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Abstract

The paper nautilus, Argonauta argo, also known as the greater argonaut, is a species of
octopods distinctly characterized by its pelagic lifestyle and by the presence of a spiral-
shaped shell-like eggcase in females. The eggcase functions by protecting the eggs laid inside
it, and by building and keeping air intakes for buoyancy. To reveal the genomic background
of the species’ adaptation to pelagic lifestyle and the acquisition of its shell-like eggcase, we
sequenced the draft genome sequence of the species. The genome size was 1.1 Gb, which is
the smallest among the cephalopods known to date, with the top 215 scaffolds (average
length 5,064,479 bp) covering 81% (1.09 Gb) of the total assembly. A total of 26,433 protein-
coding genes were predicted from 16,802 assembled scaffolds. From these, we identified
nearly intact HOX, Parahox, Wnt clusters and some gene clusters probably related to the
pelagic lifestyle, such as reflectin, tyrosinase, and opsin. For example, opsin might have
undergone an extensive duplication in order to adapt to the pelagic lifestyle, as opposed to
other octopuses, which are mostly the benthic. Our gene models also discovered several
genes homologous to those related to calcified shell formation in Conchiferan Mollusks, such
as Pif-like, SOD, and TRX. Interestingly, comparative genomics analysis revealed that the
homologous genes for such genes were also found in the genome of the octopus, which does

not have a shell, as well as the basal cephalopods Nautilus. Therefore, the draft genome
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sequence of 4. argo we presented here had not only helped us to gain further insights into the
genetic background of the dynamic recruitment and dismissal of genes for the formation of an
important, converging extended phenotypic structure such as the shell and the shell-like

eggcase, but also the evolution of lifestyles in Cephalopods and the octopods, from benthic to

pelagic.
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Introduction

The paper nautilus, or the argonaut Argonauta argo is a member of Argonautoidea, a
superfamily of octopods (Cephalopoda, Octopodiformes), but has specialized characters not
found in other octopus species. It is a cosmopolitan species distributed in the global tropical
and subtropical open seas (Norman, 2000). Phylogenetic analyses have placed 4. argo
together with its congener (e.g. A. hians), forming a monophyletic Argonautidae, and then,
form a sister relationship with the blanket octopuses (e.g. Tremoctopus), and thus further
forming the superfamily Argonautoidea (Hirota et al., 2021; Strugnell et al., 2006; Sanchez et
al., 2018). Distinct synapomorphies of this superfamily, which could also be found in 4.
argo, are the extreme female-biased sexual size dimorphism, a comparatively large and
entirely transformed hectocotylus that is coiled in a pouch below the eye until maturity, and
the transferring of spermatophores to the female mantle cavity by hectocotylus detachment
(Naef, 1923; Bello, 2012). Although the consensus phylogeny also suggested that
Argonautoidea split from benthic ancestral octopods, members of the superfamily including
A. argo are fully adapted to the holopelagic lifestyle and thus does not need to have any
contact with the seafloor throughout its lifecycle. Several studies have suggested that the
holopelagic lifestyle was probably achieved by evolutionary acquisitions of distinct
characters enabling members of Argonautoidea to keep afloat in midwater and to egg
brooding away from the sea floor (cf. Naef 1923; Packard & Wurtz 1994; Young 1985;
Bizikov 2004). Extreme adaptations of this group to their midwater habitat have masked their
evolutionary origins. Buoyancy in argonauts was probably obtained after their ancestors had
already become pelagic, potentially via the pelagic paralarval or juvenile stages found in
many benthic octopuses with small eggs (Finn and Norman 2010).

One conspicuous character separating Argonautidae, a family which includes all argonauts

(genus Argonauta), with the rest of Argonautoidea is the presence of a biomineralized


https://doi.org/10.1101/2021.11.08.467834
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.08.467834; this version posted November 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

82  eggcase in females, which external morphology mimics the spirally-wound shells of Nautilus
83  and the extinct ammonites (Scales, 2015; Stevens et al., 2015). The eggcase is thought to
84  protect the eggs laid inside or, as well as taking in air for maintaining buoyancy (Finn and
85  Norman 2010). As such, the re-acquisition of this shell-like structure was probably important,
86  because it helps Argonauta to maintain its holopelagic lifestyle. Previous observations have
87  maintained that the “shell-like” eggcase is not a “true” shell (the Conchiferan shell) (Naef,
88  1923).
89 The evolutionary story of shell formation and loss in Cephalopods is interesting in itself.
90  Although being classified as a member of the Conchifera, a subphylum of Mollusks
91  composed of members with external shells biomineralized with calcium carbonate, except for
92  the basally diverged Nautiloids (Setiamarga et al., 2021a), extant Cephalopods mostly
93  degenerated their shells, resulting in the complete shell loss in octopods, and vestigial shells
94  in some decapods (squids and cuttlefishes) (Krdger et al., 2011). True Conchiferan shells are
95  formed through the secretion of proteins from the mantle tissue, made from aragonite and
96 calcite, have the nacreous layer and intricate microstructures (Jackson et al., 2009; Kocot et
97 al., 2016; Jackson et al., 2017), which has evolved since at least in late Ordovician
98  (Vendrasco et al., 2011; 2013). An extant member of the basal Cephalopods, the Nautiloid
99 Nautilus pompilius apparently also forms their shells this way (Marie et al., 2009; Setiamarga
100  etal., 2021a). However, despite convergence in their general external morphology, the
101 eggcase of Argonauta is not considered as a true Conchiferan shell but an evolutionary
102  innovation of the genus (Naef, 1923; Scales, 2015). It is formed through the secretion of
103 related proteins from their arms (Naef, 1923; Scales, 2015) and has different
104  biomineralization and microstructural profiles (Revelle and Fairbridge 1957; Mitchell et al.
105  1994; Nixon and Young 2003; Saul and Stadum 2005; Oudot ef al. 2020). Previously, we

106  conducted an extensive multi-omics analysis on the eggcase of two argonaut species, 4. argo
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107  and A4. hians, which samples were obtained from the Sea of Japan (Setiamarga et al., 2021b).
108  Two important points relevant to our present study could be taken from our previous one: (1)
109  almost no Conchiferan homologous SMP, including those of the basal Cephalopoda Nautilus
110  pompilius (Setiamarga et al., 2021a) was present in the eggcase matrix of the two argonaut
111 species, and (2) Conchiferan SMP homologs (or homologous domains) were also found in the
112 genome of the shell-less octopods, Octopus bimaculoides. These points thus indicate that our
113 result was in agreement with the result of morphological observations, which maintains that
114  the eggcase is not a homologous structure of the shell. However, the observations have also
115  caused other questions: Are the SMP genes not used in the eggcase formation still retained in
116  the genomes of the argonauts? Comparative genome analyses across Cephalopoda, and

117 among different representative species of Conchifera, are thus needed to answer this question.
118  Such genomic level comparative studies would also give important insights on the evolution
119  of holopelagic lifestyle at the genetic level.

