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Abstract 

Prior work has found that the frontal lobe is involved in higher-order sequential and statistical 
learning in young infants. Separate lines of work have found evidence of modulation of posterior 
sensory cortices during and after learning tasks. How do these processes relate? Here, we build 
evidence the infant frontal lobe was modulated during sequential learning and ask whether 
posterior perceptual cortices show corresponding modulation. First, replicating and extending 
past work, we found evidence of frontal lobe involvement in this task. Second, consistent with our 
hypotheses, we found that there is a corresponding attenuation of neural responses in the 
posterior perceptual cortices (temporal and occipital) to predictable compared to unpredictable 
audiovisual sequences. This study provides convergent evidence that the frontal lobe is crucial 
for higher-level learning in young infants but that it likely works as part of a large, distributed 
network of regions to modulate infant neural responses during learning. Overall, this work 
challenges the view that the infant brain is not dynamic and disconnected, lacking in long-range 
neural connections. Instead, this paper reveals patterns of a highly dynamic and interconnected 
infant brain that change rapidly as a result of new, learnable experiences.  

 

Introduction 

Extracting information from recurring patterns in the environment is a crucial ability that underlies 
infant learning across numerous domains (Saffran and Kirkham, 2018). From inferring meaningful 
information out of sensory input through developing complex cognitive skills, humans rely on 
detecting re-occurring patterns and identifying pattern-violations starting early in life (Arnon, 2019; 
Newman et al., 2006). Broadly, we consider these abilities to arise from statistical learning. 
Recurring patterns manifest as statistical information in sensory input. Humans are highly 
sensitive to statistical information and learn from statistical information incidentally starting early 
in infancy (need citations). While behavioral studies have made significant progress in 
understanding the computational mechanisms that underlie statistical learning (Siegelman et al., 
2019; Thiessen, 2017), the underlying neural mechanisms that support statistical learning are not 
yet well understood (Schapiro et al., 2012; Turk-Browne et al., 2009) and there is even less known 
about the brain regions involved in statistical learning in infants (though see Ellis et al., 2021; 
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Emberson et al., 2015; Kabdebon et al., 2015; Kersey and Emberson, 2017). Importantly, 
understanding the neural mechanisms supporting statistical learning in infancy will shed light on 
the mechanisms supporting development, and provide a foundation upon which we can 
investigate how these learning mechanisms change across conditions, stimuli and over 
development. Here, we use functional near-infrared spectroscopy (fNIRS) to investigate whether 
the predictability of a recurring sequence can result in top-down attenuation of sensory cortices 
and whether the frontal lobe is a potential source of this top-down information.  

We focus our current investigation on the difference in neural processing of predictable vs. 
unpredictable sequences of audiovisual stimuli. Classic statistical learning paradigms have 
segments of predictability (e.g., within a word) and unpredictability (e.g., across words, Saffran et 
al., 1996). Given the slow temporal resolution of fNIRS, we distilled this key characteristic of 
statistical learning into separate sequences: one of which is entirely predictable and the other is 
much less predictable. We can then contrast neural responses to predictive vs. unpredictable 
sequences to elucidate how the infant brain changes when an infant is able to learn and predict 
from recurring patterns in the environment.   

It has long been shown that already at early infancy, recurring sequences can be learned (Marcus 
et al., 1999; Saffran et al., 1996). As early as immediately after birth, neonates respond selectively 
to patterned stimuli (Benavides-Varela and Gervain, 2016; Gervain et al., 2008). Starting at 2 
months of age, infants were already able to show behaviorally that they learned sequences of two 
consecutive events (Kirkham et al., 2002; Slone and Johnson, 2016), or co-occurrences of two 
items in space (Fiser and Aslin, 2002). It has been behaviorally demonstrated that babies can 
learn sequences of three items such as in the context of rule-learning (Ferguson et al., 2018; 
Johnson et al., 2009; Lew-williams et al., 2017; Saffran et al., 2007; Slone and Johnson, 2018). 
Sequence learning, as a type of statistical learning, is believed to be important for language 
acquisition (Gomez and Gerken, 1999; Lew-Williams and Saffran, 2012; Pelucchi et al., 2009; 
Potter and Lew-Williams, 2019). With one exception for infants over 1 year old (Schonberg et al., 
2018), there are no behavioral studies that have demonstrated learning of 4 item sequence in 
infants. While there is a good amount of behavioral evidence that infants engage in learning of 
recurring and predictable sequences of stimuli, little is known about the neural mechanisms 
supporting this ability.  

However, a recent EEG study investigated sequence learning of 4 items in 3-month-old infants 
and implicated the frontal lobe in this process. Specifically, Basirat et al. (2014) found that in early 
infancy the left frontal lobe attenuates its response to deviant stimulus when it is more predictable 
based on consistent serial sequence of stimuli. The researchers presented a sequence of trials 
(block) consisting of mostly four identical stimuli (XXXX) interleaved with rare trials which had a 
deviant stimulus at the end (XXXY) to a group of infants. They compared their responses to the 
deviant with another block of trials where the common trial contained a deviant (XXXY) and the 
rare trials had no deviant (XXXX). This design allowed them to disentangle low-level effects like 
repetition suppression from more high-level effect like predictability and top-down modulation 
arising from predictability. Their findings show that expecting a deviant stimulus (in the second 
block) attenuated the deviant-elicited response in a selection of electrodes on the left frontal scalp 
compared to when infants did not expect the deviant (the first block). Thus, there is an attenuation 
of neural responses to stimuli when they are expected or predictable. This finding dovetails with 
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other work demonstrating that the infant frontal lobe is involved in processing of familiarity and 
novelty (Nakano et al., 2008) and is involved in rule learning (Gervain et al., 2008; Werchan et 
al., 2016) and learning audiovisual associations (Kersey and Emberson, 2017) starting early in 
life, and broader proposals that the infant frontal lobe is available to contribute to infant cognition 
and learning starting early in life (Dehaene-Lambertz and Spelke, 2015; Grossmann et al., 2013). 
Thus, a recent study has found that the frontal lobe appears to be involved in learning a sequence 
of 4 stimuli.  

