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Abstract

Integrated analysis of multi-omics data allows the study of how different molecular views in the genome
interact to regulate cellular processes; however, with a few exceptions, applying multiple sequencing
assays on the same single cell is not possible. While recent unsupervised algorithms align single-cell
multi-omic datasets, these methods have been primarily benchmarked on co-assay experiments rather
than the more common single-cell experiments taken from separately sampled cell populations. There-
fore, most existing methods perform subpar alignments on such datasets. Here, we improve our previous
work Single Cell alignment using Optimal Transport (SCOT) by using unbalanced optimal transport to
handle disproportionate cell-type representation and differing sample sizes across single-cell measure-
ments. We show that our proposed method, SCOTv2, consistently yields quality alignments on five
real-world single-cell datasets with varying cell-type proportions and is computationally tractable. Ad-
ditionally, we extend SCOTv2 to integrate multiple (M ≥ 2) single-cell measurements and present a
self-tuning heuristic process to select hyperparameters in the absence of any orthogonal correspondence
information.
Available at: http://rsinghlab.github.io/SCOT.
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1 Introduction
The ability to measure multiple aspects of the single-cell offers the opportunity to gain critical biological
insights about cell development and diseases. However, many existing single-cell sequencing technolo-
gies cannot be simultaneously applied to the same cell, resulting in multi-omics datasets sampled from
distinct cell populations. While these measurements can be analyzed separately, integrating them prior to
analysis can help explain how different molecular views interact and regulate cellular functions. Unfortu-
nately, single-cell assays that measure different molecular aspects in separately sampled cell populations
lack direct sample–sample and feature–feature correspondences across these measurements. This lack of
correspondences makes it hard to use integration methods that require some shared information to perform
single-cell alignment [1]. Therefore, unsupervised single-cell multi-omics data alignment methods are cru-
cial for integrative single-cell data analysis.

Several unsupervised methods [1–4], including our previous work, SCOT [5], have shown state-of-
the-art performance for integrating different single-cell measurement domains. Since these methods were
mainly evaluated on real-world co-assay datasets (with 1–1 correspondence between cells across domains),
our understanding of their performance on datasets obtained from experiments that are not co-assays is lim-
ited. Such experiments perform separate sampling to measure distinct genomic features, like gene expres-
sion and 3D chromatin conformation. Therefore, their datasets can consist of varying proportions of cell-
types across different measurements, creating cell-type imbalance and lacking 1–1 cell correspondences.
We hypothesize that alignment methods that perform well on co-assay datasets may not effectively handle
the differences in cell-type proportions of the commonly available non-co-assay datasets. Indeed, a recent
method, Pamona [6], extended our SCOT framework and used partial Gromov-Wasserstein (GW) optimal
transport to allow for missing or underrepresented cell-types in one domain when performing alignment.
The paper showed that current integration methods [1, 2, 4, 5] tend to perform worse under such settings.

We present SCOTv2, a novel extension of SCOT that can effectively align both co-assay and non-co-
assay datasets using a single framework. It uses unbalanced GW optimal transport to align datasets with dis-
proportionate cell-types while only introducing one additional hyperparameter. This unbalanced framework
relaxes the constraint that each point must be mapped with its original mass during the optimal transport.
Specifically, an underrepresented cell-type in one domain can be transported with more mass to match the
proportion of that cell-type in the other domain and vice-versa. The SCOTv2 framework is summarized in
Figure 1. We demonstrate that SCOTv2 aligns datasets with imbalance in cell-type representations better
than state-of-the-art baselines and computationally scales as well as the fastest methods. Furthermore, we
extend SCOTv2 to integrate single-cell datasets with more than two measurements, making it a multi-omics
alignment tool. We perform alignments of five real-world single-cell datasets, with both simulated and nat-
ural cell-type imbalance as well as two and more than two domains (M ≥ 2), demonstrating SCOTv2’s
applicability across a wide range of scenarios. Finally, similar to the previous version, we present a self-
tuning heuristic process to select hyperparameters for SCOTv2 without any corresponding information like
cell-type annotations or matching cells or features in truly unsupervised settings.

2 Method
Optimal transport finds the most cost-effective way to move data points from one domain to another. One
can imagine it as the problem of moving a pile of sand to fill in a hole through the least amount of work. Our
previous framework SCOT [5] uses Gromov-Wasserstein optimal transport, which preserves local geometry
when moving data points from one domain to another. The output of SCOT is a matrix of probabilities that
represent how likely it is that data points from one modality correspond to data points in the other.

Here, we reintroduce the SCOT formulation to integrate M domains (or single-cell measurements)
Xm = (xm1 , xm2 , . . . xmnm

) ∈ Rdm for m = 1, . . .M with nm data points (or cells) each. For each dataset,
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Figure 1: Overview of SCOTv2 on scNMT-seq dataset [7], which contains unbalanced cell-type represen-
tation across three domains - RNA expression, chromatin accessibility, and DNA methylation. SCOTv2 se-
lects an anchor domain (denoted with *) and aligns other measurements to it. First, it computes intra-domain
distances matrices Dm for m = 1, 2, 3, which are used to solve for correspondence matrices between the
anchor and other domains. The circle sizes in the matrices depict the magnitude of the correspondence
probabilities or how much mass to transport. Unbalanced GW relaxes the mass conservation constraint, so
the transport map does not need to move each point with its original mass. Finally, it either co-embeds the
domains into a common space or uses barycentric projections to project them onto the anchor domain.

