

1

2 **Title: Cold protection allows local cryotherapy in a clinical-relevant model of**

3 **traumatic optic neuropathy**

4 **Authors:** Yikui Zhang^{1*}, Mengyun Li^{1†}, Bo Yu^{1†}, Shengjian Lu^{1†}, Lujie Zhang^{3†}, Senmiao
5 Zhu^{1†}, Zhonghao Yu¹, Tian Xia¹, Haoliang Huang², WenHao Jiang¹, Si Zhang¹, Lanfang Sun¹,
6 Qian Ye¹, Jiaying Sun¹, Hui Zhu¹, Pingping Huang¹, Hufeng Hong¹, Shuaishuai Yu⁵, Wenjie
7 Li³, Danni Ai³, Jingfan Fan³, Wentao Li⁴, Hong Song⁴, Lei Xu⁶, Xiwen Chen⁷, Jingxing Ou^{8,9},
8 Wei Li^{10*}, Jian Yang^{3*}, Yang Hu^{2*}, Wencan Wu^{1*}

9 **Affiliations:**

10 ¹ The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University;
11 Wenzhou 325027, China.

12 ² Department of Ophthalmology, Stanford University School of Medicine; Palo Alto, United
13 States.

14 ³ Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of
15 Optics and Photonics, Beijing Institute of Technology; Beijing 100081, China.

16 ⁴ School of Computer Science & Technology, Beijing Institute of Technology; Beijing 100081,
17 China.

18 ⁵ School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; Wenzhou
19 325027, China.

20 ⁶ Medical Radiology Department, 2nd Affiliated Hospital, Wenzhou Medical University;
21 Wenzhou 325027, China.

22 ⁷ Animal Facility Center, Wenzhou Medical University; Wenzhou 325027, China.

23 ⁸ Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated
24 Hospital, Guangdong Province Engineering Laboratory for Transplantation Medicine;
25 Guangzhou 510630, China.

26 ⁹ Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun
27 Yat-sen University, Guangzhou 510630, China

28 ¹⁰ Retinal Neurophysiology Section, National Eye Institute, National Institute of Health, NIH;
29 Bethesda, United States.

30 * For correspondence: Yikui Zhang: 86-13705770161, zhang.yikui@wmu.edu.cn, Wei Li: 301-
31 496-6669, liwei2@nei.nih.gov, Yang Hu: huyang@stanford.edu, Jian Yang, jyang@bit.edu.cn,
32 Wencan Wu: wuwencan@wmu.edu.cn.

33 † These authors contributed equally to this work.

34 **Conflict-of-interest statement:** The authors have declared that no conflict of interest exists.

35

36 **Abstract:**

37 Therapeutic hypothermia (TH) is potentially an important therapy for central nervous system (CNS)
38 trauma. However, its clinical application remains controversial, hampered by two major factors:
39 1) Many of the CNS injury sites, such as the optic nerve (ON), are deeply buried, preventing access
40 for local TH. The alternative is to apply TH systemically, which significantly limits the applicable
41 temperature range. 2) Even with possible access for “local refrigeration”, cold-induced cellular
42 damage offsets the benefit of TH. Here we present a clinically translatable model of traumatic
43 optic neuropathy (TON) by applying clinical trans-nasal endoscopic surgery to goats and non-
44 human primates. This model faithfully recapitulates clinical features of TON such as the injury
45 site (pre-chiasmatic ON), the spatiotemporal pattern of neural degeneration, and the accessibility
46 of local treatments with large operating space. We also developed a computer program to simplify
47 the endoscopic procedure and expand this model to other large animal species. Moreover, applying
48 a cold-protective treatment, inspired by our previous hibernation research, enables us to deliver
49 deep hypothermia (4°C) locally to mitigate inflammation and metabolic stress (indicated by the
50 transcriptomic changes after injury) without cold-induced cellular damage, and confers prominent
51 neuroprotection both structurally and functionally. Intriguingly, neither treatment alone was
52 effective, demonstrating that *in situ* deep hypothermia combined with hibernation-mimicking cold
53 protection constitutes a breakthrough for TH as a therapy for TON and other CNS traumas.

54

55 **Main Text:**

56 **INTRODUCTION**

57 Therapeutic hypothermic (TH) has a long history and was firstly described in the Edwin Smith
58 papyrus over 5000 years ago¹. Although TH has shown neuroprotection in animal models of
59 central nervous system (CNS) trauma by reducing neuroinflammation and alleviating metabolic
60 demand², its clinical application following CNS injury remains controversial. Randomized
61 controlled clinical trials of TH for traumatic brain injury (TBI) failed to show beneficial effect³⁻⁵.

62 In spinal cord injury (SCI), TH has not been proven to be neuroprotective in randomized
63 controlled clinical trials, and its effect in animal models is inconsistent².

64 At least two major factors hamper the clinical application of TH in CNS trauma. First, many
65 CNS injury sites are located deeply, preventing access for local TH. Instead, TH is applied
66 systemically. But systemic drops in body temperature increase the risk of cardiopulmonary
67 disorders, coagulopathy, and electrolyte disturbances⁶, so systemic TH is limited to 34 and 36°C.
68 The limited temperature range of TH may account for its inadequate efficacy. Secondly, even if
69 CNS trauma is accessible for local deep hypothermia, the cold destroys neuronal microtubules
70 and may counteract the benefit of TH⁷. Our previous study discovered a cold-protective
71 mechanism in hibernators, and found that cold-protective reagents such as protease inhibitors
72 (PI) rescue cold-induced cell damage. If these reagents were applied during local TH, then TH
73 would be a more precise, safe, and effective tool to treat CNS traumas⁷.

74 The optic nerve (ON), which collects axons from retinal ganglion cells (RGCs), is an ideal CNS
75 tissue to study CNS trauma because it is structurally simple. However, its deep location in the
76 orbit and skull base hampers preclinical tests of local treatment for optic neuropathy (**Figure**
77 **1A**). Minimally invasive trans-nasal endoscopy is widely used in modern neurosurgeries to

78 access the distal ON (pre-chiasmatic and chiasmatic ON) in case of tumor or optic canal fracture
79 (**Figure 1B**)⁸⁻¹¹. The large sphenoid sinus along the distal ON provides sufficient space for local
80 treatment (**Figure 1A-C**). Here we back-translated clinical trans-nasal endoscopy in large
81 animals to safely expose the distal ON, allowing local damage, observation, and modulation. To
82 facilitate clinical translation, we established a *de novo* traumatic optic neuropathy (TON) model
83 in goats and non-human primates by performing pre-chiasmatic ON crush. These models
84 recapitulated clinical features of TON such as the injury site, the time course of progression, and
85 the capability of local treatment *via* trans-nasal endoscopy.

86 Early transcriptomic changes in the ON and retina were confined to the injury site and enriched
87 in the pathways of inflammation, ischemia, and metabolism, suggesting that local TH could
88 alleviate secondary damage. To serve the twin goals of administrating local deep cooling therapy
89 and preventing cold-induced microtubule instability, we applied both TH and cold-protective
90 reagents. Neither treatment had an effect alone. But when combined, local TH and cold-
91 protective reagents achieved significant structural and functional neuroprotection.

92 Next, we developed a computer program to detail feasible surgical pathways and to optimize the
93 size of endoscopic tools according to a CT scan of the skull. This program was successful in
94 goats, minipigs, beagles, and rhesus macaques. We trust that this software will help other
95 research groups to replicate our novel TH strategy, and will facilitate preclinical tests for other
96 local TON treatments.

97 This novel combination of TH and a cold-protection strategy can be readily applied not only in
98 TON patients using the same procedures and devices, but also can potentially revolutionize
99 conventional TH for other CNS trauma such as SCI and TBI. Furthermore, this translatable TON
100 model allows pre-clinical testing of local treatments for axonopathy. This may spark a paradigm

101 shift in the therapeutic approach for TON, so clinicians can move from less effective strategies
102 (e.g. observation alone, or systemic medication;¹²) towards more targeted and potentially more
103 effective treatment *via* minimally invasive trans-nasal endoscopy.

104 **RESULTS**

105 **Goat is an advantageous species for trans-nasal endoscopic access of the chiasmatic and**
106 **pre-chiasmatic ON**

107 We first looked for animal species suitable for trans-nasal exposure of the chiasmatic and pre-
108 chiasmatic ON. Skull computerized tomography (CT) scan showed that the frontal cortex of the
109 domestic pig and beagle (**Figure 1D**, asterisk) falls between the nasal cavity (**Figure 1D**, number
110 sign) and the pre-chiasmatic ON (**Figure 1D**, blue rectangle), thus blocking surgical access. The
111 narrowest portion of rhesus macaque's sphenoid bone body (**Figure 1D**, red circle) is too narrow
112 (around 2.5 mm in width) to allow a conventional endoscopic microdrill (2.9mm in diameter) to
113 pass through. On the other hand, the size of the goat's sphenoid bone body (13mm in width) is
114 similar to that of the human's sphenoid sinus (20mm in width), and there is no cortex in between
115 the nasal cavity and the pre-chiasmatic ON (**Figure 1D**). Additionally, Saanen goats are readily
116 available, easy to raise and handle, genetically editable¹³, and have a genome that is well studied
117 ¹⁴⁻¹⁶. Therefore, we decided to use Saanen goat as our research animal model.

118 **Trans-nasal endoscopic exposure of the pre-chiasmatic ON in goats is feasible and safe**

119 By using clinically available trans-nasal endoscopes (**Supplementary Movie 1**), we exposed the
120 goat's sphenoid bone body (**Figure 1E**), and then removed its anterior cortical bone and inner
121 bone marrow to create an artificial sphenoid sinus. The anterior bony wall of the chiasmatic and

122 pre-chiasmatic ON laid posteriorly in the sinus (**Figure 1F**). We then exposed the pre-chiasmatic
123 ON by drilling through the anterior bony wall (**Figure 1G, Supplementary Movie 2**).

124 To evaluate the safety of trans-nasal endoscopic exposure of the pre-chiasmatic ON, we followed
125 the animal for up to 3 months after surgery. The thickness of the ganglion cell complex (GCC,
126 including RGCs' axons, somas and dendrites) in six areas around the optic nerve head was
127 measured by optical coherence tomography (OCT) at different time points (**Figure 1H**). There
128 was no significant change in GCC thickness over 3 months after pre-chiasmatic ON exposure in
129 either the surgical eyes (**Figure 1I**) or the contralateral naïve eyes (**Supplementary Figure 1A**).

130 In line with the OCT results, both the RGC somal densities and axonal densities were unchanged
131 in the surgical eyes compared to the contralateral naïve eyes at 3 months post surgery (3 mps)
132 (**Figure 1J, K**). Consistent with morphological studies, functional readouts (pupillary light reflex
133 (PLR), pattern electroretinogram (PERG), flash visual evoked potential (FVEP) tests) of the
134 surgical eyes were not changed over 3 mps compared with the baseline (**Supplementary**
135 **Figures 1B, C, D**). Taken together, these results show that endoscopic exposure of the pre-
136 chiasmatic ON is feasible and safe.

137 **Trans-nasal endoscopy-mediated pre-chiasmatic ON crush causes visual loss in goat**

138 Most human TON occur in the pre-chiasmatic ON due to force transmission (**Figure 1B**)^{11,17}. To
139 establish a clinically relevant animal model of TON which enables local modulation of the
140 injured pre-chiasmatic ON, we performed pre-chiasmatic ON crush in goat using a trans-nasal
141 endoscopic approach. As illustrated in **Figure 2A**, we first drilled the anterior bony wall to
142 expose the pre-chiasmatic ON, and then manually compressed the pre-chiasmatic ON with the
143 blunt blade of a periosteal elevator until it met the optic canal's posterior bony wall (**Figure 2B**,
144 **Supplementary Movie 3**).

145 The visual function of the injured eye was lost after pre-chiasmatic ON crush. Both the direct
146 PLR (dPLR) in the injured eyes and the indirect PLR (iPLR) in the contralateral control eyes
147 disappeared after injury (**Figure 2C**), whereas the dPLR in the contralateral eyes and the iPLR in
148 the injured eyes remained intact (**Supplementary Figure 2A, left panel**). These results
149 suggested that ON function in the injured eyes was lost whereas the contralateral ON was still
150 functional; additionally, the oculo-motor nerves of both eyes were unaffected by pre-chiasmatic
151 ON crush¹⁸. Consistently, the ratio of the FVEP P1-N1 and P2-N1 amplitudes of the injured eyes
152 to the contralateral eyes decreased significantly compared to the baselines (**Figure 2D**),
153 indicating impairment of the retino-geniculate pathway¹⁹. Interestingly, the ratio of PERG P1-N1
154 amplitude of the injured eyes to that of the contralateral eyes remained unchanged at 1 week post
155 injury (1 wpi), then decreased significantly at 1, 2 and 3 months post injury (mpi) compared to
156 the baseline (**Figure 2E**), indicating that RGC function degraded over time²⁰.

157 Taken together, the visual deficits (PLR, PERG and FVEP abnormality) presented in the TON
158 model are similar to the clinical manifestations of patients with monocular TON (i.e., Marcus
159 Gunn pupil, loss of visual acuity, and reduction in VEP signals)²¹.

160 **Progressive RGC and ON degeneration in goat TON model**

161 The GCC thickness ratio of the injured eyes to contralateral control eyes remained stable at 1
162 wpi, then decreased progressively over 3 mpi (about 89%, 81%, 74% of the contralateral eyes at
163 1, 2, 3 mpi, respectively) (**Figure 3A**). The GCC thickness in the contralateral eyes was
164 unchanged after ON crush (**Supplementary Figure 2A, right panel**). Progressive GCC thinning
165 occurred in all six areas around the ON head (**Figure 3A**), indicating that ON crush caused
166 widespread axonal damage with no quadrant being spared. Importantly, the time course of GCC
167 thinning in our model closely resembles that of TON patients^{22,23}.

168 There was no significant RGC soma loss at 1 mpi, yet the RBPMS (RNA-binding protein with
169 multiple splicing) immunoreactivity in some RGCs was weak and irregular (**Figure 3B**). At 3
170 mpi, only 25% of RGCs survived in the injured eyes compared with the contralateral eyes
171 (**Figure 3B**). RGC density in the contralateral eyes remained stable at 1 and 3 mpi
172 (**Supplementary Figure 2B, left panel**). It is worth noticing that our previous study in goat
173 showed that retrobulbar ON crush resulted in more severe RGC loss at 3 mpi (less than 5%
174 survival)²⁴.

175 To study the temporal and spatial patterns of axonal degeneration after pre-chiasmatic ON crush,
176 we examined semi-thin cross-sections from four different sites of the ONs (named #1, 2, 3, 4) of
177 both eyes at 1 and 3 mpi (**Figure 3C**). For the contralateral ON, the surviving axonal densities
178 remained statistically the same at 1 and 3 mpi, and there was no significant difference in axonal
179 densities among different ON sites (**Supplementary Figure 2B, right panel**). For the injured
180 eyes, there were few surviving axons at distal regions (#3, #4) at 1 and 3 mpi. In contrast, axonal
181 densities of the proximal ON segments (#1, #2) of the injured eyes were almost intact at 1 mpi
182 and then decreased dramatically at 3 mpi (**Figure 3C**), indicating progressive retrograde axonal
183 degeneration, which was also observed in rodent models of distal ON injury²⁵.

184 Taken together, these morphological studies demonstrate progressive retrograde neural
185 degeneration in our TON model, the time course of which is similar to that of clinical TON.

186 **Transcriptomic analysis revealed early changes in ischemia, inflammation, and metabolic
187 pathways at the injured optic nerve**

188 To explore early changes and identify potential therapeutic targets in the injured eye, we sampled
189 from the retina (R), proximal (#1) and pre-chiasmatic (#2) ON segments in both the injured eye
190 and the contralateral eye at 1 day post injury (dpi), and performed RNA-sequencing (**Figure 4A**).

