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ABSTRACT 17 

The laboratory rat is an important model for biomedical research. To generate a 18 

comprehensive rat transcriptomic atlas, we curated and down-loaded 7700 rat RNA-seq 19 

datasets from public repositories, down-sampled them to a common depth and quantified 20 

expression.  Data from 590 rat tissues and cells, averaged from each Bioproject, can be 21 

visualised and queried at http://biogps.org/ratatlas.  Gene correlation network (GCN) analysis 22 

revealed clusters of transcripts that were tissue or cell-type restricted and contained 23 

transcription factors implicated in lineage determination. Other clusters were enriched for 24 

transcripts associated with biological processes.  Many of these clusters overlap with previous 25 

data from analysis of other species whilst some (e.g. expressed specifically in immune cells, 26 

retina/pineal gland, pituitary and germ cells) are unique to these data.  GCN on large subsets 27 

of the data related specifically to liver, nervous system, kidney, musculoskeletal system and 28 

cardiovascular system enabled deconvolution of cell-type specific signatures. The approach is 29 

extensible and the dataset can be used as a point of reference from which to analyse the 30 

transcriptomes of cell types and tissues that have not yet been sampled.  Sets of strictly co-31 

expressed transcripts provide a resource for critical interpretation of single cell RNA-seq data.  32 

  33 
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INTRODUCTION 34 

In the year of the rat (2020), the Rat Genome Database (RGD) celebrated 20 years of 35 

development (1).  Those 20 years saw completion of the draft genome (2). Around 90% of 36 

protein-coding genes had an inferred 1:1 ortholog in humans. Subsequent technology 37 

advances allowing the sequencing of multiple inbred strains including several with disease-38 

associated alleles (3). Szpirer (4) catalogued more than 350 rat genes where rat lines with 39 

natural or introduced variants provide models for human disease.  40 

Analysis of transcriptional regulation in human and mouse has been driven by large 41 

consortium projects such as GTEX (5) and FANTOM (6) and there are many on-line resources 42 

for these species.  Multi-tissue transcriptional atlas projects have also been published for other 43 

species including chicken, sheep, buffalo, pig and goat (7-11). Although it was once suggested 44 

that guilt-by-association is the exception rather than the rule in gene regulatory networks (12), 45 

the principle is now very well-established. Genes associated with specific  organs, cell types, 46 

organelles and pathways (e.g. the cell cycle, protein synthesis, oxidative 47 

phosphorylation/mitochondria) are stringently co-expressed along with the transcription 48 

factors that regulate them (5,6,8,13-18). An extension of the principle of co-regulated 49 

expression is that it is possible to extract signatures of specific cell types, for example the 50 

stromal component of tumors (19) or resident tissue macrophages (20) based upon analysis 51 

of a large number of samples in which their relative abundance is variable.  52 

The functional annotation of the rat genome is still a work in progress. Many rat genes in 53 

Ensembl are described as “novel rat gene” and annotated solely by a gene number. 54 

Transcriptional regulation has evolved rapidly amongst mammalian species (21,22). Even 55 

where there is 1:1 orthology at the level of protein-coding sequence and conservation of 56 

synteny with other mammals the expression may not be conserved. Two substantial studies 57 

have contributed to annotation of the rat transcriptome through RNA-seq analysis of a partly-58 

overlapping set of major rat organs (23,24). Long read RNA sequencing has also contributed 59 

to refinement of rat transcriptome annotation (25). Because of the extensive use of the rat as 60 
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a model in biomedical research, there are thousands of RNA-seq datasets in the public domain 61 

from isolated cells and tissues in various states of activation that could provide an additional 62 

resource for functional annotation. By combining random library down-sizing to reduce 63 

sampling bias and the high-speed ‘pseudo-aligner’ Kallisto (26) to quantify expression, we 64 

previously established a pipeline [7, 11] to enable meta-analysis of published RNA-seq data. 65 

Here we have used this pipeline to produce an extended expression atlas for the laboratory 66 

rat. To demonstrate the robustness of the integrated data we have carried out network analysis 67 

to identify sets of co-expressed transcripts. The dataset is downloadable and the pipeline is 68 

extensible to allow inclusion of additional data and regeneration of the network as new RNA-69 

seq data becomes available.   70 

METHODS 71 

Selecting samples for an expression atlas of the rat 72 

To create a comprehensive expression atlas for the rat we first downloaded the daily-updated 73 

NCBI BioProject summary file from ftp://ftp.ncbi.nlm.nih.gov/bioproject/summary.txt (obtained 74 

19th July 2021) and parsed it to obtain all BioProjects with taxonomy ID 10116 (Rattus 75 

norvegicus) and a data type of ‘transcriptome or gene expression’, supplementing this list by 76 

manually searching NCBI Geo and NCBI PubMed for the keywords “RNA-seq AND rat”. 77 

BioProjects were selected to extend the diversity of tissues, cells and states from two existing 78 

rat transcriptomic atlases that analyse gene expression in a subset of major rat tissues (23,24). 79 

For each BioProject, we automatically extracted the associated metadata using pysradb v1.0.1 80 

(27) with parameter ‘--detailed’, or by manual review. Metadata for each BioProject, indicating 81 

(where available) the breed/strain, sex, age, tissue/cell type extracted, and experimental 82 

condition (for example, treatment or control) are detailed in Table S1, which includes both the 83 

data downloaded via the pipeline and additional information retrieved manually from the ENA 84 

record, NCBI BioProject record and cited publications. For incorporation into the expression 85 

atlas, we required that all samples have, at minimum, tissue/cell type recorded. Overall, the 86 

input to the atlas comprised 7682 samples from 363 BioProjects.  87 
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Quantifying gene expression for the atlas 88 

For each library, expression was quantified using Kallisto v0.44.0 (26) as described in detail in 89 

previous studies on other species (7-9,20). Kallisto quantifies expression at the transcript level, 90 

as transcripts per million (TPM), by building an index of k-mers from a set of reference 91 

transcripts and then ‘pseudo-aligning’ reads to it, matching k-mers in the reads to k-mers in 92 

the index. Transcript-level TPM estimates were then summed to give gene-level TPM.  93 

To create the reference transcriptomic index, we performed a non-redundant integration of the 94 

set of Ensembl v98 Rnor6.0 protein-coding cDNAs (http://ftp.ensembl.org/pub/release-95 

98/fasta/rattus_norvegicus/cdna/Rattus_norvegicus.Rnor_6.0.cdna.all.fa.gz, accessed 24th 96 

November 2019; n = 31,715 transcripts) and the set of 69,440 NCBI mRNA RefSeqs 97 

(https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Rattus_norvegicus/all_a98 

ssembly_versions/suppressed/GCF_000001895.5_Rnor_6.0/GCF_000001895.5_Rnor_6.0_r99 

na.fna.gz, accessed 24th November 2019), as previously described (7). The purpose of the 100 

integration was to include transcripts that had not already been assigned Ensembl transcript 101 

IDs and whose sequence was not already present in the Ensembl release (under any 102 

identifier). RefSeq mRNAs incorporate untranslated regions (UTRs) and so could encapsulate 103 

an Ensembl CDS. The trimmed UTRs from each mRNA were generated excluding all 104 

sequence outside the longest ORF. In total, the reference transcriptome comprised 71,074 105 

transcripts, representing 25,013 genes. Using this reference, expression was quantified for 106 

7682 publicly-archived paired-end Illumina RNA-seq libraries. The Bioprojects are summarised 107 

in Table S1. Prior to expression quantification, and for the purpose of minimising variation 108 

between samples, we randomly downsampled all libraries to 10 million reads, 5 times each, 109 

using seqtk v1.2 (https://github.com/lh3/seqtk, downloaded 4 th June 2018). Expression level 110 

was then taken to be the median TPM across the 5 downsampled replicates. 111 

The final expression atlas details the median downsampled TPM per gene, averaged for tissue, 112 

age, and BioProject.  As in previous projects for other species (7-11) the full dataset of 590 113 

averaged expression data from cells and tissues is displayed on BioGPS (28,29) at 114 
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biogps.org/ratatlas to enable comparative analysis across species.  The full processed primary 115 

dataset and the averaged data is available for download at an Institutional Repository 116 

(https://doi.org/10.5287/bodleian:Am9akye72).  The latter is a comma-separated text file, 117 

which can be directly loaded into the network analysis software used herein or alternatives 118 

such as Gephi (gephi.org) or Cytoscape (cytoscape.org). This file can be easily supplemented 119 

by addition of further RNA-seq data processed in the same way. All scripts for generating the 120 

atlas are available at www.github.com/sjbush/expr_atlas. 121 

Network analysis and functional clustering of atlas samples 122 

To examine the expression of genes across this wide range of tissues and cell types, the 123 

expression data were analysed using the network analysis tool BioLayout (derived from 124 

Biolayout Express3D (30)), downloaded from http://biolayout.org.  The same files can be 125 

uploaded into the recently-developed open source package, Graphia (https://graphia.app), 126 

which supports alternative clustering approaches and dynamic modification of parameters.  127 

The initial analysis used the values averaged by age and BioProject for each tissue. 128 

Subsequent analyses used individual values for samples of liver, musculoskeletal system, 129 

cardiovascular system, kidney and central nervous system. For each analysis, a sample to 130 

sample correlation matrix was initially constructed at the Pearson correlation coefficient (r) 131 

threshold necessary to include all samples in the analysis (shown in Results and figure 132 

legends). Pearson correlations were then calculated between all pairs of genes to produce a 133 

gene-to-gene correlation matrix of all genes correlated at r ≥ 0.75.  134 

Gene co-expression networks (GCNs) were generated from the matrices, where nodes 135 

represent either samples or genes and edges represent correlations between nodes above the 136 

selected correlation threshold. For the sample-to-sample analyses (essentially analogous to a 137 

principal components analysis, PCA) an initial screen at the r value which entered all samples 138 

was performed, followed by subsequent analyses with a higher r value which removed outliers 139 
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and revealed more substructure in the networks. For each gene-to-gene analysis an r value 140 

threshold of 0.75 was used for all analyses (Figure S1). 141 

For the gene-to-gene networks, further analysis was performed to identify groups of highly 142 

connected genes within the overall topology of the network, using the Markov clustering 143 

algorithm (MCL) (31). The MCL is an algebraic bootstrapping process in which the number of 144 

clusters is not specified. A parameter called inflation effectively controls granularity.  The 145 

choice of inflation value is empirical and is based in some measure on the predicted complexity 146 

of the dataset (31). The chosen inflation value was 2.2 for all analyses and only genes 147 

expressed at ≥ 10 TPM in at least one sample were included. Gene ontology (GO) terms and 148 

Reactome pathways were derived from the Gene Ontology Resource (http://geneontology.org, 149 

release of 18 August 2021) using PANTHER overrepresentation test (PANTHER release of 24 150 

February 2021). The reference list used was Rattus norvegicus (all genes in database), the 151 

GO Ontology database was the release of 2 July 2021  (DOI: 10.5281/zenodo.5080993) and 152 

the Reactome pathway analysis used Reactome version 65, released 17 November 2020. 153 

These resources area all available at the Gene Ontology Resource (http://geneontology.org). 154 

RESULTS  155 

Samples in the atlas 156 

7682 RNA-seq libraries, each with a unique SRA sample accession from 363 BioProjects, were 157 

obtained by the pipeline as described in Methods and used to create a global atlas of gene 158 

expression. Metadata for the individual BioProjects are summarised in Table S1. For 159 

comparative tissue analysis and the core atlas, expression across libraries was averaged by 160 

tissue, age and BioProject. This reduced the dataset to 590 different averaged samples of rat 161 

tissues and cells summarised in Table S2A. For a separate analysis of liver, kidney, 162 

musculoskeletal, cardiovascular and central nervous systems to extract tissue-specific co-163 

expression signatures, individual RNA-seq datasets from within each BioProject were used.  164 

Network analysis of the rat transcriptome 165 
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Initially we performed a sample-to-sample correlation to assess whether there were likely to 166 

be batch effects resulting in outlier samples that were unrelated to tissue type. To include all 167 

590 samples, it was necessary to use r ≥ 0.21. An image of the resulting network graph is 168 

shown in Figure 1. Since BioProjects tended to focus on one strain, age, sex and 169 

tissue/treatment, some BioProject specific clustering was expected. However, illustrating the 170 

robustness of the sampling and down-sizing approach, related tissues analysed in different 171 

BioProjects generally clustered together (compare Figure 1A where nodes are coloured by 172 

organ system and Figure 1B where they are coloured by BioProject). At a more stringent 173 

correlation coefficient threshold of 0.7, only 15 samples of relatively low connectivity were 174 

removed but the association of nodes by organ system rather than BioProject is more obvious 175 

(Figure 1C and D). No clear outliers or BioProject-specific clusters (batch effects) were 176 

identified so all averaged samples were included in the subsequent gene-centred network 177 

analysis. The threshold correlation coefficient was chosen to maximise the number of nodes 178 

(genes included) while minimising the number of edges (correlations between them) (Figure 179 

S1). At the optimal correlation coefficient of r ≥ 0.75, the graph contained 14,848 nodes (genes) 180 

connected by 1,152,325 edges.  181 

Table S2B shows all of the clusters detected for transcripts with a minimum expression of ≥ 182 

10TPM in at least one sample. By comparison to previous network analysis of mouse, human, 183 

pig, chicken, sheep and water buffalo transcriptomes (7-11) at this relatively stringent 184 

correlation coefficient, the much larger and more diverse rat transcriptomic dataset has a more 185 

fine-grained distribution with >1300 clusters having 2 nodes or more.  In the published RNA-186 

seq transcriptional atlas of 11 rat organs (32) which is included in the current data, around 40% 187 

of transcripts were expressed in all organs, in both sexes and at all development stages.  In 188 

this larger set of averaged data, reflecting the much greater diversity of tissues and isolated 189 

cells sampled here, only 96 genes (0.38%) were detected above the 10 TPM minimal threshold 190 

in all 590 samples.   191 
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GO terms for clusters discussed below are included in Table S2C. Consistent with previous 192 

analysis, there are clusters that show no evidence of tissue-specificity but are clearly-enriched 193 

for genes involved in defined biological functions.  For example, Cluster 11, Cluster 54 and 194 

Cluster 69 are associated with the cell cycle, DNA synthesis and repair.  Cluster 41 is made 195 

up almost entirely of histone-encoding transcripts, likely due to incomplete removal of non-196 

polyadenylated transcripts in some of the RNA-seq libraries.  This cluster is not specific to any 197 

BioProject.  The 18 transcripts within this cluster identified by LOCID also have provisional 198 

annotation as histones. Although this cluster is the product of a technical error, it also highlights 199 

the power of the clustering approach to extract signatures of co-expression.  200 

Table 1 summarises the expression patterns and biological processes associated with 201 

clusters of transcripts showing evidence of tissue or cell-type enrichment. The largest cluster 202 

of transcripts (Cluster 1), >1500 in total, is expressed almost exclusively in the testis.  More 203 

than 500 of these transcripts are identified only by a LOCID, RGD or other uninformative 204 

annotation and many more are identified only by structural motif (for example 50 members of 205 

the Ccdc family, 35 undefined Fams, 20 testis-expressed (Tex) and 15 Tmem protein genes).  206 

The complexity of the testis transcriptome in all mammalian species has been widely 207 

recognised (reviewed in (33)). The set of testis-enriched transcripts with functional annotations 208 

encode proteins associated with meiosis, sperm differentiation, structure and motility and 209 

acrosomes. Unannotated genes are likely to involved in male fertility. For example, mutation 210 

of Dlec1, a putative tumor suppressor gene, was recently shown to cause male infertility in 211 

mice (34). LOC498675 is a predicted 1:1 ortholog of mouse testis-specific gene 212 

1700102P08Rik, which is expressed in spermatocytes and is essential for male fertility 213 

