

1 **Article**

2

3 **Ancient mitogenomes unravel massive genetic diversity loss**
4 **during near extinction of Alpine ibex**

5

6 Mathieu Robin^{1,3}, Giada Ferrari^{2,3}, Gülfirde Akgül³, Johanna von Seth^{4,5}, Verena J.
7 Schuenemann³, Love Dalén^{4,5} and Christine Grossen¹

8 ¹Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich,
9 Switzerland

10 ²Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom

11 ³Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland

12 ⁴Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm,
13 Sweden

14 ⁵Centre for Palaeogenetics, Stockholm, Sweden

15 Abstract

16 Population bottlenecks can have dramatic consequences for the health and long-term survival
17 of a species. A recent bottleneck event can also largely obscure our understanding of standing
18 variation prior to the contraction. Historic population sizes can be modeled based on extant
19 genomics, however uncertainty increases with the severity of the bottleneck. Integrating
20 ancient genomes provides a powerful complement to retrace the evolution of genetic diversity
21 through population fluctuations. Here, we recover 15 high-quality mitogenomes of the once
22 nearly extinct Alpine ibex spanning 8601 ± 33 BP to 1919 CE and combine these with 60
23 published modern genomes. Coalescent demography simulations based on modern genomes
24 indicate population fluctuations matching major climatic change over the past millennia. Using
25 ancient genomes, we show that mitochondrial haplotype diversity has been reduced to a fifth
26 of the pre-bottleneck diversity with several highly differentiated mitochondrial lineages having
27 co-existed historically. The main collapse of mitochondrial diversity coincided with human
28 settlement expansions in the Middle Ages. The near extinction severely reduced the
29 mitochondrial diversity. After recovery, one lineage was spread and nearly fixed across the
30 Alps due to recolonization efforts. Contrary to expectations, we show that a second ancestral
31 mitochondrial lineage has survived in an isolated population further south. Our study highlights
32 that a combined approach integrating genomic data of ancient, historic and extant populations
33 unravels major long-term population fluctuations.

34

35

36 **Keywords:** aDNA, Near extinction, Bottleneck, Demographic history, Alpine ibex,
37 Conservation

38

39 Introduction

40 The ongoing crisis of biodiversity loss is often referred to as the human-caused 6th mass
41 extinction (Ceballos et al. 2015; Ceballos et al. 2020). But not only are species disappearing
42 at an increasingly fast rate, anthropogenic pressures on population size and connectivity affect
43 many more species, which are currently still at fairly good numbers. Hence, it becomes crucial
44 to understand the scale and the genetic consequences of small population size and population
45 fragmentation in the wild. Theory predicts progressive loss of genetic diversity, increased
46 inbreeding and accumulation of deleterious mutations in small and isolated populations
47 (Frankham et al. 2002; Hedrick and Garcia-Dorado 2016). Long standing theoretical and
48 empirical work indicate the risk for reduced long-term survival and adaptive evolvability caused
49 by low genetic diversity (Wright 1921; Keller and Waller 2002; Frankham 2010; Hedrick and
50 Garcia-Dorado 2016; Hasselgren and Norén 2019). In this context, it is interesting that
51 currently the protection status of a species seems to only poorly predict its level of genetic
52 diversity (Díez-Del-Molino et al. 2018; Grossen et al. 2020). Furthermore, current genetic
53 patterns may have different explanations. Low genetic diversity is usually explained by human
54 induced population fragmentation and a sudden strong bottleneck, but also a long history of
55 small population size and restricted gene flow may be its cause. Disentangling these two
56 scenarios is important for proper species conservation measurements. Hence, this underlines
57 the importance of taking into account the past demographic history of a species to predict its
58 long-term viability. However, past bottlenecks (times of small population size) are not trivial to
59 estimate. Recent methods based on coalescence theory such as PSMC (Pairwise
60 Sequentially Markovian Coalescent, Li and Durbin 2011) and more recently MSMC (Multiple
61 Sequentially Markovian Coalescent, Schiffels and Wang 2020) have been widely used to
62 estimate the demographic history of species using contemporary DNA and investigate the
63 impact of environmental changes on trajectories of past population size (Palkopoulou et al.
64 2015; Kozma et al. 2016; Kozma et al. 2018; Pečnerová et al. 2021). However, the study of
65 recent DNA is expected to be limited in power due to uncertainty of past diversity, most of all
66 after strong bottlenecks leading to significant loss of signal. Furthermore, estimates for the
67 recent past, which was mostly affected by human presence on Earth, are not possible (Li and
68 Durbin 2011; Nadachowska-Brzyska et al. 2016).

