

1 **Classification:** Biological Sciences; Developmental Biology

2 **Title:** Base editing in bovine embryos reveals a species-specific role of SOX2 in
3 regulation of pluripotency

4 **Running title:** Species-specific role of SOX2 in pluripotency

5 **Authors:** Lei Luo^{a,1}, Yan Shi^{a,1}, Huanan Wang^{a,b,1}, Zizengchen Wang^a, Yanna Dang^a,
6 Shuang Li^a, Shaohua Wang^a, and Kun Zhang^{a,2}

7 **Author Affiliation:** ^aLaboratory of Mammalian Molecular Embryology, College of
8 Animal Sciences; ^bDepartment of Veterinary Science, Zhejiang University, Hangzhou,
9 Zhejiang 310058, China.

10 **Footnotes:** ¹L.L., Y.S., and H.N.W. contributed equally to this work. ²To whom
11 correspondence may be addressed.

12 **Corresponding Author:** Kun Zhang, Room 301 E Building, 866 Yuhangtang Rd,
13 Hangzhou, Zhejiang 310058, China, Email: kzhang@zju.edu.cn

14 **Keywords:** Cattle, Embryo, Pluripotency, SOX2, NANOG, CDX2

15 **Abstract**

16 The emergence of the first three lineages during development are orchestrated by a
17 network of transcription factors, which are best characterized in mice. However, the
18 role and regulation of these factors are not completely conserved in other mammals,
19 including human and cattle. Here, we establish a gene inactivation system by
20 introducing premature codon with cytosine base editor in bovine embryos with a
21 robust efficiency. Of interest, SOX2 is universally localized in early blastocysts but
22 gradually restricted into the inner cell mass in cattle. SOX2 knockout results in a
23 failure of the establishment of pluripotency. Indeed, OCT4 level is significantly
24 reduced and NANOG was barely detectable. Furthermore, the formation of primitive
25 endoderm is compromised with few SOX17 positive cells. Single embryo RNA-seq
26 reveals a dysregulation of 2074 genes, among which 90% are up-regulated in
27 SOX2-null blastocysts. Intriguingly, more than a dozen lineage-specific genes,
28 including *OCT4* and *NANOG*, are down-regulated. Moreover, SOX2 expression is
29 sustained in the trophectoderm in absence of CDX2 in bovine late blastocysts. Overall,
30 we propose that SOX2 is dispensable for OCT4 and NANOG expression and
31 disappearance of SOX2 in the trophectoderm depends on CDX2 in cattle, which are
32 all in sharp contrast with results in mice.

33 **Significance**

34 The first and second cell fate decisions of a new life are important for subsequent
35 embryonic and placental development. These events are finely controlled by a
36 network of transcriptional factors, which are extensively characterized in mice.
37 Species-specific roles of these proteins are emerging in mammals. Here, we develop a
38 gene loss-of-function system by using cytosine base editors in bovine embryos. We
39 find that expression pattern, functional roles, and regulation of SOX2 are all different
40 between mouse and bovine embryos. Remarkably, SOX2 is required for OCT4 and
41 NANOG, two well established pluripotency genes. Furthermore, CDX2 is required to
42 shut down SOX2 in the trophectoderm. Given similar expression pattern of SOX2
43 between human and bovine blastocysts, bovine embryos represents a putative model
44 to investigate human pluripotency regulation *in vivo*.

45 **Introduction**

46 Mammalian preimplantation development is characterized of the two earliest cell fate
47 decisions. The first cell fate decision gives rise to the inner cell mass (ICM) and the
48 trophectoderm (TE) and subsequently the ICM generates the primitive endoderm (PE)
49 and the epiblast (EPI) during the second cell fate decision. TE and PE will develop
50 into placenta and extra-embryonic cells, respectively, whereas the pluripotent EPI
51 contributes to the embryo proper (1, 2). The mechanisms that regulate these events
52 have been mostly obtained from mouse model. Recent gene-expression and functional
53 analyses suggest that these mechanisms in the mouse may differ in other mammals,
54 including human and cattle. Investigation of these mechanisms is important for
55 assisted reproductive technology, regenerative medicine as well as understanding
56 early embryonic mortality in human and agricultural animals.

57 The establishment and maintenance of pluripotency is regulated by a variety of
58 transcription factors, including core pluripotency factors, OCT4, SOX2 and NANOG
59 (1, 2). The functional importance and relationship of these core transcription factors
60 have been relatively well-characterized in mouse embryos. Interestingly, unlike the
61 universal expression pattern of OCT4 in morula, SOX2 is specifically restricted into
62 the inside cells of morula that become the ICM and is considered the earliest
63 pluripotency marker in mice (3). The HIPPO pathway plays a critical role in temporal
64 and spatial expression of SOX2 in mouse preimplantation embryos (3, 4). However,
65 SOX2 is not required for the first cell fate decision although SOX2-null mouse
66 embryos die soon after implantation and exhibit abnormal ICM (5). Meanwhile,
67 SOX2 is dispensable for initial expression of OCT4 and NANOG in mouse blastocysts
68 (3). However, unlike the expression pattern in mouse preimplantation embryos, SOX2
69 is not restricted until the expanded blastocyst stage in cattle and humans (6),
70 suggesting a differential regulation of pluripotency in these species.

71 Base editors are derived from CRISPR/Cas9 genome-editing system and used for
72 precise base editing without DNA double-strand breaks and homology-directed repair
73 (7). Adenine base editors (ABEs) are used to convert an A:T base pair to a G:C base
74 pair (8). Cytosine base editors are used to convert C:G to T:A (9). In addition, a

75 specific function of cytosine base editor is to install a premature stop codon by
76 converting the four codons CAA, CAG, CGA and TGG into stop codons TAA, TAG
77 or TGA (10, 11). To date, base editing has been successfully implemented in the
78 embryos of mice (12, 13), rat (14), pig (15), rabbit (16), cynomolgus monkey (17),
79 and humans (18-20) but has yet been determined in cattle.

80 In the present study, we successfully develop a high-efficient base editing system in
81 bovine embryos, representing a powerful tool to interrogate gene functions. We then
82 address the role of SOX2 in bovine early embryonic development. Sox2-null embryos
83 can develop to the blastocyst stage, but the ICM is abnormal. SOX2 deletion results in
84 a significant reduction in OCT4 and NANOG expression and dysregulated expression
85 of over 2000 genes. Impressively, CDX2 inhibits SOX2 expression in the TE of
86 bovine late blastocysts. In summary, SOX2 is required for OCT4 and NANOG
87 expression and CDX2 is necessary for ensuring the restricted expression of SOX2 in
88 the ICM of bovine blastocysts.

89 **Results**

90 **Base editors enable efficient genome editing in bovine embryos**

91 We first sought to establish base editing system using the cytosine base editor (BE3)
92 and the adenine base editor (ABE7.10). Base editor mRNA and sgRNA targeting
93 *SMAD4* were co-injected into the zygotes. Morula cultured in vitro for 6 days were
94 collected and genotypes identified by Sanger sequencing and targeted deep
95 sequencing (Fig 1A and 1B). As for BE3, the desired mutations of C₆ and C₇ to T
96 were found in all embryos examined (Fig 1C). The average efficiency of C₆ and C₇
97 being edited as T was 86.3% and 85.4%, respectively, compared with 5.0% in
98 wildtype (WT) embryos (Fig 1D). Regarding ABE7.10, the target mutation of A₅ to G
99 was also found in all embryos with an average editing efficiency of 79.4% versus 4.5%
100 in WT embryos (Fig 1E and 1F). In addition, we investigated the off-target effect by
101 targeted next-generation sequencing and found no obvious distal off-target edits at the
102 six predicted off-target sites (Fig S1A and S1B).

103 To evaluate the ability of base editors to edit multiple genes in bovine embryos, we
104 simultaneously injected sgRNAs targeting three genes, *SMAD4*, *TEAD4*, and *CDX2*,

105 with base editor mRNA. Results showed injection of the base editor components did
106 not affect embryonic development to morula stage (Fig S2A and S2B). Using BE3,
107 results indicated successful editing of three, two and single target genes in 25.8%,
108 25.8% and 12.9% embryos, respectively (Fig S2C and Table 1). For ABE7.10, results
109 indicated successful editing of three, two and single target genes in 23.3%, 56.7% and
110 20.0% embryos, respectively (Fig S2D and Table 2). Taken together, these data
111 present proof-of-evidence of base editing with high efficiency in bovine embryos.

