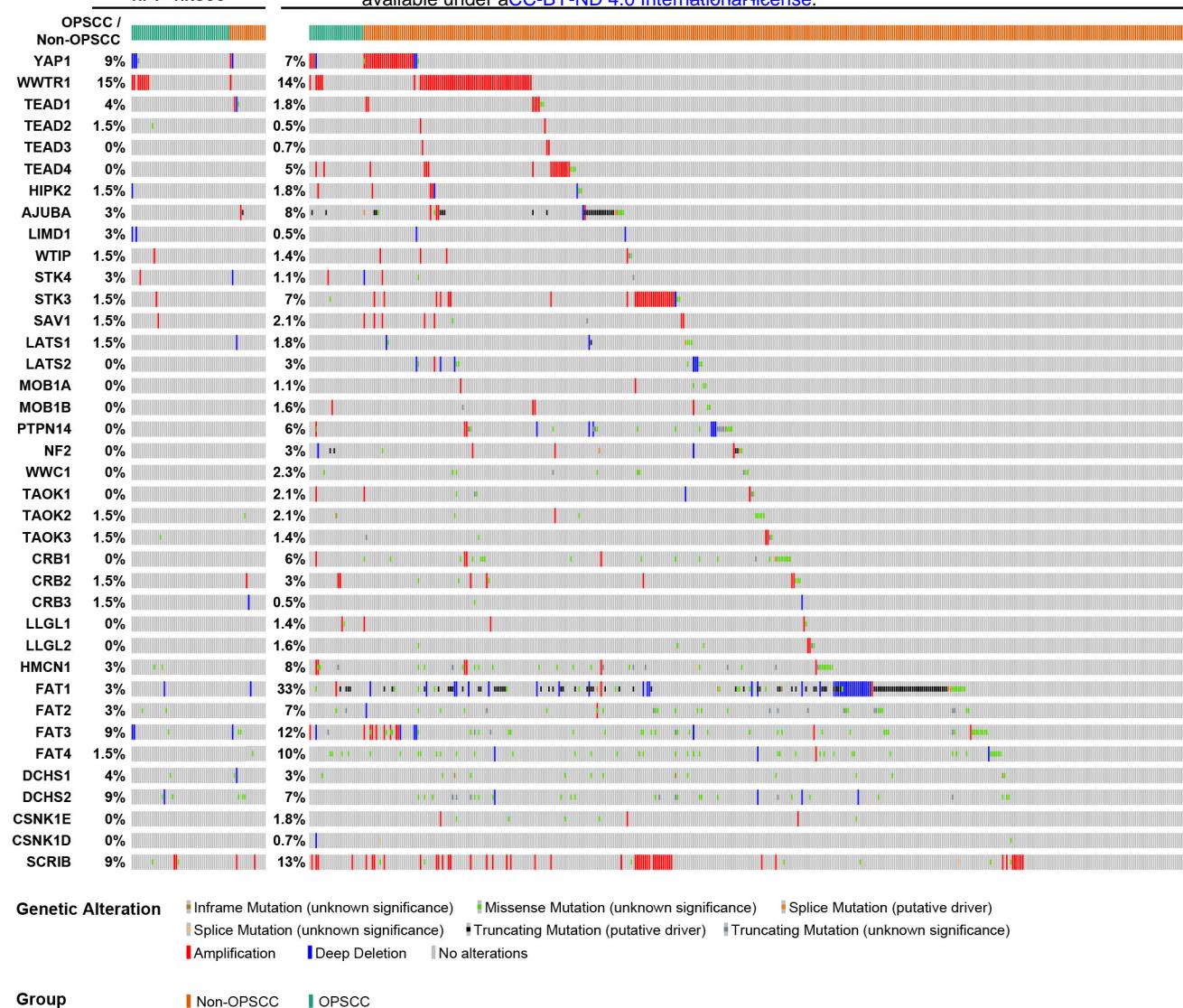
1212 White EA, Sowa ME, Tan MJA, Jeudy S, Hayes SD, Santha S, Münger K, Harper JW, Howley
1213 PM. 2012b. Systematic identification of interactions between host cell proteins and E7
1214 oncoproteins from diverse human papillomaviruses. *Proceedings of the National Academy
1215 of Sciences of the United States of America* **109**:E260-7. doi:10.1073/pnas.1116776109

1216 Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, Shrestha K,
1217 Cahan P, Stanger BZ, Camargo FD. 2014. Hippo Pathway Activity Influences Liver Cell
1218 Fate. *Cell* **157**:1324–1338. doi:10.1016/J.CELL.2014.03.060

1219 You J, Croyle JL, Nishimura A, Ozato K, Howley PM. 2004. Interaction of the bovine
1220 papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes.
1221 *Cell* **117**:349–360. doi:10.1016/S0092-8674(04)00402-7

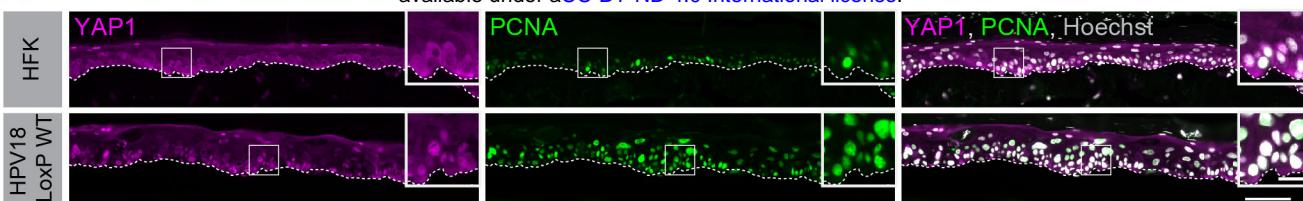
1222 Yuan Y, Park J, Feng A, Awasthi P, Wang Z, Chen Q, Iglesias-Bartolome R. 2020. YAP1/TAZ-
1223 TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation
1224 and limiting KLF4 activity. *Nature Communications* **11**:1–14. doi:10.1038/s41467-020-
1225 15301-0