The current study will replicate and extend the finding that the frontal lobe is involved in learning 
predictable sequences in early infancy using fNIRS. One of the major benefits of fNIRS is the 
superior spatial resolution of this neuroimaging method as source-localization is not needed. To 
ensure accuracy in our spatial localization, we co-register the probe localizations with MR 
templates using a video-based method to allow anatomical localization of fNIRS recordings with 
infants (Jaffe-dax et al., 2020). Moreover, we define our regions of interest a priori based on the 
localization of each probe for each infant and the underlying neuroanatomy. In addition, we 
employ non-speech, novel audiovisual stimuli (see Figure 1). Thus, we will extend the findings 
from Basirat et al (2014) to different stimuli and using neuroimaging modality with better spatial 
resolution in order to provide stronger evidence that the frontal lobe is involved in sequence 
learning in young infants.  

In addition, our extension of Basirat et al (2014) will determine whether learning the predictability 
of a sequence results in top-down modulation of posterior sensory regions. Based on the 
framework of predictive coding (Friston, 2005; Rao and Ballard, 1999), which posits that neural 
signals in the cortex communicate feedback/top-down prediction about upcoming sensory input 
and feed-forward/bottom-up signals of prediction error (arising from the comparison of sensory 
input to predictions), we hypothesized that learning of predictable sequences would be associated 
with reduced prediction error and thus attenuated response in both associative and in 
sensory cortices. Previous work in adults found that repetition of presented stimuli attenuated 
neural responses specifically when the repetition was expected, suggesting that the source of 
repetition-induced suppression reside in the predictability of the presented stimuli (Summerfield 
et al., 2008). On the other hand, the response to a deviant stimulus embedded in a sequence of 
standard stimuli were also attenuated by predictability in adults (Sussman et al., 2003). Recently, 
the impact of predictability was demonstrated in young infants, where unexpected violation of 
learned association augmented neural responses (Emberson et al., 2015; Kouider et al., 2015) in 
sensory cortices. We now set out to explore the role of this prediction-induced process in statistical 
learning of longer time-scales. Namely, we aim to evaluate whether the emergence of predictive 
processing in sensory cortices is part of the neural mechanisms associated with statistical 
learning in infancy.  

We recorded cortical activity of infants’ Frontal lobes and two posterior sensory cortices (Temporal 
and Occipital lobes) in two experimental conditions: 1) Predictable condition, where in each trial, 
four shapes were presented in a consistent order of AAAB (three standard stimuli followed by a 
deviant). 2) Unpredictable condition, where the order of the shapes differed from trial to trial 
(AABA, ABAA or BAAA). We chose these trial structures across the two conditions to differentiate 
between two alternatives. If the consistency of the shapes order between trials was not learned, 
and the magnitude of the cortical response was only governed by the appearance of the deviant 
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shape in each condition, then we would expect the Predictable condition with the AAAB pattern 
to yield a stronger response in posterior sensory cortices; the deviant appears after three 
consecutive standards compared to zero, one or two standards in the unpredictable condition 
(Yaron et al., 2012). If, on the other hand, as we hypothesized, infants were able to learn the 
consistency of sequence, use this learning to predict upcoming sensory input and communicate 
this prediction through top-down or feedback connections to posterior cortices, we will observe 
that the Unpredictable condition would yield a stronger cortical response in posterior cortices. 
Specifically, the stronger cortical response in the Unpredictable condition reflects the relative 
attenuation of cortical responses to the (predicted) deviant stimulus in the Predictable condition 
and a strong cortical response to the (unpredictable) deviant in the Unpredictable condition. Thus, 
the specific structure of the trials allowed us to make inferences about how the temporal 
predictability of the deviant stimulus affects perceptual despite not having the temporal resolution 
to investigate responses to individual stimuli (as in EEG). Indeed, predictable deviants elicited 
weaker deviant-related response in kids and adults (Max et al., 2015; Sussman et al., 2003) and 
in the frontal lobe in Basirat et al (2014). We hypothesize to find the same attenuation of deviant 
responses in the posterior perceptual systems of young infants.  

Compared to other studies investigating responses to odd-ball stimuli, the current study design 
allows us to distinguish between simple deviance detection (i.e., that X is presented more 
frequently and thus seeing Y evokes a strong perceptual response), that can be processed locally, 
and more complex responses to sequential regularities that would require the involvement of 
higher-level cortices like the frontal cortex and feed-back or top-down connections from higher 
level cortices to the posterior perceptual cortices.  

 

Methods 

Participants 

Twenty-seven infants at 5-7 month of age were included in the analysis. The experiment was 
terminated after both conditions were recorded or when the infant looked away from the screen 
for more than half of a trial duration. Ten additional infants were excluded from the analysis for 
not completing at least 5 trials of each condition. The study was approved by the university’s 
Institutional Review Board and informed consent was obtained before the beginning of the study 
from a legal guardian of the infant. Families received $10, a t-shirt and a children’s book for their 
participation. 

 

Stimuli 

Each trial consisted of four shapes crossing the screen sequentially while an associated sound 
was played. The shapes consisted of green square, yellow crescent, pink star, and blue cloud. 
Each shape was added caricature eyes and smile (Fig. 1). The shapes crossed the screen in one 
of four directions: up, down, left, or right. During the movement of the shapes on the screen, a 
sound was played. The sounds were old windows startup, rattle, train, or chimes. Each trial lasted 
for 10 seconds and the Inter-trial intervals were jittered between 10 to 15 seconds during which 
time a dimmed fireworks video and nursery song was played to keep infant attention towards the 
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screen (Emberson et al., 2015). Each condition consisted of eight consecutive trials. In the 
Predictable condition, the order of the shapes within each trial was consistently AAAB (Fig. 1 top). 
In the Unpredictable condition, the order of the shapes within each trial was pseudo-randomly 
chosen between AABA, ABAA, and BAAA (and not AAAB; Fig. 1 bottom). The associations of 
shapes, movement direction, sounds and conditions were pseudo-randomly assigned for each 
infant. The order of conditions was counter-balances between infants. 

  

 
Figure 1. Stimuli and experiment structure. The experiment consisted of two conditions: 
Predictable and Unpredictable. Each condition consisted of 8 consecutive trials. In each trial, 
four shapes moved sequentially across the screen accompanied with a unique sound. In the 
Predictable condition, the order of the shapes was consistent between trials (AAAB). In the 
Unpredictable condition, the order of the shapes varied between trials (AABA, ABAA, BAAA, 
but not AAAB).  

 

Procedure 

Infants sat on their caregiver’s laps in front of a screen at approx. 60 cm distance from the screen. 
Stimuli moved across the central part of the screen for about 20 degrees of visual angle. 
Associated sounds were played through central positioned speakers at a comfortable level. The 
fNIRS cap was placed on the infant’s head, infrared sensors sensitivity was adjusted and 
photogrammetry measurements were taken, while infant’s attention was distracted with nursery 
rhymes. 