we define a marginal distribution pm, which can be written as an empirical distribution over the data points:

pm =

nm∑
i=1

pmi δxi . (1)

Here, δxi is the Dirac measure. For SCOT, we choose these distributions to be uniform over the data.
Gromov-Wasserstein optimal transport performs the transport operation by comparing distances be-

tween samples rather than directly comparing the samples themselves [8]. Therefore, for each dataset, we
compute the intra-domain distance matrix Dm. Next, we construct k-NN graphs based on correlations be-
tween data points and use Dijkstra’s algorithm to compute the shortest path distance on the graph between
each pair of nodes. Finally, we connect all unconnected nodes by the maximum finite distance in the graph
and set Dm to be the matrix resulting from normalizing the distances by this maximum.

For two datasets and a given cost function L : R × R → R, we compute the fourth-order tensor
L ∈ Rnx×nx×ny×ny , where Lijkl = L(D1

ik, D
2
jl). Intuitively, L quantifies how transporting a pair of points

x1i , x
1
k onto another pair across domains, x2j , x

2
l , distorts the original intra-domain distances and helps to

preserve local geometry. Then, the discrete Gromov-Wasserstein problem between p1 and p2 is,

GW (p1, p2) = min
Γ∈Π(p1,p2)

∑
i,j,k,l

LijklΓijΓkl, (2)

where Γ is a coupling matrix from the set:

Π(p1, p2) = {Γ ∈ Rn1×n2
+ : Γ1n2 = p1, Γ

T1n1 = p2}. (3)

One of the advantages of using optimal transport is the probabilistic interpretation of the resulting coupling
matrix Γ, where the entries of the normalized row 1

pi
Γi are the probabilities that the fixed data point xi

corresponds to each yj . Each entry Γij describes how much of the mass of xi should be mapped to yj .
To make this problem more computationally tractable, we solve the entropically regularized version:

GWϵ(p
1, p2) = min

Γ∈Π(p1,p2)
⟨L(D1, D2)⊗ Γ,Γ⟩ − ϵH(Γ). (4)
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where ϵ > 0 and H(Γ) is the Shannon entropy defined as H(Γ) =
∑nx

i=1

∑ny

j=1 Γij log Γij . Larger values
of ϵ make the problem more convex but also lead to a denser coupling matrix, meaning there are more
correspondences between samples. In SCOT, we use the cost function L = L2.

2.1 Unbalanced Optimal Transport of SCOTv2

Our proposed solution to align datasets with different numbers of samples or proportions of cell-types is to
use unbalanced optimal transport, which adds divergence terms to allow for mass variations in the marginals
[9, 10]. We follow Séjourné et al [10], and use the Kullback-Leibler divergence ,

KL(p||q) =
∑
x

p(x) log

(
p(x)

q(x)

)
, (5)

to measure the difference between the marginals of the coupling Γ and the input marginals p1 and p2. Thus,
we solve the unbalanced GW problem:

GWϵ,ρ(p
1, p2) = min

Γ≥0
⟨L(D1, D2)⊗ Γ,Γ⟩ − ϵH(Γ) + ρKL(Γ1n2 ||p1) + ρKL(ΓT1n1 ||p2), (6)

where ρ > 0 is a hyperparameter that controls the marginal relaxation. When ρ is large, the marginals of Γ
should be close to p1 and p2, and when ρ is small, the marginals of Γ may differ more, allowing each point
to transport with more or less mass than it originally had. See Supplementary Algorithm 2 for details.

2.2 Extending SCOTv2 for Multi-Domain Alignment
To align more than two datasets (M > 2), we use one domain as an anchor to align the other domains. The
anchor should be the domain with the clearest biological structures, for example, a dataset with the best-
defined cell-type clusters. We propose selecting the anchor via the kNN graph used to compute Dm. For
every node xmi in the graph, we calculate the average of the k neighboring node values Nk(x

m
i ). Next, we

measure the difference between this average and the true value of the node. This difference reflects how well
the averaged neighborhood represents the given node. We then average these differences across the graph
and select the domain with the lowest averaged difference as the anchor. Intuitively, we select the anchor
whose kNN graph best reflects its dataset. Suppose X1 is the anchor dataset. Then, for m = 2, 3, . . . , N ,
we compute the coupling matrix Γm according to Equation 4.

To have all of the datasets aligned in the same domain, we can either use barycentric projection to project
each Xm for m = 2, 3, . . . ,M onto X1 or find a shared embedding space as described in Section 2.3. In
the first iteration of SCOT, we used a barycentric projection to align and project one dataset onto the other.
Due to the marginal relaxation, we now search for a non-negative n1 × nm dimensional matrix Γ instead of
Γ ∈ Π(p1, pm). Because of this change, the adjusted barycentric projection is:

xmi 7→
∑n1

j=1 Γ
m
ijx

1
j∑n1

j=1 Γ
m
ij

. (7)

