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ABSTRACT

The laboratory rat is an important model for biomedical research. To generate a
comprehensive rat transcriptomic atlas, we curated and down-loaded 7700 rat RNA-seq
datasets from public repositories, down-sampled them to a common depth and quantified
expression. Data from 590 rat tissues and cells, averaged from each Bioproject, can be

visualised and queried at http://biogps.org/ratatlas. Gene correlation network (GCN) analysis

revealed clusters of transcripts that were tissue or cell-type restricted and contained
transcription factors implicated in lineage determination. Other clusters were enriched for
transcripts associated with biological processes. Many of these clusters overlap with previous
data from analysis of other species whilst some (e.g. expressed specifically in immune cells,
retina/pineal gland, pituitary and germ cells) are unique to these data. GCN on large subsets
of the data related specifically to liver, nervous system, kidney, musculoskeletal system and
cardiovascular system enabled deconvolution of cell-type specific signatures. The approach is
extensible and the dataset can be used as a point of reference from which to analyse the
transcriptomes of cell types and tissues that have not yet been sampled. Sets of strictly co-

expressed transcripts provide a resource for critical interpretation of single cell RNA-seq data.
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INTRODUCTION

In the year of the rat (2020), the Rat Genome Database (RGD) celebrated 20 years of
development (1). Those 20 years saw completion of the draft genome (2). Around 90% of
protein-coding genes had an inferred 1.1 ortholog in humans. Subsequent technology
advances allowing the sequencing of multiple inbred strains including several with disease-
associated alleles (3). Szpirer (4) catalogued more than 350 rat genes where rat lines with

natural or introduced variants provide models for human disease.

Analysis of transcriptional regulation in human and mouse has been driven by large
consortium projects such as GTEX (5) and FANTOM (6) and there are many on-line resources
for these species. Multi-tissue transcriptional atlas projects have also been published for other
species including chicken, sheep, buffalo, pig and goat (7-11). Although it was once suggested
that guilt-by-association is the exception rather than the rule in gene regulatory networks (12),
the principle is now very well-established. Genes associated with specific organs, cell types,
organelles and pathways (e.g. the cell cycle, protein synthesis, oxidative
phosphorylation/mitochondria) are stringently co-expressed along with the transcription
factors that regulate them (5,6,8,13-18). An extension of the principle of co-regulated
expression is that it is possible to extract signatures of specific cell types, for example the
stromal component of tumors (19) or resident tissue macrophages (20) based upon analysis

of a large number of samples in which their relative abundance is variable.

The functional annotation of the rat genome is still a work in progress. Many rat genes in
Ensembl are described as “novel rat gene” and annotated solely by a gene number.
Transcriptional regulation has evolved rapidly amongst mammalian species (21,22). Even
where there is 1:1 orthology at the level of protein-coding sequence and conservation of
synteny with other mammals the expression may not be conserved. Two substantial studies
have contributed to annotation of the rat transcriptome through RNA-seq analysis of a partly-
overlapping set of major rat organs (23,24). Long read RNA sequencing has also contributed
to refinement of rat transcriptome annotation (25). Because of the extensive use of the rat as
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a model in biomedical research, there are thousands of RNA-seq datasets in the public domain
from isolated cells and tissues in various states of activation that could provide an additional
resource for functional annotation. By combining random library down-sizing to reduce
sampling bias and the high-speed ‘pseudo-aligner’ Kallisto (26) to quantify expression, we
previously established a pipeline [7, 11] to enable meta-analysis of published RNA-seq data.
Here we have used this pipeline to produce an extended expression atlas for the laboratory
rat. To demonstrate the robustness of the integrated data we have carried out network analysis
to identify sets of co-expressed transcripts. The dataset is downloadable and the pipeline is
extensible to allow inclusion of additional data and regeneration of the network as new RNA-

seq data becomes available.

METHODS

Selecting samples for an expression atlas of the rat

To create a comprehensive expression atlas for the rat we first downloaded the daily-updated
NCBI BioProject summary file from ftp://ftp.ncbi.nim.nih.gov/bioproject/summary.txt (obtained
19th July 2021) and parsed it to obtain all BioProjects with taxonomy ID 10116 (Rattus
norvegicus) and a data type of ‘transcriptome or gene expression’, supplementing this list by
manually searching NCBI Geo and NCBI PubMed for the keywords “RNA-seq AND rat”.
BioProjects were selected to extend the diversity of tissues, cells and states from two existing
rat transcriptomic atlases that analyse gene expression in a subset of major rat tissues (23,24).
For each BioProject, we automatically extracted the associated metadata using pysradb v1.0.1
(27) with parameter ‘--detailed’, or by manual review. Metadata for each BioProject, indicating
(where available) the breed/strain, sex, age, tissue/cell type extracted, and experimental
condition (for example, treatment or control) are detailed in Table S1, which includes both the
data downloaded via the pipeline and additional information retrieved manually from the ENA
record, NCBI BioProject record and cited publications. For incorporation into the expression
atlas, we required that all samples have, at minimum, tissue/cell type recorded. Overall, the
input to the atlas comprised 7682 samples from 363 BioProjects.
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88  Quantifying gene expression for the atlas

89  Foreach library, expression was quantified using Kallisto v0.44.0 (26) as described in detail in
90 previous studies on other species (7-9,20). Kallisto quantifies expression at the transcript level,
91 as transcripts per million (TPM), by building an index of k-mers from a set of reference
92  transcripts and then ‘pseudo-aligning’ reads to it, matching k-mers in the reads to k-mers in

93 the index. Transcript-level TPM estimates were then summed to give gene-level TPM.

94  To create the reference transcriptomic index, we performed a non-redundant integration of the
95 set of Ensembl v98 Rnor6.0 protein-coding cDNAs (http://ftp.ensembl.org/pub/release-
96  98/fasta/rattus_norvegicus/cdna/Rattus_norvegicus.Rnor_6.0.cdna.all.fa.gz, accessed 24"
97 November 2019; n=31,715 transcripts) and the set of 69,440 NCBI mRNA RefSegs
98  (https://ftp.ncbi.nlm.nih.gov/genomes/refseqg/vertebrate_mammalian/Rattus_norvegicus/all_a
99 ssembly_versions/suppressed/GCF_000001895.5 Rnor_6.0/GCF_000001895.5 Rnor_6.0_r
100 na.fna.gz, accessed 24™ November 2019), as previously described (7). The purpose of the
101  integration was to include transcripts that had not already been assigned Ensembl transcript
102 IDs and whose sequence was not already present in the Ensembl release (under any
103 identifier). RefSeq mRNAs incorporate untranslated regions (UTRs) and so could encapsulate
104 an Ensembl CDS. The trimmed UTRs from each mRNA were generated excluding all
105 sequence outside the longest ORF. In total, the reference transcriptome comprised 71,074
106  transcripts, representing 25,013 genes. Using this reference, expression was quantified for
107 7682 publicly-archived paired-end lllumina RNA-seq libraries. The Bioprojects are summarised
108 in Table S1. Prior to expression quantification, and for the purpose of minimising variation
109 between samples, we randomly downsampled all libraries to 10 million reads, 5 times each,
110  using seqtk v1.2 (https://github.com/Ih3/seqtk, downloaded 4™ June 2018). Expression level

111 was then taken to be the median TPM across the 5 downsampled replicates.

112  Thefinal expression atlas details the median downsampled TPM per gene, averaged for tissue,
113  age, and BioProject. As in previous projects for other species (7-11) the full dataset of 590
114  averaged expression data from cells and tissues is displayed on BioGPS (28,29) at
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115  biogps.org/ratatlas to enable comparative analysis across species. The full processed primary
116 dataset and the averaged data is available for download at an Institutional Repository
117  (https://doi.org/10.5287/bodleian:Am9akye72). The latter is a comma-separated text file,
118  which can be directly loaded into the network analysis software used herein or alternatives
119  such as Gephi (gephi.org) or Cytoscape (cytoscape.org). This file can be easily supplemented
120 by addition of further RNA-seq data processed in the same way. All scripts for generating the

121  atlas are available at www.github.com/sjbush/expr_atlas.
122  Network analysis and functional clustering of atlas samples

123  To examine the expression of genes across this wide range of tissues and cell types, the
124  expression data were analysed using the network analysis tool BioLayout (derived from
125 Biolayout Express®® (30)), downloaded from http://biolayout.org. The same files can be
126  uploaded into the recently-developed open source package, Graphia (https://graphia.app),

127  which supports alternative clustering approaches and dynamic modification of parameters.

128 The initial analysis used the values averaged by age and BioProject for each tissue.
129  Subsequent analyses used individual values for samples of liver, musculoskeletal system,
130 cardiovascular system, kidney and central nervous system. For each analysis, a sample to
131 sample correlation matrix was initially constructed at the Pearson correlation coefficient (r)
132 threshold necessary to include all samples in the analysis (shown in Results and figure
133  legends). Pearson correlations were then calculated between all pairs of genes to produce a

134  gene-to-gene correlation matrix of all genes correlated at r = 0.75.

135 Gene co-expression networks (GCNs) were generated from the matrices, where nodes
136  represent either samples or genes and edges represent correlations between nodes above the
137  selected correlation threshold. For the sample-to-sample analyses (essentially analogous to a
138  principal components analysis, PCA) an initial screen at the r value which entered all samples

139  was performed, followed by subsequent analyses with a higher r value which removed outliers
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140 and revealed more substructure in the networks. For each gene-to-gene analysis an r value

141 threshold of 0.75 was used for all analyses (Figure S1).

142  For the gene-to-gene networks, further analysis was performed to identify groups of highly
143  connected genes within the overall topology of the network, using the Markov clustering
144  algorithm (MCL) (31). The MCL is an algebraic bootstrapping process in which the number of
145  clusters is not specified. A parameter called inflation effectively controls granularity. The
146  choice of inflation value is empirical and is based in some measure on the predicted complexity
147  of the dataset (31). The chosen inflation value was 2.2 for all analyses and only genes
148  expressed at =210 TPM in at least one sample were included. Gene ontology (GO) terms and
149  Reactome pathways were derived from the Gene Ontology Resource (http://geneontology.org,
150 release of 18 August 2021) using PANTHER overrepresentation test (PANTHER release of 24
151  February 2021). The reference list used was Rattus norvegicus (all genes in database), the
152 GO Ontology database was the release of 2 July 2021 (DOI: 10.5281/zenodo.5080993) and
153 the Reactome pathway analysis used Reactome version 65, released 17 November 2020.

154  These resources area all available at the Gene Ontology Resource (http://geneontology.org).

155 RESULTS

156  Samples in the atlas

157 7682 RNA-seq libraries, each with a unigue SRA sample accession from 363 BioProjects, were
158  obtained by the pipeline as described in Methods and used to create a global atlas of gene
159  expression. Metadata for the individual BioProjects are summarised in Table S1. For
160 comparative tissue analysis and the core atlas, expression across libraries was averaged by
161  tissue, age and BioProject. This reduced the dataset to 590 different averaged samples of rat
162 tissues and cells summarised in Table S2A. For a separate analysis of liver, kidney,
163  musculoskeletal, cardiovascular and central nervous systems to extract tissue-specific co-

164  expression signatures, individual RNA-seq datasets from within each BioProject were used.

165 Network analysis of the rat transcriptome
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166 Initially we performed a sample-to-sample correlation to assess whether there were likely to
167  be batch effects resulting in outlier samples that were unrelated to tissue type. To include all
168 590 samples, it was necessary to use r 2 0.21. An image of the resulting network graph is
169 shown in Figure 1. Since BioProjects tended to focus on one strain, age, sex and
170  tissuel/treatment, some BioProject specific clustering was expected. However, illustrating the
171  robustness of the sampling and down-sizing approach, related tissues analysed in different
172  BioProjects generally clustered together (compare Figure 1A where nodes are coloured by
173  organ system and Figure 1B where they are coloured by BioProject). At a more stringent
174  correlation coefficient threshold of 0.7, only 15 samples of relatively low connectivity were
175 removed but the association of nodes by organ system rather than BioProject is more obvious
176  (Figure 1C and D). No clear outliers or BioProject-specific clusters (batch effects) were
177  identified so all averaged samples were included in the subsequent gene-centred network
178 analysis. The threshold correlation coefficient was chosen to maximise the number of nodes
179  (genes included) while minimising the number of edges (correlations between them) (Figure
180  S1). Atthe optimal correlation coefficient of r =2 0.75, the graph contained 14,848 nodes (genes)

181  connected by 1,152,325 edges.