191 Compared with the contralateral eye, there were few differentially expressed genes (DEGs) in
192 the retina and proximal ON of the injured eye, indicating the transcriptomic status and
193 microenvironment of the retinal and proximal axonal were stable at 1 dpi (**Figure 4B**). In
194 addition, DEGs between the proximal and pre-chiasmatic ON of the contralateral eye were rare,
195 suggesting that the axonal status and microenvironment were consistent between different ON
196 segments (**Figure 4B**). In contrast, there were large amount of DEGs in the injured ON segment
197 (Inj_#3) compared with either the contralateral pre-chiasmatic ON (ctrl_#3) or the ipsilateral
198 proximal ON (Inj_#1). To narrow down the ranges of target genes, we extracted overlapping
199 DEGs between Inj_#3 vs. Ctrl_#3 and Inj_#3 vs. Inj_#1, and found that 91% of the overlapping
200 DEGs were clustered in the pathways of inflammation, ischemia, and metabolism (**Figure 4D, E**,
201 **Figure S3A**). We further found that most of the DEGs with high connectivity (“hub genes”)
202 were also enriched in these pathways (**Figure S4A, B, D**), indicating that targeting these
203 pathways with local treatment could alleviate secondary damage. Gene ontology (GO) analysis
204 of the overlapping DEGs and hub genes is listed in **Figure S3B, S4C**.

205 **Protease inhibitors (PI) rescued cold-induced axonal microtubule damage**

206 Hypothermic therapy can alleviate inflammation and reduce metabolic demand after CNS
207 trauma². However, our previous study showed that the cold destroys neuronal microtubules, and
208 that microtubules can be rescued by cold-protective reagents such as PI⁷. In this study, goat
209 retinal explants cultured at 0°C suffered severe axonal damage compared to those cultured at
210 37 °C, as shown by beta-3 tubulin-positive axonal length and axonal beads. When we added PI
211 into 0°C medium, this cold-induced axonal degradation was significantly reduced (**Figure 5A-**
212 **D**).

213 **Trans-nasal local delivery of hypothermia and PI alleviates neural degeneration after pre-
214 chiasmatic ON crush**

215 To prevent axons from degrading during local TH, we applied PI to the injured pre-chiasmatic
216 ON while administering hypothermia locally (**Figures 5E, F, Supplementary Movie 4**). The
217 temperature curves of the cooling water and the cling film over time are shown in **Figure 5G**.
218 The sponge placed at the injury site was filled with goat serum with or without PI.
219 We found that local combinatory delivery of hypothermia and PI significantly alleviated neural
220 degeneration compared with the no treatment group at 1 mpi in terms of PERG amplitude, GCC
221 thickness and axonal density at the injury site (**Figure 5H-J**). In contrast, local hypothermia or
222 local PI alone failed to show significant neural protection in either PERG signal or GCC
223 thickness (**Figure 5H, I**).

224 Neither FVEP or PLR were rescued in any treatment group (**Supplementary Figure 5A-C**),
225 since both require an intact ON. In the combinatory treatment group, there were few residual
226 axons at the #4 ON segment (distal to the injury site) (**Supplementary Figure 5D**), indicating
227 Wallerian degeneration was not significantly rescued.

228 **Computer program-aided optimization of trans-nasal endoscopic surgery in multiple large
229 animal species**

230 To simplify the trans-nasal endoscopic surgery and expand the approach to other large animal
231 species, we developed a computer program to generate virtual surgical paths. The flowchart of
232 programming is detailed in **Figure 6A**. Briefly, we input CT scans of the animal's skull into the
233 program to outline the surgical space, the non-surgical space, and the surgical target (**Figure**

234 **6B**). Then, we entered the size of the surgical microdrill to generate the surgical corridor (**Figure**
235 **6C**).

236 As shown in **Figure 6D**, there were five degrees of freedom for the surgical corridor when its
237 head met the target (optic canal): rotation around x, y, z axes; spin around the body (major axis);
238 and movement along the neck. We set the step size and ranges of rotation (around x, y, z axes) as
239 5° and 180°, the step size and ranges of spin as 5° and 360°, the step size and range of movement
240 as 1 mm and 15 mm. Therefore, the total number of theoretical paths were calculated as
241 $(180/5)*(180/5)*(180/5)*(360/5)*(15/1) = 50388480$. The computer program tried all these
242 theoretical paths to find collision-free surgical corridors within the surgical space. In another
243 words, no pixel of the surgical corridor should be included in the non-surgical space. For
244 example, in **Figure 6E**, the surgical corridor on the right collided with the orbit (non-surgical
245 space, shown in red), so this path was excluded. If there was no feasible surgical pathway with a
246 given size of microdrill, the computer program would reduce the size of the microdrill, and
247 repeat the searching process.

248 **Figure 6F-I** shows the virtual surgical paths generated by the computer program to access the
249 pre-chiasmatic ON in goat, beagle, domestic pig and rhesus macaque, respectively. The surgery
250 entry for each species is demonstrated on both the 3D-reconstructed skull (**left panel**) and on the
251 horizontal plane of the CT scan (**middle panel**). The right panels demonstrate the final position
252 of the surgical microdrill when its head meets the target (pre-chiasmatic ON in the optic canal).
253 The step-by-step surgical path plans for goat, beagle, domestic pig and rhesus macaque are
254 presented in **Supplementary Movies 5-8**.

255 From the computer program, we learn that (1) there are multiple feasible surgical paths in goats
256 (**Figure 6J**), (2) although the frontal cortex in beagles and domestic pigs seems to block access

257 to the pre-chiasmatic ON (**Figure 1D**), it can be circumvented either inferiorly or laterally
258 (**Figure 6G, H**), and (3) in rhesus macaques, we can access the pre-chiasmatic ON by either
259 circumventing the narrowest portion of the sphenoid bone body (**Figure 6I**) or using a smaller
260 surgical microdrill (2.5 mm in diameter) (**Figure 6K**).

261 This computer-assisted surgical path planning program can be used to (1) screen suitable animals
262 for trans-nasal endoscopy before surgery, (2) provide a detailed roadmap for endoscopic surgery,
263 and (3) potentially pave the way for robotic surgery to industrialize this novel TON model.

264 **Pre-chiasmatic TON model in rhesus macaques facilitated by computer program-aided
265 optimization**

266 The visual systems of non-human primates (including rhesus macaques) resemble those of
267 humans in terms of macular structure, RGC subtypes, and ON projection pattern²⁶. Therefore, we
268 decided to expand our modeling to rhesus macaques. Directly informed by our computer
269 program, we successfully exposed the pre-chiasmatic ON in rhesus macaque *via* trans-nasal
270 endoscopy (**Supplementary Movie 9**), confirmed the target with the surgical navigation system
271 (**Figure S6A**), and performed pre-chiasmatic ON crush (**Figure S6B**).

272 We observed substantial visual loss and neural degeneration following crush injury. The ratios of
273 PVEP N1-P2 amplitudes and the PERG P1-N1 amplitudes of the injured eyes to the contralateral
274 eyes fell significantly compared with baseline (**Figure S6C, D**). Structurally, GCC thickness in
275 the contralateral eyes did not change over time (**Supplementary Figure 2C**), whereas
276 progressive thinning of GCC was observed in the injured eyes (**Figure S6E**). At 3 mpi, the RGC
277 soma density and the axonal densities at different ON sites of the injured eyes decreased
278 dramatically compared with the contralateral eyes (**Figures S6F, G**).

279 **DISCUSSION**

280 In this study, we developed a novel TH strategy on a *de novo*, translatable, large animal model of
281 CNS axonopathy. Briefly, we back-translated clinical trans-nasal endoscopic surgery into goats
282 and non-human primates to establish a translatable TON model by crushing the pre-chiasmatic
283 ON. This model faithfully resembles the key features of clinical TON, including specific injury
284 site, spatiotemporal pattern of neurodegeneration, and the capability to locally modulate the
285 injured pre-chiasmatic ON. RNA sequencing revealed that early changes were confined to the
286 primary injury site and were enriched in inflammation, ischemia, and metabolism. Local co-
287 delivery of hypothermia with cold-protective reagents showed significant structural and
288 functional neuroprotection, but neither treatment was neuroprotective by itself. To ensure other
289 research groups can faithfully replicate this endoscopy (for TH or for other ON treatments), we
290 made a computer program to optimize surgical paths based on skull CT scans. This study
291 potentially revolutionizes TH for CNS traumas, and provides translatable large animal models
292 for developing local therapeutic strategies for TON and other axonal injuries.

293 **Current treatment for TON**

294 TON causes severe visual loss after head trauma. Currently, no treatment for TON has been
295 proven effective by randomized controlled trials; mostly, mere observation is recommended^{21,27}.
296 *In situ* manipulation of the micro-environment of injured CNS axons has proven beneficial in
297 SCI model and peripheral nerve graft transplantation studies^{28,29}. However, most of the ON is
298 hard to expose due to its deep location and crowding by neighboring tissues. Drugs delivered
299 systemically or regionally (i.e., intraocularly, intra-orbitally, etc.) can hardly reach the injured
300 distal ON at sufficient and stable concentrations due to the blood brain barrier, diffusion/dilution,
301 and impaired axonal microvasculature³⁰⁻³². Our TON model allows clinically-resembling local

302 treatment *via* trans-nasal endoscopy with a large operating space. This foundation may trigger a
303 paradigm shift for TON therapies away from mere observation or systemic steroid
304 administration, and towards promising endoscopic treatment.

305 **Hypothermic therapy and cold-protective strategies**

306 Systemic hypothermia may cause coagulopathy, electrolyte disturbances, myocardial ischemia,
307 atrial fibrillation, sepsis, pneumonia, and altered drug metabolism⁶. Instead, we targetted
308 hypothermia to the injured pre-chiasmatic ON to prevent early changes in ischemia,
309 inflammation, and metabolism transcripts (as revealed by RNA-sequencing at 1 dpi).

310 Although hypothermic therapy was tested as a treatment for CNS trauma for many years, it has
311 not shown neuroprotective effects in randomized controlled trials of TBI or SCI^{2,33}. It is unclear
312 why TH was ineffective, but cold-induced neural damage may counteract any therapeutic effects.
313 Our recent work showed that the cold degrades neuronal microtubules, but neurons can be spared
314 with reagents such as PI⁷. In this study, neurons were protected when TH was combined with PI.
315 Neither treatment alone was effective. This novel combinatory strategy can be readily applied to
316 TON patients using established endoscopic procedures, reviving TH as a therapy for TON and
317 other CNS traumas.

318 **Advantages of our TON model compared with other TON models**

319 **(1) Clinical translatability:** Compared with the conventional retrobulbar ON crush model, our
320 model with pre-chiasmatic ON injury resembles key clinical features of TON such as the specific
321 injury site and the time course of neural degeneration, and allows local trans-nasal treatment
322 using clinical endoscopic procedures and tools. As such, the pre-clinical tests of local treatment
323 for TON succeeded in our model, and can be readily translated to TON patients. Recently, rodent

324 models have been developed in which ultrasound or impact triggers distal ON injury, but
325 unwanted collateral damage is usually inevitable in these models³⁴⁻³⁶. Besides, clinically
326 translatable, local treatment of injured ONs *via* trans-nasal endoscopy cannot be performed in
327 these rodent models.

328 Non-human primates including rhesus macaques have human-like visual systems and
329 pathophysiological responses to CNS injury which do not exist in other mammals^{26,37,38}. Our
330 work provides goat and non-human primate TON models to meet different experimental needs
331 and budget plans for mechanistic studies or pre-clinical tests of effective treatments.

332 **(2) Accessibility to the injury site within a large operating space (sphenoid sinus):** In this
333 study, histological and transcriptomic analyses found that axonal damage was initially confined
334 to the primary injury site. The affected pathways (ischemia, inflammation, and metabolism) offer
335 potential therapeutic targets. In our model, the chiasmatic and pre-chiasmatic ON can be exposed
336 safely under direct visual guidance within the spacious sphenoid sinus, facilitating *in situ*
337 damage, observation, and treatment of the ON with complex devices.

338 Traditional retrobulbar approach in rodent model allows access only to the most proximal ON
339 within the crowded orbit. Furthermore, exposure of the retrobulbar ON is much harder in human
340 or large animal models, and requires lateral orbitotomy, which causes transient orbital edema and
341 retinal dysfunction³⁹. Although access to the distal ON can be achieved by a conventional intra-
342 cranial approach with corticectomy or a recently developed intra-orbital approach by blind
343 injection, these approaches may cause unwanted collateral damage to the important adjacent
344 tissues⁴⁰. In addition, the operating space is restricted in these approaches due to crowding in the
345 cranial cavity or orbital apex.

346 (3) **Facilitation eye-brain reconnection:** According to our study, the axonal density of the intra-
347 orbital ON segment remained statistically intact 1 mpi; therefore, ON regeneration can start from
348 the pre-chiasmatic ON segment. On the contrary, the traditional retrobulbar ON crush model
349 requires a much longer ON regeneration distance to reconnect with the brain (i.e., the distance is
350 doubled compared with our TON model), making functional regeneration extremely
351 challenging⁴¹. In addition, our TON model allows local modulation of the microenvironment of
352 the pre-chiasmatic and chiasmatic ON to fuel and guide ON regeneration.

353 **Limitations of this study**

354 One limitation of this study is a small sample size in each therapeutic group. We were aware that
355 an analysis of sample size and power were needed for each comparison. However, due to ethical
356 issue and limitations of housing space and other resources, we only used 3-6 goats/rhesus
357 macaques in each group according to our previous experimental experience. Additionally, we did
358 not repeat TH in rhesus macaques due to budget limitations and ethical concerns. In the near
359 future, we will optimize TH with different onset times of treatment, therapeutic durations,
360 temperature ranges, dosages, and formulae of cold-protective reagents in the goat, and then test
361 the optimized TH strategy in the non-human primate model.

362 **Further application of this model**

363 In the present study, we safely exposed the chiasmatic and pre-chiasmatic ON within the
364 spacious sphenoid sinus. This allows for several promising avenues of research. (1) Access to the
365 ON allows for other ON disorder models, such as optic neuritis or ischemic optic neuropathy,
366 simply by introducing local damage. (2) Optical and electrical diagnostic tools may be placed *in*
367 *situ*, including confocal endomicroscopy⁴² and endoscopic OCT. (3) *In situ* treatments can be
368 tested at the pre-chiasmatic and chiasmatic ON, to prevent axonal degeneration and promote

369 long-distance axonal regeneration by modulating the micro-environment. These treatments could
370 be partnered with intra-vitreal manipulations to maximize RGC survival and ON regeneration.
371 (4) Our work may potentially be applied in other CNS traumas such as SCI or diffused axonal
372 injury in TBI, as well as early axonal degeneration in Alzheimer's, Parkinson's, and normal
373 aging⁴³.

374 **MATERIALS AND METHODS**

375 **Study Design**

376 This study sought to establish a *de novo*, clinically-relevant, large animal TON framework, and
377 to develop a novel local TH combined with cold protection. Due to ethical issue and limitations
378 of housing space and other resources, we only used 3-6 goats/rhesus macaques in each group
379 according to our previous experimental experience. At least 3 animals were used per test. For *in*
380 *vivo* tests, histology, and transcriptomic studies, sampling and experimental replicates are
381 detailed in the Methods. For *ex vivo* studies, retinal explants were randomly assigned to three
382 experimental groups (0°C, 0°C with PI, 37°C). For *in vivo* studies, goats from the same
383 company, of the same gender, and of similar ages and weights, were allocated to the groups of
384 injury, hypothermia combined with PI, hypothermia alone, and PI alone without randomization.
385 All the surgeries were performed by one surgeon, and the investigators collecting and analyzing
386 the data were blinded to the grouping. No data outliers were excluded.