2.3 Embedding with the Coupling Matrix

Other methods such as MMD-MA and UnionCom align datasets by embedding them into a common latent
space of dimension p ≤ minm=1,...,M dm. Here dm represents the original dimension size of measurement
(or domain) m. Embedding the datasets in a new space often leads to a better alignment as it introduces
the additional benefits of dimension reduction, allowing more meaningful structures in the datasets such
as cell-types to be more prevalent. Due to these benefits, we also enable the embedding option through a
modification of the t-SNE method proposed by UnionCom [1]. For each domain m, we compute Pm, an
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nm × nm cell-to-cell transition matrix; each entry Pm
j|i is the conditional probability that a data point xmi

would pick xmj as its neighbor when chosen according a Gaussian distribution centered at xmi . Similarly, for
the lower-dimensional embeddings, we compute a cell-to-cell probability matrix Qm′

through a Student-t
distribution. The full descriptions of Pm and Qm′

are given in Supplementary Section S1.
Then, to jointly embed all domains through the anchor domain X1, the optimization problem is:

min
X1′ ,...,XM′

M∑
m=1

KL(Pm||Qm′
) + β

M∑
m=2

||X1′ −Xm′
(Γm)T ||2F , (8)

where Xm′
is the lower dimensional embedding of Xm, and Γm is the coupling matrix from solving Equa-

tion 6 for m = 2, . . . ,M . These two terms seek to find an embedding that both preserves the local geometry
in the original domain and aligns the domains according to the correspondence found by GW. The intuition
behind the term KL(Pm||Qm′

) is very similar to that of GW; if two points have a high transition probability
in the original space, then they should also have a high transition probability in the latent space. The term
||X1′ −Xm′

(Γm)T ||2F measures how well aligned the new embeddings X1′ and Xm′
are according to the

prescribed coupling matrix Γm. Finally, β > 0 controls the trade-off between preserving the original ge-
ometry with the KL term and enforcing the alignment found with GW. We solve this optimization problem
using gradient descent from UnionCom with a default latent space dimension size p = 3 [1]. The overall
SCOTv2 method is presented as Supplementary Algorithm 3.

2.4 Heuristic process for self-tuning hyperparameters

SCOTv2 has three hyperparameters: (1) k for the number of neighbors to consider in nearest neighbor
graphs, (2) the weight of the entropic regularization term, ϵ, and (3) the coefficient of the mass relaxation
constraint, ρ. The barycentric projection of one domain onto another does not require any hyperparameters.
However, jointly embedding the domains in a latent space requires selecting the dimension p.

Ideally, orthogonal correspondence information such as 1–1 correspondences and cell-type labels can
guide hyperparameter tuning as validation. However, such information is hard to obtain in most cases. First,
no validation data on cell-to-cell correspondences exists for non-co-assay datasets. Second, it is challenging
to infer cell-types for certain sequencing domains such as 3D chromatin conformation. Lastly, the cell-type
annotations may not always agree across single-cell domains.

We provide a heuristic to self-tune hyperparameters in the completely unsupervised setting. We first
choose a k for the neighborhood graphs that yields a high average correlation value between the neighbor-
hood predicted values and measured genomic values of the graph nodes. This step is the same as the one
used to select the anchor domain for multi-omics alignment in Section 2.2. Next, we choose ϵ and ρ values
that minimize the Gromov-Wasserstein distance between the aligned datasets. Algorithm 1 gives the details
of this procedure.
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Algorithm 1: Unsupervised hyperparameter search procedure
Input: Datasets X1, . . . , XM .
// Find k for each domain
for m = 1, . . . ,M do

km = argmax
k∈{10,20,...,150}

1
nm

∑nm
i=1

1
k

∑
xm
j ∈Nk(x

m
i )

corr(xmj , xmi )

// Use km to compute Dm

end
// Use the GW distance to pick ρ and ϵ
for m = 2, . . . ,M do

ϵm, ρm = argminϵ,ρGWϵ,ρ(1n1 ,1nm)

end
Return: km, ϵm, ρm.

3 Experimental Setup
3.1 Datasets
We evaluate SCOTv2 on single-cell datasets with disproportionate cell-types using two schemes. (1) We
subsample different cell-types in co-assay datasets to simulate cell-type representation disparities between
sequencing modalities. (2) We select real-world separately sequenced single-cell multi-omics datasets,
which lack 1–1 cell correspondences and have different cell-type proportions across modalities due to the
sampling procedure. Additionally, we present results on the original co-assay datasets with 1–1 cell corre-
spondence to demonstrate the flexibility of SCOTv2 across balanced and unbalanced single-cell datasets.

3.1.1 Co-assay single-cell datasets with 1–1 cell correspondence
We use three co-assay datasets to validate our model, sequenced by SNARE-seq, scGEM, and scNMT tech-
nologies. SNARE-seq is a two-modality sequencing technology that simultaneously captures the chromatin
accessibility and transcriptional profiles of cells [11]. This dataset contains a total of 1047 cells from four
cell lines: BJ (human fibroblast cells), H1 (human embryonic cells), K562 (human erythroleukemia cells),
and GM12878 (human lymphoblastoid cells) (Gene Expression Omnibus access code: GSE126074). We
follow the same data preprocessing steps outlined by Chen et al. [11]. The scGEM technology is a three-
modality sequencing technology that profiles the genetic sequence, gene expression, and DNA methylation
states in the same cell [12]. The dataset we use is derived from human somatic cell samples undergoing
conversion to induced pluripotent stem cells (Sequence Read Archive accession code SRP077853) [12]. We
access the preprocessed data provided by Welch et al. [13], which only contains the gene expression and
DNA methylation modalities 1. The dataset sequenced by scNMT-seq method [14] contains three modalities
of genomic data: gene expression, DNA methylation, and chromatin accessibility, from mouse gastrulation
samples, going through the Carnegie stages of vertebrate development (Gene Expression Omnibus access
code: GSE109262). We access the preprocessed data through the scripts2 provided by the authors. While
the SNARE-seq and scGEM datasets contain the same number of cells across measurements, scNMT-seq
modalities contain different cell-type proportions after preprocessing due to varying noise levels in measure-
ments. Supplementary Table S1 lists the number of cells belonging to different cell-types in each domain
for scNMT-seq dataset.