(35,36). Smaller testis-enriched clusters include Cluster 29, which contains Sertoli cell 214 

markers such as Aard and Tsx (37,38), Cluster 72, which contains Fshr and the essential 215 

testis-specific transcription factor Taf7l ((39,40)) and Cluster 88, which includes the male-216 

determining transcription factor Sry.   217 
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Clusters 17 and 18 contain transcripts expressed in both the retina and the pineal gland, both 218 

intimately involved in chronobiology and light sensing. Chang et al. (41) recently produced an 219 

aggregated resource describing the shared and divergent transcriptomes of these structures. 220 

Cluster 17 contains Opn1sw, the pineal-enriched transcription factor Crx and its target Aanat 221 

encoding the rate-limiting enzyme in melatonin synthesis (42). One unexpected inclusion in 222 

Cluster 17, enriched in pineal, is the transcript encoding the transcription factor MITF. Mitf in 223 

humans may be driven by as many as 7 distinct promoters including one used specifically by 224 

melanocytes. A unique transcription start site is shared by retinal pigment epithelial cells and 225 

pineal gland.  Mitf over-expression in mouse pineal gland relative to other tissues has been 226 

noted previously (42,43) and in humans also MITF is most highly-expressed in pineal 227 

(http://biogps.org). However, whereas targets of MITF have been identified in melanocytes 228 

and many other cell types (44) and mutations impact many complex phenotypes in mice and 229 

humans, there appears to be no literature on its role in the pineal. To illustrate the utility of the 230 

data, in Table S2D we have reviewed the annotation of transcripts in Clusters 17 and 18 231 

identified as LOCID. Several novel transcripts of unknown function (e.g. Katnip 232 

(LOC361646,aka KIAA0586; Talpid3), encoding a highly-conserved ciliary protein associated 233 

with the human genetic disease, Joubert syndrome (45) and Lrtm1 (LOC102547963), a novel 234 

membrane protein) are also almost uniquely expressed in the human pineal gland 235 

(http://biogps.org) 236 

Many small clusters are enriched in tissues, cell-types or activation states that were not 237 

analysed in the existing rat atlases or indeed in any previous atlas project in other species. 238 

They can be annotated based upon known markers. For example, Cluster 145 with 12 nodes 239 

contains transcripts encoding major secreted products of the pituitary (Cga, Gh1, Fshb, Lhb, 240 

Tshb) and the transcription factors that regulate their expression (Pitx1, Six6, Tbx19).  Cluster 241 

180 contains a subset of known immediate early genes (Egr1,Fos,Jun) mostly associated with 242 

isolated primary cells, and likely reflects cell activation during isolation or tissue processing 243 

(20). Other known genes in the immediate early class cluster separately, or not at all, because 244 
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they are constitutively expressed by specific cell types.  Similarly, groups of inducible genes in 245 

innate immune cells are all expressed by LPS-stimulated macrophages but divide into at least 246 

three clusters (Cluster 101, including Il1a; Cluster 112 including Ifit2 and other interferon 247 

targets; Cluster 126 (including Tnf) because of expression by non-immune cells.   248 

Other smaller clusters group genes that share functions.  The large protocadherin family of cell 249 

adhesion molecules is broadly-divided into the clustered (  ) and non-clustered () 250 

subgroups (46). The  protocadherins are predominantly expressed in the nervous system and 251 

indeed Pcdh1, 8, 9, 20 are brain-restricted and part of the second largest cluster (Cluster 2). 252 

However, Cluster 81 includes Pcdhb22 and16 members of the Pcdhg (A and B) families which 253 

are collectively enriched in the CNS but also widely expressed in other tissues. In addition, 254 

LOC108353166 within this cluster is annotated as protocadherin gamma-B2-like. Further 255 

members are more brain-restricted and grouped together in Cluster 250.  256 

9/13 mitochondrially-encoded peptides group together in Cluster 212 whereas Clusters 61 and 257 

76 group nuclear-encoded mitochondrial genes involved in the TCA cycle and oxidative 258 

phosphorylation (as expected, most highly-expressed in heart and kidney). Cluster 102 groups 259 

18 transcripts encoding proteins involved in mitochondrial  oxidation of fatty acids.  Several 260 

of the genes in this cluster are mutated in multiple acyl-CoA dehydrogenase deficiency (MADD, 261 

also known as glutaric aciduria type II) and related metabolic disorders (47). One additional 262 

gene involved in this pathway, Etfb, does not form part of a cluster. It is correlated with Etfa at 263 

r = 0.599 and with Etfdh at r = 0.527 but expressed at lower levels in certain tissues including 264 

the pineal gland.   265 

Cluster 127, with 14 nodes, contains two markers of neurogenic cells (Sstr2, Mpped1; (48,49)) 266 

and a candidate regulator, Tiam2 (50) and is otherwise made up of 11 brain-specific 267 

transcriptional regulators, each of which has been shown to be essential for neurogenesis and 268 

likely interacts with the others. Clusters 125 and 332 contains 20 genes encoding proteins that 269 

have all been implicated as molecular chaperones including multiple components of the TRIC 270 
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chaperone complex (Tcp1, Cct2,3,4,5). Cluster 557 with only 4 nodes contains the 271 

oligodendrocyte transcription factors, Olig1 and Olig2, as well as Sox 8, which has non-272 

redundant function in oligodendrocyte differentiation (51). The fourth node in this cluster, 273 

LOC103692025, is predicted by the RGD to be an ortholog of Lhfpl3 which in mouse is a 274 

marker of oligodendrocyte lineage commitment (52). The two calmodulin-encoding genes 275 

(Calm1 and Calm2) are co-expressed (Cluster 673) as are three genes involved in cholesterol 276 

synthesis (Fdft1, Hmgcr, Hmgcs1) (Cluster 742).  Ins1 and Ins2, encoding insulin, are co-277 

expressed with pancreatic polypeptide (Ppy) (Cluster 751) but not with glucagon (Gcg).  278 

Although Ppy is normally expressed by rare gamma cells in pancreatic islets, a recent study 279 

indicated that gamma cells can produce insulin following beta cell injury (53).  280 

Each of the clusters contains genes that are identified only as LOCID or other numerical 281 

designation. These are obviously the subject of ongoing curation and in some cases LOCID 282 

transcripts duplicate named transcripts in the same cluster. In Table S2 we have included an 283 

update on candidate annotations from the RGD. Clearly, the co-expression information can 284 

provide additional assurance that putative orthology relationships with known mouse or human 285 

genes are likely to be correct.  286 

Transcripts that do not form clusters  287 

The first step in network analysis is the generation of a pairwise correlation matrix, and for any 288 

gene of interest one can immediately identify others with the most similar expression patterns. 289 

By lowering the inclusion threshold (r value) it is possible to include a larger proportion of 290 

transcripts, but the associations may become less informative biologically. Genes with unique 291 

expression profiles across the samples will not correlate with any other and therefore will not 292 

be included in the network graph.  In many cases, the unique expression profile of a gene of 293 

interest arises because the gene product is “multi-tasking” in different locations.  Figure 2 294 

shows the individual profiles of selected examples discussed below.  295 
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Mutations in FBN1, encoding the extracellular matrix protein fibrillin-1, are associated with 296 

Marfan syndrome which has complex impacts on musculoskeletal development, adiposity, 297 

vascular function and the eye. Distinct 3’ truncation mutations are associated with a neonatal 298 

progeroid lipodystrophy syndrome (54). Consistent with these phenotypes, Fbn1 mRNA is 299 

highly-expressed uniquely in the rat eye, aorta and cardiovascular tissues and 300 

cartilage/tendons and to a lesser extent in fibroblasts and adipose. There is also moderate 301 

expression in spinal cord and dorsal root ganglia, lung and testis.  Dural ectasia, enlargement 302 

of the neural canal, is a common feature of Marfan syndrome (55). Expression in the lung may 303 

underlie the pulmonary emphysema observed in mouse models of fibrillinopathy (56) patients 304 

with Marfan syndrome frequently show apical blebs in the lung and are prone to pneumothorax 305 

(collapsed lung).  306 

The gene encoding dystrophin (DMD) associated in humans with mutations causing Duchenne 307 

muscular dystrophy, is also not clustered.  As expected, it is expressed in rat cardiac, skeletal 308 

and uterine muscle, but is also expressed in multiple brain regions at similar levels. This 309 

expression may be related to the neuropsychiatric impacts of the disease in both affected 310 

individuals and mouse models (57). In this case, FANTOM5 data indicate that DMD has at 311 

least two independent promoters (6).  312 

RGD1359108 has not been annotated on RGD, but on Ensembl it is a clear 1:1 ortholog of 313 

human C9orf72, associated with amyotrophic lateral sclerosis and frontal temporal dementia. 314 

O’Rourke et al. (58) reported that loss of function mutation in this gene in mice did not produce 315 

motor neuron dysfunction, but did lead to macrophage dysfunction, splenomegaly and 316 

lymphadenopathy. In rat, C9orf72 is expressed widely in all CNS-associated tissues, most 317 

highly in spinal cord, but not enriched in any isolated CNS cell population.  Outside the CNS it 318 

is most highly-expressed in stimulated macrophages and in testis.  319 

A significant cohort of transcripts is excluded from co-expression clusters because they have 320 

alternative promoters, each with a distinct expression profile. One such gene is Acp5, encoding 321 

the widely-used osteoclast (OCL) marker, tartrate-resistant acid phosphatase. Acp5 forms part 322 
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of a small cluster (Cluster 179, 10 nodes) that is most highly-expressed in the femoral 323 

diaphysis, and includes another OCL marker Ctsk, osteoblast-associated transcripts (Bglap, 324 

Dmp1 and Sp7) and Ifitm5, mutated in a human bone-related genetic disease, osteogenesis 325 

imperfecta type V. It is surprising that so few transcripts are stringently associated with OCL; 326 

another small cluster (Cluster 174, 11 nodes) that contains Dcstamp, Ocstamp (Zfp334) and 327 

Mmp9, is enriched in the diaphysis sample but more widely-expressed. Expression of Acp5 in 328 

OCL in mice is initiated from an OCL-specific promoter (59). Aside from its function as a 329 

lysosomal enzyme in bone resorption, secreted ACP5 can function as a neutral ATPase and 330 

a growth factor for adipocytes (60,61). Acp5 mRNA is expressed, albeit a lower levels than in 331 

bone, in rat adipose, lung (where it is expressed highly by alveolar macrophages), small and 332 

large intestine, kidney and spleen as well as isolated macrophages.   333 

The transcriptome of the rat liver 334 

The downloaded datasets included around 1900 individual RNA-seq libraries of liver, including 335 

whole liver from various ages, sexes, inbred and outbred rat strains, disease models, liver slice 336 

cultures and isolated cells. In principle, clustering of such diverse data could identify sets of 337 

co-expressed transcripts that are associated with cell-types, locations or disease processes 338 

that are hidden in the averaged data of the complete sample set. To test that view, we clustered 339 

the entire liver-related dataset without averaging the replicates. As in the main atlas, the 340 

correlation threshold was chosen empirically at 0.75.  The cluster list and the average profile 341 

of transcripts in each cluster is provided in Table S3 and informative clusters are summarised 342 

in Table 2.  343 

It is immediately evident that not all of the samples are pure liver. Liver-Cluster 31 contains a 344 

set of pancreas-specific genes, including Cpa1, that overlaps with Cluster 64 in the main atlas. 345 

This cluster arises because of random contamination with pancreatic tissue of liver samples in 346 

the large bodymap project (32). Liver-Cluster 73 contains transcripts encoding all of the major 347 

secretory products of pancreatic islets (e.g. Ins1, Gcg). This cluster was detected only in liver 348 

from a study of enforced activity and sleep deprivation (62). It is not clear from the paper how 349 
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these samples could have been selectively contaminated with islet mRNA unless they are 350 

mislabelled. Liver-Cluster 5 is detected in a rather random subset of samples from multiple 351 

BioProjects likely also indicating contamination. It includes the progenitor marker, Lgr5, but 352 

also various adhesion molecules (Cldn10/18) and neuroendocrine markers (Chga/b). There is 353 

little evidence of expression of these genes in normal liver in other species, and at least some 354 

of the genes (e.g. Cckar, Cldn10/18) are highly-expressed in pancreas and/or stomach (e.g. 355 

see http://biogps.org).  Liver-Cluster 21 is detected in a single sample, and contains smooth 356 

muscle-associated transcripts (Actg2, Tpm2).    357 

The disadvantage of analysing a single tissue is that most transcripts do not vary greatly 358 

between datasets.  In one sense, this provides a quality control for the efficacy of the random 359 

sampling approach we have used. In this dataset, the largest cluster by far (Liver-Cluster 1) is 360 

relatively consistent with the exception of increased detection in all samples from a BioProject 361 

that profiled liver slices from a bile duct ligation model, cultured for 48 hrs in vitro and treated 362 

with various agents (63). It is not clear why this gene set would be expanded in that cellular 363 

system. Liver-Cluster 1 includes many transcripts expressed constitutively by hepatocytes. 364 

The most abundant hepatocyte-specific transcript encoding albumin (Alb) is not strictly 365 

correlated with any other transcript presumably reflecting its specific regulation (64). Liver-366 

Cluster 1 also contains transcripts encoding markers of hepatic stellate cells (e.g Pdgfra/b) and 367 

the corresponding growth factors (Pdgfa/b/d) as well as more general mesenchyme markers 368 

(e.g Vim) and markers of cholangiocytes (e.g. Krt7) suggesting that their relative abundance 369 

is not highly variable amongst the samples.   370 

The remaining liver clusters analyse differential development and activation states that 371 

distinguish the samples and BioProjects. These clusters are informative and consistent with 372 

prior knowledge.  Liver-Cluster 2 is expressed specifically in embryonic liver and is a complex 373 

mix of transcripts reflecting both differentiation of hepatocytes and the function of the liver as 374 

a hematopoietic organ.  Accordingly, it contains the cell cycle genes, the fetal growth factor 375 

Igf2, and markers of erythroid (e.g. Hbb) and myeloid (S100a8/a9) hematopoietic lineages.  376 
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Liver-Clusters 3 and 4 are both expressed in almost all liver samples and the level of 377 

expression is not highly variable.  Expression of each of the smaller clusters is much more 378 

variable between samples and BioProjects and known genes within those clusters indicate an 379 

association with specific cell types and processes as summarised in Table 2 and discussed 380 

below.  381 

One signature that was no detected is that of the specialised centrilobular population that is 382 

adapted to clear ammonia generated by the urea cycle. In mice, the rate-limiting enzyme, 383 

glutamate ammonia lyase (aka glutamine synthetase, Glul) is expressed exclusively in a band 384 

of cells surrounding the central vein.  Liver-specific deletion of Glul leads to pathological hyper-385 

ammonemia (65). In mice, this population of cells co-expressed Rhgb (encoding an ammonia 386 

transporter) and ornithine aminotransferase (Oat) and was enriched for a number of Cyp genes 387 

(e.g Cyp2e1, Cyp1a2). However, in the diverse rat liver dataset, there was only marginal 388 

correlation with other centrilobular-enriched transcripts.  389 

The transcriptome of central nervous, renal, musculoskeletal and cardiovascular 390 

systems.  391 

Each of these systems also contributes hundreds of RNA-seq datasets including isolated cells 392 

and specific regions or structures.  To examine further the utility of these large datasets for the 393 

analysis of cell-type and process-specific signatures, the data from each of these biological 394 

systems was clustered separately in Table S4 (nervous), Table S5 (renal), Table S6 395 

(cardiovascular) and Table S7(musculoskeletal).  The clusters are annotated in the Tables and 396 

to avoid confusion with multiple Cluster numbers, each system is discussed separately in 397 

Supplementary Text. Broadly-speaking, as in the liver, network analysis of individual organ 398 

systems enables a more fine-grained extraction of cell-type, region and process-specific 399 

expression signatures.   400 

 401 

 402 
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The transcriptome of rat macrophages 403 

The transcriptome of rat macrophages has been analysed previously based upon microarrays 404 