1226 Yuan Y, Salinas Parra N, Chen Q, Iglesias-Bartolome R. 2021. Oncogenic Hedgehog-
1227 Smoothened Signaling Depends on YAP1–TAZ/TEAD Transcription to Restrain
1228 Differentiation in Basal Cell Carcinoma. *Journal of Investigative Dermatology*.
1229 doi:10.1016/J.JID.2021.06.020


1230 Yun H-Y, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin H-C, Park H, Oh B-H, Kim WK, Bae
1231 K-H, Lee SC, Lee E-W, Ku B, Kim SJ. 2019. Structural basis for recognition of the tumor
1232 suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. *PLOS Biology*
1233 **17**:e3000367. doi:10.1371/journal.pbio.3000367

1234 Zhang H, Pasolli HA, Fuchs E. 2011. Yes-associated protein (YAP) transcriptional coactivator
1235 functions in balancing growth and differentiation in skin. *Proceedings of the National
1236 Academy of Sciences* **108**:2270–2275. doi:10.1073/pnas.1019603108

1237 Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K,
1238 Chinnaiyan A, Halder G, Lai Z-C, Guan K-L. 2007. Inactivation of YAP oncoprotein by the
1239 Hippo pathway is involved in cell contact inhibition and tissue growth control. *Genes &*
1240 *Development* **21**:2747–2761. doi:10.1101/GAD.1602907


1241 Zhao R, Fallon TR, Saladi SV, Pardo-Saganta A, Villoria J, Mou H, Vinarsky V, Gonzalez-
1242 Celeiro M, Nunna N, Hariri LP, Camargo F, Ellisen LW, Rajagopal J. 2014. Yap Tunes
1243 Airway Epithelial Size and Architecture by Regulating the Identity, Maintenance, and Self-
1244 Renewal of Stem Cells. *Developmental Cell* **30**:151–165. doi:10.1016/j.devcel.2014.06.004

1245

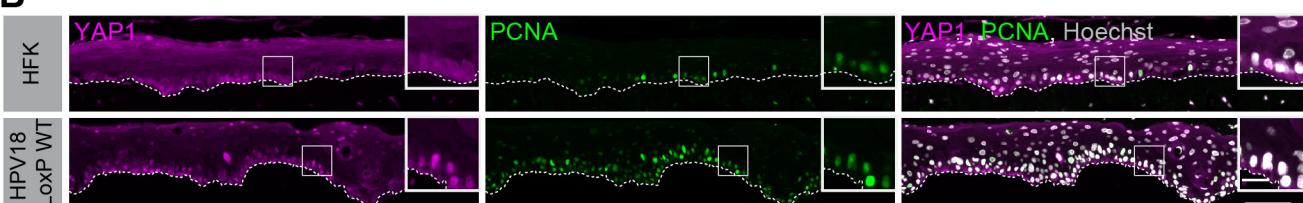
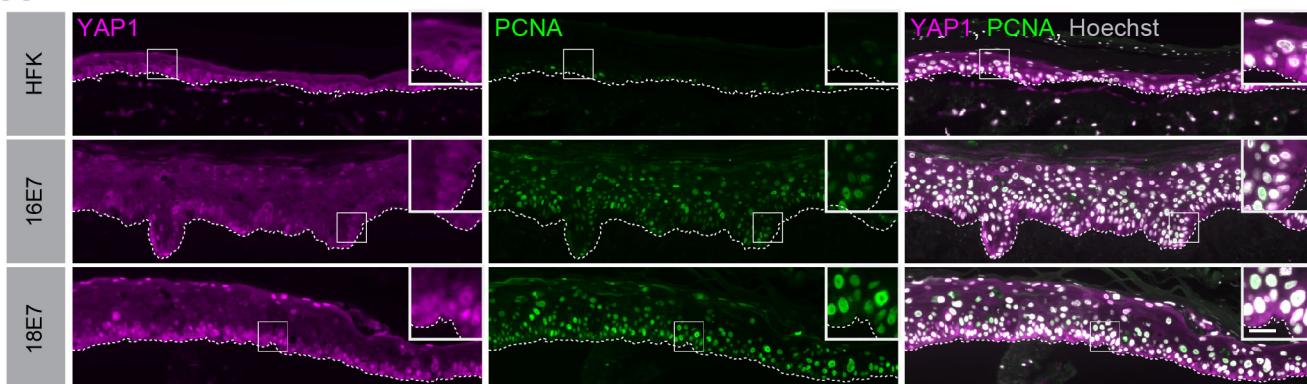


Figure 1—figure supplement 1 | HPV-positive HNSCC have fewer Hippo pathway alterations and lower expression of differentiation genes. cBioPortal analysis for genomic mutations and copy number alterations in HPV+/- HNSCC and OPSCC. Oncoprint displays specific genomic alterations in individual tumor samples.