 

fNIRS recording and analysis 
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We recorded infants’ cortical activity from 74 fNIRS channels at ~13.33 Hz (inter-sample interval 
of 75 ms) at three wavelengths (790, 805 and 830 nm) using custom-made infant fibers, 
connected to Shimadzu LABNIRS. Channel separation on the scalp was 25 mm. Cap position on 
the infant’s head was estimated using photogrammetry of fiducial points (Nz, Cz, Iz, AL, AR and 
cap edges; Lloyd-Fox et al., 2014). Channel position was interpolated and projected to MNI space 
using SPM-fNIRS (Tak et al., 2016). Each channel was assigned to its containing lobe. For each 
lobe, we averaged the channels that were assigned to it, so that the signal that was recorded from 
each lobe could be averaged across infants. 

Preprocessing was performed for each channel using Homer2 toolbox for Matlab (Huppert et al., 
2009) with the recommended parameters from (Brigadoi et al., 2014). Raw intensity data was 
converted to optical density. Motion artifacts were detected using tMotion = 1, tMask = 1, 
STDEVthresh = 50, and AMPthresh = .5. Epochs containing detected artifacts were removed from 
the data and spline interpolated using p = 0.99. Data was then band-pass filtered between 0.01 
and 1 Hz. Filtered optical density from the three wave lengths was transformed to HbO2, HHb and 
total Hb concentration changes using modified Beer-Lambert equation with partial path factor 
(ppf) of 6 mm for all three wavelengths. Any channel containing concentration changes beyond 
±5e-5 µM were omitted from further analysis. Pre-processed data was averaged within each lobe 
and homologous lobes were aggregated together. We recorded from 17 to 22 channels in the 
Frontal lobes; from 29 to 40 channels in the Occipital lobes; and from 13 to 22 channels in the 
Temporal lobes. The first trial of each condition was omitted from analysis. We averaged the 
response for each condition from 2 seconds before the onset of the first shape in the trial to 8 
seconds after the offset of the fourth shape (epoch length of 20 seconds). We also assessed 
whether there were changes in task-based functional connectivity, between the conditions, using 
a background connectivity approach (Al-Aidroos et al., 2012). More details on these methods as 
well as our results are included in the Supplementary Materials.  

 

Results 

For each lobe, we used Monte-Carlo cluster size correction (Maris and Oostenveld, 2007) to 
calculate the probability of finding a significant cluster of (temporally consecutive) time samples 
for which there was a significant difference between the conditions. We found a stronger response 
for the Unpredictable condition compare to the Predictable condition in the Frontal, Occipital and 
Temporal lobes. In the Frontal lobes, a significant difference between conditions was found 
between 12.45 – 14.4 sec post trial onset (Fig. 2 top; cluster P < 0.05). In the Occipital lobes, we 
found a significant difference between conditions between 10.35 – 13.5 sec post trial onset (Fig. 
2 middle; cluster P < 0.05). In the Temporal lobes, we found a significant difference between 
conditions between 12.6 – 14.18 sec post trial onset (Fig. 2 bottom; cluster P < 0.05). 

 

A. 
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B. 

 
Figure 2. A. Spatial co-registration of the fNIRS channels by lobe. Each patch 
denote a single channel in an individual participant. Overlapping locations are 
represented in saturation from pale to vibrant color. Blue patches – channels on 
the frontal lobe; green – temporal; red – occipital. B.  fNIRS response to the 
Predictable (purple) and the Unpredictable (orange) conditions by lobe. 
Concentration changes of oxyhemoglobin (HbO2) as a function of time in seconds 
from trial onset. Stimulation offset is denoted by the dashed line at 10 seconds from 
trial onset. Shaded patches represent SEM. Black bars under each graph denote 
the time windows where the response for the Unpredictable condition was greater 
than the response for the Predictable condition with cluster-p < 0.05.  

 

In addition, we compared the concentration changes in deoxyhemoglobin (HHb) between 
conditions and did not find any time window of significant difference (Fig. S1). These results 
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verified that the condition difference that we found in the HbO2 did not stem from difference in the 
overall blood pressure between conditions. 

We hypothesized that learning the consistent pattern of shapes in the Predictable condition would 
parallel attenuation of cortical response in the lobes that were measured. We estimated the 
trajectory of change in response amplitude as a function of trial number within each condition to 
track the dynamics of learning in the Predictable condition. For each trial, we averaged the HbO2 
response from each lobe in the respective time window post trial onset as found in the previous 
result for each lobe separately (Fig. 2). Figure 3 depicts the trial-by-trial change of HbO2 
concentration by condition. In the Temporal lobe, we found a significant interaction between 
condition and trial number (F7,397 = 2.15, P < 0.05). The interactions in the Frontal and Occipital 
lobes did not reach significance (Fs = 1.05 and 1.47 respectively, Ps > 0.1). These findings 
suggest that learning the consistent pattern of shapes in the Predictable condition was associated 
with reduction in activity in the Temporal lobe. 

 
Figure 3. Trial-by-trial fNIRS amplitude change by 
condition. Mean HbO2 concentration change as a 
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function of trial number for Predictable (purple) and 
unpredictable (orange) conditions. Shaded patches 
represent SEM. 

 

 

We also hypothesized that we would find differences in task-based functional connectivity 
between the two conditions. Specifically, top-down signals from the frontal lobe are a likely 
mechanism underlying the modified responses to sensory input observed in the Predictable 
condition. Thus, we hypothesized that there would be greater connectivity between the frontal 
lobe and posterior sensory regions in the Predictable rather than the Unpredictable condition. To 
test this hypothesis, we developed a pipeline to assess task-based functional connectivity, using 
a “background connectivity” approach, with infant fNIRS data (see Supplementary Materials for 
further details including a systematic evaluation of some key analytic decisions in this pipeline). 
This pipeline did not reveal any reliable differences in task-based connectivity, between frontal, 
occipital and temporal cortices, between the two conditions. We discuss possible reasons for this 
in the Discussion.  