387 **Saanen goats and rhesus macaques**

388 Experiments were conducted following the Association for Research in Vision and
389 Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research
390 guidelines. All protocols were approved by the Institutional Animal Care and Use Committee in

391 the Wenzhou Medical University (Wenzhou, China, ID number: wydw2020-0789) and the Joinn
392 Laboratory (Suzhou, China, ID number: P19-S445-PD). 4-7 month-old male Saanen goats
393 weighing 19-22 kg were purchased from the Caimu Livestock Company (Hangzhou, China) and
394 housed in the animal facility of the Wenzhou Medical University. The rhesus macaques aged
395 from 5-7 years weighing 5-7 kg were housed in the animal facility of the Joinn Laboratory. All
396 animals were housed in an air-conditioned room ($21 \pm 2^\circ\text{C}$) under a normal light/dark cycle
397 (12/12 hours) with food *ad libitum*. Goats were euthanized with 10% potassium chloride (40 ml,
398 intravenously) after general anesthesia using xylazine (3mg/kg, IM). Rhesus macaques were
399 euthanized by exsanguination after general anesthesia using Zoletil50 (4-8mg/kg, IM,
400 tiletamine/zolazepam).

401 **Trans-nasal endoscopic procedure to expose the pre-chiasmatic ON in goats and rhesus
402 macaques.**

403 Goats were anesthetized with xylazine, and then intubated with a 6.0 mm tracheal tube (Henan
404 Tuoren Medical Device Co., Ltd, China). Anesthesia was maintained with 3% isoflurane in
405 oxygen and air (1:1) at a rate of 2 L/min by using a mechanical ventilator. Then atropine,
406 ceftiofur sodium, gentamicin, dexamethasone, esmolol hydrochloride and hemocoagulase atrox
407 were injected (detailed information of each drug is listed in the “Drug summary”).

408 After skin preparation with povidone-iodine solution (20 ml, 5%, Zhejiang Apeloa Inc., China), a
409 vertical double-T-shaped incision on the nose was made through the skin and periosteum.
410 Following blunt dissection, the underlying nasal bone was removed to access the nasal cavity.
411 Under trans-nasal endoscopy (Delong, HD380B), the middle turbinate and posterior olfactory
412 nerve filaments were partially removed by an endoscopic microdebrider (Medtronic, 1884004)
413 powered by the Integrated Power Console system (Medtronic, Integrated Power Console ENT

414 Surgery, 1898001) to expose the ipsilateral anterior wall of the sphenoid bone. To increase
415 surgical operating space, the nasal septum and part of the contralateral olfactory nerve filaments
416 were also resected to fully expose the anterior bony wall of the sphenoid bone (**Figure 1E, left**
417 **panel**). To access the pre-chiasmatic ON within the sphenoid bone, an endoscopic microdrill
418 (Medtronic, diamond microdrill, 1882969) was employed to drill the overlying cortical bone.
419 The posterior myeloid tissue within the sphenoid bone body (**Figure 1E, right panel**) was
420 aspirated and drilled to create an artificial sphenoid sinus, within which the chiasmatic and pre-
421 chiasmatic ON lay posteriorly (**Figure 1F**). There are two ways to identify the optic canal (part
422 of the pre-chiasmatic ON) in goats during the endoscopic surgery, either by exposing the anterior
423 bony wall of the optic chiasm and then pinpointing the optic canal at the junction of the optic
424 chiasm and the medial orbital wall (**Figure 1G**) or by using a surgical navigation system.
425 In the sham surgery group, the ON was exposed by drilling through its anterior bony wall
426 (**Figure 1G**). In the ON crush injury group: the ON was crushed by using the blunt blade (3 mm
427 long, 0.5 mm wide) of a periosteal elevator (HBB010, Shanghai Medical Instruments, China) for
428 5 seconds (**Figure 2A, B**).
429 Following ON injury, the nasal cavity was irrigated consecutively with povidone-iodine and
430 saline, and the artificial sphenoid sinus was filled with an absorbable gelatin sponge (Xiangen
431 Medical Technology, China). After closure of the nasal periosteum and the skin with 3-0 sutures,
432 anesthesia recovery was conducted.
433 The trans-nasal endoscopic procedure to expose the optic canal in rhesus macaque was similar to
434 that in goats and used the same surgical equipment. Our self-designed surgical path planning
435 program helped screen for suitable macaques and determine the surgical path based on their pre-
436 surgical cranial CT scans (**Supplementary Movie 9**). The rhesus macaque was anesthetized by

437 isoflurane (1.5-2%) after induction by Zoletil50 (4-8 mg/kg IM, Virbac, France) in the supine
438 position. The exposed pre-chiasmatic ON was confirmed by a surgical navigation system (NDI
439 Polaris Vicra).

440 **Computer-assisted semi-automated surgical path planning in trans-nasal endoscopic**
441 **surgery based on CT scans**

442 To facilitate endoscopic exposure and expand this surgical approach to other large animal
443 species, a computer-assisted surgical path planning program was designed based on pre-surgical
444 cranial CT scans. The flowchart of the program is shown in **Figure 6A**. The major steps were as
445 follows:

446 (1) Virtual reconstruction of surgical space based on cranial CT scans. Cranial CT scans with
447 slice thicknesses of 0.65 mm in goats and 1 mm in beagles and macaques were obtained before
448 surgery (pigs and goats, GE Optina660, General Electric Company, Boston, USA; beagles and
449 macaques, Philip Brilliance iCT, Royal Philips Company, Amsterdam, Holland). The surgical
450 space was manually segmented in the MITK software (MITK, v2018.04.2, detailed code is
451 available in <http://mitk.org/wiki/Downloads>). The anatomic boundaries of the surgical space
452 were as follows: the nasal and maxillary bone anteriorly, the anterior skull base superiorly, the
453 palate inferiorly, the medial orbital walls laterally, and the posterior wall of the sphenoid body
454 posteriorly (**Figure 6B, in green**). The anterior wall of the left optic canal was marked as the
455 surgical target (**Figure 6B, in yellow**) that needed to be approached by the surgical microdrill.

456 (2) Virtual reconstruction of the surgical microdrill and the surgical corridor (formed by the
457 movement of the surgical microdrill along its major axis) (**Figure 6C**).

458 (3) Calculation and optimization of the surgical path. There were five degrees of freedom for the
459 movement of the surgical corridor when its tip met the optic canal (**Figure 6D**). Using a
460 comprehensive search in the program, all possible surgical paths in the three-dimensional virtual
461 space were tested and screened for the most feasible paths in which all the pixels within the
462 surgical corridor were either in the confined surgical space or in air (space outside of the
463 animal's skull) (**Figure 6E**).

464 (4) Optimization of microdrill size. If no feasible surgical path was identified, the computer
465 automatically decreased the diameter of the surgical microdrill by 0.5 mm, and then repeated
466 steps (1) - (3) to screen for feasible paths.

467 The code of the computer program is available online
468 (<https://github.com/LujieZhang/Preoperative-planning>).

469 **Evaluation of microtubule cold-stability in the retinal explants of goats**

470 Goat eyecups were prepared within 15 mins after euthanization with 10% potassium chloride (40
471 ml, intravenously) in conjunction with general anesthesia using xylazine. Three neighboring
472 retinal pieces, 2 mm in diameter, were taken from the peripheral retina, and randomly assigned to
473 three experimental groups (0°C, 0°C with PI (cold-protective reagent), 37°C) (**Figure 5A**). The
474 retinal explants were pre-treated in hibernate A medium (BrainBits, 2283833, USA) with or
475 without PI (1:500, EMD Millipore Company, 539134, Germany) for 30 minutes at room
476 temperature, then were kept in a 37°C incubator or in a 0°C ice-water mixture for 6 hours. After
477 fixation in 4% PFA for 30 minutes, the retinal explants were immuno-stained against
478 microtubule with beta-3 tubulin (TUBB3) antibody (1:250, from rabbit, Cell Signaling
479 Technology, 5568S, USA), washed in 0.5% Triton in PBS for 5 times, and then were immune-
480 stained with Alexa Fluor 488 conjugated anti-rabbit secondary antibody (1:200, from donkey,

481 Thermo Fisher Scentific, A-21206, USA). Confocal images were taken under confocal
482 microscopy (Cell Observer SD, ZEISS, Germany) with 63X oil objective lens. Accumulative
483 axonal length of TUBB3-positive optic nerve was analyzed using computer-assisted software
484 ('Simple Neurite Tracer' plugin, ImageJ). Axonal beads along the TUBB3-positive optic nerve
485 were counted manually and bead density was calculated as the number of beads per 100 μm
486 TUBB3-positive optic nerve. For each retinal explant, three regions (108.36 μm x 108.36 μm ,
487 512 x 512 pixels) were imaged, and the accumulative axonal length and axonal bead densities in
488 these three regions were averaged to yield one readout. Retinal pieces with many optic nerve
489 bundles were excluded to facilitate precise quantification. 11 retinal explants from 4 male goats
490 were used in each experimental group. After testing for normality, a repeated measures one-way
491 ANOVA was applied with Dunnett's multiple comparisons test.

492 **Trans-nasal local hypothermic therapy**

493 We developed a trans-nasal local cooling system. Cooling water was pumped into a nasal
494 irrigation tube by a rotary pump (Beijing Zhongshidichuang Technology Development Co., Ltd,
495 China). An irrigation and drainage system consisted of a double-tube cooling device including a
496 pair of concentric silicon tubes. The inner silicon tube (irrigation tube, 3 mm in diameter,
497 Zhejiang Kangkang Medical Equipment Co., Ltd, China) was connected to the pump to receive
498 the cool water. The outer silicon tube (drainage tube, 7 mm in diameter, Taizhou Biling
499 Hardware Products Co., Ltd., China) was covered with cling film (Shanghai Runwen Packaging
500 Materials Co., Ltd., China) to drain the water out of the nasal cavity (**Figure 5E**). A gelfoam
501 sponge (Xiang'en Jiangxi Medical Technology Development Co., Ltd., China) filled with goat
502 serum (Beyotime Institute of Biotechnology, C0265, China) with or without 1:200 diluted PI
503 (EMD Millipore Company, 539134, Germany) was placed between the injured ON and the cling

504 film (**Figure 5E, F**). To test the effect of hypothermia and PI (cold-protective reagents) on
505 injured ONs, goats were assigned to the following three experimental groups: (1) local
506 hypothermia with PI, (2) local hypothermia without PI, and (3) PI without local hypothermia.
507 Immediately after the ON crush injury, the sponge was placed at the injury site and then the local
508 cooling tubes were inserted over the gelfoam sponge (**Supplementary Movie 4**). The iced water
509 mixture (0°C as measured by a digital thermometer; ZS-T, Beijing Zhongshidichuang
510 Technology Development Co., Ltd., China) was pumped into the double-tube device to cool the
511 outer surface of the cling film to 4°C (measured by the same digital thermometer). After 2 hours
512 of continuous cooling, the iced water mixture was replaced consecutively with water at 5, 10, 15,
513 and 20°C water for 15 min each to achieve slow rewarming (**Figure 5G**). Then the goat was
514 awakened from general anesthesia. Room temperature was maintained at 23°C.

515 **RNA-sequencing**

516 Fresh samples from the goat's retina, retrobulbar, and pre-chiasmatic ON in injury and
517 contralateral eyes were harvested and frozen in liquid nitrogen within 30 minutes after
518 euthanization at 1 dpi (**Figure 4A**). RNA extraction and sequencing was completed in a bio-
519 company (Biomarker Technologies, China). Total RNA of each sample was extracted following
520 the instruction manual of the TRIzol Reagent (Life Technologies, CA, USA). Agilent 2100
521 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA) was used to test the RNA
522 integrity and concentration. The mRNA was isolated by NEBNext Poly (A) mRNA Magnetic
523 Isolation Module (NEB, E7490), then fragmented into approximately 200 nt RNA inserts. The
524 cDNA library was constructed according to the NEBNext Ultra RNA Library Prep Kit for
525 Illumina (NEB, E7530) and NEBNext Multiplex Oligos for Illumina (NEB, E750), and was
526 sequenced using an Illumina HiSeq™ sequencing platform. The reads were mapped to ARS1

527 (*Capra hicus*) genome (GenBank assembly accession: GCA_001704415.1) using Tophat2
528 software. Gene expression levels were estimated using Log2 CPM transformation values on
529 NetworkAnalyst 3.0 website. The raw base call (.bcl) files were converted to demultiplexed
530 FASTQ files with Bcl2fastq v2.19.1 for data analysis. The RNA-sequencing and analysis were
531 repeated in 4 goats. The RNA-seq data has been uploaded online
532 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE182164>).

533 **RNA-seq analysis**

534 Raw reads were assessed using the FastQC toolset
535 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>). The statistics on the raw reads and
536 alignments are shown in sheet ‘Mapping Statistics’, Data S3. R Subread package was used to
537 quantify gene expression. Adjusted p values from differential expression tests were calculated
538 using the Benjamini-Hochberg procedure for multiple hypothesis testing. Gene ontology (GO)
539 analysis was performed based on hypergeometric test using clusterProfiler package.

540 To obtain the downstream protein-protein interaction map, the differentially expressed genes
541 were analyzed in the STRING database (<https://string-db.org/>). Genes that interact more with
542 other genes at the protein level were analyzed in the Cytoscape software (version 3.8.2). The
543 genes with high connectivity were named as hub genes.

544 **Flash visual evoked potential (FVEP)**

545 Visual evoked potential (FVEP) is the cortical potential in response to visual stimulus, reflecting
546 the function of retino-geniculate pathway¹⁹. FVEP recording in goats has been previously
547 reported in detail²⁴. Briefly, following general anesthesia and electrode placement, the animal
548 was adapted to the testing environment for 5 minutes. Then the FVEP was recorded at intensities

549 of 0.025 and 0.25 cd·s/m² consecutively (GT-2008V-III, GOTEC Co., Ltd, China). To reduce
550 variation, we used the FVEP amplitude ratio of the surgical eye to the contralateral eye to
551 quantify the FVEP changes in the surgical eyes.

552 The pattern visual evoked potential (PVEP) test in rhesus macaques was described previously²⁴.
553 The PVEP, which is more reproducible than FVEP in human¹⁹, can be elicited in rhesus
554 macaques according to our previous study²⁴. Therefore, we replaced the FVEP test with the
555 PVEP test in rhesus macaques.

556 **Pattern electroretinogram (PERG) recordings**

557 PERG is the retinal electrical signal activated by patterned visual stimuli, the amplitude of which
558 indicates the functional integrity of RGCs²⁰. PERG recording in goats and rhesus macaques has
559 been previously reported²⁴. Briefly, the goat was anesthetized with xylazine. After electrode
560 placement, PERG signals were elicited by contrast-reversal black-white checkerboards (temporal
561 frequency, 2.4 Hz) at spatial frequencies of 0.1, 0.3, 1.0, 3.0 per degree consecutively (GT-
562 2008V-III, GOTEC Co., Ltd, China). To reduce variation, we report a ratio of the PERG
563 amplitude of the surgical eye to the contralateral eye.

564 **Pupillary light response (PLR) test**

565 The PLR test was used to evaluate the integrity of the ocular afferent (ON) and the efferent
566 (oculomotor nerve) pathways¹⁸. Direct PLR (dPLR) is the PLR in the ipsilateral eye while
567 indirect PLR (iPLR) occurs in the contralateral eye. This method has been previously
568 described²⁴. Briefly, the goat was dark-adapted for 5 minutes after anesthesia with xylazine. Two
569 infrared cameras were positioned at 5 cm from each eye and focused on the pupillary plane to
570 film the PLR. Pupillary constriction was elicited by white light stimulus (230 lx) for two

571 seconds. The PLR results were scored manually by the same person as follows: Grade 2 (score =
572 2) = normal PLR; Grade 1 (score = 1) = delayed or weak PLR; Grade 0 (score = 0) = no PLR.