A



B

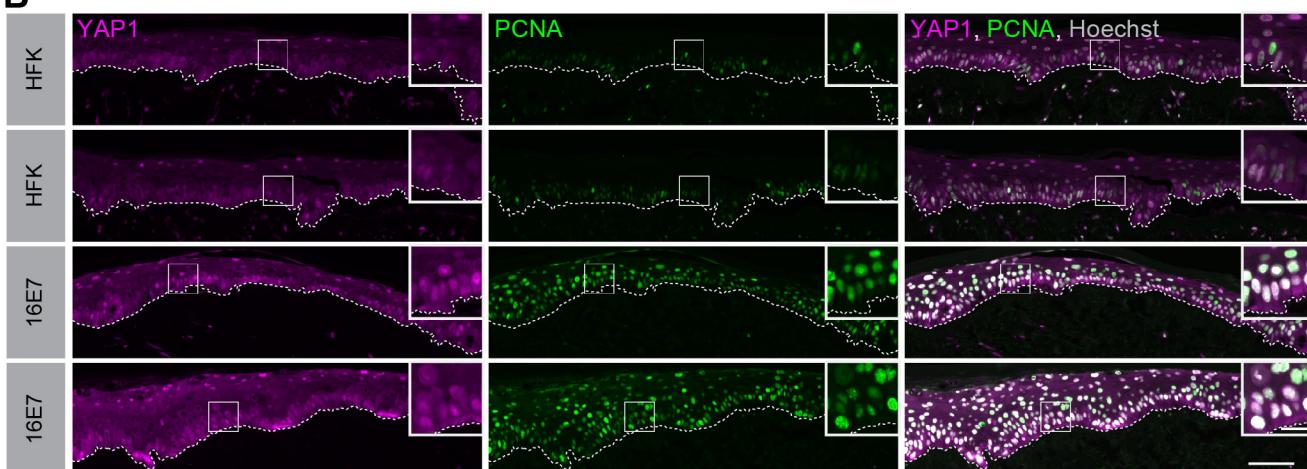
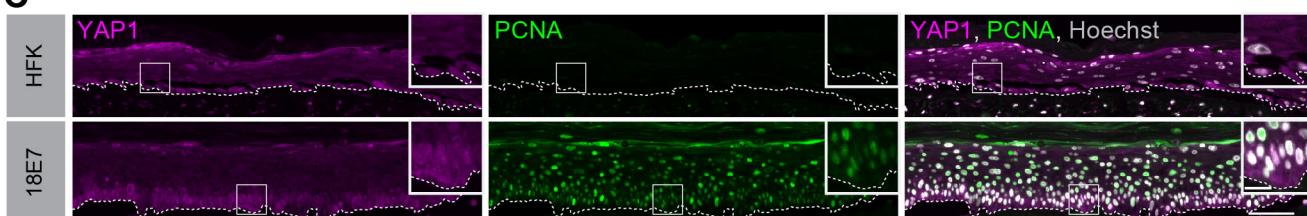
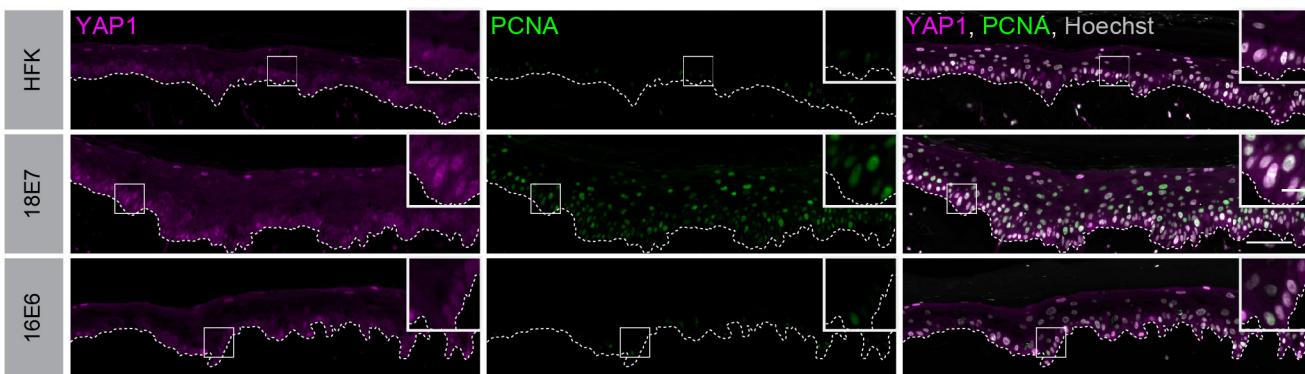


Figure 1—figure supplement 2 | HPV18 E7 activates YAP1 in basal keratinocytes. (A-B) Additional replicates of organotypic cultures grown from primary HFK or HFK harboring the HPV18 genome. FFPE sections were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray). White dashed lines indicate the basement membrane. White boxes indicate the location of insets in main images. Main image scale bars = 100 μm. Inset scale bars = 25 μm.


A


B

C

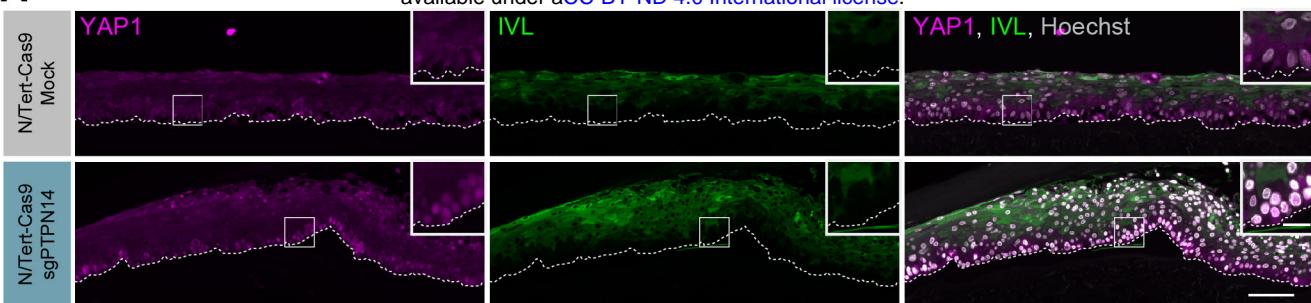


Figure 1—figure supplement 3 | HPV E7 activates YAP1 in basal keratinocytes. Additional replicates of organotypic cultures grown from primary HFK or HFK transduced with retroviral expression encoding HPV E7 proteins. FFPE sections of cultures grown from (A) HFK or HFK expressing HPV16 E7 or HPV18 E7, (B) HFK or HFK transduced with HPV16 E7, or (E) HFK and HFK expressing HPV18 E7 were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray). White dashed lines indicate the basement membrane. White boxes indicate the location of insets in main images. Main image scale bars = 100 µm. Inset scale bars = 25 µm.