120 Until very recently, the lack of genome data had prevented us from understanding the

121 genetic basis of Cephalopod biology, and even molluscan biology. This was remedied by

122 recent reports of various Cephalopod genomes, such as the genomes of O. bimaculoides

123 (Albertin et al., 2019), Euprymna scolopes (Belcaid et al., 2019), Architeuthis dux (da Forsa
124 et al. 2020), and the basal Cephalopod Nautilus pompilius (Zhang et al., 2021; Huang et al.,
125  2021). Comparative genomics studies of these genomes have allowed us to identify notable
126 characteristics of Cephalopod genomes except Nautilus, such as: (1) the average genome size
127  of around 3 Gigabases (Gb), which is slightly bigger than that of other molluscan species

128  (Gregory 2021), (2) highly rearranged genome with transposable element expansion, which
129  have caused the genomes to be highly repetitive in nature (Albertin et al., 2015; da Fonseca et
130  al., 2020), (3) lineage specific duplication of certain types of genes (Yoshida et al., 2011),

131  and (4) whole transcript-wide adenosine to inosine (A-to-I) RNA editing (Alon et al. 2015;
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132 Liscovitch-Brauer et al. 2017). These genomic characteristics have thus suggested that the
133 coleoid Cephalopods have intriguingly different genomes from “standard” metazoan

134  genomes. Another interesting point is that such differences were apparently evolutionarily
135  acquired in ancestral Coleoids, which members show similar body plans and morphology in
136 general (Young 1971) despite their ancient divergences (Decapodiformes (squid and

137  cuttlefishes) vs. Octopodiformes (vampire squid and octopuses) = 242 + 38 million years ago
138  (Mya); Nautiloidea vs. Coleoidea =415 + 60 Mya) (Kroger et al., 2011; Vinther et al., 2012;
139  Sanchez et al., 2016). Therefore, additional genomic data, especially of the Octopodiformes,
140  will allow us to trace the ancestral chromosomes of Cephalopods and their transition within
141  Mollusks, which in the end might help to unravel the evolutionary origin of these “genomic
142 idiosyncrasies” These are major obstacles to tracing the ancestral chromosomes of

143 cephalopods and their transition within the Mollusks.

144 Here, we report a high-quality draft genome assembly of the greater paper nautilus /

145  greater argonaut Argonauta argo. We found that this species has an exceptionally small

146  genome size, making the species an ideal species for genomic studies. Although studies

147  targeting argonauts have not progressed because it is difficult to keep in aquaria, we have
148  access to the location in the Sea of Japan, where fresh and living samples of this species

149  could be easily obtained by fixed nets from June to August (Sakurai and Kono, 2010). Using
150  obtained genome data, we focusedly discussed the evolution of some interesting genomic
151  features such as those related to shell evolution, eggcase formation, and color vision, in order
152 to gain insights to the genomic basis of the adaptation to the open-ocean holopelagic lifestyle
153  of this species in particular, and the evolution of Cephalopods in general.

154

155  Results and Discussion

156  The draft genome assembly of A. argo
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157 We generated a draft genome from a single individual of a female argonaut obtained from
158  a fixed net set on the coasts of Oki Island, Shimane Prefecture, Japan (Figure 1). A total of
159  1.34 Gb was assembled from input sequences obtained from genome sequencing with 201 x
160  coverage (107x PE , 24x 3 kb MP, 24x 6 kb MP, 24x 10kb MP, and 24x 15kb MP). 57,036
161  scaffolds of various lengths were assembled, with the top 215 scaffolds larger than 1000 kb
162  (average length 5,064,479 bp), covering 81% (1.09 Gb) of the total assembly. Half of

163  assembled scaffolds (N50) were of 6.18 Megabases (Mb) or longer, reflecting high

164  contiguity. These statistics (Table S1) thus showed that our 4. argo draft genome sequence
165  ranks among the top quality draft genomes of Molluscs, and the most comprehensive for

166 Cephalopods. For example, our N50 indicates that our A. argo draft genome is twice as long
167  as that of the Hawaiian bobtail squid E. scolopes (Belcaid et al. 2019).

168 The discrepancy between GenomeScope estimation (1.1Gb, Figure S1) and our actual

169  assembly size (1.34Gb; 1.25Gb non-gap regions) might be caused by the presence of

170  bacterial contamination and/or heterogeneities caused by large insertion and deletion between
171  haploid genomes. However, we only found a very minute amount of bacterial genome

172 contamination in our assembly, indicating that the latter was most likely the main cause of the
173 discrepancy. To assess the completeness of the gene space of the assembly, an analysis using
174  BUSCO v3.0.2 (genome mode) (Simao et al. 2015) was performed by using the provided

175  metazoan data set (metazoa odb9, n=978), resulting in the recovery of 91.1% of the predicted
176 gene sequences (Table S2). Krait analysis showed that the microsatellite regions account for
177  4.6% of the genome, with dimer and trimer regions accounting for more than 85% (Figure
178  S2, Table S3).

179 The high-quality and relatively high level of completeness of our genome assembly, as

180  shown by the statistics we presented above will allow us to address some lingering questions

181  on Cephalopod biology and evolution at the genetic and genomic levels. For example, future
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182  studies might utilize the microsatellite regions, which compose a part of the repeat regions in
183  the genome, as individual markers because of the large polymorphisms within individuals, or
184  as markers for paternity analysis of egg-masses.

185

186  Ancient gene clusters in the cephalopods: HOX, Parahox, and Wnt genes

187 The improved contiguity of our genome assembly confirmed the presence of a Hox

188  cluster. A large Hox cluster of nine Hox genes on four separate scaffolds was recovered in
189  the A. argo genome, totaling to a length of at least 18 Mb (Figure 2). Three of the nine Hox
190  genes are not presumed to be gene models, but we have used the Homeobox domain

191  sequence to confirm that they are indeed present on the scaffold and that they are indeed hox
192  genes compared to other Lophotrochozoa genes (Figure S3, Figure S4). Hox2/proboscipedia
193  (pb) was not found, as in squid genomes (Belcaid et al., 2019; da Fonseca et al. 2020) except
194  Nautilus (Zhang et al. 2021). We also could not find Hox4/Deformed (Dfd), which is similar
195  to O. bimaculoides (Albertin et al., 2015), and thus probably a common feature in benthic
196 octopods (Figure S3). There are at least 10 ORFs inserted among several different Hox genes
197 (3 between Scr and Antp, 7 between Lox4 and Post2). Interestingly, no homolog was found in
198  other organisms, including even the giant squid 4. dux (da Fonseca et al., 2020), for any of
199  these ORFs (Table S4).