(66) and the RNA-seq data included here (67). Macrophages adapt to perform specific 405 

functions in specific tissues (20). Cluster 21, which includes Csf1r, is most highly-expressed in 406 

brain and brain-derived cells and includes transcripts that are enriched in microglia compared 407 

to macrophages from other tissues (e.g. P2ry12). Around 2/3 of these transcripts are contained 408 

within a set of 119 transcripts depleted in all brain regions of Csf1r-knockout rats (68). Cluster 409 

47 contains transcripts that may be shared with microglia (e.g. Itgam, encoding CD11b) but 410 

are common to monocytes and many tissue macrophage populations. Cell surface markers of 411 

other macrophage populations cluster idiosyncratically, indirectly supporting tissue 412 

macrophage heterogeneity; Clec4f, the Kupffer cell marker is within the liver cluster, Vsig4 and 413 

Marco (Cluster 1239), Clec10a, Mrc1 (CD206), and Stab1 (Cluster 168), Lyve1 and Timd4 414 

(Cluster 79), Adgre1 and Clec4a1/3 (Cluster 286) are correlated with each other while others 415 

(e.g. Cd163, Tnfrsf11a, Siglec1) do not cluster at all at this threshold because each has a 416 

unique pattern of expression in tissue macrophages. Figure 3 shows the profiles of Csf1r, 417 

Adgre1, Cd163, Vsig4 and Mrc1 in the averaged data.   418 

The network analysis of such a diverse set of cells and tissues also dissociates known 419 

macrophage transcriptional regulators (e.g. Spi1, Spic, Nr1h3, Mafb, Irf8, Cebpa/b, Tfec) (20) 420 

from macrophage expression clusters because none of these regulators is entirely 421 

macrophage-restricted.  For example, transcription factor SPIC in mice is required for splenic 422 

red pulp macrophage and splenic iron homeostasis (69). In the rat, Spic mRNA is most highly-423 

expressed in spleen as expected, but also detected in ES cells and germ cells.  Macrophage 424 

differentiation and adaptation likely involves combinatorial interactions amongst multiple 425 

transcription factors as exemplified by the complex regulation of the transcription of the Csf1r 426 

gene (70).  427 

Whereas macrophages express a diversity of endocytic receptors, there is not a corresponding 428 

large cluster of transcripts encoding endosome-lysosome components including the vacuolar 429 
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ATPase (ATP6v) subunits and lysosomal hydrolases. Transcripts encoding endosome-430 

associated CD68 and GPNMB proteins are co-expressed with Ctsb and Ctsd. Although CD68 431 

is often used as a macrophage marker, it is clearly not macrophage restricted. Most transcripts 432 

encoding lysosomal acid hydrolases (e.g. Acp1, Lipa) are widely-expressed and each varies 433 

independently.  434 

Csf1r is strongly correlated with other macrophage-specific markers in Cluster 21, consistent 435 

with strong evidence that expression is entirely restricted to the macrophage lineage in rats as 436 

it is in mice (71). It is also detected at relatively high levels in all tissues (around 5-10% of the 437 

level in isolated macrophages) consistent with the abundance of tissue macrophages 438 

detectable with a Csf1r reporter transgene (71) and with a study of tissue development in mice 439 

(72). However, expression was also detected in many isolated primary cell samples that are 440 

not meant to contain macrophages. For example, BioProjects PRJNA556360 and 441 

PRJNA552875 contain RNA-seq data derived from oligodendrocyte progenitors purified using 442 

the A2B5 marker but this population has Csf1r expression at similar levels to purified 443 

macrophages. Another BioProject, PRJNA355082, describes expression profiling of isolated 444 

astrocytes, but this dataset also has a similar level of Csf1r mRNA to pure macrophages.  Other 445 

datasets from various ganglion cell populations, neuronal progenitor cells, cardiac fibroblasts 446 

and cardiomyocytes and hepatic stellate cells are clearly highly-enriched in Csf1r and other 447 

macrophage-associated transcripts.   448 

CSF1R has two ligands, CSF1 and IL34.  In mice and rats, mutation of the Csf1 gene leads to 449 

a global reduction in many tissue macrophage populations, whereas mutation of Il34 in mice 450 

leads to selective reduction of microglia and Langerhans cells. Based upon the difference in 451 

phenotype between Csf1 and Csf1r mutations in rats, we speculated that Il34 could be more 452 

widely-expressed and functional in rat macrophage homeostasis compared to mouse (67). 453 

Neither growth factor forms part of a cluster.  Figure 3 also shows the profiles of Csf1 and Il34.  454 

As expected, Csf1 mRNA is widely-expressed and enriched in isolated mesenchymal cells.  455 

Il34 is expressed in all brain regions and isolated cells at similar levels and also in skin.  456 
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However, by contrast to mouse, Il34 is expressed at similar levels in many other tissues, 457 

notably aorta, adipose, kidney, lung and testis.   458 

The tissue-specific analysis in Tables S4, S5, S6 and S7 enables the extraction of 459 

macrophage-specific signatures from resident populations that have not been isolated and 460 

characterised previously. For example, in the cardiovascular analysis, a cluster of 184 461 

transcripts containing Csf1r as well as a smaller cluster containing Adgre1 extracts a signature 462 

of cardiac resident macrophages distinct from blood leukocytes which form a separate cluster 463 

(Supplementary On-line text).  464 

DISCUSSION 465 

Overview. 466 

The extraction and normalisation of published RNA-seq data has enabled the generation of a 467 

comprehensive rat expression atlas that samples transcriptional diversity on a comparable 468 

scale to the FANTOM5 data for human and mouse (6) and massively extends the Bodymap 469 

generated from 11 rat tissues (32). The user-friendly display at www.biogps.org/ratatlas 470 

enables a gene-specific query to visualise the expression of any gene of interest across the 471 

full dataset and use of the Correlation function allows the identification transcripts with similar 472 

expression profiles. Biogps also hosts large expression datasets for mouse, human, sheep 473 

and pig for comparative analysis. The validity of the down-sampling normalisation, and the 474 

utility and information content of the atlas has been exemplified by gene-centred network 475 

analysis (GCNA) of the averaged core dataset.  The primary data is available for download by 476 

users in a form that enables local regeneration of the networks and addition of user-generated 477 

datasets. By comparison to rat, there are orders of magnitude more total RNA-seq datasets 478 

from mouse and human cells and tissues in public repositories. We previously identified and 479 

analysed 470 RNA-seq datasets from mouse resident tissue macrophages alone, excluding 480 

data from cells stimulated in vitro or in disease models (20).  The approach we have used in 481 

extensible to even larger datasets in mouse and human.  482 
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Analysis of liver-specific transcriptional network.  483 

The assembled dataset includes multiple BioProjects and thousands of RNA-seq datasets 484 

related to the liver, central nervous system, heart and cardiovascular system and kidney.  Each 485 

has been analysed independently to identify signatures of individual cell types and processes 486 

(Tables S3-S7). To illustrate the ability of network analysis to extract biologically informative 487 

expression signatures, we analysed the liver data (Table S3) in greater detail and considered 488 

other tissue-specific analysis in Supplementary On-Line text.  489 

Liver gene expression is regulated in response to numerous physiological stimuli and chronic 490 

disease processes including fatty liver disease. Aside from hepatic parenchymal cells, the liver 491 

contains several non-parenchymal populations. To identify co-regulated clusters within the 492 

liver transcriptome we analysed the liver samples separately using the same GCN approach 493 

used for the overall atlas. The liver is the major source of plasma protein and performs many 494 

functions in energy homeostasis, lipid and protein synthesis, biotransformation of xenobiotics 495 

and endogenous by-products. The function of the liver depends on its structure, which 496 

comprises small units called lobules each composed of concentric layers of hepatocytes 497 

expanding from the central vein toward the periportal vein. The metabolic function of 498 

hepatocytes varies along the periportal–central axis, a phenomenon referred to as metabolic 499 

zonation (73). In principle, if there was significant heterogeneity in metabolic state or 500 

development amongst the liver samples, a gene-to-gene clustering might reveal sets of genes 501 

associated with portal versus centrilobular regions of liver lobules. Halpern et al. (74) 502 

performed single cell RNA-seq analysis of mouse hepatocyte diversity and concluded that 503 

zonation impacts as many as 50% of transcripts.  However, this analysis was limited to 8 week 504 

old fasted male C57Bl/6 mice and does not necessarily capture coordinated regulation of the 505 

metabolic domains including diurnal oscillations and response to feeding (75). Broadly-506 

speaking, the single cell analysis indicated a periportal bias for major secretory products of 507 

hepatocytes and a pericentral concentration of expression of genes involved in xenobiotic 508 

metabolism.  509 
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Network analysis revealed a large co-regulated cluster (Liver-Cluster 11) that includes Gls2, 510 

an archetypal periportal marker in mice, other enzymes and transporters associated with the 511 

urea cycle (Ass1, Acy3, Agmat, Cbs, Gpt, Slc25a22, Nags) and the glucagon receptor, Gcgr.  512 

Cheng et al. showed that glucagon is a regulator of zonation in mouse liver, in that glucagon 513 

deficiency led to reduced expression of periportal-enriched  transcripts (76). There are 514 

candidate transcriptional regulators within this cluster with known functions in hepatic 515 

transcriptional regulation; the xenobiotic sensor Nr1i2 and the glucose-sensing transcription 516 

factor Mlzipl (77,78). A smaller Liver-Cluster 88 contains additional key enzymes of urea 517 

synthesis, Arg1, Cps1, Gpt2 as well as the amino acid transporter, Slc38a4.  518 

The analysis does not reveal a corresponding pericentral expression cluster. Glul, which 519 

appears strictly-restricted to a single layer of cells surrounding the central vein in mice,  rats 520 

and humans (73) showed limited heterogeneity amongst the liver datasets and did not form 521 

part of this cluster.  This suggests that Glul is not highly-regulated whereas other centrilobular-522 

enriched transcripts alter their expression in response to external stimulus. Another putative 523 

landmark pericentral gene, Cyp2e1, is actually part of Liver-Cluster 11, redistributed in at least 524 

some of the experimental models sampled herein, as observed in a model of paracetamol 525 

exposure that forms part of this dataset. Other transcripts that are biased to centrilobular also 526 

form separate clusters because of their independent regulation in response to stimulation. For 527 

example, Cyp1a2 was identified as a pericentral marker (73). Liver-Cluster 54 is elevated in a 528 

dataset from a BioProject studying the effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 529 

a potent aryl hydrocarbon receptor (AhR).  It includes the detoxifying enzymes Cyp1a1, 530 

Cyp1a2 and Cyp1b1, the AHR repressor gene (Ahrr) and transcription factor Cdx2, a known 531 

AHR target gene (79). A distinct set of xenobiotic metabolising genes, Ces2a, Gstm2 and 532 

Ugt1a5 is coregulated in Liver-Cluster 69, and Ephx1 and Gsta2,4,5, m1 are co-regulated in 533 

Liver-Cluster 146.  The proteasome subunit, Psmd4 was also pericentral in mice (74) but it is 534 

found in Liver-Cluster 10 stringently co-regulated as one might expect with numerous other 535 

components of the proteasome complex. Liver-Cluster 10 contains the transcription factor 536 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467633
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Creb3, and likely reflects the activation of the Golgi stress response in a subset of samples or 537 

BioProjects (80).  538 

The regulation of lipid metabolism is of particular interest given the current epidemic of non-539 

alcoholic fatty liver disease. There is some evidence of zonation of fatty acid metabolism in the 540 

liver; fatty acid  oxidation being enriched in periportal and lipogenesis in pericentral 541 

hepatocytes (74) but these pathways are independently regulated in this dataset. Liver-Cluster 542 

13 is highly-enriched for genes involved in lipolysis and fatty acid  oxidation.  It overlaps the 543 

smaller cluster in the full atlas (Cluster 101) but includes many additional genes that have 544 

tissue-specific enrichment (e.g. Acot7 in CNS). Conversely, Liver-Clusters 16 and 70 comprise 545 

enzymes of cholesterol and fatty acid synthesis and the known transcriptional regulators, Nfe2 546 

and Srebf1/2. Liver-Cluster 26 contain multiple genes involved more generally in mitochondrial 547 

oxidative phosphorylation including multiple genes encoding NADH-ubiquinone 548 

oxidoreductase (NDUF) subunits. We are not aware of any heterogeneity in mitochondrial 549 

distribution in the liver.  550 

The various metabolic and inflammatory disease models, with distinct effects on non-551 

parenchymal cells, enable deconvolution of signatures of specific cell types and disease 552 

processes.  Liver-Cluster 6, which includes the classical fibrosis marker, Acta2 (smooth muscle 553 

alpha actin/ SMA) is elevated in fibrosis models, but highest in E14 liver, which may indicate 554 

that myofibroblast activation in fibrosis recapitulates the phenotype of embryonic 555 

mesenchyme. Liver-Cluster 18 captures transcripts associated with more advanced fibrotic 556 

disease and includes multiple collagen genes and two candidate transcriptional regulators, 557 

Etv1 and Osr2. This cluster also contains the mesenchymal gene Olfml3, which is also 558 

expressed in microglia in the mouse (see biogps.org) and human (81) but is not associated 559 

with microglia in the rat (68). This highlights the problems with assuming that genes have 560 

similar expression patterns and functions across species. 561 

The fibrosis-associated clusters are clearly separated from Liver-Cluster 7 which captures the 562 

phenotype of infiltrating CD45+ (Ptprc) myeloid cells in various models.  Two sets of interferon-563 
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responsive transcripts including key regulators Irf7 and Irf9 cluster separately (Liver-Clusters 564 

25 and 43) as do transcripts associated with expression of class II MHC (Liver-Cluster 65).  565 

These clusters are separated also from the signatures of endothelial cells (Liver-Cluster 63) 566 

and of Kupffer cells, the resident macrophages (Liver-Cluster 56). The latter cluster includes 567 

the transcript encoding the macrophage growth factor receptor, Csf1r and many transcripts 568 

that were also down-regulated in livers of Csf1r-knockout rats (82). Clec4f, which is expressed 569 

exclusively by Kupffer cells in mice, and is in the liver-specific cluster in the extended atlas, is 570 

in a separate cluster (Liver-Cluster 95) with the three C1q subunits (C1qa/b/c), Cfp, Ctss, Pld4 571 

and Tifab. There is emerging interest in the later gene, a forkhead-associated domain protein, 572 

in immune cell function and inflammation (83).  573 

Finally, in rodents, there is a set of transcripts that is expressed in the liver in a sex-specific 574 

manner in part under the influence of growth hormone (84,85). The male and female-specific 575 

liver transcriptomes are regulated by differential expression of specific transcription factors, 576 

CUX2 and ONECUT2 in females and BCL6 in males. The majority of samples are from males, 577 

but nevertheless, Liver-Cluster 66 is excluded from female livers, and Liver-Cluster 84 contains 578 

Cux2, Trim 24 and known female-specific transcripts.  579 

The relationship between network analysis and single cell RNA-seq for the definition of 580 

cell types in tissues.  581 

As in the liver, the network analysis of other major organ systems enabled robust extraction of 582 

clusters of co-regulated transcripts often including the transcription factors that regulate them.  583 

In this case, the issue of tissue-specific promoters becomes less of an issue and genes that 584 

have multiple promoters (e.g. Mitf, Acp5) may form part of tissue-specific networks highlighting 585 

local functions. The deconvolution of large datasets by network analysis complements single 586 

cell RNA-seq (scRNA-seq) analysis which has rapidly become a dominant approach to 587 

analysis of cellular heterogeneity. scRNA-seq is not quantitative. Typically, expression of 588 

<1000 genes is detected in each cell and even the most highly-expressed transcripts are not 589 

detected in every cell (86). The output of scRNA-seq conflates two distinct types of zero values: 590 
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those where a gene is expressed but not detected by the sequencing technology (stochastic 591 

sampling) and those that reflect genuine expression heterogeneity. Whereas we can readily 592 

separate entirely unrelated cells that share few markers in scRNA-seq, such as epithelia and 593 

hematopoietic cells, the identification of numerous subpopulations within individual lineages is 594 

tenuous at best (20). A second disadvantage of analysis of isolated cells by scRNA-seq or total 595 