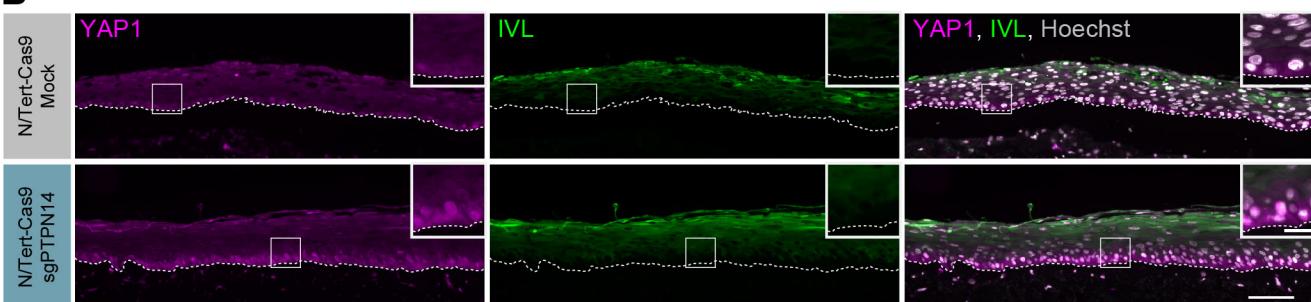
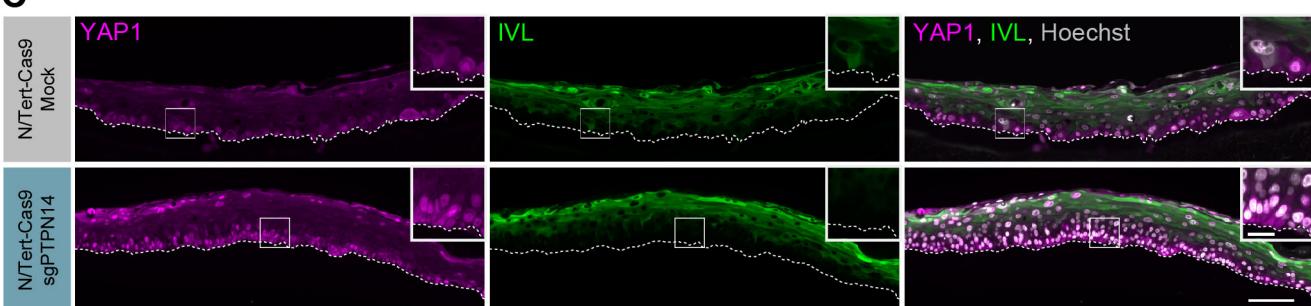
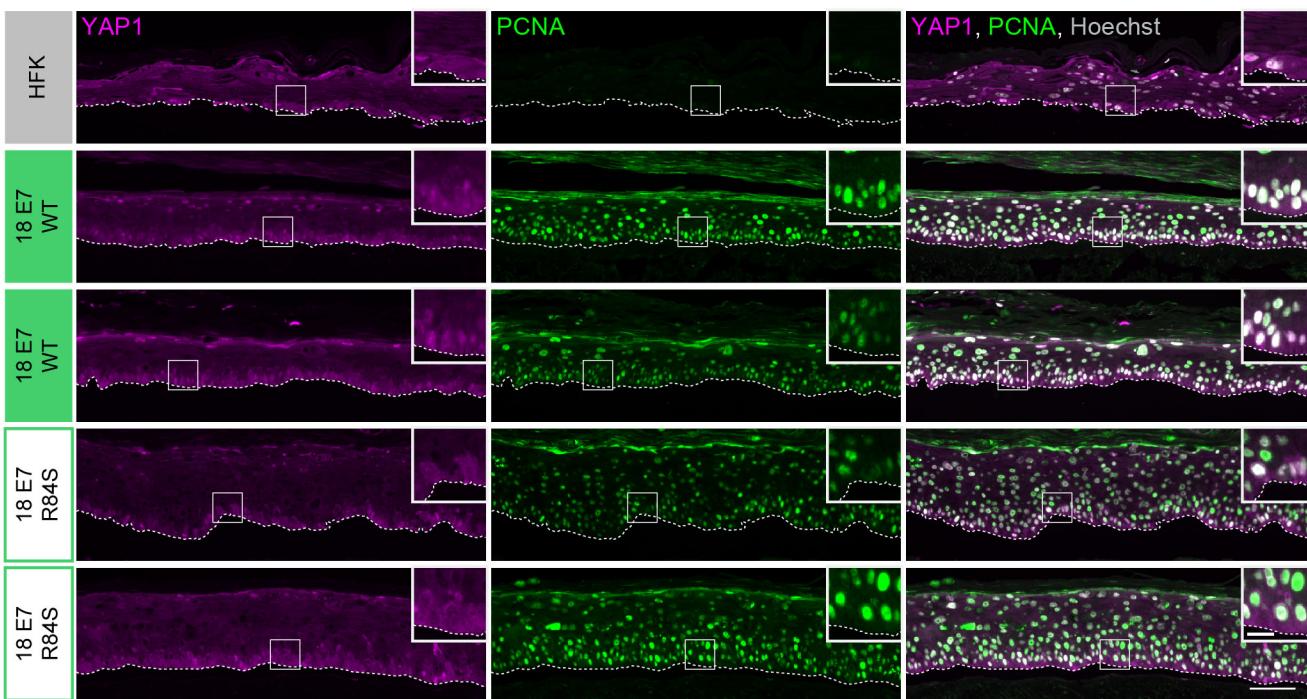


Figure 1—figure supplement 4 | HPV E6 does not activate YAP1 in basal keratinocytes. Additional replicates of organotypic cultures grown from primary HFK or HFK transduced with retroviral expression encoding HPV E6 or E7 proteins. FFPE sections were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray). White dashed lines indicate the basement membrane. White boxes indicate the location of insets in main images. Main image scale bars = 100 μ m. Inset scale bars = 25 μ m.