200 Hox clusters are usually found in contigs of about 100 kb in vertebrates and >1,000 kb in
201  invertebrates (Powers et al., 2000; Wagner et al., 2003). Meanwhile, the octopus Hox gene
202 cluster is apparently fragmented, and the genes are present separately on its genome one by
203  one (Albertin et al., 2015), unlike most other bilaterian genomes (Duboule, 2007). Intuitively,
204  this finding seems to be in accordance with the staggered, non-colinear expression pattern of
205  Hox genes in Cephalopods (Lee et al., 2003; Wollesen et al., 2018). However, our finding of

206 a Hox cluster in the genome of 4. argo, albeit incomplete, suggests that fragmentation of the
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207  cluster is probably a feature limited to benthic octopods (or even a possible artifact of the

208  genome assembly process of O. bimaculoides).

209 The presence of ORFs located among several Hox genes in the genome of 4. argo is also
210  intriguing, since it might indicate that the Hox cluster is actually breaking at the place where
211  the intervening genes are located. The Patellogastropod limpet Lottia gigantea, another

212 member of the shelled mollusks (Conchifera), was found to have a typical invertebrate Hox
213 cluster spanning 471 kb with no intervening ORFs among any of its Hox genes (Simakov et
214 al. 2012). Meanwhile, recent findings indicate that although the genome of the basal

215 Cephalopod N. pompilius contains a complete set of molluscan Hox genes, they are not

216  located together in a cluster, but are divided in 7 contigs (Zhang et al. 2021). On the other
217  hand, the Hox genes in another Cephalopod, the giant squid 4. dux, are apparently arranged
218  into a disorganized cluster with insertions of intervening non-Hox genes among cluster

219  members (da Fonseca et al., 2020). However, we found no apparent homology or synteny
220 between any of the intervening ORFs of 4. argo and those of 4. dux (Table S4). The

221  acquisition of putative ORFs inside the Hox cluster of 4. argo is probably an indication of a
222 situation not dissimilar to what was proposed for the fruitfly Drosophila melanogaster, which
223 Hox cluster is split into two complexes, with the presence of non-homeotic genes in between
224 (Von Allmen et al., 1996; Wagner et al., 2003; Robertson and Mahaffey, 2017), although

225  Drosophila still maintained its colinear expression pattern (Graham et al., 1989; Gaunt,

226 2015). However, the Hox cluster break in Drosophila is most likely a lineage-specific feature,
227  since another model insect, the genome of the beetle Tribolium castaneum are intact (Von
228  Allmen et al., 1996; Tribolium Genome Sequencing Consortium, 2008; Shippy et al., 2008).
229  When considered altogether, it seems that the splits and breaking offs of Hox cluster could be
230 asymplesiomorphic feature of the Cephalopod genome, but with the actual “Hox de-

231  clustering” processes happened lineage-specifically. This might explain why Cephalopods do
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232 not exhibit typical invertebrate Hox cluster arrangement seen in, for example, the limpet L.
233 gigantea.

234 The Extended Hox complex (Hox genes plus Evx, Mox, and possibly DIx) is also a

235  common feature in bilaterian genomes (Montavon, 2015). In vertebrate genomes, the

236 complex is shown to be linked to the EHGbox (En, Hb9, and Gbx) and NKL gene groups
237  (Msx, Emx, etc.) and form a supercluster (Garcia-Fernandez, 2005). In the A. argo genome,
238  we found, probably for the first time in Spiralia, a linkage among DIx, Engrailed (En), and
239  the Hox genes (Figure 2). In the genome of the giant squid 4. dux, Dix and En were found in
240  different scaffolds with no linkage to the Hox cluster whatsoever (Table S4). However in 4.
241  argo, DIx was found to be located anterior to Scr relative to their positions to the Hox genes
242 (Hox cognate group4), while £n was found to be located posterior to Post! (Figure 2), and
243 thus reversing the presumed ancestral state (Garcia-Fernandez, 2005). Although the

244 possibility of their reinsertions into the Hox group cannot be ruled out, this may indicate that
245  the presence of the Extended Hox group is probably conserved in modern cephalopods,

246  although the constraint to preserve gene order is probably relatively weak. The weak

247  constraint in preserving gene order could also explain the “Hox de-clustering”, which

248  characteristics include insertions of ORFs in intergenic regions, observed in Cephalopods.
249 We also found the presence of the ParaHox cluster, an evolutionary sister complex of the
250  Hox cluster, in the genome of 4. argo (Figure 2). The ParaHox cluster, which consists of the
251  Gsx, Xlox, and Cdx gene families, are transcription factors involved in the anterior-posterior
252 development during early embryogenesis of bilaterians (Brooke et al, 1998; Garstang and
253 Ferrier, 2013). The ParaHox cluster is usually found intact in the genomes of Deuterostomes
254  except sea urchin and Ascidians (Garstang and Ferrier, 2013)). However, in

255  Lophotrochozoans, such as the annelid Platynereis dumerilii and the limpet L. gigantea, only

256  Gsx and Xlox are clustered together, with Cdx broken off and thus unlinked in the genome.
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257  The ParaHox cluster of 4. argo were found to conserve the structure of a typical

258  Lophothrocozoan cluster, similar to those reported in Nautilus (Huang et al. 2021) and the
259  octopus (Li et al., 2020). Although further study is still needed, the highly conserved nature
260  of the ParaHox clusters among Cephalopoda, mollusks, and even Lophotrochozoans,

261  indicates a possible presence of an evolutionary constraint to conserve the cluster’s presence
262  and arrangement in the genome, after the breakage of Cdx from Gsx and Xlox.

263 Similarly, an older gene cluster that is widespread in the animal kingdom is Wnt. Most
264  genomes of bilaterians have a common cluster, wnt9-wnt1-wnt6-wntl0, or parts of this cluster
265  (Huang et al., 2021). This ancestral cluster of wnts is thought to originate in the evolution of
266  the common ancestor of cnidarians and bilaterians (Janssen et al., 2010; Holstein 2012). In
267  other shelled mollusks (i.e. Conchifera) such as the rock oyster Crassostrea gigas and the
268  Japanese pearl oyster P. fucata, the limpet L. gigantea, and also in O. bimaculoides, the wnt1-
269  wnt6-wntl0 cluster was conserved (Du et al., 2018a), with L. gigantea and P. fucata

270  seemingly retaining some of the basal lophotrochozoan / protostome wnt paralogs (Cho et al.,
271 2010; Setiamarga et al., 2013). In this study, we also confirmed the linkage of wnt6-wnt9 in
272 A. argo (Figure 2), besides the standard Conchiferan cluster. This suggests that 4. argo

273  probably also derived this arrangement from the basal metazoan form of Wnt gene

274  orientation and clustering (wnt9-wntl-wnt6-wntl (). Meanwhile, we also observed the lack of
275  wnt3 and wnt8, which seems to be lost in the ancestral protostomes / lophotrochozoans and in
276 ancestral Conchiferans, respectively (Janssen et al., 2010; Setiamarga et al., 2013; Liu et al.,
277  2018; Bai et al., 2020; Wang et al., 2021).