573 **Spectral-domain optical coherence tomography (SD-OCT) imaging**

574 Retinal OCT imaging was used to measure the thickness of the retinal ganglion cell complex
575 including the RNFL, RGC and IPL layers, which represent the RGC axons, somas and dendrites,
576 respectively. This method has been previously described²⁴. Briefly, after anesthesia, the OCT
577 images were taken with peripapillary circular scan pattern (Heidelberg Spectralis OCT system,
578 Germany). The thickness of the GCC was measured manually using the Heidelberg software.

579 **Immunohistochemical (IHC) staining of retinal ganglion cells (RGCs)**

580 The IHC staining for RGCs was performed as described in our previous study²⁴. Briefly, the
581 eyecup was made and fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for 24 h
582 at 4°C. For each retinal quadrant, three circular retinal pieces with a radius of 1 mm were
583 dissected out using a corneal trephine blade (Zhonglindongsheng Medical Instrument, Jiangsu,
584 China) at the central, mid-peripheral and peripheral retina (1/4, 1/2 and 3/4 of the retinal radius
585 away from the ON head, respectively). For each eye, the RGC densities of 12 retinal pieces were
586 averaged to yield one readout. Retinal samples were blocked in 5% goat serum (C0265,
587 Beyotime Institute of Biotechnology, China) in 0.5% PBST overnight, and then incubated in a
588 1:4000 diluted primary antibody (anti-RBPMS from guinea pig, ProSci, California, custom-
589 made) in 0.5% PBST for 24 h at room temperature. After being washed in PBS, the retinal pieces
590 were incubated in a 1:200 diluted secondary antibody in PBS (Cy3-conjugated, anti-guinea pig
591 from goat, Jackson Immuno Research, West Grove, Pennsylvania) for 12 h at room temperature.
592 The retinal pieces were then washed before being mounted on slides. Confocal images were
593 taken using a Zeiss LSM710 system (Carl Zeiss Meditec, Sartrouville, Germany) under a 20X

594 objective lens. RBPMS-positive RGCs were counted manually using ImageJ software (NIH,
595 Bethesda, MD, USA).

596 **Quantification of surviving axons within a semi-thin section**

597 Dissection of the ON was completed within 30 mins after euthanization. The ON was cross-
598 sectioned into 1-2 mm-thick discs at the retrobulbar (2 mm behind the eyeball, named as #1),
599 mid-orbital (#2), intra-canicular (lesion site, #3) and pre-chiasmatic (post-injury site, #4)
600 regions. The ON sections were fixed in 2% glutaraldehyde and 2% PFA in PBS for 24 h at 4°C.
601 After being washed in 0.1 M PB, the samples were incubated in 1% osmium tetroxide in 0.1 M
602 PBS for 1 h and then incubated in 2% uranyl acetate in double distilled water for 1.5 h at 37°C.
603 The samples were then dehydrated through a series of graded ethanol (50% to 100% in H₂O) for
604 10 min at each concentration. The samples were then embedded in 50% EMbed 812/50%
605 propanone for 1 h, followed by a 4:1 ratio of EMbed 812/propanone overnight at 37°C. The next
606 day, the samples were transferred to 100% EMbed 812 for 1 h at 45°C and embedded in a mold
607 filled with 100% EMbed 812 at 45°C for 3 h and then at 65°C for 2 days. Semi-thin sections (2
608 μm) were cut using an ultramicrotome (LKB-2088, LKB, Bromma, Sweden), stained with 1%
609 para-phenylenediamine (PPD) in methanol: isopropanol (1:1) for 35 min and then rinsed three
610 times with methanol:isopropanol (1:1). Myelin and unhealthy axonal cytoplasm were stained
611 with PPD. More than five separate regions (125.22 μm x 94.26 μm) of each section were imaged
612 at 70X magnification using a Leica DM4B epifluorescence microscope. The surviving axons
613 were semi-automatically counted to obtain the average surviving axonal density for each section.
614 Since the axonal densities amongst different ON sites of the contralateral eyes were statistically
615 the same at 1 and 3 mpi after ON crush (**Supplementary Figure 3C**), we used the axonal density
616 at region #3 to represent the axonal density in the contralateral eye.

617 **Materials & Correspondence**

618 Correspondence and material requests should be addressed to Yikui Zhang, 86-13705770161,
619 zhang.yikui@wmu.edu.cn.

620 **Data and materials availability**

621 Computer program download site:
622 <https://github.com/LujieZhang/Preoperative-planning>.

623 The processed gene expression data in this paper have been deposited into the NCBI GEO
624 database: GSE182164. RNA-seq data download site:
625 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE182164>.

626 **Statistical analyses**

627 All data were analyzed using GraphPad (8.0) software. Normality tests were used to analyze the
628 distributions of all data sets. To compare two groups of data, Student's t-test or nonparametric
629 test was used. To compare multiple groups, a one-way ANOVA (with Dunnett's multiple-
630 comparisons test) or nonparametric Kruskal-Wallis test (with Dunn's multiple-comparisons test)
631 was used. Two-way ANOVA (with multiple comparisons) was used to analyze OCT, PERG,
632 FVEP, PVEP and axonal density data. Asterisks (*) represent statistically significant differences
633 (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). Data are presented as mean±s.e.m.

634 **Author contributions:**

635 Conceptualization: YZ, WL, JY, YH, WW
636 Methodology: YZ, ML, BY, SL, LZ, SZ, HH, QY, JS, WJ, HZ, PH, ZY, TX, WL, DA, JF, HS,
637 YJ, XL, XC, JO, WL, LS, YSS

638 Investigation: YZ, ML, BY, SL, LZ, SZ, HH, QY, JS, WJ, HZ, PH, ZY, TX, WL, DA, JF, HS,

639 YJ, XL, XC, JO, WL, LS

640 Visualization: YZ, ML, SL,

641 Funding acquisition: WW, YZ, JY

642 Project administration: WW, YZ

643 Supervision: YZ, WW

644 Writing – original draft: YZ

645 Writing – review & editing: YZ, JO, WL, YH, WW

646 **Acknowledgments:**

647 We thank Dr. Haohua Qian for critically reading this manuscript. We thank Dr. Michael W.
648 Country for editing this manuscript. We also appreciate Professor Kaihui Nan, Yu Xia, Yuanfei
649 Ji, Mingna Xu, Qiqi Xie, Weijie Liu, Zhaoqi Pan, Xiaohui Jiang, Yao Zhou, Mengting Jin,
650 Haochen Jin for taking part in experimental conduction.

651 **Funding:**

652 National Key R&D Program of China (2016YFC1101200)
653 National Natural Science Foundation of China (81770926;81800842)
654 Key R&D Program of Zhejiang Province (2018C03G2090634)
655 Key R&D Program of Wenzhou Eye Hospital (YNZD1201902)
656 National Key R&D Program of China (2019YFC0119300)
657 The sponsor or funding organization had no role in the design or conduct of this research.
658

659 **Reference**

- 660 1. Wang, H., Olivero, W., Wang, D. & Lanzino, G. Cold as a therapeutic agent. *Acta Neurochir (Wien)* **148**,
661 565-570 (2006).
- 662 2. Martirosyan, N.L., *et al.* The role of therapeutic hypothermia in the management of acute spinal cord
663 injury. *Clin Neurol Neurosurg* **154**, 79-88 (2017).
- 664 3. Clifton, G.L., *et al.* Lack of effect of induction of hypothermia after acute brain injury. *N Engl J Med* **344**,
665 556-563 (2001).
- 666 4. Clifton, G.L., *et al.* Very early hypothermia induction in patients with severe brain injury (the National
667 Acute Brain Injury Study: Hypothermia II): a randomised trial. *The Lancet. Neurology* **10**, 131-139 (2011).
- 668 5. Kramer, C., *et al.* Therapeutic hypothermia for severe traumatic brain injury: a critically appraised topic.
669 *The neurologist* **18**, 173-177 (2012).
- 670 6. Schubert, A. Side effects of mild hypothermia. *Journal of neurosurgical anesthesiology* **7**, 139-147 (1995).
- 671 7. Ou, J., *et al.* iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential
672 Medical Applications. *Cell* **173**, 851-863.e816 (2018).
- 673 8. Chamoun, R. & Couldwell, W.T. Practical and technical aspects of trans-sphenoidal surgery. *J Neurosurg
674 Sci* **55**, 265-275 (2011).
- 675 9. Casler, J.D., Doolittle, A.M. & Mair, E.A. Endoscopic surgery of the anterior skull base. *Laryngoscope*
676 **115**, 16-24 (2005).
- 677 10. Goudakos, J.K., Markou, K.D. & Georgalas, C. Endoscopic versus microscopic trans-sphenoidal pituitary
678 surgery: a systematic review and meta-analysis. *Clin Otolaryngol* **36**, 212-220 (2011).
- 679 11. Yan, W., *et al.* Incidence of optic canal fracture in the traumatic optic neuropathy and its effect on the
680 visual outcome. *The British journal of ophthalmology* **101**, 261-267 (2017).
- 681 12. Yu-Wai-Man, P. & Griffiths, P.G. Steroids for traumatic optic neuropathy. *The Cochrane database of
682 systematic reviews*, CD006032-CD006032 (2013).
- 683 13. Kalds, P., *et al.* Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era.
684 *Frontiers in Genetics* **10**(2019).
- 685 14. Araújo, A.M.d., *et al.* Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized
686 Brazilian Moxotó breed. *Genetics and Molecular Biology* **29**, 67-74 (2006).
- 687 15. Martin, P., *et al.* Genome-wide association mapping for type and mammary health traits in French dairy
688 goats identifies a pleiotropic region on chromosome 19 in the Saanen breed. *Journal of Dairy Science* **101**,
689 5214-5226 (2018).
- 690 16. Gipson, T.A. Recent advances in breeding and genetics for dairy goats. *Asian-Australas J Anim Sci* **32**,
691 1275-1283 (2019).
- 692 17. Yu-Wai-Man, P. Traumatic optic neuropathy-Clinical features and management issues. *Taiwan journal of
693 ophthalmology* **5**, 3-8 (2015).
- 694 18. Kerrison, J.B., *et al.* Quantification of optic nerve axon loss associated with a relative afferent pupillary
695 defect in the monkey. *Arch Ophthalmol* **119**, 1333-1341 (2001).
- 696 19. Odom, J.V., *et al.* ISCEV standard for clinical visual evoked potentials (2009 update). *Documenta
697 ophthalmologica. Advances in ophthalmology* **120**, 111-119 (2010).
- 698 20. Porciatti, V. Electrophysiological assessment of retinal ganglion cell function. *Exp Eye Res* **141**, 164-170
699 (2015).
- 700 21. Singman, E.L., *et al.* Indirect traumatic optic neuropathy. *Military Medical Research* **3**, 2-2 (2016).
- 701 22. Miyahara, T., Kurimoto, Y., Kurokawa, T., Kuroda, T. & Yoshimura, N. Alterations in retinal nerve fiber
702 layer thickness following indirect traumatic optic neuropathy detected by nerve fiber analyzer, GDx-N. *Am
703 J Ophthalmol* **136**, 361-364 (2003).
- 704 23. Shi, W., *et al.* Axonal loss and blood flow disturbances in the natural course of indirect traumatic optic
705 neuropathy. *Chin Med J (Engl)* **126**, 1292-1297 (2013).
- 706 24. Zhang, Y., *et al.* In vivo evaluation of retinal ganglion cells and optic nerve's integrity in large animals by
707 multi-modality analysis. *Exp Eye Res* **197**, 108117 (2020).
- 708 25. Richardson, P.M., Issa, V.M. & Shemie, S. Regeneration and retrograde degeneration of axons in the rat
709 optic nerve. *J Neurocytol* **11**, 949-966 (1982).
- 710 26. TM., P. Specializations of the human visual system: the monkey model meets human reality. (ed. Kaas
711 JH, C.C.) 2004:2231-2059 (Boca Raton, FL: CRC Press, 2004).

712 27. Levin, L.A., Beck, R.W., Joseph, M.P., Seiff, S. & Kraker, R. The treatment of traumatic optic neuropathy:
713 the International Optic Nerve Trauma Study. *Ophthalmology* **106**, 1268-1277 (1999).

714 28. TH, H. & S, D.G. The translational landscape in spinal cord injury: focus on neuroplasticity and
715 regeneration. *Nature reviews. Neurology* **15**, 732-745 (2019).

716 29. Aguayo, A.J., *et al.* Degenerative and regenerative responses of injured neurons in the central nervous
717 system of adult mammals. *Philosophical transactions of the Royal Society of London. Series B, Biological
718 sciences* **331**, 337-343 (1991).

719 30. Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. *Biomed Res Int* **2014**,
720 869269-869269 (2014).

721 31. Coles, J.P. Regional ischemia after head injury. *Current opinion in critical care* **10**, 120-125 (2004).

722 32. Thale, A., Jungmann, K. & Paulsen, F. Morphological studies of the optic canal. *Orbit* **21**, 131-137 (2002).

723 33. Dietrich, W.D. & Bramlett, H.M. Therapeutic hypothermia and targeted temperature management for
724 traumatic brain injury: Experimental and clinical experience. *Brain Circ* **3**, 186-198 (2017).

725 34. Evanson, N.K., Guilhaume-Correa, F., Herman, J.P. & Goodman, M.D. Optic tract injury after closed head
726 traumatic brain injury in mice: A model of indirect traumatic optic neuropathy. *PLoS One* **13**, e0197346
727 (2018).

728 35. Tao, W., *et al.* A Novel Mouse Model of Traumatic Optic Neuropathy Using External Ultrasound Energy
729 to Achieve Focal, Indirect Optic Nerve Injury. *Sci Rep* **7**, 11779 (2017).

730 36. Bastakis, G.G., Ktena, N., Karagogeos, D. & Savvaki, M. Models and treatments for traumatic optic
731 neuropathy and demyelinating optic neuritis. *Developmental Neurobiology* **79**, 819-836 (2019).

732 37. Friedli, L., *et al.* Pronounced species divergence in corticospinal tract reorganization and functional
733 recovery after lateralized spinal cord injury favors primates. *Sci Transl Med* **7**, 302ra134 (2015).

734 38. Nardone, R., *et al.* Rodent, large animal and non-human primate models of spinal cord injury. *Zoology
(Jena)* **123**, 101-114 (2017).

735 39. Zhang, Y., *et al.* In vivo evaluation of outer retinal function and structure after retrobulbar optic nerve crush
736 by lateral orbitotomy in goats. *Exp Eye Res* **209**, 108652 (2021).

737 40. Mesentier-Louro, L.A., *et al.* Direct targeting of the mouse optic nerve for therapeutic delivery. *Journal of
738 Neuroscience Methods* **313**, 1-5 (2019).

739 41. Yang, S.-G., *et al.* Strategies to Promote Long-Distance Optic Nerve Regeneration. *Frontiers in Cellular
740 Neuroscience* **14**(2020).

741 42. Belykh, E., *et al.* Progress in Confocal Laser Endomicroscopy for Neurosurgery and Technical Nuances for
742 Brain Tumor Imaging With Fluorescein. *Front Oncol* **9**, 554 (2019).