 

Discussion 

Using fNIRS, we recorded neural activity in Frontal, Temporal and Occipital lobes in 6-month-old 
infants while infants engaged in a sequential audiovisual learning paradigm (Predictable 
condition) and a frequency-balanced control condition (Unpredictable condition, within subjects, 
condition order counterbalanced). We found that the effect of predictability is reflected in every 
recorded region. This pattern of results provides evidence for a) the frontal lobe involvement in 
sequential learning and replicates and extends previous work with younger infants using EEG  
using a very similar paradigm (Basirat et al., 2014) and adds to broader evidence that the frontal 
lobe is involved in various types of learning in infancy including statistical learning (Ellis et al., 
2021), audiovisual associative learning  (Emberson et al., 2015; Kersey and Emberson, 2017; 
Kouider et al., 2015); b) provides from suggestive evidence that these learning based changes 
are not constrained to the frontal lobe but are also present in posterior perceptual cortices 
suggesting a role for the frontal lobe and feedback neural connections in these posterior changes; 
c) that the infant brain is highly plastic and readily shaped through experience with patterns and 
relatedly learning.  

The first major finding is a further solidified link between the frontal lobe in infancy and learning of 
sequential or higher-order statistical properties of the sensory input. The two conditions in this 
experiment differ not in the low-level statistical properties of the stimuli (e.g., how frequent 
individual stimuli are) or the stimuli themselves (all stimuli were randomized across conditions), 
but in the higher-level statistical properties of the stimuli or the sequences in which the stimuli 
occurred. Thus, detecting the differences between the Predictable condition and the 
Unpredictable condition in our paradigm requires integration of information across long time-
scales both within a given block as well as across repetitions of the Predictable blocks as this 
pattern would only be detectable across repetitions of these sequences. The infant frontal lobe 
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has been implicated in processing stimulus novelty (Nakano et al., 2009), in rule learning (Gervain 
et al., 2008; Werchan et al., 2016) as well as in learning audiovisual associations (Kersey and 
Emberson, 2017). This study builds on a particular demonstration that the frontal lobe might be 
specifically involved in processing stimuli in sequential contexts: Basirat et al. (2014) used EEG 
to determine that in early infancy the left frontal lobe attenuates its response to deviant stimulus 
when it is more predictable based on consistent serial sequence of stimuli. The current experiment 
extends this finding from speech to non-speech audiovisual stimuli, from EEG to fNIRS (which 
provides greater spatial resolution and certainty compared to EEG) and to a slightly older age of 
infant (4 to 6 month olds). We find a broadly consistent pattern with Basirat et al (2014): in 
conditions where deviant responses are predictable in a sequential context, responses in the 
frontal lobe are attenuated. One difference between the studies is our finding of bilateral 
attenuation of neural responses as opposed to the response being localized to the left frontal lobe 
as reported in Basirat et al (2014). This difference may be attributable to the difference in stimuli 
as Basirat et al (2014) employed speech stimuli which may be subject to left hemisphere 
specialization by this stage of development. Thus, our findings replicate and extend the previous 
finding from Basirat et al (2014) and broadly support proposals that the infant frontal lobe is 
available to support infant perception and cognition (Dehaene-Lambertz and Spelke, 2015; 
Grossmann et al., 2013). We find that the frontal lobe may be particularly involved in the 
contextual processing of stimuli and higher-order learning.   

The second major finding of this paper is that the impact of sequential learning and stimulus 
predictability is not constrained to the frontal lobe but is also present in posterior sensory cortices. 
Consistent with our hypotheses, we found an attenuation of neural responses when infants are 
able to learn the higher-order sequence and consequently predict the upcoming audiovisual 
stimuli. We infer that the attenuated response to Predictable condition compared to Unpredictable 
condition reflects a reciprocal process between posterior perceptual cortices (i.e., the occipital 
and temporal lobes) and higher-level, associative cortices (i.e., frontal lobe). In particular, this 
mechanism would implicate feedback neural connections and is broadly consistent  with the 
Predictive Coding framework (Friston, 2005; Rao and Ballard, 1999), where cortical activity 
reflects prediction error, or deviances from predictable input. As the pattern of events is learned 
and events become more predictable, their processing elicits weaker cortical responses. 
Crucially, this finding has important implications for the view that feedback neural connections are 
available early in life and are not subject to a protracted developmental trajectory (Amso and 
Scerif, 2015). This also provides an important avenue through which perceptual cortices can be 
modulated based on experience in the world which is distinct from both the two dominant theories 
arguing for either bottom-up, passive absorption of sensory input or maturational/critical period 
constraints (Maurer and Werker, 2014).  

The current finding that prediction attenuates neural responses in perceptual cortices substantially 
extends previous work showing that the occipital lobe can be modulated based on feedback 
neural connections (Emberson et al., 2015). First, the previous finding only demonstrated 
modulation of the occipital lobe but the current finding provides additional evidence that the 
temporal lobe can also be modulated through feedback neural connections. Second, the current 
finding extends both the complexity of the learning context (i.e., expanding from a simple 
audiovisual association to processing the relative predictability of a deviant stimulus based on 
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sequential context or higher-order statistical properties of the input). This change in learning 
context where perceptual cortex modulation occurs is significant because a) it directly implicates 
a specific higher-level cortex (i.e., the frontal lobe) in the learning and provides evidence for the 
origin of the modulation for sensory cortices and b) extends the contexts in which the infant brain 
will employ feedback to modulate posterior cortices based on predictability both in terms of the 
length of the feedback connections and the complexity of the task. These findings also extend 
Jaffe-Dax et al., (2020), where trial-by-trial prediction error was tracked in 6-months-old infants 
using a combination of fNIRS and computational learning models in the identical task to Emberson 
et al. (2015). This approach revealed that prediction error is processed in frontal lobe and 
propagated back towards posterior cortices. These findings are highly consistent implicating the 
frontal lobe in the modulation of perceptual cortices and particularly in the context of processing 
higher-order statistical information and information that occurs over longer time-scales.  

Finally, this work broadly suggests that, starting early in life, the infant brain is highly dynamic, 
interconnected and plastic. We find that the infant brain is able to modulate neural activity in 
response to new and highly complex stimuli within a matter of minutes and likely uses a 
combination of feed-forward and feedback neural connections to do so. This is striking given that 
there is substantial evidence that the infant brain increases in long-range connectivity both 
functionally (Bulgarelli et al., 2020; Gao et al., 2017; Homae et al., 2010) and structurally (Dean 
et al., 2015) throughout the first two years of postnatal life. Our findings therefore support the 
notion that young infants are able to employ these nascent connections to form large-scale neural 
networks and thus modulate neural activity broadly in response to new experiences.  