1Preprocessed data for the scGEM dataset accessed here: https://github.com/jw156605/MATCHER
2Preprocessing scripts for the scNMT-seq data accessed here: https://github.com/PMBio/scNMT-seq/
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3.1.2 Single-cell datasets with simulated cell-type imbalance.
To test alignment performance sensitivity to different levels and types of cell-type proportion disparities
across modalities, we generate simulation datasets by subsampling SNARE-seq and scGEM co-sequencing
datasets in two ways. (1) We remove a cell-type from one modality. (2) We reduce the proportion of a cell-
type in one modality by subsampling it at 50% and another cell-type in the other modality by subsampling
it at 75%. We simulate this setting to test how the alignment methods will behave when multiple cell-types
have disproportionate representation at different levels (for example, half or quarter percentage of cell-types
missing) across modalities.

For these cases, we uniformly pick at random which cell-type to subsample or remove. Specifically, for
scGEM in simulation case (1), we remove “d16T+” cells in the DNA methylation domain while retaining
the original gene expression domain, and remove the “d24T+” cells in the gene expression domain while
retaining the original DNA methylation domain. For the SNARE-seq dataset, we remove “GM” cells in
the gene expression domain and “K562” in the chromatin accessibility domain. In simulation case (2), we
subsample the “d8” cluster of the scGEM dataset at 75% in the gene expression modality and the “d16T+”
cluster at 50% in the DNA methylation modality. For SNARE-seq, we subsample the “H1” cluster at 75%
and the “K562” cluster at 50% in the gene expression and chromatin accessibility domains, respectively.

3.1.3 Single-cell datasets without 1—1 correspondences
We also align non-co-assay datasets, containing separately sequenced single-cell -omic measurements.
Bonora et al. generated the first dataset we use, “sciOmics” [15]. This dataset consists of sciRNA-seq,
sciATAC-seq, and sciHiC measurements, capturing gene expression, chromatin accessibility, and 3D chro-
mosomal conformation profiles of mouse embryonic stem cells undergoing differentiation. The measure-
ments were taken at five stages: days 0, 3, 7, 11, and as fully differentiated neural progenitor cells (NPCs).
The second non-co-assay dataset, “MEC,” contains gene expression and chromatin accessibility measure-
ments taken using the 10X Chromium scRNA-seq and scATAC-seq technologies on mouse mammary ep-
ithelial cells (MEC). Since each modality consists of separately sampled cell populations, these contain
disparate cell-type proportions across modalities. Supplementary Table S1 lists the number of cells belong-
ing to different cell-types in each domain for sciOmics and MEC datasets.

3.2 Evaluation metrics and baseline methods
Although most of the datasets lack 1–1 cell correspondences, we can evaluate alignment using cell-type
labels through label transfer accuracy (LTA) as in [1, 5, 6]. This metric assesses the clustering of cell-types
after alignment by training a kNN classifier on a training set (50% of the aligned data) and then evaluates
its predictive accuracy on a test dataset (the other 50% of the aligned data). Higher values correspond to
better alignments, indicating that cells that belong to the same cell-type are aligned close together after
integration. We benchmark our method against the current unsupervised single-cell multi-omic alignment
methods, Pamona [6], UnionCom [1], MMD-MA [16], bindSC [3], Seuratv4 [4], and the previous version
of SCOT, which performs alignment without the KL term [5]. Pamona [6], as previously discussed, uses
partial Gromov-Wasserstein (GW) optimal transport to align single-cell datasets. UnionCom [1] performs
unsupervised topological alignment through a two-step procedure that first finds a correspondence between
the domains, considering both global and local geometries with a hyperparameter to control the trade-off
between them, and then embeds them in a new shared space. MMD-MA [16] uses the maximum mean
discrepancy (MMD) measure to align and embed two datasets in a new space. BindSC [3] requires the users
to bring input datasets to the gene expression feature space by constructing a gene activity score matrix for
the epigenomic domains, then finds a correspondence matrix between samples through bi-order canonical
correspondence analysis (bi-CCA), and jointly embeds the domains into a new space. Finally, Seuratv4
[4] also requires gene activity score matrices for epigenomic domains and then identifies correspondence
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Figure 2: Alignment results for simulations and balanced co-assay datasets. A visualizes the barycentric
projection alignment on SNARE-seq and scGEM for the full co-assay datasets, simulations with a missing
cell-type in the epigenomic domain, and subsampled cell-types in both domains. B compares the alignment
performance of SCOTv2 to the benchmarks through LTA. For SCOTvs, Pamona, and UnionCom, we report
results on both embedding into a shared space (solid bars) and the barycentric projection (dotted bars).

anchors via CCA. Based on these anchors, it imputes one genomic domain based from the other domain and
co-embeds them into a shared space using UMAP.