RNA-seq is that cells are inevitably activated during isolation and single cells can have 596 

attached remnants of other cells that contribute RNA (20).  597 

Suo et al. [87] described computational analysis of mouse cell atlas to identify 202 regulons 598 

whose activities are highly variable across different cell types and predicted a small set of 599 

essential regulators for each major cell type in mouse. We have achieved the same outcome 600 

for the rat without the use of scRNA-seq. The advantage of network deconvolution as 601 

performed here is that one can explore a much wider diversity of states than can be 602 

contemplated with scRNA-seq and identify more robust co-regulatory modules. Any proposed 603 

pair of markers of a specific cell population defined by scRNA-seq should be strongly 604 

correlated with each other if both are detectable in whole tissue. The prediction was tested in 605 

a meta-analysis of mouse tissue macrophage populations which failed to support the existence 606 

of a specialised macrophage subset defined from scRNA-seq data by reciprocal expression of 607 

Lyve1 and Mrc1 (20). Herein the detailed analysis of the liver data indicates that zonation of 608 

the liver is dynamic and individual pathways are regulated to a large extent independently of 609 

each other. So, the definition of subpopulations of hepatocytes is state-dependent. The 610 

discussion of other systems in Supplementary On-line text casts doubt on the fine-grained 611 

definition of subsets of tissue-specific parenchymal/epithelial cells and more generic glial cells, 612 

fibroblasts, endothelial cells, parenchymal cells and macrophages in many published scRNA-613 

seq analyses.  Network analysis reveals regulons that may, or may not, be restricted to a 614 

defined cell population, but which are clearly linked to function.  In that respect one might 615 

reasonably question the value of defining cell types as an approach to understanding biology.   616 
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 630 

Table 1. Gene expression clusters from rat tissues and cells. Clusters were generated at r ≥ 631 

0.75 and MCL inflation value 2.2. Clusters of ≥ 40 nodes are shown.  Selected transcripts 632 

encoding transcription factors are highlighted in red. 633 

 634 

Cluster 
number 

Number of 
transcripts 

Specificity Index genes and 
TFs 

Functional annotation 

1/70 1514/27 Testis Acr, Amhr2, Ccna1, 
Fshr. Meioc, Spata16, 
Tnp1/2, Rec8, Stag3 
Nr6a1, Pbx4, Rfx2/8, 
Sox5, Sox30, Tcfl5, 
Taf7l  

Spermatogenesis, motility, 
meiosis 

2 1303 CNS neurons Amigo1, Camk2a, 
Cx3cl1, Gabbr1/2, 
Grik1-5, Nfasc, Snca,  
Atf2, Bcl7a, Cbx6, 
Hdac11, Hivep2, Lmo3, 
Pou6f1, Rfx3, Tcf25, 

Neurotransmission, neural 
development,  

3 583 Non-specific 
variable 

Atm, Birc6, Ccnt1/2, 
Cdk12/13, Ddx5/6, 
Fancb, Herc1/2, Hipk1 
Arid2, Creb1, Kdm5a, 
Nf1, Nfe2l3, Nr2c2, 
Smad4/5 

Misfolded protein/stress 
response, tumor suppressors 

5 342 Liver Afm, Alb, Apoc1-4, C3, 
Cfb, Cth, Cyp2a1, F2, 
Fetub, Gcgr, Ghr, Hpx, 
Igf1, Plg, Serpina1 
Creb3l3, Foxa3, Meox2, 
Nr0b2, Nr1h3/i2/i3, 
Rxra,  

Hepatocyte secretory products, 
xenobiotic metabolism.  

6 310 Oocyte Axin2, Bmp15, Bub1b,  
Ccnb3, Dlgap5, Esrp1, 
Eya1/3, Gdf9, Gpr1, 
Zp1-4 
Cbx2, Dux4, Foxn4, 
Foxr1, Gata3, Lhx8, 
Nobox, Sall3, Taf4b, 
Taf5, Tead4 

Oocyte-specific transcription 
Zona pellucida structure 
Meiosis  

7 213 Skeletal 
muscle 

Acta1, Casq1, Ckm, 
Des, Mb, Myh2,Myl1, 
Pfkm, Ryr1, 
Lbx1, Myf6, Pou6f2, 
Six1, Snai3, Zfp106 
 

Muscle contraction, calcium 
signalling 

8 211 Kidney  Aco1, Adm2, 
Cyp4a2/a8, Klk1, Nox4, 
Pth1r, Slc5a2  

Tubule function, resorption, 
metabolism 

9 194 Oocyte  Aurkc, Ccnb1, Magoh, 
Mnd1, Mos, Nanos2 
Ooep,  

Stem cell renewal, meiosis 
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Brdt, Dazl, Gsc, Nr5a2, 
Pcgf1/6, Sall4, Sox15, 
Tcf15, Tcl1a, Zfp57 

11 188 Variable,  
Not tissue-
specific 

Bub1, Ccna2, Cdk1/2, 
Cenpk, Lig1, Mki67, 
Orc1, Pcna, Pola1 
E2f8, Foxm1 

Cell division cycle 
DNA synthesis/repair, mitosis 

12 165 ES cells (1) Dppa3/a4, Dusp10, 
Fgf17, Fzd6, Slc2a3 
Deaf1, Ferd3l, H2az1, 
Lefty1, Lmo2, Mybl2, 
Nanog, Nkx2-8, Tbx3,  

Stem cell maintenance 

14 124 Intestine Ace2, Cdh17, Cldn7, 
Defa family, Dgat1, 
Heph, Il20ra, Krt20, 
Lgals4, Muc13, Vil1  
Hnf4g 

Intestinal barrier function 

15 111 Stimulated T 
cells 

Cd2, Cd3e, Cd69, 
Dock2, Il2rg, Ltb, Ptprc, 
Sla, Was 
E2f2, Ets1, Gfi1, 
Ikzf1/3, Limd2  

T cell function 

17 96 Pineal/retina Aanat,Arr3,  Asmt, 
Gch1, Opn1sw,  
Bsx, Crx, Isl2, Lhx4, 
Mitf, Neurod4, Tafa3  

Pineal function 
Melatonin synthesis  

18 95 Retina/Pineal Cnga1, Gabbr1/2 
Opn1mw, Pde6a/b/g/h 
Rd3, Rdh8, Rp1, Rtbdn 
Bhlhe23, Pax4, Prdm13 

Retinal function  

19 94 Thymus Ccl25, Cd3d, Cd8a/b, 
Fas, Rag1, Tap2, Tbata 
Foxn1, Ikzf2, Myb, 
Pax1, Rorc, Tcf7, 
Themis,  

Thymic differentiation 
Selection 

20 94 Liver, kidney Cyp2c23, Dcxr, Fbp1, 
G6pc, Gk, H6pd, Pck1, 
Slc22a1, Slc37a4 
Hnf1a/4a, Nr1h4 

Gluconeogenesis 

21 94 Macrophage 
microglia  

C1qa/b/c, Csf1r, Ctss, 
Gpr84, Hexb, Mpeg1, 
P2ry12/13, Siglec5, 
Tgfbr1,Trem2, Tyrobp 
Bhlhe41, Irf5  

Innate immune function, 
microglial differentiation 

22 90 Skin Cdsn, Csta, Klk9/10/12, 
Krt4/13/23,  Lce3d/e, 
Lipk, Ppl, Trex2, Vsig8 
Barx2  

Skin barrier function 

23 87 T cells,  
NK cells 

Ccl1, Ccr4/5/8, Cd40lg, 
Gpr183, Ifng, Il17a, Il2, 
Il2ra/b, Lta, Zap70 
Batf, Icos, Runx3, Stat4  

Activation, cytokine secretion 

24 85 Dorsal root 
ganglia 

Acp3, Calca/b, Grik1, 
Htr1d, Nfeh/l/m, Nmb, 
Piezo2, Prokr1, Ret 
Drgx, Hoxd1, Pou4f1/f2, 
Smad9, Tlx3 

Ganglion cell differentiation 

27/28/33 75/74/65 Skin Adgrf4, Ces4a, Col17a1 
Keratins, Krtaps, Lce 

Skin barrier function 
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family, Lgals7, Lipm, 
Perp 
Tp63, Tprg1 

29 69 Testis Aard, Clec12b, Gk5, 
Hormad1, Inca1,  
Shbg, Sycp1/2 
Msh4, Nkx3-1, Rhox8, 
Tbx22, Tsx 

Sertoli cell differentiation 
Synaptonemal complex 

30 68 B cell Btla, Cd19, Cd79a/b, 
Cxcr5,  Fcna, Gpr174 
Ighm, Jchain,  
Ciita, Pax5, Pou2af1, 
Spib, Tlx1  

B cell differentiation 
Immunoglobulin production 

34 65 Prostate Andpro, Cyss, Dach2, 
Eaf2, Fut4, Lao1, Lyc2, 
Mc5r, Pbsn, Sbp, 
Semg1,  
Bhlha15, Creb3l4, Esr2 

Prostate differentiation 
Secretion  

35 64 Adrenal Cbr1, Cyp11a1/b2/b3, 
Cyp1b1, Fdx1, Kcnk3/9, 
Mc2r, Pcsk5, Pnmt, 
Soat1, Star  
Ar, Nr5a1 

Steroid hormone production 
Adrenalin 

36/40 64/59 Placenta Ceacam3/9/11/12, 
Cts7/8, Faslg, Fcrla/b, 
Ifnk, Il17f, Il23a, Lcn9, 
Mmp1, Peg10, Prl 
family, Wnt8a 
Elf5, Hand1, Rhox9 

Trophoblast differentiation  
Secretion 

38 60 Brain Crmp1, Ephb2, Gpc2, 
Gpr85, Marcksl1, 
Mdga1, Mex3b 
Dcx, Hmgb3, Lhx6, 
Mycl, Neurog2, 
Runx1t1 Sox11  

Neurogenic progenitor cell 
differentiation 

42 56 Variable Bub3, Ddx39a, Dkc1, 
Srsf2/3, Trip13 
Mycn 

Genotoxic damage response 
Tumour suppressors 

43 52 Cochlea 
Middle ear 

Cd164l2, Chrna9/10, 
Cldn9, Fbxo2, Grxcr1/2, 
Kncn, Loxhd1, Otoa/r/s 

Hearing, cochlear function 

44 51 Blood Cxcr2, Gp9, Gypa, Kel, 
Pf4, S100a9, Tpt1, 
Tspo2   

Platelets, granulocytes 

46 49 Lung Ager, Aqp5, Clec14a, 
Cyp2a3, Dram1, Fmo2, 
Lamp3, Lyz2,  
Scgb1a1/3a1/3a2 
Sftpa1/b/c/d, Wnt3a,  
Hopx, Nkx2-1, Smad6, 
Tbx4 

Alveolar type 1 and type II cell 
function and secretion 

47/83 48/24 Heart Actc1, Cav3,  Fgf16, 
Myh7, Myl2, Palld, 
Ryr2, Tnnc1 
Ehd4, Irx4, Nkx2-5, 
Pdlim5, Tbx20 

Cardiac-specific muscle 
contraction.  

48 48 Monocyte 
Macrophage 

C5ar1, Ccr1, Cd14, 
Csf2ra, Cyba, Fcgr1a, 
Itgam, Msr1, Ncf1/2/4, 
Nlrp3, Slc11a1  

Innate immune function 
Free radical production 
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49 46 Kidney Acre2, Aqp2/3, Cldn8,  
Insrr, Kcne1, Oxgr1 
Foxi1, Hmx2, Hoxd3   

Distal tubule, collecting duct, 
water resorption 

51 45 ES cells (2) Fgf4, Fgf19, Gdf3 
Nodal, Pou5f1, Prdm14 

Regulation of pluripotency 

55 38 Granulocytes Camp, Ctsg, Elane, 
Fncb, Mpo, Prg2/3, 
S100a8  

Neutrophil granule proteins 

63 33 Brain Aqp4, Edil3, Gpr37/62 
Mag, Mbp, Mobp, 
Opalin, Plp1, Sema4d 
Nkx6-2 

Myelination, oligodendrocytes 

64 33 Pancreas Amy2a3, Cel, 
Cela1/2a/3b, Cpa1/2, 
Ctrc/l Pnlip, Pnliprp1/2 

Pancreatic enzymes, secretion 

66 29 Stomach Atp4a/b, Chia, Ctse, 
Cym, Ghrl, Gkn1/2, Pgc 

Acidification, digestive enzymes 

68 27 Brain, PC12 P2rx2, Prph,Th, Vgf 
Gata2, Hand2, Phox2a 

Sympathetic neurons? 

77 26 Mast cell? 
Lymphatic 

Adgrg5, Cma1, Cpa3, 
Lilrb3a, Lyve1, Selp, 
Sirpd, Slpi, Timd4 
Cebpe 

 

82 24 Adipose Adipoq, Fabp4, Lep, 
Lipe, Lpl, Oxtr, Plin1, 
Pnpla2, Retn, Sucnr1, 
Tshr 
Pparg 

Fat storage, lipolysis, adipokines 

87 21 Lens Cryb family 
Cryg family, Lim2, 
Opn4 

Lens structural proteins 

88 20 Macrophage Adam8, Cd68, Ctsb, 
Ctsd, Gpnmb, P2rx4 

Endosome/lysosome 

90 20 Colon Krt19, Lypd8, Phgr1, 
Pla2g10, Tspan1 
Cdx2 

Colon epithelium differentiation 
Secretion 

92 19 Cerebellum Ca8, Cbln1/3, Chn2, 
Fat2, Gabra6, Grm4,  
En2, Hes3 

Purkinje cell differentiation, 
granule proteins 

95 19 Variable in 
many tissues 

Adgrl4, Cd93, Cdh5, 
Dll4, Egfl7, Kdr, 
Pcdh12, Pecam1, Tie1 
Erg, Myct1 

Endothelial cell differentiation 

97 19 Cartilage 
growth plate 

Acan, Clec11a, 
Col9a1/2/3, Loxl3, Rflna 
Alx1, Nkx3-2 

Cartilage structural proteins 

98 18 Activated T 
cells, thymus 

Ccr7, Cd7, Cd96, Heca   
Foxp3 

Immune cell activation 

101 18 Macrophage Acod1, Cxcl10, Il1a/b, 
Nos2 

Response to LPS 

106 16 Cartilage 
Tendon 

Col2a1, Col10a1, 
Col11a1/2, Myh3, Ptx4 
Zfp648, Zim1 

Cartilage structural proteins 

 635 
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Table 2. Gene expression clusters from rat liver.  637 

Clusters were generated at r ≥ 0.75 and MCL inflation value 1.7.  Full dataset is provided in 638 
Table S3.  Transcription factors are highlighted in red.  639 

 640 

Liver-Cluster 
number 

Number of 
nodes 

Description 

1 6292 Widely-expressed, high in bile duct ligation model 
Growth, protein synthesis, inflammation, fibrosis, 
connective tissue 

2 752 High in fetal liver 
Cell cycle, hematopoiesis, embryonic liver 
Cyclins, Cdk1, Pcna, Igf2, Hbb, S100a8/9 
E2f2, Klf1, Myb 

3 414 General expression, metabolic regulation  
Bcl2l2, Cdk5, Cirbp,  
Esrra, Foxk1, Hdac6, Nfe2l1, Nr1h2, Nr2c1, Pias3, Rara, 
Six5, Tfe3, Tfeb 

4 278 General expression, control of lipid metabolism 
Arid1a, Bcl9, Camta2, Crtc1/2, Fastk,  
Foxj2, Foxp4, Hsf1, Mef2d, Rela, Rfx1, Rxrb, Tp53 