182  Table S2B shows all of the clusters detected for transcripts with a minimum expression of 2
183 10TPM in at least one sample. By comparison to previous network analysis of mouse, human,
184  pig, chicken, sheep and water buffalo transcriptomes (7-11) at this relatively stringent
185  correlation coefficient, the much larger and more diverse rat transcriptomic dataset has a more
186  fine-grained distribution with >1300 clusters having 2 nodes or more. In the published RNA-
187  seqtranscriptional atlas of 11 rat organs (32) which is included in the current data, around 40%
188  of transcripts were expressed in all organs, in both sexes and at all development stages. In
189 this larger set of averaged data, reflecting the much greater diversity of tissues and isolated
190 cells sampled here, only 96 genes (0.38%) were detected above the 10 TPM minimal threshold

191  in all 590 samples.
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192 GO terms for clusters discussed below are included in Table S2C. Consistent with previous
193  analysis, there are clusters that show no evidence of tissue-specificity but are clearly-enriched
194  for genes involved in defined biological functions. For example, Cluster 11, Cluster 54 and
195  Cluster 69 are associated with the cell cycle, DNA synthesis and repair. Cluster 41 is made
196  up almost entirely of histone-encoding transcripts, likely due to incomplete removal of non-
197  polyadenylated transcripts in some of the RNA-seq libraries. This cluster is not specific to any
198  BioProject. The 18 transcripts within this cluster identified by LOCID also have provisional
199 annotation as histones. Although this cluster is the product of a technical error, it also highlights

200 the power of the clustering approach to extract signatures of co-expression.

201 Table 1 summarises the expression patterns and biological processes associated with
202  clusters of transcripts showing evidence of tissue or cell-type enrichment. The largest cluster
203  of transcripts (Cluster 1), >1500 in total, is expressed almost exclusively in the testis. More
204  than 500 of these transcripts are identified only by a LOCID, RGD or other uninformative
205 annotation and many more are identified only by structural motif (for example 50 members of
206  the Ccdc family, 35 undefined Fams, 20 testis-expressed (Tex) and 15 Tmem protein genes).
207 The complexity of the testis transcriptome in all mammalian species has been widely
208  recognised (reviewed in (33)). The set of testis-enriched transcripts with functional annotations
209 encode proteins associated with meiosis, sperm differentiation, structure and motility and
210 acrosomes. Unannotated genes are likely to involved in male fertility. For example, mutation
211  of Dlecl, a putative tumor suppressor gene, was recently shown to cause male infertility in
212 mice (34). LOC498675 is a predicted 1:1 ortholog of mouse testis-specific gene
213  1700102P08Rik, which is expressed in spermatocytes and is essential for male fertility
214  (35,36). Smaller testis-enriched clusters include Cluster 29, which contains Sertoli cell
215 markers such as Aard and Tsx (37,38), Cluster 72, which contains Fshr and the essential
216  testis-specific transcription factor Taf7l ((39,40)) and Cluster 88, which includes the male-

217  determining transcription factor Sry.
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218  Clusters 17 and 18 contain transcripts expressed in both the retina and the pineal gland, both
219  intimately involved in chronobiology and light sensing. Chang et al. (41) recently produced an
220 aggregated resource describing the shared and divergent transcriptomes of these structures.
221  Cluster 17 contains Opnlsw, the pineal-enriched transcription factor Crx and its target Aanat
222  encoding the rate-limiting enzyme in melatonin synthesis (42). One unexpected inclusion in
223 Cluster 17, enriched in pineal, is the transcript encoding the transcription factor MITF. Mitf in
224  humans may be driven by as many as 7 distinct promoters including one used specifically by
225  melanocytes. A unique transcription start site is shared by retinal pigment epithelial cells and
226  pineal gland. Mitf over-expression in mouse pineal gland relative to other tissues has been
227  noted previously (42,43) and in humans also MITF is most highly-expressed in pineal
228  (http://biogps.org). However, whereas targets of MITF have been identified in melanocytes
229  and many other cell types (44) and mutations impact many complex phenotypes in mice and
230 humans, there appears to be no literature on its role in the pineal. To illustrate the utility of the
231 data, in Table S2D we have reviewed the annotation of transcripts in Clusters 17 and 18
232 identified as LOCID. Several novel transcripts of unknown function (e.g. Katnip
233  (LOC361646,aka KIAA0O586; Talpid3), encoding a highly-conserved ciliary protein associated
234  with the human genetic disease, Joubert syndrome (45) and Lrtm1 (LOC102547963), a novel
235 membrane protein) are also almost uniquely expressed in the human pineal gland

236 (http://biogps.org)

237 Many small clusters are enriched in tissues, cell-types or activation states that were not
238 analysed in the existing rat atlases or indeed in any previous atlas project in other species.
239  They can be annotated based upon known markers. For example, Cluster 145 with 12 nodes
240  contains transcripts encoding major secreted products of the pituitary (Cga, Gh1l, Fshb, Lhb,
241  Tshb) and the transcription factors that regulate their expression (Pitx1, Six6, Tbhx19). Cluster
242 180 contains a subset of known immediate early genes (Egrl,Fos,Jun) mostly associated with
243 isolated primary cells, and likely reflects cell activation during isolation or tissue processing

244  (20). Other known genes in the immediate early class cluster separately, or not at all, because
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245  they are constitutively expressed by specific cell types. Similarly, groups of inducible genes in
246  innate immune cells are all expressed by LPS-stimulated macrophages but divide into at least
247  three clusters (Cluster 101, including Illla; Cluster 112 including Ifit2 and other interferon

248  targets; Cluster 126 (including Tnf) because of expression by non-immune cells.

249  Other smaller clusters group genes that share functions. The large protocadherin family of cell
250 adhesion molecules is broadly-divided into the clustered (o, ,y) and non-clustered (3)
251  subgroups (46). The & protocadherins are predominantly expressed in the nervous system and
252  indeed Pcdhl, 8, 9, 20 are brain-restricted and part of the second largest cluster (Cluster 2).
253  However, Cluster 81 includes Pcdhb22 and16 members of the Pcdhg (A and B) families which
254  are collectively enriched in the CNS but also widely expressed in other tissues. In addition,
255 LOC108353166 within this cluster is annotated as protocadherin gamma-B2-like. Further

256 members are more brain-restricted and grouped together in Cluster 250.

257  9/13 mitochondrially-encoded peptides group together in Cluster 212 whereas Clusters 61 and
258 76 group nuclear-encoded mitochondrial genes involved in the TCA cycle and oxidative
259  phosphorylation (as expected, most highly-expressed in heart and kidney). Cluster 102 groups
260 18 transcripts encoding proteins involved in mitochondrial  oxidation of fatty acids. Several
261  ofthe genesin this cluster are mutated in multiple acyl-CoA dehydrogenase deficiency (MADD,
262  also known as glutaric aciduria type 1l) and related metabolic disorders (47). One additional
263  gene involved in this pathway, Etfb, does not form part of a cluster. It is correlated with Etfa at
264  r=0.599 and with Etfdh at r = 0.527 but expressed at lower levels in certain tissues including

265 the pineal gland.

266  Cluster 127, with 14 nodes, contains two markers of neurogenic cells (Sstr2, Mpped1; (48,49))
267 and a candidate regulator, Tiam2 (50) and is otherwise made up of 11 brain-specific
268 transcriptional regulators, each of which has been shown to be essential for neurogenesis and
269 likely interacts with the others. Clusters 125 and 332 contains 20 genes encoding proteins that

270  have all been implicated as molecular chaperones including multiple components of the TRIC
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271  chaperone complex (Tcpl, Cct2,3,4,5). Cluster 557 with only 4 nodes contains the
272 oligodendrocyte transcription factors, Oligl and Olig2, as well as Sox 8, which has non-
273 redundant function in oligodendrocyte differentiation (51). The fourth node in this cluster,
274  LOC103692025, is predicted by the RGD to be an ortholog of Lhfpl3 which in mouse is a
275  marker of oligodendrocyte lineage commitment (52). The two calmodulin-encoding genes
276  (Calml and Calm2) are co-expressed (Cluster 673) as are three genes involved in cholesterol
277  synthesis (Fdftl, Hmgcr, Hmgcsl) (Cluster 742). Insl and Ins2, encoding insulin, are co-
278  expressed with pancreatic polypeptide (Ppy) (Cluster 751) but not with glucagon (Gcg).
279  Although Ppy is normally expressed by rare gamma cells in pancreatic islets, a recent study

280 indicated that gamma cells can produce insulin following beta cell injury (53).

281  Each of the clusters contains genes that are identified only as LOCID or other numerical
282  designation. These are obviously the subject of ongoing curation and in some cases LOCID
283  transcripts duplicate named transcripts in the same cluster. In Table S2 we have included an
284  update on candidate annotations from the RGD. Clearly, the co-expression information can
285  provide additional assurance that putative orthology relationships with known mouse or human

286  genes are likely to be correct.

287  Transcripts that do not form clusters

288  The first step in network analysis is the generation of a pairwise correlation matrix, and for any
289  gene of interest one can immediately identify others with the most similar expression patterns.
290 By lowering the inclusion threshold (r value) it is possible to include a larger proportion of
291 transcripts, but the associations may become less informative biologically. Genes with unique
292  expression profiles across the samples will not correlate with any other and therefore will not
293  be included in the network graph. In many cases, the unique expression profile of a gene of
294  interest arises because the gene product is “multi-tasking” in different locations. Figure 2

295  shows the individual profiles of selected examples discussed below.
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296 Mutations in FBN1, encoding the extracellular matrix protein fibrillin-1, are associated with
297  Marfan syndrome which has complex impacts on musculoskeletal development, adiposity,
298  vascular function and the eye. Distinct 3’ truncation mutations are associated with a neonatal
299  progeroid lipodystrophy syndrome (54). Consistent with these phenotypes, Fbnl mRNA is
300 highly-expressed uniquely in the rat eye, aorta and cardiovascular tissues and
301 cartilage/tendons and to a lesser extent in fibroblasts and adipose. There is also moderate
302  expression in spinal cord and dorsal root ganglia, lung and testis. Dural ectasia, enlargement
303 ofthe neural canal, is a common feature of Marfan syndrome (55). Expression in the lung may
304 underlie the pulmonary emphysema observed in mouse models of fibrillinopathy (56) patients
305  with Marfan syndrome frequently show apical blebs in the lung and are prone to pneumothorax

306 (collapsed lung).

307 The gene encoding dystrophin (DMD) associated in humans with mutations causing Duchenne
308 muscular dystrophy, is also not clustered. As expected, it is expressed in rat cardiac, skeletal
309 and uterine muscle, but is also expressed in multiple brain regions at similar levels. This
310 expression may be related to the neuropsychiatric impacts of the disease in both affected
311 individuals and mouse models (57). In this case, FANTOMS5 data indicate that DMD has at

312  least two independent promoters (6).

313 RGD1359108 has not been annotated on RGD, but on Ensembl it is a clear 1:1 ortholog of
314  human C9orf72, associated with amyotrophic lateral sclerosis and frontal temporal dementia.
315  O’Rourke et al. (58) reported that loss of function mutation in this gene in mice did not produce
316  motor neuron dysfunction, but did lead to macrophage dysfunction, splenomegaly and
317 lymphadenopathy. In rat, C9orf72 is expressed widely in all CNS-associated tissues, most
318  highly in spinal cord, but not enriched in any isolated CNS cell population. Outside the CNS it

319 is most highly-expressed in stimulated macrophages and in testis.