69

70 Ancient genomics is a promising state of the art method to solve this issue (Díez-Del-Molino
71 et al. 2018). The study of ancient DNA (aDNA) allows quantifying population size over time
72 and retracing changes of diversity through near extinction events thereby shedding light on
73 the most important factors shaping current genetic diversity patterns. As expected, several
74 aDNA studies focusing on pre-bottlenecked diversity suggested a major role for human impact

75 on current patterns of genetic diversity (e.g. Casas-Marce et al. 2017). The Iberian lynx for
76 instance, displayed a clear reduction in population size due to overhunting and divergence
77 into two distinct subpopulations with drops to alarmingly low genetic diversity within a century
78 (Casas-Marce et al. 2017). However, humans may not always be to blame. Studies on Musk
79 ox and Kea interestingly identified environmental changes as the most important drivers of
80 diversity loss suggesting prolonged histories of small population size (Campos et al. 2010;
81 Dussex et al. 2015), while (Larsson et al. 2019) revealed a complex interplay of climatic and
82 anthropogenic factors in arctic fox. There is also contradicting evidence and hence an ongoing
83 debate on the role of humans in the Late Quaternary megafauna mass extinction (Koch and
84 Barnosky 2006; Campos et al. 2010; Sandom et al. 2014; Lord et al. 2020; Stewart et al.
85 2021). Due to their imminent exposure to changing glaciation levels, demographic histories of
86 species living in arctic or alpine habitats are expected to have been considerably affected by
87 past climatic changes (Sommer 2020). While recent aDNA studies have mainly shed light on
88 extinct arctic or alpine species (Palkopoulou et al. 2015; Gretzinger et al. 2019; Barlow et al.
89 2020; Lord et al. 2020; Ramos-Madrigal et al. 2021), less studies have investigated alpine
90 species which survived the megafauna extinction event of the Pleistocene-Holocene boundary
91 (e.g. Ureña et al. 2018).

92
93 An alpine species with currently low genetic diversity, high mutation load, high levels of
94 inbreeding and signs of inbreeding depression, is the Alpine ibex (*Capra ibex*, Biebach and
95 Keller 2009; Brambilla et al. 2018; Grossen et al. 2018; Bozzuto et al. 2019; Grossen et al.
96 2020). Historic records suggest that Alpine ibex were intensely hunted presumably since the
97 15th century and encountered their most severe bottleneck in the 19th century. The species
98 survived near extinction in a single small population in a region which is today known as the
99 Gran Paradiso National Park in Italy (Stüwe and Nievergelt 1991) before intense conservation
100 efforts led to a fast recovery of the species during the 20th century. As predicted by theory,
101 the severe bottleneck of close to 100 individuals left clear genetic footprints in contemporary
102 populations (Biebach and Keller 2009; Grossen et al. 2018). Yet, the eradication of the species
103 from almost its entire species range also eradicated signals of the past demography and it
104 remains currently unclear what level of diversity was present before the near extinction. Due
105 to the specific ecological needs of Alpine ibex (Grignolio et al. 2003; Grignolio et al. 2007),
106 past populations may also have been small and isolated. And, given its current distribution in
107 previously glacier-covered habitats, it is plausible that environmental changes in the late
108 Pleistocene and Holocene also played a substantial role in shaping genetic patterns
109 (Seersholm et al. 2020).

110

111 Here we combine diversity estimates covering the last eight millenia to get insight into the
112 demographic and genetic history of the nearly extinct Alpine ibex. Taking advantage of
113 published whole genome sequences, we quantify the effective population size of Alpine ibex
114 over time and compare our observations with related species. The analysis of ancient and
115 historic mitogenomes allows retracing changes of diversity and the demographic trajectory
116 through the species near extinction. We quantify the current haplotype diversity in the light of
117 past diversity and identify lost haplotypes and most affected gene regions. Finally, we
118 investigate to what degree modelling based on current genetic data can recapitulate our new
119 insights gained from pre-bottleneck sampling.

120

121 Results

122 Demographic history of Alpine ibex and related species

123 To explore past demographic fluctuations, we first took advantage of a published whole-
124 genome dataset (Figure 1A) including Alpine ibex (N=29), Iberian ibex (N=4), Bezoar (N=6),
125 Siberian ibex (N=2), Nubian ibex (N=2) and domestic goat (N=16) (Alberto et al. 2018,
126 Grossen et al. 2020). Average depth of coverage ranged from 6.9 X to 46 X (Table S1). Past
127 effective population size for each individual was estimated by applying the PSMC method (Li
128 and Durbin 2011). The PSMC infers historical recombination events within a diploid genome
129 and the time to the most recent common ancestor (TMRCA). The inferred population dynamics
130 suggested comparable trajectories for all species under study with two rises in Ne estimates
131 each followed by a Ne contraction (Figure 1B, Figure S1). The first contraction led to a local
132 Ne minimum between 100 and 250 kya for all species except for the Iberian ibex (at ~75 kya).
133 Ne estimates of Alpine and Iberian ibex followed a joint trajectory until approximately 200 kya
134 (Figure 1B). This is earlier than previously estimated split times based on mitochondrial
135 sequences (Acevedo and Cassinello 2009; 50 - 90 kya, Ureña et al. 2018). While the observed
136 trajectories were similar among its relatives, Alpine ibex stuck out with a nearly flat trajectory
137 of all individuals after the split from Iberian ibex, suggesting that their demographic history
138 considerably differed from the other species with relatively low Ne estimates (Figure 1B).
139 When compared to related wild species, mitochondrial nucleotide diversities suggested lower
140 diversity in Alpine ibex, also for ancient specimens (Figure 1C).

