

1

Research article

2

3 **Genome-wide selection signatures reveal widespread synergistic effects of culture**
4 **conditions and temperature stress in *Drosophila melanogaster***

5

6 Burny Claire^{*†}, Nolte Viola^{*}, Dolezal Marlies[†], Schlötterer Christian^{*#}

7

8 ^{*} Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, 1210, Austria,

9 [†] Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, 1210, Austria,

10 [‡] Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Vienna, Austria, Wien, 1210,
11 Austria

12

13 # Corresponding author:

14 Christian Schlötterer

15 Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 210 Vienna, Austria

16 +43 1 25077-4301, +43 25077-4390

17 christian.schloetterer@vetmeduni.ac.at

18

19 **KEYWORDS**

20 experimental evolution, *Drosophila melanogaster*, parallel evolution, local adaptation, G×E,
21 temperature adaptation

22

23 **ABSTRACT**

24 Experimental evolution combined with whole-genome sequencing is a powerful approach to
25 study the adaptive architecture of selected traits, in particular when replicated experimental
26 populations evolving in opposite selective conditions (e.g. hot vs. cold temperature) are
27 compared. Nevertheless, such comparisons could be affected by environmental effects shared
28 between selective regimes (e.g. laboratory adaptation), which complicate the interpretation of
29 selection signatures. Here, we used an experimental design, which takes advantage of the
30 simplicity of selection signatures from founder populations with reduced variation, to study
31 the fitness consequences of the laboratory environment (culture conditions) at two
32 temperature regimes. After 20 generations of adaptation at 18°C and 29°C, strong genome-
33 wide selection signatures were observed. About one third of the selection signatures can be
34 either attributed to temperature effects, laboratory adaptation or the joint effects of both. The
35 fitness consequences reflecting the combined effects of temperature and laboratory
36 adaptation were more extreme in the hot environment for 83% of the affected genomic
37 regions, fitting the pattern of larger expression differences between founders at 29°C. We
38 propose that evolve and resequence (E&R) with reduced genetic variation allows to study
39 genome-wide fitness consequences driven by the interaction of multiple environmental
40 factors.

41

42 **INTRODUCTION**

43 Ecological genetics aims to characterize the interaction of organisms with their environment.
44 Of particular interest is the characterization of adaptive responses, which are specific to a
45 given habitat. Many approaches have been pursued to study the genetic basis of local
46 adaptation (Savolainen et al., 2013, Tiffin & Ross-Ibarra, 2014, Whitlock, 2015, Hoban et al.,
47 2016, Lorant et al., 2020). Allele frequency differences between populations from different
48 environments are particularly powerful to test for correlation between genetic variation and
49 environmental variables (Coop et al., 2010, Günther & Coop, 2013), and are widely applied
50 to the analysis of clinal variation (Rako et al., 2007, Kolaczkowski et al., 2011, Fabian et al.,
51 2012, Bergland et al., 2016, Calfee et al., 2020). Despite being conceptually appealing, this
52 approach faces several challenges. Historical demographic events, such as bottlenecks or
53 admixture, may generate confounding signals, possibly resulting in false positives/negatives
54 (Thornton & Jensen, 2007, Pavlidis et al., 2010, Lohmueller, 2014, Lotterhos & Whitlock,
55 2015, Johri et al, 2020). Furthermore, estimating covariance between allele frequencies and
56 environment is difficult as i) identifying and/or measuring the relevant environmental
57 variables is challenging since many abiotic factors are correlated (Mittler, 2006, MacColl,
58 2011) and ii) selection can vary over time (e. g. Bergland et al., 2014, Behrman et al., 2018,
59 Grainger et al., 2021).

60

61 Experimental evolution, in particular laboratory natural selection, allows to study adaptive
62 responses in a controlled laboratory environment (Burke & Rose, 2009, Garland & Rose,
63 2009, Kawecki et al., 2012, Schlötterer et al., 2015). Exposing a mixture of genotypes to a
64 monitored stressor, the adaptive response can be measured through time in replicate
65 populations, combined with next-generation sequencing (Evolve and Resequence (E&R);
66 Turner et al., 2011, Schlötterer et al., 2014, Long et al., 2015). While many experimental
67 evolution studies rely on truncating selection to determine the genotypes contributing to the
68 next generation (Turner et al., 2011, Turner & Miller, 2012, Griffin et al., 2017, Hardy et al.,
69 2018, Gerritsma et al., 2019), laboratory natural selection builds on fitness differences
70 between genotypes upon exposure (Garland & Rose, 2009) and hence provides a closer fit to
71 adaptation and competition processes occurring in the wild (Hsu et al., 2021).

72

73 A major challenge for the interpretation of molecular selection signatures comes from the few
74 recombination events during the laboratory experiment resulting in strong linkage
75 disequilibrium (Nuzhdin & Turner, 2013, Tobler et al., 2014, Franssen et al., 2015). Strong

76 linkage reduces the efficiency of natural selection as a consequence of Hill-Robertson effect
77 (Hill & Robertson, 1966, Roze & Barton, 2006). Starting with many different founder
78 genotypes (Baldwin-Brown et al., 2014, Kofler & Schlötterer, 2014, Kessner & Novembre,
79 2015, Vlachos & Kofler, 2019) and using the selected haplotype blocks as the selective unit
80 rather than individual SNPs (Franssen et al., 2017, Barghi et al., 2019, Otte & Schlötterer,
81 2021) may partially overcome the lack of resolution. Nevertheless, increasing the number of
82 founders will increase the pool of adaptive variants and consequently the number of
83 beneficial genotypic combinations to reach the trait optimum (Yeaman, 2015, Barghi et al.,
84 2019, Barghi & Schlötterer, 2020, Laruson et al., 2020). One proposed solution to study the
85 selective response of highly polygenic traits builds on reducing the genetic variation in the
86 founder population (Sachdeva & Barton, 2018, Burny et al., 2021, Langmüller et al., 2021).
87 Assuming that even the use of only two haplotypes provides sufficient segregating variation
88 to adapt to rapid thermal change, we focused on laboratory adaptation as an environmental
89 factor common to two different temperature regimes. We used 18°C, a putatively non-
90 stressful temperature regime since the two founder genotypes of our experiment showed very
91 similar gene expression profiles at 18°C (Chen et al., 2015, Jaksic & Schlötterer, 2016). In
92 contrast, 29°C is a very stressful temperature regime, close to the maximal temperature at
93 which *D. melanogaster* populations can be maintained (Hoffmann, 2010). We observed a
94 very strong selection response across the entire genome. About one third of the genomic
95 regions responded either only to temperature, laboratory conditions, or exhibited a significant
96 joint effect of both stressors. Our results demonstrate the importance of the combined effects
97 of different environmental factors .