A


B

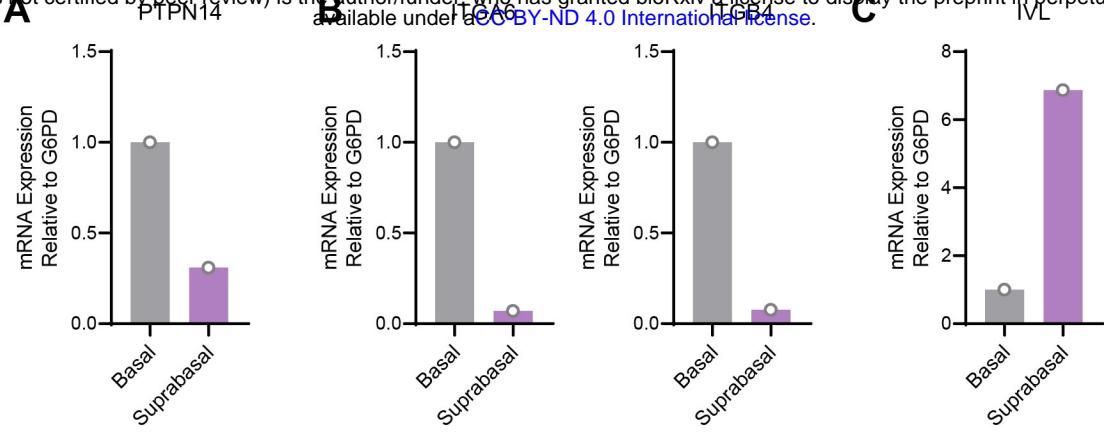

C

Figure 2—figure supplement 1 | PTPN14 knockout activates YAP1 in basal keratinocytes. Additional replicates of organotypic cultures grown from N/Tert-Cas9 keratinocytes (A-C) FFPE sections from mock or sgPTPN14 transfected N/Tert-Cas9 keratinocytes were stained for YAP1 (magenta), IVL (green), and Hoechst (Gray). White dashed lines indicate the basement membrane. White boxes indicate the location of insets in main images. Main image scale bars = 100 μm. Inset scale bars = 25 μm.

Figure 2—figure supplement 2 | HPV E7 activates YAP1 in basal keratinocytes through PTPN14 degradation. Additional replicates of organotypic cultures grown from primary HFK transduced with retroviral expression vectors encoding HPV18 E7 WT or R84S. FFPE sections from parental HFK, HPV18 E7 WT or HPV18 E7 R84S expressing HFK were stained for YAP1 (magenta), PCNA (green), and Hoechst (Gray). White dashed lines indicate the basement membrane. White boxes indicate the location of insets in main images. Main image scale bars = 100 μ m. Inset scale bars = 25 μ m.

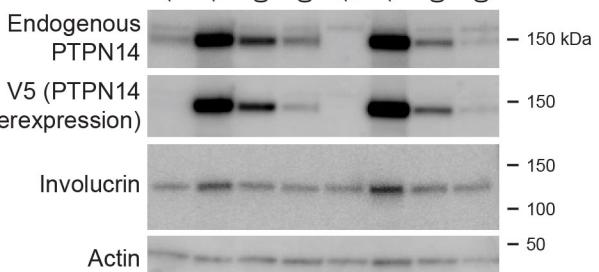
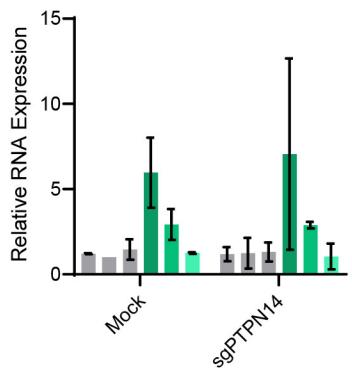
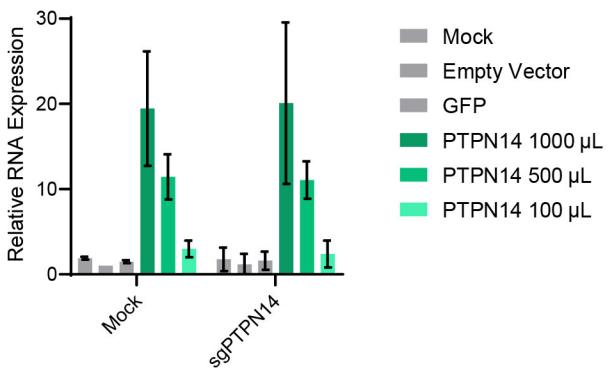


Figure 3—figure supplement 1 | PTPN14 expression is enriched in basal keratinocytes in HPV 18 E7 expressing organotypic cultures. Basal and suprabasal layers from a 3D organotypic culture grown from HFK transduced with a retroviral expression vector encoding HPV18 E7 were dissected using laser capture microdissection. RNA was purified from isolated layers and qRT-PCR was used to assess the expression of PTPN14 (A), the basal cell markers ITGA6 and ITGB4 (B), and the differentiation marker IVL (C). Graphs display individual data points.

