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. Abstract

> Assigning amplicon sequences to operational taxonomic units (OTUs) is often an important
s step in characterizing the composition of microbial communities across large datasets.
+ OptiClust, a de novo OTU clustering method, has been shown to produce higher quality
s OTU assignments than other methods and at comparable or faster speeds. A notable
s difference between de novo clustering and database-dependent reference clustering
7 methods is that OTU assignments from de novo methods may change when new
s Sequences are added to a dataset. However, in some cases one may wish to incorporate
s new samples into a previously clustered dataset without performing clustering again on
10 all sequences, such as when comparing across datasets or deploying machine learning
1 models where OTUs are features. Existing reference-based clustering methods produce
12 consistent OTUs, but they only consider the similarity of each query sequence to a single
13 reference sequence in an OTU, thus resulting in OTU assignments that are significantly
1+ worse than those generated by de novo methods. To provide an efficient and robust
15 method to fit amplicon sequence data to existing OTUs, we developed the OptiFit algorithm.
16 Inspired by OptiClust, OptiFit considers the similarity of all pairs of reference and query
17 sequences in an OTU to produce OTUs of the best possible quality. We tested OptiFit
18 using four microbiome datasets with two different strategies: by clustering to an external
19 reference database or by splitting the dataset into a reference and query set and clustering
20 the query sequences to the reference set after clustering it using OptiClust. The result is
21 an improved implementation of closed and open-reference clustering. OptiFit produces
22 OTUs of similar quality as OptiClust and at faster speeds when using the split dataset
23 strategy, although the OTU quality and processing speed depends on the database chosen
2« When using the external database strategy. OptiFit provides a suitable option for users who
25 require consistent OTU assignments at the same quality afforded by de novo clustering

26 methods.
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7 Importance

s Advancements in DNA sequencing technology have allowed researchers to affordably
20 generate millions of sequence reads from microorganisms in diverse environments.
s Efficient and robust software tools are needed to assign microbial sequences into
51 taxonomic groups for characterization and comparison of communities. The OptiClust
22 algorithm produces high quality groups by comparing sequences to each other, but the
s assignments can change when new sequences are added to a dataset, making it difficult
s 1o compare different studies. Other approaches assign sequences to groups by comparing
s them to sequences in a reference database to produce consistent assignments, but the
ss quality of the groups produced is reduced compared to OptiClust. We developed OptiFit, a
57 new reference-based algorithm that produces consistent yet high quality assignments like
s OptiClust. OptiFit allows researchers to compare microbial communities across different
s Studies or add new data to existing studies without sacrificing the quality of the group

s assignments.
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«+ Introduction

2 Amplicon sequencing is a mainstay of microbial ecology. Researchers can affordably
s generate millions of sequences to characterize the composition of hundreds of samples
s from microbial communities without the need for culturing. In many analysis pipelines,
s 16S rBRNA gene sequences are assigned to operational taxonomic units (OTUs) to
s facilitate comparison of taxonomic composition between communities to avoid the need
4«7 for taxonomic classification. A distance threshold of 3% (or sequence similarity of 97%) is
s commonly used to cluster sequences into OTUs based on pairwise comparisons of the
s sequences within the dataset. The method chosen for clustering affects the quality of OTU

so0 assignments and thus may impact downstream analyses of community composition (1-3).

st There are two main categories of OTU clustering algorithms: de novo and reference-based.
s2 OptiClust is a de novo clustering algorithm which uses the distance score between all
3 pairs of sequences in the dataset to cluster them into OTUs by maximizing the Matthews
s« Correlation Coefficient (MCC) (1). This approach takes into account the distances between
s all pairs of sequences when assigning query sequences to OTUs, in contrast to other de
ss novo methods such as the greedy clustering algorithms implemented in USEARCH and
s7 VSEARCH (4, 5). In methods employing greedy clustering algorithms, only the distance
ss between each sequence and a representative centroid sequence in the OTU is considered
s While clustering. As a result, distances between pairs of sequences in the same OTU
s are frequently larger than the specified threshold, i.e. they are false positives. In contrast,
s1 the OptiClust algorithm takes into account the distance between all pairs of sequences
2 When considering how to cluster sequences into OTUs and is thus less willing to take
s on false positives. A limitation of de novo clustering is that different OTU assignments
s« Will be produced when new sequences are added to a dataset, making it difficult to use
s de novo clustering to compare OTUs between different studies. Furthermore, since de