141

142 PSMC analyses allow exploring estimates for past effective population size using recent
143 genome-wide data (Li and Durbin 2011). However, changes of Ne estimates over time do not
144 necessarily reflect actual species estimates of Ne, but can be confounded by population

145 structure (overestimation of N_e) or restricted geographic distribution of direct ancestors
146 (observed decrease of N_e estimates in the recent past, Olivier Mazet et al. 2015; Chen et al.
147 2019). Furthermore, from recent data alone, it is difficult to estimate historic diversity, most of
148 all if a species went through a strong bottleneck and lost large parts of its past diversity and
149 hence signal (O. Mazet et al. 2015). Therefore, to get a better understanding of the past
150 demography of Alpine ibex, we here sequenced and analyzed 15 ancient and historic
151 mitogenomes.

152 Retracing the mitogenome diversity through a near extinction

153 To approximate the ancient genetic diversity of the Alpine ibex, we identified and collected
154 samples which originated from up to several thousand years before and within the last strong
155 bottleneck during the 19th century (Figure 2A). In particular, using shotgun sequencing, we
156 analysed whole mitogenomes for seven ancient specimens (6601 \pm 33 BCE to 1302 \pm 26
157 BCE, six from caves, one from a glacier field) and eight historic specimens (1000 CE to 1919
158 CE) originating from museums and archeological excavations (Table S2, Figure 2A). Post-
159 mortem-damage patterns were as expected for the respective sample age (Figure S2). The
160 average endogenous DNA content was 62 % (ranging from 28.9 % to 92.6 %, Table S2). For
161 a complete view on past and present diversity, we complemented our dataset with 65
162 additional published mitogenomes representing recent populations of six *Capra* species and
163 domestic sheep (Figure 1A). The mean depth per individual ranged from 4.4 X to 2449 X for
164 the historic and ancient samples and from 91 X to 7093 X for the recent samples (Table S2).
165 Coverage along the mitogenome was >99.9 % in all samples and 2220 sites were found to be
166 biallelic. 45 segregating sites were found among all Alpine ibex (including ancient, historic and
167 recent specimens) after filtering for genotype quality and missingness.

168

169 We first investigated the phylogenetic relationship between recent, historic and ancient Alpine
170 ibex specimens and other *Capra* species by performing a maximum likelihood phylogenetic
171 analysis (Figure 1A). All Alpine ibex samples built a well-supported, monophyletic branch
172 (bootstrap of 98), which was clearly distinct from the sister species Iberian ibex and all other
173 *Capra* species in the tree (Figure 1A). The observed phylogenetic relationships among the
174 other species (for instance bezoar and domestic goat were more closely related to Alpine ibex
175 than Nubian ibex) confirmed previous findings based on mitochondrial DNA by Pidancier et
176 al. (2006), except for one of the two Siberian ibex clustering with Markhor (Figure 1A, Figure
177 S3). Assuming a constant substitution rate and a split time between Alpine and Iberian ibex of
178 57-92 kya, the most recent common ancestor of the sampled Alpine ibex was approximately
179 72 kya (Ureña et al. 2018). Among Alpine ibex, we found three distinct branches with moderate

180 to high bootstrap support (Figures 1A, S3 and 2B). A further split separating the recent (and
181 some of the historic) samples into two groups had only moderate support (bootstrap support
182 of 78, Figure 1A). All recent Alpine ibex samples formed a monophyletic branch (bootstrap of
183 94) together with the historic southern samples (Gran Paradiso samples). This was expected,
184 as all recent Alpine ibex populations derive from a single source population which survived
185 the strong bottleneck in the 19th century in the Gran Paradiso National Park (Stüwe and
186 Nievergelt 1991). The most basal branches of Alpine ibex were formed by ancient and historic
187 northern samples (Figures 1A and 2B). The two historic specimens sampled very close to the
188 main ridge of the Alps (Alpenhauptkamm, bicolour in Figure 2) either grouped with the northern
189 ancient or southern historic and recent samples (Figure 2B).

190

191 Next, for a more comprehensive description of the intra-species diversity in Alpine ibex and to
192 identify relationships in respect to their age and origin, we constructed a haplotype network of
193 all Alpine ibex mitogenomes (Figures 2C, S4, Table S2). Allowing for one mutational step, we
194 identified 14 distinct haplogroups with 21 haplotypes (Figure 2C). Most noticeable was the low
195 haplotype diversity among the recent Alpine ibex populations with only two haplogroups
196 (Figure 2C). The less frequent haplogroup was represented by six recent and two historic
197 Alpine ibex individuals. Only one of these recent individuals originated from the northern part
198 of the Alps, three from the southernmost population (Alpi Marittime) and two from the Gran
199 Paradiso National Park (Figure 2C). One historic sample was from south of the Alps, one from
200 the main ridge (bicolour, Figure 2C). The latter is assumed to be the last Swiss Alpine ibex
201 individual shot in 1846 (personal communication Urs Zimmermann, game-keeper). The
202 second major haplogroup was represented by a total of 26 individuals, both from south and
203 north of the Alps and including three historic samples, all from the southern part of the Alps
204 (Figure 2C). Within this haplogroup, 19 individuals were represented by a single haplotype
205 (Figure 2C). Also two historic individuals from the Gran Paradiso National Park, source of all
206 recent Alpine ibex populations, were assigned to the most abundant haplogroup. This may
207 suggest that this haplotype was already common in this region during the time of the near
208 extinction. All remaining historic and ancient specimens carried private haplotypes with up to
209 20 steps separating them from neighbouring haplotypes (Figure 2C), with no apparent
210 geographic grouping. For instance, the two most divergent haplogroups were represented by
211 ancient individuals found in close proximity (~20 km) and with similar time ranges (4423 ± 27
212 BP and 4530 ± 65 BP).