However, a major limitation of the current paper is that direct analytic investigations into the 
background connectivity patterns in this task did not reveal differential connectivity patterns 
across the two conditions. It is important to note that the application of these analytic procedures 
to infant fNIRS is novel and the understanding of how to best reveal task-based functional 
connectivity will likely evolve substantially in the coming years. To this end, we present the 
pipeline we utilized, and evaluate the influence of some key analytic decisions, in the 
Supplementary Materials. There are several likely reasons for not finding differences in 
connectivity and a number of future avenues to explore. First, even though this study employs 
many more fNIRS channels than are typically used in an infant fNIRS study, fNIRS still has a 
much more restricted field of view than fMRI. Thus, it is quite possible that there are regions and 
networks involved that we were not able to record from. For instance, we did not focus our data 
collection on the parietal lobe but did have a small number of channels localized to that region in 
our infants, and exploratory analyses of these regions suggests that the parietal lobe might be 
differentially engaged (along with the frontal lobe) in this task. However, it is also worth noting that 
there are key neural regions that cannot be recorded from with contemporary fNIRS systems. For 
example, in both infants (Ellis et al., 2021) and adults (Turk-Browne et al., 2009), it was reported 
that the hippocampus played a role in supporting learning of serial dependency, and specifically 
in predicting upcoming events (Kok and Turk-Browne, 2018). Relatedly, it is likely that feedback 
connections are not specifically available to the frontal lobe and under other task conditions other 
cortical regions could be involved in modulating infant perception. For example, behavioral work 
by Xiao and Emberson (2019) argued that the amygdala was modulating regions involved in face 
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perception by 9 months of age. Neuroscientific investigations of other regions and other tasks 
would determine the generality vs. specificity of these findings.  

Another important point of consideration is that it is difficult to dissociate prediction from other 
cognitive processes including attention and learning. In particular, given that attention is 
modulated by predictability as well as learning, it is likely that attention varies across these task 
conditions though it is not clear in what direction. We controlled for attention in terms of monitoring 
looking time and task compliance online during the task with no differences in numbers of blocks 
completed etc across conditions. Thus, at a low-level (i.e., looking at the stimuli) there are not 
differences in overt attention across conditions. However, it is likely that the depth of attention 
differs both within a condition (e.g., early vs. late) as well as between conditions. The more general 
question of how prediction is related to attention is one that is of active investigation in the mature 
brain (e.g., Summerfield and de Lange, 2014). At present, this work requires highly demanding 
tasks that are beyond the scope of what is possible in infants (e.g., Summerfield and Egner, 2016) 

In sum, we employed fNIRS to investigate how sequential predictability modulated responses not 
only in a region hypothesed to be essential for learning these sequences (i.e., the frontal lobe) 
but also in regions where feedback connections can modulate perceptual processing based on 
predictability (i.e., the occipital and temporal lobes). We find convergent evidence with previous 
work that the frontal lobe in infancy is indeed involved in learning sequential dependency and 
modulates responses to deviant stimuli depending on sequential context. We also find evidence 
that this learned information is used to modulate activity in occipital and temporal lobes through 
feedback neural connections. This second finding demonstrates both the functional availability of 
long-range neural connections early in infancy (i.e., the connections between the frontal and 
occipital/temporal lobes) and that the infant brain exhibits highly plastic and dynamic responses 
to sensory input based on the context in which this input occurs.  

Acknowledgements 

We thank all of the families who volunteered their time to participate in this study. With your 
participation, we now know more about how the infant brain learns and develops! We also wish 
to thank the research staff in the Princeton Baby Lab who provided support for this work: Carolyn 
Mazzei, Alex Boldin, Kachina Allen, Claire Robertson and the many wonderful undergraduate 
research assistants. This study was funded by the Eric and Wendy Schmidt Transformative 
Technology Fund at Princeton University, the Bill and Melinda Gates Foundation (INV-005792), 
McDonnell Foundation (AWD1005451) and the National Institutes of Health (NICHD, K99-R00 
4R00HD076166-02).  

References 

Al-Aidroos, N., Said, C.P., Turk-Browne, N.B., 2012. Top-down attention switches coupling 
between low-level and high-level areas of human visual cortex. Proc. Natl. Acad. Sci. 109, 
14675–14680. https://doi.org/10.1073/pnas.1202095109 

Amso, D., Scerif, G., 2015. The attentive brain : insights from developmental cognitive 
neuroscience. Nat. Rev. 16, 606–619. https://doi.org/10.1038/nrn4025 

Arnon, I., 2019. Statistical Learning, Implicit Learning, and First Language Acquisition: A Critical 
Evaluation of Two Developmental Predictions. Top. Cogn. Sci. tops.12428. 
https://doi.org/10.1111/tops.12428 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.10.468062doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468062
http://creativecommons.org/licenses/by-nc-nd/4.0/


Basirat, A., Dehaene, S., Dehaene-Lambertz, G., 2014. A hierarchy of cortical responses to 
sequence violations in three-month-old infants. Cognition 132, 137–50. 
https://doi.org/10.1016/j.cognition.2014.03.013 

Benavides-Varela, S., Gervain, J., 2016. Learning word order at birth: A NIRS study. Dev. Cogn. 
Neurosci. 25, 198–208. https://doi.org/10.1016/j.dcn.2017.03.003 

Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., Gagnon, L., Boas, 
D.A., Cooper, R.J., 2014. Motion artifacts in functional near-infrared spectroscopy: A 
comparison of motion correction techniques applied to real cognitive data. Neuroimage 85, 
181–191. https://doi.org/10.1016/j.neuroimage.2013.04.082 

Bulgarelli, C., de Klerk, C.C.J.M., Richards, J.E., Southgate, V., Hamilton, A., Blasi, A., 2020. 
The developmental trajectory of fronto-temporoparietal connectivity as a proxy of the 
default mode network: a longitudinal fNIRS investigation. Hum. Brain Mapp. 1–24. 
https://doi.org/10.1002/hbm.24974 

Dean, D.C., O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Walker, L., Doernberg, E., 
Piryatinsky, I., Deoni, S.C.L., 2015. Characterizing longitudinal white matter development 
during early childhood. Brain Struct. Funct. 220, 1921–1933. 
https://doi.org/10.1007/s00429-014-0763-3 

Dehaene-Lambertz, G., Spelke, E.S., 2015. The Infancy of the Human Brain. Neuron 88, 93–
109. https://doi.org/10.1016/j.neuron.2015.09.026 