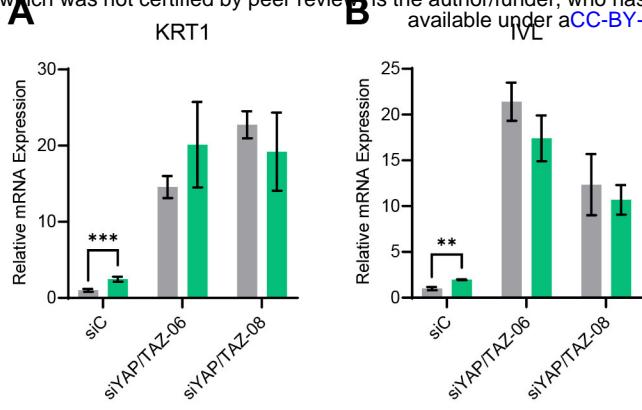
A N/Tert-Cas9: Mock sgPTPN14


pHAGE: GFP PTPN14 GFP PTPN14

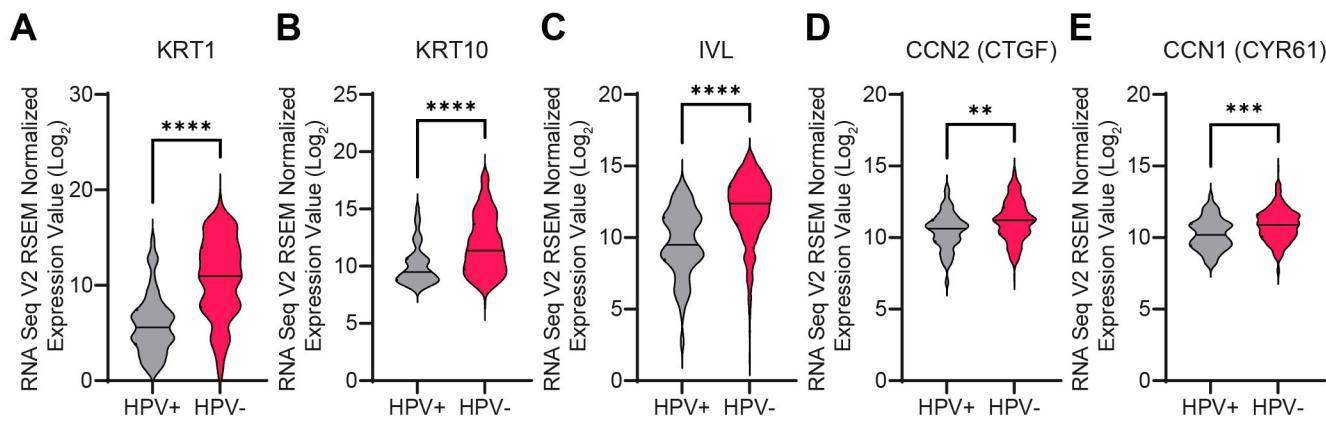
mL virus: 1.0 1.0 0.5 0.1 1.0 1.0 0.5 0.1


B

IVL


C

KRT10


Figure 4—figure supplement 1 | PTPN14 overexpression promotes differentiation in keratinocytes.

NTert-Cas9 Mock and sgPTPN14-1 keratinocytes were transduced with lentiviruses encoding GFP or PTPN14 or the empty vector control. (A) Cell lysates were subjected to SDS/PAGE/Western analysis and probed with antibodies to PTPN14, V5-tag, Involucrin, and Actin. (B) qRT-PCR was used to measure the expression of the differentiation markers IVL and KRT10 relative to G6PD. Graphs display the mean \pm SD of two independent replicates.

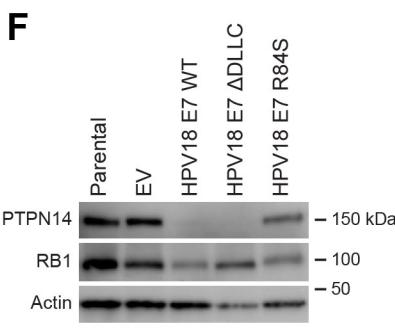
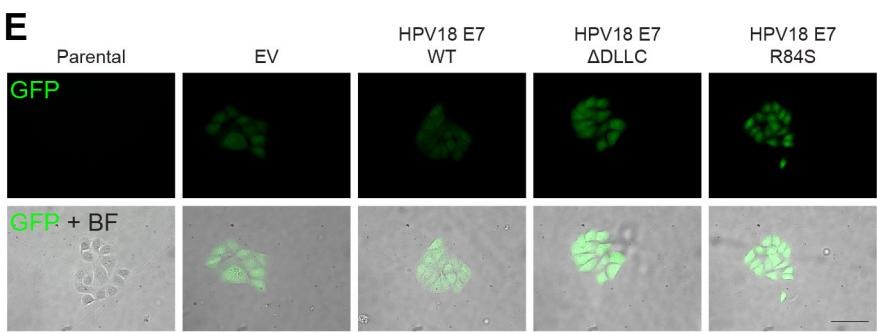
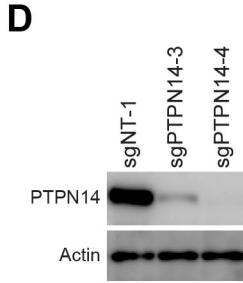
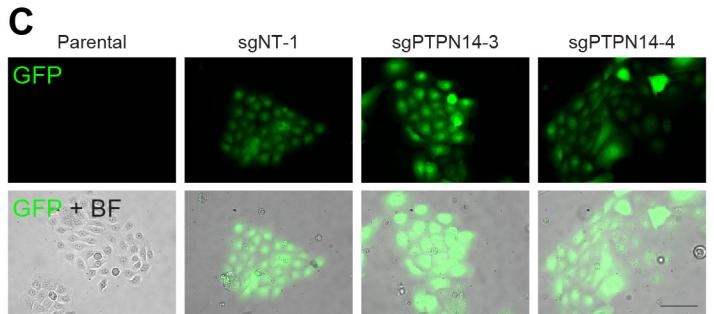
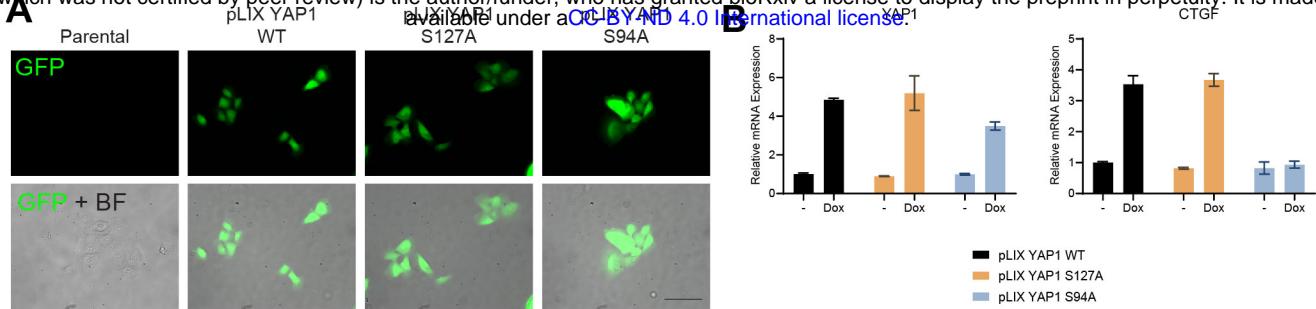






Figure 4—figure supplement 2 | YAP1 and TAZ are required for PTPN14 to promote keratinocyte differentiation. Primary HFK were transfected with control or YAP1 and WWTR1 targeting siRNAs then transduced with PTPN14 encoding lentivirus.