320 A significant cohort of transcripts is excluded from co-expression clusters because they have
321  alternative promoters, each with a distinct expression profile. One such gene is Acp5, encoding
322  the widely-used osteoclast (OCL) marker, tartrate-resistant acid phosphatase. Acp5 forms part
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323 of a small cluster (Cluster 179, 10 nodes) that is most highly-expressed in the femoral
324  diaphysis, and includes another OCL marker Ctsk, osteoblast-associated transcripts (Bglap,
325 Dmpl and Sp7) and Ifitm5, mutated in a human bone-related genetic disease, osteogenesis
326  imperfecta type V. It is surprising that so few transcripts are stringently associated with OCL;
327 another small cluster (Cluster 174, 11 nodes) that contains Dcstamp, Ocstamp (Zfp334) and
328 Mmp9, is enriched in the diaphysis sample but more widely-expressed. Expression of Acp5 in
329 OCL in mice is initiated from an OCL-specific promoter (59). Aside from its function as a
330 lysosomal enzyme in bone resorption, secreted ACP5 can function as a neutral ATPase and
331 a growth factor for adipocytes (60,61). Acp5 mRNA is expressed, albeit a lower levels than in
332  bone, in rat adipose, lung (where it is expressed highly by alveolar macrophages), small and

333 large intestine, kidney and spleen as well as isolated macrophages.

334  The transcriptome of the rat liver

335 The downloaded datasets included around 1900 individual RNA-seq libraries of liver, including
336  whole liver from various ages, sexes, inbred and outbred rat strains, disease models, liver slice
337 cultures and isolated cells. In principle, clustering of such diverse data could identify sets of
338  co-expressed transcripts that are associated with cell-types, locations or disease processes
339 thatare hidden in the averaged data of the complete sample set. To test that view, we clustered
340 the entire liver-related dataset without averaging the replicates. As in the main atlas, the
341  correlation threshold was chosen empirically at 0.75. The cluster list and the average profile
342  of transcripts in each cluster is provided in Table S3 and informative clusters are summarised

343 in Table 2.

344 Itis immediately evident that not all of the samples are pure liver. Liver-Cluster 31 contains a
345  set of pancreas-specific genes, including Cpal, that overlaps with Cluster 64 in the main atlas.
346  This cluster arises because of random contamination with pancreatic tissue of liver samples in
347 the large bodymap project (32). Liver-Cluster 73 contains transcripts encoding all of the major
348  secretory products of pancreatic islets (e.g. Ins1, Gcg). This cluster was detected only in liver
349  from a study of enforced activity and sleep deprivation (62). It is not clear from the paper how
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350 these samples could have been selectively contaminated with islet mRNA unless they are
351  mislabelled. Liver-Cluster 5 is detected in a rather random subset of samples from multiple
352  BioProjects likely also indicating contamination. It includes the progenitor marker, Lgr5, but
353  also various adhesion molecules (Cldn10/18) and neuroendocrine markers (Chga/b). There is
354 little evidence of expression of these genes in normal liver in other species, and at least some
355 of the genes (e.g. Cckar, Cldn10/18) are highly-expressed in pancreas and/or stomach (e.qg.
356  see http://biogps.org). Liver-Cluster 21 is detected in a single sample, and contains smooth

357 muscle-associated transcripts (Actg2, Tpm2).

358 The disadvantage of analysing a single tissue is that most transcripts do not vary greatly
359  between datasets. In one sense, this provides a quality control for the efficacy of the random
360 sampling approach we have used. In this dataset, the largest cluster by far (Liver-Cluster 1) is
361 relatively consistent with the exception of increased detection in all samples from a BioProject
362 that profiled liver slices from a bile duct ligation model, cultured for 48 hrs in vitro and treated
363  with various agents (63). It is not clear why this gene set would be expanded in that cellular
364  system. Liver-Cluster 1 includes many transcripts expressed constitutively by hepatocytes.
365 The most abundant hepatocyte-specific transcript encoding albumin (Alb) is not strictly
366  correlated with any other transcript presumably reflecting its specific regulation (64). Liver-
367  Cluster 1 also contains transcripts encoding markers of hepatic stellate cells (e.g Pdgfra/b) and
368 the corresponding growth factors (Pdgfa/b/d) as well as more general mesenchyme markers
369 (e.g Vim) and markers of cholangiocytes (e.g. Krt7) suggesting that their relative abundance

370 is not highly variable amongst the samples.

371 The remaining liver clusters analyse differential development and activation states that
372  distinguish the samples and BioProjects. These clusters are informative and consistent with
373  prior knowledge. Liver-Cluster 2 is expressed specifically in embryonic liver and is a complex
374  mix of transcripts reflecting both differentiation of hepatocytes and the function of the liver as
375 a hematopoietic organ. Accordingly, it contains the cell cycle genes, the fetal growth factor

376  Igf2, and markers of erythroid (e.g. Hbb) and myeloid (S100a8/a9) hematopoietic lineages.
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377  Liver-Clusters 3 and 4 are both expressed in almost all liver samples and the level of
378  expression is not highly variable. Expression of each of the smaller clusters is much more
379  variable between samples and BioProjects and known genes within those clusters indicate an
380 association with specific cell types and processes as summarised in Table 2 and discussed

381 below.

382  One signature that was no detected is that of the specialised centrilobular population that is
383 adapted to clear ammonia generated by the urea cycle. In mice, the rate-limiting enzyme,
384 glutamate ammonia lyase (aka glutamine synthetase, Glul) is expressed exclusively in a band
385  of cells surrounding the central vein. Liver-specific deletion of Glul leads to pathological hyper-
386 ammonemia (65). In mice, this population of cells co-expressed Rhgb (encoding an ammonia
387 transporter) and ornithine aminotransferase (Oat) and was enriched for a number of Cyp genes
388 (e.g Cyp2el, Cypla2). However, in the diverse rat liver dataset, there was only marginal

389 correlation with other centrilobular-enriched transcripts.

390 The transcriptome of central nervous, renal, musculoskeletal and cardiovascular

391  systems.

392  Each of these systems also contributes hundreds of RNA-seq datasets including isolated cells
393  and specific regions or structures. To examine further the utility of these large datasets for the
394 analysis of cell-type and process-specific signatures, the data from each of these biological
395 systems was clustered separately in Table S4 (nervous), Table S5 (renal), Table S6
396 (cardiovascular) and Table S7(musculoskeletal). The clusters are annotated in the Tables and
397 to avoid confusion with multiple Cluster numbers, each system is discussed separately in
398  Supplementary Text. Broadly-speaking, as in the liver, network analysis of individual organ
399 systems enables a more fine-grained extraction of cell-type, region and process-specific

400 expression signatures.

401

402
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403  The transcriptome of rat macrophages

404  The transcriptome of rat macrophages has been analysed previously based upon microarrays
405 (66) and the RNA-seq data included here (67). Macrophages adapt to perform specific
406  functions in specific tissues (20). Cluster 21, which includes Csf1r, is most highly-expressed in
407  brain and brain-derived cells and includes transcripts that are enriched in microglia compared
408  to macrophages from other tissues (e.g. P2ry12). Around 2/3 of these transcripts are contained
409  within a set of 119 transcripts depleted in all brain regions of Csflr-knockout rats (68). Cluster
410 47 contains transcripts that may be shared with microglia (e.g. ltgam, encoding CD11b) but
411  are common to monocytes and many tissue macrophage populations. Cell surface markers of
412  other macrophage populations cluster idiosyncratically, indirectly supporting tissue
413  macrophage heterogeneity; Clec4f, the Kupffer cell marker is within the liver cluster, Vsig4 and
414  Marco (Cluster 1239), Clecl0a, Mrcl (CD206), and Stabl (Cluster 168), Lyvel and Timd4
415  (Cluster 79), Adgrel and Clec4al/3 (Cluster 286) are correlated with each other while others
416  (e.g. Cd163, Tnfrsflla, Siglecl) do not cluster at all at this threshold because each has a
417  unique pattern of expression in tissue macrophages. Figure 3 shows the profiles of Csflr,

418  Adgrel, Cd163, Vsig4 and Mrcl in the averaged data.

419  The network analysis of such a diverse set of cells and tissues also dissociates known
420 macrophage transcriptional regulators (e.g. Spil, Spic, Nr1h3, Mafb, Irf8, Cebpa/b, Tfec) (20)
421 from macrophage expression clusters because none of these regulators is entirely
422  macrophage-restricted. For example, transcription factor SPIC in mice is required for splenic
423  red pulp macrophage and splenic iron homeostasis (69). In the rat, Spic mMRNA is most highly-
424  expressed in spleen as expected, but also detected in ES cells and germ cells. Macrophage
425  differentiation and adaptation likely involves combinatorial interactions amongst multiple
426  transcription factors as exemplified by the complex regulation of the transcription of the Csflr

427  gene (70).

428  Whereas macrophages express a diversity of endocytic receptors, there is not a corresponding
429 large cluster of transcripts encoding endosome-lysosome components including the vacuolar
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430 ATPase (ATP6v) subunits and lysosomal hydrolases. Transcripts encoding endosome-
431  associated CD68 and GPNMB proteins are co-expressed with Ctsb and Ctsd. Although CD68
432  is often used as a macrophage marker, it is clearly not macrophage restricted. Most transcripts
433  encoding lysosomal acid hydrolases (e.g. Acpl, Lipa) are widely-expressed and each varies

434  independently.

435  Csflr is strongly correlated with other macrophage-specific markers in Cluster 21, consistent
436  with strong evidence that expression is entirely restricted to the macrophage lineage in rats as
437 itisin mice (71). It is also detected at relatively high levels in all tissues (around 5-10% of the
438 level in isolated macrophages) consistent with the abundance of tissue macrophages
439  detectable with a Csflr reporter transgene (71) and with a study of tissue development in mice
440 (72). However, expression was also detected in many isolated primary cell samples that are
441 not meant to contain macrophages. For example, BioProjects PRJNA556360 and
442  PRJINAS52875 contain RNA-seq data derived from oligodendrocyte progenitors purified using
443  the A2B5 marker but this population has Csflr expression at similar levels to purified
444  macrophages. Another BioProject, PRINA355082, describes expression profiling of isolated
445  astrocytes, but this dataset also has a similar level of Csflr mMRNA to pure macrophages. Other
446  datasets from various ganglion cell populations, neuronal progenitor cells, cardiac fibroblasts
447  and cardiomyocytes and hepatic stellate cells are clearly highly-enriched in Csflr and other

448  macrophage-associated transcripts.

449 CSF1R hastwo ligands, CSF1 and IL34. In mice and rats, mutation of the Csfl gene leads to
450 a global reduction in many tissue macrophage populations, whereas mutation of 1134 in mice
451 leads to selective reduction of microglia and Langerhans cells. Based upon the difference in
452  phenotype between Csfl and Csflr mutations in rats, we speculated that 1134 could be more
453  widely-expressed and functional in rat macrophage homeostasis compared to mouse (67).
454  Neither growth factor forms part of a cluster. Figure 3 also shows the profiles of Csfl and 1134.
455  As expected, Csfl mRNA is widely-expressed and enriched in isolated mesenchymal cells.

456 1134 is expressed in all brain regions and isolated cells at similar levels and also in skin.
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457 However, by contrast to mouse, 1134 is expressed at similar levels in many other tissues,

458  notably aorta, adipose, kidney, lung and testis.

459  The tissue-specific analysis in Tables S4, S5, S6 and S7 enables the extraction of
460 macrophage-specific signatures from resident populations that have not been isolated and
461  characterised previously. For example, in the cardiovascular analysis, a cluster of 184
462  transcripts containing Csflr as well as a smaller cluster containing Adgrel extracts a signature
463  of cardiac resident macrophages distinct from blood leukocytes which form a separate cluster

464  (Supplementary On-line text).

465 DISCUSSION

466 Overview.

467  The extraction and normalisation of published RNA-seq data has enabled the generation of a
468 comprehensive rat expression atlas that samples transcriptional diversity on a comparable
469  scale to the FANTOMS data for human and mouse (6) and massively extends the Bodymap

470 generated from 11 rat tissues (32). The user-friendly display at www.biogps.org/ratatlas

471  enables a gene-specific query to visualise the expression of any gene of interest across the
472  full dataset and use of the Correlation function allows the identification transcripts with similar
473  expression profiles. Biogps also hosts large expression datasets for mouse, human, sheep
474  and pig for comparative analysis. The validity of the down-sampling normalisation, and the
475  utility and information content of the atlas has been exemplified by gene-centred network
476  analysis (GCNA) of the averaged core dataset. The primary data is available for download by
477  users in a form that enables local regeneration of the networks and addition of user-generated
478  datasets. By comparison to rat, there are orders of magnitude more total RNA-seq datasets
479  from mouse and human cells and tissues in public repositories. We previously identified and
480 analysed 470 RNA-seq datasets from mouse resident tissue macrophages alone, excluding
481  data from cells stimulated in vitro or in disease models (20). The approach we have used in

482  extensible to even larger datasets in mouse and human.
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483  Analysis of liver-specific transcriptional network.