213

214 Compared to ancient and historic samples as well as all other *Capra* species, in recent Alpine
215 ibex we found the lowest number of segregating sites, the lowest haplotype diversity and the
216 lowest nucleotide diversity (all measured across the entire mitogenome, Table 1, Figure 1C).

217 Furthermore, recent Alpine ibex were monomorphic in 8 out of 13 mitogenomic coding regions,
218 which is in stark contrast to the ancient and historic specimens of the Alpine ibex and all other
219 *Capra* species showing a maximum of 3 monomorphic coding regions (Table 1). A peak of
220 diversity was found in the d-loop control region with the highest SNP density among the
221 ancient samples (Figure S5). The recent samples only showed 9 segregating sites, of which
222 5 within coding regions. When comparing ancient and historic with recent diversity, a clear
223 pattern of drift was observed, which led to the loss of most variants (Figure 3A). As expected
224 by theory, variants more frequent among historic samples were also more likely to still be
225 observed in recent samples. Variants observed at a frequency below 0.25 were generally lost
226 while all variants with a historic frequency above 0.25 were also observed in recent
227 populations (Figure 3B). Frequency among ancient samples did not necessarily predict
228 frequency among recent samples (Figures 3A and S6). This is not unexpected, because the
229 ancient samples were mostly sampled north of the Alps, while a large proportion of the historic
230 samples originate from the source of all recent Alpine ibex populations (Gran Paradiso
231 National Park).

232 We furthermore compared ancient, historic and recent Alpine ibex specimens by visualising
233 segregating sites along the mitogenome as a circos plot, further illustrating the low genetic
234 diversity among recent specimens (Figure S7).

235 Stable demography before collapse during the last millennium

236 Historic records of Alpine ibex suggest a strong species bottleneck approximately 200 years
237 ago. To determine the pre-bottlenecked demography of the species during the last interglacial
238 cycle, we used the whole mitogenome data of all Alpine ibex individuals (seven ancient, eight
239 historic and 29 recent mitogenomes) applying the Bayesian Skyline Plot approach (BSP)
240 implemented in BEAST2 (Bouckaert et al. 2014). The estimates of past effective population
241 size suggest nearly no fluctuations between 10 and 1 kya with an average N_e of approximately
242 4×10^3 between 12 kya and 1 kya. These results suggest that until about 1 kya, Alpine ibex
243 were at a relatively stable population size with no evidence for strong impacts from
244 environmental changes or increasing anthropogenic influences. Evidence of significantly
245 raising human activity along the European Alps can be found since 2.4 ky, intensifying during
246 the last 1000 years (Boxleitner et al. 2017). The large-scale disappearance of the species is
247 historically evident since the middle of the 16th century, which coincides with an elevated
248 human population growth (Ziegler 1963; Stüwe and Nievergelt 1991; Head-König 2011). The
249 estimated effective population size, inferred with the BSP, decreased nearly ten-fold to \sim
250 1.5×10^3 during the last few centuries. This suggests that the N_e was relatively stable until the
251 last millennium, when a rapid decrease in effective population size is evident.

253 Discussion

254 In the present study, we retraced patterns of genetic diversity through a near extinction and
255 compared our findings with current population samples. We analysed 44 high-quality
256 mitogenomes spanning 8600 years and the current species range to get insight into the
257 demographic and genetic history of Alpine ibex. We found a massive loss of haplotype
258 diversity when comparing recent with pre-bottlenecked populations and identified 13
259 previously unknown haplotypes. Although higher a few thousand years ago, estimates of
260 mitogenomic diversity of Alpine ibex were still lower than current estimates from related
261 species. The analysis of published whole genome sequences revealed low long-term
262 population size of Alpine ibex in comparison to related species. Hence, the genetic depletion
263 of Alpine ibex was likely caused both by long- (environmental) and short-term (human-
264 induced) factors. Our study shows how combining pre-bottlenecked with contemporary
265 sampling provides a more comprehensive understanding of current patterns of diversity.