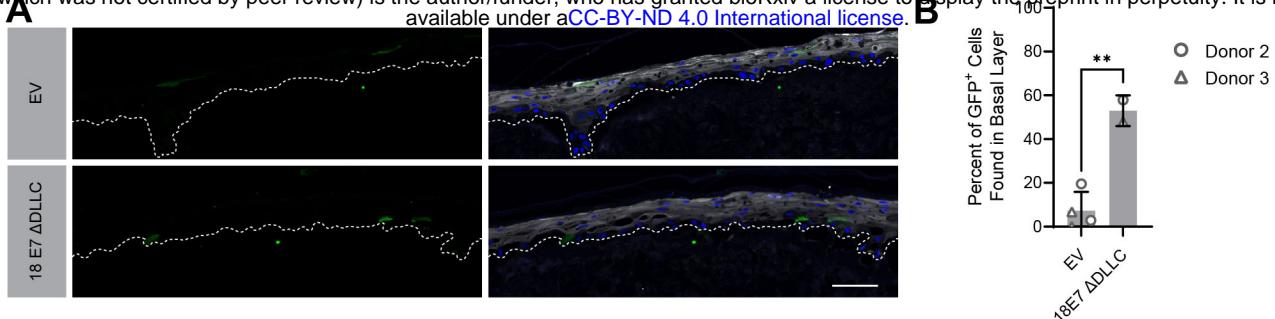

qRT-PCR was used to measure the expression of the differentiation markers (A) KRT1 and (B) IVL relative to G6PD. Graphs portray the change in gene expression relative to siC. Graphs display the mean \pm SD of three independent replicates. Statistical significance was determined by ANOVA (**p<0.01, ***p<0.001).

Figure 5—figure supplement 1 | HPV-positive HNSCC express lower levels of differentiation genes.
RNA-seq data from TCGA were accessed through cBioPortal. Violin plots display the distribution in \log_2 mRNA expression of differentiation markers (A) KRT1, (B) KRT10, and (C) IVL, and the canonical YAP1/TAZ targets (D) CTGF and (E) CYR61. Statistical significance was determined by Mann-Whitney nonparametric test. (**p<0.01, ***p<0.001, ****p<0.0001).

Figure 7—figure supplement 1 | PTPN14 degradation by HPV E7 promotes basal cell retention. (A-B) GFP-labeled HFK were transduced with YAP1 WT, YAP1 S127A, or YAP1 S94A under the control of a doxycycline inducible promoter. (A) GFP expression was confirmed by fluorescence microscopy. Scale bar = 100 μ m. (B) Total RNA was purified from monolayer cells +/- treatment with 1 μ g/mL doxycycline for 72h. qRT-PCR was used to assess gene expression of YAP1 and CTGF. (C-D) GFP-labeled HFK were transduced with retroviral vectors encoding HPV18 WT, HPV18 Δ _DLLC, HPV18 E7 R84S, or the empty vector control (EV). (C) GFP expression was confirmed by fluorescence microscopy. Scale bar = 100 μ m. (D) Cell lysates were subjected to SDS/PAGE/Western analysis and probed with antibodies to PTPN14, RB1, and Actin. (E-F) GFP-labeled HFK were transduced with LentiCRISPR v2 sgNT-1, sgPTPN14-3, or sgPTPN14-4 vectors. (E) GFP expression was confirmed by fluorescence microscopy. Scale bar = 100 μ m (F) Cell lysates were subjected to SDS/PAGE/Western analysis and probed with antibodies to PTPN14 and Actin.

Figure 7—figure supplement 2 | HPV18 E7 can promote basal cell retention in the absence of RB1 binding. Organotypic cultures were grown from GFP-labeled cells mixed with unmodified HFK. GFP-labeled HFK were transduced with HPV18 E7 ΔDLLC or the empty vector (EV). GFP-labeled cells were mixed 1:50 into unmodified HFK. (A) FFPE sections were stained for GFP (green), IVL (grey), and Hoechst (blue). Scale bar = 100 μ m (B) Quantification of the percentage of GFP⁺ cells found in the basal layer. Graphs display the mean \pm SD and each individual data point (independent cultures). Statistical significance was determined by t-test. (**p<0.01).

Key Resources Table				
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
antibody	anti-Actin (Mouse monoclonal)	Sigma-Aldrich	Cat#: MAB1501	WB (1:20,000)
antibody	anti-GFP (Rabbit polyclonal)	Invitrogen	Cat#: A6455	WB (1:1,000); IHC-P (1:2000)
antibody	anti-Mouse IgG Alexa Fluor 488 (Goat polyclonal)	Invitrogen	Cat#: A11001	IHC-P (1:250)
antibody	anti-Mouse IgG HRP (Horse monoclonal)	Cell Signaling Technologies	Cat#: 7076	WB (1:2000)
antibody	anti-Rabbit IgG Alexa Fluor 594 (Goat polyclonal)	Invitrogen	Cat#: A11012	IHC-P (1:250)
antibody	anti-Rabbit IgG HRP (Goat monoclonal)	Cell Signaling Technologies	Cat#: 7074	WB (1:2000)
antibody	anti-HA-Peroxidase (Rat monoclonal)	Roche	Cat#: 12013819001	WB (1:500)
antibody	anti-ITGB4 (Rabbit polyclonal)	Sigma-Aldrich	Cat#: HPA036348	IHC-P (1:100)
antibody	anti-IVL (Mouse monoclonal)	Santa Cruz Biotechnology	Cat#: sc-398952	IHC-P (1:100)
antibody	anti-KRT1 (Mouse monoclonal)	Enzo Life Sciences	Cat#: C34904	
antibody	anti-PCNA	Santa Cruz Biotechnology	Cat#: sc-56	IHC-P (1:100)