278

279  Tandem gene duplications of gene clusters related to pelagic lifestyle

280 Our 4. argo genome assembly, which is of sufficiently better quality than those of

281  previous octopods, allowed us to investigate the existence of tandem gene arrangements. Our
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282  searches found two gene clusters, the Reflectins and the Tyrosinases (Figure 3, 4). Both are
283  highly expressed in the first arms of the organism (Figure 4).

284 Four tandemly arranged gene models of the octopus reflectin/tbcl domain family

285  (Aargo020153-6) and one possible ORF recovered by a BLAST search in a single scaffold
286  were found in 4. argo genome (Figure 3). Phylogenetic analysis showed that the three gene
287  models are monophyletic in 4. argo, and form a monophyletic clade together with sequences
288  of E. scolopes, which also formed a monophyletic clade (Figure S5). The translated

289  sequences of three of the four gene models have at least five of the so-called “Reflectin

290  motifs” (M/FD(X)sMD(X)sMDX3/4) (Levenson et al. 2017, Figure S6). With only 23

291  nucleotide substitutions, regardless of codon positions, the CDS of the tandemly duplicated
292 reflectin genes in A. argo match each other sequences at 97%, covering 760 bp (Figure S7).
293  Meanwhile, it is also enticing to suggest that the only gene model with a different sequence,
294  Aargo020154, was inverted to the rest of the genes.

295 There are two possible causes to explain which duplicated genes are conserved to form
296  gene clusters: either high level expression are favored and thus retaining duplicated genes
297  would help to increase transcript number, or the multiple copies are conserved under different
298  selection pressures as a result of subfunctionalization (Lynch and Force, 2000; Hahn, 2009;
299  Morel et al., 2015; Hallin and Landry, 2019; Song et al., 2020; Ascencio et al., 2021). It has
300  also been pointed out that the duration of concerted evolution can be influenced by selection
301  for a certain dosage of a gene product, as gene conversion leading to highly similar sequence
302  retentions can be advantageous when there is a selection for higher expression level of that
303  particular gene product, or disadvantageous when divergent gene duplicates are advantageous
304  (Sugino and Innan, 2006). Transcriptome analysis shows that in 4. argo, reflectin is very
305  highly expressed in the 1st arm and eye, and it seems to be transcribed by the three genes

306  (Figure 3B). Therefore, this could be evidence supporting the hypothesis that the cause of
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307  gene retention was to have a high level of expression. This concerted evolution may also be
308  the reason why the Cephalopod reflectin formed monophyletic clades with members of the
309  clusters within each species (Figure S5).

310 Then, what would be the function of the highly expressed reflectin? reflectin is found only
311  in Cephalopods, and the function of the protein products were shown to be related to

312  camouflage by reflecting and refracting light in the surrounding environment (DeMartini et
313  al., 2015). Expressed proteins fill the lamellae of intracellular Bragg reflectors, allowing

314  individuals to exhibit dynamic iris and structural color changes (Crookes et al. 2004). Several
315  tandemly-arranged reflectin gene clusters have been found in the genome of E. scolopes, with
316  the dominant reflectin transcripts are almost exclusively expressed in the light organ, eyes,
317  and skin, and thus probably consistent with the development of symbiotic fluorescent organs
318  specifically evolved in this lineage (Belcaid et al. 2019). However, although in E. scolopes,
319  the symbiotic luminous organs are important for countershading and survival, no such organ
320  have been found in any of the argonauts. As a defence mechanism, pelagic cephalopods blend
321  into their surroundings by camouflaging, which is done either through translucence or cryptic
322 coloration. The first arm membranes of the argonauts are always wrapped around the shell,
323  and reflect light by iridescent chromatophores, causing it to look like a mirror. Meanwhile,
324  the giant squid 4. dux has seven reflectin genes and three reflectin-like genes on its genome,
325  all except one are clustered on the same scaffold (da Fonseca et al. 2020). This non-

326  luminescent deep-sea species has a mirror-like light-reflecting skin for cryptic coloration.

327  These observations probably indicate that the abundantly expressed Reflectin might help the
328  animals to have light-reflecting mirror-like surfaces, which might then play a role in the

329  ability of these species to blend into their surroundings in the open ocean.

330 A similar pattern of possible gene conversion was observed in the tyrosinase gene cluster.

331  Of the nine #yrosinase gene models predicted in 4. argo genome, eight were of the
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332 extracellular or secreted (alpha) type, of which four (Aargo001559-62) were found to be

333  tandemly arranged in a single scaffold (Figure 4, Figure S8). Of the four gene models,

334  excluding unaligned regions, similarities of amino acid sequences of the first two

335  (Aargo001559-60) and the last two (Aargo001561-62) are very high, but only 75%

336  similarities between the two gene pairs. However, the four genes shared an almost exact

337  match in a region on the second half of the gene, at around the 520th - 680th aa (Figure S9).
338  The coding DNA sequence (CDS) match rate for this region is 97% with only ca. 60

339  substitutions, regardless of codon positions (Figure S10). These two pairs of tyrosinases are
340  orthologous to closely related molluscan taxa including the octopus, and form monophyletic
341  groups (Figure S8). This thus suggests that the four tyrosinase copies probably underwent
342 gene conversions in two pairs (between Aargo001559 and 1560, between Aargo001661 and
343  1662) with some partial recombinations among the four genes. Gene expression analysis

344  using Stringtie shows that the four have a common gene expression profile, with high levels
345  of expression in the arms and mantle. Meanwhile, the phylogenetic tree also indicates that the
346  two pairs of the #yrosinase genes are apparently orthologous to those found as shell matrix
347  protein-coding genes in Conchiferan mollusks. This finding, i.e., the genes expressed only in
348  the arms belong to different gene clusters than those of other Tyrosinase-coding genes, might
349  indicate that novel gene paralogs originated from previously existing endogenous #yrosinase
350  genes were being duplicated and obtained high expression in the arms, possibly used for the
351  calcified eggcase formation, which helps A. argo and other argonaut octopods to attain

352  buoyancy and thus their pelagic lifestyle.

353

354  Opsin duplications and change in absorption wavelength related to pelagic lifestyle

355 Changes in number and sequences of Opsin are thought to be involved in adaptation to

356  visually-guided behavior. We found that 4. argo possesses five visual pigment genes in its
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357  genome: two noncanonical r-opsins, one canonical r-opsins, two xenopsin, and one

358  rgr/peropsins/retinochromes (Figure S11-13) (Ramirez et al., 2016). In previous studies on
359  the pygmy squid Idiosepius paradoxus, two r-opsins, one xenopsin, and two retinochromes
360  were identified (Yoshida et al. 2015; Ramirez et al. 2016). We also checked if the expression
361  of the opsins are tissue specific, in order to see whether there is any functional differentiation
362  among the duplicated opsins. However, at present, we were unable to confirm such

363  specificity, at least in the organs we examined because the data is present, such as the eye and
364  skin. In fact, almost no study has been conducted on the functions of xenopsins and non-

365  canonical r-opsins in the Cephalopods. In the future, a thorough gene expression analysis of
366  these genes in different tissues should probably be conducted to resolve this issue.