266 Phylogenetic analysis confirms previously discovered cyto-nuclear discordance
267 Our phylogenetic analysis across species based on whole mitogenomes confirmed a cyto-
268 nuclear discordance previously discovered based on cytochrome b sequences (Pidancier et
269 al. 2006). Nuclear data places bezoar and domestic goat basal to Siberian and Nubian ibex
270 and the latter two species closer to the two sister species Iberian and Alpine ibex (Pidancier
271 et al. 2006; Grossen et al. 2020). However, our phylogeny based on mitogenomes placed
272 bezoar and domestic goats next to Alpine and Iberian ibex (Figure 1C, S2). Wild goat species
273 can interbreed and hence Pidancier et al. (2006) suggested mitochondrial introgression
274 among ancestral taxa to explain this cyto-nuclear discordance. Interestingly, our data set
275 includes a Siberian ibex, which, based on whole genome data, was clearly grouped with a
276 second Siberian ibex (Grossen et al. 2020), but we here found that its mitochondrial haplotype
277 clustered with the Markhor (Figure 1C). Hence, as a case example, it may have received
278 mtDNA through introgression from Markhor. Cyto-nuclear discordance has been reported from
279 a number of mammal species (Toews and Brelsford 2012).

280 Alpine ibex show unique signals of demographic history compared to related species
281 The analysis of the recent Alpine ibex specimens using the PSMC method suggests a unique
282 pattern of demographic history for Alpine ibex (Figures 1B, S1). The estimates of effective
283 population size of the related ibex species show a relatively steep increase before further
284 decrease during the last 100'000 to 200'000 years. However, estimates for Alpine ibex only
285 barely increased again after the drop of N_e around ~250'000 years ago. This approximately
286 coincides with a presumed, but strongly debated split time between the Alpine ibex and the

287 Iberian ibex (Acevedo and Cassinello 2009; Ureña et al. 2018). Changes of coalescent-based
288 Ne estimates over time can have different interpretations (Mather et al. 2020). An increase in Ne
289 estimates can for instance demonstrate increased population structure (Heller et al. 2013;
290 O. Mazet et al. 2015; Mather et al. 2020). A decrease in Ne estimates, as observed in most
291 species for the more recent past, is often simply the result of recent ancestors having lived in
292 closer and hence more closely related populations (Wakeley and Aliacar 2001). Hence, the
293 rather flat Ne trajectory of Alpine ibex over the last 200'000 years may be explained by long-
294 term local fidelity of the ancestor population. Alternatively, it could suggest relatively small
295 species Ne over a long timescale. Similar declines of Ne estimates right after a lineage split
296 were for instance found in Northern lions (de Manuel et al. 2020) and Amur leopards
297 (Pečnerová et al. 2021) and were suggested to be the result of founding bottlenecks. The Late
298 Pleistocene was determined by large ice shields covering large parts of Northern Europe and
299 also the Alps (Seguinot et al. 2018). 115 to 13.7 kya determines the last large glaciation period.
300 Considering the geographic distribution of Alpine ibex across the Alps (Figures 1A and 2A)
301 and their specific ecological needs (Grignolio et al. 2003; rocks and alpine meadows, Grignolio
302 et al. 2007), it's plausible that the species was more strongly affected by these recent climatic
303 changes than related ibex species. In accordance with prolonged times of relatively small
304 population size is the observation of relatively low genetic diversity in ancient Alpine ibex when
305 compared to the diversity found in related ibex species (Figure 1C). Past climatic changes
306 have been suggested as driving forces for population size decline in a number of species
307 including musk ox (Campos et al. 2010) and mammoths (Palkopoulou et al. 2015). And there
308 is an ongoing debate on the role of climatic changes in the Late Quaternary megafauna mass
309 extinction (Koch and Barnosky 2006; Sandom et al. 2014; Lord et al. 2020; Seersholm et al.
310 2020; Stewart et al. 2021).

311 Massive loss of mitochondrial diversity

312 The analysis of more recent population size estimates using the skyline approach indicates a
313 relatively stable effective population size until a drastic decline during the last few hundred
314 years (Figure 4). As violations of the scenario of a single, isolated and panmictic population in
315 coalescent-based demographic inferences can lead to spurious demographic signals, these
316 results have to be interpreted cautiously (Heller et al. 2013). However, our findings are in
317 accordance with historical records reporting a reduction of the Alpine ibex census size down
318 to about 100 individuals at the beginning of the 19th century (Grodinsky and Stüwe 1987;
319 Brambilla et al. 2020). The crash in population size coincides with known settlement
320 expansions in the European Alps (Ziegler 1963; Chirichella et al. 2014). The main cause for
321 the near extinction of Alpine ibex was most likely overhunting and increased competition with
322 domestic ungulates (Stüwe and Nievergelt 1991; Acevedo and Cassinello 2009) as has been

323 the case in a large number of species, in particular large mammals (Ripple et al. 2016). Similar
324 erosion of mitochondrial diversity when comparing contemporary to pre-bottlenecked diversity
325 was for instance found in the Iberian lynx (Casas-Marce et al. 2017).