98

99 MATERIALS AND METHODS

100

101 **Experimental set-up** We used the Oregon-R and Samarkand strains inbred by Chen et al.
102 (2015), and maintained since then at room temperature. The three replicates of both
103 experimental evolution cages were set up in parallel, each with a census size of 1,500 flies
104 and accidentally with a starting frequency of 0.3 for the Oregon-R genotype (0.7 for the
105 Samarkand genotype) - rather than 0.5, as described in Burny et al, 2021. Briefly, all
106 replicates were then maintained for 20 generations at either constant 29°C or constant 18°C
107 in dark conditions before sequencing. 300 adults were transferred every generation to one of
108 five bottles for two days of egg laying. After egg laying, all adults were removed and frozen.
109 The egg lay resulted in a high density of larvae. Hence, we transferred a mixture of larvae

110 and food to two fresh food bottles. Adults collected 8-32 hours after eclosure of the first flies
111 from all bottles were mixed to avoid population substructure. 300 adults from each vial
112 started the next generation.

113

114 **DNA extraction, library preparation, sequencing** Whole-genome sequence data for the
115 parental Oregon-R and Samarkand strains are available in Burny et al, 2021. The evolved
116 replicates in generation F20 were sequenced using Pool-Seq: genomic DNA was prepared
117 after pooling and homogenizing all available individuals of a given replicate in extraction
118 buffer, followed by a standard high-salt extraction protocol (Miller et al., 1988). For the
119 samples in the 29°C experiment, barcoded libraries with a targeted insert size of 480 bp were
120 prepared using the NEBNext Ultra II DNA Library Prep Kit (E7645L, New England Biolabs,
121 Ipswich, MA) and sequenced on a HiSeq 2500 using a 2×125 bp paired-end protocol. For the
122 samples in the 18°C experiment, we used the same library preparation protocol, but with a
123 target insert size of 280 bp, and 2×150 bp reads were sequenced on the HiSeq X Ten
124 platform.

125

126 **Allele frequency tracking** We previously established a catalogue of parental SNPs (Burny et
127 al., 2021). Briefly, a parental SNP was defined as a (nearly) fixed difference between parental
128 lines with a 0/0 (1/1) genotype in the Samarkand parent and 1/1 (0/0) genotype in the
129 Oregon-R parent at the marker position, conditioning for a frequency of the alternate allele
130 lower than 0.05 (if 0/0) or higher than 0.95 (if 1/1) for a final list of 465,070 SNPs; 401,252
131 and 63,818 SNPs on the autosomes and the X chromosome, respectively, equivalent to 1 SNP
132 every 271 bp on the autosomes and 363 bp on X. The same processing and mapping steps
133 were applied at 29°C and 18°C described in (Burny et al., 2021). The allele frequency have
134 been obtained after converting processed BAM files from pileup (*samtools mpileup -BQ0 -*
135 *d10000*; version 1.10; (Li et al., 2009)) to sync files (using PoPoolation2 *mpileup2sync.jar*;
136 (Kofler et al., 2011)). We then tracked the allele frequency at F20 of the Oregon-R allele in 3
137 replicates at 29°C (replicates 1,2,3 in Burny et al, 2021) and 3 replicates at 18°C. The
138 subsequent analyses have been performed with R (version 4.0.4; (R Core Team 2020)) and
139 most panels have been generated with the ggplot2 R package (Wickham, 2016). We retained
140 SNPs measured at both temperatures, leading to a total of 100,283, 89,929, 107,119, 103,760,
141 72, 63,766 SNPs on 2L, 2R, 3L, 3R, 4 and X. Because the average coverage at the marker
142 SNPs differs between both temperatures (12, 11, 9× at 18°C and 123, 107, 133× at 29°C), we
143 down-sampled the 29°C coverage values to 12× by drawing the coverage at each locus from

144 a Poisson distribution of mean 12 and then applying binomial sampling with a sample size set
145 to the sampled coverage to mimic Pool-Seq sampling noise (Taus et al, 2017). In order to
146 both limit noise in allele frequency measurements and to take linkage into account, the allele
147 frequency values are averaged in non-overlapping windows of size $w=50, 250$ or 500 SNPs
148 for a total of 8,021, 1,603, 801 measurements on the autosomes (2 and 3) and 1,275, 255, 127
149 on X for each window size respectively, where the last window of each chromosome,
150 containing fewer than w SNPs. Windows of size $w=50, 250$ or 500 SNPs correspond to 13.6
151 [12.8; 14.4], 67.8 [59.7; 76.0] and 135.6 [115.8; 155.4]kb on average for the autosomes and
152 18.2 [16.6; 19.7], 90.5 [81.4; 99.5] and 180.9 [162.1; 199.8]kb for X. The 95% confidence
153 intervals have been obtained by the mean ± 1.96 SE, with SE standard error. The main
154 results are represented at 250-bp level. A window position i is defined by its center ((right-
155 left)/2). By convention, if the Oregon-R allele frequency at F20 is higher (lower) than its
156 initial frequency of 30% (70%), the Oregon-R (Samarkand) allele increased in frequency and
157 the allele frequency change (AFC) is positive (negative).

158 **Comparing the response between the 18°C and 29°C selection regimes** We classified the
159 AFC of each window after 20 generations as non-significantly deviating from neutrality or
160 presenting a selection signal. In order to test deviation from neutrality, we performed 100
161 neutral simulation runs using MimicrEE2 (Vlachos & Kofler, 2018). The neutral simulations
162 mimic the experimental set-up, *i.e.* starting with 30% of Oregon-R flies over 1,500 flies,
163 using three replicates and the same marker SNPs providing the *D. melanogaster*
164 recombination map (Comeron et al., 2012) updated to version 6 of the reference genome
165 using the Flybase online Converter (<https://flybase.org/convert/coordinates>; accessed in July
166 2020). For each simulation run, we computed the average AFC over the three replicates per
167 window. Per temperature and per chromosome, an empirical p-value per window w ($p_w^{18^\circ\text{C}}$
168 neutral or $p_w^{29^\circ\text{C} \text{ neutral}}$) is calculated as the fraction of AFC values higher (lower) than the
169 empirical AFC when the observed AFC is positive (negative) divided by the total number of
170 average AFC values. We finally applied a Benjamini-Hochberg correction per chromosome
171 ($p.\text{adj}_w^{18^\circ\text{C} \text{ neutral}}$ and $p.\text{adj}_w^{29^\circ\text{C} \text{ neutral}}$). If a window presents a selection signal, it either favors
172 the same parental allele at both temperatures (with a change in magnitude or not) or different
173 alleles - for example the Oregon-R allele at 29°C ($\text{AFC}_w^{29^\circ\text{C}} > 0$) and the Samarkand allele at
174 18°C ($\text{AFC}_w^{18^\circ\text{C}} < 0$). To check which scenario is more likely, we fitted a simple linear model
175 (LM) for each window w , with AFC as response and temperature as fixed categorical
176 explanatory factor, where $\alpha_w^{\text{intercept}}$ corresponds to 18°C-reference level and $\alpha_w^{\text{temperature}}$ is the

177 contrast between 29°C and 18°C. We extracted the corresponding p-value (p_w^{LM}) and applied
178 a Benjamini-Hochberg correction per chromosome on the non-neutral windows ($p.adj_w^{LM}$). A
179 significant window is classified as displaying a change in magnitude with the temperature
180 favoring the same parental allele ($\alpha_w^{intercept}$ and $\alpha_w^{temperature}$ of same sign) or a different allele
181 ($\alpha_w^{intercept}$ and $\alpha_w^{temperature}$ of different sign). For a given False Discovery Rate (FDR)
182 threshold, a genomic window w is then classified in one of the following 6 classes: “drift
183 only”, “change 18°C only”, “change 29°C only”, “no temperature effect”, “different
184 magnitude” and “different direction” (see Table SI 1 for logical conditions on windows
185 affectation to each class). We then recorded the fraction of windows affected in each of the 6
186 classes for different values of FDR (5%, 10%, 15%) per chromosome and averaged genome-
187 wide (GW). We also computed the autocorrelation per chromosome and per replicate using
188 the *acf* R function; the autocorrelation at a given step k is defined as the correlation between
189 windows at positions i and $i+k$, where k is called the lag. We eventually recorded the distance
190 where a significant decrease in autocorrelation at a 5% threshold (below $1.96/\sqrt{n}$, n the
191 number of windows), *i.e.* a rough proxy of linkage equilibrium, is reached.