ss NOVO clustering requires calculating and comparing distances between all sequences in a
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7 dataset, the execution time can be slow and memory requirements can be prohibitive for
s Vvery large datasets. Reference clustering attempts to overcome the limitations of de novo
o Clustering methods by using a representative set of sequences from a database, with each
70 reference sequence seeding an OTU. Commonly, the Greengenes set of representative full
71 length sequences clustered at 97% similarity is used as the reference with VSEARCH (5-7).
72 Query sequences are then clustered into OTUs based on their similarity to the reference
73 sequences. Any query sequences that are not within the distance threshold to any of
72 the reference sequences are either thrown out (closed reference clustering) or clustered
75 de novo to create additional OTUs (open reference clustering). While reference-based
76 clustering is generally fast, it is limited by the diversity of the reference database. Novel
77 sequences in the sample will be lost in closed reference mode if they are not represented
72 by a similar sequence in the database. Previous studies found that the OptiClust de novo

79 clustering algorithm created the highest quality OTU assignments of all clustering methods

o (1).

st 10 overcome the limitations of current reference-based and de novo clustering algorithms
ez While maintaining OTU quality, we developed OptiFit, a reference-based clustering
s algorithm. While other tools represent reference OTUs with a single sequence, OptiFit
s« Uses multiple sequences in existing OTUs as the reference and fits new sequences to
ss those reference OTUSs. In contrast to other tools, OptiFit considers all pairwise distance
ss scores between reference and query sequences when assigning sequences to OTUs
&7 in order to produce OTUs of the highest possible quality. Here, we tested the OptiFit
s algorithm with the reference as a public database (e.g. Greengenes) or de novo OTUs
s generated using a reference set from the full dataset and compared the performance to
o existing tools. To evaluate the OptiFit algorithm and compare to existing methods, we used
o1 four published datasets isolated from soil (8), marine (9), mouse gut (10), and human gut

e (11) samples. OptiFit is available within the mothur software program.
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» Results
« The OptiFit algorithm

s OptiFit leverages the method employed by OptiClust of iteratively assigning sequences
s to OTUs to produce the highest quality OTUs possible, and extends this method for
o7 reference-based clustering. OptiClust first seeds each sequence into its own OTU as a
s singleton. Then for each sequence, OptiClust considers whether the sequence should
s move to a different OTU or remain in its current OTU, choosing the option that results
w0 iNn a better Matthews correlation coefficient (MCC) (1). The MCC uses all values from
101 @ confusion matrix and ranges from negative one to one, with a score of one occurring
w2 When all sequence pairs are true positives and true negatives and a score of negative one
w3 occurring when all pairs are false positives and false negatives. Sequence pairs that are
w4 Similar to each other (i.e. within the distance threshold) are counted as true positives if
105 they are clustered into the same OTU, and false negatives if they are not in the the same
10 OTU. Sequence pairs that are not similar to each other are true negatives if they are not
w7 Clustered into the same OTU, and false positives if they are not in the same OTU. OptiClust
s iterations continue until the MCC stabilizes or until a maximum number of iterations is
19 reached. This process produces de novo OTU assignments with the most optimal MCC

110 given the input sequences.