5 206 Isolated samples, gall bladder, neuroendocrine 
Cckar, Chga/b, Cldn10/18, Inha, Krtap1-3, Lgr5, Scg3/5, 
Nmb, Nts  

6 166 E14 liver, fibrosis model 
Acta2, Cdh11, Epha4/7, Fbn2, Gpc2, Myh6/7, Sfrp1/2 
Alx, Cited1, Foxf1, Gata5, Shox2, Tbx15/18, Tgif2, 
Twist1/2, Wt1 

7 148 Fetal liver, fibrosis, Zucker rats: myeloid infiltration 
Axl, Cd4, Cd68, Clec4a1, Fcgr1a, Hk3, Lyz2, Ptprc  
Irf5, Fli1, Spi1 

10 98 Variable expression: Proteasome complex, proteolysis 
Anxa7, Ctsd/l, Fbxo22, Prdx1/6, Psma, Psmb2, Psmc1, 
Psmd1, Tmx2, Usp5 
Creb3 

11 76 Variable, low in fetal liver, periportal hepatocytes, urea 
synthesis 
Agmat, Ass1, Ces1a, Cyp2e1, Gls2, Gcgr, Gpt, 
Hsd17b11, Pink1, Slc25a22 
Mlxipl, Nr1i2 

13 67 Variable, low in fetal liver, fibrosis model.  Fatty acid beta 
oxidation 
Acat1, Acot1, Crat, Cyp4a1, Etfdh, Hadh, Pank1, Pdk4, 
Slc22a5, Vnn1  

16/70 105/10 Variable.  Cholesterol and fatty acid synthesis 
Aacs, Acaca, Acly, Dhcr7, Fads1/2, Fasn, Hmgcr, 
Hmgcs1, Lss, Mvd 
Nfe2, Srebf1/2 

18 54 Fibrosis. 
Angptl4, Col1a1/2, Col6a1/6, Gpc1, Lgals1, Loxl1, Lum, 
S100a4, Sfpr4 
Etv1, Osr2 
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24 41 Variable.  Mast cells 
Cpa3, Cpz, Mcpt2, Prss8 

25 41 Variable.  Interferon response 
Dhx58, Gbp1/4, Ifi44, Ifit1, Isg15, Mx1/2, Oas1/2 
Irf7 

26 41 Variable.  Mitochondrial 
Atp5me/f/g, Cox7ab, Ndufa2/4/5/6 

31 34 One bioproject, pancreas contamination 
Cela1, Cpa1, Klk1, Pnlip, Prrs1 

33 32 One bioproject, NK cells 
Cd96, Gzma, Klra1, Ly49, Prf1 

34 31 Highly variable. Hepatic stellate cell activation? 
Acvr1c, Apob, Egfr, Fcgr2b, Klb, Mrc1, Stab2,  
Klf12, Nr3c2 

43 21 Variable, Interferon response 
Adar, Ifih1, Parp9/10/12/14 
Irf9 

56 12 Kupffer cell 
Cd5l, Csf1r, Sdc3, Siglec1, Vsig4 

63 10 Endothelial cell 
Cd93, Cdh5, Flt1, Nrp1, Pecam1, Tgfbr3, Tie1 
Ets1, Tbx20 

65 10 Class II MHC 
Aif1, Batf2, Cd74, Rt1-Ba/b, RT1-Da/b 
Irf8, Ciita 

66 10 Male-specific 
Akr1c12, Cyp2a2, Hsd3b5, Sult1c3 

69 10 Xenobiotic-induced 
Ces2a, Gstm2, Ugt1a5 

84 9 Female-specific 
Akr1b7, Cyp2c12, Srd5a1, Sult2a1/6 
Cux2, Trim24 

 641 
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Figure legends 643 

Figure 1. Sample to sample network graph for samples averaged by BioProject, age and tissue 644 

type. 645 

A. and C. Nodes coloured by organ system. Dark red – auditory system; light red, 646 

cardiovascular system, salmon, digestive system; orange, endocrine system; olive, liver; bright 647 

green, female reproductive system; teal, immune system; dark teal, integumentary system; 648 

dark green, male reproductive system; black, mixed tissues; light blue, nervous system; dark 649 

blue, primordia/early development; purple, renal system, pink, respiratory system; mauve, 650 

skeletomuscular system; grey, whole body (embryo). B. and D. Nodes coloured by BioProject. 651 

For A. and B. a correlation coefficient threshold of 0.21 was used; for C. and D, the threshold 652 

was 0.7. 653 

Figure 2. Gene expression profiles for genes which did not fall within a cluster. 654 

Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ 655 

system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue, 656 

auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive 657 

system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red, 658 

skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive, 659 

male reproductive system; dark pink, female reproductive system; dark turquoise, 660 

primordia/early development; black, whole body (embryo); red, mixed tissues. 661 

Figure 3. Gene expression profiles for macrophage-related genes. 662 

Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ 663 

system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue, 664 

auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive 665 

system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red, 666 

skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive, 667 
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male reproductive system; dark pink, female reproductive system; dark turquoise, 668 

primordia/early development; black, whole body (embryo); red, mixed tissues. 669 

  670 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467633
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

References 671 

1. Smith, J.R., Hayman, G.T., Wang, S.J., Laulederkind, S.J.F., Hoffman, M.J., Kaldunski, M.L., 672 
Tutaj, M., Thota, J., Nalabolu, H.S., Ellanki, S.L.R. et al. (2020) The Year of the Rat: The Rat 673 
Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids 674 
Res, 48, D731-D742. 675 

2. Gibbs, R.A., Weinstock, G.M., Metzker, M.L., Muzny, D.M., Sodergren, E.J., Scherer, S., Scott, 676 
G., Steffen, D., Worley, K.C., Burch, P.E. et al. (2004) Genome sequence of the Brown 677 
Norway rat yields insights into mammalian evolution. Nature, 428, 493-521. 678 

3. Atanur, S.S., Diaz, A.G., Maratou, K., Sarkis, A., Rotival, M., Game, L., Tschannen, M.R., 679 
Kaisaki, P.J., Otto, G.W., Ma, M.C. et al. (2013) Genome sequencing reveals loci under 680 
artificial selection that underlie disease phenotypes in the laboratory rat. Cell, 154, 691-703. 681 

4. Szpirer, C. (2020) Rat models of human diseases and related phenotypes: a systematic 682 
inventory of the causative genes. J Biomed Sci, 27, 84. 683 

5. Consortium, G.T. (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot 684 
analysis: multitissue gene regulation in humans. Science, 348, 648-660. 685 

6. Consortium, F., the, R.P., Clst, Forrest, A.R., Kawaji, H., Rehli, M., Baillie, J.K., de Hoon, M.J., 686 
Haberle, V., Lassmann, T. et al. (2014) A promoter-level mammalian expression atlas. 687 
Nature, 507, 462-470. 688 

7. Bush, S.J., Freem, L., MacCallum, A.J., O'Dell, J., Wu, C., Afrasiabi, C., Psifidi, A., Stevens, M.P., 689 
Smith, J., Summers, K.M. et al. (2018) Combination of novel and public RNA-seq datasets to 690 
generate an mRNA expression atlas for the domestic chicken. BMC Genomics, 19, 594. 691 

8. Clark, E.L., Bush, S.J., McCulloch, M.E.B., Farquhar, I.L., Young, R., Lefevre, L., Pridans, C., 692 
Tsang, H.G., Wu, C., Afrasiabi, C. et al. (2017) A high resolution atlas of gene expression in 693 
the domestic sheep (Ovis aries). PLoS Genet, 13, e1006997. 694 

9. Young, R., Lefevre, L., Bush, S.J., Joshi, A., Singh, S.H., Jadhav, S.K., Dhanikachalam, V., 695 
Lisowski, Z.M., Iamartino, D., Summers, K.M. et al. (2019) A Gene Expression Atlas of the 696 
Domestic Water Buffalo (Bubalus bubalis). Front Genet, 10, 668. 697 

10. Muriuki, C., Bush, S.J., Salavati, M., McCulloch, M.E.B., Lisowski, Z.M., Agaba, M., Djikeng, A., 698 
Hume, D.A. and Clark, E.L. (2019) A Mini-Atlas of Gene Expression for the Domestic Goat 699 
(Capra hircus). Front Genet, 10, 1080. 700 

11. Summers, K.M., Bush, S.J., Wu, C., Su, A.I., Muriuki, C., Clark, E.L., Finlayson, H.A., Eory, L., 701 
Waddell, L.A., Talbot, R. et al. (2019) Functional Annotation of the Transcriptome of the Pig, 702 
Sus scrofa, Based Upon Network Analysis of an RNAseq Transcriptional Atlas. Front Genet, 703 
10, 1355. 704 

12. Gillis, J. and Pavlidis, P. (2012) "Guilt by association" is the exception rather than the rule in 705 
gene networks. PLoS Comput Biol, 8, e1002444. 706 

13. Ballouz, S., Weber, M., Pavlidis, P. and Gillis, J. (2017) EGAD: ultra-fast functional analysis of 707 
gene networks. Bioinformatics, 33, 612-614. 708 

14. Freeman, T.C., Ivens, A., Baillie, J.K., Beraldi, D., Barnett, M.W., Dorward, D., Downing, A., 709 
Fairbairn, L., Kapetanovic, R., Raza, S. et al. (2012) A gene expression atlas of the domestic 710 
pig. BMC Biol, 10, 90. 711 

15. Giotti, B., Chen, S.H., Barnett, M.W., Regan, T., Ly, T., Wiemann, S., Hume, D.A. and 712 
Freeman, T.C. (2018) Assembly of a Parts List of the Human Mitotic Cell Cycle Machinery. J 713 
Mol Cell Biol. 714 

16. Hume, D.A., Summers, K.M., Raza, S., Baillie, J.K. and Freeman, T.C. (2010) Functional 715 
clustering and lineage markers: insights into cellular differentiation and gene function from 716 
large-scale microarray studies of purified primary cell populations. Genomics, 95, 328-338. 717 

17. Mabbott, N.A., Baillie, J.K., Brown, H., Freeman, T.C. and Hume, D.A. (2013) An expression 718 
atlas of human primary cells: inference of gene function from coexpression networks. BMC 719 
Genomics, 14, 632. 720 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467633
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

18. Singh, A.J., Ramsey, S.A., Filtz, T.M. and Kioussi, C. (2018) Differential gene regulatory 721 
networks in development and disease. Cell Mol Life Sci, 75, 1013-1025. 722 

19. Doig, T.N., Hume, D.A., Theocharidis, T., Goodlad, J.R., Gregory, C.D. and Freeman, T.C. 723 
(2013) Coexpression analysis of large cancer datasets provides insight into the cellular 724 
phenotypes of the tumour microenvironment. BMC Genomics, 14, 469. 725 

20. Summers, K.M., Bush, S.J. and Hume, D.A. (2020) Network analysis of transcriptomic 726 
diversity amongst resident tissue macrophages and dendritic cells in the mouse 727 
mononuclear phagocyte system. PLoS Biol, 18, e3000859. 728 

21. Jubb, A.W., Young, R.S., Hume, D.A. and Bickmore, W.A. (2016) Enhancer Turnover Is 729 
Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and 730 
Human Macrophages. J Immunol, 196, 813-822. 731 

22. Villar, D., Berthelot, C., Aldridge, S., Rayner, T.F., Lukk, M., Pignatelli, M., Park, T.J., Deaville, 732 
R., Erichsen, J.T., Jasinska, A.J. et al. (2015) Enhancer evolution across 20 mammalian 733 
species. Cell, 160, 554-566. 734 

23. Ji, X., Li, P., Fuscoe, J.C., Chen, G., Xiao, W., Shi, L., Ning, B., Liu, Z., Hong, H., Wu, J. et al. 735 
(2020) A comprehensive rat transcriptome built from large scale RNA-seq-based annotation. 736 
Nucleic Acids Res, 48, 8320-8331. 737 

24. Sollner, J.F., Leparc, G., Hildebrandt, T., Klein, H., Thomas, L., Stupka, E. and Simon, E. (2017) 738 
An RNA-Seq atlas of gene expression in mouse and rat normal tissues. Sci Data, 4, 170185. 739 

25. Wang, X., You, X., Langer, J.D., Hou, J., Rupprecht, F., Vlatkovic, I., Quedenau, C., Tushev, G., 740 
Epstein, I., Schaefke, B. et al. (2019) Full-length transcriptome reconstruction reveals a large 741 
diversity of RNA and protein isoforms in rat hippocampus. Nat Commun, 10, 5009. 742 

26. Bray, N.L., Pimentel, H., Melsted, P. and Pachter, L. (2016) Near-optimal probabilistic RNA-743 
seq quantification. Nat Biotechnol, 34, 525-527. 744 

27. Choudhary, S. (2019) pysradb: A Python package to query next-generation sequencing 745 
metadata and data from NCBI Sequence Read Archive. F1000Res, 8, 532. 746 

28. Wu, C., Jin, X., Tsueng, G., Afrasiabi, C. and Su, A.I. (2016) BioGPS: building your own mash-747 
up of gene annotations and expression profiles. Nucleic Acids Res, 44, D313-316. 748 

29. Wu, C., Orozco, C., Boyer, J., Leglise, M., Goodale, J., Batalov, S., Hodge, C.L., Haase, J., Janes, 749 
J., Huss, J.W., 3rd et al. (2009) BioGPS: an extensible and customizable portal for querying 750 
and organizing gene annotation resources. Genome Biol, 10, R130. 751 

30. Theocharidis, A., van Dongen, S., Enright, A.J. and Freeman, T.C. (2009) Network visualization 752 
and analysis of gene expression data using BioLayout Express(3D). Nat Protoc, 4, 1535-1550. 753 

31. van Dongen, S. and Abreu-Goodger, C. (2012) In Van Helden, J., Toussaint, A. and Theiffry, D. 754 
(eds.), Bacterial molecular networks: Mtehods and protocols. Springer, New York, NY, USA. 755 

32. Yu, Y., Fuscoe, J.C., Zhao, C., Guo, C., Jia, M., Qing, T., Bannon, D.I., Lancashire, L., Bao, W., 756 
Du, T. et al. (2014) A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 757 
developmental stages. Nat Commun, 5, 3230. 758 

33. Grimes, S.R. (2004) Testis-specific transcriptional control. Gene, 343, 11-22. 759 
34. Okitsu, Y., Nagano, M., Yamagata, T., Ito, C., Toshimori, K., Dohra, H., Fujii, W. and Yogo, K. 760 

(2020) Dlec1 is required for spermatogenesis and male fertility in mice. Sci Rep, 10, 18883. 761 
35. Li, M., Zheng, J., Li, G., Lin, Z., Li, D., Liu, D., Feng, H., Cao, D., Ng, E.H.Y., Li, R.H.W. et al. 762 

(2021) The male germline-specific protein MAPS is indispensable for pachynema progression 763 
and fertility. Proc Natl Acad Sci U S A, 118. 764 

36. Wu, X.L., Yun, D.M., Gao, S., Liang, A.J., Duan, Z.Z., Wang, H.S., Wang, G.S. and Sun, F. (2020) 765 
The testis-specific gene 1700102P08Rik is essential for male fertility. Mol Reprod Dev, 87, 766 
231-240. 767 

37. Cunningham, D.B., Segretain, D., Arnaud, D., Rogner, U.C. and Avner, P. (1998) The mouse 768 
Tsx gene is expressed in Sertoli cells of the adult testis and transiently in premeiotic germ 769 
cells during puberty. Dev Biol, 204, 345-360. 770 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467633
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

38. Svingen, T., Beverdam, A., Verma, P., Wilhelm, D. and Koopman, P. (2007) Aard is specifically 771 
up-regulated in Sertoli cells during mouse testis differentiation. Int J Dev Biol, 51, 255-258. 772 

39. Akinloye, O., Gromoll, J., Callies, C., Nieschlag, E. and Simoni, M. (2007) Mutation analysis of 773 
the X-chromosome linked, testis-specific TAF7L gene in spermatogenic failure. Andrologia, 774 
39, 190-195. 775 