484  The assembled dataset includes multiple BioProjects and thousands of RNA-seq datasets
485  related to the liver, central nervous system, heart and cardiovascular system and kidney. Each
486  has been analysed independently to identify signatures of individual cell types and processes
487 (Tables S3-S7). To illustrate the ability of network analysis to extract biologically informative
488  expression signatures, we analysed the liver data (Table S3) in greater detail and considered

489  other tissue-specific analysis in Supplementary On-Line text.

490  Liver gene expression is regulated in response to humerous physiological stimuli and chronic
491  disease processes including fatty liver disease. Aside from hepatic parenchymal cells, the liver
492  contains several non-parenchymal populations. To identify co-regulated clusters within the
493  liver transcriptome we analysed the liver samples separately using the same GCN approach
494  used for the overall atlas. The liver is the major source of plasma protein and performs many
495  functions in energy homeostasis, lipid and protein synthesis, biotransformation of xenobiotics
496 and endogenous by-products. The function of the liver depends on its structure, which
497  comprises small units called lobules each composed of concentric layers of hepatocytes
498 expanding from the central vein toward the periportal vein. The metabolic function of
499  hepatocytes varies along the periportal—-central axis, a phenomenon referred to as metabolic
500 zonation (73). In principle, if there was significant heterogeneity in metabolic state or
501 development amongst the liver samples, a gene-to-gene clustering might reveal sets of genes
502 associated with portal versus centrilobular regions of liver lobules. Halpern et al. (74)
503 performed single cell RNA-seq analysis of mouse hepatocyte diversity and concluded that
504  zonation impacts as many as 50% of transcripts. However, this analysis was limited to 8 week
505 old fasted male C57BI/6 mice and does not necessarily capture coordinated regulation of the
506 metabolic domains including diurnal oscillations and response to feeding (75). Broadly-
507 speaking, the single cell analysis indicated a periportal bias for major secretory products of
508 hepatocytes and a pericentral concentration of expression of genes involved in xenobiotic

509 metabolism.
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510 Network analysis revealed a large co-regulated cluster (Liver-Cluster 11) that includes Gls2,
511  an archetypal periportal marker in mice, other enzymes and transporters associated with the
512  urea cycle (Assl, Acy3, Agmat, Cbs, Gpt, Slc25a22, Nags) and the glucagon receptor, Gegr.
513  Cheng et al. showed that glucagon is a regulator of zonation in mouse liver, in that glucagon
514  deficiency led to reduced expression of periportal-enriched transcripts (76). There are
515 candidate transcriptional regulators within this cluster with known functions in hepatic
516 transcriptional regulation; the xenobiotic sensor Nrli2 and the glucose-sensing transcription
517 factor Mizipl (77,78). A smaller Liver-Cluster 88 contains additional key enzymes of urea

518 synthesis, Argl, Cpsl, Gpt2 as well as the amino acid transporter, Slc38a4.

519 The analysis does not reveal a corresponding pericentral expression cluster. Glul, which
520 appears strictly-restricted to a single layer of cells surrounding the central vein in mice, rats
521 and humans (73) showed limited heterogeneity amongst the liver datasets and did not form
522  partof this cluster. This suggests that Glul is not highly-regulated whereas other centrilobular-
523  enriched transcripts alter their expression in response to external stimulus. Another putative
524  landmark pericentral gene, Cyp2el, is actually part of Liver-Cluster 11, redistributed in at least
525 some of the experimental models sampled herein, as observed in a model of paracetamol
526  exposure that forms part of this dataset. Other transcripts that are biased to centrilobular also
527 form separate clusters because of their independent regulation in response to stimulation. For
528 example, Cypla2 was identified as a pericentral marker (73). Liver-Cluster 54 is elevated in a
529 dataset from a BioProject studying the effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD),
530 a potent aryl hydrocarbon receptor (AhR). It includes the detoxifying enzymes Cyplal,
531 Cypla2 and Cyplbl, the AHR repressor gene (Ahrr) and transcription factor Cdx2, a known
532  AHR target gene (79). A distinct set of xenobiotic metabolising genes, Ces2a, Gstm2 and
533 Ugtla5 is coregulated in Liver-Cluster 69, and Ephx1l and Gsta2,4,5, ml are co-regulated in
534  Liver-Cluster 146. The proteasome subunit, Psmd4 was also pericentral in mice (74) but it is
535 found in Liver-Cluster 10 stringently co-regulated as one might expect with numerous other

536 components of the proteasome complex. Liver-Cluster 10 contains the transcription factor
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537  Creb3, and likely reflects the activation of the Golgi stress response in a subset of samples or

538  BioProjects (80).

539  The regulation of lipid metabolism is of particular interest given the current epidemic of non-
540 alcoholic fatty liver disease. There is some evidence of zonation of fatty acid metabolism in the
541 liver; fatty acid B oxidation being enriched in periportal and lipogenesis in pericentral
542  hepatocytes (74) but these pathways are independently regulated in this dataset. Liver-Cluster
543 13 is highly-enriched for genes involved in lipolysis and fatty acid § oxidation. It overlaps the
544  smaller cluster in the full atlas (Cluster 101) but includes many additional genes that have
545 tissue-specific enrichment (e.g. Acot7 in CNS). Conversely, Liver-Clusters 16 and 70 comprise
546  enzymes of cholesterol and fatty acid synthesis and the known transcriptional regulators, Nfe2
547  and Srebfl/2. Liver-Cluster 26 contain multiple genes involved more generally in mitochondrial
548 oxidative phosphorylation including multiple genes encoding NADH-ubiquinone
549  oxidoreductase (NDUF) subunits. We are not aware of any heterogeneity in mitochondrial

550 distribution in the liver.

551 The various metabolic and inflammatory disease models, with distinct effects on non-
552  parenchymal cells, enable deconvolution of signatures of specific cell types and disease
553 processes. Liver-Cluster 6, which includes the classical fibrosis marker, Acta2 (smooth muscle
554  alpha actin/ SMA) is elevated in fibrosis models, but highest in E14 liver, which may indicate
555 that myofibroblast activation in fibrosis recapitulates the phenotype of embryonic
556  mesenchyme. Liver-Cluster 18 captures transcripts associated with more advanced fibrotic
557 disease and includes multiple collagen genes and two candidate transcriptional regulators,
558 Etvl and Osr2. This cluster also contains the mesenchymal gene OIfmI3, which is also
559  expressed in microglia in the mouse (see biogps.org) and human (81) but is not associated
560  with microglia in the rat (68). This highlights the problems with assuming that genes have

561  similar expression patterns and functions across species.

562  The fibrosis-associated clusters are clearly separated from Liver-Cluster 7 which captures the

563  phenotype of infiltrating CD45* (Ptprc) myeloid cells in various models. Two sets of interferon-
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564  responsive transcripts including key regulators Irf7 and Irf9 cluster separately (Liver-Clusters
565 25 and 43) as do transcripts associated with expression of class Il MHC (Liver-Cluster 65).
566  These clusters are separated also from the signatures of endothelial cells (Liver-Cluster 63)
567 and of Kupffer cells, the resident macrophages (Liver-Cluster 56). The latter cluster includes
568 the transcript encoding the macrophage growth factor receptor, Csflr and many transcripts
569 that were also down-regulated in livers of Csflr-knockout rats (82). Clec4f, which is expressed
570  exclusively by Kupffer cells in mice, and is in the liver-specific cluster in the extended atlas, is
571 in a separate cluster (Liver-Cluster 95) with the three C1q subunits (Clqga/b/c), Cfp, Ctss, Pld4
572  and Tifab. There is emerging interest in the later gene, a forkhead-associated domain protein,

573  in immune cell function and inflammation (83).

574  Finally, in rodents, there is a set of transcripts that is expressed in the liver in a sex-specific
575 manner in part under the influence of growth hormone (84,85). The male and female-specific
576 liver transcriptomes are regulated by differential expression of specific transcription factors,
577 CUX2 and ONECUT?2 in females and BCL6 in males. The majority of samples are from males,
578  but nevertheless, Liver-Cluster 66 is excluded from female livers, and Liver-Cluster 84 contains

579  Cux2, Trim 24 and known female-specific transcripts.

580 The relationship between network analysis and single cell RNA-seq for the definition of

581 cell types in tissues.

582  Asin the liver, the network analysis of other major organ systems enabled robust extraction of
583  clusters of co-regulated transcripts often including the transcription factors that regulate them.
584 In this case, the issue of tissue-specific promoters becomes less of an issue and genes that
585  have multiple promoters (e.g. Mitf, Acp5) may form part of tissue-specific networks highlighting
586 local functions. The deconvolution of large datasets by network analysis complements single
587 cell RNA-seq (scRNA-seq) analysis which has rapidly become a dominant approach to
588 analysis of cellular heterogeneity. scRNA-seq is not quantitative. Typically, expression of
589 <1000 genes is detected in each cell and even the most highly-expressed transcripts are not
590 detectedin every cell (86). The output of sScRNA-seq conflates two distinct types of zero values:
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591 those where a gene is expressed but not detected by the sequencing technology (stochastic
592  sampling) and those that reflect genuine expression heterogeneity. Whereas we can readily
593  separate entirely unrelated cells that share few markers in sScRNA-seq, such as epithelia and
594  hematopoietic cells, the identification of numerous subpopulations within individual lineages is
595 tenuous at best (20). A second disadvantage of analysis of isolated cells by scRNA-seq or total
596 RNA-seq is that cells are inevitably activated during isolation and single cells can have

597 attached remnants of other cells that contribute RNA (20).

598 Suo et al. [87] described computational analysis of mouse cell atlas to identify 202 regulons
599  whose activities are highly variable across different cell types and predicted a small set of
600 essential regulators for each major cell type in mouse. We have achieved the same outcome
601 for the rat without the use of scRNA-seq. The advantage of network deconvolution as
602 performed here is that one can explore a much wider diversity of states than can be
603  contemplated with scRNA-seq and identify more robust co-regulatory modules. Any proposed
604 pair of markers of a specific cell population defined by scRNA-seq should be strongly
605  correlated with each other if both are detectable in whole tissue. The prediction was tested in
606 a meta-analysis of mouse tissue macrophage populations which failed to support the existence
607  of a specialised macrophage subset defined from scRNA-seq data by reciprocal expression of
608 Lyvel and Mrcl (20). Herein the detailed analysis of the liver data indicates that zonation of
609 the liver is dynamic and individual pathways are regulated to a large extent independently of
610 each other. So, the definition of subpopulations of hepatocytes is state-dependent. The
611  discussion of other systems in Supplementary On-line text casts doubt on the fine-grained
612  definition of subsets of tissue-specific parenchymal/epithelial cells and more generic glial cells,
613  fibroblasts, endothelial cells, parenchymal cells and macrophages in many published scRNA-
614  seq analyses. Network analysis reveals regulons that may, or may not, be restricted to a
615 defined cell population, but which are clearly linked to function. In that respect one might

616  reasonably question the value of defining cell types as an approach to understanding biology.
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Table 1. Gene expression clusters from rat tissues and cells. Clusters were generated at r 2

0.75 and MCL inflation value 2.2. Clusters of = 40 nodes are shown. Selected transcripts

encoding transcription factors are highlighted in red.

