
OptiFit: an improved method for fitting amplicon

sequences to existing OTUs

2021-11-08

Kelly L. Sovacool1, Sarah L. Westcott2, M. Brodie Mumphrey1, Gabrielle A. Dotson1,

Patrick D. Schloss2†

1 Department of Computational Medicine and Bioinformatics, University of Michigan

2 Department of Microbiology and Immunology, University of Michigan

† To whom correspondence should be addressed: pschloss@umich.edu

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.468000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.468000
http://creativecommons.org/licenses/by/4.0/


Abstract1

Assigning amplicon sequences to operational taxonomic units (OTUs) is often an important2

step in characterizing the composition of microbial communities across large datasets.3

OptiClust, a de novo OTU clustering method, has been shown to produce higher quality4

OTU assignments than other methods and at comparable or faster speeds. A notable5

difference between de novo clustering and database-dependent reference clustering6

methods is that OTU assignments from de novo methods may change when new7

sequences are added to a dataset. However, in some cases one may wish to incorporate8

new samples into a previously clustered dataset without performing clustering again on9

all sequences, such as when comparing across datasets or deploying machine learning10

models where OTUs are features. Existing reference-based clustering methods produce11

consistent OTUs, but they only consider the similarity of each query sequence to a single12

reference sequence in an OTU, thus resulting in OTU assignments that are significantly13

worse than those generated by de novo methods. To provide an efficient and robust14

method to fit amplicon sequence data to existing OTUs, we developed the OptiFit algorithm.15

Inspired by OptiClust, OptiFit considers the similarity of all pairs of reference and query16

sequences in an OTU to produce OTUs of the best possible quality. We tested OptiFit17

using four microbiome datasets with two different strategies: by clustering to an external18

reference database or by splitting the dataset into a reference and query set and clustering19

the query sequences to the reference set after clustering it using OptiClust. The result is20

an improved implementation of closed and open-reference clustering. OptiFit produces21

OTUs of similar quality as OptiClust and at faster speeds when using the split dataset22

strategy, although the OTU quality and processing speed depends on the database chosen23

when using the external database strategy. OptiFit provides a suitable option for users who24

require consistent OTU assignments at the same quality afforded by de novo clustering25

methods.26
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Importance27

Advancements in DNA sequencing technology have allowed researchers to affordably28

generate millions of sequence reads from microorganisms in diverse environments.29

Efficient and robust software tools are needed to assign microbial sequences into30

taxonomic groups for characterization and comparison of communities. The OptiClust31

algorithm produces high quality groups by comparing sequences to each other, but the32

assignments can change when new sequences are added to a dataset, making it difficult33

to compare different studies. Other approaches assign sequences to groups by comparing34

them to sequences in a reference database to produce consistent assignments, but the35

quality of the groups produced is reduced compared to OptiClust. We developed OptiFit, a36

new reference-based algorithm that produces consistent yet high quality assignments like37

OptiClust. OptiFit allows researchers to compare microbial communities across different38

studies or add new data to existing studies without sacrificing the quality of the group39

assignments.40
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Introduction41

Amplicon sequencing is a mainstay of microbial ecology. Researchers can affordably42

generate millions of sequences to characterize the composition of hundreds of samples43

from microbial communities without the need for culturing. In many analysis pipelines,44

16S rRNA gene sequences are assigned to operational taxonomic units (OTUs) to45

facilitate comparison of taxonomic composition between communities to avoid the need46

for taxonomic classification. A distance threshold of 3% (or sequence similarity of 97%) is47

commonly used to cluster sequences into OTUs based on pairwise comparisons of the48

sequences within the dataset. The method chosen for clustering affects the quality of OTU49

assignments and thus may impact downstream analyses of community composition (1–3).50

There are two main categories of OTU clustering algorithms: de novo and reference-based.51

OptiClust is a de novo clustering algorithm which uses the distance score between all52

pairs of sequences in the dataset to cluster them into OTUs by maximizing the Matthews53

Correlation Coefficient (MCC) (1). This approach takes into account the distances between54

all pairs of sequences when assigning query sequences to OTUs, in contrast to other de55

novo methods such as the greedy clustering algorithms implemented in USEARCH and56