40. Cheng, Y., Buffone, M.G., Kouadio, M., Goodheart, M., Page, D.C., Gerton, G.L., Davidson, I. 776 
and Wang, P.J. (2007) Abnormal sperm in mice lacking the Taf7l gene. Mol Cell Biol, 27, 777 
2582-2589. 778 

41. Chang, E., Fu, C., Coon, S.L., Alon, S., Bozinoski, M., Breymaier, M., Bustos, D.M., Clokie, S.J., 779 
Gothilf, Y., Esnault, C. et al. (2020) Resource: A multi-species multi-timepoint transcriptome 780 
database and webpage for the pineal gland and retina. J Pineal Res, 69, e12673. 781 

42. Rohde, K., Rovsing, L., Ho, A.K., Moller, M. and Rath, M.F. (2014) Circadian dynamics of the 782 
cone-rod homeobox (CRX) transcription factor in the rat pineal gland and its role in 783 
regulation of arylalkylamine N-acetyltransferase (AANAT). Endocrinology, 155, 2966-2975. 784 

43. Bailey, M.J., Coon, S.L., Carter, D.A., Humphries, A., Kim, J.S., Shi, Q., Gaildrat, P., Morin, F., 785 
Ganguly, S., Hogenesch, J.B. et al. (2009) Night/day changes in pineal expression of >600 786 
genes: central role of adrenergic/cAMP signaling. J Biol Chem, 284, 7606-7622. 787 

44. Goding, C.R. and Arnheiter, H. (2019) MITF-the first 25 years. Genes Dev, 33, 983-1007. 788 
45. Fraser, A.M. and Davey, M.G. (2019) TALPID3 in Joubert syndrome and related ciliopathy 789 

disorders. Curr Opin Genet Dev, 56, 41-48. 790 
46. Morishita, H. and Yagi, T. (2007) Protocadherin family: diversity, structure, and function. Curr 791 

Opin Cell Biol, 19, 584-592. 792 
47. Missaglia, S., Tavian, D. and Angelini, C. (2021) ETF dehydrogenase advances in molecular 793 

genetics and impact on treatment. Crit Rev Biochem Mol Biol, 56, 360-372. 794 
48. Chen, C.M., Wang, H.Y., You, L.R., Shang, R.L. and Liu, F.C. (2010) Expression analysis of an 795 

evolutionarily conserved metallophosphodiesterase gene, Mpped1, in the normal and beta-796 
catenin-deficient malformed dorsal telencephalon. Dev Dyn, 239, 1797-1806. 797 

49. Maubert, E., Slama, A., Ciofi, P., Viollet, C., Tramu, G., Dupouy, J.P. and Epelbaum, J. (1994) 798 
Developmental patterns of somatostatin-receptors and somatostatin-immunoreactivity 799 
during early neurogenesis in the rat. Neuroscience, 62, 317-325. 800 

50. Chu, C.H., Chen, J.S., Chuang, P.C., Su, C.H., Chan, Y.L., Yang, Y.J., Chiang, Y.T., Su, Y.Y., Gean, 801 
P.W. and Sun, H.S. (2020) TIAM2S as a novel regulator for serotonin level enhances brain 802 
plasticity and locomotion behavior. FASEB J, 34, 3267-3288. 803 

51. Stolt, C.C., Lommes, P., Friedrich, R.P. and Wegner, M. (2004) Transcription factors Sox8 and 804 
Sox10 perform non-equivalent roles during oligodendrocyte development despite functional 805 
redundancy. Development, 131, 2349-2358. 806 

52. Artegiani, B., Lyubimova, A., Muraro, M., van Es, J.H., van Oudenaarden, A. and Clevers, H. 807 
(2017) A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the 808 
Hippocampal Neurogenic Niche. Cell Rep, 21, 3271-3284. 809 

53. Perez-Frances, M., van Gurp, L., Abate, M.V., Cigliola, V., Furuyama, K., Bru-Tari, E., Oropeza, 810 
D., Carreaux, T., Fujitani, Y., Thorel, F. et al. (2021) Pancreatic Ppy-expressing gamma-cells 811 
display mixed phenotypic traits and the adaptive plasticity to engage insulin production. Nat 812 
Commun, 12, 4458. 813 

54. Davis, M.R., Arner, E., Duffy, C.R., De Sousa, P.A., Dahlman, I., Arner, P. and Summers, K.M. 814 
(2016) Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype 815 
in Marfan syndrome and related conditions. Mol Genet Metab, 119, 174-185. 816 

55. Attanasio, M., Pratelli, E., Porciani, M.C., Evangelisti, L., Torricelli, E., Pellicano, G., Abbate, 817 
R., Gensini, G.F. and Pepe, G. (2013) Dural ectasia and FBN1 mutation screening of 40 818 
patients with Marfan syndrome and related disorders: role of dural ectasia for the diagnosis. 819 
Eur J Med Genet, 56, 356-360. 820 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467633
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

56. Jespersen, K., Liu, Z., Li, C., Harding, P., Sestak, K., Batra, R., Stephenson, C.A., Foley, R.T.,821 
Greene, H., Meisinger, T. et al. (2020) Enhanced Notch3 signaling contributes to pulmonary822 
emphysema in a Murine Model of Marfan syndrome. Sci Rep, 10, 10949.823 

57. Anderson, J.L., Head, S.I., Rae, C. and Morley, J.W. (2002) Brain function in Duchenne824 
muscular dystrophy. Brain, 125, 4-13.825 

58. O'Rourke, J.G., Bogdanik, L., Yanez, A., Lall, D., Wolf, A.J., Muhammad, A.K., Ho, R., Carmona,826 
S., Vit, J.P., Zarrow, J. et al. (2016) C9orf72 is required for proper macrophage and microglial827 
function in mice. Science, 351, 1324-1329.828 

59. Walsh, N.C., Cahill, M., Carninci, P., Kawai, J., Okazaki, Y., Hayashizaki, Y., Hume, D.A. and829 
Cassady, A.I. (2003) Multiple tissue-specific promoters control expression of the murine830 
tartrate-resistant acid phosphatase gene. Gene, 307, 111-123.831 

60. Mitic, N., Valizadeh, M., Leung, E.W., de Jersey, J., Hamilton, S., Hume, D.A., Cassady, A.I.832 
and Schenk, G. (2005) Human tartrate-resistant acid phosphatase becomes an effective833 
ATPase upon proteolytic activation. Arch Biochem Biophys, 439, 154-164.834 

61. Lang, P., van Harmelen, V., Ryden, M., Kaaman, M., Parini, P., Carneheim, C., Cassady, A.I.,835 
Hume, D.A., Andersson, G. and Arner, P. (2008) Monomeric tartrate resistant acid836 
phosphatase induces insulin sensitive obesity. PLoS One, 3, e1713.837 

62. Sengupta, A., Rhoades, S.D., Kim, E.J., Nayak, S., Grant, G.R., Meerlo, P. and Weljie, A.M.838 
(2017) Sleep restriction induced energy, methylation and lipogenesis metabolic switches in839 
rat liver. Int J Biochem Cell Biol, 93, 129-135.840 

63. Huang, X., Cai, H., Ammar, R., Zhang, Y., Wang, Y., Ravi, K., Thompson, J. and Jarai, G. (2019)841 
Molecular characterization of a precision-cut rat liver slice model for the evaluation of842 
antifibrotic compounds. Am J Physiol Gastrointest Liver Physiol, 316, G15-G24.843 

64. Kimball, S.R., Horetsky, R.L. and Jefferson, L.S. (1995) Hormonal regulation of albumin gene844 
expression in primary cultures of rat hepatocytes. Am J Physiol, 268, E6-14.845 

65. Qvartskhava, N., Lang, P.A., Gorg, B., Pozdeev, V.I., Ortiz, M.P., Lang, K.S., Bidmon, H.J., Lang,846 
E., Leibrock, C.B., Herebian, D. et al. (2015) Hyperammonemia in gene-targeted mice lacking847 
functional hepatic glutamine synthetase. Proc Natl Acad Sci U S A, 112, 5521-5526.848 

66. Pridans, C., Irvine, K.M., Davis, G.M., Lefevre, L., Bush, S.J. and Hume, D.A. (2020)849 
Transcriptomic Analysis of Rat Macrophages. Front Immunol, 11, 594594.850 

67. Hume, D.A., Caruso, M., Keshvari, S., Patkar, O.L., Sehgal, A., Bush, S.J., Summers, K.M.,851 
Pridans, C. and Irvine, K.M. (2021) The Mononuclear Phagocyte System of the Rat. J852 
Immunol, 206, 2251-2263.853 

68. Patkar, O.L., Caruso, M., Teakle, N., Keshvari, S., Bush, S.J., Pridans, C., Belmer, A., Summers,854 
K.M., Irvine, K.M. and Hume, D.A. (2021) Analysis of homozygous and heterozygous Csf1r855 
knockout in the rat as a model for understanding microglial function in brain development856 
and the impacts of human CSF1R mutations. Neurobiol Dis, 151, 105268.857 

69. Kohyama, M., Ise, W., Edelson, B.T., Wilker, P.R., Hildner, K., Mejia, C., Frazier, W.A.,858 
Murphy, T.L. and Murphy, K.M. (2009) Role for Spi-C in the development of red pulp859 
macrophages and splenic iron homeostasis. Nature, 457, 318-321.860 

70. Rojo, R., Pridans, C., Langlais, D. and Hume, D.A. (2017) Transcriptional mechanisms that861 
control expression of the macrophage colony-stimulating factor receptor locus. Clin Sci862 
(Lond), 131, 2161-2182.863 

71. Irvine, K.M., Caruso, M., Cestari, M.F., Davis, G.M., Keshvari, S., Sehgal, A., Pridans, C. and864 
Hume, D.A. (2020) Analysis of the impact of CSF-1 administration in adult rats using a novel865 
Csf1r-mApple reporter gene. J Leukoc Biol, 107, 221-235.866 

72. Summers, K.M. and Hume, D.A. (2017) Identification of the macrophage-specific promoter867 
signature in FANTOM5 mouse embryo developmental time course data. J Leukoc Biol, 102,868 
1081-1092.869 

73. Ben-Moshe, S. and Itzkovitz, S. (2019) Spatial heterogeneity in the mammalian liver. Nat Rev870 
Gastroenterol Hepatol, 16, 395-410.871 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467633
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

74. Halpern, K.B., Shenhav, R., Matcovitch-Natan, O., Toth, B., Lemze, D., Golan, M., Massasa, 872 
E.E., Baydatch, S., Landen, S., Moor, A.E. et al. (2017) Single-cell spatial reconstruction873 
reveals global division of labour in the mammalian liver. Nature, 542, 352-356.874 

75. Atger, F., Gobet, C., Marquis, J., Martin, E., Wang, J., Weger, B., Lefebvre, G., Descombes, P.,875 
Naef, F. and Gachon, F. (2015) Circadian and feeding rhythms differentially affect rhythmic876 
mRNA transcription and translation in mouse liver. Proc Natl Acad Sci U S A, 112, E6579-877 
6588. 878 

76. Cheng, X., Kim, S.Y., Okamoto, H., Xin, Y., Yancopoulos, G.D., Murphy, A.J. and Gromada, J.879 
(2018) Glucagon contributes to liver zonation. Proc Natl Acad Sci U S A, 115, E4111-E4119.880 

77. Heidenreich, S., Weber, P., Stephanowitz, H., Petricek, K.M., Schutte, T., Oster, M., Salo,881 
A.M., Knauer, M., Goehring, I., Yang, N. et al. (2020) The glucose-sensing transcription factor882 
ChREBP is targeted by proline hydroxylation. J Biol Chem, 295, 17158-17168.883 

78. Jiang, Y., Feng, D., Ma, X., Fan, S., Gao, Y., Fu, K., Wang, Y., Sun, J., Yao, X., Liu, C. et al. (2019)884 
Pregnane X Receptor Regulates Liver Size and Liver Cell Fate by Yes-Associated Protein885 
Activation in Mice. Hepatology, 69, 343-358.886 

79. Gialitakis, M., Tolaini, M., Li, Y., Pardo, M., Yu, L., Toribio, A., Choudhary, J.S., Niakan, K.,887 
Papayannopoulos, V. and Stockinger, B. (2017) Activation of the Aryl Hydrocarbon Receptor888 
Interferes with Early Embryonic Development. Stem Cell Reports, 9, 1377-1386.889 

80. Taniguchi, M. and Yoshida, H. (2017) TFE3, HSP47, and CREB3 Pathways of the Mammalian890 
Golgi Stress Response. Cell Struct Funct, 42, 27-36.891 

81. Gosselin, D., Skola, D., Coufal, N.G., Holtman, I.R., Schlachetzki, J.C.M., Sajti, E., Jaeger, B.N.,892 
O'Connor, C., Fitzpatrick, C., Pasillas, M.P. et al. (2017) An environment-dependent893 
transcriptional network specifies human microglia identity. Science, 356.894 

82. Keshvari, S., Caruso, M., Teakle, N., Batoon, L., Sehgal, A., Patkar, O.L., Ferrari-Cestari, M.,895 
Snell, C.E., Chen, C., Stevenson, A. et al. (2021) CSF1R-dependent macrophages control896 
postnatal somatic growth and organ maturation. PLoS Genet, 17, e1009605.897 

83. Niederkorn, M., Agarwal, P. and Starczynowski, D.T. (2020) TIFA and TIFAB: FHA-domain898 
proteins involved in inflammation, hematopoiesis, and disease. Exp Hematol, 90, 18-29.899 

84. Conforto, T.L., Zhang, Y., Sherman, J. and Waxman, D.J. (2012) Impact of CUX2 on the female900 
mouse liver transcriptome: activation of female-biased genes and repression of male-biased901 
genes. Mol Cell Biol, 32, 4611-4627.902 

85. Lau-Corona, D., Suvorov, A. and Waxman, D.J. (2017) Feminization of Male Mouse Liver by903 
Persistent Growth Hormone Stimulation: Activation of Sex-Biased Transcriptional Networks904 
and Dynamic Changes in Chromatin States. Mol Cell Biol, 37.905 

86. Lahnemann, D., Koster, J., Szczurek, E., McCarthy, D.J., Hicks, S.C., Robinson, M.D., Vallejos,906 
C.A., Campbell, K.R., Beerenwinkel, N., Mahfouz, A. et al. (2020) Eleven grand challenges in907 
single-cell data science. Genome Biol, 21, 31.908 

909 
910 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467633
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Sample to sample network graph for samples averaged by BioProject, age and tissue 
type. 

A. and C. Nodes coloured by organ system. Dark red – auditory system; light red, 
cardiovascular system, salmon, digestive system; orange, endocrine system; olive, liver; bright 
green, female reproductive system; teal, immune system; dark teal, integumentary system; 
dark green, male reproductive system; black, mixed tissues; light blue, nervous system; dark 
blue, primordia/early development; purple, renal system, pink, respiratory system; mauve, 
skeletomuscular system; grey, whole body (embryo). B. and D. Nodes coloured by BioProject. 
For A. and B. a correlation coefficient threshold of 0.21 was used; for C. and D, the threshold 
was 0.7. 
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Figure 2. Gene expression profiles for genes which did not fall within a cluster. 

Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ 
system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue, 
auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive 
system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red, 
skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive, 
male reproductive system; dark pink, female reproductive system; dark turquoise, 
primordia/early development; black, whole body (embryo); red, mixed tissues. 
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Figure 3. Gene expression profiles for macrophage-related genes. 