326

327 The phylogenetic analysis revealed several divergent lineages among Alpine ibex. The deeper
328 splits were (in terms of depth) comparable to what we observed among Iberian ibex. However,
329 while no deeper splits were observed among recent Alpine ibex lineages, the Iberian ibex
330 lineages were discovered (and hence still are existing) in recent populations. This is not
331 surprising given the distinct demographic histories of the two species. Alpine ibex went through
332 a very severe bottleneck (approximately 100 individuals) and are assumed to only have
333 survived in one single population in Northern Italy (today the Gran Paradiso National Park,
334 Stüwe and Nievergelt 1991). The Iberian ibex went through a less severe bottleneck
335 (approximately 1000 individuals) and survived in several isolated populations. Although
336 controversial, some of these populations were even classified as distinct subspecies by IUCN
337 (Acevedo and Cassinello 2009; Groves and Grubb 2011: 224; Ureña et al. 2018; Sourp et al.
338 2020). As a consequence, the mitochondrial diversity remained larger in Iberian ibex than
339 Alpine ibex confirming previous results based on genome-wide diversity measures (Grossen
340 et al. 2018; Grossen et al. 2020).

341

342 Interestingly, some lineages with deeper splits were still represented by historic Alpine ibex
343 suggesting that some of the ancient diversity was still present very close to the near extinction.
344 This is also in accordance with nucleotide and haplotype diversity of historic samples being
345 intermediate between ancient and recent Alpine ibex (Figure 1C, Table 1). Such findings give
346 hope for other bottlenecked species with long generation times, because a prompt recovery
347 from a bottleneck may save considerable diversity. But while the recent samples shared
348 haplogroups with historic samples, none of the ancient haplogroups were observed among
349 the recent samples. Accordingly, historic allele frequencies were correlated with recent allele
350 frequencies, but ancient allele frequencies were only very marginally correlated with the recent
351 ones. This is likely explained both by space and time. First, it is not surprising that the recent
352 samples are genetically more similar to the historic samples just because there was less time
353 in between for the mitogenomes to evolve. Second, a large proportion of the historic samples
354 originates from the Gran Paradiso population, the source of all recent populations. More data
355 will be needed to investigate how strong past population structure was, if the Alps formed a
356 limit to gene flow and if Alpine ibex populations on both sides of the Alps were substantially
357 differentiated from each other.

358 All the mitogenomic diversity observed among the recent samples was represented by only
359 two haplogroups with nine mutational steps in between. Although 29 specimens is not a very

360 large sample size, the sampling was explicitly chosen to represent the current species diversity
361 (Biebach and Keller 2009; Grossen et al. 2018; Grossen et al. 2020; Kessler et al. 2020).
362 Hence, it is unlikely that several common recent haplogroups remain undetected. As expected
363 from the species history, individuals from Gran Paradiso (recent and historic) were found in
364 either haplogroup. All recent individuals sampled North of the Alps (except for one) belonged
365 to the most abundant haplogroup. The second haplogroup was represented by several recent
366 and historic individuals, in particular from the population Alpi Marittime in Italy, a reintroduced
367 Alpine ibex population occurring at the southern edge of the species distribution (Figures 1A
368 and 2A). This population was reintroduced in the early 20th century, based on only about six
369 founders. Accordingly, it shows high inbreeding and is highly divergent from all other existent
370 Alpine ibex populations (Grossen et al. 2020; Kessler et al. 2020).

371

372 The most striking loss of diversity was observed in the d-loop (Figure 2). The d-loop is the
373 regulatory region of the mitochondrial DNA and responsible for its replication and transcription
374 (Nicholls and Minczuk 2014). It contains two hypervariable regions (HV-I, HV-II), which in
375 humans have a 100 to 200 times higher mutation rate than the nucleus (Sharawat et al. 2010).
376 Due to its high substitution rate, the d-loop can help to resolve differences between closely
377 related individuals (Kundu and Ghosh 2015). The substantial differences in diversity in this
378 region also underlines the severity of the most recent bottleneck which erased much of the
379 rapidly evolving genetic diversity of the d-loop.

380

381 Conclusions

382 We show a massive loss of mitogenome diversity and identify overhunting during the last
383 centuries as the main cause of the low genetic diversity of contemporary Alpine ibex
384 populations. However, the comparison with related species and the demographic modeling
385 using whole genome data from recent populations suggests that Alpine ibex population size
386 was reduced over prolonged times. Hence, although to a lesser extent, Alpine ibex
387 demography was likely also affected by long term environmental processes such as glaciation.
388 Our study underlines the value of a combined approach of ancient and historic mitogenomes,
389 demographic modelling based on contemporary and related species data to understand past
390 population fluctuations and their consequences on contemporary patterns of genetic diversity.