112 **Disrupting genes by introducing premature stop codon with cytosine base editor
113 in bovine embryos**

114 Cytosine base editors can introduce premature stop codons to inactivate genes by
115 precisely converting four codons into stop codons. We next test the feasibility of
116 disrupting a gene in bovine early embryos. To maximize the editing efficiency, we
117 designed and simultaneously microinjected 2 sgRNAs targeting the gene of interest,
118 *OCT4* (Fig S3A). Results shows the edited efficiency of sgRNA1 is 25.92% and
119 sgRNA2 reaches 74.07% (Fig S3B and S3C). Overall, premature stop condons were
120 successfully introduced in 77.8% (21 out of 27) embryos, suggesting gene disruption.
121 As a side-by-side experiment, immunostaining analysis confirmed that *OCT4* can be
122 efficiently deleted in all blastomeres in these blastocysts (Fig S3D and S3E). Next, we
123 tested if *OCT4*-null embryos generated here recapitulate the phenotype of *OCT4*
124 knockout embryos produced via somatic cell nuclear transfer as reported previously
125 (21). Remarkbaly, NANOG is barely detectable in absence of *OCT4* at blastocyst
126 stage (Fig S3D and S3F). The developmental potential to form blastocysts is grealty
127 inhibited in *OCT4* KO groups (Fig S3G). These results are consistent with the
128 previous study. Thus, we establish a powerful and reliable system to accomplish
129 efficient base editing in bovine embryos, which will facilitate studies of gene
130 functions in bovine embryos.

131 **Expression pattern of SOX2 protein in bovine early embryos**

132 To functionally characterize SOX2 in bovine embryos, we first determine its
133 expression pattern in detail in bovine embryos. SOX2 was first found in the 8-cell
134 stage and continued to express thereafter (Fig 2A). In contrast to mouse embryos,

135 SOX2 was not detected during oocyte maturation and the early development to the
136 four-cell stage (Fig 2A). It is noteworthy that SOX2 gradually accumulates in the
137 ICM cells along with blastocyst expansion. Specifically, SOX2 was evenly distributed
138 in both TE and ICM in early blastocysts. Then, SOX2 was lost in subsets of TE cells
139 in middle blastocysts, and eventually restricted into ICM in late blastocysts (Fig 2B).
140 Quantitative results showed SOX2 level in TE is gradually diminished relative to the
141 one in ICM when the blastocyst is expanding (Fig 2C and 2D). Altogether, these data
142 indicate that SOX2 displays a different expression pattern in bovine embryos, which
143 suggests that there are differences in the regulatory mechanism of pluripotency
144 between species.

145 **Effects of SOX2 KO on the bovine embryo development**

146 We then sought to explore the functional role of SOX2 by disrupting its expression
147 using BE3 (Fig 3A and 3B). Genotyping results show sgRNA2 and 3 are more
148 efficient than sgRNA1 in editing SOX2 (Fig 3C and 3D). Overall, premature stop
149 codon was successfully installed at SOX2 in 87.1% (101 out of 116) bovine
150 blastocysts when these three sgRNAs were injected. Immunostaining results further
151 confirmed that SOX2 signal was drastically diminished in these corresponding
152 blastocysts and only 9 (out of 116) embryos display mosaicism (Fig 3E).

153 In vitro culture of embryos revealed no significant difference in the capability to
154 become blastocysts between SOX2 KO and WT groups (Fig 3F). Interestingly, the
155 total cell number per blastocyst was significantly reduced at both E7.5 and E8.5 (Fig
156 3G and 3H). However, the TE cell number (CDX2 positive) was not obviously
157 changed while the number of ICM cells (CDX2 negative) was rather decreased
158 dramatically (Fig 4A). Overall, SOX2 is not required for blastocyst formation, but
159 essential for the ICM development in bovine blastocysts.

160 **SOX2 knockout disrupts the network of pluripotent genes in bovine blastocysts**

161 To determine the molecular consequence of SOX2 KO, RNA-seq of single blastocyst
162 was performed at E7.5. The samples are morphological indifferent upon collected to
163 avoid bias (Fig 4A and S4A). Partial cDNA libarary from each blastocyst was used to
164 determine the genotype (Fig 4B and S4B). Principal component analysis (PCA)

165 showed that WT and SOX2 KO blastocysts formed two distinguished clusters (Fig
166 S4C). There are a total of 2074 differentially expressed genes (DEGs, Fold changes
167 (FC) >2 or <0.5 , P adjusted <0.05), among which 88.53% were remarkably
168 upregulated in SOX2 KO groups (Fig 4B and 4C).

169 Gene ontology (GO) analysis revealed that the top GO terms enriched in DEGs
170 include membrane depolarization during an action potential, cell adhesion, integral
171 component of plasma membrane, calcium ion binding. Interestingly, we found a
172 number of overrepresented genes that involved in regulation of the pluripotency,
173 including up-regulated *IGF2*, *PAG2*, *LIF*, *MYC*, *WNT3A*, and down-regulated
174 *IGFBP3*, *IGFBP4*, *PRDM14*, *SALL4*, *FGFR4*, *STAT3*, *HDAC8* (Fig 4D). Surprisingly,
175 *NANOG* and *OCT4* were both sharply downregulated in SOX2 KO bovine blastocysts.
176 In sum, these data suggest SOX2 plays a critical role in maintaining correct gene
177 expression of the pluripotency network.

178 **SOX2 is indispensable for NANOG and OCT4 expression in the ICM of bovine
179 blastocysts**

180 We then hypothesized that SOX2 is required for OCT4 and NANOG expression in
181 bovine blastocysts. As reported previously, we confirmed OCT4 is evenly localized in
182 the ICM and TE at early and middle blastocyst stage but gradually restricted into the
183 ICM at late blastocyst stage in cattle (Fig S5A and S5B). Remarkably, the intensity of
184 OCT4 decreased significantly in the SOX2 KO blastocysts (Fig 5B). NANOG was
185 first detected in the morula stage and distributed in both TE and ICM of the early
186 blastocyst and then fast aggregated into epiblast in the late blastocyst stage (Fig S5B).
187 Intriguingly, NANOG was barely seen in SOX2 KO blastocysts (Fig 5C). These
188 results collectively suggest that SOX2 is the core gene and upstream of OCT4 and
189 NANOG in the network of pluripotency genes in cattle.

190 To further determine if SOX2 KO affect the specification of primitive endoderm, we
191 performed immunostaining against SOX17 and found the number of SOX17 positive
192 cells was greatly reduced after SOX KO (Fig 5D), suggesting a compromised
193 primitive endoderm.

194 **CDX2 is required for the restricted expression of SOX2 in the ICM of bovine late**

195 **blastocysts**

196 We next asked if CDX2 is involved in the gradual disappearance of SOX2 in the TE.
197 Both genotyping and immunostaining results indicated CDX2 is completely knocked
198 out in 82.9% embryos (58 out 70; Fig S6A-D). No difference was found on the
199 developmental potential to arrive blastocyst stage in CDX2 KO groups (Fig S6E).
200 Immunostaining analysis revealed that SOX2 signal sustained in the TE of bovine late
201 blastocysts in CDX2 KO groups (Fig 6A-C). To further test the specificity of the role
202 of CDX2 in regulating SOX2 expression during the bovine embryonic development,
203 we microinjected base editor components into one blastomere at 2-cell stage (Fig 6D).
204 Immunostaining and confocal microscopy analysis indicated that SOX2 signal of
205 CDX2 negative cells are obviously brighter than those of CDX2 positive cells in the
206 TE of bovine blastocysts (Fig 6E and 6F), further consolidating the conclusion that
207 CDX2 is required to diminish SOX2 in the TE of bovine late blasotcysts.

208 **Discussion**

209 How the earliest cell fate decisions are made is a fundamental question due to their
210 importance for the establishment of pregnancy and fetus development in mammals.
211 Recent studies suggest specie-specific regulation of these events. Here, we present the
212 proof-of-evidence of base-editor-mediated gene knockout with a robust efficiency in
213 bovine early embryos. Using this platform, we find SOX2 regulates OCT4 and
214 NANOG expression and the disappearance of SOX2 in the TE of bovine blastocyst is
215 dependent on CDX2. These results are different with those of mouse studies,
216 revealing a species-specific role and regulation of SOX2 in mammals.

217 A longstanding barrier for studying gene functions in large animal is the lack of
218 genetic tool to disrupt a gene of interest. The advent of CRISPR-Cas9 technology
219 represents a powerful approach to achieve genome editing. However, recent studies
220 indicate the use of Cas9 in human early embryos results in unintentional deletion of
221 large fragments, raising concerns in addressing gene functional studies and clinical
222 use (22, 23). We thus decided to use base editing system in the present study. Cytosine
223 base editors are particularly useful for disrupting genes by introducing a premature
224 stop codon into a gene of interest without creating double strand breaks or indels.

225 Here, our studies reported that BE3 and ABE7.10 enable us to achieve gene editing
226 with an efficiency above 79% in bovine embryos. Importantly, we found no obvious
227 off-target editing at potential site, indicating the specific effects we documented in the
228 present study. To maximize the editing efficiency, we microinjected 2 or 3 sgRNA
229 together and found the target gene can be deleted completely in all blastomeres in
230 around 80% embryos with only less than 10% embryos exhibit mosaicism. We believe
231 this approach is a powerful tool to dissect gene function and produce genome-edited
232 cattle.