VSEARCH (4, 5). In methods employing greedy clustering algorithms, only the distance57

between each sequence and a representative centroid sequence in the OTU is considered58

while clustering. As a result, distances between pairs of sequences in the same OTU59

are frequently larger than the specified threshold, i.e. they are false positives. In contrast,60

the OptiClust algorithm takes into account the distance between all pairs of sequences61

when considering how to cluster sequences into OTUs and is thus less willing to take62

on false positives. A limitation of de novo clustering is that different OTU assignments63

will be produced when new sequences are added to a dataset, making it difficult to use64

de novo clustering to compare OTUs between different studies. Furthermore, since de65

novo clustering requires calculating and comparing distances between all sequences in a66
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dataset, the execution time can be slow and memory requirements can be prohibitive for67

very large datasets. Reference clustering attempts to overcome the limitations of de novo68

clustering methods by using a representative set of sequences from a database, with each69

reference sequence seeding an OTU. Commonly, the Greengenes set of representative full70

length sequences clustered at 97% similarity is used as the reference with VSEARCH (5–7).71

Query sequences are then clustered into OTUs based on their similarity to the reference72

sequences. Any query sequences that are not within the distance threshold to any of73

the reference sequences are either thrown out (closed reference clustering) or clustered74

de novo to create additional OTUs (open reference clustering). While reference-based75

clustering is generally fast, it is limited by the diversity of the reference database. Novel76

sequences in the sample will be lost in closed reference mode if they are not represented77

by a similar sequence in the database. Previous studies found that the OptiClust de novo78

clustering algorithm created the highest quality OTU assignments of all clustering methods79

(1).80

To overcome the limitations of current reference-based and de novo clustering algorithms81

while maintaining OTU quality, we developed OptiFit, a reference-based clustering82

algorithm. While other tools represent reference OTUs with a single sequence, OptiFit83

uses multiple sequences in existing OTUs as the reference and fits new sequences to84

those reference OTUs. In contrast to other tools, OptiFit considers all pairwise distance85

scores between reference and query sequences when assigning sequences to OTUs86

in order to produce OTUs of the highest possible quality. Here, we tested the OptiFit87

algorithm with the reference as a public database (e.g. Greengenes) or de novo OTUs88

generated using a reference set from the full dataset and compared the performance to89

existing tools. To evaluate the OptiFit algorithm and compare to existing methods, we used90

four published datasets isolated from soil (8), marine (9), mouse gut (10), and human gut91

(11) samples. OptiFit is available within the mothur software program.92
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Results93

The OptiFit algorithm94

OptiFit leverages the method employed by OptiClust of iteratively assigning sequences95

to OTUs to produce the highest quality OTUs possible, and extends this method for96

reference-based clustering. OptiClust first seeds each sequence into its own OTU as a97

singleton. Then for each sequence, OptiClust considers whether the sequence should98

move to a different OTU or remain in its current OTU, choosing the option that results99

in a better Matthews correlation coefficient (MCC) (1). The MCC uses all values from100

a confusion matrix and ranges from negative one to one, with a score of one occurring101

when all sequence pairs are true positives and true negatives and a score of negative one102

occurring when all pairs are false positives and false negatives. Sequence pairs that are103

similar to each other (i.e. within the distance threshold) are counted as true positives if104

they are clustered into the same OTU, and false negatives if they are not in the the same105

OTU. Sequence pairs that are not similar to each other are true negatives if they are not106

clustered into the same OTU, and false positives if they are not in the same OTU. OptiClust107

iterations continue until the MCC stabilizes or until a maximum number of iterations is108

reached. This process produces de novo OTU assignments with the most optimal MCC109

given the input sequences.110

OptiFit begins where OptiClust ends, starting with a list of reference OTUs and their111

sequences, a list of query sequences to cluster to the reference OTUs, and the sequence112

pairs that are within the distance threshold (e.g. 0.03) (Figure 1). Initially, all query113

sequences are placed into separate OTUs. Then, the algorithm iteratively reassigns the114

query sequences to the reference OTUs to optimize the MCC. Alternatively, a sequence115

will remain unassigned if the MCC value is maximized when the sequence is a singleton116

rather than clustered into a reference OTU. All query and reference sequence pairs are117

considered when calculating the MCC. This process is repeated until the MCC changes by118
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Figure 1: The OptiFit Algorithm. Here we present a toy example of the OptiFit algorithm
fitting query sequences to existing OTUs, given the list of all sequence pairs that are
within the distance threshold (here 3% is used). The goal of OptiFit is to assign the query
sequences W through Z (colored green) to the reference OTUs created by clustering
Sequences A through Q (colored orange) which were previously clustered de novo with
OptiClust (see the OptiClust supplemental text (1)). Initially, OptiFit places each query
sequence in its own OTU. Then, for each query sequence (bolded), OptiFit determines
what the new MCC score would be if that sequence were moved to one of the OTUs
containing at least one other similar sequence. The sequence is then moved to the OTU
which would result in the best MCC score. OptiFit stops iterating over sequences once the
MCC score stabilizes (in this example; only one iteration over each sequence is needed).
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no more than 0.0001 (default) or until a maximum number of iterations is reached (default:119