11 OptiFit begins where OptiClust ends, starting with a list of reference OTUs and their
112 sequences, a list of query sequences to cluster to the reference OTUs, and the sequence
13 pairs that are within the distance threshold (e.g. 0.03) (Figure 1). Initially, all query
14 Sequences are placed into separate OTUs. Then, the algorithm iteratively reassigns the
115 query sequences to the reference OTUs to optimize the MCC. Alternatively, a sequence
1s Will remain unassigned if the MCC value is maximized when the sequence is a singleton
17 rather than clustered into a reference OTU. All query and reference sequence pairs are

1s considered when calculating the MCC. This process is repeated until the MCC changes by


https://doi.org/10.1101/2021.11.09.468000
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.468000; this version posted November 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

o
a

0. List of sequence pairs within the distance thresh

D F G H | I''dJINIOIPIPIPIQIQWWMW X X X XY
B ECABWDAHMLIKILOEFFMNTZ CGNYC
% distance 1.7 1.4 292717141016 16261522241812281.01421271.0211.4

1.MCC =0.78
BDI[EFQ](cG]{aHJ][MN][LOP]
0.83
0.76
2. MCC =0.83
BDI|[EFQ] [CG] [AHJ|[MNW|LOP] 0'86
0.81
0.88
3.MCC =0.88

BDI] [EFQ] [cGX] [AHJ] [MNW] [LOP]

0.91
4. MCC =0.91
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Figure 1: The OptiFit Algorithm. Here we present a toy example of the OptiFit algorithm
fitting query sequences to existing OTUs, given the list of all sequence pairs that are
within the distance threshold (here 3% is used). The goal of OptiFit is to assign the query
sequences W through Z (colored green) to the reference OTUs created by clustering
Sequences A through Q (colored orange) which were previously clustered de novo with
OptiClust (see the OptiClust supplemental text (1)). Initially, OptiFit places each query
sequence in its own OTU. Then, for each query sequence (bolded), OptiFit determines
what the new MCC score would be if that sequence were moved to one of the OTUs
containing at least one other similar sequence. The sequence is then moved to the OTU
which would result in the best MCC score. OptiFit stops iterating over sequences once the
MCC score stabilizes (in this example; only one iteration over each sequence is needed).
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19 N0 more than 0.0001 (default) or until a maximum number of iterations is reached (default:
120 100). In the closed reference mode, any query sequences that cannot be clustered into
121 reference OTUs are discarded, and the results only contain OTUs that exist in the original
122 reference. In the open reference mode, unassigned query sequences are clustered de
123 nNovo using OptiClust to generate new OTUs. The final MCC is reported with the best
12« OTU assignments. There are two strategies for generating OTUs with OptiFit: 1) cluster
125 the query sequences to reference OTUs generated by de novo clustering an independent
126 database, or 2) split the dataset into a reference and query fraction, cluster the reference

127 sequences de novo, then cluster the query sequences to the reference OTUs.

122 Reference clustering with public databases

120 10 test how OptiFit performs for reference-based clustering, we clustered each dataset to
130 three databases of reference OTUs: the Greengenes database, the SILVA non-redundant
131 database, and the Ribosomal Database Project (RDP) (6, 12, 13). Reference OTUs for
122 each database were created by performing de novo clustering with OptiClust at a distance
133 threshold of 3% using the V4 region of each sequence (see Figure 2). After trimming to
13« the V4 region, the databases contained 174,979, 16,192, and 173,648 unique sequences
135 and produced de novo MCC scores of 0.72, 0.74, and 0.73 for Greengenes, RDP, and
136 SILVA, respectively. Clustering sequences to Greengenes and SILVA in closed reference
177 mode performed similarly, with median MCC scores of 0.85 and 0.77 respectively, while
138 the median MCC was 0.35 when clustering to RDP (Figure 3). For comparison, clustering
139 datasets with OptiClust produced an average MCC score of 0.87. This gap in OTU quality
140 mostly disappeared when clustering in open reference mode, which produced median
141 MCCs of 0.86 with Greengenes, 0.85 with SILVA, and 0.86 with the RDP. Thus, open
142 reference OptiFit produced OTUs of very similar quality as de novo clustering, and closed
143 reference OptiFit followed closely behind as long as a suitable reference database was