Since bindSC and Seurat v4 require the creation of gene activity score matrices for epigenomic datasets,
they might be more difficult to use with certain sequencing domains. For instance, gene activity scoring is
challenging for 3D chromosomal conformation. Of all the selected baselines, only Pamona and UnionCom
can align more than two domains, so we only use them as baselines for experiments with multiple domains
(M > 2). For each benchmark, we define a hyperparameter grid of similar granularity and perform ex-
tensive tuning (see Supplementary Section S4). We report the alignment results with the best performing
hyperparameter combinations in Section 4.1.
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Figure 3: Alignment results for multi-modal (M > 2) and separately sequenced datasets. A visualizes
the alignment of scNMT-seq, sciOmics, and MEC. All datasets have unequal sample sizes and cell-type
proportions across domains. B benchmarks alignment performance through LTA. As in Figure 2, we report
results both by embedding (solid bars) and barycentric projection (dotted bars) for the methods that allow
for both. For scNMT-seq and sciOmics, which are three-modal datasets, we only demonstrate results for
SCOTv2, Pamona, and UnionCom, which can handle more than two modalities.

4 Results
4.1 SCOTv2 gives high-quality alignments consistently across all single-datasets
We first present the alignment results for real-world co-assay datasets with simulated cell-type imbalance.
Figure 2 (A) visualizes the barycentric projection alignments performed by SCOTv2 plotted as 2D PCA for
SNARE-seq and scGEM datasets, respectively. We use barycentric projection for visualization purposes for
the ease of comparison with the original domains, plotted in Supplementary Figure S1. Here, we integrate
datasets under three different settings described in the previous section: (1) Balanced datasets (or “full
datasets” with no subsampling), (2) Missing cell-type in the epigenomic domains, and (3) Subsampled cells
in both domains (one cell-type at 50% in the epigenomic domains and another cell-type at 75% in the gene
expression domains). We include alignment results on the full datasets with 1–1 sample correspondences to
ensure that SCOTv2 performs well for balanced cases as well.

Qualitatively, we see that SCOTv2 preserves the cell-type annotations after alignment for all three set-
tings. In Figure 2 (B), we report the quantitative performance of SCOTv2 and all the other state-of-the-art
baselines using the Label Transfer Accuracy (LTA) scores. MMD-MA, UnionCom, Seurat, and bindSC
fail to reliably align datasets with disproportionate cell-type representation across modalities. While Pa-
mona tends to yield high-quality alignments for cases with cell-type disproportion, it fails to perform well
on the SNARE-seq balanced dataset as well as its subsampling simulation. We additionally apply Pamona
to randomly downsampled co-assays (Figure S2). We show that while Pamona’s partial optimal transport
framework handles cell-type disproportion better than the balanced optimal transport formulation (demon-
strated by SCOT), SCOTv2 still shows an advantage in all SNARE-seq simulations, as well as the smaller
downsampling schemes (∼ 10%).

Among all methods tested, SCOTv2 consistently gives more high-quality alignments across different
scenarios of cell-type representation. It also demonstrates a ∼ 22% average increase in LTA over the
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SNARE
(full

dataset)

SNARE
(missing
cell-type)

SNARE
(subsam.
dataset)

scGEM
(full

dataset)

scGEM
(missing
cell-type)

scGEM
(subsam.
dataset)

scNMT sciOmics MEC

SCOTv2 0.826 0.653 0.751 0.509 0.521 0.415 0.727 0.537 0.584
SCOT 0.852 0.572 0.588 0.423 0.323 0.314 N/A N/A 0.466
Pamona 0.554 0.423 0.419 0.385 0.414 0.308 0.588 0.329 0.417
MMD-MA 0.523 0.407 0.431 0.360 0.296 0.287 N/A N/A 0.233
UnionCom 0.411 0.406 0.422 0.332 0.315 0.276 0.474 0.306 0.349
bindSC 0.713 0.584 0.475 0.387 0.254 0.262 N/A N/A 0.412
Seurat 0.503 0.477 0.428 0.408 0.377 0.329 N/A N/A 0.387

Table 1: Alignment performance benchmarking in the fully unsupervised setting. We run SCOTv2
and SCOT using their heuristics to approximately self-tune hyperparameters. We use default parameters for
other methods due to a lack of similar procedures for unsupervised self-tuning.

previous version of the algorithm (SCOT) when comparing the barycentric projection results and ∼ 27%
for the embedding results. Supplementary Figure S2 presents similar results (SCOTv2 attains an LTA of
0.786 followed by Pamona at 0.62 on SNAREseq and 0.542 followed by Pamona at 0.538 on scGEM)
for missing cell-types in the other (gene expression) domain, suggesting that our choice of domain with
missing cell-type does not affect the performance comparison results. UnionCom, Pamona, and SCOTv2
allow us to perform both barycentric projections and embed the single-cell domains in a lower-dimensional
space. Overall, we observe that embedding yields higher LTA values than barycentric projection. Since
the barycentric projection projects one domain onto another, the separation of the domain being projected
onto (or anchor domain) limits the clustering separation after alignment. In contrast, the embedding utilizes
t-SNE to enhance cell-type separation, allowing for better-separated clusters after alignment.