Cluster
number

Number of
transcripts

Specificity

Index genes and
TFs

Functional annotation

1/70

1514/27

Testis

Acr, Amhr2, Ccnal,
Fshr. Meioc, Spatal6,
Tnpl/2, Rec8, Stag3
Nr6al, Pbx4, Rfx2/8,
Sox5, Sox30, Tcfl5,
Taf7l

Spermatogenesis, motility,
meiosis

1303

CNS neurons

Amigol, Camk2a,
Cx3cl1, Gabbri1/2,
Grik1-5, Nfasc, Snca,
Atf2, Bcl7a, Cbx6,
Hdac11, Hivep2, Lmos3,
Pou6fl, Rfx3, Tcf25,

Neurotransmission, neural
development,

583

Non-specific
variable

Atm, Birc6, Ccntl/2,
Cdk12/13, Ddx5/6,
Fancb, Herc1/2, Hipkl
Arid2, Crebl, Kdmba,
Nf1, Nfe2I3, Nr2c2,
Smad4/5

Misfolded protein/stress
response, tumor suppressors

342

Liver

Afm, Alb, Apocl-4, C3,
Cfb, Cth, Cyp2al, F2,
Fetub, Gegr, Ghr, Hpx,
Igfl, Plg, Serpinal
Creb3I3, Foxa3, Meox2,
NrOb2, Nr1h3/i2/i3,
Rxra,

Hepatocyte secretory products,
xenobiotic metabolism.

310

Oocyte

Axin2, Bmp15, Bub1b,
Ccnb3, Dlgap5, Esrpl,
Eyal/3, Gdf9, Gprl,
Zpl-4

Cbx2, Dux4, Foxn4,
Foxrl, Gata3, Lhx8,
Nobox, Sall3, Taf4b,
Tafb, Tead4

Oocyte-specific transcription
Zona pellucida structure
Meiosis

213

Skeletal
muscle

Actal, Casql, Ckm,
Des, Mb, Myh2,Myl1,
Pfkm, Ryr1,

Lbx1, Myf6, Pou6f2,
Six1, Snai3, Zfp106

Muscle contraction, calcium
signalling

211

Kidney

Acol, Adm2,
Cyp4a2/a8, Klk1, Nox4,
Pthilr, Slc5a2

Tubule function, resorption,
metabolism

194

Oocyte

Aurkc, Ccnbl, Magoh,
Mnd1, Mos, Nanos2
Qoep,

Stem cell renewal, meiosis

26
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Brdt, Dazl, Gsc, Nr5a2,
Pcgfl/6, Sall4, Sox15,
Tcfl5, Tclla, Zfp57

11

188

Variable,
Not tissue-
specific

Bubl, Ccna2, Cdk1/2,
Cenpk, Ligl, Mki67,
Orcl, Pcna, Polal
E2f8, Foxm1l

Cell division cycle
DNA synthesis/repair, mitosis

12

165

ES cells (1)

Dppa3/a4, Duspl0,
Fof17, Fzd6, Slc2a3
Deafl, Ferd3l, H2az1,
Leftyl, Lmo2, Mybl2,
Nanog, Nkx2-8, Thx3,

Stem cell maintenance

14

124

Intestine

Ace2, Cdh17, Cldn7,
Defa family, Dgat1,
Heph, 1120ra, Krt20,
Lgals4, Muc1l3, Vill
Hnf4g

Intestinal barrier function

15

111

Stimulated T
cells

Cd2, Cd3e, Cd69,
Dock2, l12rg, Ltb, Ptprc,
Sla, Was

E2f2, Ets1, Gfil,
Ikzf1/3, Limd2

T cell function

17

96

Pineal/retina

Aanat,Arr3, Asmt,
Gchl, Opnilsw,

Bsx, Crx, Isl2, Lhx4,
Mitf, Neurod4, Tafa3

Pineal function
Melatonin synthesis

18

95

Retina/Pineal

Cngal, Gabbrl/2
Opnlmw, Pde6a/b/g/h
Rd3, Rdh8, Rpl, Rthdn
Bhlhe23, Pax4, Prdm13

Retinal function

19

94

Thymus

Ccl25, Cd3d, Cd8a/b,
Fas, Ragl, Tap2, Thata
Foxnl, lkzf2, Myb,
Pax1, Rorc, Tcf7,
Themis,

Thymic differentiation
Selection

20

94

Liver, kidney

Cyp2c23, Dcexr, Fbpl,
G6pc, Gk, H6pd, Pckl,
Slc22al, Slc37a4
Hnfla/4a, Nrlh4

Gluconeogenesis

21

94

Macrophage
microglia

Clqga/blc, Csflr, Ctss,
Gpr84, Hexb, Mpeg1l,
P2ry12/13, Siglecs,
Tgfbrl, Trem2, Tyrobp
Bhlhe41, Irf5

Innate immune function,
microglial differentiation

22

90

Skin

Cdsn, Csta, Klk9/10/12,
Krt4/13/23, Lce3d/e,
Lipk, Ppl, Trex2, Vsig8
Barx2

Skin barrier function

23

87

T cells,
NK cells

Ccll, Ccr4/5/8, Cd40Ig,
Gprl83, Ifng, 11174, 112,
l12ra/b, Lta, Zap70

Batf, Icos, Runx3, Stat4

Activation, cytokine secretion

24

85

Dorsal root
ganglia

Acp3, Calca/b, Grik1,
Htrid, Nfeh/lI/m, Nmb,
Piezo2, Prokrl, Ret
Drgx, Hoxd1, Pou4fl/f2,
Smad9, TIx3

Ganglion cell differentiation

27/28/33

75/74/65

Skin

Adgrf4, Ces4a, Coll7al
Keratins, Krtaps, Lce

Skin barrier function

27
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family, Lgals7, Lipm,
Perp
Tp63, Tprgl

29

69

Testis

Aard, Clec12b, GK5,
Hormad1, Incal,
Shhg, Sycpl/2

Msh4, Nkx3-1, Rhox8,
Thx22, Tsx

Sertoli cell differentiation
Synaptonemal complex

30

68

B cell

Btla, Cd19, Cd79a/b,
Cxcrb, Fcna, Gprl74
Ighm, Jchain,

Ciita, Paxb, Pou2afi,
Spib, TIx1

B cell differentiation
Immunoglobulin production

34

65

Prostate

Andpro, Cyss, Dach2,
Eaf2, Fut4, Laol, Lyc2,
Mc5r, Pbsn, Sbp,
Semgl,

Bhlhal5, Creb3l4, Esr2

Prostate differentiation
Secretion

35

64

Adrenal

Cbrl, Cypllal/b2/b3,
Cyplbl, Fdx1, Kcnk3/9,
Mc2r, Pcsk5, Pnmt,
Soatl, Star

Ar, Nrbal

Steroid hormone production
Adrenalin

36/40

64/59

Placenta

Ceacam3/9/11/12,
Cts7/8, Faslg, Fcrla/b,
Ifnk, 11171, 1123a, Lcn9,
Mmp1, Pegl0, Prl
family, Wnt8a

EIf5, Hand1, Rhox9

Trophoblast differentiation
Secretion

38

60

Brain

Crmp1l, Ephb2, Gpc2,
Gpr85, Marcksl1,
Mdgal, Mex3b

Dcx, Hmgb3, Lhx6,
Mycl, Neurog?2,
Runx1tl Sox11

Neurogenic progenitor cell
differentiation

42

56

Variable

Bub3, Ddx39a, Dkc1,
Srsf2/3, Tripl3
Mycn

Genotoxic damage response
Tumour suppressors

43

52

Cochlea
Middle ear

Cd164I12, Chrna9/10,
Cldn9, Fbxo2, Grxcrl/2,
Kncn, Loxhd1, Otoa/r/s

Hearing, cochlear function

44

51

Blood

Cxcr2, Gp9, Gypa, Kel,
Pf4, S100a9, Tpt1l,
Tspo2

Platelets, granulocytes

46

49

Lung

Ager, Agp5, Clecl4a,
Cyp2a3, Draml, Fmo2,
Lamp3, Lyz2,
Scgblal/3al/3a2
Sftpal/b/c/d, Wnt3a,
Hopx, Nkx2-1, Smads,
Thx4

Alveolar type 1 and type Il cell
function and secretion

47/83

48/24

Heart

Actcl, Cav3, Fgfl6,
Myh7, Myl2, Palld,
Ryr2, Tnncl

Ehd4, Irx4, Nkx2-5,
Pdlim5, Thx20

Cardiac-specific muscle
contraction.

48

48

Monocyte
Macrophage

Cbharl, Ccrl, Cd14,
Csf2ra, Cyba, Fcgrila,
Itgam, Msrl, Ncf1/2/4,
NIrp3, Sicllal

Innate immune function
Free radical production

28
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49

46

Kidney

Acre2, Agp2/3, Cldn8,
Insrr, Kcnel, Oxgrl
Foxil, Hmx2, Hoxd3

Distal tubule, collecting duct,
water resorption

51

45

ES cells (2)

Fgf4, Fgfl19, Gdf3
Nodal, Pou5f1, Prdm14

Regulation of pluripotency

55

38

Granulocytes

Camp, Ctsg, Elane,
Fnchb, Mpo, Prg2/3,
S100a8

Neutrophil granule proteins

63

33

Brain

Aqp4, Edil3, Gpr37/62
Mag, Mbp, Mobp,
Opalin, PIp1, Sema4d
Nkx6-2

Myelination, oligodendrocytes

64

33

Pancreas

Amy2a3, Cel,
Celal/2a/3b, Cpall/2,
Ctrc/l Pnlip, Pnliprpl/2

Pancreatic enzymes, secretion

66

29

Stomach

Atpda/b, Chia, Ctse,
Cym, Ghrl, Gkn1/2, Pgc

Acidification, digestive enzymes

68

27

Brain, PC12

P2rx2, Prph,Th, Vgf
Gata2, Hand2, Phox2a

Sympathetic neurons?

77

26

Mast cell?
Lymphatic

Adgrg5, Cmal, Cpa3,
Lilrb3a, Lyvel, Selp,
Sirpd, Slpi, Timd4
Cebpe

82

24

Adipose

Adipoq, Fabp4, Lep,
Lipe, Lpl, Oxtr, Plin1,
Pnpla2, Retn, Sucnrl,
Tshr

Pparg

Fat storage, lipolysis, adipokines

87

21

Lens

Cryb family
Cryg family, Lim2,
Opn4

Lens structural proteins

88

20

Macrophage

Adam8, Cd68, Ctsb,
Ctsd, Gpnmb, P2rx4

Endosome/lysosome

90

20

Colon

Krt19, Lypd8, Phgr1,
Pla2g10, Tspanl
Cdx2

Colon epithelium differentiation
Secretion

92

19

Cerebellum

Ca8, CbiIn1/3, Chn2,
Fat2, Gabra6, Grm4,
En2, Hes3

Purkinje cell differentiation,
granule proteins

95

19

Variable in
many tissues

Adgrl4, Cd93, Cdh5,
Dll4, Egfl7, Kdr,
Pcdh12, Pecaml, Tiel
Erg, Myctl

Endothelial cell differentiation

97

19

Cartilage
growth plate

Acan, Clecl1a,
Col9al/2/3, LoxI3, Rflna
Alx1, Nkx3-2

Cartilage structural proteins

98

18

Activated T
cells, thymus

Ccr7, Cd7, Cd96, Heca
Foxp3

Immune cell activation

101

18

Macrophage

Acodl, Cxcl10, ll1a/b,
Nos2

Response to LPS

106

16

Cartilage
Tendon

Col2al, Col10al,
Coll1al/2, Myh3, Ptx4
Zfp648, Zim1

Cartilage structural proteins

29
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637 Table 2. Gene expression clusters from rat liver.

638  Clusters were generated at r 2 0.75 and MCL inflation value 1.7. Full dataset is provided in
639  Table S3. Transcription factors are highlighted in red.