144 chosen.
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Figure 2: The Analysis Workflow. Reference sequences from Greengenes, the RDP,
and SILVA were downloaded, preprocessed with mothur by trimming to the V4 region,
and clustered de novo with OptiClust for 100 repetitions. Datasets from human, marine,
mouse, and soil microbiomes were downloaded, preprocessed with mothur by aligning to
the SILVA V4 reference alignment, then clustered de novo with OptiClust for 100 repetitions.
Individual datasets were fit to reference databases with OptiFit; OptiFit was repeated 100
times for each dataset and database combination. Datasets were also randomly split into a
reference and query fraction, and the query sequences were fit to the reference sequences
with OptiFit for 100 repetitions. The final MCC score was reported for all OptiClust and
OptiFit repetitions.
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1s Since closed reference clustering does not cluster query sequences that could not be
s Clustered into reference OTUs, an additional measure of clustering performance to consider
17 is the fraction of query sequences that were able to be clustered. On average, more
s sequences were clustered with Greengenes as the reference (59.1%) than with SILVA
149 (50.0%) or with the RDP (9.8%) (Figure 3). This mirrored the result reported above that
10 Greengenes produced better OTUs in terms of MCC score than either SILVA or RDP. Note
151 that de novo and open reference clustering methods always cluster 100% of sequences
12 into OTUs. The database chosen affects the final closed reference OTU assignments
153 considerably in terms of both MCC score and fraction of query sequences that could be

s« clustered into the reference OTUs.

155 Despite the drawbacks, closed reference methods have been used when fast execution
156 speed is required, such as when using very large datasets (14). To compare performance
17 in terms of speed, we repeated each OptiFit and OptiClust run 100 times and measured
158 the execution time. Across all dataset and database combinations, closed reference OptiFit
19 outperformed both OptiClust and open reference OptiFit (Figure 3). For example, with
10 the human dataset fit to SILVA reference OTUs, the average run times in seconds were
61 406.8 for closed reference OptiFit, 455.3 for de novo clustering the dataset, and 559.4 for
12 open reference OptiFit. Thus, the OptiFit algorithm continues the precedent that closed

1ea reference clustering sacrifices OTU quality for execution speed.

1« 10 compare to the reference clustering methods used by QIIME2, we clustered each
s dataset with VSEARCH against the Greengenes database of OTUs previously clustered
166 at 97% sequence similarity. Each reference OTU from the Greengenes 97% database
17 contains one reference sequence, and VSEARCH maps sequences to the reference
s based on each individual query sequence’s similarity to the single reference sequence.
19 INn contrast, OptiFit accepts reference OTUs which each may contain multiple sequences,

17 and the sequence similarity between all query and reference sequences is considered

10
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Figure 3: Benchmarking Results. The median MCC score, fraction of query sequences
that mapped in closed-reference clustering, and runtime in seconds from repeating each
clustering method 100 times. Each dataset underwent de novo clustering using OptiClust
or reference-based clustering using OptiFit with one of two strategies; splitting the dataset
and fitting 50% the sequences to the other 50%, or fitting the dataset to a reference
database (Greengenes, SILVA, or RDP). Reference-based clustering was repeated with
open and closed mode. For additional comparison, VSEARCH was used for de novo and
reference-based clustering against the Greengenes database.

11
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11 when assigning sequences to OTUs. In closed reference mode, OptiFit produced 27.2%
172 higher quality OTUs than VSEARCH, but VSEARCH was able to cluster 24.8% more query
173 sequences than OptiFit to the Greengenes reference database (Figure 3). This is because
17+ VSEARCH only considers the distances between each query sequence to the single
175 reference sequence, while OptiFit considers the distances between all pairs of reference
176 and query sequences in an OTU. When open reference clustering, OptiFit produced higher
177 quality OTUs than VSEARCH against the Greengenes database, with median MCC scores
17s Of 0.86 and 0.56, respectively. In terms of run time, OptiFit outperformed VSEARCH in
179 both closed and open reference mode by 54.6% and 49.5% on average, respectively. Thus,
180 the more stringent OTU definition employed by OptiFit, which prefers the query sequence
181 10 be similar to all other sequences in the OTU rather than to only one sequence, resulted
182 in fewer sequences being clustered to reference OTUs than when using VSEARCH, but

183 caused OptiFit to outperform VSEARCH in terms of both OTU quality and execution time.