192 **Ancestral gene expression re-analysis** We used ancestral gene expression values at 18°C
193 and 29°C for each genotype (Chen et al., 2015). The parental gene expression is reported as
194 the log2-transformed fold change of expression of the Samarkand genotype relative to the
195 Oregon-R genotype expression used as a reference, noted logFC S/O. In order to correlate
196 parental gene expression and allele frequency changes, we computed the AFC per gene as the
197 average of AFC of parental markers located within the gene. To that aim, we needed to
198 convert the genes position to the updated version of the *D. melanogaster* GTF annotation
199 (v6.36). We downloaded the gene conversion IDs from FlyBase using “wget
200 ftp://ftp.flybase.net/releases/current/precomputed_files/genes/fbgn_annotation_ID *.tsv.gz”
201 the 25th November 2020. Over 7,853 gene expression values, remained 7,844 genes for which
202 the conversion was possible. We then computed per gene the average AFC of all SNPs within
203 the entire genic region (exons, introns and UTRs) over a total of 7,751/7,844 genes due to the
204 sparse distribution of marker SNPs with on average 36 markers (median of 12) per gene. We
205 first searched for the presence of any genome-wide correlations between the logFC S/O
206 differential (logFC S/O 29°C - logFC S/O 18°C) and the AFC differential (AFC 29°C - AFC
207 18°C) paired by gene, measured by the Spearman correlation coefficient ρ . Assuming that
208 correlation, if it exists, might be caused by a subset of genes, we also computed ρ coefficients
209 for an increased number of top genes (by subsets of 50 genes) either ranked by the absolute

210 logFC S/O differential or by the absolute AFC differential. To assess if the obtained trend, an
211 exponential decrease of ρ with an increasing number of genes was more often seen than
212 under a random ordering of the genes, we computed for each set of top x genes and for each
213 ranking, the 95th quantile of 100 randomly chosen set of x genes. Eventually we performed a
214 transcription factor binding sites (TFBS) enrichment analysis until 5kbp up-stream of each
215 gene for the top 50 genes either ordered by decreasing logFC S/O at 18°C (48 genes present
216 in the motifs database) or by logFC S/O at 29°C (44 genes present in the motifs database)
217 using the RcisTarget bioconductor package (version 1.6.0; (Aibar et al., 2017)). The motifs
218 database was downloaded from
219 https://resources.aertslab.org/cistarget/databases/drosophila_melanogaster/dm6/flybase_r6.02/mc8nr/gene_based/dm6-5kb-upstream-full-tx-11species.mc8nr.feather the 20th November
220 2020. Enrichment was defined using the default enrichment score of 3 and the number of
221 motifs associated to a TFs was reported for each analysis.
222

223

224 **RESULTS**

225 We exposed two genotypes, Samarkand and Oregon-R, to two different environmental
226 stressors, laboratory adaptation and temperature. Two E&R experiments shared the same
227 laboratory environment, but differed in temperature regime. Three replicate populations were
228 maintained for 20 generations at either 18°C or 29°C. Genome-wide allele frequencies of
229 genotype-specific marker SNPs were determined by Pool-Seq (Schlötterer et al., 2014).
230 Because genotype-specific alleles start at the same frequency in all replicates and only few
231 recombination events were expected during the experiment, we averaged the allele
232 frequencies in non-overlapping windows of 250 consecutive SNPs to obtain reliable allele
233 frequency estimates. This strategy is supported by the high autocorrelation of neighboring
234 SNPs, up to a distance of 6.7Mb (Fig SI 1). We inferred selection by contrasting the allele
235 frequencies of the Oregon-R genotype at the start of the experiment (30%) to those after 20
236 generations, relative to simulated frequency changes under neutrality. A positive allele
237 frequency change (AFC) indicates that the Oregon-R allele increased in frequency.
238

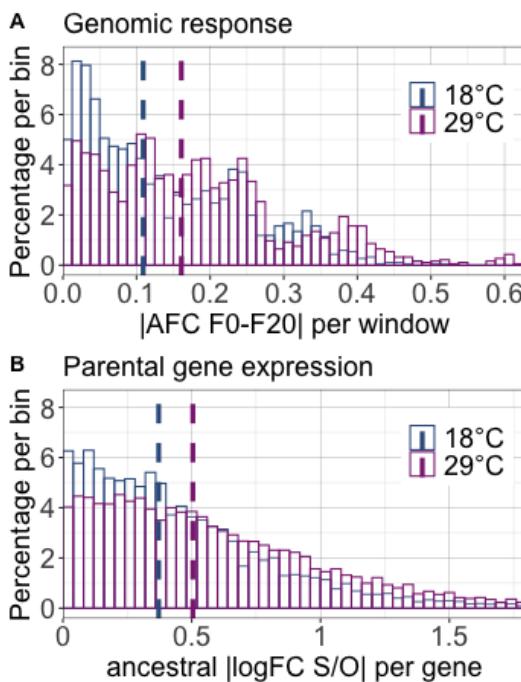
239 After 20 generations marked allele frequency changes occurred at both temperature regimes
240 (Fig 1A). The three replicate populations of each temperature regime showed a strikingly
241 parallel selection response as indicated by the shaded area corresponding to +/- one standard
242 deviation around the mean of the 3 replicates (Fig 2A). Overall, Oregon-R alleles were more

243 likely to increase in frequency than Samarkand alleles, with 90% and 80% of the windows
244 displaying positive AFC at 18°C and 29°C respectively.