Y axis shows the expression level in transcripts per million (TPM). X axis shows the organ 
system, coloured as in Table S2. Reading from left to right: light red, nervous system; blue, 
auditory system; light green, respiratory system; yellow, cardiovascular system; pink, digestive 
system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red, 
skeletomuscular system; dark blue, integumentary system; dark green, immune system; olive, 
male reproductive system; dark pink, female reproductive system; dark turquoise, 
primordia/early development; black, whole body (embryo); red, mixed tissues. 
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Figure S1
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Cluster analysis of nervous system samples 

The largest collection of individual RNA-seq datasets in the atlas is related to central and peripheral 

nervous tissues and includes 1855 samples.  Table S4 lists all of the samples and the set of Clusters 

identified by gene-centred network analysis.  Brain region-specific analysis in juvenile rats has been 

reported previously (1) and here we will not attempt a detailed annotation of every cluster.  There are 

obvious clusters of neuronal cell types enriched for specific neurotransmitter receptors or functions 

and specific transcription factors.  For example, Cluster 4 is enriched in dorsal root ganglia (DRG), and 

contains specific transcription factors, Drgx and Isl2. The smaller Cluster 65 is even more DRG-

restricted and contains the nociceptor marker Ntrk3 (TRKA)(2), pain-associated receptors (Prokr1/2) 

and transcription factors Hmx1, Isl1, Pou4f1 and Prdm12. Cluster 23 contains Kit, Slc1a1, Gria1/2 and 

Htr1a and multiple voltage-gated potassium channels, Cluster 25 contains Ntrk3 and Grm3,5,7, Cluster 

46 contains transcripts expressed in cerebellum and Cluster 55 clearly has a signature of dopaminergic 

neurons including transcripts encoding synthetic enzymes (Dbh, Ddc, Maoa, Th).  Finally, the small 

Cluster 295 contains multiple neuron-specific transcription factors (Bcl11a, Fezf2, Foxg1, Lhx2, 

Neurod1 and Tbr1) that have each been implicated in aspects of axonal guidance (3). 

Cluster 5 is microglia-related, whilst the separate small Cluster 150 contains markers of brain-

associated macrophages (e.g. Mrc1/CD206).  Cluster 6 is expressed in pineal gland, Cluster 14 contains 

the transcripts for the structural and regulatory components of motile cilia, some of which are shared 

with testis in the main atlas, Cluster 15 contains smooth muscle alpha actin (Acta2), Pdgrb and various 

collagen genes and likely provides a signature of pericytes whereas endothelial markers (e.g. Pecam1) 

are in Cluster 150 alongside brain-associated macrophage markers.  Transcripts associated with 

myelination (Mag, Mbp, Mog, Plip) are co-expressed in Cluster 36, although separated from the 

oligodendrocyte progenitor-specific transcription factors, Olig1 and Olig2.  This separation occurs 

because of the inclusion of an oligodendrocyte progenitor population purified using the surface 

marker A2B5 (4). The original report claims minimal contamination with microglia (<0.8%) but in fact 

these cells have the highest expression of any sample of the microglia-associated transcripts. They 

express Olig2, but also lack expression of mature oligodendrocyte markers associated with 

myelination (e.g. Mog). Sox10, which is also expressed in these cells and known to be involved in 

oligodendrocyte differentiation (4) is actually in Cluster 32, a Schwann cell-enriched cluster, alongside 

surface markers (Cadm4, Fermt2, Itga7, Mcam; (5)), multiple genes involved in their regulation and 
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function (e.g. Erbb2/3 (6), Dhh, Bmp1, Matn2, semaphorins (Sema3a/3g) and several laminins (7). The 

neurotrophic chemokine meteorin-like (Metrnl), also within this cluster, has not previously been 

attributed a function in Schwann cells.  

 We do not detect an astrocyte-specific cluster containing any of the conventional markers such as 

Aldh1l1, Gfap, S100b, Slc1a2/3 or Aqp4.  Mays et al. (8) reported scRNA-seq analysis of rat pineal gland 

and identified 3 distinct astrocyte populations, but close examination of their data suggests a poor 

correlation between the markers. Recent scRNA-seq data analyzing mouse cells harvested using an 

Aldh1l1-EGFP reporter also indicates these cells are extremely heterogeneous and each of the markers 

is independently-regulated (9). The use of Aldh1a1 as an astrocyte  marker is  difficult to justify. The 

gene product has no known function in astrocytes; and is almost undetectable in rat brain or in human 

astrocytes (10).  It is part of the liver-specific cluster in the main atlas, and studies of the mouse 

knockout focus on hepatic function and tumorigenesis (11).  The simplest interpretation of the mouse 

scRNA-seq data is that the Aldh1a1 marker is actually not astrocyte-specific.  Batiuk et al. (12) used a 

different marker, ATP1B2 (also not clustered in our dataset) and scRNA-seq to isolate and identify 5 

separate region-enriched astrocyte populations in mouse brain.  The heterogeneity of astrocytes has 

been recognised for many years.  For example, Waltz and Lang (13) used IHC to locate 3 putative 

markers (GFAP, glutamine synthase (Glul) and S100B) in rat hippocampus and concluded that up to 

40% of astrocytes were GFAP-negative and GFAP-positive cells were selectively expanded in injury-

associated gliosis.  We do in fact identify a very small cluster (Cluster 359) that contains Glul and other 

markers enriched in rat astrocytes, the neurotensin 2 receptor (Ntsr2), Aldoc and Gjp6 (14-16). This 

cluster supports Claudin 10 (Cldn10) as an additional marker.  Cldn10 is detectable in rat and mouse 

brain, albeit lower than in kidney.  These may be the only robust astrocyte markers in the rat.  

Analysis of the averaged data in the full atlas dataset revealed a cluster of transcripts enriched in 

neurogenic progenitors.  This cluster containing the commonly-used marker, Dcx, is further expanded 

in the CNS restricted dataset. Cluster 13 includes multiple known surface markers (e.g. Cdh4, Cd24, 

Cxadr, Gpr85, Lrp8) of neurogenic cells, known and novel transcriptional regulators (Hdac2, Hes6, 

Mycl, Mycn, Sox4/11/12) and tubulin subunits (Tuba1a, Tubb2b, Tubb5).  By extension, many other 

genes in this cluster likely have a function in neurogenesis and are candidate genes for involvement 

in human lissencephaly (absence of folds in the cerebral cortex) associated with failures of 

neurogenesis and neuronal migration (17). 

Cluster analysis of renal samples 

The atlas dataset includes RNA-seq data from 17 separate BioProjects of the renal system (Table S1) 

including studies of isolated cells, dissected regions, diabetes, injury and disease models and effects 

of age, developmental stage and effects of mutations.  Each of these BioProjects provides multiple 

replicates.  The kidney data include datasets from micro-dissected renal tubules (18), an analysis that 

is more practical in the rat than the mouse. A subsequent study in mouse (19) proposed the existence 

of signatures of as many as 43 separate cell types in the total kidney RNA-seq data based upon specific 

markers and attempted to integrate with numerous published scRNA-seq datasets from mouse 

kidney.  Previous efforts to deconvolute whole tissue data to extract cell-specific signatures used 

single cell data as a reference (20). A recent study reported eQTL analysis of microdissected human 

kidney samples to identify cell-type specific eQTL that in turn linked to some 200 genes regulating 

kidney function and blood pressure (21) and highlighted specific markers of the major cell populations 

within the kidney.   

Table S5 shows the set of co-expression clusters extracted from the rat renal RNA-seq data and these 

are summarized in the Table below.  Consistent with evidence that proximal tubules contribute the 
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bulk of mRNA, the largest cluster contains numerous known markers enriched in proximal tubules 

including 62 solute carriers and many transcriptional regulators known to be involved in renal 

development of functional regulation.  Clusters 2,3,4 are associated with specific BioProjects and 

Cluster 5 is the cell cycle cluster, in this case elevated in a model of unilateral nephrectomy.  Cluster 

19 is surprising in that it contains Alb and Afp and includes an array of transcripts encoding plasma 

lipoproteins, complement, and clotting factors normally associated with the liver.  This cluster is 

attributable to inclusion of one embryonic kidney sample from the developmental series and is 

presumably due to misidentification or contamination.   

Broadly-speaking, the analysis demonstrates that it is possible to extract the signatures of all of the 

major cell types of the kidney and identify candidate regulators of their expression without 

disaggregation or isolation or the use of single cell RNA-seq. This outcome includes a clear separation 

of principal cells and intercalated cells from the collecting duct. Cluster 18 contains the markers of 

principal cells.  Interestingly, the cluster also contains the peripheral neuronal marker Ntrk1, but no 

other markers of neurons.  A recent study identified an NTRK1 mutation segregating with bipolar 

disorder and an inherited kidney disease (22). The latter phenotype was attributed to mutation in the 

neighbouring Muc1 gene, but Muc1 is barely detectable in kidney and not part of a cell-specific cluster.  

Chen et al. (23) distinguished intercalated cells in the mouse based upon expression of KIT (Kit; which 

is grouped with its ligand, Kitlg, in Cluster 9). They suggested that expression of two markers, Slc4a1 

and Slc26a4 was mutually exclusive and identified putative markers of type A and Type B intercalated 

cells.  However, the conclusion was based upon a small number of cells and in our analysis none of 

these markers defines a separate cluster.  One other notable feature of our analysis was the 

identification of a clear signature of resident kidney tissue macrophages including the receptor for the 

macrophage growth factor, Csf1r.  Macrophages detected using the F4/80 marker in mice, or Csf1r 

reporters in mice and rats, are abundant in the medulla, providing an almost continuous lining of the 

epithelial basement membranes (24-26), but they are clearly under-represented in all published 

scRNA-seq datasets.  In common with many other tissue macrophages, these cells express C1q 

subunits.  As noted in the main text, a novel feature of these kidney macrophages that we have not 

observed elsewhere is their expression of multiple other components of the classical complement 

pathway and the Fc receptors, Fcrm and Fcrma. However, our analysis provides no support for CD81 

as a proposed marker of resident rat renal macrophages (27) 

Cluster Markers and transcription factors Cell type-function 
1 Abcc3, Cyp4a2, Ghr, Kmo, Lrp2, 

Slc1a1, Slc2a2, Slc4a4, Vil1 
Ar, Atf2/6, Creb1, Cux1, Esr1, 
Etv1/3/5/6, Foxj3/k1/n2/n3/o3, Hlf,  
Hnf1a/4a/4g, Ikzf2/f5, Nfa5, Nfatc3, 
Nfe2l3, Nfib, Nr1h4, Nr2c2, Nr6a1, 
Pou2f1, Ppara, Rel, Rxra, Smad3/4, 
Sox6, Sp1/3/4, Tcf12/20, Tead1, Tef, 
Tfec   

Proximal tubule function 
Xenobiotic and intermediary metabolism 

6 Acta2, Axl, Bmp1, Cnn1/2,  Cldn6/7, 
Col4a1/2,  Col5a1, Flna/b/c, Fn1, 
Hbegf, Hspg2, Tgfb2, Tgm1 
Bhlhe40, Cbx2, Etv4, Fosl1, Fosl2, 
Lmo1, Sox4/11,  

Myofibroblast, pericyte, Bowman’s capsule 
structure, kidney extracellular matrix 

7 Calcrl, Cd34, Cdh5, Clec1a, Ednrb, 
Flt1, Kdr, Notch4, Nrp1, Pecam1, 
Podxl, Ptprb, Vegfa 

Kidney capillary endothelial cells 
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Atf7, Creb3l2, Erg, Ets1/2, Fli1, Foxo1, 
Hivep1/2, Hoxc5/6, Klf3/7/12, Mafb, 
Mef2c, Meis2, Prdm1/2/11, Sox18, 
Tcf4, Snai2 

8 Adgre1, C1qa/b/c, C1r, Cfh, Cd74, 
Clec7a/10a, Csf1r, Ctss, Fcgr1a, Fcrm, 
Fcrma Itgam, Lyz2, Mpeg1, Nlrp3, 
P2ry12, Selplg, Tlr1/7/8 
Ciita, Irf8, Spi1  

Resident kidney macrophages 

9 Aqp3, Atpv1g3, Bmpr1b, Car2, Cldn8, 
Kit, Kitlg, Ptger1, Rhcg, P2ry14m 
Scnn1a/g, Slc26a4, Slc4a1 
Dmrt2, Foxi1, Foxp1, Hmx3, Irf6, 
Nr3c2, Tbx2 

Collecting duct intercalating cells 

12 Cav3, Cldn5, Clic3, Ddn, Gpc1, Mgp, 
Nphs1/2, Olfm1, Sirpa, Thy1 
Foxc2, Fox1, Gata5, Hopx, HlxLims2, 
Rarg, Sox17, Wt1 

Podocytes 

18 Aqp2, Avpr1a/2, Car15, Atp6v1c2, 
Hepacam2, Hexa/b, Hsd11b2, Kcne1, 
Lgals3, Ptges, Rhbg, Scnn1a, Slc7a4  
En2, Gata2, Hoxb6/d3, Nfe2l2  

Collecting duct principal cell 

23 Car4, Casr, Cldn16, Egf, Ocln, Oxtr, 
Plau, Ptger3, Slc12a1, Slc5a1, Umod,  
Foxq1, Irx1/2.  

Loop of Henle 
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Cluster Analysis of Cardiovascular Tissues 

Cardiovascular tissues are presented by 25 BioProjects and include major vessels, intact heart, heart 

regions and isolated cells at different developmental stages.  In common with every other organ, there 

have been multiple published datasets exploring cell-types in heart based upon scRNA-seq (reviewed 

in (28)). Each of these studies identifies numerous subpopulations of cells.  An analysis of non-

cardiomyocyte populations in the mouse claimed the existence of 30 distinct cell types including 8 

distinct populations of macrophages (29).  

Table S6 lists the clusters identified from gene-centred network analysis of all of the individual 

cardiovascular-related datasets and these are summarized in the Table below.  As in other datasets, 

there is evidence of contamination with unrelated tissues; for example Cluster 3 contains surfactant 

protein transcripts and likely reflects inclusion of lung tissue. Cluster 5 contains markers of B cells 

(Cd19) and T cells (Cd3), and likely reflects contamination with thoracic lymph nodes and Cluster 7 

derives from a single sample of mesenteric artery and is likely an intestinal contaminant.  

 The largest cluster in this dataset with >3500 nodes is enriched in all of the isolated primary cells and 

is clearly associated with cell growth and proliferation.  The cluster includes multiple transcriptional 

regulators, some of which are generic to cell cycle regulation (e.g. Foxm1, E2f, Myc) whilst others such 

as Meis1, Runx1 and various Smad and Tcf factors (30,31) have well-defined specific functions in 

cardiomyocyte proliferation and development.   

Cluster 4 is the major cardiomyocyte-specific cluster, and consistent with the high metabolic demand 

of these cells this cluster also contains multiple transcripts associated with oxidative phosphorylation.  

There is some evidence of independent regulation in that the large majority of components of the 

electron transport chain are clustered separately (Cluster 28), and the mitochondrially-encoded 

transcripts are also separated (Cluster 105).  Cluster 17, which likely defines a distinct cardiomyocyte 

regulon, includes Cav3 and components of the sarcospan complex, which can mitigate pathology in 

muscular dystrophy models (32). Disruption of the sarcospan complex causes cardiomyopathy in mice 

(33) 

Broadly-speaking, the data provide little support for the extensive subset identification amongst 

fibroblasts, endothelial cells, pericytes, adipocytes and macrophages in published mouse and human 

scRNA-seq data. Each of these populations is clearly distinguished from the others but is represented 

by a single large cluster containing markers that are said to distinguish subpopulations in scRNA-seq 

data.  If cell subtypes do exist, the differences between them are too subtle to enable the extraction 

of a signature.   

Cluster 10 defines a resident cardiac macrophage population including the lineage-restricted receptor 

Csf1r.  A separate Cluster 81 containing macrophage markers Adgre1 and Mrc1 may reflect some 

regional heterogeneity between the heart and aorta, which also contains a substantial macrophage 

population (34).  We do not detect signatures of monocytes (e.g. S100a8, Ccr2, Ly6c) that have been 

reported in scRNA-seq studies. As in kidney, we suspect that disaggregation approaches provide a 

poor recovery of intact resident macrophages relative to recent arrivals that may be transiting through 

the tissue (35).  The samples include genetic disease models and the power of the cluster analysis is 

evident in the separation of two interferon-related regulons, Cluster 6 containing Irf9 and Cluster 23 

containing Irf7 and their respective target genes.  The separation of these two interferon target 

cohorts was identified previously in human macrophages (36).  