¢«  Reference clustering with split datasets

1ss When performing reference clustering against public databases, the database chosen
18s greatly affects the quality of OTUs produced. OTU quality may be poor when the reference
17 database consists of sequences that are too unrelated to the samples of interest, such as
188 When samples contain novel populations. While de novo clustering overcomes the quality
189 limitations of reference clustering to databases, OTU assignments are not consistent when
190 New sequences are added. Researchers may wish to cluster new sequences to existing
191 OTUs or to compare OTUs across studies. To determine how well OptiFit performs for
192 clustering new sequences to existing OTUs, we employed a split dataset strategy, where
153 each dataset was randomly split into a reference fraction and a query fraction. Reference
194 Sequences were clustered de novo with OptiClust, then query sequences were clustered

195 to the de novo OTUs with OptiFit.

12
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196 First, we tested whether OptiFit performed as well as de novo clustering when using the
197 Split dataset strategy with half of the sequences selected for the reference by a simple
19e random sample (a 50% split) (Figure 3; self-split). OTU quality was similar to that from
199 OptiClust regardless of mode (0.029% difference in median MCC). In closed reference
200 Mode, OptiFit was able to cluster 84.8% of query sequences to reference OTUs with
201 the split strategy, a great improvement over the average 59.1% of sequences clustered
22 to the Greengenes database. In terms of run time, closed and open reference OptiFit
203 performed faster than OptiClust on whole datasets by 34.7% and 33.5%, respectively. The
204 Split dataset strategy also performed 13.5% faster than the database strategy in closed
205 reference mode and 43.5% faster in open reference mode. Thus, reference clustering with
206 the split dataset strategy creates as high quality OTUs as de novo clustering yet at a faster

207 run time, and fits far more query sequences than the database strategy.

20 While we initially tested this strategy using a 50% split of the data into reference and query
209 fractions, we next investigated whether there was an optimal reference fraction size. To
210 identify the best reference size, reference sets with 10% to 90% of the sequences were
211 created, with the remaining sequences used for the query (Figure 4). OTU quality was
212 remarkably consistent across reference fraction sizes. For example, splitting the human
213 dataset 100 times yielded a coefficient of variation (i.e. the standard deviation divided by
212 the mean) of 0.00022 for the MCC score across all fractions. Run time generally decreased
215 as the reference fraction increased; for the human dataset, the median run time was
216 364.1 seconds with 10% of sequences in the reference and 291.3 seconds with 90% of
217 sequences in the reference. In closed reference mode, the fraction of sequences that
218 mapped increased as the reference size increased; for the human dataset, the median
219 fraction mapped was 0.85 with 10% of sequences in the reference and 0.95 with 90% of
220 Sequences in the reference. These trends held for the other datasets as well. Thus, the
221 reference fraction did not affect OTU quality in terms of MCC score, but did affect the run

222 time and the fraction of sequences that mapped during the closed reference clustering.

13
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Figure 4: Split dataset strategy. The median MCC score, fraction of query sequences
that mapped in closed-reference clustering, and runtime in seconds from repeating each
clustering method 100 times. Each dataset was split into a reference and query fraction.
Reference sequences were selected via a simple random sample, weighting sequences
by relative abundance, or weighting by similarity to other sequences in the dataset. With
the simple random sample method, dataset splitting was repeated with reference fractions
ranging from 10% to 90% of the dataset and for 100 random seeds. De novo clustering