233 A series of transcription factors participate in the lineage development, including
234 CDX2, SOX2, OCT4, and NANOG. These factors are originally identified as
235 lineage-specific in mice and are also present in other mammals. Nonetheless, if their
236 function is conserved across species remains poorly determined, especially in large
237 animals. OCT4 expression lasts a long time in the TE of bovine blastocyst, in contrast
238 to the expression pattern observed in mice (24, 25). OCT4 was restricted into the ICM
239 later than SOX2, suggesting SOX2 is required first for the establishment of
240 pluripotency. Consistently, OCT4 KO does not affect the expression of SOX2,
241 however, SOX2 KO leads to reduced OCT4 expression in bovine blastocysts. More
242 remarkably, we observed even no NANOG expression in both early or late SOX2-null
243 blastocysts. A recent study show OCT4 is required for NANOG expression in bovine
244 blastocysts (21), suggesting that SOX2 may regulate NANOG indirectly through
245 OCT4. However, we speculate SOX2 also directly regulate the expression of NANOG
246 because OCT4 is not completely lost when SOX2 is deleted (Fig 6G).

247 RNA-seq results revealed a large-scale disruption of the transcriptome upon SOX2
248 deletion in bovine blastocysts with 2074 genes expression affected. In comparison, a
249 previous report have shown that only 472 genes are dysregulated in OCT4-null bovine
250 blastocysts (21), indicating the molecular consequence of SOX2 KO is more severe
251 than OCT4.

252 Mutual feedback between lineage-specific genes in mammalian embryos has been
253 reported previously (1). OCT4 and CDX2 are mutually regulated by each other in the
254 ICM and TE in mouse blastocysts (1). However, Sox2 is restricted to inside cells by a

255 Cdx2-independent mechanism (3). Results herein show CDX2 is involved in
256 suppressing SOX2 in the TE along with blastocyst expansion. This suppression is
257 developmental context-dependent as it takes places in late blastocysts but not in early
258 blastocyst stage.

259 In conclusion, we demonstrated that the base editing system could be applied to
260 bovine embryos. With this powerful tool, SOX2 knockout was successfully achieved
261 in bovine embryos. Functional experiments proved that SOX2 knockout significantly
262 disrupt OCT4 and NANOG expression. Meanwhile, the disappearance of SOX2 in the
263 TE is dependent on CDX2. Altogether, our study reveals a species-specific role of
264 SOX2 in regulation of pluripotency and unique regulation of SOX2's restricted
265 expression in blastocysts.

266 **Materials and Methods**

267 **Materials**

268 All chemicals and reagents were commercially obtained from Sigma (St. Louis, MO)
269 unless stated elsewhere.

270 **In vitro production of bovine embryos**

271 Bovine embryo in vitro production, including in vitro maturation (IVM), in vitro
272 fertilization (IVF) and in vitro culture (IVC) was performed as procedures published
273 previously with slight modifications (26-28). Briefly, cumulus-oocyte complexes
274 (COCs) containing intact cumulus cells were collected from bovine ovaries obtained
275 from a local abattoir. COCs were matured in Medium-199 (M4530) supplemented
276 with 10% FBS (Gibco-BRL, Grand Island, NY), 1 IU/ml FSH (Sansheng Biological
277 Technology, Ningbo, China), 0.1 IU/ml LH (Solarbio, Beijing, China), 1 mM Sodium
278 Pyruvate (Thermo Fisher Scientific, Waltham, MA), 2.5 mM GlutaMAX™ (Thermo
279 Fisher Scientific, Waltham, MA), and 10 µg/mL Gentamicin at 38.5°C under 5% CO₂
280 in humidified air for 22-24 hrs. COCs (60-100 COCs per well in 4-well plates) were
281 then incubated with spermatozoa (1-5×10⁶) purified from frozen-thawed semen by
282 using a Percoll gradient in BO-IVF medium (IVF bioscience, Falmouth, Cornwall,
283 UK). IVF condition was 38.5°C under 5% CO₂ for 9-12 hrs. Putative zygotes were
284 then removed of cumulus cells by pipetting up and down using Medium-199 (M7528)

285 supplemented with 2% FBS (Gibco-BRL, Grand Island, NY). Embryos were
286 incubated in BO-IVC medium (IVF bioscience, Falmouth, Cornwall, UK) at 38.5°C
287 under 5% CO₂ in humidified air until use.

288 **sgRNA design, synthesis, and plasmid construction**

289 BE-Designer online software (<http://www.rgenome.net>) was used to design sgRNAs.
290 sgRNA sequences with appropriate GC content and low off-target probability were
291 selected that target the protein-coding region of the gene of interest. The sticky end of
292 BpiI: 5'-3' CACC and 5'-3' AAAC were added to the 5' ends of the sense and
293 antisense strand, respectively (Table S1). The DNA sequences were synthesized by
294 Sangon Co., LTD (Shanghai). Then, sgRNA DNA oligos were annealed and cloned
295 into a PX458 vector containing BpiI restriction sites with T7 promoter.

296 **In vitro transcription**

297 BE3 and ABE7.10 plasmids were purchased from Addgene (#73021 and #102919).
298 After linearization with Not I, the plasmid underwent in vitro transcription using
299 mMESSAGE mMACHINE T7 kit (Invitrogen) and were purified by LiCl
300 precipitation. sgRNAs were amplified and transcribed in vitro using MEGAshortscript
301 T7 High Yield Transcription Kit (Invitrogen) according to manufacturer's instructions.
302 Primers are listed in Table S2. After transcription, sgRNAs were purified by ethanol
303 precipitation.

304 **Microinjection of base editor mRNA**

305 10-20 pL mixture of 100 ng/µL sgRNA and 200 ng/µL ABE7.10 or BE3 mRNA were
306 microinjected into bovine zygotes at 12 h post insemination (hpi) by using a
307 micromanipulator. Control embryos were injected with same amount of mRNA without
308 sgRNA. To maximize the editing efficiency of the gene of interest, a cocktail of two
309 or three sgRNAs were microinjected together with BE3 mRNA.

310 **Single bovine embryo PCR and genotyping**

311 Injected embryos were collected at morula or blastocyst stage. Genomic DNA was
312 isolated using an embryo lysis buffer (40nM Tris-HCl, 1% Triton X-100, 1% NP-40
313 and 0.4 ng/mL Proteinase K) at 55 °C for 1 h and 95 °C for 10 min. Nested PCR was
314 performed and then the amplicon was subject to Sanger sequencing. All primers used

315 are listed in Table S3.

316 **Targeted deep sequencing**

317 Single embryo was subject to whole-genome amplification by using REPLI-g Mini
318 Kits (QIAGEN, Cat. No. 150023). The target sites and 6 potential off-target sites
319 (Table S4) that predicted by an online software were amplified using PCR primers
320 with barcode sequence (Table S5). All amplicons were purified and subject to targeted
321 deep sequencing.

322 **Immunofluorescence (IF)**

323 Early embryos were rinsed three times with 0.1% PBS/PVP (polyvinylpyrrolidone),
324 and fixed with 4% paraformaldehyde in PBS for 30 min, permeabilized with 0.5%
325 TritonX-100/PBS for 30 min. Fixed samples were then blocked for 1-2 hrs with the
326 buffer containing 10% FBS and 0.1% TritonX-100/PBS. Samples were incubated with
327 primary antibodies for 2 hrs at room temperature or overnight at 4°C. Then, embryos
328 were treated with secondary antibodies for 2 hrs. Nuclear DNA was counterstained by
329 DAPI for 15 min. Samples were mounted and observed with either an inverted
330 epifluorescence microscope (Nikon, Chiyoda, Japan) or a Zeiss LSM880 confocal
331 microscope system (Zeiss, Oberkochen, Germany). For confocal microscopy, Z-stacks
332 were imaged with 5 μ m intervals between optical sections. Stacks were projected by
333 maximum intensity to display signals of all blastomeres in one image. All antibody
334 information was shown in Table S6.