367 The presence of two xenopsins in the genome of 4. argo was apparently not an artifact or
368  assembly error, which means that A. argo has an extra copy of xenopsin than I. paradoxus.
369  The gene models for xenopsin in A. argo (Aargo004635 and Aargo004636) exist in tandem in
370  the scaffold, albeit with the amino acid sequence being too short to be considered full-length.
371  If we also assume that the two exons of the neighboring Aargo004633 are shared among the
372  three gene models, we can obtain two putative complete Xenopsin proteins. In other words, it
373  makes sense to think that the two xenopsins were probably splicing variants with alternative
374  promoters and shared two exons, which then duplicated and subfunctionalized (Force et al.,
375  1999; Hahn, 2009). xenopsin is found to be widespread but exclusively only in protostomes,
376 co-expressed together with r-opsin mostly in their ciliary photoreceptor cells (Passamaneck et
377 al, 2011; Vocking et al., 2017; Rawlinson et al., 2019). Functional studies on xenopsin are
378  lacking and we therefore cannot decisively predict its function in A. argo. Phylogenetically,
379  xenopsin and c-opsin are apparently spread exclusively from each other, with c-opsin being
380  found exclusively in the photoreceptor cells of deuterostomes / vertebrates, suggesting that

381  xenopsin, similar to its deuterostomian counterpart c-opsin. is probably involved mainly in
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382  phototactic responses and visual functions in protostomes (Doring et al., 2020), including A.
383  argo, I. paradoxus, and probably, other Cephalopods.

384 The two copies of non-canonical r-opsins in the genome of 4. argo is most likely due to
385  the duplication of heterogeneous regions in the assembly, since the sequences matched

386  perfectly. This suggests that there is only a single non-canonical r-opsin in the genome of A4.
387  argo, which is thus similar to /. paradoxus, as mentioned previously (Yoshida et al. 2015). At
388  present, the function of this Opsin homolog is still unknown, although previous studies

389  suggest that it's probably unrelated to visions, although apparently still related to

390  photoreception (Ramirez and Oakley, 2015; Ramirez et al. 2016; Bonade et al., 2020) . We
391  found two amino acid substitutions (T118S and Y 178F) in the amino acid sequence of the
392  non-canonical R-Opsin of 4. argo when compared to bovine rhodopsin. T118S was found in
393  both the benthic O. bimaculoides and A. argo, while Y178F was found only in the latter.

394  Prediction of light absorption wavelength of the non-canonical R-Opsin of 4. argo indicates
395  that photoreceptions in A. argo are probably adapted more to red light than that of the benthic
396  octopus. The extra amino acid substitutions are thus consistent with the ecology of 4. argo,
397  which lived closer to the sea surface than other cephalopods, indicating that the red-shift may
398  be an adaptation to shallow water light environment.

399

400  The evolution of shell and eggcase matrix proteins through independent recruitments, losses,
401  and domain changes allows A. argo to obtain its eggcase and thus its pelagic lifestyle

402 In this study, we found all of the eggcase matrix protein-coding genes in the genome of 4.
403  argo (Table S5) as identified by our previous multi-omics study to survey and identify major
404  proteins of the eggcase matrices of two congeneric argonaut octopods, A. argo and A. hians
405  (Setiamarga et al., 2021b). Exactly congruent to our previous result, most of the proteins are

406  apparently not shared with the shell matrix proteins of Conchiferans, including those of the
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407  basal Cephalopoda Nautilus (Setiamarga et al., 2021a; Huang et al., 2021), although the

408  genes / proteins themselves are present in the genomes of the Conchiferan mollusks such as
409  the limpet L. gigantea (Simakov et al., 2013), the true oyster C. gigas (Penaloza et al., 2021),
410  and the Japanese pearl oyster P. fucata (Takeuchi et al., 2016). Meanwhile, the Conchiferan
411  shell matrix protein-coding genes were also mostly found in the genomes of 4. argo and the
412 shell-less benthic octopod O. bimaculoides (Albertin et al., 2015), indicating their retention
413 despite shell loss in the octopod lineage. Interestingly, the genes for eggcase matrix proteins
414  were also found in the genome of O. bimaculoides, and thus, when considered altogether,
415  supported our hypothesis suggested previously, saying the argonaut octopods recruited many
416  proteins unrelated to the shell formation and used them for their eggcase (Setiamarga et al.,
417  2021b). However, very interestingly, some proteins related to calcification such as the Pif-
418  like LamG3, seemed to be used at least by 4. hians (Setiamarga et al., 2021b).

419 In that previous study, we arbitrarily categorized the Pif-like proteins mostly identified as
420  Conchiferan shell matrix proteins into three paralogous groups, based on three monophyletic
421  clades recovered in the phylogeny (see Figure 5 in Setiamarga et al., 2021b), which were also
422 recovered in this study (Figure 5). We arbitrarily named them Blue Mussel Shell Protein

423  (BMSP), Laminin G3 (LamG3), and Pif, and called them altogether the BMSP/LamG3/Pif
424  proteins. These proteins could be distinguished by their domain combinations. BMSP was
425  first identified as SMPs in the blue mussel Mytilus galloprovincialis and L. gigantea,

426  respectively (Suzuki et al. 2011; Marie et al. 2017). The protein has one Chitin-Binding

427  (ChtBd) and multiple (three or four) von Willebrand factor type A (VWA) domains. BMSP is
428  present throughout the nacreous layer with dense localization in the myostracum, suggesting
429  its possible role in Conchiferan nacreous layer formation (Suzuki et al. 2011). Meanwhile, Pif
430  proteins, which was originally found in the nacre of P. fucata, usually have two types of

431  domains, one VWA and two ChtBd domains, but with a different domain compositions and
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432 arrangements (Figure 5) (Suzuki et al. 2009; Setiamarga et al., 2021a, b). /n vitro functional
433  analysis has shown that it is involved in calcium crystallization (Suzuki et al. 2013).