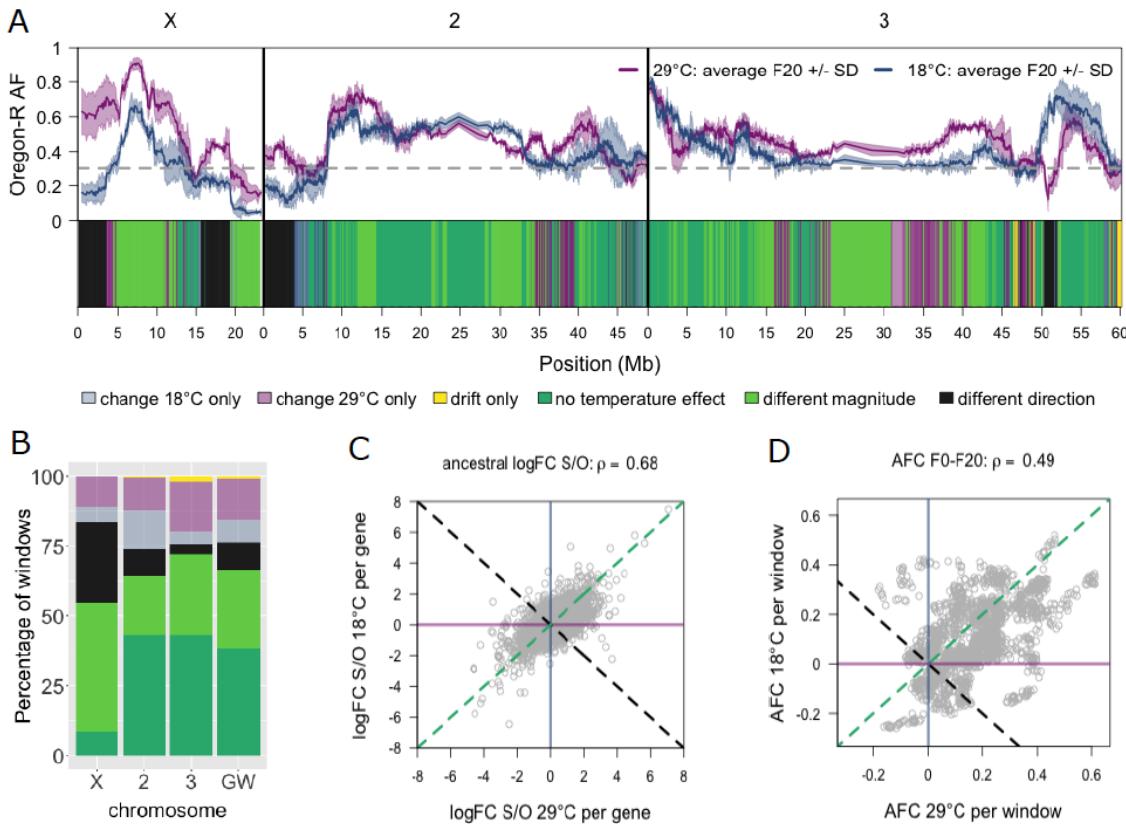
245

246 Given that the *Drosophila* populations were adapting to two different environmental
247 stressors, laboratory environment and temperature, it is possible to evaluate their individual
248 and joint effect on the selection response across the entire genome. We characterized the
249 selection response by classifying windows changing more in frequency than expected under
250 neutrality in each of the temperature regimes (Fig 2A,2B, Table SI 1). On the one hand, the
251 direction of the selection response, *i.e.* the increase in frequency of the Oregon-R or
252 Samarkand alleles, differed for 10% of the windows between the two temperatures (Fig 2,
253 black). 8% (Fig 2, light blue) and 14% (Fig 2, purple) of the windows displayed a significant
254 allele frequency change relative to drift, only at either 18°C or 29°C respectively. On the
255 other hand, a similar allele frequency change was observed for 38% (Fig 2, dark green) of the
256 windows in the two experiments, which we attribute to laboratory adaptation only. In total,
257 roughly 2/3 of the genome responded only to one of the two environmental stressors.
258 Nevertheless, a remarkable large fraction of windows showed a significant combined effect
259 of the two environmental stressors. 28% (Fig 2, light green) changed in the same direction,
260 but at a different magnitude between temperatures. This pattern of frequency change
261 indicates that temperature modulates the adaptive response to the selective force, common to
262 both experiments. For most of these windows (83%), the most extreme allele frequency
263 change was observed at 29°C, which may suggest that the two stressors, temperature and
264 laboratory environment, act synergistically. Only a small fraction (1%, Fig 2, yellow) of
265 windows did not change in frequency beyond what is expected by drift in either treatment.
266 Qualitatively similar results were obtained when the comparison between the two
267 temperature regimes was performed for single SNPs or averaged across windows of 50, 250
268 and 500 SNPs as well as with different False Discovery Rate (FDR) thresholds (Fig SI 3).

269


270 The elevated selection response to a high temperature laboratory environment may indicate
271 that temperature stress increases the phenotypic variance on which selection can operate. We
272 scrutinized this hypothesis by re-analyzing RNA-Seq data from the two parental genotypes
273 exposed to 18° and 29°C (Chen et al., 2015). Although the difference in gene expression
274 between the two genotypes was much more pronounced at 29°C than at 18°C, we found a
275 positive correlation of the differences in gene expression between the two genotypes between
276 18°C and 29°C (Fig 2C, Spearman $\rho = 0.68$). This confirmed that the hot temperature

277 environment amplifies phenotypic differences between the two genotypes. Since traits with a
278 higher phenotypic variance are responding more strongly to selection, we compared the
279 genomic response at the two temperatures and found that the correlated expression changes
280 are mirrored by the parallel selection response of genomic windows at the two temperatures
281 (Fig 2A,2B,2D, Spearman $\rho = 0.49$). Similar to the parental gene expression with a 36%
282 increase of the median absolute logFC S/O at 29°C, the median absolute AFC increased by
283 48% at 29°C relative to 18°C.


284

285 Given that both gene expression differences and selective responses are correlated between
286 temperatures, we were interested whether they are actually functionally linked. We asked if
287 the genes with the largest temperature-specific expression differences between the two
288 parental genotypes also display the largest temperature-specific selection response. We
289 measured the correlation of the parental gene expression and AFC differentials between 29°C
290 and 18°C ($|(Sam-Or)_{18^\circ C} - (Sam-Or)_{29^\circ C}|$). Neither for the full set of genes nor the top genes
291 (ranked by decreased differential of logFC S/O or AFC), the AFC differential was
292 significantly correlated with the parental expression differential (Fig SI 4). We conclude that
293 the allele frequency changes in the experimental evolution are not primarily driven by
294 parental expression differences. Thus, either parental gene expression differences have
295 limited implication for fitness or the observed gene expression differences are driven by
296 trans-acting factors rather than by cis-regulatory variation. We studied the potential of
297 transcription factors driving the parental expression differences and found that the 50 genes
298 with the strongest expression differences between the parents (ranked by decreasing absolute
299 logFC) at 18°C and at 29°C (17 genes in common) were enriched for many rather than a few
300 transcription factor binding sites (152 at 18°C and 133 at 29°C). We conclude that the
301 temperature-specific gene expression differences between Samarkand and Oregon-R could be
302 driven by many transcription factors, consistent with gene expression having a polygenic
303 architecture.