640
Liver-Cluster | Number of Description
number nodes
1 6292 Widely-expressed, high in bile duct ligation model

Growth, protein synthesis, inflammation, fibrosis,
connective tissue

2 752 High in fetal liver

Cell cycle, hematopoiesis, embryonic liver

Cyclins, Cdk1, Pcna, Igf2, Hbb, S100a8/9

E2f2, KIf1, Myb

3 414 General expression, metabolic regulation

Bcl212, Cdk5, Cirbp,

Esrra, Foxkl, Hdac6, Nfe2l1, Nr1h2, Nr2cl, Pias3, Rara,
Six5, Tfe3, Tfeb

4 278 General expression, control of lipid metabolism
Aridla, Bcl9, Camta2, Crtcl/2, Fastk,

Foxj2, Foxp4, Hsfl, Mef2d, Rela, Rfx1, Rxrb, Tp53

5 206 Isolated samples, gall bladder, neuroendocrine
Cckar, Chga/b, Cldn10/18, Inha, Krtapl-3, Lgr5, Scg3/5,
Nmb, Nts

6 166 E14 liver, fibrosis model

Acta2, Cdhl1l, Epha4/7, Fbn2, Gpc2, Myh6/7, Sfrpl1/2
Alx, Citedl, Foxfl, Gata5, Shox2, Thx15/18, Tgif2,
Twistl/2, Witl

7 148 Fetal liver, fibrosis, Zucker rats: myeloid infiltration
Axl, Cd4, Cd68, Clecdal, Fcgrla, Hk3, Lyz2, Ptprc
Irf5, Fli1, Spil

10 98 Variable expression: Proteasome complex, proteolysis

Anxa7, Ctsd/l, Fbxo22, Prdx1/6, Psma, Psmb2, Psmcl,
Psmd1, Tmx2, Usp5

Creb3

11 76 Variable, low in fetal liver, periportal hepatocytes, urea
synthesis

Agmat, Assl, Cesla, Cyp2el, Gls2, Gegr, Gpt,
Hsd17bl11, Pinkl, Slc25a22

Mixipl, Nrli2

13 67 Variable, low in fetal liver, fibrosis model. Fatty acid beta
oxidation

Acatl, Acotl, Crat, Cyp4al, Etfdh, Hadh, Pankl, Pdk4,
Slc22a5, Vnnl

16/70 105/10 Variable. Cholesterol and fatty acid synthesis

Aacs, Acaca, Acly, Dher7, Fads1/2, Fasn, Hmgcr,
Hmgcsl, Lss, Mvd

Nfe2, Srebfl/2

18 54 Fibrosis.

Angptl4, Collal/2, Col6al/6, Gpcl, Lgalsl, LoxI1, Lum,
S100a4, Sfprd

Etvl, Osr2
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24 41 Variable. Mast cells

Cpa3, Cpz, Mcpt2, Prss8

25 41 Variable. Interferon response

Dhx58, Gbpl/4, Ifi44, Ifitl, 1sgl5, Mx1/2, Oasl/2
Irf7

26 41 Variable. Mitochondrial

Atp5mel/f/lg, Cox7ab, Ndufa2/4/5/6

31 34 One bioproject, pancreas contamination

Celal, Cpal, KIk1, Pnlip, Prrs1

33 32 One bioproject, NK cells
Cd96, Gzma, Klral, Ly49, Prfl

34 31 Highly variable. Hepatic stellate cell activation?
Acvrlc, Apob, Egfr, Fcgr2b, Klb, Mrcl, Stab2,
KIf12, Nr3c2

43 21 Variable, Interferon response

Adar, Ifihl, Parp9/10/12/14

Irfo

56 12 Kupffer cell

Cd5l, Csflr, Sdc3, Siglecl, Vsig4

63 10 Endothelial cell

Cd9a3, Cdh5, Flt1, Nrpl, Pecam1l, Tgfbr3, Tiel
Etsl, Thbx20

65 10 Class Il MHC

Aifl, Batf2, Cd74, Rtl-Ba/b, RT1-Da/b

Irf8, Ciita

66 10 Male-specific

Akrlcl2, Cyp2a2, Hsd3b5, Sultlc3

69 10 Xenobiotic-induced

Ces2a, Gstm2, Ugtla5

84 9 Female-specific

Akrlb7, Cyp2cl2, Srd5al, Sult2al/6

Cux2, Trim24

641
642
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643  Figure legends

644  Figure 1. Sample to sample network graph for samples averaged by BioProject, age and tissue

645  type.

646 A. and C. Nodes coloured by organ system. Dark red — auditory system; light red,
647  cardiovascular system, salmon, digestive system; orange, endocrine system; olive, liver; bright
648 green, female reproductive system; teal, immune system; dark teal, integumentary system;
649 dark green, male reproductive system; black, mixed tissues; light blue, nervous system; dark
650  blue, primordia/early development; purple, renal system, pink, respiratory system; mauve,
651  skeletomuscular system; grey, whole body (embryo). B. and D. Nodes coloured by BioProject.
652 For A. and B. a correlation coefficient threshold of 0.21 was used; for C. and D, the threshold

653 was 0.7.

654  Figure 2. Gene expression profiles for genes which did not fall within a cluster.

655 Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ
656  system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue,
657  auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive
658  system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red,
659  skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive,
660 male reproductive system; dark pink, female reproductive system; dark turquoise,

661  primordia/early development; black, whole body (embryo); red, mixed tissues.

662  Figure 3. Gene expression profiles for macrophage-related genes.

663 Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ
664  system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue,
665  auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive
666  system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red,

667 skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive,
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668 male reproductive system; dark pink, female reproductive system; dark turguoise,

669  primordia/early development; black, whole body (embryo); red, mixed tissues.

670
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Figure 1. Sample to sample network graph for samples averaged by BioProject, age and tissue
type.

A. and C. Nodes coloured by organ system. Dark red — auditory system; light red,
cardiovascular system, salmon, digestive system; orange, endocrine system; olive, liver; bright
green, female reproductive system; teal, immune system; dark teal, integumentary system;
dark green, male reproductive system; black, mixed tissues; light blue, nervous system; dark
blue, primordia/early development; purple, renal system, pink, respiratory system; mauve,
skeletomuscular system; grey, whole body (embryo). B. and D. Nodes coloured by BioProject.
For A. and B. a correlation coefficient threshold of 0.21 was used; for C. and D, the threshold
was 0.7.
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Figure 2. Gene expression profiles for genes which did not fall within a cluster.

Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ
system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue,
auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive
system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red,
skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive,
male reproductive system; dark pink, female reproductive system; dark turquoise,
primordia/early development; black, whole body (embryo); red, mixed tissues.
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Figure 3. Gene expression profiles for macrophage-related genes.

Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ
system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue,
auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive
system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red,
skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive,
male reproductive system; dark pink, female reproductive system; dark turquoise,
primordia/early development; black, whole body (embryo); red, mixed tissues.
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Cluster analysis of nervous system samples

The largest collection of individual RNA-seq datasets in the atlas is related to central and peripheral
nervous tissues and includes 1855 samples. Table S4 lists all of the samples and the set of Clusters
identified by gene-centred network analysis. Brain region-specific analysis in juvenile rats has been
reported previously (1) and here we will not attempt a detailed annotation of every cluster. There are
obvious clusters of neuronal cell types enriched for specific neurotransmitter receptors or functions
and specific transcription factors. For example, Cluster 4 is enriched in dorsal root ganglia (DRG), and
contains specific transcription factors, Drgx and Is/2. The smaller Cluster 65 is even more DRG-
restricted and contains the nociceptor marker Ntrk3 (TRKA)(2), pain-associated receptors (Prokr1/2)
and transcription factors Hmx1, Isl1, Pou4f1 and Prdm12. Cluster 23 contains Kit, Slclal, Grial/2 and
Htrla and multiple voltage-gated potassium channels, Cluster 25 contains Ntrk3 and Grm3,5,7, Cluster
46 contains transcripts expressed in cerebellum and Cluster 55 clearly has a signature of dopaminergic
neurons including transcripts encoding synthetic enzymes (Dbh, Ddc, Maoa, Th). Finally, the small
Cluster 295 contains multiple neuron-specific transcription factors (Bc/1la, Fezf2, Foxgl, Lhx2,
Neurod1 and Tbr1) that have each been implicated in aspects of axonal guidance (3).

Cluster 5 is microglia-related, whilst the separate small Cluster 150 contains markers of brain-
associated macrophages (e.g. Mrc1/CD206). Cluster 6 is expressed in pineal gland, Cluster 14 contains
the transcripts for the structural and regulatory components of motile cilia, some of which are shared
with testis in the main atlas, Cluster 15 contains smooth muscle alpha actin (Acta2), Pdgrb and various
collagen genes and likely provides a signature of pericytes whereas endothelial markers (e.g. Pecam1)
are in Cluster 150 alongside brain-associated macrophage markers. Transcripts associated with
myelination (Mag, Mbp, Mog, Plip) are co-expressed in Cluster 36, although separated from the
oligodendrocyte progenitor-specific transcription factors, Oligl and Olig2. This separation occurs
because of the inclusion of an oligodendrocyte progenitor population purified using the surface
marker A2B5 (4). The original report claims minimal contamination with microglia (<0.8%) but in fact
these cells have the highest expression of any sample of the microglia-associated transcripts. They
express Olig2, but also lack expression of mature oligodendrocyte markers associated with
myelination (e.g. Mog). Sox10, which is also expressed in these cells and known to be involved in
oligodendrocyte differentiation (4) is actually in Cluster 32, a Schwann cell-enriched cluster, alongside
surface markers (Cadm4, Fermt2, Itga7, Mcam; (5)), multiple genes involved in their regulation and
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function (e.g. Erbb2/3 (6), Dhh, Bmp1, Matn2, semaphorins (Sema3a/3g) and several laminins (7). The
neurotrophic chemokine meteorin-like (Metrnl), also within this cluster, has not previously been
attributed a function in Schwann cells.

We do not detect an astrocyte-specific cluster containing any of the conventional markers such as
Aldh1l1, Gfap, S100b, Slc1a2/3 or Agp4. Mays et al. (8) reported scRNA-seq analysis of rat pineal gland
and identified 3 distinct astrocyte populations, but close examination of their data suggests a poor
correlation between the markers. Recent scRNA-seq data analyzing mouse cells harvested using an
Aldh1/1-EGFP reporter also indicates these cells are extremely heterogeneous and each of the markers
is independently-regulated (9). The use of Aldhlal as an astrocyte marker is difficult to justify. The
gene product has no known function in astrocytes; and is almost undetectable in rat brain or in human
astrocytes (10). It is part of the liver-specific cluster in the main atlas, and studies of the mouse
knockout focus on hepatic function and tumorigenesis (11). The simplest interpretation of the mouse
scRNA-seq data is that the Aldh1al marker is actually not astrocyte-specific. Batiuk et al. (12) used a
different marker, ATP1B2 (also not clustered in our dataset) and scRNA-seq to isolate and identify 5
separate region-enriched astrocyte populations in mouse brain. The heterogeneity of astrocytes has
been recognised for many years. For example, Waltz and Lang (13) used IHC to locate 3 putative
markers (GFAP, glutamine synthase (G/ul) and S100B) in rat hippocampus and concluded that up to
40% of astrocytes were GFAP-negative and GFAP-positive cells were selectively expanded in injury-
associated gliosis. We do in fact identify a very small cluster (Cluster 359) that contains Glul and other
markers enriched in rat astrocytes, the neurotensin 2 receptor (Ntsr2), Aldoc and Gjp6 (14-16). This
cluster supports Claudin 10 (Cldn10) as an additional marker. Cldn10 is detectable in rat and mouse
brain, albeit lower than in kidney. These may be the only robust astrocyte markers in the rat.

Analysis of the averaged data in the full atlas dataset revealed a cluster of transcripts enriched in
neurogenic progenitors. This cluster containing the commonly-used marker, Dcx, is further expanded
in the CNS restricted dataset. Cluster 13 includes multiple known surface markers (e.g. Cdh4, Cd24,
Cxadr, Gpr85, Lrp8) of neurogenic cells, known and novel transcriptional regulators (Hdac2, Hesé,
Myecl, Mycn, Sox4/11/12) and tubulin subunits (Tubala, Tubb2b, Tubb5). By extension, many other
genes in this cluster likely have a function in neurogenesis and are candidate genes for involvement
in human lissencephaly (absence of folds in the cerebral cortex) associated with failures of
neurogenesis and neuronal migration (17).