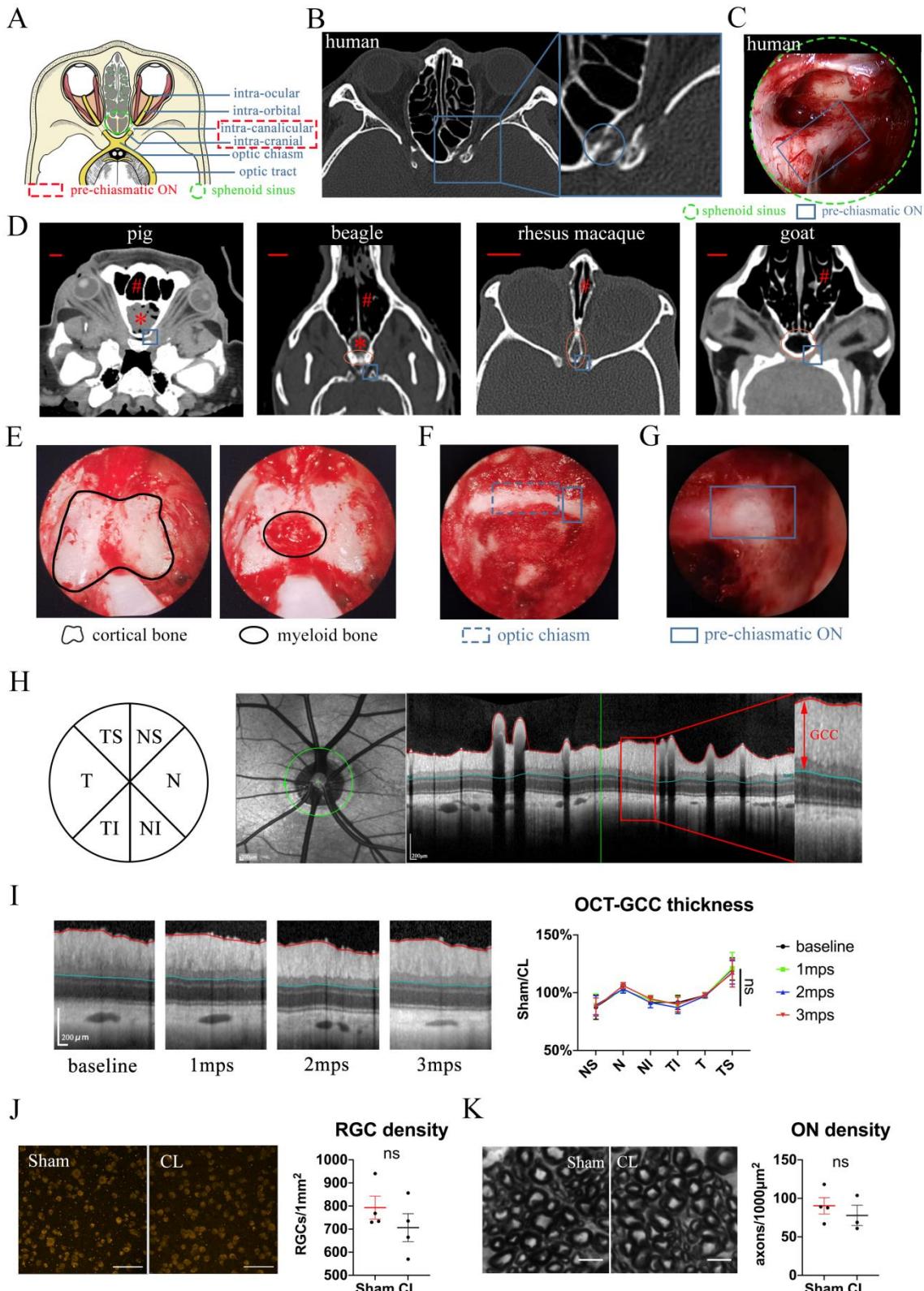
743 43. Salvadores, N., Sanhueza, M., Manque, P. & Court, F.A. Axonal Degeneration during Aging and Its
744 Functional Role in Neurodegenerative Disorders. *Frontiers in neuroscience* **11**, 451-451 (2017).

745

746

747

748 **Table 1. Drug summary**

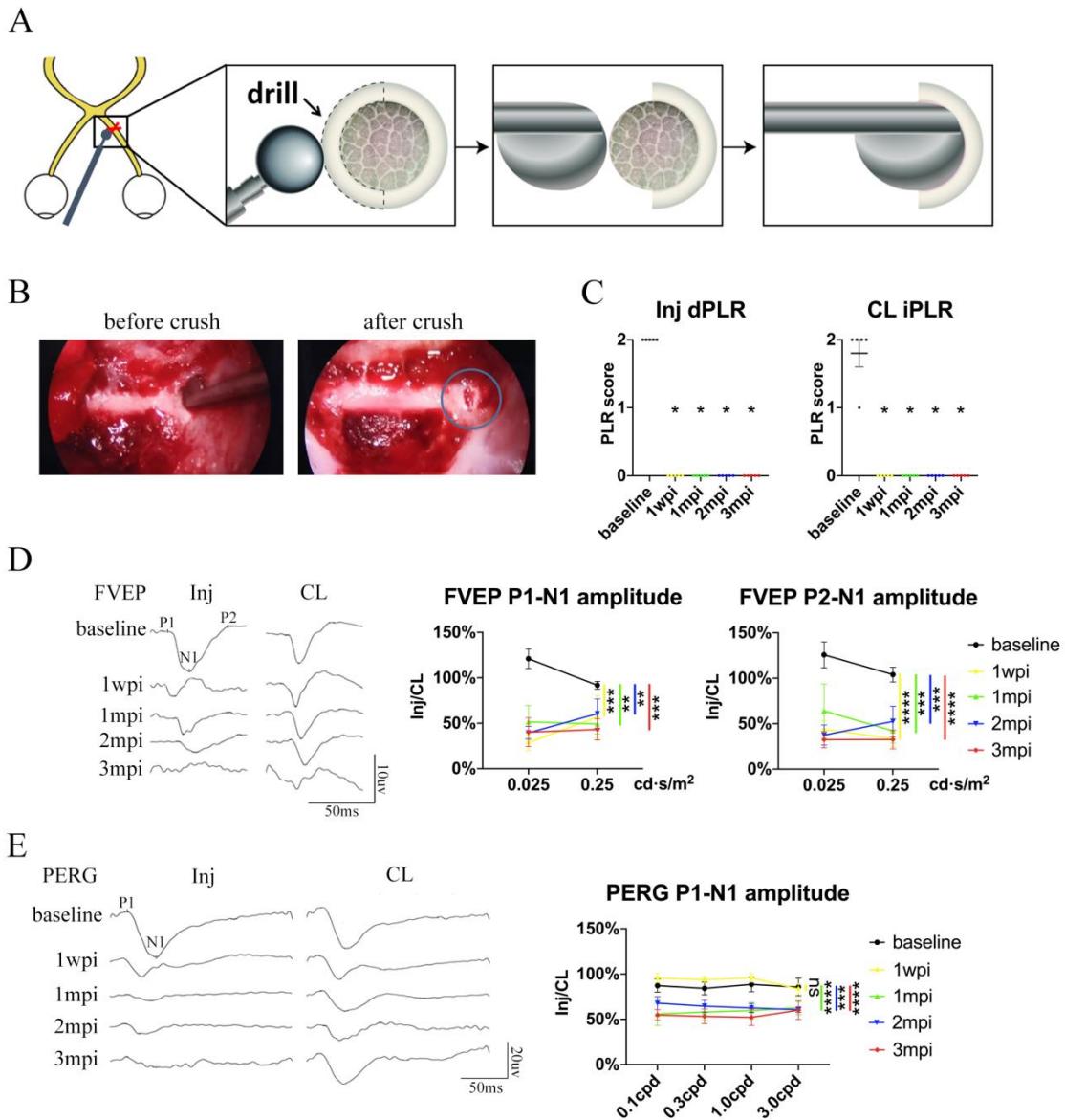

Drug	Function	Dosage, delivery	Source
Xylazine	General anesthesia	4mg/kg, intramuscular (IM)	Huamu Animal Health Products, China
Idzoxan	Antagonist of xylazine	1.5mg/kg, IM	Huamu Animal Health Products, China
Propofol	Induction of general anesthesia	5mg/kg, intravenous (IV)	Xian Lipont Enterprise Union Management, China
Isoflurane	General anesthesia	2.5-3.5%, by mechanical ventilator	RWD Life Science, China
Atropine	Reduction of bronchial secretion, cardiac protection	0.05mg/kg, IV	Guangdong Jieyang Longyang Animal Pharmaceutical, China
Esmolol hydrochloride	Reduction of blood pressure	0.2g (2ml) in 48ml saline,	Qilu Pharmaceutical, China

		IV drip infusion	
Hemocoagulase Atrox	Reduction of hemorrhage	1 unit (1 shot), IM	Penglainuokang Pharmaceutical, China
Dexamethasone	Anti-inflammation	5ml (5mg), IV	Kelong Veterinary Medicine, China
Ceftiofur sodium	Prevention of bacterial infection	20mg/kg, IM	Jiangxi Huatu, China
Gentamicin	Prevention of bacterial infection	8mg/kg, IM	Shanxi Ruicheng Kelong Co., Ltd, China

749

750

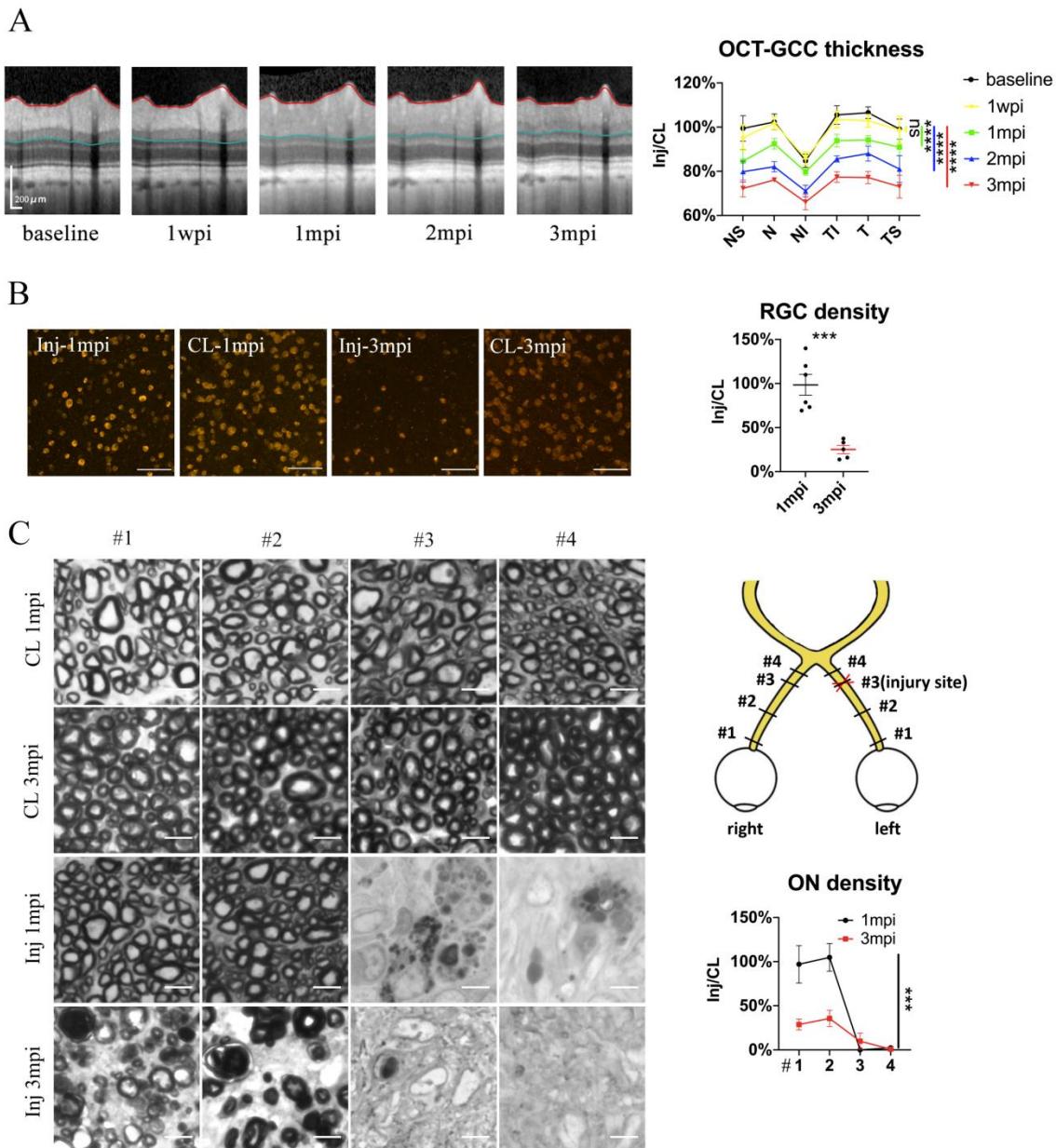
751 **Figures**



753 **Fig. 1. Trans-nasal endoscopic-mediated exposure of pre-chiasmatic ON in goat is feasible**