335 **Single blastocyst RNA-seq and data analysis**

336 Single blastocyst from WT and KO group was collected on E7.5. The zona pellucidae
337 of blastocysts was discarded with 0.5% pronase E. The RNA-seq libraries were
338 constructed according to Smart-seq2 procedure as previously described (29). In brief,
339 polyadenylated RNAs were captured and reverse transcribed with Oligo(dT) primer,
340 then the cDNA was pre-amplified using KAPA HiFi HotStart ReadyMix (kk2601).
341 Pre-amplified cDNA was purified with Ampure XP beads (1:1 ratio) and fragmented
342 by Tn5 enzyme (Vazyme, TD502). PCR amplification for 15-18 cycles was performed
343 to prepare sequencing libraries, which were subject to paired-end 150 bp sequencing
344 on a NovaSeq (Illumina) platform by Novogene. The raw sequencing reads were

345 trimmed with Trimmomatic (version 0.39) (30) to generate clean data, and mapped to
346 ARS-UCD1.2 with Hisat2 (version 2.1.0) (31). The raw counts were calculated with
347 featureCounts (version 1.6.3) (32) and underwent differential expression analysis
348 using DESeq2 (33). The differentially-expressed genes between WT and KO group
349 were identified when $\text{Padj} \leq 0.05$ and $\text{Foldchange} \geq 2$ or ≤ 0.5 . FPKM for each
350 sample was calculated with Cufflinks (34) for heatmap visualization, and heatmaps
351 generated using pheatmap package in R. Gene ontology analysis was performed with
352 the Database for Annotation, Visualization and Integrated Discovery (DAVID)(35, 36)

353 **Statistical Analysis**

354 All experiments were replicated at least three times unless stated. Two-tailed unpaired
355 student t-tests were used to compare differences between two groups. The fluorescent
356 intensity was analyzed using Image J as described previously (26). Briefly, the nuclear
357 region was encircled based on the DAPI signal and the intensity measured. The same
358 region was moved to the cytoplasm area and background intensity obtained. The same
359 specific signal was calculated by subtracting the cytoplasmic intensity from the
360 nuclear intensity. Finally, the data were normalized to the relative channels in control
361 groups. The graphs were constructed by GraphPad Prism 8.0 (GraphPad Software,
362 USA). $P < 0.05$ refers statistical significance.

363 **Acknowledgments**

364 We thank all members of the K. Zhang laboratories for their helpful discussions. This
365 work was supported by National Natural Science Foundation of China (No. 31872348,
366 No. 31672416, and No. 32072731 to K.Z.; No. 32072939 to H.W.; No.31941007 to
367 L.L. and S.W.), Zhejiang Provincial Natural Science Foundation (LZ21C170001 to
368 K.Z.; No. LY19C180002 to H.W.) and China Postdoctoral Science Foundation (No.
369 2020M671742 to L.L.).

370 **References**

371 1. Zhu M & Zernicka-Goetz M (2020) Principles of Self-Organization of the Mammalian
372 Embryo. *Cell* 183(6):1467-1478.

373 2. Rossant J (2018) Genetic Control of Early Cell Lineages in the Mammalian Embryo.

374 1. Wicklow E, *et al.* (2014) HIPPO Pathway Members Restrict SOX2 to the Inner Cell
375 Mass Where It Promotes ICM Fates in the Mouse Blastocyst. *Plos Genet* 10(10).

376 2. Frum T, Watts JL, & Ralston A (2019) TEAD4, YAP1 and WWTR1 prevent the
377 premature onset of pluripotency prior to the 16-cell stage. *Development* 146(17).

378 3. Avilion AA, *et al.* (2003) Multipotent cell lineages in early mouse development depend
379 on SOX2 function. *Genes Dev* 17(1):126-140.

380 4. Gerri C, *et al.* (2020) Initiation of a conserved trophectoderm program in human, cow
381 and mouse embryos. *Nature* 587(7834):443-+.

382 5. Anzalone AV, Koblan LW, & Liu DR (2020) Genome editing with CRISPR-Cas
383 nucleases, base editors, transposases and prime editors. *Nat Biotechnol*
384 38(7):824-844.

385 6. Gaudelli NM, *et al.* (2017) Programmable base editing of A*T to G*C in genomic DNA
386 without DNA cleavage. *Nature* 551(7681):464-471.

387 7. Komor AC, Kim YB, Packer MS, Zuris JA, & Liu DR (2016) Programmable editing of a
388 target base in genomic DNA without double-stranded DNA cleavage. *Nature*
389 533(7603):420-424.

390 8. Billon P, *et al.* (2017) CRISPR-Mediated Base Editing Enables Efficient Disruption of
391 Eukaryotic Genes through Induction of STOP Codons. *Mol Cell* 67(6):1068-1079
392 e1064.

393 9. Kuscu C, *et al.* (2017) CRISPR-STOP: gene silencing through base-editing-induced
394 nonsense mutations. *Nat Methods* 14(7):710-712.

395

396 12. Sasaguri H, *et al.* (2018) Introduction of pathogenic mutations into the mouse Psen1

397 gene by Base Editor and Target-AID. *Nat Commun* 9(1):2892.

398 13. Liu Z, *et al.* (2018) Efficient generation of mouse models of human diseases via ABE-

399 and BE-mediated base editing. *Nat Commun* 9(1):2338.

400 14. Ma Y, *et al.* (2018) Highly efficient and precise base editing by engineered

401 dCas9-guide tRNA adenosine deaminase in rats. *Cell Discov* 4:39.

402 15. Xie J, *et al.* (2019) Efficient base editing for multiple genes and loci in pigs using base

403 editors. *Nat Commun* 10(1):2852.

404 16. Liu Z, *et al.* (2018) Highly efficient RNA-guided base editing in rabbit. *Nat Commun*

405 9(1):2717.

406 17. Zhang W, *et al.* (2020) Multiplex precise base editing in cynomolgus monkeys. *Nat*

407 *Commun* 11(1):2325.

408 18. Liang P, *et al.* (2017) Correction of beta-thalassemia mutant by base editor in human

409 embryos. *Protein Cell* 8(11):811-822.

410 19. Li G, *et al.* (2017) Highly efficient and precise base editing in discarded human

411 triploid embryos. *Protein Cell* 8(10):776-779.

412 20. Zhou C, *et al.* (2017) Highly efficient base editing in human triploid zygotes.

413 *Protein Cell* 8(10):772-775.

414 21. Simmet K, *et al.* (2018) OCT4/POU5F1 is required for NANOG expression in bovine

415 blastocysts. *Proc Natl Acad Sci U S A* 115(11):2770-2775.

416 22. Zuccaro MV, *et al.* (2020) Allele-Specific Chromosome Removal after Cas9 Cleavage

417 in Human Embryos. *Cell* 183(6):1650-.

418 23. Alanis-Lobato G, *et al.* (2021) Frequent loss of heterozygosity in CRISPR-Cas9-edited
419 early human embryos. *P Natl Acad Sci USA* 118(22).

420 24. Strumpf D, *et al.* (2005) Cdx2 is required for correct cell fate specification and
421 differentiation of trophectoderm in the mouse blastocyst. *Development*
422 132(9):2093-2102.

423 25. Berg DK, *et al.* (2011) Trophectoderm Lineage Determination in Cattle.
424 *Developmental Cell* 20(2):244-255.

425 26. Shi Y, *et al.* (2021) Functional roles of the chromatin remodeler SMARCA5 in mouse
426 and bovine preimplantation embryosdagger. *Biol Reprod* 105(2):359-370.

427 27. Cui W, *et al.* (2016) Nop2 is required for mammalian preimplantation development.
428 *Mol Reprod Dev* 83(2):124-131.

429 28. Li S, *et al.* (2021) NOTCH signaling pathway is required for bovine early embryonic
430 development. *Biol Reprod*.

431 29. Picelli S, *et al.* (2014) Full-length RNA-seq from single cells using Smart-seq2. *Nat*
432 *Protoc* 9(1):171-181.

433 30. Bolger AM, Lohse M, & Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina
434 sequence data. *Bioinformatics* 30(15):2114-2120.

435 31. Kim D, Langmead B, & Salzberg SL (2015) HISAT: a fast spliced aligner with low
436 memory requirements. *Nat Methods* 12(4):357-360.

437 32. Liao Y, Smyth GK, & Shi W (2014) featureCounts: an efficient general purpose
438 program for assigning sequence reads to genomic features. *Bioinformatics*
439 30(7):923-930.

440 33. Love MI, Huber W, & Anders S (2014) Moderated estimation of fold change and

441 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15(12):550.

442 34. Trapnell C, *et al.* (2012) Differential gene and transcript expression analysis of

443 RNA-seq experiments with TopHat and Cufflinks. *Nat Protoc* 7(3):562-578.

444 35. Huang da W, Sherman BT, & Lempicki RA (2009) Bioinformatics enrichment tools:

445 paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids*

446 *Res* 37(1):1-13.

447 36. Huang da W, Sherman BT, & Lempicki RA (2009) Systematic and integrative analysis

448 of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 4(1):44-57.