391

392

393 Methods

394 PSMC

395 To reconstruct the demographic trajectories of the Alpine ibex during the late Pleistocene, we
396 incorporated a Pairwise Sequentially Markovian Coalescent (PSMC) approach (Li and Durbin
397 2011; Nadachowska-Brzyska et al. 2016). The PSMC infers historical recombination events
398 within a diploid genome and facilitates differences in heterozygosity within one individual. It
399 has improved statistical strength to infer deep-in-past events of coalescence by inferring the
400 most recent common ancestor (TMRCA) and thereby the ancestral effective population size,
401 depending on generation time, over the last 2×10^3 to 3×10^6 years (Li and Durbin 2011;
402 Nadachowska-Brzyska et al. 2016; Mather et al. 2020). We used whole genome data, which
403 has previously been published (Alberto et al. 2018, Grossen et al. 2020), representing
404 Domestic goats (*Capra hircus*, N=3), Bezoar (*Capra aegagrus*, N=2), Nubian ibex (*Capra*
405 *nubiana*, N=2), Sibiran ibex (*Capra sibirica*, N=2), Iberian ibex (*Capra pyrenaica*, N=2), and
406 six Alpine ibex from the source population in Gran Paradiso, Italy. The whole genomic data of
407 the domestic goat, Bezoar and domestic sheep are available through the NextSeq Consortium
408 (see also Alberto et al. 2018). The data of the ibex species were obtained by Grossen et al.
409 (2020). The reads were trimmed using Trimmomatic v.0.36 (Bolger et al. 2014) and
410 subsequently mapped with bwa-mem v0.7.17 (Li 2013) to the domestic goat reference
411 genome (ARS1, Bickhart et al. 2017). Duplicated reads were marked with MarkDuplicates
412 from Picard v1.1301. The mean genome wide coverage was > 99.38 % for all samples and
413 the average depth ranged from 6.9 X to 46 X (Table S1). To produce the input data set for the
414 PSMC analysis, we followed the general pipeline suggested in Palkopoulou (2015). In detail,
415 we used samtools mpileup (Li et al. 2009) in combination with the bcftools call command,
416 keeping reads with a minimum mapping quality (-q) and minimum base quality (-Q) of 30 to
417 produce an alignment. Next, we called consensus sequences using bcftools -c and performed
418 a final filtering step using 'vcf2fq' from vcftools.pl with options -d 5 and -D 34 (minimum and
419 maximum coverage) and -Q 30 (minimal mean squared mapping quality). This pipeline has
420 the advantage that the aligner does not assume Hardy-Weinberg equilibrium and does not
421 rely on population frequencies for variant calling (Nadachowska-Brzyska et al. 2016). We then
422 used fq2psmcfa to produce input data for psmc v. 0.6.5-r67, which was run with standard
423 parameters as suggested by Li (2016). Specifically, the limit of TMRCA and the maximum
424 number of iterations were left at the default values -t 15 and -N 25 respectively. Ne was inferred
425 across 64 free atomic time intervals using the -p option with -p "4+25*2+4+6" which set the
426 initial population-size parameter to four atomic time intervals followed by 25 parameters
427 spanning two intervals followed by two parameters spanning four and six intervals respectively

428 and allowed for 28 (1+25+1+1) free interval parameters. The psmcfa output was visualized in
429 R, using a modified version of the plotPsmc.r script supplied by (Liu and Hansen 2017) with
430 mutation rates of 2.23E-09 sites/year inferred for the siberian ibex (Chen et al. 2019). To
431 explore the parameter space, we visualized the results with half and double the mutation rate
432 (Figure S1A and S1C).

433 Sampling

434 To analyse the ancient genetic diversity of Alpine ibex, we identified and collected samples
435 which originated from before and during the last strong species bottleneck during the 19th
436 century. We obtained a total of 22 (sampled in 2017) and four (sampled in 2020) specimens
437 from Swiss museums, archeological institutions and cave excavations (Table S2). After
438 screening for endogenous DNA content, a total of 15 samples were chosen for subsequent
439 analysis. Samples originating from the last millenium are from now on referred to as historic
440 samples. Their age was inferred by consulting registry entries of the museums of origin (or by
441 C14-dating, Table S2) and ranged from 1000 CE (Common era) to 1919 CE. These specimens
442 originated from Italy, France and Switzerland. The cave samples were AMS-C14 dated
443 (between 8601 ± 33 BP and 3302 ± 26 BP) and are referred to as ancient samples. One
444 specimen (Sample ID: Gro1) was found in a glacier field in the Austrian Alps and was AMS-
445 C14 dated to 7212 ± 27 BP (Table S2).

446 To compare pre- and post-bottlenecked genetic diversity of the species, we included
447 previously published whole-genome sequencing data representing recent populations of
448 Alpine ibex (N=29), Iberian ibex (N=4), Nubian ibex (N=2), Markhor (N=1), Siberian ibex (N=2),
449 Bezoar (N=6) and Domestic goat (N=16) (Alberto et al. 2018; Grossen et al. 2020).
450 Additionally, previously published whole-genome sequencing data of five sheep individuals
451 representing four species (Ovis sp., Table S2, Alberto et al. 2018) was used as an outgroup
452 for the phylogenetic analysis.

453 We produced a detailed map displaying the origin of recent, historic and ancient Alpine ibex
454 specimens in Qgis v.3.0.2 (Figure 2A). For specimens where the exact location was not known
455 (most of the historic samples), assigned coordinates are based on the region of origin (Table
456 S2).