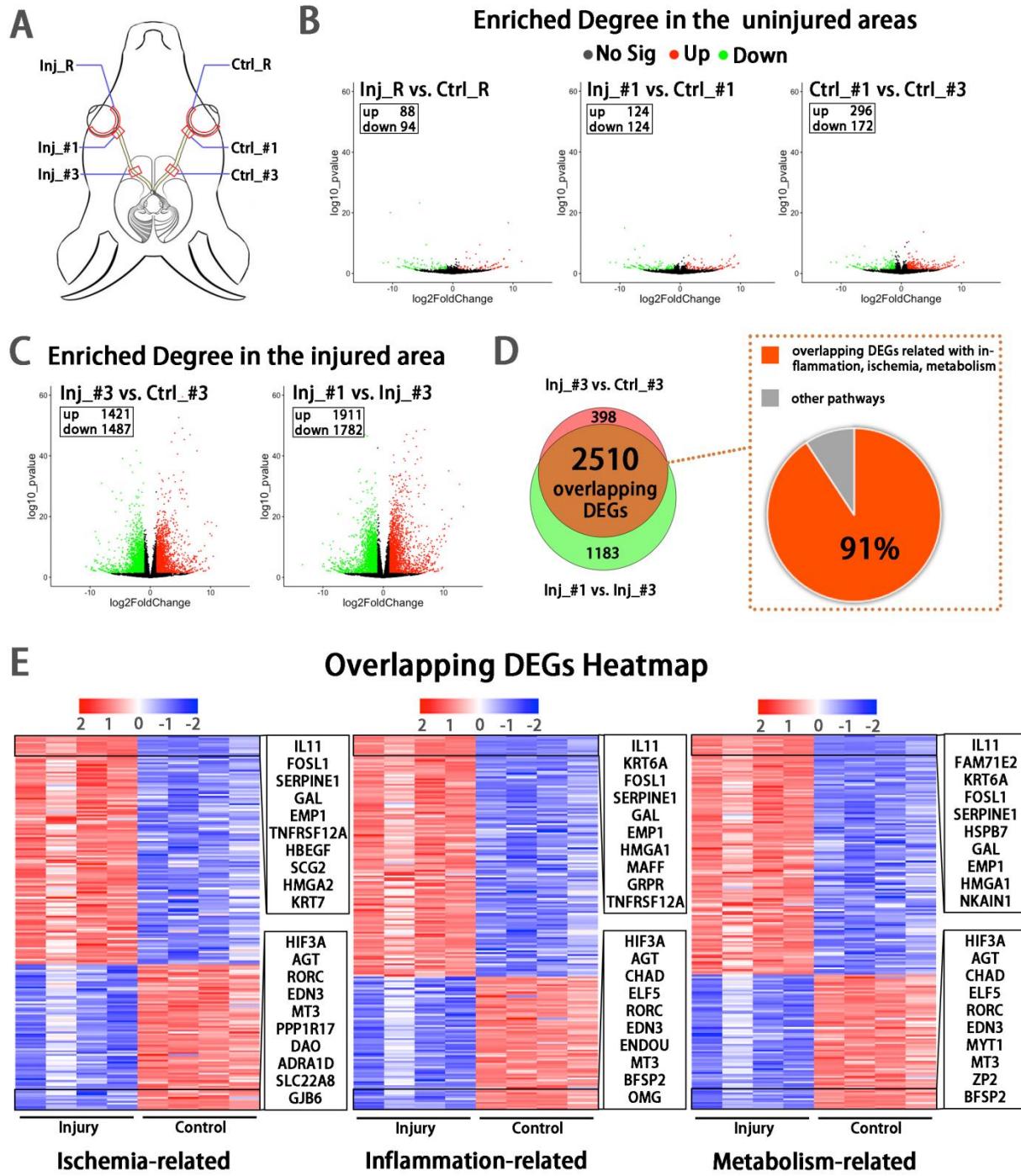
754 **and safe.** (A) Scheme of anatomic segments of ON and sphenoid sinus (green circle) in
755 human. The pre-chiasmatic ON was shown in the dashed box. (B) CT scan of TON
756 patient with optic canal fracture (blue circle). (C) Endoscopic view of human's pre-
757 chiasmatic ON (blue rectangle) within the large sphenoid sinus (shown in the green
758 circle). (D) Representative skull CT scans of pre-chiasmatic ON (blue rectangle) in pigs,
759 beagles, rhesus macaques and goats. Number sign indicated the nasal cavity. Asterisk
760 indicated the dropping frontal cortex in pigs and beagles. Red circle indicates the
761 sphenoid bone body in beagles, rhesus macaques and goats. Scale bar = 10mm. (E)
762 Endoscopic image of a goat's sphenoid bone body, which is made of cortical bone (left
763 panel) and trabecular bone with myeloid tissue (right panel). (F) Endoscopic image of a
764 goat's chiasmatic ON (blue dashed rectangle) and pre-chiasmatic ON (blue rectangle)
765 with bony wall unremoved. (G) Endoscopic exposure of a goat's pre-chiasmatic ON
766 (blue rectangle) with its anterior bony wall removed. (H) Illustration of GCC thickness
767 measurement by OCT retinal imaging around the optic nerve head in six regions (T:
768 temple, N: nasal; S: superior; I: inferior). (I) Representative OCT images of the eye with
769 its pre-chiasmatic ON exposed (sham surgery eye) (left panel) and quantification of GCC
770 thickness ratio of the sham surgical eyes to the contralateral naïve eyes before and after
771 pre-chiasmatic ON exposure. n=4. Two-way ANOVA with Tukey's multiple comparison
772 (compared with the baseline). (J) Representative immunostaining images of the RBMPS
773 positive RGCs in the retinal flat-mounts (left panel) and quantification of RGCs densities
774 of the sham surgical eyes and the contralateral eyes at 3 months after pre-chiasmatic ON
775 exposure (right panel). n=4. Wilcoxon test. Scale bar = 100 μ m. (K) Representative

776 microscopic images of semi-thin cross sections of ON (left panel) and quantification of
777 axonal densities of the sham surgical eyes and the contralateral eyes at 3 months after
778 pre-chiasmatic ON exposure (right panel). n=3-4. Unpaired t-test. Scale bar = 5 μ m. Data
779 were presented as mean \pm s.e.m. ns: p>0.05, not significant. CL: contralateral, mps: month
780 post-surgery (post sham surgery).

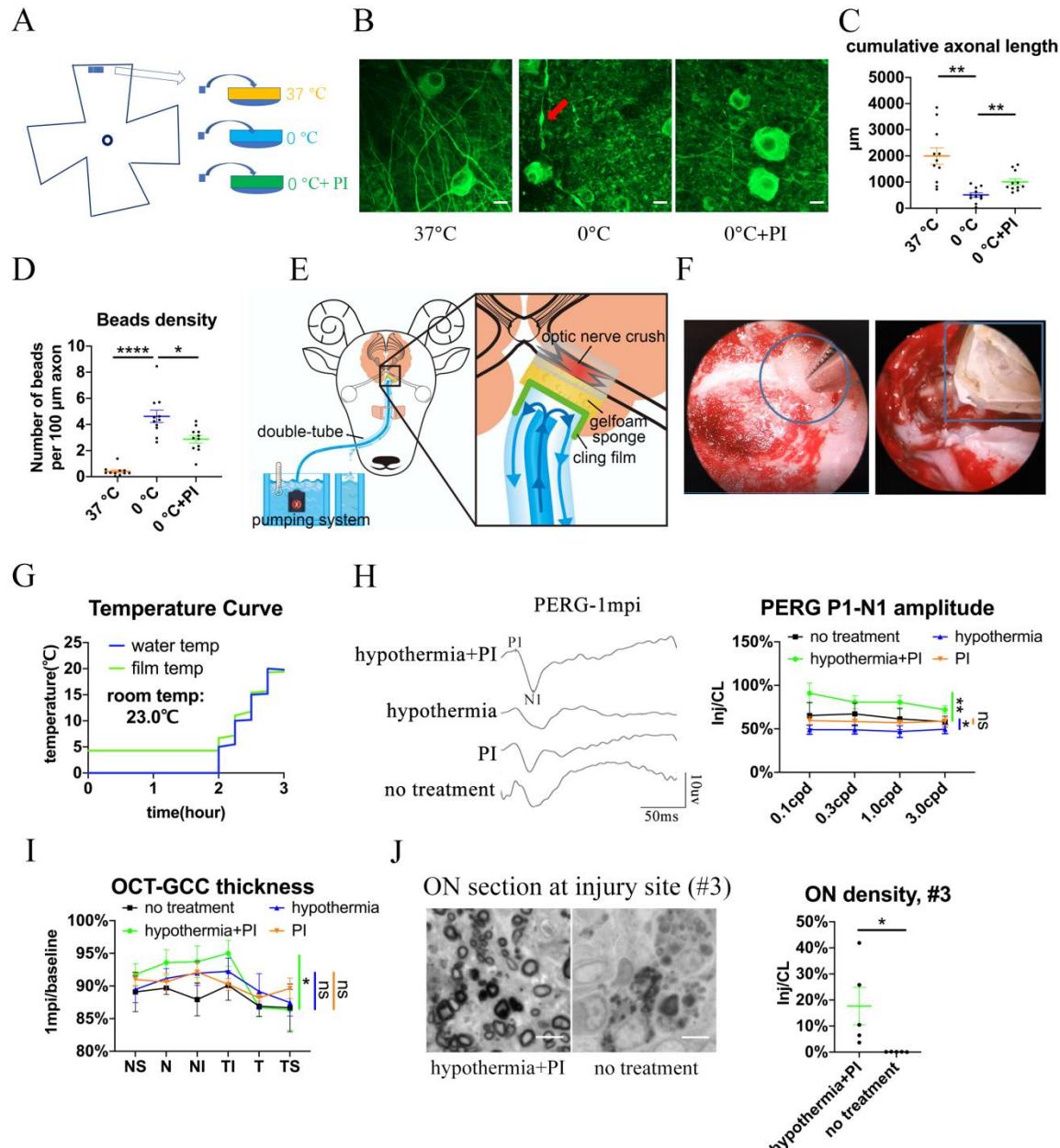

781

782

783 **Fig. 2. Trans-nasal endoscopy-mediated pre-chiasmatic ON crush in goat leads to loss of**
784 **visual function.** (A) Schematic illustration of pre-chiasmatic ON exposure and crush
785 injury. (B) Endoscopic views before (left panel) and after pre-chiasmatic ON crush (right
786 panel). Crush site was shown in the blue circle. (C) Loss of direct pupillary light response
787 (dPLR) in the injured eyes (left panel) and indirect PLR (iPLR) in the contralateral eyes
788 (right panel) after crush. Friedman test with Dunn's multiple comparison (compared with

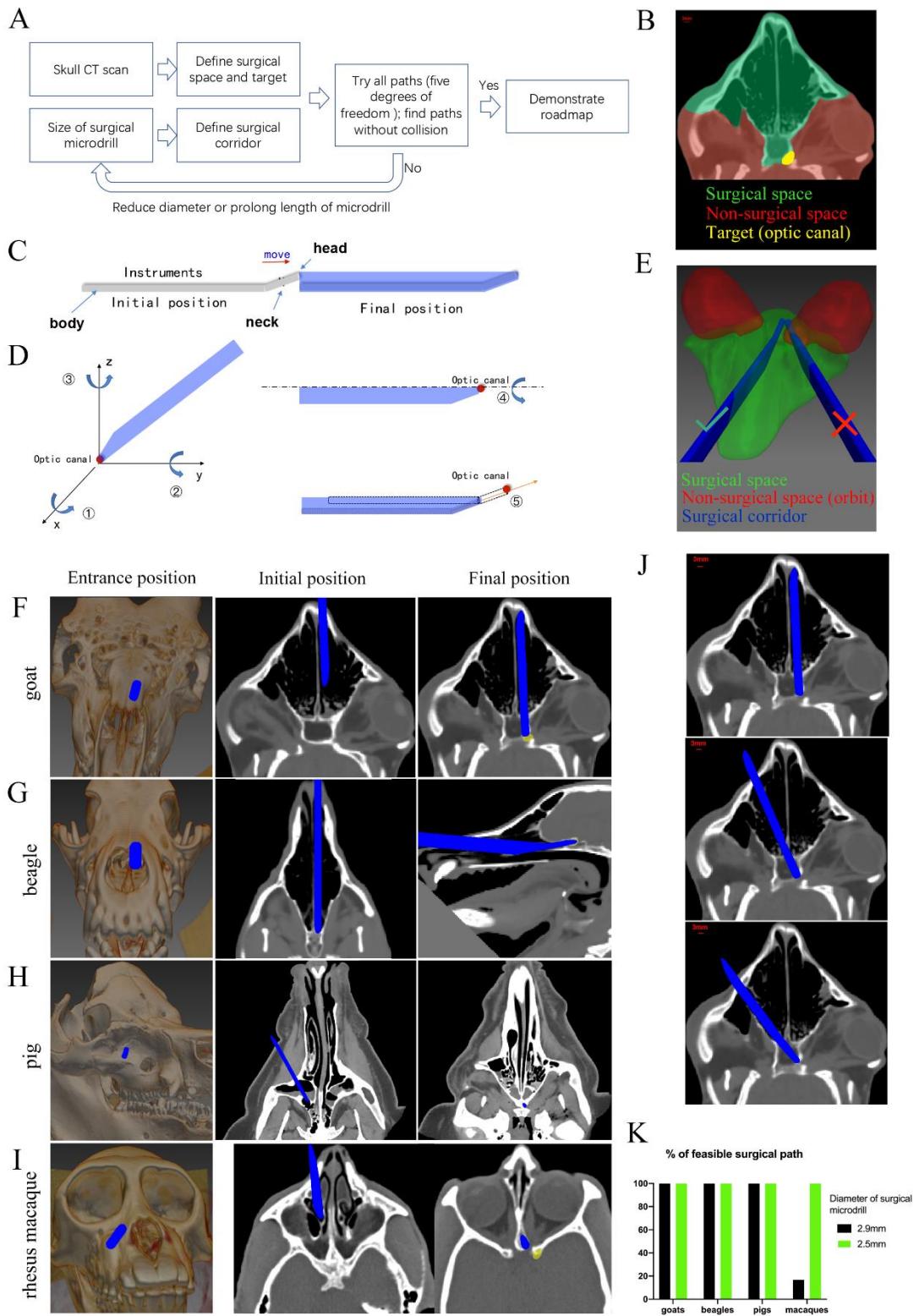

789 baseline), $p=0.0497$. (D) Representative FVEP waveforms of the injured eye and the
790 contralateral eye at light intensity of $0.025 \text{ cd}\cdot\text{s}/\text{m}^2$ (left panel) and quantification of
791 FVEP P1-N1 and P2-N1 amplitudes ratios of the injured eyes to the contralateral eyes
792 (right panel) at different time points before and after pre-chiasmatic ON crush. Two-way
793 ANOVA with Tukey's multiple comparison (compared with the baseline). (E)
794 Representative PERG waveforms of the injured eye and contralateral eye at spatial
795 frequency of 0.1 cpd (left panel) and quantification of PERG P1-N1 amplitude ratios of
796 the injured eyes to the contralateral eyes at spatial frequencies of $0.1, 0.3, 1.0, 3.0 \text{ cpd}$
797 (right panel) before and after pre-chiasmatic ON crush. Two-way ANOVA with Tukey's
798 multiple comparison (compared with the baseline). Data were presented as mean \pm s.e.m,
799 $n=5$. ns: not significant, * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. Inj: injured,
800 CL: contralateral, wpi: week post-injury, mpi: month post-injury.

801


802 **Fig. 3. Spatiotemporal pattern of RGC and ON degeneration in goat TON model. (A)**
803 Representative OCT images of the injured eye (left panel) and quantification of GCC
804 thickness ratios of the injured eyes to that of the contralateral eyes at six regions around
805 ON head (right panel) before and after pre-chiasmatic ON crush. n=5. Two-way ANOVA
806 with Tukey's multiple comparison (compared with the baseline). (B) Representative
807 immunostaining images of the RBMPS positive retinal ganglion cells (RGCs) in the

808 retinal flat-mounts (left panel) and quantification of RGCs densities ratios of the injured
809 eyes to the contralateral eyes at 1, 3 mpi (right panel). n=5-6. Unpaired t-test. Scale
810 bar=100 μ m. (C) Left panel: representative microscopic images of semi-thin cross
811 sections of ON stained by PPD at different ON segments of the injured eye and its
812 contralateral eye at 1, 3 mpi. Scale bar=5 μ m. Right upper panel: scheme of sampling sites
813 at different ON segments (#1, 2, 3, 4). Right lower panel: quantification of axonal
814 densities ratios of the injured eyes to the contralateral eyes at different ON segments at 1
815 and 3 mpi. n=5. Two-way ANOVA. Data were presented as mean \pm s.e.m. ns: not
816 significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Inj: injured, CL:
817 contralateral, wpi: week post-injury, mpi: month post-injury.