449

450

451

452

453

454

455

456

457 Table 1 Results of multiple genes' editing in bovine embryos by BE3

No. of embryos sequenced	No. of unedited (%)	No. of single gene-edited (%)			No. of two genes-edited (%)			No. of three genes-edited(%)
		SMAD4	TEAD4	CDX2	SMAD4 and TEAD4	TEAD4 and CDX2	SMAD4 and CDX2	
31	11 (33.5)	2 (6.5)	1 (3.2)	1 (3.2)	0 (0.0)	1 (3.2)	7 (22.6)	8 (25.8)

458

459 Table 2 Results of multiple genes' editing in bovine embryos by ABE7.10

No. of embryos sequenced	No. unedited (%)	No. of single gene-edited (%)			No. of two gene-edited (%)			No. of three gene-edited(%)
		SMAD4	TEAD4	CDX2	SMAD4 and TEAD4	TEAD4 and CDX2	SMAD4 and CDX2	
30	0 (0.0)	0 (0.0)	1 (3.3)	5 (16.7)	1 (3.3)	1 (3.3)	15 (50.0)	7 (23.3)

460

461

462 **Figure 1. Base editors enable efficient genome editing in bovine embryos.**

463 A. Target sites of sgRNA designed for *SMARD4*, *TEAD4*, *CDX2*. Red letters represent
464 the target sites of BE3 or ABE7.10. B. Experimental scheme for base editing in
465 bovine early embryos. C and D: Results of targeted deep sequencing for base editing
466 of SMAD4 by BE3 in bovine embryos. 17 embryos were analyzed. E and F: Results
467 of targeted deep sequencing for base editing of SMAD4 by ABE7.10 in bovine
468 embryos. 25 embryos were analyzed.

469

470 **Figure 2. Dynamic expression pattern of SOX2 during bovine early embryonic**
471 **development.**

472 A. Immunofluorescence detection of SOX2 and GATA3 during oocyte maturation and
473 embryonic development. Green: SOX2 protein; Red: GATA3 protein; Blue: DAPI

474 (Nuclei). The experiment was independently replicated two times with at least 10
475 oocytes or embryos per stage analyzed. Scale bar = 50 μ m. GV: germinal vesicle, MII:
476 metaphase II, MO: morula, BL: blastocysts. B. Immunofluorescence analysis of
477 SOX2 protein along with blastocyst expansion. Green: SOX2 protein; Red: CDX2
478 protein; Scale bar = 50 μ m. EB: early blastocyst, MB: middle blastocyst, LB: late
479 blastocyst.

480 C and D: The correlation between SOX2 intensity (TE/ICM) and total cell number or
481 diameter. Note: the red bullets represent hatching blastocysts.

482

483 **Figure 3. Effects of SOX2 knockout on bovine early embryonic development**

484 A. sgRNAs used to target *SOX2*. Red lines represent the position of introduced
485 premature stop codon. B. Experimental design to explore the effects of SOX2 KO on
486 bovine early embryonic development. C. Representative genotyping results for three
487 distinct sgRNA. WT: wide type; KO: putative SOX2 knockout embryos. Red arrows
488 denote successful C: T conversion. D. Statistical analysis of editing efficiency for
489 each sgRNA. The target sequence of sgRNA1, sgRNA2 and sgRNA3 were analyzed
490 in 93, 113 and 114 embryos, respectively. E. Immunostaining validation for SOX2
491 knockout at blastocyst (BL) stages (Three replicates of 3-5 embryos were analyzed
492 per group). Scale bar = 50 μ m. F. Blastocyst formation rate of bovine embryos after
493 SOX2 knockout. The rate of blastocysts at E7.5 was recorded with no significant
494 difference found between WT and KO groups (Five independent replicates of 20-25
495 embryos per group). Red asterisks represent hatching blastocysts. Scale bar = 100 μ m.
496 G and H: Statistical analysis of total cell numbers at E7.5D (G) and E8.5D (H).
497 Asterisks refer to significant differences (*:P < 0.05; **:P < 0.01; ***: P < 0.001).

498

499 **Figure 4. SOX2 knockout disrupts the network of pluripotent genes in bovine**
500 **blastocysts.**

501 A. Experimental scheme of single blastocyst RNA-seq in WT and SOX2 KO groups.
502 B. Volcano plot depicting differentially expressed genes, among which 1836 are

503 upregulated and 238 are downregulated (Fold Change>2 or <0.5; P adj< 0.05). C.
504 Heat map showing all differentially expressed genes between WT and SOX2 KO
505 groups. D. Heat map showing differential expression of genes involved in regulation
506 of pluripotency between WT and SOX2 KO group.

507

508 **Figure 5. SOX2 is indispensable for NANOG and OCT4 expression in the ICM**
509 **of bovine blastocysts.**

510 A. Immunostaining analysis of CDX2, a marker of trophectoderm (TE), in WT and
511 SOX2 KO blastocysts at E8.5. B. Total cell counting analysis of TE cells (CDX2⁺) in
512 WT and SOX2 KO blastocysts (Three replicates of 6-8 blastocysts per group were
513 analyzed). B. Immunostaining analysis of OCT4, a pluripotency marker, in WT and
514 SOX2 KO blastocysts at E7.5 and E8.5 (Two independent replicates of 12-17
515 embryos per group were analyzed at E7.5 and E8.5, respectively). C. Immunostaining
516 analysis of NANOG, an epiblast marker, in WT and SOX2 KO blastocysts at E7.5
517 and E8.5 (Two independent replicates of 13-14 embryos per group were analyzed at
518 E7.5 and E8.5 days, respectively). M: Immunostaining analysis of GATA3 (a marker
519 for trophectoderm) and SOX17 (a marker for primitive endoderm) in WT and SOX2
520 KO blastocysts (Two independent replicates of 9-10 embryos per group were
521 analyzed at E7.5 and E8.5 days, respectively). Asterisks refer to significant
522 differences (*:P < 0.05; **:P <0.05; ***: P<0.001). Scale bar = 50 μ m.

523

524 **Figure 6. CDX2 is required for the restricted expression of SOX2 in the ICM of**
525 **bovine late blastocysts.**

526 A. Immunostaining analysis of SOX2 in trophectoderm between WT and CDX2 KO
527 blastocysts. Scale bar = 50 μ m. Seven replicates of 4-8 blastocysts per group. B and C:
528 Statistical analysis of SOX2 levels (TE/ICM) between WT and CDX2 KO groups
529 when blastocysts diameter >180 μ m (B) and total cell number >120 (C). n=23.
530 Asterisks refer to significant differences (***: P<0.001). D. Experimental scheme to
531 produce CDX2 mosaic bovine blastocysts. E. Immunostaining analysis of SOX2
532 levels in CDX2⁻ TE cells relative to CDX2⁺ TE cells. Green: SOX2 protein; Red:

533 CDX2 protein; Scale bar = 50 μ m. F. Statistical analysis of SOX2 intensity in CDX2⁻
534 TE cells relative to CDX2⁺ TE cells. n=12. Asterisks refer to significant differences
535 (*:P < 0.05; **:P <0.05; ***: P<0.001). G. Summary and working model of
536 functional relationship between SOX2 and other core lineage-specific genes in human,
537 mouse and bovine blastocysts.

538

539 **Figure S1. Analysis of off-target effects of base editor ABE7.10 and BE3.**

540 A and B: Targeted deep sequencing analysis of 6 potential off-target sites for ABE7.10
541 (A) and BE3 (B).

542

543 **Figure S2. Application of multi-gene base editing using ABE7.10 and BE3**

544 A and B: Embryonic developmental rate to reach morula stage in the WT and
545 ABE7.10 (A) or BE3 (B) group (Two replicates of 13-18 embryos per group). C.
546 Representative Sanger sequencing results of ABE7.10-mediated base editing. D.
547 Representative Sanger sequencing results of BE3-mediated base editing. The red
548 letters and frames represent the edited sites. The green letters represent PAM sequence.
549 S-gRNA: *SMAD4* sgRNA; T-gRNA: *TEAD4* sgRNA; C-gRNA: *CDX2* sgRNA.

550

551 **Figure S3. Effects of OCT4 knockout on bovine early embryonic development.**