The cluster analysis also reveals the signature of innervation of the heart. The heart has a substantial 

intrinsic autonomic nervous system involved in cardiac pace-making and conduction (reviewed in 
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(37)). This system has not been effectively profiled in scRNA-seq data, presumably because neurons 

are not accessible to tissue disaggregation. Cluster 18 includes the regulatory receptors Ntrk1 and 

Ngfr, key enzymes of dopamine metabolism (Th, Ddh), dopamine receptor Drd2 and other 

neurotransmitter receptors.  Clusters 13 and 15 also contain neuronal markers.  Ntrk3, which is 

associated with congenital heart disease in humans, is in Cluster 15 (38).  
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Cluster Markers and transcription factors Cell type-function 
1 Bmp1, Bub1, Ccna2/b1/b2/d1/d3, Cdc42, Cdk2, Ctnnb1, 

Dbn1, Eef2, Eif2a, Gtf2b, Hdgf, Hspg2, Itgav, Metrnl, 
Notch2, Pcna, Smo, Tgfb1, Vim 
Creb3, Creb3l1/2, E2f2/3/4/8, Etv5, Foxc2, Foxk2, 
Foxm1, Foxp1, Gli3, Klf3/16, Meis1, Mybl2, Myc, Nfatc3, 
Nfic, Nfx1, Nr2c1, Pbx1/3, Prdm2/15, Runx1, Sall2, 
Smad1/2/3/7, Sp2, Tcf3/19/25/7l1/7l2, Twist1, Yy1/2 

Growth  
Macromolecule synthesis 
Golgi/ER secretion 
Proteasome complex  
 

2 Cdk12/113/14/17,Cep(s),Cog(s),Cullin(s),Dnaj(s), 
Exoc1-5, Insr, Mtmr(s), Oxsr1, Pias1/2 
Atf2, Foxn2, Foxp2, Hif1a, Hivep1/2, Mef2c, Nfia, Nr2c2, 
Nrde2, Pbx2, Rora 

Growth 
Stress response 

4 Adra1a/b, Acat1, Bckdha/b, Car14, Ckm, Coq2, Cryab, 
Cys, Ctnnal1/3, Ech1, Etfa/b/dh, Fgf1/12/16, Gcgr, 
Got1/2, Hadh, Kcna1/b1/d2, Lpl, Myh6, Myl3, Myom1-
3, Nduf(s), Pln, Ryr2, Slc2a4, Tnni3,  
E2f6, Esrrb, Fhl2, Nr0b2, Nr1i3, Nr3c2, Ppargc1a, Rarb, 
Rorc, Rxrg, Tbx5 

Cardiomyocytes 
Oxidative metabolism 

8  Ache, Adgrb2/3, Calb1/2, Chga/b, Chrna3/b2/b3, 
Cpne6, Ctnna2, Dbh, Drd2, Gap43, Gria1, Grin1, Grm7, 
Ina, Kcnc4, L1cam, Map2, Ncam2, Nfasc, Ngfr, Npy, 
Nsg1/2, Ntrk1, Scg2/3/5, Snap25, Syn1, Syt1, Th, Thy1 
Hand1, Phox2a/2b, Shox2, Tlx2  

Cardiac autonomic nervous 
system 

9 Adig, Adipoq, Agt, Aqp7, Col5a3, Dgat1/2, Fah, Fasn, 
Ffar4, Gdf5, Gpam, Gys2, Lep, Lipe, Mc2r, Mgll, Oxtr, 
Plin1, Rbp4/7, Restn, Rhbg, Sucnr1, Thrsp 
Ikzf4, Klb, Pparg  

Adipose 
Fat and glycogen metabolism 

10 
 
 
 

C1qa/b/c, Cd4, Cd68, Cd86, Clec4a2/3, Clec7a, Csf1r, 
Csf2ra, Cx3cr1, Fcgr1a/2a/2b, Gpnmb, Hexb, Itgal, 
Itgam, Laptm5, Lyz2, Mpeg1, Plau, Ptger2, Siglec1, 
Stab1, Tgfbr1, Tlr7/8, Trem1/2 
Mafb, Nfam1, Spi1 

Resident tissue macrophages  

11 Ace, Col4a2/3, Col6a2/3, Col7a1, Csf1, Cyth3, Efnb2, 
Eps8, Hs6st1, Lgals3, Mstn, Osmr, Pdpn, Upk1b,  
Bach1, Cebpb, Etv4, Fosl1, Klf10, Meox1, Smad6, Snai1, 
Tead4  

Extracellular matrix, cardiac 
mesenchymal cells, pericytes 

12 Calcrl, Cd34, Cdh5, Clec2g, Dach1, Dll1/4, Icam2, Kcnj8, 
Kdr, Notch1, Notch4, Pdgfb, Pecam1, Ptprb, Tek, Vwf 
Ebf2, Erg, Esr1, Ets1, Fli1, Foxo1, Hes2, Hey1, 
Sox7/13/18, Tal1, Tcf15 

Endothelial cells 

13 Avpr1a, Chrnb1/d/g, Kcnj9, Mfrp, Musk, Myh1/h3, 
Myh9, Myo5b, Pdgfc, Robo2, Sema3d/4g, Slit2, Tnnc2/3 
Dmrt2/3, Eya1, Foxg1, Mycn, Myog 

Neuromuscular junction 
Cardiac development 

14 Ccl2, Ch25h, Csf2/3, Fgf7/10, Fst, Gdf2, Hgf, Il6, 
Mmp3/9, Pdgfra, Ptges, Ptgs2, Ptx3, Sfrp2, Timp1, 
Vcam1 
Cebpd, Gsx2, Hlx, Lhx8, Nfatc4, Twist2 

Cardiac fibroblasts 
Regulation of cardiac function 

15 Cnn1, Drd1, Gabra1, Grip2, Kcna5/b1, Kcnma1/b1, 
Kcng4, Mylk, Myl9, Myh11, Npy1r, Ntrk3, P2rx1, Pde5a, 
Rfxp2, Smtn 
Nanos3, Nkx2.3, Tbx2/10 

Neuronal 
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17 Cacnb2, Casq2, Cav3, Ddc, Efnb3, Phb2, Pcdh7, Pkp4, 
Slc8a1, Sgcb/d, Sspn, Tnni1,  
Gata5, Hitf, Mef2a, Srf, Zfp3 

Cardiac myocytes 

19 Akcr1, Cadm2/3, Cyp2e1, Dhh, Erbb3, Gfap, Gpr37, 
Hepacam, Kcnj10, Lgr5, Mag, Mbp, Nlgn3, Plp1, Reln, 
Sema3b, Sfrp5, Snca, Wnt6 
Foxd3, Sox2/10,  

Cardiac glial cells 
Myelination 

33 Adamts2, Bgn, Bmp4/6, Cald1, Col1a2, Col5a2, Cald1, 
Fbln2, Fbn1, Sparc, Thbs1 
Sox9 

Arterial extracellular matrix 
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Cluster analysis of musculoskeletal tissues 

The musculoskeletal category includes samples from 33 BioProjects (Table S1), including muscle from 
different locations and ages as well as bone, cartilage and tendon.  Unlike other groupings, the set 
analysed here does not include isolated cells or dissected regions or genetic disease models and 
accordingly the representation of some cell types is relatively homogeneous.  Table S7 contains the 
lists of clusters from a gene-centred network analysis of these samples.  Because of the relative 
homogeneity of these tissues, the analysis was performed at two different MCL inflation values; 
clustering at an MCL inflation value of 1.7 alters the granularity but the two largest clusters remain 
almost unchanged when clustered at an inflation value of 2.2. For the purpose of consistency, we 
discuss clusters identified at MCL 2.2 used in other analyses. The largest cluster contains 4433 
transcripts.  Reflecting the abundance and relatively uniform distribution of interstitial macrophages 
in muscle and connective tissue detected with a Csf1r reporter transgene in both mice and rats (24,25). 
Cluster 1 contains Csf1r and many other macrophage-expressed transcripts encoding surface markers 
(Adgre1, Cd14, Cd163, Cd4, Cd68, C1q, Cx3Cr1, Fcgr1, Mpeg1, Mrc1, Siglec1) and transcription factors 
(Cebpa, Irf8, Mafb, Spi1) in common with cardiac muscle macrophages.  These transcripts are 
separated from Cluster 27, which includes Itgam (Cd11b) and Itgax (Cd11c), generally considered 
markers of inflammatory macrophages in rat skeletal muscle (39). Interestingly, Cluster 1 contains the 
gene for the CSF1R ligand Csf1, and the transcript encoding the other CSF1R agonist, Il34, is also 
detected in muscle and contained within Cluster 8 with markers of adipocytes and endothelial cells 
and other growth factors, notably Igf1.     

The analysis of smaller clusters reveals regulons associated with specific cell types and processes.  We 
were interested in whether the analysis might identify components of the neuromuscular junction 
(NMJ) and satellite cells, which together control muscle homeostasis and regeneration.  Many human 
genetic and acquired disease states, as well as normal ageing-related sarcopenia, impact this structure 
(reviewed in (40,41)). The structure and functions of the NMJ and satellite cells are tightly-linked and 
we anticipated that clustering would group components of both cell populations.  Indeed, Cluster 14 
contains transcripts encoding the cholinergic receptors of the NMJ (Chrna1, Chrnd/e/g) and muscle 
receptor tyrosine kinase (Musk) alongside the satellite marker Ncam1 and myogenic determining 
transcription factors Myf5, Myod1, Myog and Runx1, the latter essential for satellite cell activation 
during muscle regeneration (42). Another transcription factor in this cluster, Scx, is also associated 
with progenitor populations albeit more commonly associated with bone and tendon (43). Pax7 which 
is required for specification of satellite cells and commonly used as a marker (44) does not form part 
of this cluster.  PAX7 protein is expressed in rat satellite cells (45) but the Pax7 transcript is not actually 
detectable at >10TPM in total muscle mRNA.  The other key NMJ marker, acetylcholinesterase (Ache) 
may have distinct regulation and is part of a smaller cluster (Cluster 158). That cluster includes 
Sema6c, which has been implicated in neuromuscular junction formation (PMID: 17605078). 

 Cluster 14 contains many novel transcripts that are known or candidate regulators or structural 
components but have not been widely studied.  One novel member of this cluster is Spg21, associated 
with the human neuropathy Mast syndrome (hereditary spastic neuralgia).  Knockout of this gene 
causes progressive hind limb paralysis in mice ((46,47). The enigmatic Dclk1 (doublecortin-like kinase 
1) implicated in growth dysregulation in several cancers (48) is part of this cluster and public array 
data in mouse (biogps.org) reveal the transcript is greatly over-expressed in C2C12 myoblasts. The 
cluster also contains known regulatory growth factors Fgf7, Tgfb2 and downstream target Fst. Finally, 
the cluster contains transcripts encoding enzymes of polyamine synthesis (Odc, Sms), which regulates 
cell proliferation in myogenesis (49) 

Cluster 7 contains transcripts encoding multiple muscle-expressed intermediate filament (Krt) 
proteins (but not desmin), junction-associated proteins and cell adhesion molecules with known 
function in skeletal muscle integrity and force transductions including several desmoglein (Dsg) and 
desmocollin (Dsc) genes and desmoplakin (Dsp) that combine to form desmosomes (50). The clear 
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separation of this cluster indicates that structural integrity of skeletal muscle is independently 
regulated.  Interestingly, Cluster 7 contains all three members of the grainyhead-like family 
(Grhl1/2/3) which also regulate expression of junction-associated transcripts in epithelia (51) 

There are three separate connective tissue clusters associated with distinct collagen subunits, each 
with associated specific transcription factors.  The smallest includes Fbn1, the gene associated with 
Marfan syndrome, which has a specific function in elastic fibres (52) as well as multiple members of 
the Adamts family (53) 

 

Cluster Markers and Transcription Factors Cell type or function 

   

3 Acta1, Capza2, Casq1, Ckm, Coq(s), Cox(s), Des, 
Gyg1, Gys1, Mfn1, Mtm1, Mylpf, Nduf(s), Pfkm, 
Phka1, Pkm, Ppara, Ryr1, Sgca, Slc2a4, Tnnc2/i2/t3 
Barx2, E2f6, Esrra, Eya1, Hif, Lbx1, Mafa, Rorc, Rxrg, 
Satb1, Six1, Smad3, Snai3, Srf, Tcf15, Tef  

Fast twitch, glucose/glycogen 
metabolism  
Mitochondrial ox.phos.  

5 Acan, Bgn, Chad, Chadl, Chst1/3/5, Chsy3, Clip2, 
Col2a1, Col5a1/2, Col6a1/3, Comp, Cspg4, Fgf18, 
Fmod, Fn1, Fzd8/9, Gdf5/6/10, Gpc6, Lgr6, 
Ptch1,Scgr1, Sdc4, Smo, Wif1 
Atf5, Barx11, E2f5, Erg, Etv4, Foxa2/3, Foxc1, Gli1, 
Glis3, Hif1a, Hoxd9, Id2/4, Nkx3-2, Prdm6, Rarg, 
Sox5, Sox9, Tcfl5  

Chondrocyte/cartilage 
Extracellular matrix 

7 Calm3/5, Cdh1/3, Cldn3/4/7/8/17/23, Dsc1/2, 
Dsg1/2/3, Dsp, Epcam, Evpl, Gjp2/6, Krt(s), Ocln, 
Pkp1/3, Ppl, Tjp3, Vill  
Ehf, Elf3, Elf5, Foxa1, Grhl1/2/3, Hoxb2/b4, Irf6, Klf5, 
Pax9, Sim1, Tfap2a 

Intermediate filaments, 
junctions 

8 Adipoq, Adrb3, Angpt2/4/l8, Apmap, Calcrl, Cav1/2, 
Cdh5, Clec1a, Edn1, Ednrb, Fabp4, Fasn, Flt1, Icam2, 
Igf1, Kitlg, Lep, Lipe, Lpl, Nos3, Npy1r, Pecam1, Plin1, 
Rbp4/7, Sele, Selp, Tek, Tie1, Vtn, Vwf 
Bcl6b, Fli1, Gata2, Hoxb7, Klf10, Lhx6, Pparg, 
Sox15/17/18  

Adipose/endothelial 

11 Acvr1, Bmp5, Cnmd, Col9a1/2/3, Col11a1/a2, Dlk1, 
Epyc, Fbn2, Fgfr3, Gfap, Hsgp2, Ihh, Itga2, Omd,  
Alx11, Creb3l2, Gli2/3, Hoxc5/6/8, Lef1, Meis1/2, 
Nfat2, Pou3f3, Prdm5, Tub 

Connective tissue/chondrocyte 

14 Adra1b, Chrd, Chrna1/d/e/g, Ctxn3, Dclk1, Ddr1, 
Fgf7, Fst, Kcnn3, Kcnq4, lama5, Lgals1, Lmnb2, Musk, 
Ncam1, Odc1, Sms, Sln, Spg21, Tgfb2 
Myf5, Myod1, Myog, Runx1, Scx  

Neuromuscular junction 
Satellite/Myogenic progenitor 
cells 

15 Adamts2/5/15/16/19, Cdhr1/5, Col3a1, Col14a1, 
Dpt, Fbln2, Fbn1, Fgf16, Fstl1, Gas2/6/7, Has1, Loxl1, 
Mfap5, Msln, Postn, S100a4/6, Wnt2 
Klf4, Msx1, Twist2 

Connective tissue 

21 Actn2, Colq, Fgf1, Fhl1/2, Myh7b, Myl2/3, Myoz2, 
Tnnc1/i1/t1, Tpm3 

Slow twitch muscle 
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