Cluster analysis of renal samples

The atlas dataset includes RNA-seq data from 17 separate BioProjects of the renal system (Table S1)
including studies of isolated cells, dissected regions, diabetes, injury and disease models and effects
of age, developmental stage and effects of mutations. Each of these BioProjects provides multiple
replicates. The kidney data include datasets from micro-dissected renal tubules (18), an analysis that
is more practical in the rat than the mouse. A subsequent study in mouse (19) proposed the existence
of signatures of as many as 43 separate cell types in the total kidney RNA-seq data based upon specific
markers and attempted to integrate with numerous published scRNA-seq datasets from mouse
kidney. Previous efforts to deconvolute whole tissue data to extract cell-specific signatures used
single cell data as a reference (20). A recent study reported eQTL analysis of microdissected human
kidney samples to identify cell-type specific eQTL that in turn linked to some 200 genes regulating
kidney function and blood pressure (21) and highlighted specific markers of the major cell populations
within the kidney.

Table S5 shows the set of co-expression clusters extracted from the rat renal RNA-seq data and these
are summarized in the Table below. Consistent with evidence that proximal tubules contribute the
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bulk of mRNA, the largest cluster contains numerous known markers enriched in proximal tubules
including 62 solute carriers and many transcriptional regulators known to be involved in renal
development of functional regulation. Clusters 2,3,4 are associated with specific BioProjects and
Cluster 5 is the cell cycle cluster, in this case elevated in a model of unilateral nephrectomy. Cluster
19 is surprising in that it contains Alb and Afp and includes an array of transcripts encoding plasma
lipoproteins, complement, and clotting factors normally associated with the liver. This cluster is
attributable to inclusion of one embryonic kidney sample from the developmental series and is
presumably due to misidentification or contamination.

Broadly-speaking, the analysis demonstrates that it is possible to extract the signatures of all of the
major cell types of the kidney and identify candidate regulators of their expression without
disaggregation or isolation or the use of single cell RNA-seq. This outcome includes a clear separation
of principal cells and intercalated cells from the collecting duct. Cluster 18 contains the markers of
principal cells. Interestingly, the cluster also contains the peripheral neuronal marker Ntrk1, but no
other markers of neurons. A recent study identified an NTRK1 mutation segregating with bipolar
disorder and an inherited kidney disease (22). The latter phenotype was attributed to mutation in the
neighbouring Mucl gene, but Mucl is barely detectable in kidney and not part of a cell-specific cluster.
Chen et al. (23) distinguished intercalated cells in the mouse based upon expression of KIT (Kit; which
is grouped with its ligand, Kitlg, in Cluster 9). They suggested that expression of two markers, Slc4al
and Slc26a4 was mutually exclusive and identified putative markers of type A and Type B intercalated
cells. However, the conclusion was based upon a small number of cells and in our analysis none of
these markers defines a separate cluster. One other notable feature of our analysis was the
identification of a clear signature of resident kidney tissue macrophages including the receptor for the
macrophage growth factor, Csf1r. Macrophages detected using the F4/80 marker in mice, or Csfir
reporters in mice and rats, are abundant in the medulla, providing an almost continuous lining of the
epithelial basement membranes (24-26), but they are clearly under-represented in all published
scRNA-seq datasets. In common with many other tissue macrophages, these cells express Clqg
subunits. As noted in the main text, a novel feature of these kidney macrophages that we have not
observed elsewhere is their expression of multiple other components of the classical complement
pathway and the Fc receptors, Fcrm and Fcrma. However, our analysis provides no support for CD81
as a proposed marker of resident rat renal macrophages (27)

Cluster Markers and transcription factors Cell type-function
1 Abcc3, Cypda2, Ghr, Kmo, Lrp2, | Proximal tubule function
Slclal, Slc2a2, Slc4a4, Vill Xenobiotic and intermediary metabolism

Ar, Atf2/6, Crebl, Cuxl, Esrl,
Etv1l/3/5/6, Foxj3/k1/n2/n3/03, HIf,
Hnfla/4a/4q, Ikzf2/f5, Nfa5, Nfatc3,
Nfe2i3, Nfib, Nrih4, Nr2c2, Nré6al,
Pou2f1, Ppara, Rel, Rxra, Smad3/4,
Sox6, Sp1/3/4, Tcf12/20, Teadl, Tef,
Tfec

6 Acta2, Axl, Bmp1, Cnnl/2, Cldn6/7, | Myofibroblast, pericyte, Bowman’s capsule
Col4a1/2, Col5al, Flna/b/c, Fnl, | structure, kidney extracellular matrix
Hbegf, Hspg2, Tgfb2, Tgm1

Bhlhe40, Cbx2, Etv4, Fosll, Fosl2,
Lmol, Sox4/11,

7 Calcrl, Cd34, Cdh5, Clecla, Ednrb, | Kidney capillary endothelial cells
Fitl, Kdr, Notch4, Nrpl, Pecaml,
PodXxl, Ptprb, Vegfa
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Atf7, Creb3I2, Erg, Ets1/2, Fli1, Foxol,
Hivep1/2, Hoxc5/6, KIf3/7/12, Mafb,
Mef2c, Meis2, Prdmi1/2/11, Sox18,
Tcf4, Snai2

8 Adgrel, Clga/b/c, Clr, Cfh, Cd74, | Resident kidney macrophages
Clec7a/10a, Csf1r, Ctss, Fcgrla, Fcrm,
Fcrma Itgam, Lyz2, Mpegl, Nirp3,
P2ry12, Selplg, Tir1/7/8

Ciita, Irf8, Spil

9 Agp3, Atpvlg3, Bmprlb, Car2, Cldn8, | Collecting duct intercalating cells
Kit, Kitlg, Ptgerl, Rhcg, P2ryldm
Scnnla/g, Slc26a4, Sic4al

Dmrt2, Foxil, Foxpl, Hmx3, Irf6,
Nr3c2, Tbx2

12 Cav3, Cldn5, Clic3, Ddn, Gpcl, Mgp, | Podocytes
Nphs1/2, Olfm1, Sirpa, Thy1

Foxc2, Fox1, Gatas, Hopx, HixLims2,
Rarg, Sox17, Wt1

18 Aqp2, Avprla/2, Carl5, Atpé6vic2, | Collecting duct principal cell
Hepacam?2, Hexa/b, Hsd11b2, Kcnel,
Lgals3, Ptges, Rhbg, Scnnla, Slc7a4
En2, Gata2, Hoxb6/d3, Nfe2l2

23 Card, Casr, Cldn16, Egf, Ocln, Oxtr, | Loop of Henle
Plau, Ptger3, Slci12a1, Slc5a1, Umod,
Foxql, Irx1/2.
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Cluster Analysis of Cardiovascular Tissues

Cardiovascular tissues are presented by 25 BioProjects and include major vessels, intact heart, heart
regions and isolated cells at different developmental stages. In common with every other organ, there
have been multiple published datasets exploring cell-types in heart based upon scRNA-seq (reviewed
in (28)). Each of these studies identifies numerous subpopulations of cells. An analysis of non-
cardiomyocyte populations in the mouse claimed the existence of 30 distinct cell types including 8
distinct populations of macrophages (29).

Table S6 lists the clusters identified from gene-centred network analysis of all of the individual
cardiovascular-related datasets and these are summarized in the Table below. As in other datasets,
there is evidence of contamination with unrelated tissues; for example Cluster 3 contains surfactant
protein transcripts and likely reflects inclusion of lung tissue. Cluster 5 contains markers of B cells
(Cd19) and T cells (Cd3), and likely reflects contamination with thoracic lymph nodes and Cluster 7
derives from a single sample of mesenteric artery and is likely an intestinal contaminant.

The largest cluster in this dataset with >3500 nodes is enriched in all of the isolated primary cells and
is clearly associated with cell growth and proliferation. The cluster includes multiple transcriptional
regulators, some of which are generic to cell cycle regulation (e.g. Foxm1, E2f, Myc) whilst others such
as Meis1, Runx1 and various Smad and Tcf factors (30,31) have well-defined specific functions in
cardiomyocyte proliferation and development.

Cluster 4 is the major cardiomyocyte-specific cluster, and consistent with the high metabolic demand
of these cells this cluster also contains multiple transcripts associated with oxidative phosphorylation.
There is some evidence of independent regulation in that the large majority of components of the
electron transport chain are clustered separately (Cluster 28), and the mitochondrially-encoded
transcripts are also separated (Cluster 105). Cluster 17, which likely defines a distinct cardiomyocyte
regulon, includes Cav3 and components of the sarcospan complex, which can mitigate pathology in
muscular dystrophy models (32). Disruption of the sarcospan complex causes cardiomyopathy in mice
(33)

Broadly-speaking, the data provide little support for the extensive subset identification amongst
fibroblasts, endothelial cells, pericytes, adipocytes and macrophages in published mouse and human
scRNA-seq data. Each of these populations is clearly distinguished from the others but is represented
by a single large cluster containing markers that are said to distinguish subpopulations in scRNA-seq
data. If cell subtypes do exist, the differences between them are too subtle to enable the extraction
of a signature.

Cluster 10 defines a resident cardiac macrophage population including the lineage-restricted receptor
Csflr. A separate Cluster 81 containing macrophage markers Adgrel and Mrcl may reflect some
regional heterogeneity between the heart and aorta, which also contains a substantial macrophage
population (34). We do not detect signatures of monocytes (e.g. $100a8, Ccr2, Ly6c) that have been
reported in scRNA-seq studies. As in kidney, we suspect that disaggregation approaches provide a
poor recovery of intact resident macrophages relative to recent arrivals that may be transiting through
the tissue (35). The samples include genetic disease models and the power of the cluster analysis is
evident in the separation of two interferon-related regulons, Cluster 6 containing Irf9 and Cluster 23
containing Irf7 and their respective target genes. The separation of these two interferon target
cohorts was identified previously in human macrophages (36).

The cluster analysis also reveals the signature of innervation of the heart. The heart has a substantial
intrinsic autonomic nervous system involved in cardiac pace-making and conduction (reviewed in
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(37)). This system has not been effectively profiled in scRNA-seq data, presumably because neurons
are not accessible to tissue disaggregation. Cluster 18 includes the regulatory receptors Ntrk1 and
Ngfr, key enzymes of dopamine metabolism (Th, Ddh), dopamine receptor Drd2 and other
neurotransmitter receptors. Clusters 13 and 15 also contain neuronal markers. Ntrk3, which is
associated with congenital heart disease in humans, is in Cluster 15 (38).
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Cluster

Markers and transcription factors

Cell type-function

1

Bmp1, Bub1, Ccna2/b1/b2/d1/d3, Cdc42, Cdk2, Ctnnbl,
Dbnl, Eef2, Eif2a, Gtf2b, Hdgf, Hspg2, Itgav, Metrnl,
Notch2, Pcna, Smo, Tgfb1, Vim

Creb3, Creb3l1/2, E2f2/3/4/8, Etv5, Foxc2, Foxk2,
Foxm1, Foxp1, Gli3, KIf3/16, Meis1, Mybl2, Myc, Nfatc3,
Nfic, Nfx1, Nr2c1, Pbx1/3, Prdm2/15, Runxl, Sall2,
Smad1/2/3/7, Sp2, Tcf3/19/25/711/712, Twist1, Yy1/2

Growth

Macromolecule synthesis
Golgi/ER secretion
Proteasome complex

Cdk12/113/14/17,Cep(s),Cog(s),Cullin(s),Dnaij(s),
Exocl-5, Insr, Mitmr(s), Oxsr1, Pias1/2

Atf2, Foxn2, Foxp2, Hifla, Hivep1/2, Mef2c, Nfia, Nr2c2,
Nrde2, Pbx2, Rora

Growth
Stress response

Adrala/b, Acatl, Bckdha/b, Carl4, Ckm, Coq2, Cryab,
Cys, Ctnnall/3, Echl, Etfa/b/dh, Fgfil/12/16, Gcgr,
Got1/2, Hadh, Kcnal/b1/d2, Lpl, Myh6, Myl3, Myom1-
3, Nduf(s), PIn, Ryr2, Slc2a4, Tnni3,

E2f6, Esrrb, Fhi2, NrOb2, Nr1i3, Nr3c2, Ppargcla, Rarb,
Rorc, Rxrg, Tbx5

Cardiomyocytes
Oxidative metabolism

Ache, Adgrb2/3, Calbl/2, Chga/b, Chrna3/b2/b3,
Cpne6, Ctnna2, Dbh, Drd2, Gap43, Grial, Grinl, Grm7,
Ina, Kenc4, Licam, Map2, Ncam2, Nfasc, Ngfr, Npy,
Nsg1/2, Ntrk1, Scg2/3/5, Snap25, Syn1, Syt1, Th, Thy1
Hand1, Phox2a/2b, Shox2, Tix2