304

305
306 **Figure 1.** Differences between the parental genotypes at 18°C (blue) and 29°C (purple).
307 Histograms of absolute allele frequency change of the Oregon-R allele between F0 and F20
308 (|AFC F0-F20|) for non-overlapping windows of 250 SNPs (A) and the absolute log2-fold
309 difference of expression between Samarkand and Oregon-R genotypes (|logFC S/O|) per gene
310 (B). The percentage of windows (A) and genes (B) in each of the 50 equally-spaced bins (bin
311 size: 0.0125 (A), 0.04 (B)) is reported on the y-axis. The dashed lines represent the median
312 absolute allele frequency change at 18°C and 29°C (0.11 at 18°C and 0.16 at 29°C, A; paired
313 Wilcoxon one-sided test p-value=1.3×10⁻⁴⁰) and median absolute logFC S/O (0.37 at 18°C
314 and 0.50 at 29°C, B; paired Wilcoxon one-sided test p-value=1.8×10⁻¹⁵²). For the sake of
315 clarity, the x-axis of panel B is bounded at 1.8, which corresponds to 1.5 times the maximum
316 inter-quartile range of the gene expression data. The full histogram is shown in Fig SI 2.
317

318 **Figure 2.** A) *Top*. Genome-wide allele frequencies after evolving for 20 generations at two
319 temperature regimes. The frequency of the Oregon-R allele is averaged for non-overlapping
320 windows of 250 SNPs (solid line) +/- one standard deviation (shaded area) at 18°C (blue) and
321 29°C (purple). *Bottom*. Each window is classified (see Methods) in one of the 6 color-coded
322 classes depending of the AFC between 18°C and 29°C: change at 18°C only (light blue),
323 change at 29°C only (light purple), drift only (yellow), no temperature effect (dark green),
324 different AFC magnitude but same direction of effect (light green), opposite alleles increase
325 at 18°C and 29°C (black). B) Percentage of the genomic windows per class (defined for an
326 FDR threshold of 10% per chromosome and averaged genome-wide (GW)). Scatterplots of
327 the logFC S/O (C) and AFC (D) at 18°C (y-axis) and 29°C (x-axis). We reported the
328 Spearman ρ correlation coefficients.
329

330

331 **DISCUSSION**

332 We studied the selective impact of two different environments on a genomic scale by
333 combining laboratory and temperature adaptation. Contrary to the recommended design for
334 E&R studies (Kofler & Schlötterer, 2014), which facilitate the identification of a moderate
335 number of selection targets occurring at sufficiently high starting frequencies, we did not use
336 a large number of founder genotypes. Rather, we restricted the variation to only two different
337 founder genotypes, as also done in experimental evolution with yeast (e.g. Kosheleva &
338 Desai, 2018). The advantage of this experimental design is that all selection targets have the
339 same starting frequency and a more parallel selection response is expected because polygenic
340 traits have fewer selection targets contributing to a new trait optimum (Barghi & Schlötterer,
341 2020, Höllinger et al., 2019).

342

343 We found pronounced selection responses, which fall into two classes – temperature-specific
344 (change in the direction of the allele frequency change) and laboratory adaptation (parallel
345 selection with similar intensities in the two temperature regimes). In addition, 28% of the
346 genomic windows responded in the same direction, but to a different extent, indicating the
347 joint contribution of both environmental factors.

348

349 Temperature-specific adaptation implies that temperature uncovers fitness differences
350 between genotypes. 14% of the genomic windows responded only at 29°C and 8% were
351 private to 18°C, a pattern consistent with conditional neutrality (Schnee & Thompson, 1984).
352 The selection responses private to 18°C indicate that even at an assumed benign temperature,
353 selection occurs - highlighting the challenge of performing control experiments for
354 temperature adaptation. In 10% of the windows, different alleles were favored at each
355 temperature regime. Such temperature-specific selection responses provide an excellent
356 starting point for the identification of causative variants driving temperature adaptation.
357 Nevertheless, the broad genomic regions responding to selection preclude the distinction
358 between causative variants and neutral hitchhikers (Franssen et al., 2015, Nuzhdin & Turner,
359 2013, Tobler et al., 2014) after 20 generations. Additional generations as well as a larger
360 population size could facilitate the uncoupling of the causative variants from the passenger
361 alleles and improve resolution (Langmüller et al., 2021, Phillips et al., 2020).

362

363 Laboratory adaptation is an umbrella term for stressors that can be attributed to the
364 experimental laboratory setup (Matos et al., 2002, Matos et al., 2000, Simoes et al., 2007).

365 Examples of such factors are adaptation to high larval density / early fertility (Hoffmann et
366 al., 2001, Mueller, 1997), sexual selection (Fricke & Arnqvist, 2007) and adaptation to the
367 laboratory food (Bochdanovits & de Jong, 2003, Lai & Schlötterer, 2021, Vijendravarma et
368 al., 2012). With about one third of the genomic windows showing a parallel selection
369 response at both temperature regimes, laboratory adaptation was an important factor in this
370 study.

371

372 Of particular interest is the significant difference in allele frequency change for 28% of the
373 windows with parallel selection signatures, because it suggests an interaction between
374 laboratory adaptation which drives the parallel response and temperature which modulates
375 the strength of selection. Adaptation to larval density may be an excellent candidate driving
376 this laboratory adaptation because we maintained the populations at high, but not well-
377 controlled, larval densities. Higher larval density does not only increase competition
378 (Mueller, 1988) but also interactions between larval density and heat stress survival (Arias et
379 al., 2012) as well as body size (James & Partridge, 1998) and locomotor activity (Schou et
380 al., 2013) were previously detected.

381

382 Because laboratory experiments cannot fully match natural conditions, it is not possible to
383 conduct these experiments in a full factorial design - we can only modulate the temperature
384 under laboratory conditions, but not in the natural environment. This implies that our design
385 cannot distinguish between additive and interaction effects of temperature *per se* and
386 laboratory adaptation. Selection responses driven by multiple selection factors can be
387 problematic for the interpretation of the selection signatures. Experiments contrasting
388 ancestral and evolved populations cannot distinguish between laboratory adaptation and
389 selection driven by the focal factor (temperature in our study). When populations are
390 compared, which evolved towards two different focal environments (here, different
391 temperatures), the influence of laboratory adaptation is less severe: selection responses with
392 the same direction and magnitude will not be seen in this contrast. Parallel selection
393 responses that differ in magnitude will be interpreted as a pure temperature effect. An
394 experimental design, which does not only include populations evolved in two different focal
395 conditions (*i.e.* different temperatures), but also the ancestral founder populations, similar to
396 this study, can distinguish between laboratory adaptation, adaptation to focal factor and
397 combined effects. Nevertheless, if laboratory adaptation interacts with temperature (or other
398 focal factors), it is possible that small differences in laboratory environment (e.g. food recipe)

399 may result in a different selection response. We propose that this may contribute to the
400 difficulties to replicate temperature-associated effects.

401

402 An alternative explanation for the shared directional selection response at 18°C and 29°C is
403 the presence of genotype-specific deleterious mutations. Since the two parental strains were
404 maintained at small effective population size for many generations, it is conceivable that the
405 influence of deleterious alleles is more pronounced than for genotypes freshly collected from
406 wild. The selection signatures may thus also reflect fitness disadvantage of deleterious
407 combinations of parental alleles that can be detected when the two competing genotypes are
408 maintained at large population size. The observation that temperature stress can both increase
409 and decrease the selection response is consistent with previous studies on deleterious
410 mutations (Agrawal & Whitlock, 2010). While frequently the selection response was found to
411 be positively correlated with stress level (e.g. Shabalina et al., 1997, Chu & Zhang, 2021),
412 also the opposite pattern has been observed (Elena & de Visser, 2003, Kishony & Leibler,
413 2003). Since we cannot determine how much of the parallel selection response can be
414 attributed to deleterious mutations, it is important to realize that we probably overestimate the
415 influence of laboratory adaptation.