Ellis, C.T., Skalaban, L.J., Yates, T.S., Bejjanki, V.R., Córdova, N.I., Turk-Browne, N.B., 2021. 
Evidence of hippocampal learning in human infants. Curr. Biol. 31, 3358-3364.e4. 
https://doi.org/10.1016/j.cub.2021.04.072 

Emberson, L.L., Richards, J.E., Aslin, R.N., 2015. Top-down modulation in the Infant Brain: 
Learning-induced Expectations rapidly affect the sensory cortex at 6-months. Proc. Natl. 
Acad. Sci. 112, 9585–9590. https://doi.org/https://doi.org/10.1073/pnas.1510343112 

Ferguson, B., Franconeri, S.L., Waxman, S.R., 2018. Very young infants learn abstract rules in 
the visual modality. PLoS One 13, 1–14. https://doi.org/10.1371/journal.pone.0190185 

Fiser, J., Aslin, R.N., 2002. Statistical learning of new visual feature combinations by infants. 
Proc. Natl. Acad. Sci. U. S. A. 99, 15822–6. https://doi.org/10.1073/pnas.232472899 

Friston, K., 2005. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 
815–836. https://doi.org/https://doi.org/10.1098/rstb.2005.1622 

Gao, W., Lin, W., Grewen, K., Gilmore, J.H., 2017. Functional Connectivity of the Infant Human 
Brain. Neurosci. 23, 169–184. https://doi.org/10.1177/1073858416635986 

Gervain, J., Macagno, F., Cogoi, S., Peña, M., Mehler, J., 2008. The neonate brain detects 
speech structure. Proc. Natl. Acad. Sci. U. S. A. 105, 14222–7. 
https://doi.org/10.1073/pnas.0806530105 

Gomez, R.L., Gerken, L.A., 1999. Artificial grammar learning by one-year-olds leads to specific 
and abstract knowledge. Cognition 70, 109–136. 
https://doi.org/https://doi.org/10.1016/S0010-0277(99)00003-7 

Grossmann, T., Lloyd-Fox, S., Johnson, M.H., 2013. Brain responses reveal young infants’ 
sensitivity to when a social partner follows their gaze. Dev. Cogn. Neurosci. 6, 155–161. 
https://doi.org/10.1016/j.dcn.2013.09.004 

Homae, F., Watanabe, H., Otobe, T., Nakano, T., Go, T., Konishi, Y., Taga, G., 2010. 
Development of global cortical networks in early infancy. J. Neurosci. 30, 4877–82. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.10.468062doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468062
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1523/JNEUROSCI.5618-09.2010 
Huppert, T.J., Diamond, S.G., Franceschini, M.A., Boas, D. a, 2009. HomER: a review of time-

series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 48, C280–
C298. https://doi.org/10.1364/AO.48.00D280 

Jaffe-dax, S., Bermano, A.H., Erel, Y., 2020. Video-based motion-resilient reconstruction of 
three-dimensional position for functional near-infrared spectroscopy and 
electroencephalography head mounted probes. Neurophotonics 7, 035001. 
https://doi.org/10.1117/1.NPh.7.3.035001 

Jaffe-Dax, S., Boldin, A.M., Daw, N.D., Emberson, L.L., 2020. A computational role for top–
down modulation from frontal cortex in infancy. J. Cogn. Neurosci. 32, 508–514. 
https://doi.org/10.1162/jocn_a_01497 

Johnson, S., Fernandes, K., Frank, M., Kirkham, N., Marcus, G., Rabagliati, H., Slemmer, J., 
2009. Abstract Rule Learning for Visual Sequences in 8- and 11-Month-Olds. Infancy 14, 
2–18. https://doi.org/10.1080/15250000802569611 

Kabdebon, C., Pena, M., Buiatti, M., Dehaene-Lambertz, G., 2015. Electrophysiological 
evidence of statistical learning of long-distance dependencies in 8-month-old preterm and 
full-term infants. Brain Lang. 148, 25–36. https://doi.org/10.1016/j.bandl.2015.03.005 

Kersey, A.J., Emberson, L.L., 2017. Tracing trajectories of audio-visual learning in the infant 
brain. Dev. Sci. 20, 1–13. https://doi.org/10.1111/desc.12480 

Kirkham, N.Z., Slemmer, J. a, Johnson, S.P., 2002. Visual statistical learning in infancy: 
evidence for a domain general learning mechanism. Cognition 83, B35-42. 
https://doi.org/10.1016/S0010-0277(02)00004-5 

Kok, P., Turk-Browne, N.B., 2018. Associative Prediction of Visual Shape in the Hippocampus. 
J. Neurosci. 38, 6888–6899. https://doi.org/10.1523/jneurosci.0163-18.2018 

Kouider, S., Long, B., Stanc, L. Le, Charron, S., Fievet, A., Barbosa, L.S., Gelskov, S. V, 2015. 
Neural dynamics of prediction and surprise in infants. Nat. Commun. 6, 8537. 
https://doi.org/10.1038/ncomms9537 

Lew-williams, C., Ferguson, B., Abu-zhaya, R., Seidl, A., 2017. Developmental Cognitive 
Neuroscience Social touch interacts with infants ’ learning of auditory patterns. Dev. Cogn. 
Neurosci. 0–1. https://doi.org/10.1016/j.dcn.2017.09.006 

Lew-Williams, C., Saffran, J.R., 2012. All words are not created equal: Expectations about word 
length guide infant statistical learning. Cognition 122, 241–246. 
https://doi.org/10.1016/j.cognition.2011.10.007 

Lloyd-Fox, S., Richards, J.E., Blasi, A., Murphy, D.G.M., Elwell, C.E., Johnson, M.H., 2014. 
Coregistering functional near-infrared spectroscopy with underlying cortical areas in 
infants. Neurophotonics 1, 025006. https://doi.org/10.1117/1.NPh.1.2.025006 

Marcus, G.F., Vijayan, S., Rao, S.B., Vishton, P.M., 1999. Rule learning by seven-month-old 
infants. Science (80-. ). 283, 77. https://doi.org/10.1126/science.283.5398.77 

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data. J. 
Neurosci. Methods 164, 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024 

Maurer, D., Werker, J.F., 2014. Perceptual narrowing during infancy: A comparison of language 
and faces. Dev. Psychobiol. 56, 154–178. https://doi.org/10.1002/dev.21177 