434 We did not detect any of the homologs of Pif and BMSP in the eggcase matrix of the

435  argonauts in our previous multi-omics eggcase matrix protein study (Setiamarga et al.,

436 2021b), nor in the shell matrix protein study of Nautilus (Setiamarga et al., 2021a). LamG3
437  was first identified by Marie et al. (2017) as one of the two Pif-like isoforms composed of the
438  one VWA, three ChtBd, and one LamG domains. In both cephalopods, we instead found the
439  last type of Pif homologs (sensu Setiamarga et al., 2021b), the LamG3 protein, in both the
440  eggcase matrix of 4. hians (but not in the eggcase matrix proteome and transcriptome of 4.
441  argo), and the shell matrix of Nautilus. However, very interestingly, differing with the results
442  of our previous multi-omics study (Setiamarga et al., 2021b), in this study, we found the

443  presence of lamG3 in the genome of A. argo (Aargo013232) (Figure 5). Further studies must
444  thus be conducted to assess if the absence of any transcript/protein product of lamG3 in A.
445  argo, despite its presence on the genome, is an artifact caused by the possible non-

446  exhaustiveness of our previous multi-omics study, or if it is not used in the eggcase matrix of
447  A. argo, making the eggcases of the two congeneric species different in nature.

448 At present, however, we are working under the hypothesis that this protein is a key protein
449  for the formation of calcified eggcases in argonaut octopods, because it is one of the putative
450  paralogs of the BMSP/LamG3/Pif-like proteins, which members have been identified as

451  major component of the shell of Conchiferan mollusks. Intriguingly, however, although in the
452 previous multi-omics study we did not find any sequence of pif or BMSP both in the

453  transcriptome data of all tissues studied and the proteome data of 4. argo, we found the

454  presence of an intact coding sequence of pif'in the genome of the species (Aargo018021).

455  More interestingly, an intact pif sequence was also found in the genome of N. pompilius

456  (Huang et al. 2021), although the sequence was not found in the transcriptome and proteome
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457  data of our recent shell matrix proteins multi-omics study of the species (Setiamarga et al.,
458  2021a). The exon-intron structures of each cluster are different and are located at different
459  positions in the genome of both 4. argo (Figure 5b) and Nautilus. Meanwhile, LamG3 has
460  also been shown to be associated with the biomineralization of shells in the pond snail

461  Lymnaea stagnalis, although no BMSP nor Pif were apparently found in its shell matrix

462  proteome and transcriptome, although additional studies involving genome analysis of the
463  species is still needed to confirm this observation (Ishikawa et al. 2020). These results seem
464  to thus indicate that the two Pif homologs (pif and lamG3) were probably already present
465  separately at least in the basal Conchiferan mollusks. However, ancestral Cephalopods even
466  more basal than the Nautilus probably lost bmsp, retained lamG3 and pif, but use only lamG3
467  for the formation of biomineralized shells. Although further confirmation is still needed,

468  lamG3 was probably recruited independently as an SMP, independently in each lineage

469  leading to terrestrial gastropods and cephalopods. The presence of pif'in the genomes of

470  Nautilus and A. argo, and lamG3 in the genome of O. bimaculoides, even though they are not
471  involved in the formation of shells or shell-like structures, is probably because they acquired
472 new functions unrelated to shell formation.

473 The lack of a typical LamG3 domain in BMSP and Pif have been reported (Suzuki et al.,
474 2013), and domain searches using various tools such as SMART (http://smart.embl-

475  heidelberg.de/, accessed in June 2021), InterProScan

476  (https://www.ebi.ac.uk/interpro/search/sequence/, accessed in June 2021), and Pfam

477  ( http://pfam.xtam.org/, accessed in June 2021) seemed to support this notion. In both BMSP
478  and Pif, no domain was detected. Some searches would detect only the repetitive low-

479  complexity domains (RLCD) which designates a possibility that the particular region used to
480  have a domain, but has probably degraded down and thus only recognizable partially at the

481  sequence level (Suzuki et al., 2017; Setiamarga et al., 2021a; b). We also predicted the
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482  stereostructures of some representatives of BMSP (Mytilus galloprovincialis), Pif (4. argo,
483  N. pompilius, P. fucata, L. gigantea), and LamG3 (4. argo, N. pompilius, O. bimaculoides, P.
484  fucata, L. gigantea, C. gigas) using Alphafold2 (Jumper et al., 2021), and compared their 3D
485  structures (Figure 5). AlphaFold2 predicts accurate protein 3D structural models. Structural
486  comparisons using such models would allow us to obtain surprising information about the
487  function and evolution of the proteins, unattainable only through sequence comparison and
488  comparative genomics. The models of BMSP/LamG3/Pif proteins predicted by AlphaFold2
489  indicate that the region where no domain was detected in the proteins (except for the LamG3
490  proteins) actually still retains enough of its LamG3 domain characteristics (Figure 5). LamG3
491  domain is a receptor for various extracellular matrix proteins, which function is mediated by
492 the calcium ion (Tryggvason 1993; Yurchenco et al. 1993; Yu and Talts 2003; Klees et al.,
493 2008; Suzuki et al., 2017). This thus might explain the usefulness of the domain not only for
494  the formation of calcified structures but also for other functions, while at the same time also
495  suggests the unnecessity of the organisms compared to retain or use all of the

496  BMSP/LamG3/Pif protein homologs for the same function, which might thus also explain
497  why Cephalopods (Nautilus) only use LamG3 for their shell formation, and why the

498  argonauts also re-recruited this protein to form their eggcase.

499

500  Conclusion

501 Until very recently, studies on the evolution of Cephalopoda lacked insights from genomic
502  perspectives. However, recent genome data publications of various species have remedied
503 this. In this study, we present a genome assembly of Argonauta argo, which provides

504  significant insight into the genetic and evolutionary background of the adaptation to the

505 pelagic environment, such as the evolution of the visual proteins Opsin and Reflectin, and the

506  shell matrix protein Tyrosinase. The improved quality of the genome assembly also allowed
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507  us to identify the presence of sexually highly polymorphic regions, which would be useful in
508 future studies aiming at the elucidation of the genetic underpinnings of extreme male-female
509  dimorphisms in the species. The pronounced sexual dimorphism probably evolved as an

510  adaptation to holopelagic life in the open ocean with few male-female encounters. Besides
511 that, the improved contiguity of the genome assembly confirmed the presence of several gene
512 clusters including both deeply conserved ones, such as Hox, ParaHox, and Wnt, and unique
513  ones that might be involved in evolutionary novelty.

514 The newly obtained draft genome sequence also allowed us to hypothesize about the

515  evolution of some major shell matrix proteins related to calcification, seemingly re-recruited
516  in the formation of the eggcase, which was impossible to do in our previous multi-omics-
517  based studies. We also were able to corroborate our previous report based on a multi-omics
518  study on the eggcase matrix proteins. In this study, we found all of the eggcase matrix

519  proteins previously identified, while at the same time, also found the presence of LamG3 in
520  the genome of 4. argo (and O. bimaculoides), which was found as one of the eggcase matrix
521  proteins of A. hians but not in A. argo in our previous multi-omics study. We also found an
522  ortholog of the Pif coding gene in the genome of 4. argo, besides in the recently published
523  genome of N. pompilius. Combined with the protein structure prediction using Alphafold2,
524  we thus were able to build a hypothesis about how BMSP/LamG3/Pif proteins evolved. In
525  our hypothesis, the BMSP/LamG3/Pif proteins are key proteins for the formation of calcified
526  external structures, including the eggcase. Therefore, the presence of pif'in the genomes of
527  Nautilus and 4. argo and lamG3 in the genome of O. bimaculoides might explain the

528  usefulness of LamG3 domain for the formation of calcified structures, which might thus

529  explain why the argonauts also re-recruited LamG3 protein, although not necessarily Pif and
530  BMSP, to form their eggcases.