100). In the closed reference mode, any query sequences that cannot be clustered into120

reference OTUs are discarded, and the results only contain OTUs that exist in the original121

reference. In the open reference mode, unassigned query sequences are clustered de122

novo using OptiClust to generate new OTUs. The final MCC is reported with the best123

OTU assignments. There are two strategies for generating OTUs with OptiFit: 1) cluster124

the query sequences to reference OTUs generated by de novo clustering an independent125

database, or 2) split the dataset into a reference and query fraction, cluster the reference126

sequences de novo, then cluster the query sequences to the reference OTUs.127

Reference clustering with public databases128

To test how OptiFit performs for reference-based clustering, we clustered each dataset to129

three databases of reference OTUs: the Greengenes database, the SILVA non-redundant130

database, and the Ribosomal Database Project (RDP) (6, 12, 13). Reference OTUs for131

each database were created by performing de novo clustering with OptiClust at a distance132

threshold of 3% using the V4 region of each sequence (see Figure 2). After trimming to133

the V4 region, the databases contained 174,979, 16,192, and 173,648 unique sequences134

and produced de novo MCC scores of 0.72, 0.74, and 0.73 for Greengenes, RDP, and135

SILVA, respectively. Clustering sequences to Greengenes and SILVA in closed reference136

mode performed similarly, with median MCC scores of 0.85 and 0.77 respectively, while137

the median MCC was 0.35 when clustering to RDP (Figure 3). For comparison, clustering138

datasets with OptiClust produced an average MCC score of 0.87. This gap in OTU quality139

mostly disappeared when clustering in open reference mode, which produced median140

MCCs of 0.86 with Greengenes, 0.85 with SILVA, and 0.86 with the RDP. Thus, open141

reference OptiFit produced OTUs of very similar quality as de novo clustering, and closed142

reference OptiFit followed closely behind as long as a suitable reference database was143

chosen.144
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Figure 2: The Analysis Workflow. Reference sequences from Greengenes, the RDP,
and SILVA were downloaded, preprocessed with mothur by trimming to the V4 region,
and clustered de novo with OptiClust for 100 repetitions. Datasets from human, marine,
mouse, and soil microbiomes were downloaded, preprocessed with mothur by aligning to
the SILVA V4 reference alignment, then clustered de novo with OptiClust for 100 repetitions.
Individual datasets were fit to reference databases with OptiFit; OptiFit was repeated 100
times for each dataset and database combination. Datasets were also randomly split into a
reference and query fraction, and the query sequences were fit to the reference sequences
with OptiFit for 100 repetitions. The final MCC score was reported for all OptiClust and
OptiFit repetitions.
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Since closed reference clustering does not cluster query sequences that could not be145

clustered into reference OTUs, an additional measure of clustering performance to consider146

is the fraction of query sequences that were able to be clustered. On average, more147

sequences were clustered with Greengenes as the reference (59.1%) than with SILVA148

(50.0%) or with the RDP (9.8%) (Figure 3). This mirrored the result reported above that149

Greengenes produced better OTUs in terms of MCC score than either SILVA or RDP. Note150

that de novo and open reference clustering methods always cluster 100% of sequences151

into OTUs. The database chosen affects the final closed reference OTU assignments152

considerably in terms of both MCC score and fraction of query sequences that could be153

clustered into the reference OTUs.154

Despite the drawbacks, closed reference methods have been used when fast execution155

speed is required, such as when using very large datasets (14). To compare performance156

in terms of speed, we repeated each OptiFit and OptiClust run 100 times and measured157

the execution time. Across all dataset and database combinations, closed reference OptiFit158

outperformed both OptiClust and open reference OptiFit (Figure 3). For example, with159

the human dataset fit to SILVA reference OTUs, the average run times in seconds were160