Max, C., Widmann, A., Schröger, E., Sussman, E., 2015. Effects of explicit knowledge and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.10.468062doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468062
http://creativecommons.org/licenses/by-nc-nd/4.0/


predictability on auditory distraction and target performance. Int. J. Psychophysiol. 98, 
174–181. https://doi.org/10.1016/j.ijpsycho.2015.09.006 

Nakano, T., Homae, F., Watanabe, H., Taga, G., 2008. Anticipatory cortical activation precedes 
auditory events in sleeping infants. PLoS One 3, e3912. 
https://doi.org/10.1371/journal.pone.0003912 

Nakano, T., Watanabe, H., Homae, F., Taga, G., 2009. Prefrontal cortical involvement in young 
infants’ analysis of novelty. Cereb. cortex 19, 455–63. 
https://doi.org/10.1093/cercor/bhn096 

Newman, R., Ratner, N.B., Jusczyk, A.M., Jusczyk, P.W., Dow, K.A., 2006. Infants’ early ability 
to segment the conversational speech signal predicts later language development: a 
retrospective analysis. Dev. Psychol. 42, 643–55. https://doi.org/10.1037/0012-
1649.42.4.643 

Pelucchi, B., Hay, J.F., Saffran, J.R., 2009. Statistical Learning in a Natural Language by 8-
Month-Old Infants. Child Dev. 80, 674–685. https://doi.org/https://doi.org/10.1111/j.1467-
8624.2009.01290.x 

Potter, C.E., Lew-Williams, C., 2019. Infants’ selective use of reliable cues in multidimensional 
language input. Dev. Psychol. 55, 1–8. https://doi.org/10.1037/dev0000610 

Rao, R.P., Ballard, D.H., 1999. Predictive coding in the visual cortex: a functional interpretation 
of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87. 
https://doi.org/10.1038/4580 

Saffran, J.R., Aslin, R.N., Newport, E.L., 1996. Statistical learning by 8-month-old infants. 
Science (80-. ). 274, 1926–1928. https://doi.org/10.1126/science.274.5294.1926 

Saffran, J.R., Kirkham, N.Z., 2018. Infant Statistical Learning. Annu. Rev. Psychol. 69, 181–203. 
https://doi.org/https://www.annualreviews.org/doi/10.1146/annurev-psych-122216-011805 

Saffran, J.R., Pollak, S.D., Seibel, R.L., Shkolnik, A., 2007. Dog is a dog is a dog: Infant rule 
learning is not specific to language. Cognition 105, 669–680. 
https://doi.org/https://doi.org/10.1016/j.cognition.2006.11.004 

Schapiro, A.C., Kustner, L. V., Turk-Browne, N.B., 2012. Shaping of object representations in 
the human medial temporal lobe based on temporal regularities. Curr. Biol. 22, 1622–1627. 
https://doi.org/10.1016/j.cub.2012.06.056 

Schonberg, C., Marcus, G.F., Johnson, S.P., 2018. The roles of item repetition and position in 
infants’ abstract rule learning. Infant Behav. Dev. 53, 64–80. 
https://doi.org/10.1016/j.infbeh.2018.08.003 

Siegelman, N., Bogaerts, L., Armstrong, B.C., Frost, R., 2019. What exactly is learned in visual 
statistical learning? Insights from Bayesian modeling. Cognition 192, 104002. 
https://doi.org/10.1016/j.cognition.2019.06.014 

Slone, L.K., Johnson, S.P., 2018. When learning goes beyond statistics: Infants represent visual 
sequences in terms of chunks. Cognition 178, 92–102. 
https://doi.org/10.1016/j.cognition.2018.05.016 

Slone, L.K., Johnson, S.P., 2016. Infants’ Statistical Learning: 2- and 5-month-olds’ 
Segmentation of Continuous Visual Sequences. J. Exp. Child Psychol. 133, 47–56. 
https://doi.org/10.1016/j.jecp.2015.01.007 

Summerfield, C., de Lange, F.P., 2014. Expectation in perceptual decision making: neural and 
computational mechanisms. Nat. Rev. Neurosci. 15, 745–756. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.10.468062doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468062
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1038/nrn3838 
Summerfield, C., Egner, T., 2016. Feature-Based Attention and Feature-Based Expectation. 

Trends Cogn. Sci. 20, 401–404. https://doi.org/10.1016/j.tics.2016.03.008 
Summerfield, C., Trittschuh, E.H., Monti, J.M., Mesulam, M.M., Egner, T., 2008. Neural 

repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. 11, 1004–6. 
https://doi.org/10.1038/nn.2163 

Sussman, E., Winkler, I., Schröger, E., 2003. Top-down control over involuntary attention 
switching in the auditory modality. Psychon. Bull. Rev. 10, 630–637. 
https://doi.org/https://doi.org/10.3758/BF03196525 

Tak, S., Uga, M., Flandin, G., Dan, I., Penny, W.D., 2016. Sensor space group analysis for 
fNIRS data. J. Neurosci. Methods 264, 103–112. 
https://doi.org/10.1016/j.jneumeth.2016.03.003 

Thiessen, E.D., 2017. What’s statistical about learning ? Insights from modelling statistical 
learning as a set of memory processes. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160056. 
https://doi.org/https://doi.org/10.1098/rstb.2016.0056 

Turk-Browne, N.B., Scholl, B.J., Chun, M.M., Johnson, M.K., 2009. Neural evidence of statistical 
learning: efficient detection of visual regularities without awareness. J. Cogn. Neurosci. 21, 
1934–1945. https://doi.org/10.1162/jocn.2009.21131 

Werchan, D.M., Collins, A.G.E., Frank, M.J., Amso, D., 2016. Role of Prefrontal Cortex in 
Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants. J. Neurosci. 36, 
10314–10322. https://doi.org/10.1523/JNEUROSCI.1351-16.2016 

Xiao, N.G., Emberson, L.L., 2019. Infants use knowledge of emotions to augment face 
perception: Evidence of top-down modulation of perception early in life. Cognition 193, 
104019. https://doi.org/10.1016/j.cognition.2019.104019 

Yaron, A., Hershenhoren, I., Nelken, I., 2012. Sensitivity to Complex Statistical Regularities in 
Rat Auditory Cortex. Neuron 76, 603–615. https://doi.org/10.1016/j.neuron.2012.08.025 

 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.10.468062doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468062
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Materials for: 
 
Sequence learning attenuates cortical responses in both frontal and perceptual cortices in early 
infancy 
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Figure S1. Deoxy hemoglobin concentration changes in response to the two experimental 
conditions. 
 