each dataset is also shown for comparison. "
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223 After testing the split strategy using a simple random sample to select the reference
224 SEQuUences, we then investigated other methods of splitting the data. We tested three
225 methods for selecting the fraction of sequences to be used as the reference at a size of
226 50%: a simple random sample, weighting sequences by relative abundance, and weighting
227 by similarity to other sequences in the dataset (Figure 4). OTU quality in terms of MCC
226 Was similar across all three sampling methods (median MCC of 0.87). In closed-reference
229 Clustering mode, the fraction of sequences that mapped were similar for simple and
20 abundance-weighted sampling (median fraction mapped of 0.85 and 0.84, respectively),
231 but worse for similarity-weighted sampling (median fraction mapped of 0.56). While simple
222 and abundance-weighted sampling produced better quality OTUs than similarity-weighted
2.3 sampling, OptiFit performed faster on similarity-weighted samples with a median runtime of
24 93.8 seconds compared to 123.2 and 122.6 seconds for simple and abundance-weighted
25 sampling, respectively. Thus, employing more complicated sampling strategies such as
26 abundance-weighted and similarity-weighted sampling did not confer any advantages over
257 Selecting the reference via a simple random sample, and in fact decreased OTU quality in

28 the case of similarity-weighted sampling.

20 Discussion

20 We developed a new algorithm for clustering sequences to existing OTUs and have
201 demonstrated its suitability for reference-based clustering. OptiFit makes the iterative
22 method employed by OptiClust available for tasks where reference-based clustering is
23 required. We have shown that OTU quality is similar between OptiClust and OptiFit in open
214 reference mode, regardless of strategy employed. Open reference OptiFit performs slower
25 than OptiClust due to the additional de novo clustering step, so users may prefer OptiClust

26 for tasks that do not require reference OTUs.

27 When clustering to public databases, OTU quality dropped in closed reference mode to
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28 different degrees depending on the database and dataset source, and no more than half
29 Of query sequences were able to be clustered into OTUs across any dataset/database
20 combination. This may reflect limitations of reference databases, which are unlikely
251 o contain sequences from novel microbes. This drop in quality was most notable
252 With the RDP reference, which contained only 16,192 sequences compared to 173,648
253 Sequences in SILVA and 174,979 in Greengenes. Note that Greengenes has not been
25« Updated since 2013 at the time of this writing, while SILVA and the RDP are updated
25 regularly. We recommend that users who require an independent reference database
256 Opt for large databases with regular updates and good coverage of microbial diversity for
257 their environment. Since OptiClust still performs faster than open reference OptiFit and
258 creates higher quality OTUs than closed reference OptiFit with the database strategy, we
259 recommend using OptiClust rather than clustering to a database whenever consistent

20 OTUs are not required.

21 1he OptiClust and OptiFit algorithms produced higher quality OTUs than VSEARCH in
%2 Open reference, closed reference, or de novo modes. However, VSEARCH was able
23 10 cluster more sequences to OTUs than OptiFit in closed reference mode. While both
2« OptiFit and VSEARCH use a distance or similarity threshold for determining how to cluster
25 sequences into OTUs, VSEARCH is more permissive than OptiFit regardless of mode.
26 1 he OptiFit and OptiClust algorithms use all of the sequences to define an OTU, preferring
27 that all pairs of sequences (including reference and query sequences) in an OTU are within
s the distance threshold in order to maximize the MCC. In contrast, VSEARCH only requires
20 €ach query sequence to be similar to the single centroid sequence that seeded the OTU.
270 Because of this, VSEARCH sacrifices OTU quality by allowing more dissimilar sequences

21 to be clustered into OTUs.

222 When clustering with the split dataset strategy, OTU quality was remarkably similar when

273 reference sequences were selected by a simple random sample or weighted by abundance,
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27+ but quality was slightly worse when sequences were weighted by similarity. We recommend
275 USING a simple random sample since the more sophisticated reference selection methods
276 do not offer any benefit. The similarity in OTU quality between OptiClust and OptiFit with
277 this strategy demonstrates the suitability of using OptiFit to cluster sequences to existing
278 OTUs, such as when comparing OTUs across studies. However, when consistent OTUs
279 are not required, we recommend using OptiClust for de novo clustering over the split
20 Strategy with OptiFit since OptiClust is simpler to execute but performs similarly in terms of

261 both run time and OTU quality.