antibody	Anti-PTPN14 (Rabbit monoclonal)	Cell Signaling Technology	D5T6Y; Cat#: 13808	WB (1:500)
antibody	anti-TAZ (Rabbit monoclonal)	Cell Signaling Technology	D3I6D; Cat#: 70148	WB (1:1000)
antibody	anti-V5 (Mouse monoclonal)	Invitrogen	Cat#: 46-0705	WB (1:1000)
antibody	anti-YAP1 (Rabbit monoclonal)	Cell Signaling Technology	D8H1X; Cat#: 14074	WB (1:1000); IHC-P (1:50)
transfected construct (human)	nontargeting siRNA	Dharmacon	Cat#: D- 001810-01	
transfected construct (human)	siRNA to YAP1 (OnTarget Plus)	Dharmacon	Cat#: J- 012200-06	
transfected construct (human)	siRNA to YAP1 (OnTarget Plus)	Dharmacon	Cat#: J- 012200-08	
transfected construct (human)	siRNA to WWTR1 (OnTarget Plus)	Dharmacon	Cat#: J- 016083-06	
transfected construct (human)	siRNA to WWTR1 (OnTarget Plus)	Dharmacon	Cat#: J- 016083-08	
transfected construct (human)	siRNA to PTPN14 (OnTarget Plus)	Dharmacon	Cat#: J- 008509-05	
transfected construct (human)	siRNA to PTPN14 (OnTarget Plus)	Dharmacon	Cat#: J- 008509-08	
transfected construct (human)	siRNA to LATS1 (OnTarget Plus)	Dharmacon	Cat#: J- 004632-05	
transfected construct (human)	siRNA to LATS1 (OnTarget Plus)	Dharmacon	Cat#: J- 004632-08	

transfected construct (human)	siRNA to LATS2 (OnTarget Plus)	Dharmacon	Cat#: J-003865-09	
transfected construct (human)	siRNA to LATS2 (OnTarget Plus)	Dharmacon	Cat#: J-003865-10	

Supplemental File 1
Antibodies used in the study

Target	Antibody Name	Company	Product Number	Use	Dilution	Notes
Actin	Anti-Actin Antibody, clone C4	Sigma-Aldrich	MAB1501	Western Blot	1:20000	HIER: 10 mM Sodium Citrate pH 6
GFP	GFP Polyclonal Antibody	A6455	IHC-P	1:2000		
GFP	GFP Polyclonal Antibody	A6455	Western Blot	1:1000		
Goat anti-Mouse IgG 488	Goat anti-Mouse IgG (IgG) Alexa Fluor 488	A11001	IHC-P	1:250		
Goat anti-mouse IgG HRP	Goat anti-mouse IgG, HRP-linked Antibody	7076	Western Blot	1:2000		
Goat anti-Rabbit IgG 594	Goat anti-Rabbit IgG (IgG) Alexa Fluor 594	A11012	IHC-P	1:250		
Goat anti-Rabbit IgG HRP	Anti-Rabbit IgG, HRP-linked Antibody	7074	Western Blot	1:2000		
HA	Anti-HA Peroxidase	12013819001	Western Blot	1:500		
ITGB4	Anti-TGB4 antibody	HPA036348	IHC-P	1:100		
IVL	Anti-Involucrin Antibody (A-5)	Santa Cruz Biotechnology	sc-398952	IHC-P	1:100	
KRT1	Cytokeratin 1 (human) monoclonal antibody (34[B]B4)	Enzo Life Sciences	C34904	IHC-P (TMA)	-	HIER: Tris-EDTA pH 10
PCNA	Anti-PCNA Antibody (PC10)	Santa Cruz Biotechnology	sc-56	IHC-P	1:100	HIER: either 10 mM Sodium Citrate pH 6 or Tris-EDTA pH 10
PTPN14	PTPN14 (D5T6Y)	Cell Signaling Technology	13808	Western Blot	1:500	
TAZ	TAZ (D316D)	Cell Signaling Technology	70148	Western Blot	1:1000	
V5	Anti-V5 Tag Antibody	Invitrogen	46-0705	Western Blot	1:1000	
YAP1	YAP (D8H1X) XP	Cell Signaling Technology	14074	IHC-P	1:50	
YAP1	YAP (D8H1X) XP	Cell Signaling Technology	14074	Western Blot	1:1000	HIER: Tris-EDTA pH 10

Hannoveraner HEK Organisationskulturreport

List of Figures *inclusion of a single culture in >1 figure indicates that separate sections of the culture were processed independently

Figure 2-figure supplement 1B
Figure 2B

Dilution (Tracer:Unmoc)

1:25

1:25 1125

1:25

Figure 1:25

1:25
1:25

1.25
1.25

125

1:25

1:50 123

Figure 7C

Figure 7C

1:50
1:50

Figure 7-figure supplement 2

Supplemental File 3

Tumor microarray specimen information

	Oral Cavity	Oropharynx	Total	HPV-positive	HPV-negative*
# Patients	72	48	120	33	87
Primary tumor (T-stage) †					
Early (T1 or T2)	60	40	100	27	73
Advanced (T3 or T4)	12	8	20	6	14
Nodal metastasis					
Positive	24	39	63	29	34
Negative	48	9	57	4	53
Overall pathologic stage †					
Early (I or II)	43	7	50	3	47
Advanced (III or IV)	29	41	70	30	40

*HPV status was defined by IHC for p16 for oropharyngeal tumors during routine clinical and was inferred as negative for oral cavity tumors per standards of the College of American Pathologists (Lewis et al. (2018) Archives of Pathology & Laboratory Medicine 142:559–597).

† 7th edition AJCC staging manual

Supplemental File 4

Gene Lists for Pathway Mutational Analyses

HIPPO Pathway	Cell Cycle	p53
STK4	CDKN1A	TP53
STK3	CDKN1B	MDM2
SAV1	CDKN2A	MDM4
LATS1	CDKN2B	ATM
LATS2	CDKN2C	CHEK2
MOB1A	CCND1	RPS6KA3
MOB1B	CCND2	
YAP1	CCND3	
WWTR1	CCNE1	
TEAD1	CDK2	
TEAD2	CDK4	
TEAD3	CDK6	
TEAD4	RB1	
PTPN14	E2F1	
NF2	E2F3	
WWC1		
TAOK1		
TAOK2		
TAOK3		
CRB1		
CRB2		
CRB3		
LLGL1		
LLGL2		
HMCN1		
SCRIB		
HIPK2		
FAT1		
FAT2		
FAT3		
FAT4		
DCHS1		
DCHS2		
CSNK1E		
CSNK1D		
AJUBA		
LIMD1		
WTIP		