819 **Fig. 4. Early transcriptomic changes are confined to the injury site and mostly enriched in**
 820 **the pathways of ischemia, inflammation and metabolism. (A)** Scheme of sampling
 821 sites at the retina (R), retrobulbar (#1) and pre-chiasmatic ON (#3) of the injury eye (Inj)


822 and its contralateral eye (Ctrl). (B, C) Volcano plots showing differential expression
823 genes (DEGs) in the non-injured areas (B) and the injured areas (C). Red dots: significant
824 upregulated genes, green dots: significant downregulated genes, adjusted $p < 0.05$. $\log_{2}FC$
825 is 1. (D) Venn diagram indicating the overlapping DEGs between Inj_#3 vs. Ctrl_#3
826 (ipsilateral-contralateral comparison) and Inj_#3 vs. Inj_#1 (proximal-distal comparison
827 of the ipsilateral eye) (left panel), 91% of which were clustered in the pathways of
828 inflammation, ischemia and metabolism (right panel). (E): Heatmap showing TOP 200
829 overlapping DEGs related with pathways of ischemia (left panel), inflammation (mid
830 panel) and metabolism (right panel) based on the DEGs of Inj_#3 vs. Ctrl_#3. Ranking
831 was determined by the magnitude of fold change. Upper box shows the top 10 up-
832 regulated genes, and the below one shows the top 10 down-regulated genes.
833

834

835 **Fig. 5. Local delivery of hypothermia combined with cold-protective reagent, but neither**
 836 **treatment alone, achieved significant neural protection.** (A) Scheme for the ex vivo
 837 experiments shown in (A)-(D). (B) Representative confocal images of retinal explants
 838 immunostained with beta-3 tubulin (TUBB3) at 37°C, at 0°C, or at 0°C with PI. A typical
 839 axonal bead was labeled by a red arrow. Scale bar: 10 μ m. (C, D) Quantification of

840 cumulative axonal length (C) and axonal beads density (D) at 37°C, at 0°C, and at 0°C
841 with PI. n=11 retinal explants from 4 goats for each group. (E) Scheme of local delivery
842 of hypothermia and protease inhibitors (PI) at the injury site of the pre-chiasmatic ON.
843 (F) Endoscopic image showing placement of a piece of sponge (shown within a circle)
844 (left panel) and a cooling tube (shown within a rectangle) (right panel) at the injured pre-
845 chiasmatic ON. (G) Temperature curves of the cooling water and the cling film during
846 local hypothermia. (H) Representative PERG waveforms at spatial frequency of 0.1 cpd
847 (left panel) and comparison of PERG P1-N1 amplitude ratios at 1 mpi in the following
848 groups: hypothermia combined with PI, hypothermia alone, PI alone, no treatment. n=5-6
849 in each group. Two-way ANOVA, p=0.0231. (I) Comparison of GCC thickness ratio of
850 the injured eyes to the contralateral eyes at six different regions around ON head among
851 each group at 1 mpi. Two-way ANOVA, p=0.0478, n=5-6 in each group. (J)
852 Representative images of ON semi-section (left panel) and comparison of axonal
853 densities at the injury site in hypothermia combined with PI, and in a group with no
854 treatment. n=5-6 for each group. Unpaired t-test, p=0.0398. Data were presented as
855 mean±s.e.m. ns: not significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Inj:
856 injured, CL: contralateral.

858 **Fig. 6. Computer program-aided optimization of trans-nasal endoscopic surgery in**
859 **multiple species of large animals.** (A) Flowchart of the computer program. (B)
860 Segmentation of surgical space (in green), non-surgical space (in red) and surgical target
861 (in yellow) in the program. (C) Scheme of surgical corridor (in blue) outlined by the
862 surgical microdrill's movement along its major axis. (D) Demonstration of five degrees
863 of freedom of the surgical corridor. (E) Demonstration of a feasible surgical corridor (on
864 the left) and an infeasible surgical corridor colliding with orbital cavity (on the right). (F-
865 I) Representatives of virtual surgical paths in goats, beagles, domestic pigs and rhesus
866 macaques, respectively. Surgical entries were shown on the surface of three-dimensional
867 reconstructed skull (left panels) and on the horizontal CT plane (middle panels). Right
868 panels: projection of the surgical corridor on the CT plane through the pre-chiasmatic ON
869 (surgical target). (J) Representatives of multiple feasible virtual surgical paths in goats.
870 Scale bar = 3 mm. (K) Quantification of percentages of feasible surgical paths in goats,
871 beagles, domestic pigs and rhesus macaques by using different sizes of surgical
872 microdrills (diameter = 2.5 and 2.9 mm).
873

874 **Supplementary Materials**

875 **Materials and Methods**

876 Fig. S1. Endoscopic exposure of pre-chiasmatic ON is safe in goats.

877 Fig. S2. Contralateral eyes are functionally and structurally intact after ON crush injury.

878 Fig. S3. Bioinformatic analyses of the overlapping DEGs at the injury site.

879 Fig. S4. Bioinformatic analyses of the overlapping hub DEGs at the injury site.

880 Fig. S5. Local hypothermia combined with PI does not show significant rescue of PLR, FVEP
881 and axonal density at #4 region

882 Fig. S6. Pre-chiasmatic TON model in rhesus macaque

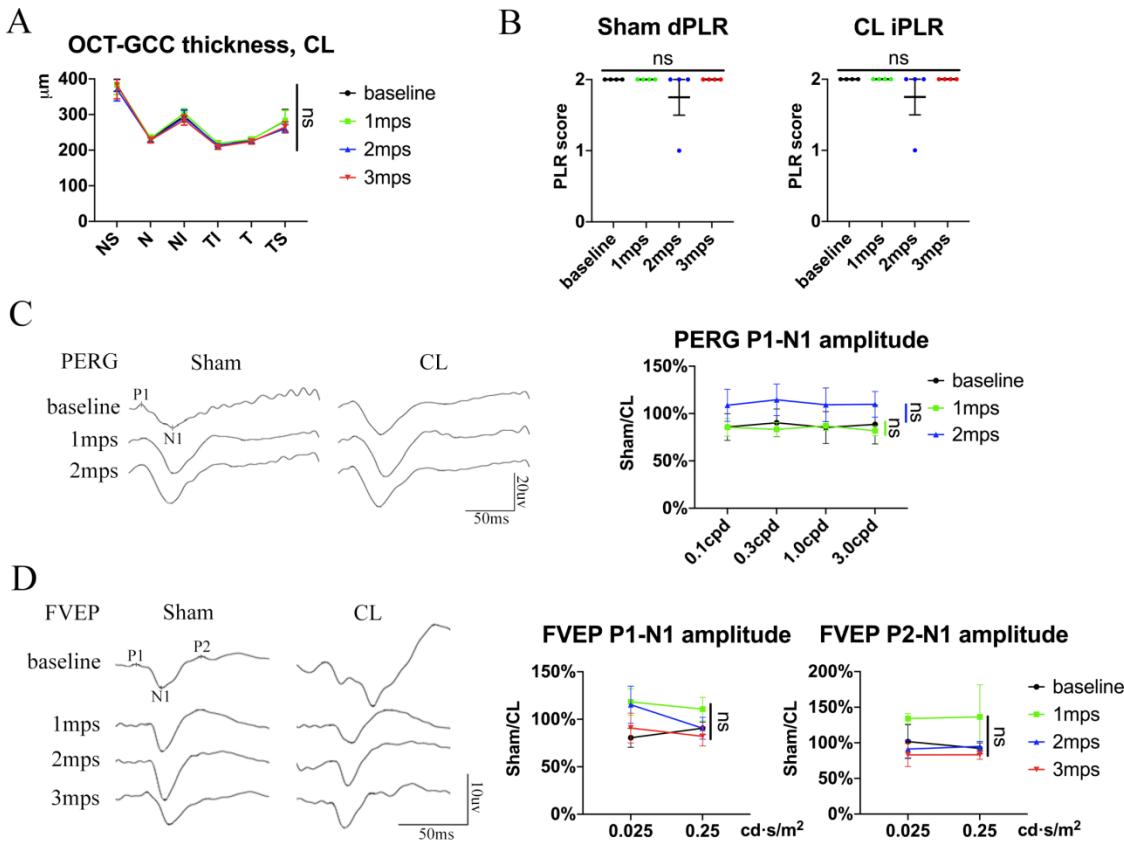
883 Movie S1. Surgical settings for trans-nasal endoscopic exposure of the pre-chiasmatic optic
884 nerve in a goat.

885 Movie S2. Exposure of the pre-chiasmatic optic nerve via trans-nasal endoscopy in a goat.

886 Movie S3. Crush of the pre-chiasmatic optic nerve via trans-nasal endoscopy in a goat.

887 Movie S4. Trans-nasal local delivery of hypothermia and protease inhibitors to the injured pre-
888 chiasmatic optic nerve in a goat.

889 Movie S5. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a goat.


890 Movie S6. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a
891 beagle.

892 Movie S7. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a
893 domestic pig.

894 Movie S8. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a
895 rhesus macaque.

896 Movie S9. Exposure of the pre-chiasmatic optic nerve via trans-nasal endoscopy in a rhesus
897 macaque.

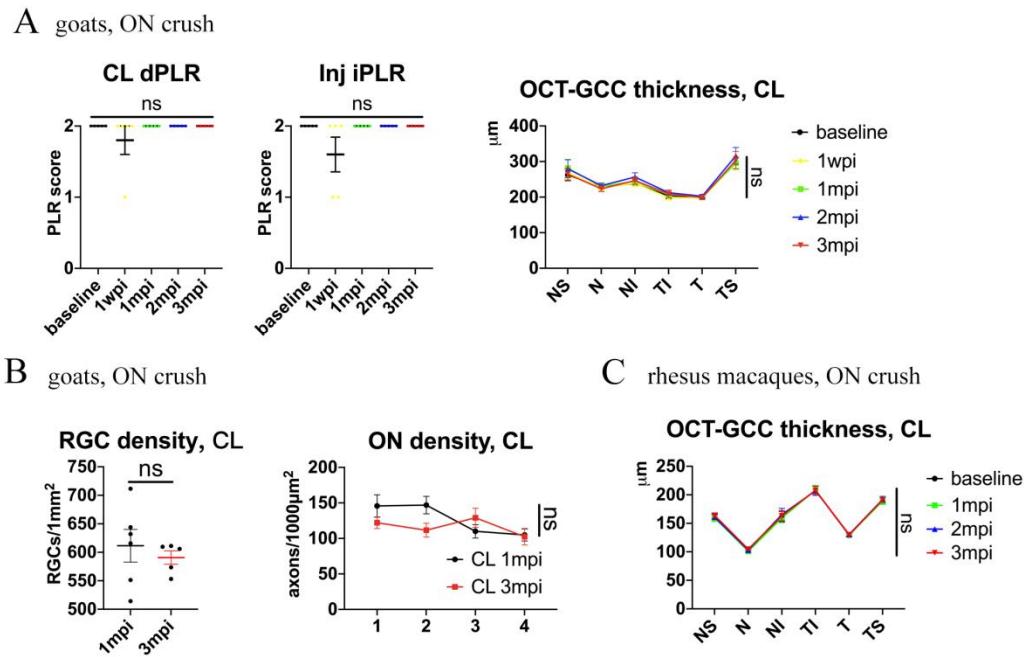

Supplementary Materials:

Figure S1. Endoscopic exposure of pre-chiasmatic ON is safe in goats.

(A) Quantification of GCC thickness of the contralateral eyes before and after pre-chiasmatic ON exposure in goats. Two-way ANOVA with Tukey's multiple comparison (compared with baseline). n=4. (B) Quantification of direct pupillary light response (dPLR) in the sham surgical eyes (left panel) and indirect PLR (iPLR) in the contralateral eyes (right panel) after pre-chiasmatic ON exposure. n=4. Friedman test with Dunn's multiple comparison (compared with baseline), p>0.9999. (C) Representative PERG waveforms of the sham surgery eye and the contralateral eye at spatial frequency of 0.1 cpd (left panel) and quantification of P1-N1 amplitude ratios of PERG in the sham surgical eyes to the contralateral eyes (right panel) before

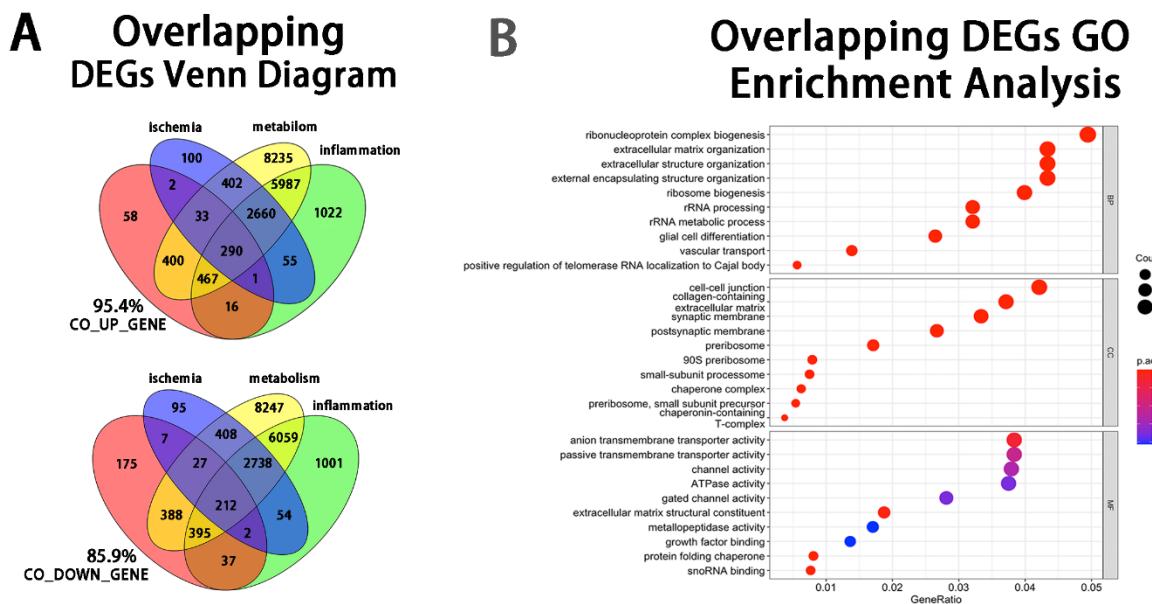

and after pre-chiasmatic ON exposure. n=4. Two-way ANOVA with Sidak's multiple comparison (compared with the baseline). (D) Representative FVEP waveforms of the sham surgical eyes and the contralateral eyes at light intensity of $0.025 \text{ cd}\cdot\text{s}/\text{m}^2$ (left panel) and quantification of P1-N1 and P2-N1 amplitudes ratios of FVEP in the sham surgical eyes to the contralateral eyes at light intensities of 0.025 and $0.25 \text{ cd}\cdot\text{s}/\text{m}^2$ (right panel) before and after pre-chiasmatic ON exposure. n=3-4. Two-way ANOVA with Sidak's multiple comparison (compared with the baseline). Data were presented as mean \pm s.e.m. ns: not significant, CL: contralateral, mps: month post-surgery (post sham surgery).

Figure S2. Contralateral eyes are functionally and structurally intact after ON crush

injury. (A) Left panel: Quantification of dPLR in the contralateral eyes and iPLR in the injured eyes after pre-chiasmatic ON crush in goats. Friedman test with Dunn's multiple comparison (compared with baseline). Right panel: quantification of GCC thickness of the contralateral eyes

after pre-chiasmatic ON crush in goats. Two-way ANOVA with Tukey's multiple comparison (compared with baseline). n=5. (B) Left panel: quantification of RGCs densities of the contralateral eyes at 1, 3 mpi after pre-chiasmatic ON crush in goats. Unpaired t-test. n=5-6. Right panel: quantification of axonal densities of the contralateral eyes at different ON segments at 1, 3 mpi after pre-chiasmatic ON crush in goats. Two-way ANOVA. n=3-6. (C) Quantification of GCC thickness of the contralateral eyes after pre-chiasmatic ON crush in rhesus macaques. Two-way ANOVA with Tukey's multiple comparison (compared with baseline). n=4. Data were presented as mean±s.e.m, ns: not significant, CL: contralateral, wpi: week post-injury, mpi: month post-injury.