416

417 One important limitation of this study is the pronounced linkage disequilibrium in the
418 founder population. During 20 generations, too few recombination events occur to break the
419 association between neighboring windows. This is indicated by autocorrelation of allele
420 frequency up to 8Mb. Thus, even though our analyses are based on windows of 250
421 neighboring SNPs, neighboring windows are still highly correlated. This implies that
422 neighboring windows may exhibit a selection response due to linkage, rather than due to an
423 independent selection target. Different selection intensities will also determine the size of the
424 genomic region affected, leading to a complex interplay between linkage, direction of
425 selection and selection strength. Therefore, the number of windows showing a given selection
426 response may not be an accurate reflection of the number of selection targets with a given
427 behavior. Nevertheless, the prevailing effects of temperature and laboratory adaptation on
428 fitness should be robust against the effects of linkage.

429

430 We conclude that E&R experiments starting with strongly reduced genetic variation can
431 provide a powerful approach to study adaptation, in particular when experiments are
432 performed on an environmental gradient (*i.e.* multiple different temperatures). This setup

433 provides new insights into adaptation, in particular when the E&R experiments are performed
434 for more than only 20 generations, since additional generations provide more opportunity for
435 recombination and the selection targets can be characterized with a higher resolution.
436

437 **DATA AND SCRIPTS AVAILABILITY**

438 The sequencing data underlying this article are available in the European Nucleotide Archive
439 (ENA) at <https://www.ebi.ac.uk/ena/browser/view/>, and can be accessed with PRJEB46805
440 from Burny et al, 2021 (29°C) and XXX for new data (18°C) specifically generated for this
441 study. All scripts (command lines and data analysis) and final files underlying this article are
442 available in Zenodo at <https://dx.doi.org/10.5281/zenodo.5614819>. Additional table and
443 figures underlying this article are available in its online supplementary material.

444

445 **ACKNOWLEDGEMENTS**

446 We thank Sheng-Kai Hsu and Wei-Yun Lai for sharing code for gene ID conversion and for
447 the transcription factor binding site analysis and Anna Maria Langmüller for fruitful
448 discussions. Illumina sequencing of the samples was performed at the VBCF NGS Unit
449 (www.viennabiocenter.org/facilities). This work was supported by the Austrian Science
450 Funds (FWF; grant numbers P29133, W1225). The authors declare no conflicts of interest.

451

452 **REFERENCES**

453

454 Agrawal, A. F. & Whitlock, M. C. (2010.) Environmental duress and epistasis: how does
455 stress affect the strength of selection on new mutations? *Trends Ecol Evol* 25: 450-8.
456 Aibar, S., Gonzalez-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H.,
457 Hulselmans, G., Rambow, F., Marine, J. C., Geurts, P., Aerts, J., van den Oord, J.,
458 Atak, Z. K., Wouters, J. & Aerts, S. (2017.) SCENIC: single-cell regulatory network
459 inference and clustering. *Nat Methods* 14: 1083-1086.
460 Arias, L. N., Sambucetti, P., Scannapieco, A. C., Loeschke, V. & Norry, F. M. (2012.)
461 Survival of heat stress with and without heat hardening in *Drosophila melanogaster*:
462 interactions with larval density. *Journal of Experimental Biology* 215: 2220-2225.
463 Baldwin-Brown, J. G., Long, A. D. & Thornton, K. R. (2014.) The power to detect
464 quantitative trait Loci using resequenced, experimentally evolved populations of
465 diploid, sexual organisms. *Mol Biol Evol* 31: 1040-55.
466 Barghi, N. & Schlötterer, C. (2020.) Distinct patterns of selective sweep and polygenic
467 adaptation in evolve and re-sequence studies. *Genome Biol Evol*.
468 Barghi, N., Tobler, R., Nolte, V., Jaksic, A. M., Mallard, F., Otte, K. A., Dolezal, M., Taus,
469 T., Kofler, R. & Schlötterer, C. (2019.) Genetic redundancy fuels polygenic
470 adaptation in *Drosophila*. *PLoS Biol* 17: e3000128.
471 Behrman, E. L., Howick, V. M., Kapun, M., Staubach, F., Bergland, A. O., Petrov, D. A.,
472 Lazzaro, B. P. & Schmidt, P. S. (2018.) Rapid seasonal evolution in innate immunity
473 of wild *Drosophila melanogaster*. *Proc Biol Sci* 285.
474 Bergland, A. O., Behrman, E. L., O'Brien, K. R., Schmidt, P. S. & Petrov, D. A. (2014.)
475 Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales
476 in *Drosophila*. *PLoS Genet* 10: e1004775.

477 Bergland, A. O., Tobler, R., Gonzalez, J., Schmidt, P. & Petrov, D. (2016.) Secondary
478 contact and local adaptation contribute to genome-wide patterns of clinal variation in
479 *Drosophila melanogaster*. *Mol Ecol* 25: 1157-74.

480 Bochdanovits, Z. & de Jong, G. (2003.) Experimental evolution in *Drosophila melanogaster*:
481 Interaction of temperature and food quality selection regimes. *Evolution* 57: 1829-
482 1836.

483 Burke, M. K. & Rose, M. R. (2009.) Experimental evolution with *Drosophila*. *Am J Physiol*
484 *Regul Integr Comp Physiol* 296: R1847-54.

485 Burny, C., Nolte, V., Dolezal, M. & Schlötterer, C. (2021.) Highly parallel genomic selection
486 response in replicated *Drosophila melanogaster* populations with reduced genetic
487 variation. *Genom Biol Evol*: evab239.

488 Calfee, E., Agra, M. N., Palacio, M. A., Ramirez, S. R. & Coop, G. (2020.) Selection and
489 hybridization shaped the rapid spread of African honey bee ancestry in the Americas.
490 *PLoS Genet* 16: e1009038.

491 Chen, J., Nolte, V. & Schlötterer, C. (2015.) Temperature stress mediates decanalization and
492 dominance of gene expression in *Drosophila melanogaster*. *PLoS Genet* 11:
493 e1004883.

494 Chu, X. L. & Zhang, Q. G. (2021.) Consequences of mutation accumulation for growth
495 performance are more likely to be resource-dependent at higher temperatures. *BMC*
496 *Ecol Evol* 21: 109.

497 Comeron, J. M., Ratnappan, R. & Bailin, S. (2012.) The many landscapes of recombination
498 in *Drosophila melanogaster*. *PLoS Genet* 8: e1002905.

499 Coop, G., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. (2010.) Using Environmental
500 Correlations to Identify Loci Underlying Local Adaptation. *Genetics* 185: 1411-1423.