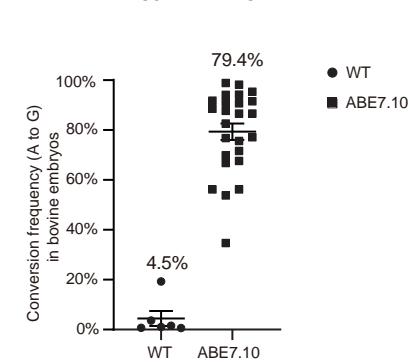
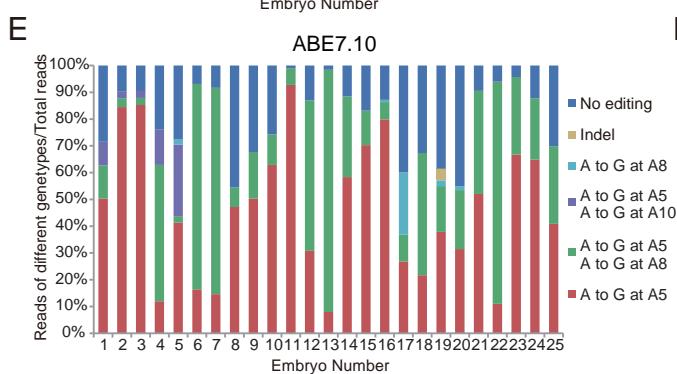
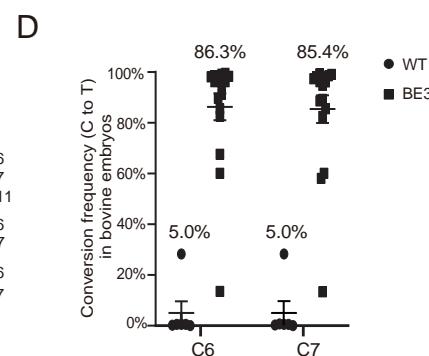
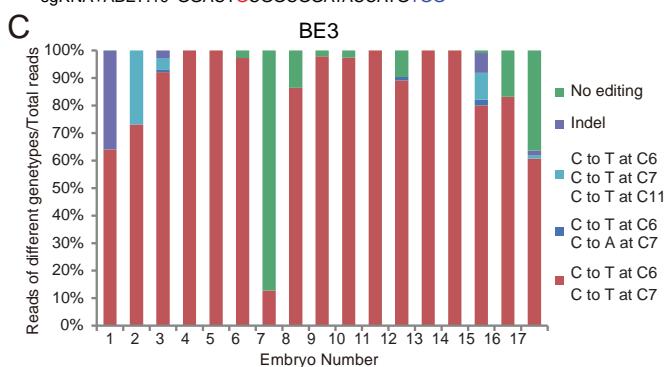
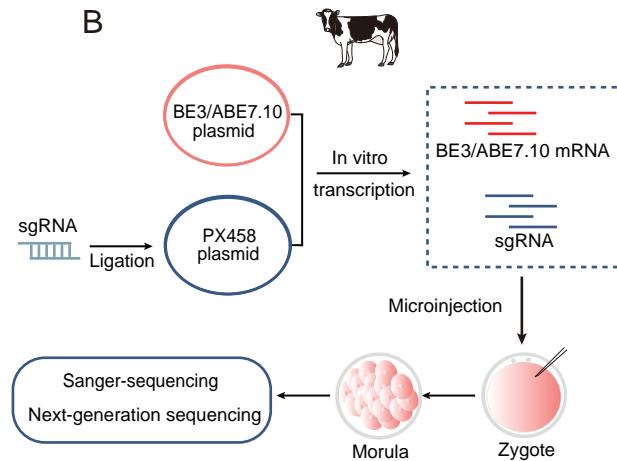
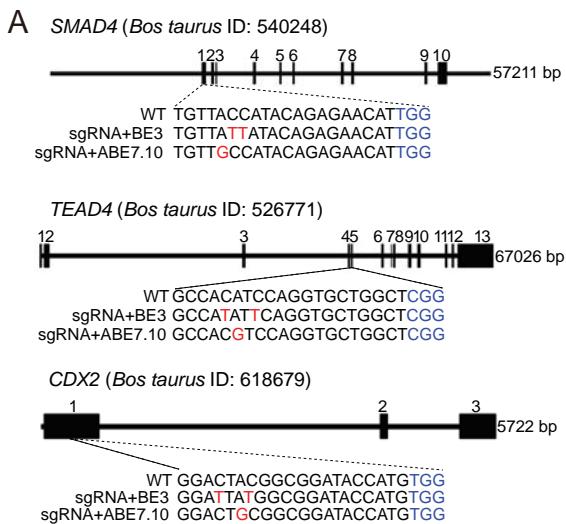
552 A. Two sgRNAs designed to target *OCT4*. The red letters represent potential editing
553 sites. B. Representative Sanger sequencing results. The red letters represent edited
554 sites. C. Editing types of *OCT4* sgRNA1 and sgRNA2 (27 embryos were analyzed). D.
555 Immunostaining detection of OCT4 and NANOG in WT and OCT4 KO groups (Two
556 replicates of 4-6 blastocysts per group). Green: NANOG; Red: OCT4. Scale bar = 50
557 μ m. E: OCT4 KO results in the decrease of blastocyst rate (Three replicates of 20-25
558 embryos per group). Scale bar = 100 μ m. F. Immunostaining analysis of SOX2
559 expression and distribution (Two replicates of 4-6 blastocysts per group). Green:
560 SOX2; Red: OCT4. Scale bar = 50 μ m.

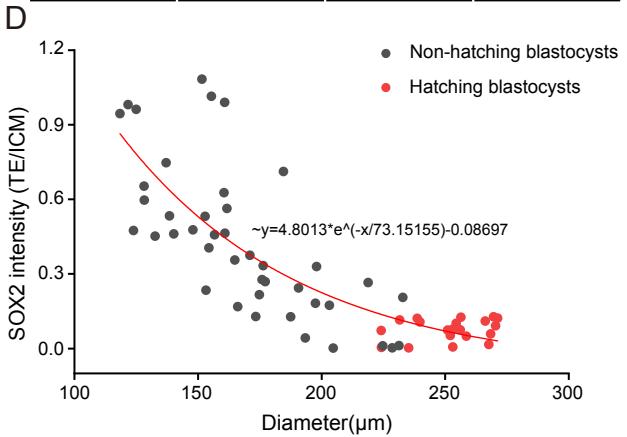
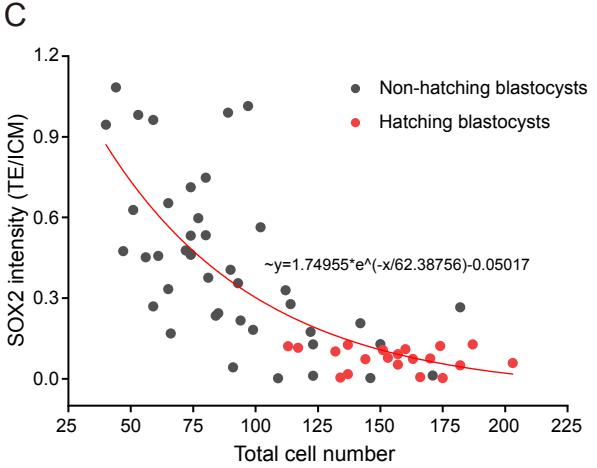
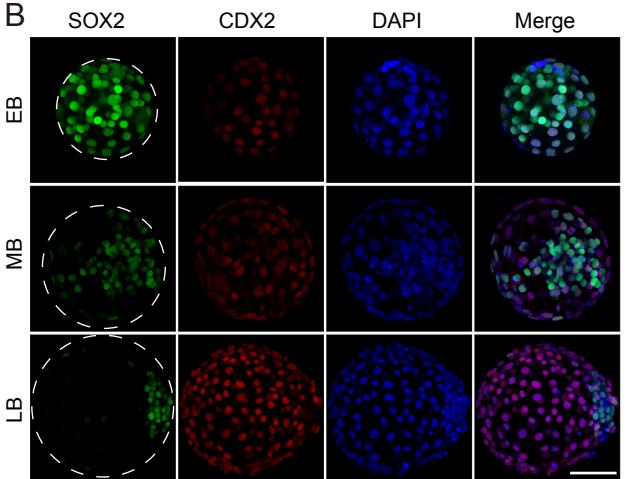
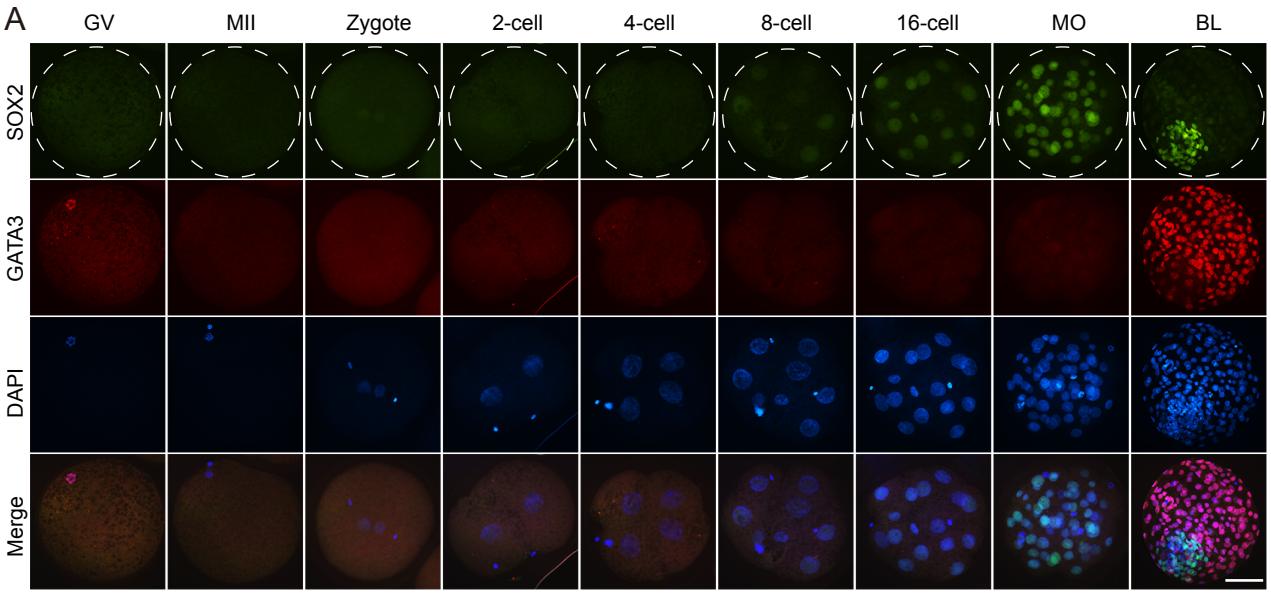
561