406.8 for closed reference OptiFit, 455.3 for de novo clustering the dataset, and 559.4 for161

open reference OptiFit. Thus, the OptiFit algorithm continues the precedent that closed162

reference clustering sacrifices OTU quality for execution speed.163

To compare to the reference clustering methods used by QIIME2, we clustered each164

dataset with VSEARCH against the Greengenes database of OTUs previously clustered165

at 97% sequence similarity. Each reference OTU from the Greengenes 97% database166

contains one reference sequence, and VSEARCH maps sequences to the reference167

based on each individual query sequence’s similarity to the single reference sequence.168

In contrast, OptiFit accepts reference OTUs which each may contain multiple sequences,169

and the sequence similarity between all query and reference sequences is considered170
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Figure 3: Benchmarking Results. The median MCC score, fraction of query sequences
that mapped in closed-reference clustering, and runtime in seconds from repeating each
clustering method 100 times. Each dataset underwent de novo clustering using OptiClust
or reference-based clustering using OptiFit with one of two strategies; splitting the dataset
and fitting 50% the sequences to the other 50%, or fitting the dataset to a reference
database (Greengenes, SILVA, or RDP). Reference-based clustering was repeated with
open and closed mode. For additional comparison, VSEARCH was used for de novo and
reference-based clustering against the Greengenes database.
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when assigning sequences to OTUs. In closed reference mode, OptiFit produced 27.2%171

higher quality OTUs than VSEARCH, but VSEARCH was able to cluster 24.8% more query172

sequences than OptiFit to the Greengenes reference database (Figure 3). This is because173

VSEARCH only considers the distances between each query sequence to the single174

reference sequence, while OptiFit considers the distances between all pairs of reference175

and query sequences in an OTU. When open reference clustering, OptiFit produced higher176

quality OTUs than VSEARCH against the Greengenes database, with median MCC scores177

of 0.86 and 0.56, respectively. In terms of run time, OptiFit outperformed VSEARCH in178

both closed and open reference mode by 54.6% and 49.5% on average, respectively. Thus,179

the more stringent OTU definition employed by OptiFit, which prefers the query sequence180

to be similar to all other sequences in the OTU rather than to only one sequence, resulted181

in fewer sequences being clustered to reference OTUs than when using VSEARCH, but182

caused OptiFit to outperform VSEARCH in terms of both OTU quality and execution time.183

Reference clustering with split datasets184

When performing reference clustering against public databases, the database chosen185

greatly affects the quality of OTUs produced. OTU quality may be poor when the reference186

database consists of sequences that are too unrelated to the samples of interest, such as187

when samples contain novel populations. While de novo clustering overcomes the quality188

limitations of reference clustering to databases, OTU assignments are not consistent when189

new sequences are added. Researchers may wish to cluster new sequences to existing190

OTUs or to compare OTUs across studies. To determine how well OptiFit performs for191

clustering new sequences to existing OTUs, we employed a split dataset strategy, where192

each dataset was randomly split into a reference fraction and a query fraction. Reference193

sequences were clustered de novo with OptiClust, then query sequences were clustered194

to the de novo OTUs with OptiFit.195
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First, we tested whether OptiFit performed as well as de novo clustering when using the196

split dataset strategy with half of the sequences selected for the reference by a simple197

random sample (a 50% split) (Figure 3; self-split). OTU quality was similar to that from198

OptiClust regardless of mode (0.029% difference in median MCC). In closed reference199

mode, OptiFit was able to cluster 84.8% of query sequences to reference OTUs with200

the split strategy, a great improvement over the average 59.1% of sequences clustered201

to the Greengenes database. In terms of run time, closed and open reference OptiFit202

performed faster than OptiClust on whole datasets by 34.7% and 33.5%, respectively. The203

split dataset strategy also performed 13.5% faster than the database strategy in closed204

reference mode and 43.5% faster in open reference mode. Thus, reference clustering with205

the split dataset strategy creates as high quality OTUs as de novo clustering yet at a faster206

run time, and fits far more query sequences than the database strategy.207

While we initially tested this strategy using a 50% split of the data into reference and query208

fractions, we next investigated whether there was an optimal reference fraction size. To209

identify the best reference size, reference sets with 10% to 90% of the sequences were210

created, with the remaining sequences used for the query (Figure 4). OTU quality was211

remarkably consistent across reference fraction sizes. For example, splitting the human212

dataset 100 times yielded a coefficient of variation (i.e. the standard deviation divided by213

the mean) of 0.00022 for the MCC score across all fractions. Run time generally decreased214

as the reference fraction increased; for the human dataset, the median run time was215