501 Elena, S. F. & de Visser, J. A. (2003.) Environmental stress and the effects of mutation. *J*
502 *Biol* 2: 12.

503 Fabian, D. K., Kapun, M., Nolte, V., Kofler, R., Schmidt, P. S., Schlötterer, C. & Flatt, T.
504 (2012.) Genome-wide patterns of latitudinal differentiation among populations of
505 *Drosophila melanogaster* from North America. *Mol Ecol* 21: 4748-69.

506 Franssen, S. U., Barton, N. H. & Schlötterer, C. (2017.) Reconstruction of haplotype-blocks
507 selected during experimental evolution. *Mol Biol Evol* 118: 42-51.

508 Franssen, S. U., Nolte, V., Tobler, R. & Schlötterer, C. (2015.) Patterns of linkage
509 disequilibrium and long range hitchhiking in evolving experimental *Drosophila*
510 *melanogaster* populations. *Mol Biol Evol* 32: 495-509.

511 Fricke, C. & Arnqvist, G. (2007.) Rapid adaptation to a novel host in a seed beetle
512 (*Callosobruchus maculatus*): The role of sexual selection. *Evolution* 61: 440-454.

513 Garland, T. & Rose, M. R. 2009. *Experimental Evolution: concepts, methods, and*
514 *applications of selection experiments*. University of California Press, Berkeley.

515 Gerritsma, S., Jalvingh, K. M., van de Beld, C., Beerda, J., van de Zande, L., Vrieling, K. &
516 Wertheim, B. (2019.) Natural and Artificial Selection for Parasitoid Resistance in
517 *Drosophila melanogaster* Leave Different Genetic Signatures. *Front Genet* 10: 479.

518 Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. (2021.) Competitive history
519 shapes rapid evolution in a seasonal climate. *Proc Natl Acad Sci U S A* 118.

520 Griffin, P. C., Hangartner, S. B., Fournier-Level, A. & Hoffmann, A. A. (2017.) Genomic
521 trajectories to desiccation resistance: convergence and divergence among replicate
522 selected *Drosophila* lines. *Genetics* 205: 871-890.

523 Günther, T. & Coop, G. (2013.) Robust identification of local adaptation from allele
524 frequencies. *Genetics* 195: 205-20.

525 Hardy, C. M., Burke, M. K., Everett, L. J., Han, M. V., Lantz, K. M. & Gibbs, A. G. (2018.)
526 Genome-Wide Analysis of Starvation-Selected *Drosophila melanogaster*-A Genetic
527 Model of Obesity. *Mol Biol Evol* 35: 50-65.

528 Hill, W. G. & Robertson, A. (1966.) The effect of linkage on limits to artificial selection.
529 *Genet Res* 8: 269-94.

530 Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., Poss,
531 M. L., Reed, L. K., Storfer, A. & Whitlock, M. C. (2016.) Finding the Genomic Basis
532 of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. *Am Nat* 188:
533 379-97.

534 Hoffmann, A. A. (2010.) Physiological climatic limits in *Drosophila*: patterns and
535 implications. *Journal of Experimental Biology* 213: 870-880.

536 Hoffmann, A. A., Hallas, R., Sinclair, C. & Partridge, L. (2001.) Rapid loss of stress
537 resistance in *Drosophila melanogaster* under adaptation to laboratory culture.
538 *Evolution* 55: 436-8.

539 Höllinger, I., Pennings, P. S. & Hermisson, J. (2019.) Polygenic adaptation: From sweeps to
540 subtle frequency shifts. *PLoS Genet* 15: e1008035.

541 Hsu, S. K., Belmouaden, C., Nolte, V. & Schlötterer, C. (2021.) Parallel gene expression
542 evolution in natural and laboratory evolved populations. *Mol Ecol* 30: 884-894.

543 Jaksic, A. M. & Schlötterer, C. (2016.) The interplay of temperature and genotype on patterns
544 of alternative splicing in *Drosophila melanogaster*. *Genetics* 204: 315-25.

545 James, A. C. & Partridge, L. (1998.) Geographic variation in competitive ability in
546 *Drosophila melanogaster*. *American Naturalist* 151: 530-537.

547 Johri, P., Charlesworth, B. & Jensen, J. D. (2020.) Toward an Evolutionarily Appropriate
548 Null Model: Jointly Inferring Demography and Purifying Selection. *Genetics* 215:
549 173-192.

550 Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I. & Whitlock, M. C. (2012.)
551 Experimental evolution. *Trends Ecol Evol* 27: 547-60.

552 Kessner, D. & Novembre, J. (2015.) Power analysis of artificial selection experiments using
553 efficient whole genome simulation of quantitative traits. *Genetics* 199: 991-1005.

554 Kishony, R. & Leibler, S. (2003.) Environmental stresses can alleviate the average
555 deleterious effect of mutations. *J Biol* 2: 14.

556 Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., Nolte, V., Futschik, A.,
557 Kosiol, C. & Schlötterer, C. (2011.) PoPoolation: a toolbox for population genetic
558 analysis of next generation sequencing data from pooled individuals. *PLoS One* 6:
559 e15925.

560 Kofler, R. & Schlötterer, C. (2014.) A guide for the design of evolve and resequencing
561 studies. *Mol Biol Evol* 31: 474-83.

562 Kolaczkowski, B., Kern, A. D., Holloway, A. K. & Begun, D. J. (2011.) Genomic
563 differentiation between temperate and tropical Australian populations of *Drosophila*
564 *melanogaster*. *Genetics* 187: 245-260.

565 Kosheleva, K. & Desai, M. M. (2018.) Recombination Alters the Dynamics of Adaptation on
566 Standing Variation in Laboratory Yeast Populations. *Mol Biol Evol* 35: 180-201.

567 Lai, W.-Y. & Schlötterer, C. (2021.) Evolution of gene expression variance during adaptation
568 to high temperature in *Drosophila*. *bioRxiv*.

569 Langmüller, A. M., Dolezal, M. & Schlötterer, C. (2021.) Fine mapping without
570 phenotyping: Identification of selection targets in secondary Evolve and Resequence
571 experiments. *Genom Biol Evol* 13(8):evab154.

572 Laruson, A. J., Yeaman, S. & Lotterhos, K. E. (2020.) The Importance of Genetic
573 Redundancy in Evolution. *Trends Ecol Evol*.

574 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
575 G., Durbin, R. & Genome Project Data Processing, S. (2009.) The Sequence
576 Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078-9.

577 Lohmueller, K. E. (2014.) The impact of population demography and selection on the genetic
578 architecture of complex traits. *PLoS Genet* 10: e1004379.

579 Long, A., Liti, G., Luptak, A. & Tenaillon, O. (2015.) Elucidating the molecular architecture
580 of adaptation via evolve and resequence experiments. *Nature Reviews Genetics* 16:
581 567-582.

582 Lorant, A., Ross-Ibarra, J. & Tenaillon, M. (2020.) Genomics of Long- and Short-Term
583 Adaptation in Maize and Teosintes. *Methods Mol Biol* 2090: 289-311.