Next, we report the alignment performance of SCOTv2 on single-cell datasets with disparities in cell-
type representation due to sampling during experiments. We include scNMT, a co-assay with varying levels
of cells across domains due to quality control procedures, along with sciOmics and MEC for this experiment.
Note that scNMT and sciOmics have three different modalities, and hence, we can only report the baselines
for methods that can align datasets with M > 2. Figure 3(A) presents the qualitative alignment results for
SCOTv2 with PCA. SCOTv2 performs well on all three datasets, including the ones with three modalities.
The LTA scores in Figure 3(B) demonstrate that SCOTv2 consistently yields the best alignments on the
three real-world datasets. These results highlight its ability to reliably integrate separately sampled with
disproportionate cell-type representation and multiple (M > 2) modalities simultaneously.

4.2 Hyperparameter self-tuning aligns well without depending on orthogonal correspon-
dence information

The benchmarking results above present the alignment performance of each algorithm at its best hyperpa-
rameter setting; however, users may not have 1—1 correspondences to validate alignments, for the purpose
of hyperparameter selection, in real-world applications. While users may have access to cell-type labels,
inferring cell-types is highly difficult in specific modalities of single-cell sequencing, such as 3D chromatin
conformation. Additionally, different sequencing modalities might disagree on cell-type clustering (as is of-
ten the case with scRNA-seq and scATAC-seq datasets). In these situations, users might not have sufficient
validation data for tuning hyperparameters.

We design a heuristic process (described in Section 2.4), as done previously for SCOT, that allows
SCOTv2 to select hyperparameters in a completely unsupervised manner. Other alignment methods do not
provide an unsupervised hyperparameter tuning procedure. Therefore, without validation data, a user would
have to use the default parameters. In Table 1, we compare alignment performance for our heuristic against
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the default parameters of other methods. While our heuristic does not always yield the optimal hyperparam-
eter combination, it does give more favorable results over the default settings of the other methods. Thus,
we recommend using it in cases that lack orthogonal information for hyperparameter tuning.

4.3 SCOTv2 scales well with increasing number of samples

Figure 4: Runtimes for SCOTv2, SCOT, Pa-
mona, UnionCom, and MMD-MA as the num-
ber of samples increases.

We compare the runtime of SCOTv2 with the top per-
forming methods: Pamona, MMD-MA, UnionCom, and
the previous version of SCOT by subsampling various
numbers of cells from the MEC dataset. MMD-MA,
UnionCom, and SCOTv2 have GPU versions, while Pa-
mona and SCOT only have CPU versions. We run MMD-
MA and UnionCom on a single NVIDIA GTX 1080ti
GPU with VRAM of 11GB and Pamona and SCOT on
Intel Xeon e5-2670 CPU with 16GB memory. We also
run SCOTv2 on the same CPU to give comparable re-
sults to Pamona’s runtimes. Figure 4 depicts that SCOT,
MMD-MA, Pamona, and SCOTv2 show similar compu-
tational scaling.

5 Discussion
We present SCOTv2, an improved unsupervised align-
ment algorithm for multi-omics single-cell alignment. It
extends the alignment capabilities of SCOT to datasets
with cell-type representation disproportions across different sequencing measurements. It also performs
alignment for single-cell datasets with more than two measurements (M > 2). Experiments on real-world
subsampled co-assay datasets and separately sampled and sequenced single-cell datasets demonstrate that
SCOTv2 reliably yields high-quality alignments for a wide range of cell-type disproportions without com-
promising its computational scalability. Furthermore, SCOTv2’s flexible marginal constraints enable it to
consistently give good alignments results for both balanced and unbalanced single-cell datasets. In addition
to effectively handling cell-type imbalances and multi-omics alignment, SCOTv2 can self-tune its hyperpa-
rameters making it applicable in complete unsupervised settings. Therefore, SCOTv2 offers a convenient
way to align multiple single-cell measurements without requiring any orthogonal correspondence informa-
tion.

In this second iteration of SCOT, we have utilized the coupling matrix in a new way to find a latent
embedding space. While this dimension reduction improves cell-type separation, using the coupling ma-
trix directly may offer even more insights into interactions between the aligned domains. Future work will
consider how to use the probabilities in the coupling matrix directly for downstream analysis like improved
clustering and pseudo-time inference. Though SCOTv2 has runtimes that scale with other methods, it re-
quires O(n2) memory storage for the distance matrices, which may be an issue for especially large datasets.
One way to address this limitation would be to develop a procedure to align a representative subset of each
domain that can be extended to the entire dataset. Therefore, we will explore this direction to further improve
the scalability of SCOTv2.
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Unsupervised integration of single-cell multi-omics datasets with cell-type
representation disparities

Supplementary Material

S1 Embedding Method Details

The full details of t-SNE can be found in [17]. For each domain m, we compute Pm, an nm×nm cell-to-cell
transition matrix; each entry Pm

j|i is the conditional probability that a data point xmi would pick xmj as its
neighbor when chosen according a Gaussian distribution centered at xmi :

Pm
j|i =

exp(−||xmi − xmj ||2/2σ2
i )∑

k ̸=i exp(−||xmi − xmk ||2/2σ2
i )
. (9)