364.1 seconds with 10% of sequences in the reference and 291.3 seconds with 90% of216

sequences in the reference. In closed reference mode, the fraction of sequences that217

mapped increased as the reference size increased; for the human dataset, the median218

fraction mapped was 0.85 with 10% of sequences in the reference and 0.95 with 90% of219

sequences in the reference. These trends held for the other datasets as well. Thus, the220

reference fraction did not affect OTU quality in terms of MCC score, but did affect the run221

time and the fraction of sequences that mapped during the closed reference clustering.222
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Figure 4: Split dataset strategy. The median MCC score, fraction of query sequences
that mapped in closed-reference clustering, and runtime in seconds from repeating each
clustering method 100 times. Each dataset was split into a reference and query fraction.
Reference sequences were selected via a simple random sample, weighting sequences
by relative abundance, or weighting by similarity to other sequences in the dataset. With
the simple random sample method, dataset splitting was repeated with reference fractions
ranging from 10% to 90% of the dataset and for 100 random seeds. De novo clustering
each dataset is also shown for comparison.
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After testing the split strategy using a simple random sample to select the reference223

sequences, we then investigated other methods of splitting the data. We tested three224

methods for selecting the fraction of sequences to be used as the reference at a size of225

50%: a simple random sample, weighting sequences by relative abundance, and weighting226

by similarity to other sequences in the dataset (Figure 4). OTU quality in terms of MCC227

was similar across all three sampling methods (median MCC of 0.87). In closed-reference228

clustering mode, the fraction of sequences that mapped were similar for simple and229

abundance-weighted sampling (median fraction mapped of 0.85 and 0.84, respectively),230

but worse for similarity-weighted sampling (median fraction mapped of 0.56). While simple231

and abundance-weighted sampling produced better quality OTUs than similarity-weighted232

sampling, OptiFit performed faster on similarity-weighted samples with a median runtime of233

93.8 seconds compared to 123.2 and 122.6 seconds for simple and abundance-weighted234

sampling, respectively. Thus, employing more complicated sampling strategies such as235

abundance-weighted and similarity-weighted sampling did not confer any advantages over236

selecting the reference via a simple random sample, and in fact decreased OTU quality in237

the case of similarity-weighted sampling.238

Discussion239

We developed a new algorithm for clustering sequences to existing OTUs and have240

demonstrated its suitability for reference-based clustering. OptiFit makes the iterative241

method employed by OptiClust available for tasks where reference-based clustering is242

required. We have shown that OTU quality is similar between OptiClust and OptiFit in open243

reference mode, regardless of strategy employed. Open reference OptiFit performs slower244

than OptiClust due to the additional de novo clustering step, so users may prefer OptiClust245

for tasks that do not require reference OTUs.246

When clustering to public databases, OTU quality dropped in closed reference mode to247
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different degrees depending on the database and dataset source, and no more than half248

of query sequences were able to be clustered into OTUs across any dataset/database249

combination. This may reflect limitations of reference databases, which are unlikely250

to contain sequences from novel microbes. This drop in quality was most notable251

with the RDP reference, which contained only 16,192 sequences compared to 173,648252

sequences in SILVA and 174,979 in Greengenes. Note that Greengenes has not been253

updated since 2013 at the time of this writing, while SILVA and the RDP are updated254

regularly. We recommend that users who require an independent reference database255

opt for large databases with regular updates and good coverage of microbial diversity for256

their environment. Since OptiClust still performs faster than open reference OptiFit and257

creates higher quality OTUs than closed reference OptiFit with the database strategy, we258

recommend using OptiClust rather than clustering to a database whenever consistent259

OTUs are not required.260

The OptiClust and OptiFit algorithms produced higher quality OTUs than VSEARCH in261

open reference, closed reference, or de novo modes. However, VSEARCH was able262

to cluster more sequences to OTUs than OptiFit in closed reference mode. While both263

OptiFit and VSEARCH use a distance or similarity threshold for determining how to cluster264

sequences into OTUs, VSEARCH is more permissive than OptiFit regardless of mode.265

The OptiFit and OptiClust algorithms use all of the sequences to define an OTU, preferring266

that all pairs of sequences (including reference and query sequences) in an OTU are within267

the distance threshold in order to maximize the MCC. In contrast, VSEARCH only requires268

each query sequence to be similar to the single centroid sequence that seeded the OTU.269