584 Lotterhos, K. E. & Whitlock, M. C. (2015.) The relative power of genome scans to detect
585 local adaptation depends on sampling design and statistical method. *Mol Ecol* 24:
586 1031-46.

587 MacColl, A. D. (2011.) The ecological causes of evolution. *Trends Ecol Evol* 26: 514-22.

588 Matos, M., Avelar, T. & Rose, M. R. (2002.) Variation in the rate of convergent evolution:
589 adaptation to a laboratory environment in *Drosophila subobscura*. *Journal of*
590 *Evolutionary Biology* 15: 673-682.

591 Matos, M., Rose, M. R., Pite, M. T. R., Rego, C. & Avelar, T. (2000.) Adaptation to the
592 laboratory environment in *Drosophila subobscura*. *Journal of Evolutionary Biology*
593 13: 9-19.

594 Miller, S. A., Dykes, D. D. & Polesky, H. F. (1988.) A simple salting out procedure for
595 extracting DNA from human nucleated cells. *Nucleic Acids Res* 16: 1215.

596 Mittler, R. (2006.) Abiotic stress, the field environment and stress combination. *Trends Plant*
597 *Sci* 11: 15-9.

598 Mueller, L. D. (1988.) Evolution of Competitive Ability in *Drosophila* by Density-Dependent
599 Natural-Selection. *Proceedings of the National Academy of Sciences of the United*
600 *States of America* 85: 4383-4386.

601 Mueller, L. D. (1997.) Theoretical and empirical examination of density-dependent selection.
602 *Annual Review of Ecology and Systematics* 28: 269-288.

603 Nuzhdin, S. V. & Turner, T. L. (2013.) Promises and limitations of hitchhiking mapping.
604 *Curr Opin Genet Dev* 23: 694-9.

605 Otte, K. A. & Schlötterer, C. (2021.) Detecting selected haplotype blocks in evolve and
606 resequence experiments. *Mol Ecol Resour* 21: 93-109.

607 Pavlidis, P., Jensen, J. D. & Stephan, W. (2010.) Searching for footprints of positive selection
608 in whole-genome SNP data from nonequilibrium populations. *Genetics* 185: 907-22.

609 Phillips, M. A., Kutch, I. C., Long, A. D. & Burke, M. K. (2020.) Increased time sampling in
610 an evolve-and-resequence experiment with outcrossing *Saccharomyces cerevisiae*
611 reveals multiple paths of adaptive change. *Mol Ecol* 29: 4898-4912.

612 Rako, L., Blacket, M. J., McKechnie, S. W. & Hoffmann, A. A. (2007.) Candidate genes and
613 thermal phenotypes: identifying ecologically important genetic variation for
614 thermotolerance in the Australian *Drosophila melanogaster* cline. *Mol Ecol* 16: 2948-
615 57.

616 Roze, D. & Barton, N. H. (2006.) The Hill-Robertson effect and the evolution of
617 recombination. *Genetics* 173: 1793-811.

618 Sachdeva, H. & Barton, N. H. (2018.) Replicability of Introgression Under Linked, Polygenic
619 Selection. *Genetics* 210: 1411-1427.

620 Savolainen, O., Lascoux, M. & Merila, J. (2013.) Ecological genomics of local adaptation.
621 *Nat Rev Genet* 14: 807-20.

622 Schlötterer, C., Kofler, R., Versace, E., Tobler, R. & Franssen, S. U. (2015.) Combining
623 experimental evolution with next-generation sequencing: a powerful tool to study
624 adaptation from standing genetic variation. *Heredity (Edinb)* 114: 431-40.

625 Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. (2014.) Sequencing pools of individuals -
626 mining genome-wide polymorphism data without big funding. *Nat Rev Genet* 15:
627 749-763.

628 Schnee, F. B. & Thompson, J. N., Jr. (1984.) Conditional Neutrality of Polygene Effects.
629 *Evolution* 38: 42-46.

630 Schou, T. M., Faurby, S., Kjaersgaard, A., Pertoldi, C., Loeschke, V., Hald, B. &
631 Bahrndorff, S. (2013.) Temperature and Population Density Effects on Locomotor
632 Activity of *Musca domestica* (Diptera: Muscidae). *Environmental Entomology* 42:
633 1322-1328.

634 Shabalina, S. A., Yampolsky, L. & Kondrashov, A. S. (1997.) Rapid decline of fitness in
635 panmictic populations of *Drosophila melanogaster* maintained under relaxed natural
636 selection. *Proc Natl Acad Sci U S A* 94: 13034-9.

637 Simoes, P., Rose, M. R., Duarte, A., Goncalves, R. & Matos, M. (2007.) Evolutionary
638 domestication in *Drosophila subobscura*. *J Evol Biol* 20: 758-66.

639 Taus, T., Futschick, A. & Schlötterer, C. (2017.) Quantifying selection with Pool-Seq time
640 series data. *Mol Biol Evol* 34: 3023-3034.

641 Thornton, K. R. & Jensen, J. D. (2007.) Controlling the false-positive rate in multilocus
642 genome scans for selection. *Genetics* 175: 737-50.

643 Tiffin, P. & Ross-Ibarra, J. (2014.) Advances and limits of using population genetics to
644 understand local adaptation. *Trends in Ecology & Evolution* 29: 673-680.

645 Tobler, R., Franssen, S. U., Kofler, R., Orozco-Terwengel, P., Nolte, V., Hermisson, J. &
646 Schlötterer, C. (2014.) Massive habitat-specific genomic response in *D. melanogaster*
647 populations during experimental evolution in hot and cold environments. *Mol Biol
648 Evol* 31: 364-75.

649 Turner, T. L. & Miller, P. M. (2012.) Investigating natural variation in *Drosophila* courtship
650 song by the evolve and resequence approach. *Genetics* 191: 633-42.

651 Turner, T. L., Stewart, A. D., Fields, A. T., Rice, W. R. & Tarone, A. M. (2011.) Population-
652 based resequencing of experimentally evolved populations reveals the genetic basis of
653 body size variation in *Drosophila melanogaster*. *PLoS Genet* 7: e1001336.

654 Vijendravarma, R. K., Narasimha, S. & Kawecki, T. J. (2012.) Adaptation to Abundant Low
655 Quality Food Improves the Ability to Compete for Limited Rich Food in *Drosophila*
656 *melanogaster*. *Plos One* 7.

657 Vlachos, C. & Kofler, R. (2018.) MimicrEE2: Genome-wide forward simulations of Evolve
658 and Resequencing studies. *PLoS Comput Biol* 14: e1006413.

659 Vlachos, C. & Kofler, R. (2019.) Optimizing the power to identify the genetic basis of
660 complex traits with Evolve and Resequencing studies. *Mol Biol Evol*.

661 Whitlock, M. C. (2015.) Modern Approaches to Local Adaptation. *Am Nat* 186 Suppl 1: S1-
662 4.

663 Wickham, H. 2016. *ggplot2 Elegant Graphics for Data Analysis*. Springer Verlag, New
664 York.

665 Yeaman, S. (2015.) Local Adaptation by Alleles of Small Effect. *Am Nat* 186 Suppl 1: S74-
666 89.

667