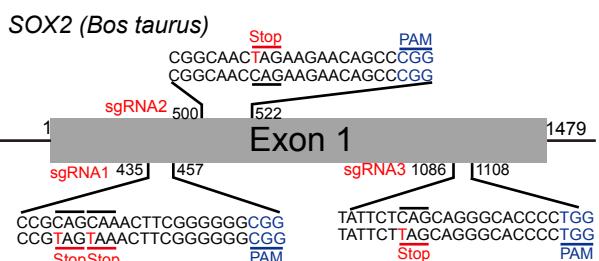
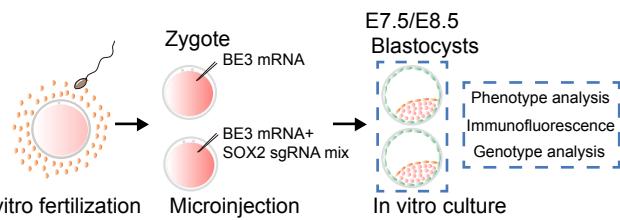
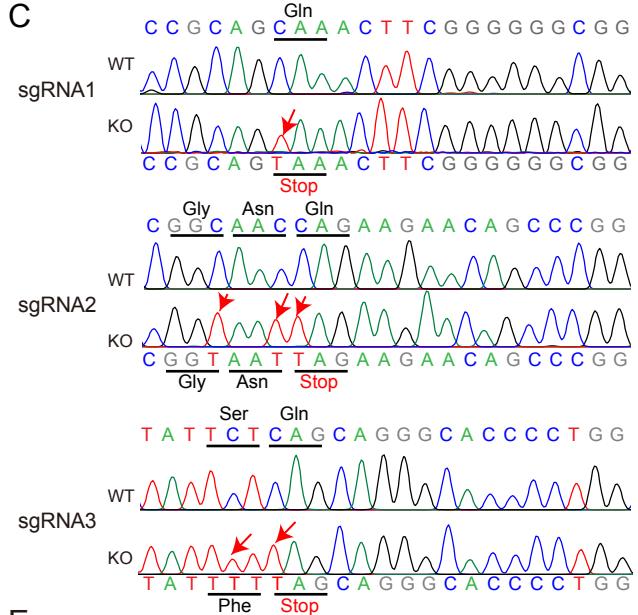
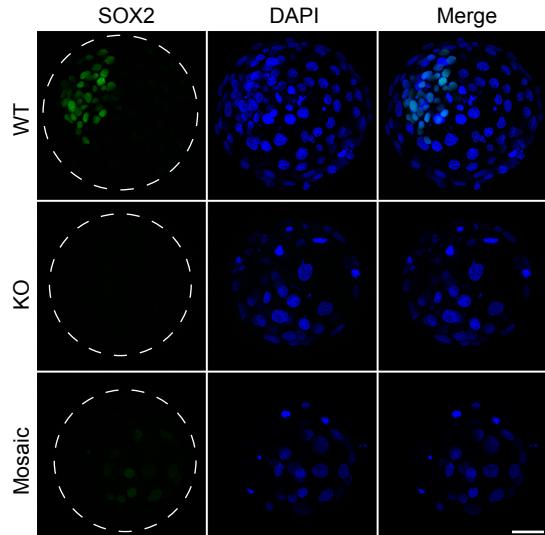
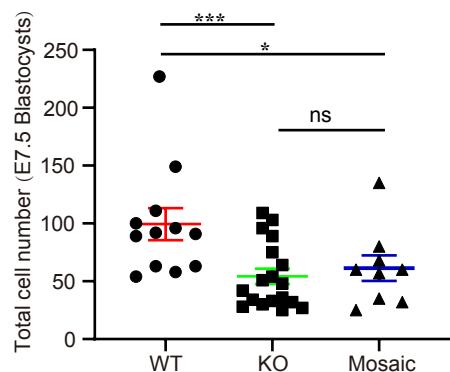
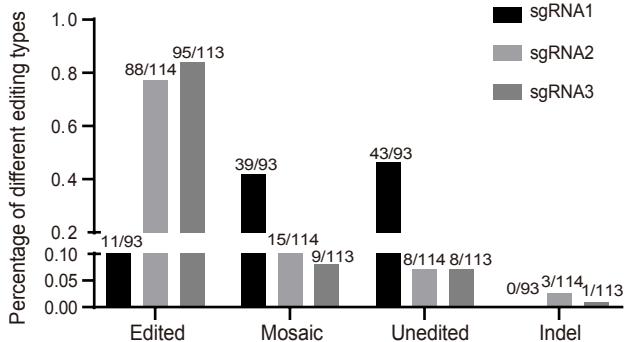
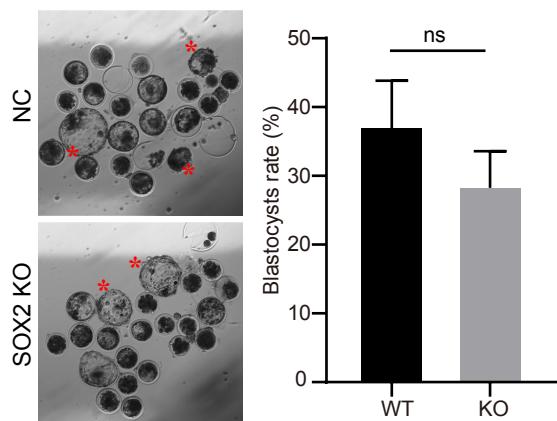
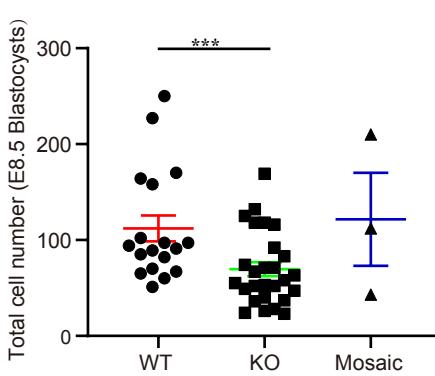
562 **Figure S4. Single blastocyst RNA sequencing**

563 A. Single blastocyst was collected (n=5 per group) to perform RNA sequencing. B.
564 Validation of the genotypes of embryos used for RNA-sequencing in A. C. Principal
565 component analysis (PCA) shows high correlation among samples in the same group.

566

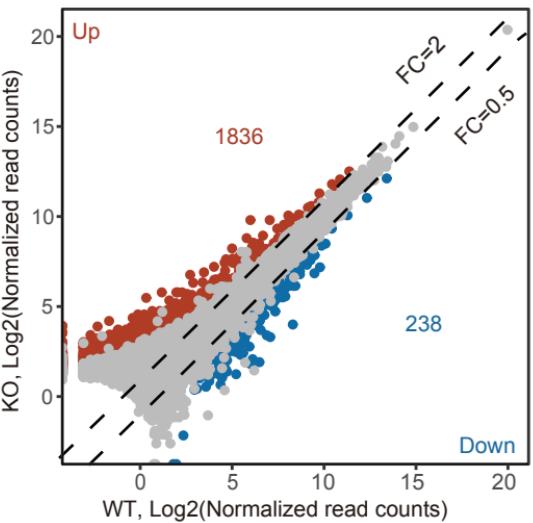






567 **Figure S5. SOX2 knockout did not affect blastocyst expansion**





568 A. Quantification analysis of the changes of OCT4 levels in TE and ICM as blastocyst
569 expansion. TE: SOX2⁻ cells; ICM: SOX2⁺ cells. B. The dynamics of NANOG and
570 OCT4 expression accompanied by the blastocyst expansion. Green: NANOG; Red:
571 OCT4 (Two replicates of 3-5 blastocysts at different stages). Scale bar = 50 μ m C.
572 SOX2 knockout did not affect the blastocyst expansion at E7.5 or E8.5 (Two
573 independent replicates of 12-17 embryos per group).