2.2 Unlike existing reference-based methods that cluster query sequences to a single centroid
2.3 Sequence in each reference OTU, OptiFit considers all sequences in each reference OTU
s« When clustering query sequences, resulting in OTUs of a similar high quality as those
25 produced by the de novo OptiClust algorithm. Potential applications include clustering
256 Sequences to reference databases, comparing taxonomic composition of microbiomes
257 across different studies, or using OTU-based machine learning models to make predictions
2.8 0N new data. OptiFit fills the missing option for clustering query sequences to existing

220 OTUs that does not sacrifice OTU quality for consistency of OTU assignments.

=0 Materials and Methods
201 Data Processing Steps

22 We downloaded 16S rRNA gene amplicon sequences from four published datasets isolated
20a  from solil (8), marine (9), mouse gut (10), and human gut (11) samples. These datasets
20« coNtain sequences from the V4 region of the 16S rRNA gene and represent a selection
205 Of the broad types of natural communities that microbial ecologists study. We processed
206 the raw sequences using mothur according to the Schloss Lab MiSeq SOP (15) and
27 @ccompanying study by Kozich et al. (16). These steps included trimming and filtering

s for quality, aligning to the SILVA reference alignment (12), discarding sequences that
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209 aligned outside the V4 region, removing chimeric reads with UCHIME (17), and calculating

a0 distances between all pairs of sequences within each dataset prior to clustering.

w01 Reference database clustering

w2 10 generate reference OTUs from public databases, we downloaded sequences from the
w03 Greengenes database (v13_8_99) (6), SILVA non-redundant database (v132) (12), and the
ss  Ribosomal Database Project (v16) (13). These sequences were processed using the same
w05 Steps outlined above followed by clustering sequences into de novo OTUs with OptiClust.
ws Processed reads from each of the four datasets were clustered with OptiFit to the reference
w7 OTUs generated from each of the three databases. When reference clustering with
ws VSEARCH, processed datasets were clustered directly to the unprocessed Greengenes
a0 97% OTU reference alignment, since this method is how VSEARCH is typically used by

a0 the QIIME2 software for reference-based clustering (7, 18).

a11 - Split dataset clustering

a1z For each dataset, half of the sequences were selected to be clustered de novo into
sz reference OTUs with OptiClust. We used three methods for selecting the subset of
a2 Sequences to be used as the reference: a simple random sample, weighting sequences by
a5 relative abundance, and weighting by similarity to other sequences in the dataset. Dataset
s1e - Splitting was repeated with 100 random seeds. With the simple random sampling method,
s17  dataset splitting was also repeated with reference fractions ranging from 10% to 90% of
s1s the dataset. For each dataset split, the remaining query sequences were clustered into the

aie  reference OTUs with OptiFit.

20 Benchmarking

s21 OptiClust and OptiFit randomize the order of query sequences prior to clustering and

w22 employ a random number generator to break ties when OTU assignments are of equal
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s quality. As a result, they produce slightly different OTU assignments when repeated
w24 With different random seeds. To capture any variation in OTU quality or execution time,
25 clustering was repeated with 100 random seeds for each combination of parameters and
ws iNput datasets. We used the benchmark feature provided by Snakemake to measure the
sz run time of every clustering job. We calculated the MCC on each set of OTUs to quantify

ws  the quality of clustering, as described by Westcott et al. (1).

w29 Data and Code Availability

w0 We implemented the analysis workflow in Snakemake (19) and wrote scripts in R (20),
a1 Python (21), and GNU bash (22). Software used includes mothur v1.47.0 (23), VSEARCH
w2 V2.15.2 (5), the tidyverse metapackage (24), R Markdown (25), ggraph (26), ggtext (27),
s nUMpY (28), the SRA toolkit (29), and conda (30). The complete workflow and supporting
s files required to reproduce this manuscript are available at https://github.com/SchlossLab/

w5 Sovacool OptiFit_2021.
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