The bandwidth σi is chosen according to the density of the data points through a binary search for the value
of σi that achieves the user-supplied perplexity value.
Pm is computed by averaging Pm

i|j and Pm
j|i to give more weight to outlier points:

Pm
ij =

Pm
i|j + Pm

j|i

2nm
(10)

Then, to jointly embed all domains through the anchor domain X1, the optimization problem is:

min
X1′ ,...,XM′

M∑
m=1

KL(Pm||Qm′
) + β

M∑
m=2

||X1′ −Xm′
(Γm)T ||2F , (11)

where Xm′
is the lower dimensional embedding of Xm, Pm is defined as in Equation 9, and Γm is the cou-

pling matrix from solving Equation 6 for m = 1, 2, . . . ,M , Xm′
. The probability matrix Qm is computed

through a Student-t distribution with one degree of freedom:

Qm′
ij =

(1 + ||xm′
i − xm

′
j ||)−1∑

k ̸=l 1 + (||xm′
k − xm

′
l ||)−1

. (12)

The intuition behind the cost KL(Pm||Qm′
) is very similar to that of GW; if two points have a high transition

probability in the original space, then they should also have a high transition probability in the latent space.
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S2 SCOTv2 Algorithms

Algorithm 2: Pseudocode for Unbalanced GW Optimal Transport (UGWOT)
Input: Marginal probabilities p1 and p2, intra-domain distance matrices D1 and D2, relaxation
coefficient ρ, regularization coefficient ϵ

Initialize the coupling matrix: Γ = π = p1 ⊗ p2

while Γ not converged do
Γ← π
Γ(mass) ←

∑
i,j Γi,j ϵ̃← Γ(mass)ϵ, ρ̃← Γ(mass)ρ

// Compute cost C:
Γ1 ← Γ1n2 , Γ2 ← ΓT1n1

A← (D1)◦2Γ1, B ← (D2)◦2Γ2

D ← D1ΓD2

E ← ϵ
∑

ij log

(
Γi,j

p1i p
2
j

)
Γi,j + ρ

(∑
i log

(
Γ1
i

p1i

)
Γ1
i +

∑
j log

(
Γ2
j

p2j

)
Γ2
j

)
C ← A+B − 2D + E
// Perform Sinkhorn iterations
while (u, v) not converged do

u← − ϵ̃ρ̃
ϵ̃+ρ̃ log

[∑
i,j exp(vj − Cij)/ϵ̃+ log p2

]
v ← − ϵ̃ρ̃

ϵ̃+ρ̃ log
[∑

i,j exp(ui − Cij)/ϵ̃+ log p1
]

// Update: πij ← exp [ui + vj − Cij ] p
1
i p

2
j

// Rescale: π ←
√
Γ(mass)/π(mass)π

Return: Γ

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467903doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467903
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 3: Pseudocode for SCOTv2 Algorithm
Input: Datasets X1, . . . , XM , number of neighbors in nearest neighbor graphs k, entropic
regularization coefficient ϵ, mass conservation relaxation coefficient ρ.

for m = 1, . . . ,M do
// Initialize marginal probabilities: pm ← Uniform(Xm);
//Construct Gm, a k−NN graph based on pairwise correlations
// Compute intra-domain distance matrix Dm on Gm with Dijsktra’s algorithm.
// Compute a “neighborbood correlation” score, cm:
cm = 1

nm

∑nm
i=1

1
k

∑
xm
j ∈Nk(x

m
i )

corr(xmj , xmi )

end
// Select an anchor domain Xm∗: m∗ = argmaxm=1,...M cm

for m = 1, . . . ,M (m ̸= m∗) do
// Compute pairwise coupling matrices between the anchor domain Xm∗ and all other domains:
Γm ← GWϵ,ρ(p

m, pm∗)
if Barycentric projection then

xm
′

i ←
∑n1

j=1 Γ
m
ijx

m∗
j∑n1

j=1 Γ
m
ij

end
else

// Find shared embedding
X1′ . . . XM ′ ← minXm′ ,...,XM′

∑M
m=1 KL(Pm||Qm′

)+β
∑

m̸=m∗ ||Xm∗′−Xm′
(Γm)T ||2F

end
end
Return: Aligned datasets, X1′ . . . XM ′

.
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S3 Cell-type Proportions in Datasets with Intrinsic Cell-Type Representa-
tion Disparities across Measurements

Modality #1
(Gene Expression)

Modality #2
(Chromatin Accessibility)

Modality #3
(DNA Methylation or

3D chromosomal conform.)

scNMT
dataset

(n = 579)
E4.5: 76 (12.73%)

E5.5: 104 (17.42%)
Day6.5: 146 (24.46%)

E7.5: 271 (45.39%)

(n = 647)
E4.5: 63 (9.73%)
E5.5: 89 (13.76%)

E6.5: 220 (34.00%)
E7.5: 175 (42.50%)

(n =725)
E4.5: 65 (8.96%)
E5.5: 91 (12.55%)

E6.5: 278 (38.34 %)
E7.5: 291 (40.14%)

sciOmics
dataset

(n = 1,058)
Day0: 489 (46.22%)
Day3: 127 (12.00%)
Day7: 78 (7.37%)

Day11: 145 (13.71%)
NPC: 219 (20.70%)

(n = 1,296)
Day0: 164 (12.65%)
Day3: 702 (54.17%)
Day7: 77 (5.94%)