 

In the main article, we report results that infants exhibit attenuated sensory responses 
when presented with stimuli within a predictable sequence. Convergent findings suggest that 
the frontal lobe is crucial for supporting learning of these sequences, while the attenuated 
sensory responses are in posterior sensory cortices (temporal and occipital cortices, 
corresponding to auditory and visual responses respectively). Thus, we hypothesized that these 
attenuated responses to predictable stimuli would be supported by connectivity between the 
frontal lobe and the posterior sensory cortices. To test this prediction, we developed a pipeline 
to assess task-based functional connectivity, using a background connectivity approach, with 
infant fNIRS data. Here, we present details on this analytic pipeline including our validation of 
key analytic decisions that were used to produce robust estimates of task-based connectivity. 
Notably however, we do not find statistically significant differences in background connectivity 
between the conditions examined in this study.   
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Background connectivity is an analytic approach to elucidating functional connectivity 
during task-based stimulation without the confounding effect of the temporal structure of 
stimulus presentation. In the presence of external stimulation, hemodynamic responses in 
different neural areas are correlated not only due to the connectivity between them, but also 
due to the synchronized task-evoked responses. If the task-evoked responses are not 
appropriately controlled for, the functional connectivity analysis can yield over-inflated 
correlation estimates (Cole et al., 2019). The background connectivity approach to inferring 
functional connectivity models and linearly regresses stimulus-evoked responses out of the 
data, before measuring correlations in the residual spontaneous fluctuations (Al-Aidroos, Said, 
& Turk-Browne, 2012).  

 
Specifically, we modeled task-evoked activations by fitting a generalized linear model 

(GLM) using an finite impulse responses (FIR) approach (Santosa, Zhai, Fishburn, & Huppert, 
2018)We chose FIR as a basis function to approximate the hemodynamic response, particularly 
given that we do not have definitive knowledge about the shape of the hemodynamic response 
in infant subjects. We defined our impulse response window as 20 seconds starting at stimulus 
onset to account for 10 seconds of stimulus and 10 seconds of inter-trial baseline period. At one 
FIR regressor per second, we used 20 FIR regressors to model the neural response, and the 
weighted sum of those impulses were used to estimate the shape of the hemodynamic 
response. We used this estimate of hemodynamic response as the measure of task-evoked 
cortical activity in the functional connectivity analyses. 

 
The residuals from this model (i.e., what remains after the task-evoked responses were 

removed) were used to measure background activity. After confirming that the residuals were 
normally distributed and therefore were suitable for Pearson correlation, we calculated 
temporal Pearson correlations over the residuals to infer functional connectivity between the 
frontal, temporal and occipital lobes. The correlation coefficients (Pearson’s r) of each subject 
were Fisher transformed to z-values to aggregate across all subjects. Then, the z-values were 
Fisher transformed back to Pearson’s r values. 

 
We first sought to evaluate the influence of some key analytic decisions in this pipeline, 

to determine how they affected our estimates of the background connectivity patterns. We 
highlight two such decisions.  

 
Not removing the global mean: Similar techniques have been used with fMRI data (Al-

Aidroos et al., 2012), although, unlike with fMRI data, we did not first regress out nuisance and 
global variables due to the lack of coverage of non-responsive regions like brain stems and 
ventricles in an fNIRS recording. Indeed, we found that regressing out the global mean resulted 
in uniformly negative task-based connectivity patterns. In the attached figures, model 2 reflects 
the pipeline in which the global mean is first regressed out. This pattern of findings indicates 
that the regression of global or nuisance variables may not be appropriate with fNIRS data. 
However, in fNIRS studies including data from short-channels or which have broader coverage 
of non-responsive regions, it would be worthwhile to evaluate whether the inclusion of global 
mean or nuisance regressors in the GLM would be beneficial.  
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Averaging channels before estimating background connectivity:  Another analytic 

decision that we evaluated is when in the pipeline to average data across channels. We were 
interested in connectivity patterns across lobes of the brain. Since individual fNIRS channels are 
smaller than these lobular ROIs, and there are therefore several such channels in each lobe, we 
needed to average across channels to produce lobe-based connectivity patterns. Our pipeline 
averaged the fNIRS data into the lobular ROIs before estimating background connectivity. Our 
primary motivation for this decision was that we expected averaging at this early stage to 
increase the quality of the signals we used to estimate background connectivity. To evaluate 
the influence of this decision, we contrasted this to the alternative approach of calculating 
background connectivity for each pair of channels between two lobular ROIs and then 
averaging the resulting background connectivity patterns (i.e., the Fisher transformed r scores). 
As predicted, this alternative approach produced much weaker connectivity patterns.  This is 
illustrated in Model 3 in the figures below.  

 
After establishing this pipeline, we tested whether background connectivity was 

different in response to PS versus UPS, using a two-tailed t-test. No t-value was close to the 
threshold for statistical significance (see figures below for matrices of these t-values).  

 

 
Figure S2: Connectivity matrices for predictable and unpredictable conditions (top and middle 
rows, respectively) across three models, for the oxygenated hemoglobin data. Model 1 is the 
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established pipeline: does not remove the global mean, regresses out task-evoked activity using 
an FIR model, and averages responses within lobes before calculating background connectivity. 
Model 2: presents the same data as Model 1 but with the global mean first removed. Model 3: 
presents the same data as Model 1 but with the background connectivity measures estimated 
for all channel pairs across lobes, and then the resulting correlation coefficients averaged to 
produce the lobe level results. The bottom row presents the t-values contrasting connectivity 
measures between the two conditions for each model. No reliable differences were observed 
between conditions.  
 

 
Figure S3: Connectivity matrices for predictable and unpredictable conditions (top and middle 
rows, respectively) across three models for the deoxygenated hemoglobin data. Model 1 is the 
established pipeline: does not remove the global mean, regresses out task-evoked activity using 
an FIR model, and averages responses within lobes before calculating background connectivity. 
Model 2: presents the same data as Model 1 but with the global mean also removed. Model 3: 
presents the same data as Model 1 but with the background connectivity measures estimated 
for all channel pairs across lobes and then the resulting correlation coefficients averaged to 
produce the lobe level results. The bottom row presents the t-values contrasting connectivity 
measures between the two conditions for each model. No reliable differences were observed 
between conditions.  
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