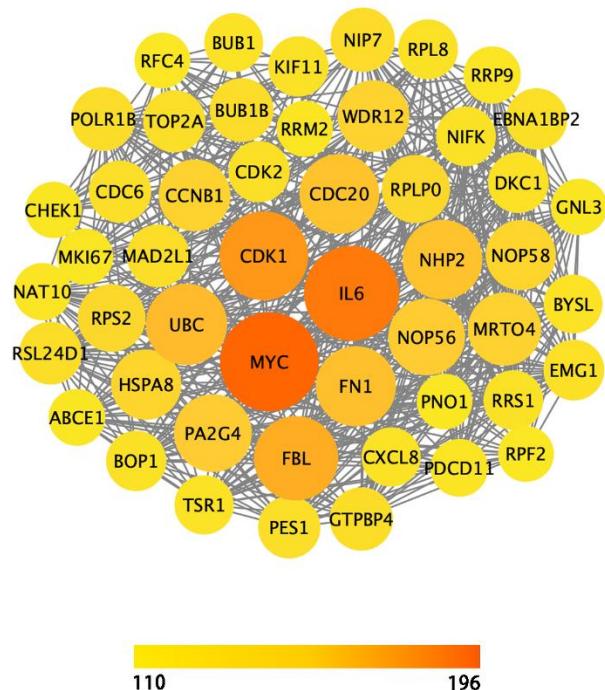
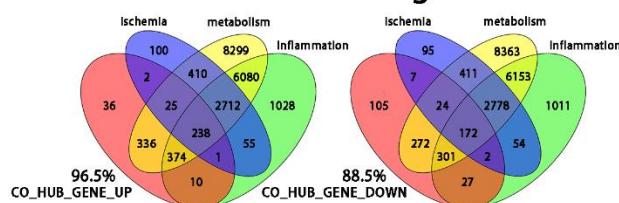
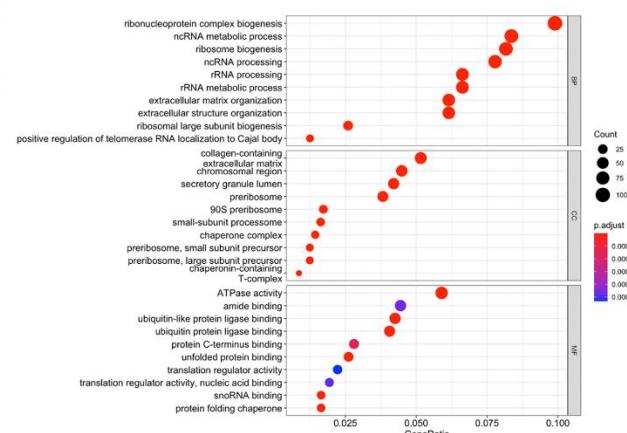
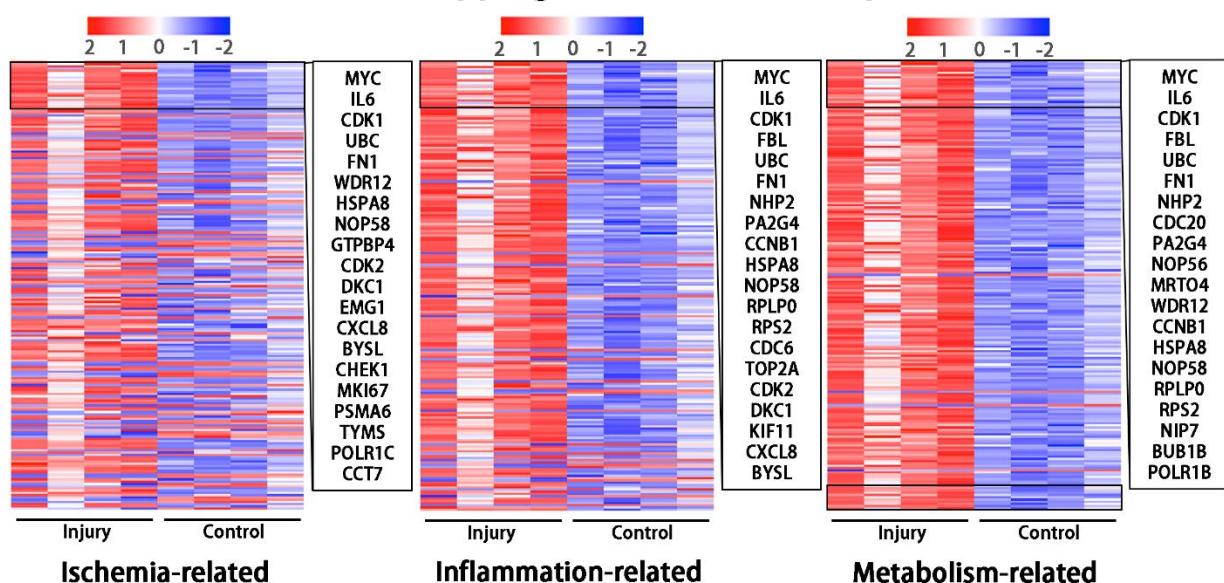


Figure S3. Bioinformatic analyses of the overlapping DEGs at the injury site

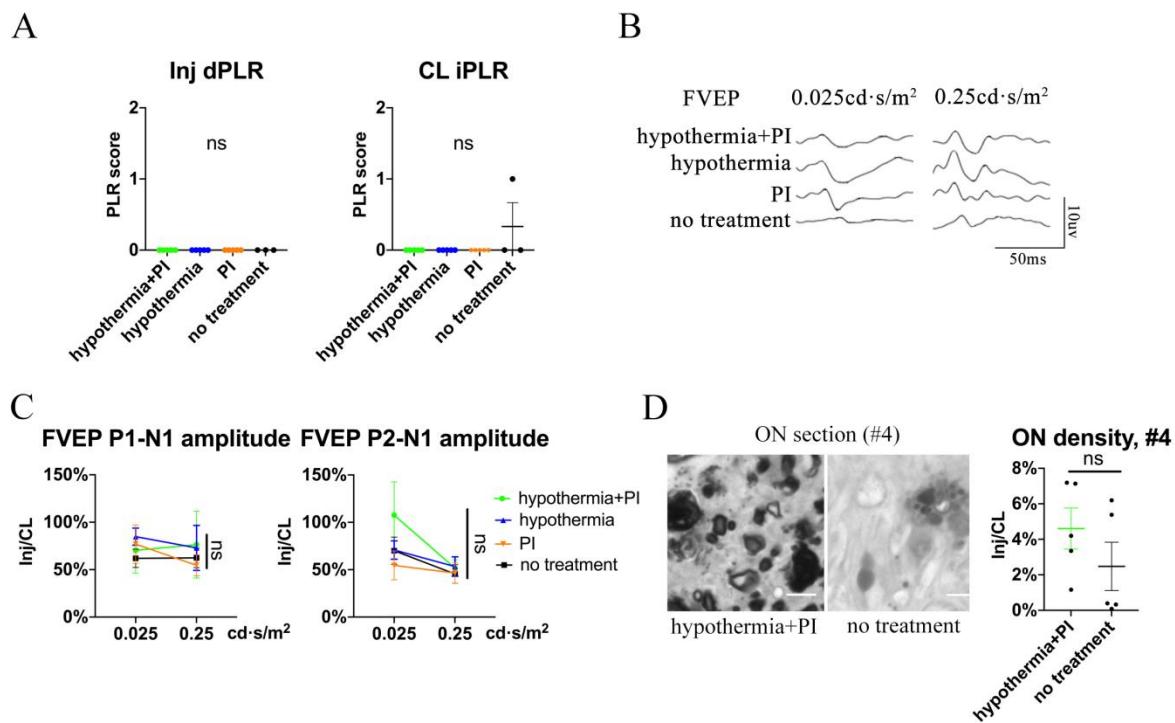

(A) Venn diagram showing that 95.4% of the up-regulated and 85.9% of the down-regulated overlapping DEGs at the injury sit were enriched in the pathways of ischemia, inflammation, metabolism.

(B) Enrichment analysis of overlapping DEGs using the Gene Ontology.

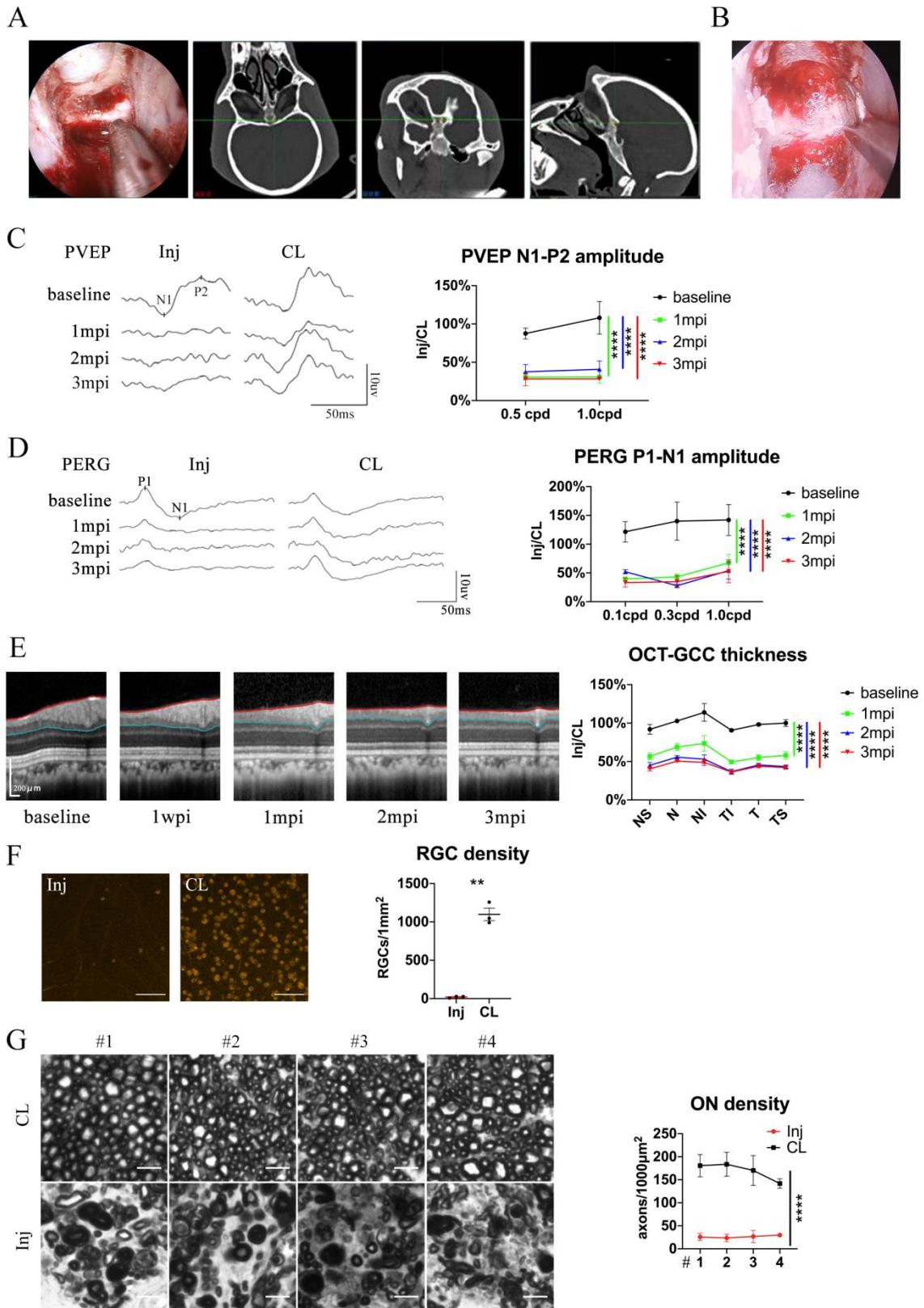

A TOP50 Overlapping Hub DEGs


B Overlapping Hub DEGs Venn Diagram

C Overlapping Hub DEGs GO Enrichment Analysis



D Overlapping Hub DEGs Heatmap


Figure S4. Bioinformatic analyses of the overlapping hub DEGs at the injury site

(A) Protein–protein interactions diagram of top 50 overlapping hub gene (DEGs with highest connectivity). (B) Venn diagram showing that 96.5% of the up-regulated and 88.5% of the down-regulated hub genes were enriched in the pathways of ischemia, inflammation, metabolism. (C) Enrichment analysis of hub genes using the Gene Ontology (GO). (D) Heatmap showing TOP overlapping hub genes enriched in the pathways of ischemia (left panel), inflammation (mid panel) and metabolism (right panel) based on the hub genes of Inj_#3 vs. Ctrl_#3 group. Ranking was determined by the magnitude of fold change.

Figure S5. Local hypothermia combined with PI does not show significant rescue of PLR, FVEP, and axonal density at distal ON segment (#4 region)

(A) Quantification of dPLR in the injured eyes (left panel) and iPLR in the contralateral eyes (right panel) in the groups of hypothermia combined with PI, hypothermia alone, PI alone and no treatment. n=5-6 in each group. (B, C) Representative FVEP waveform and quantification of the P1-N1 and P2-N1 amplitudes ratios of FVEP in the injured eyes to the contralateral eyes in each group at 1 mpi. n=5-6 in each group. Two-way ANOVA. (D) Representative images of ON semi-section (left panel) and comparison of axonal densities (right panel) in the groups of hypothermia combined with PI and no treatment at the #4 segment at 1 mpi. n = 5-6 for each group. Unpaired t-test. Data were presented as mean \pm s.e.m. ns: not significant. Inj: injured, CL: contralateral.

Figure S6. Pre-chiasmatic TON model in rhesus macaque

(A) Confirmation of the pre-chiasmatic ON in rhesus macaques (left panel) using the surgical navigation system on the horizontal, coronal and sagittal CT planes (right panel). (B) Endoscopic image of pre-chiasmatic ON crush. (C) Representative PVEP waveforms of the injured eye and the contralateral eye at spatial frequencies of 0.5 cpd (left panel) and quantification of the N1-P2 amplitude ratios of the injured eyes to the contralateral eyes at spatial frequencies of 0.5 and 1.0 cpd before and after crush (right panel). n=4. Two-way ANOVA with Tukey's multiple comparison (compared with the baseline). (D) Representative PERG waveforms of the injured eye and the contralateral eye at spatial frequency of 0.1 cpd (left panel) and quantification of P1-N1 amplitude ratios of the injured eyes to the contralateral eyes at spatial frequencies of 0.1, 0.3, 1.0 cpd (right panel) before and after crush. n=3-4. Two-way ANOVA with Tukey's multiple comparison (compared with the baseline). (E) Representative OCT images of the injured eye (left panel) and quantification of GCC thickness ratios of the injured eyes to the contralateral eyes at six regions around ON head before and after crush (right panel). n=4. Two-way ANOVA with Tukey's multiple comparison (compared with the baseline). (F) Representative immunostaining images of the RBMPS positive RGCs in the retinal flat-mounts (left panel) and quantification of RGCs densities of the injured eyes and the contralateral eyes at 3 mpi (right panel). n=3. Paired t-test. Scale bar=100 μ m. (G) Left panel: representative microscopic images of semi-thin cross sections of ON stained by PPD at different ON segments (#1, 2, 3, 4) of the injured eyes and its contralateral eyes at 3 mpi. Scale bar=5 μ m. Right panel: comparison of axonal densities at different ON sites between the injured eyes and the contralateral eyes at 3 mpi. n=3. Two-way ANOVA. Data were presented as mean \pm s.e.m. ns: not significant, *:p<0.05, **:p<0.01, ***:p<0.001, ****:p<0.0001. Inj: injured, CL: contralateral, mpi: month post-injury.

Movie S1. Surgical settings for trans-nasal endoscopic exposure of the pre-chiasmatic optic nerve in a goat.

Movie S2. Exposure of the pre-chiasmatic optic nerve via trans-nasal endoscopy in a goat.

Movie S3. Crush of the pre-chiasmatic optic nerve via trans-nasal endoscopy in a goat.

Movie S4. Trans-nasal local delivery of hypothermia and protease inhibitors to the injured pre-chiasmatic optic nerve in a goat.

Movie S5. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a goat.

Movie S6. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a beagle.

Movie S7. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a domestic pig.

Movie S8. Representative virtual surgical path to expose the pre-chiasmatic optic nerve in a rhesus macaque.

Movie S9. Exposure of the pre-chiasmatic optic nerve via trans-nasal endoscopy in a rhesus macaque.