Day11: 175 (13.50%)
NPC: 178 (13.73%)

(n =2,154)
Day0: 987 (45.82 %)
Day3: 435 (20.19 %)
Day7: 243 (11.28 %)
Day11: 164 (7.61 %)
NPC: 325 (15.09 %)

MEC
dataset

(n=26,273)
Basal: 11,138 (42.39 %)

L-Sec (Prog): 7,683 (29.24 %)
L-HR: 3,439 (13.09 %)

L-Sec (Mat): 2,869 (10.92 %)
L-Sec (Prolif): 758 (2.89 %)

Stroma: 386 (1.47 %)

(n=21,262)
Basal: 13,353 (62.80 %)

L-Sec (Prog): 3,343 (15.72 %)
L-HR: 2,624 (12.34 %)

L-Sec (Mat): 1,165 (5.48 %)
L-Sec (Prolif): 7 (0.033 %)

Stroma: 770 (3.62 %)

N/A

Table S1: Number of cells in (and percentages of) each cell-type across different modalities in the scNMT-
seq co-assayed dataset after quality control procedures and the non-coassay datasets.

S4 Hyperparameter Tuning Procedure Details

For each alignment method, we define a grid of hyperparameters and choose the best performing combina-
tion for each experiment. If methods share similar hyperparameters in their formulation, we keep the range
defined for these consistent across all algorithms. Examples for such hyperparameters are dimensionality
of the latent space, p, for the algorithms that commonly embed datasets; entropic regularization constant,
ϵ, for methods that employ optimal transport; number of neighbors, k, for methods that model single-cell
datasets with nearest neighbor graphs. Otherwise, we refer to the publication and the code repository for
each method to choose a hyperparameter range.

For Pamona, we tune four hyperparameters: k ∈ {20, 30, . . . , 150}, the number of neighbors in the cell
neighborhood graphs, ϵ ∈ {5e− 4, 3e− 4, 1e− 4, 7e− 3, 5e− 3, . . . , 1e− 2}, the entropic regularization
coefficient for the optimal transport formulation, λ ∈ {0.1, 0.5, 1, 5, 10}, the coefficient for the trade-off
between aligning corresponding cells and preserving local geometries, and lastly, p ∈ {3, 4, 5, 10, 30, 32},
the output dimension for embedding . We choose the ranges for ϵ and k to be consistent with the corre-
sponding hyperparameters in SCOT and SCOTv2 algorithms and the ranges for the embedding dimensions
to be consistent with the recommended values in MMD-MA and UnionCom embeddings.

For UnionCom, we tune the trade-off parameter β ∈ {0.1, 1, 5, 10, 15, 20} and the regularization co-
efficient ρ ∈ {0, 0.1, 1, 5, 10, 15, 20} based on the ranges reported by Cao et al. in the publication [1].
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We additionally tune the maximum neighborhood size permitted in the neighborhood graphs, kmax ∈
{40, 100, 150}, as well as the embedding dimensionality p ∈ {3, 4, 5, 10, 30, 32}. The sweep range for
hyperparameter kmax is smaller than the other hyperparameters because UnionCom automatically starts
from k = 2 and goes up to kmax to find the lowest k that returns a connected graph to use in the algorithm.
Therefore, more refined search is not needed.

For MMD-MA, we choose the weights λ1 and λ2 ∈ {1e−2, 5e−3, 1e−3, 5e−4, . . . , 1e−9}. This range
includes the hyperparameter range suggested by Singh et al (λ1, λ2 ∈ {1e−3, 1e−4, 1e−5, 1e−6, 1e−7})
but extends it further to increase the granularity for the sake of more fair comparison against methods that
require a higher number of hyperparameters to test, such as Pamona and UnionCom. Similarly to other
methods, we also select the embedding dimensionality from p ∈ {3, 4, 5, 10, 30, 32}.

For bindSC, we choose the couple coefficient that assigns weight to the initial gene activity matrix
α ∈ {0, 0.1, 0.2, . . . 0.9} and the couple coefficient that assigns weight factor to multi-objective function
λ ∈ {0.1, 0.2, . . . , 0.9}. Additionally, we choose the number of canonical vectors for the embdedding space
K ∈ {3, 4, 5, 10, 30, 32}.

Lastly, for Seurat v4, we tune the number of neighbors to consider when finding anchors, k ∈ {5, 10, 15, 20},
dimensions of the final co-embedding space, p ∈ {3, 4, 5, 10, 30, 32} and the choice of the reference and
anchor domains when finding anchors.

S5 Visualization of Original Domains Prior to Alignment

Figure S1: SNAREseq and scGEM datasets prior to alignment for all three simulation scenarios.
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S6 Alignment Results

Figure S2: Supplementary alignments results on simulations with co-assay datasets. Panel A visual-
izes the alignment results by SCOTv2, using barycentric projection, on co-assay datasets SNARE-seq and
scGEM when a cell-type is missing in the gene expression domain. Panel B quantifies the alignment quality
in this experiment by using the label transfer accuracy metric and compares to baseline methods. Panel
C plots the average label transfer accuracy results obtained from SCOTv2, SCOT, and Pamona algorithms
when aligning randomly downsampled datasets. These experiments are repeated five times and the standard
deviation is shown with error bars.
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