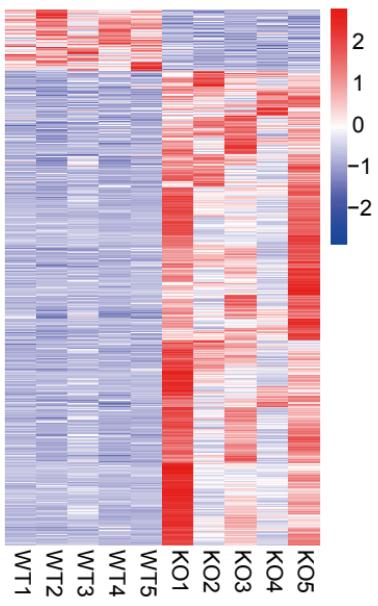








574

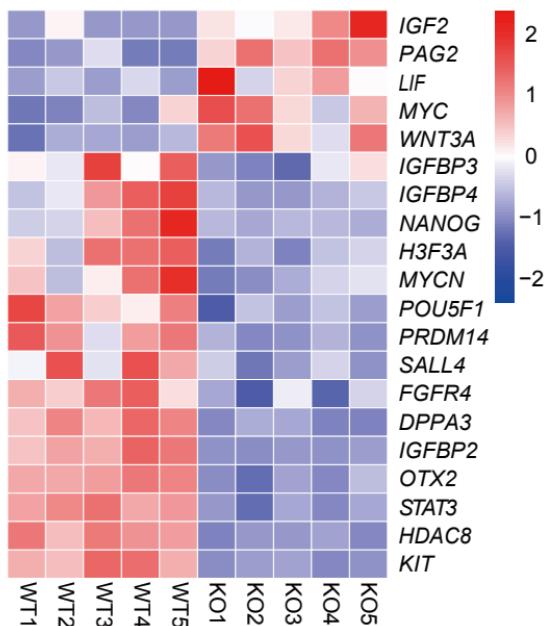
575 **Figure S6. CDX2 KO did not affect bovine early embryonic development.**

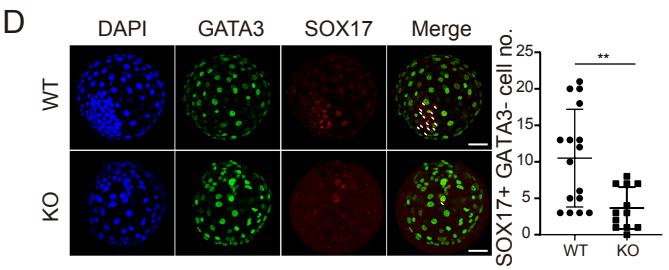
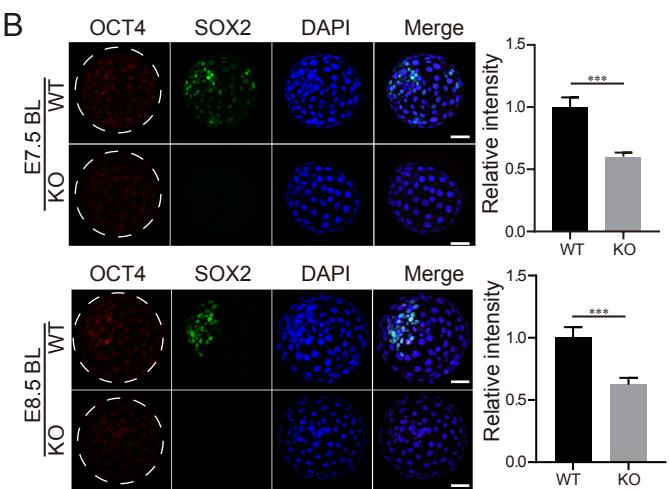
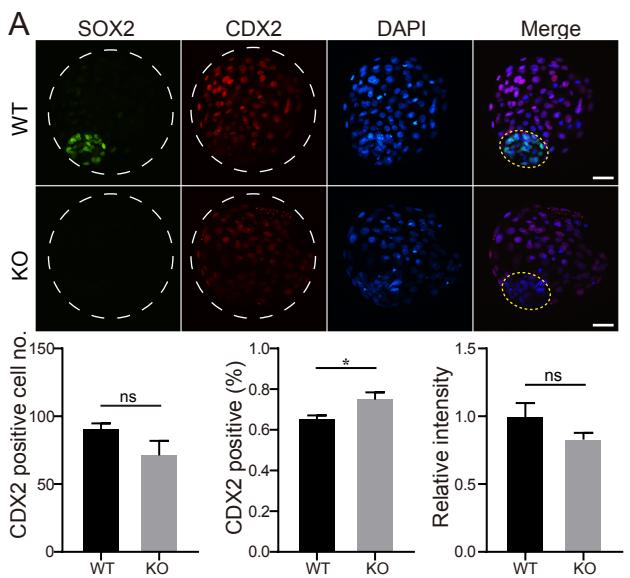
576 A. sgRNAs designed to target CDX2. B. Representative Sanger sequencing results of
577 CDX2 editing. The red letters represent edited sites. C. Immunostaining detection of
578 CDX2 (Three replicates of 5-8 blastocysts per group). Red: CDX2. Scale bar = 50 μ m.
579 D. Editing types analysis using CDX2 sgRNA1, sgRNA2 and sgRNA3 (61 embryos
580 were detected). E and F. CDX2 KO has no effect on the rate of blastocyst formation
581 (Ten replicates of 20-25 embryos per group). Scale bar = 100 μ m.

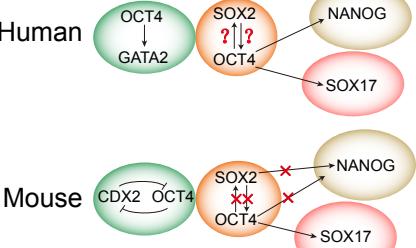
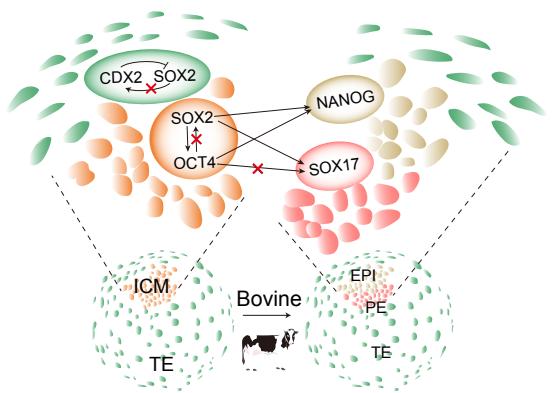
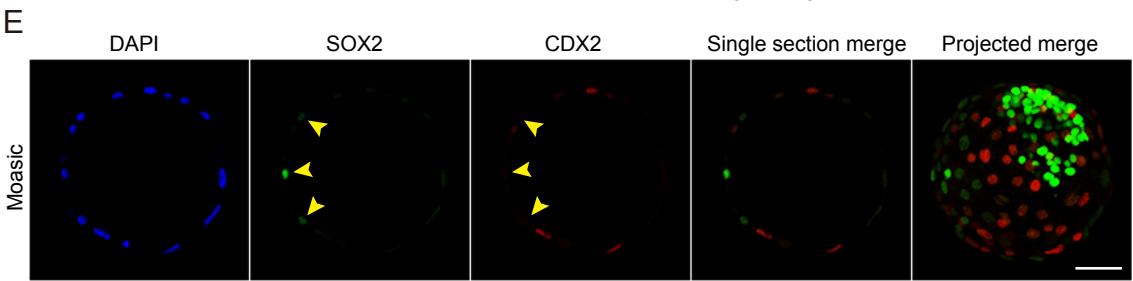
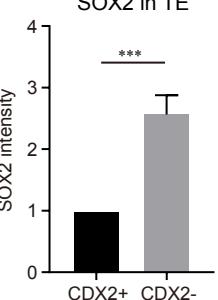
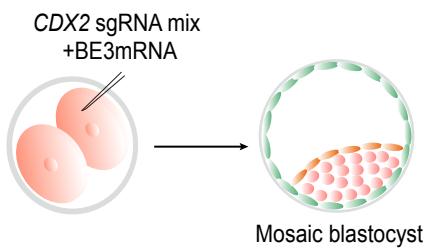
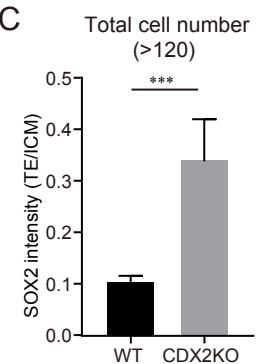
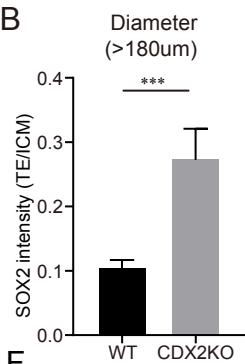
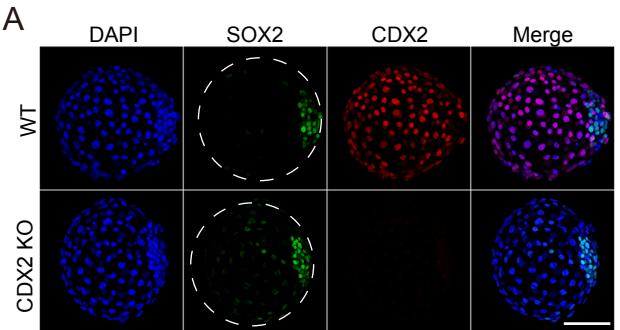


A**B****C****E****G****D****F****H**


A


B









C

D