Cardiac autonomic

system

nervous

Adig, Adipogq, Agt, Agp7, Col5a3, Dgatl/2, Fah, Fasn,
Ffard, Gdf5, Gpam, Gys2, Lep, Lipe, Mc2r, Mgll, Oxtr,
Plin1, Rbp4/7, Restn, Rhbg, Sucnrl, Thrsp

lkzf4, Klb, Pparg

Adipose
Fat and glycogen metabolism

10

Clga/b/c, Cd4, Cd68, Cd86, Clec4a2/3, Clec7a, Csfir,
Csf2ra, Cx3crl, Fcgrla/2a/2b, Gpnmb, Hexb, Itgal,
Itgam, Laptm5, Lyz2, Mpegl, Plau, Ptger2, Siglecl,
Stab1, Tgfbri, Tlr7/8, Trem1/2

Mafb, Nfam1, Spil

Resident tissue macrophages

11

Ace, Col4a2/3, Col6a2/3, Col7al, Csfl, Cyth3, Efnb2,
Eps8, Hs6st1, Lgals3, Mstn, Osmr, Pdpn, Upk1b,

Bachl, Cebpb, Etv4, Fosl1, KIf10, Meox1, Smad6, Snail,
Tead4

Extracellular matrix, cardiac
mesenchymal cells, pericytes

12

Calcrl, Cd34, Cdh5, Clec2g, Dach1, DIl1/4, Icam2, Kcnj8,
Kdr, Notch1, Notch4, Pdgfb, Pecam1, Ptprb, Tek, Vwf
Ebf2, Erg, Esrl, Etsl, Flil, Foxol, Hes2, Heyl,
Sox7/13/18, Tall, Tcf15

Endothelial cells

13

Avprla, Chrnb1/d/g, Kcnj9, Mfrp, Musk, Myh1/h3,
Myh9, Myo5b, Pdgfc, Robo2, Sema3d/4g, Slit2, Tnnc2/3
Dmrt2/3, Eyal, Foxgl, Mycn, Myog

Neuromuscular junction
Cardiac development

14

Ccl2, Ch25h, Csf2/3, Fgf7/10, Fst, Gdf2, Hgf, lle,
Mmp3/9, Pdgfra, Ptges, Ptgs2, Ptx3, Sfrp2, Timpl,
Vecam1

Cebpd, Gsx2, Hlx, Lhx8, Nfatc4, Twist2

Cardiac fibroblasts
Regulation of cardiac function

15

Cnnl, Drd1, Gabral, Grip2, Kcnas5/bl, Kcnmal/bl,
Kcng4, Mylk, Myl9, Myh11, Npyl1r, Ntrk3, P2rx1, Pde5a,
Rfxp2, Smtn

Nanos3, Nkx2.3, Tbx2/10

Neuronal
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17 Cacnb2, Casq2, Cav3, Ddc, Efnb3, Phb2, Pcdh7, Pkp4, | Cardiac myocytes
Slc8ai, Sgcb/d, Sspn, Tnnil,
Gata5, Hitf, Mef2a, Srf, Zfp3
19 Akcrl, Cadm2/3, Cyp2el, Dhh, Erbb3, Gfap, Gpr37, | Cardiac glial cells
Hepacam, Kcnj10, Lgr5, Mag, Mbp, Nign3, Plp1, Reln, | Myelination
Sema3b, Sfrp5, Snca, Wnt6
Foxd3, Sox2/10,

33 Adamts2, Bgn, Bmp4/6, Cald1, Colla2, Col5a2, Caldl, | Arterial extracellular matrix
Fbin2, Fbn1, Sparc, Thbs1
Sox9
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Cluster analysis of musculoskeletal tissues

The musculoskeletal category includes samples from 33 BioProjects (Table S1), including muscle from
different locations and ages as well as bone, cartilage and tendon. Unlike other groupings, the set
analysed here does not include isolated cells or dissected regions or genetic disease models and
accordingly the representation of some cell types is relatively homogeneous. Table S7 contains the
lists of clusters from a gene-centred network analysis of these samples. Because of the relative
homogeneity of these tissues, the analysis was performed at two different MCL inflation values;
clustering at an MCL inflation value of 1.7 alters the granularity but the two largest clusters remain
almost unchanged when clustered at an inflation value of 2.2. For the purpose of consistency, we
discuss clusters identified at MCL 2.2 used in other analyses. The largest cluster contains 4433
transcripts. Reflecting the abundance and relatively uniform distribution of interstitial macrophages
in muscle and connective tissue detected with a Csf1r reporter transgene in both mice and rats (24,25).
Cluster 1 contains Csf1r and many other macrophage-expressed transcripts encoding surface markers
(Adgrel, Cd14, Cd163, Cd4, Cd68, C1q, Cx3Crl, Fcgrl, Mpegl, Mrcl, Siglec1) and transcription factors
(Cebpa, Irf8, Mafb, Spil) in common with cardiac muscle macrophages. These transcripts are
separated from Cluster 27, which includes ltgam (Cd11b) and /tgax (Cd11c), generally considered
markers of inflammatory macrophages in rat skeletal muscle (39). Interestingly, Cluster 1 contains the
gene for the CSF1R ligand Csf1, and the transcript encoding the other CSF1R agonist, /134, is also
detected in muscle and contained within Cluster 8 with markers of adipocytes and endothelial cells
and other growth factors, notably /gf1.

The analysis of smaller clusters reveals regulons associated with specific cell types and processes. We
were interested in whether the analysis might identify components of the neuromuscular junction
(NMJ) and satellite cells, which together control muscle homeostasis and regeneration. Many human
genetic and acquired disease states, as well as normal ageing-related sarcopenia, impact this structure
(reviewed in (40,41)). The structure and functions of the NMJ and satellite cells are tightly-linked and
we anticipated that clustering would group components of both cell populations. Indeed, Cluster 14
contains transcripts encoding the cholinergic receptors of the NMJ (Chrnal, Chrnd/e/g) and muscle
receptor tyrosine kinase (Musk) alongside the satellite marker Ncaml and myogenic determining
transcription factors Myf5, Myod1, Myog and Runx1, the latter essential for satellite cell activation
during muscle regeneration (42). Another transcription factor in this cluster, Scx, is also associated
with progenitor populations albeit more commonly associated with bone and tendon (43). Pax7 which
is required for specification of satellite cells and commonly used as a marker (44) does not form part
of this cluster. PAX7 protein is expressed in rat satellite cells (45) but the Pax7 transcript is not actually
detectable at >10TPM in total muscle mRNA. The other key NMJ marker, acetylcholinesterase (Ache)
may have distinct regulation and is part of a smaller cluster (Cluster 158). That cluster includes
Semaé6c, which has been implicated in neuromuscular junction formation (PMID: 17605078).

Cluster 14 contains many novel transcripts that are known or candidate regulators or structural
components but have not been widely studied. One novel member of this cluster is Spg21, associated
with the human neuropathy Mast syndrome (hereditary spastic neuralgia). Knockout of this gene
causes progressive hind limb paralysis in mice ((46,47). The enigmatic Dclk1 (doublecortin-like kinase
1) implicated in growth dysregulation in several cancers (48) is part of this cluster and public array
data in mouse (biogps.org) reveal the transcript is greatly over-expressed in C2C12 myoblasts. The
cluster also contains known regulatory growth factors Fgf7, Tgfb2 and downstream target Fst. Finally,
the cluster contains transcripts encoding enzymes of polyamine synthesis (Odc, Sms), which regulates
cell proliferation in myogenesis (49)

Cluster 7 contains transcripts encoding multiple muscle-expressed intermediate filament (Krt)
proteins (but not desmin), junction-associated proteins and cell adhesion molecules with known
function in skeletal muscle integrity and force transductions including several desmoglein (Dsg) and
desmocollin (Dsc) genes and desmoplakin (Dsp) that combine to form desmosomes (50). The clear
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separation of this cluster indicates that structural integrity of skeletal muscle is independently
regulated. Interestingly, Cluster 7 contains all three members of the grainyhead-like family
(Grhl1/2/3) which also regulate expression of junction-associated transcripts in epithelia (51)

There are three separate connective tissue clusters associated with distinct collagen subunits, each
with associated specific transcription factors. The smallest includes Fbn1, the gene associated with
Marfan syndrome, which has a specific function in elastic fibres (52) as well as multiple members of
the Adamts family (53)

Cluster Markers and Transcription Factors Cell type or function

3 Actal, Capza2, Casql, Ckm, Coq(s), Cox(s), Des, | Fast twitch, glucose/glycogen
Gygl, Gysl, Mfnl, Mtm1, Mylpf, Nduf(s), Pfkm, | metabolism

Phkal, Pkm, Ppara, Ryrl, Sgca, Slc2a4, Tnnc2/i2/t3 | Mitochondrial ox.phos.

Barx2, E2f6, Esrra, Eyal, Hif, Lbx1, Mafa, Rorc, Rxrg,
Satb1, Six1, Smad3, Snai3, Srf, Tcf15, Tef

5 Acan, Bgn, Chad, Chadl, Chst1/3/5, Chsy3, Clip2, | Chondrocyte/cartilage
Col2al, Col5a1/2, Col6al/3, Comp, Cspg4, Fgf18, | Extracellular matrix
Fmod, Fnl, Fzd8/9, Gdf5/6/10, Gpc6, Lgré,
Ptch1,Scgr1, Sdc4, Smo, Wifl

Atf5, Barx11, E2f5, Erg, Etvd, Foxa2/3, Foxcl, Glil,
Glis3, Hifla, Hoxd9, 1d2/4, Nkx3-2, Prdmé6, Rarg,
Sox5, Sox9, Tcfl5

7 Calm3/5, Cdhi/3, Cldn3/4/7/8/17/23, Dscl/2, | Intermediate filaments,
Dsg1/2/3, Dsp, Epcam, Evpl, Gjp2/6, Krt(s), Ocln, | junctions

Pkp1/3, Ppl, Tjp3, Vill

Ehf, EIf3, EIf5, Foxal, Grhl1/2/3, Hoxb2/b4, Irf6, KIf5,
Pax9, Sim1, Tfap2a

8 Adipoq, Adrb3, Angpt2/4/18, Apbmap, Calcrl, Cavl/2, | Adipose/endothelial
Cdh5, Clecla, Edn1, Ednrb, Fabp4, Fasn, Fit1, Icam2,
Igf1, Kitlg, Lep, Lipe, Lpl, Nos3, Npylr, Pecam1, Plin1,
Rbp4/7, Sele, Selp, Tek, Tiel, Vtn, Vwf

Bcl6b, Flil, Gata2, Hoxb7, KIf10, Lhx6, Pparg,
Sox15/17/18

11 Acvrl, Bmp5, Cnmd, Col9a1/2/3, Colllal/a2, DIk1, | Connective tissue/chondrocyte
Epyc, Fbn2, Fgfr3, Gfap, Hsgp2, Ihh, Itga2, Omd,
Alx11, Creb3l2, Gli2/3, Hoxc5/6/8, Lefl, Meisl/2,
Nfat2, Pou3f3, Prdm5, Tub

14 Adralb, Chrd, Chrnal/d/e/g, Ctxn3, Dclkl, Ddrl, | Neuromuscular junction
Fgf7, Fst, Kcnn3, Kcng4, lamas, Lgalsl, Lmnb2, Musk, | Satellite/Myogenic progenitor
Ncam1, Odcl, Sms, Sin, Spg21, Tgfb2 cells
Myf5, Myod1, Myog, Runx1, Scx

15 Adamts2/5/15/16/19, Cdhrl/5, Col3al, Coll4al, | Connective tissue

Dpt, Fbin2, Fbn1, Fgf16, Fstl1, Gas2/6/7, Has1, Lox/1,
Mfap5, Msin, Postn, S100a4/6, Wnt2

KIf4, Msx1, Twist2

21 Actn2, Colqg, Fgfl, Fhl1/2, Myh7b, Myl2/3, Myoz2, | Slow twitch muscle
Tnncl/il/t1, Tom3
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