Because of this, VSEARCH sacrifices OTU quality by allowing more dissimilar sequences270

to be clustered into OTUs.271

When clustering with the split dataset strategy, OTU quality was remarkably similar when272

reference sequences were selected by a simple random sample or weighted by abundance,273
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but quality was slightly worse when sequences were weighted by similarity. We recommend274

using a simple random sample since the more sophisticated reference selection methods275

do not offer any benefit. The similarity in OTU quality between OptiClust and OptiFit with276

this strategy demonstrates the suitability of using OptiFit to cluster sequences to existing277

OTUs, such as when comparing OTUs across studies. However, when consistent OTUs278

are not required, we recommend using OptiClust for de novo clustering over the split279

strategy with OptiFit since OptiClust is simpler to execute but performs similarly in terms of280

both run time and OTU quality.281

Unlike existing reference-based methods that cluster query sequences to a single centroid282

sequence in each reference OTU, OptiFit considers all sequences in each reference OTU283

when clustering query sequences, resulting in OTUs of a similar high quality as those284

produced by the de novo OptiClust algorithm. Potential applications include clustering285

sequences to reference databases, comparing taxonomic composition of microbiomes286

across different studies, or using OTU-based machine learning models to make predictions287

on new data. OptiFit fills the missing option for clustering query sequences to existing288

OTUs that does not sacrifice OTU quality for consistency of OTU assignments.289

Materials and Methods290

Data Processing Steps291

We downloaded 16S rRNA gene amplicon sequences from four published datasets isolated292

from soil (8), marine (9), mouse gut (10), and human gut (11) samples. These datasets293

contain sequences from the V4 region of the 16S rRNA gene and represent a selection294

of the broad types of natural communities that microbial ecologists study. We processed295

the raw sequences using mothur according to the Schloss Lab MiSeq SOP (15) and296

accompanying study by Kozich et al. (16). These steps included trimming and filtering297

for quality, aligning to the SILVA reference alignment (12), discarding sequences that298
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aligned outside the V4 region, removing chimeric reads with UCHIME (17), and calculating299

distances between all pairs of sequences within each dataset prior to clustering.300

Reference database clustering301

To generate reference OTUs from public databases, we downloaded sequences from the302

Greengenes database (v13_8_99) (6), SILVA non-redundant database (v132) (12), and the303

Ribosomal Database Project (v16) (13). These sequences were processed using the same304

steps outlined above followed by clustering sequences into de novo OTUs with OptiClust.305

Processed reads from each of the four datasets were clustered with OptiFit to the reference306

OTUs generated from each of the three databases. When reference clustering with307

VSEARCH, processed datasets were clustered directly to the unprocessed Greengenes308

97% OTU reference alignment, since this method is how VSEARCH is typically used by309

the QIIME2 software for reference-based clustering (7, 18).310

Split dataset clustering311

For each dataset, half of the sequences were selected to be clustered de novo into312

reference OTUs with OptiClust. We used three methods for selecting the subset of313

sequences to be used as the reference: a simple random sample, weighting sequences by314

relative abundance, and weighting by similarity to other sequences in the dataset. Dataset315

splitting was repeated with 100 random seeds. With the simple random sampling method,316

dataset splitting was also repeated with reference fractions ranging from 10% to 90% of317

the dataset. For each dataset split, the remaining query sequences were clustered into the318

reference OTUs with OptiFit.319

Benchmarking320

OptiClust and OptiFit randomize the order of query sequences prior to clustering and321

employ a random number generator to break ties when OTU assignments are of equal322
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quality. As a result, they produce slightly different OTU assignments when repeated323

with different random seeds. To capture any variation in OTU quality or execution time,324

clustering was repeated with 100 random seeds for each combination of parameters and325

input datasets. We used the benchmark feature provided by Snakemake to measure the326

run time of every clustering job. We calculated the MCC on each set of OTUs to quantify327

the quality of clustering, as described by Westcott et al. (1).328

Data and Code Availability329

We implemented the analysis workflow in Snakemake (19) and wrote scripts in R (20),330

Python (21), and GNU bash (22). Software used includes mothur v1.47.0 (23), VSEARCH331

v2.15.2 (5), the tidyverse metapackage (24), R Markdown (25), ggraph (26), ggtext (27),332

numpy (28), the SRA toolkit (29), and conda (30). The complete workflow and supporting333

files required to reproduce this manuscript are available at https://github.com/SchlossLab/334

Sovacool_OptiFit_2021.335
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