531
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532  Materials and Methods

533  Sampling, Sequencing, and Genome Size Estimation

534 The 4. argo DNA used for sequencing was derived from a single female provided by

535  bycatch caught in the fixed nets set along the coast in Oki Island Town, Shimane Prefecture,
536 Japan (36°1720.6"N 133°12'46.4"E). Pieces of the gonad (ovary) were collected from an

537  individual female specimen collected in 2018. The shell is registered as a collection of The
538  University Museum, The University of Tokyo in Tokyo, Japan (Voucher No. RM33391).

539  Genomic DNA was extracted from the ovary using the QTAGEN Genomic-tip kit. Pooled

540  DNA was used for the preparation of three paired-end and three mate-pair (3, 6, 10, and 15
541  kbp insert size) libraries, that were sequenced on an [llumina HiSeq 2500 at the National

542  Institute of Genetics, Japan with supports by Platform for Advanced Genome Science

543  (PAGS) (Table S6, S7).

544 Pieces of the mantle, arm membrane of the first arm, and 2nd arm tip were obtained from
545  the same single individual to genomic DNA. Eyes, hearts, and gill hearts were sampled from
546  different individuals of 4. argo. Six transcriptomes of 4. argo were obtained and raw data
547  statistics are provided in Table S6. Total RNA was extracted from the tissue samples using
548  Trizol (Invitrogen) followed by an on-column DNasel treatment using the RNeasy mini kit
549  (Qiagen). The RNA acquoliot was stored at —80°C until further transcriptome analyses.

550  The 4. argo genome size and heterozygosity were assessed with GenomeScope v2.0 (Ranallo-
551  Benavidez et al. 2020), based on the quality-filtered Illumina reads. A heterozygosity rate of
552 1.44% was estimated from the 32-mer-based assessment of the 4. argo genome
553  (Supplementary Figure S1). Complete microsatellite sequences were estimated and visualized
554  with Krait v1.3.3 (Du et al. 2018b).

555 Raw read sequence data will be available in the DNA Data Bank of Japan (DDBJ). We are

556  willing to share our raw data before the publication of the original paper on the assumption
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557  that it will be done as a collaborative research.

558

559  De Novo Genome Assembly and Annotation

560 Using the predicted 1.1 Gb genome size estimate of the 4. argo, the total raw sequence
561  coverage of [llumina reads was 201x% (pair-end reads, 3 kb, 6 kb, 10kb, and 15 kb mate-paired
562  libraries). To reconstruct the mitogenome, we performed contig assembly (-n 200) with

563  Platanus v1.2.4 (Kajitani et al. 2014) using the paired-end data. Contigs annotated as

564  mitochondrial sequences were extracted by using the mitogenome data of a closely related
565  species, 4. hians (NC_036354), as the query for BLASTn homology search. After assembling
566  the contigs, both ends of the resulting single contig were manually confirmed to overlap, and
567  redundant parts were removed to complete the full circular mitogenome.

568 The pair-end sequence reads (PE600) after adapter trimming were assembled using De
569  Bruijn graph assembler, Platanus-allee v. 2.2.2 (Kajitani et al. 2019). The basic algorithm of
570  the Platanus-allee v2.2.2 is based on the arrangement of two independently assembled

571  sequences derived from each haplotype of the corresponding two homologous chromosomes.
572 Contig assembly was performed using only the PE library, and then scaffolding and gap

573  closure were performed using all libraries. Assembly statistics by Platanus v222 was shown
574  in Table S8.

575 Gene prediction models were generated using custom-made annotation pipeline as in

576  (Inoue et al. 2021). In brief, this pipeline combines RNA-seq-based prediction results,

577  homology-based prediction results for related species, and ab initio prediction results using
578  in-house dynamic program. RNA-seq based prediction utilized both the assembly-first

579  method and the mapping-first method. For the assembly-first method, RNA-seq data were
580  assembled using Trinity (Grabherr et al. 2011) and Oases (Schulz et al. 2012). Then,

581  assembled contigs were splice-mapped with GMAP (Wu et al. 2005). For the mapping-first
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582  method, RNA-seq data were mapped to genome scaffolds and genes were predicted using
583  HISAT2 (Kim et al. 2019) and StringTie (Petea et al. 2016). In terms of homology-based
584  prediction, amino acid sequences of Octopus vulgaris (Zarrella et al. 2019), Octopus

585  bimaculoides (Albertin et al. 2015), Architeuthis dux (da Fonseca et al. 2020), Crassostrea
586  giga (Zhang et al. 2012), and Mizuhopecten yessoensis (Wang et al. 2017), were spliced-
587  mapped to genome scaffolds using Spaln62, and gene sets were predicted. For ab initio

588  prediction, raining sets were selected from RNA-seq based prediction results and

589  AUGUSTUS (Stanke et al. 2003) and SNAP (Korf et al. 2004) were trained and used for
590  prediction. Predicted results of each tool are shown in Table S9 and as a final result, 20,293
591  protein coding genes were predicted (Table S9). Predicted genes were evaluated using

592  BUSCO v3.0.2 (protein mode) (Simao et al. 2015) and resulted in 97.0% complete gene

593  marked, suggesting high accuracy of the annotation (Table S10). This goes beyond the

594  cephalopod genomes sequenced so far, and is comparable to high quality mollusc genomes
595  (Table S11).

596

597  Phylogenetic Analysis

598 Phylogenetic analyses were conducted on a total of five gene families obtained in this
599  study (Hox, reflectin, tyrosinase, opsin, bmsp/lamg3/pif proteins). To build single-gene trees
600  based on orthologs, we performed webBLAST search using A. argo protein sequences

601 translated from the gene sequences. Sequences for the phylogenetic tree were collected from
602  Genbank to cover the whole Lophotrochozoan clade. To perform multiple alignments of
603  protein sequences, we utilized the online version of MAFFT v7.487 (Katoh et al. 2002;

604  https://mafft.cbrc.jp/alignment/software/; accessed in August 2021), followed by the removal
605  of ambiguously aligned sites using the online version of trimAl_v1.4beta (automated option)

606  (Capella-Gutiérrez et al. 2009; http://phylemon2.bioinfo.cipf.es/index.html; accessed in
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607  August 2021). Maximum likelihood phylogenetic inferences were executed on the software
608  RAxXMLGUI v2.0.5 (Silvestro et al. 2012; Stamatakis 2006) the rapid tree search setting with
609 1000 bootstrap replications under the best fit models (BMSP/LamG3/Pif proteins = WAG +
610 TI,Hox=LG+TI +1, Reflectin=JTT + " + F, Tyrosinase = LG + I' + I). The best fit models
611  were inferred using MEGA X (Kumar et al. 2018). Obtained trees were visualized with

612  FigTree v1.4.2 (Rambaut 2009).

613 For Opsin, sequences from other metazoans were collected from GenBank and Ensembl
614  databases. Multiple sequence alignments of protein sequences were also performed by

615  MAFFT. The best fit models were inferred using Modeltest (Darriba et al. 2020). Maximum
616 likelihood phylogenetic inferences were executed on the software IQ-TREE (ref) the tree

617  search setting with 1000 bootstrap replications under the best fit models (LG+G4: Best-fit
618  model according to Bayesian Information Criterion (BIC) for c-opsins, LG+F+I+G4: BIC for
619  r-opsins). The trees were visualized with FigTree v1.4.2 (Rambaut 2009).
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920  Figure legends and Tables
921  Figure 1 The Argonaut octopuses. A. The shell-like eggcase of Argonauta argo. B. The shell-
922 like eggcase of 4. hians. C. Collect location.

923  Figure 2 Schematic representations of Hox/Parahox/Wnt clusters. A. Simplified classification

924 of the Hox cluster genomic organization of the cephalopods with the genome sequenced.
925 Scaffold number and length are shown for the 4. argo genome. The gene model IDs of each
926 gene are shown above each box. The sequences of the homeobox region were confirmed
927 from scaffold for those gene IDs not listed. Hox2/pb and Hox4/Dfd were also not found in
928 the 4. argo genome as in the O. bimaculoides genome. B. Simplified classification of the
929 Parahox and Wnt cluster genomic organizations of molluscs with the genome sequenced.
930 Scaffold number and length are shown for the 4. argo genome.

931  Figure 3 Schematic representations of reflectin clusters. A. Reflectin clusters of the octopuses.
932 B. Gene expression levels of 4. argo reflectins.
933  Figure 4 Schematic representations of tyrosinase clusters.

934  Figure 5 Phylogenetic relationships of Pif/Pif-like/BMSPs of Molluscs and representative 3D

935 protein models. The maximum likelihood tree was estimated under the best fit models
936 (WAG +T'). Numbers on the nodes are Bootstrap Support (BS) values. BS lower than 41%
937 are shown as “--”, while 100% support is not written. Representative structures of the
938 proteins of the sequences included in the analyses, shown as SMART protein domains, are
939 shown below the trees. Four 3D structural models (PIF; Aargo018021 [4Argonauta argo],
940 pfu_aug2 0 956 1 21296 tl [Pinctada fucata], LamG3; Aargo013232 [Argonauta argo],
941 Ocbimv22010162m_p [Octopus bimaculoides]) were estimated with AlphaFold2.
942 Schematic representation of domain structure and 3D structural model were colored each
943 domain characteristic: Signal peptide, red; VWA, pale orange; 1st ChtBd, green; 2nd ChtBd,

944 blue; 3rd ChtBd, yellow; LamG and RLCD, pink.
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945  Figure S1 GenomeScope result.
946  Figure S2 Microsatellite types found in the Argonaut genome.

947  Figure S3 Molecular phylogenetic tree of the Hox genes. The maximum likelihood

948 phylogenetic tree inferred under the LG + I" + I model with 1000 bootstrap replicates. Hox
949 genes of Argonauta argo are marked with a black arrow. Abbreviations: Nuctum: Nucula
950 tumidula, Cragig: Crassostrea gigas, Pecmax: Pecten maximus, Gibvar: Gibbula varia,
951 Lotgig: Lottia gigantea, Apcal: Aplysia californica, Eupsco: Euprymna scolopes, Octbim:
952 Octopu bimaculoides, Naupom: Nautilus pompilius, Acacri: Acanthochitona crinite,

953 Antent: Antalis entails, Glympell: Gymnomenia pellucida, Alivir: Alitta virens, Linana:
954 Lingula anatine: Dromel: Drosophila melanogaster, Braflo: Branchiostoma floridae:

955 Caeele, Caenorhabditis elegans.

956  Figure S4 Alignment of Hox genes recovered in the scaffolds but not in the gene models.
957  Figure S5 Reflectin phylogenetic tree

958  Figure S6 Reflectin alignment with reference to repetitive reflectin motifs

959  Figure S7 Reflectin alignment to show gene conversion

960  Figure S8 Tyrosinase phylogenetic tree. The maximum likelihood phylogenetic tree inferred

961 under the LG + I + [ model with 1000 bootstrap replicates. Numbers on the nodes are

962 Bootstrap Support (BS) values. BS lower than 41% are not shown, while 100% support is
963 shown as a black square. Tyrosinase of Argonauta argo are marked with underlined. Three
964 type of tyrosinase are shown secreted (o), cytosolic (f) and membrane-bound ()

965 subclasses.

966  Figure S9 Tyrosinase alignment at amino acid level
967  Figure S10 Tyrosinase alignment to show gene conversion
968  Figure S11 Opsin alignment and unique amino acid changes of argonaut based on bovine

969 rhodopsin
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970  Figure S12 Phylogenetic tree of RGR and rhabdomeric opsins
971  Figure S13 Xenopsin phylogenetic tree

972 Figure S14-16 Protein structure of Pif/Pif-like/BMSPs. The schematic representation of three

973 proteins of Pif/Pif-like/BMSPs are shown within the box frame. Conserved domains within
974 each protein are predicted in SMART, and the 3D structural models were estimated with
975 AlphaFold2. The domains regions, which distinguished by the domain prediction and its
976 conserved alignment regions, are marked different color: Signal peptide (red), 1st VWA
977 (deep orange), 2nd VWA (ocher), 3rd VWA (pale orange), 4th VWA (orange), 1st ChtBd
978 (green), 2nd ChtBd (blue), 3rd ChtBd (yellow), LamG and RLCD (pink).

979

980  Table SI1 Assembly comparison among molluscan genomes

981  Table S2 Assembly comparison based on BUSCO scores (genome mode, metazoa odb9,
982 n=978)

983  Table S3 Krait estimation of the microsatellite regions

984  Table S4 Comparison of ORFs in the Hox cluster between blue mussels and giant squid
985  Table S5 Proteome list

986  Table S6 List of 4. argo genome sequencing data

987  Table S7 List of 4. argo RNA-seq sequencing data

988  Table S8 Assembly statistics by Platanus v222

989  Table S9 Gene prediction models using custom-made annotation pipeline with transcriptomic
990 data

991  Table S10 Gene model comparison based on BUSCO scores (protein mode, metazoa odb9,
992 n=978)

993  Table S11 Gene model comparison among molluscan genomes
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