457 Sample collection and DNA extraction

458 To ensure the accuracy of the aDNA results, established quality standards were incorporated
459 (Rowe et al., 2011; 2005). To account for the usually minute quantity and degraded state of
460 DNA in ancient samples, special care in sample handling was taken. (1) DNA extraction and

461 library preparation were performed in a dedicated aDNA laboratory, (2) a one-way workflow
462 from pre-PCR to post-PCR laboratory was integrated, (3) blank controls were used, (4) and
463 used equipment was decontaminated with 7 % Sodium hypochlorite/NaClO and/or UV-
464 irradiation.

465

466 For all sampling runs, DNA was extracted in a specialised clean-lab at the University of Zurich.
467 In detail, we extracted DNA from teeth, skulls, long bones, petrous bones and horn material.
468 During the sampling in 2017, surface sterilization of the samples was performed by washing
469 the fragments in 1 % Sodium hypochlorite/NaClO for 1 min, followed by three washing steps
470 with ddH₂O. We extracted DNA from teeth, by detaching the cervix from the crown of the tooth
471 with a precision drill (Dremel® 8200) at a low rotation rate of ca. 7000 rpm (speed level 10).
472 To minimize friction, diamond cutting blades (Dremel® SC545) were used. Approx. 0.75 cm³
473 (horn) or 1 cm³ (bone or tooth material) were extracted with the Dremel. All 2017 samples
474 were then ground to bone powder with an analytical mill (IKA™ A11 basic) and stored in micro
475 test tubes at room temperature and under absence of light. For the 2020 sampling run, we
476 sterilized the bone and horn surface with UV for 30 min per side, cleaned the surface with 7%
477 Sodium hypochlorite/NaClO and removed the most outer part of the bone or horn with a dental
478 drill and tungsten steel drill bits (Alpine Orthodontics, H1-014-HP). After removing an initial
479 surface layer of bone, we extracted bone powder at low rotation rate.
480 To extract and purify mitochondrial and nuclear DNA from the bone and horn powder, we used
481 a QIAquick® PCR Purification Kit and applied an established protocol for DNA extraction as
482 described in (Dabney et al. 2013). The following modifications were made: we lysed 100 mg
483 bone powder by adding 50 µl Proteinase K, 800 units/ml (New England Biolabs Inc.) to 950 µl
484 EDTA and incubated at 37 °C overnight. The overnight digestion was centrifuged at 14 krpm
485 for 5 minutes in a tabletop centrifuge, mixed with 10 ml binding buffer (without tween) and
486 400ul 3M sodium acetate. We centrifuged the resulting suspension at 1500rpm for 15 minutes.
487 We stored the eluted samples at 4 °C.

488 Library preparation and sequencing

489 State of DNA preservation and endogenous DNA content were inferred based on an initial
490 screening run and subsequent shotgun sequencing on pools of double-indexed libraries.
491 Double-stranded DNA libraries were built for all samples under strict precautions to avoid
492 contamination. All pre-amplification steps for constructing the libraries were performed in a
493 dedicated aDNA clean laboratory and non-template controls were included. For the 2017
494 samples, initial libraries were constructed for screening purposes at the Institute of
495 Evolutionary Medicine at the University of Zürich following Kircher, Sawyer and Meyer (2012)
496 and sequenced on an Illumina HiSeq 2500 system (1 lane, 200 cycles, paired-end) at the

497 Functional Genomic Center Zürich (FGCZ). After screening, another set of libraries were built
498 as individually double-indexed libraries optimised for aDNA (Meyer and Kircher 2010; Kircher
499 et al. 2012), but here notably we corrected for post-mortem-damage by adding the uracil-
500 specific excision reagent (USER™, New England Biolabs Inc.) during the blunt end repair step
501 (for further detail see Supplementary Methods). The libraries were constructed in facilities of
502 the Swedish Museum of Natural History in Stockholm, Sweden and deep sequenced on an
503 Illumina HiSeq X system (one lane per individual, 300 cycles, paired-end) in a facility of the
504 National Genomics Infrastructure (NGI), Sweden. Double-stranded DNA libraries for the 2020
505 samples (N=4) were built in a specialised aDNA clean laboratory at the Institute for
506 Evolutionary Medicine, Zürich (Supplementary Methods) following the protocol described in
507 (Meyer and Kircher 2010; Kircher et al. 2012). The sequencing was performed on one run of
508 an Illumina NextSeq-500 in mid-output mode with 150 cycles (2*75+8+8) and sequenced at
509 the Functional Genomic Center Zürich (FGCZ).

510 Raw data analysis

511 Trimming of adapter sequences and read quality filtering was performed using Trimmomatic,
512 ver. 0.36 (Bolger et al. 2014) with the following settings: ILLUMINACLIP:2:30:10:1:TRUE,
513 LEADING:3, SLIDINGWINDOW:4:15, MINLEN:25. Trimmed reads were mapped using the
514 Burrows-Wheeler Aligner (Li and Durbin 2009) BWA-MEM, ver. 0.7.15-r1142 to the *Capra*
515 *ibex* mitochondrial reference genome NC_020623.1 (NCBI). Reads were sorted using
516 samtools ver. 1.10 (Li et al. 2009). Duplicates were identified using MarkDuplicates from
517 Picard (<http://broadinstitute.github.io/picard>, ver. 2.8.3). Summary statistics were produced
518 using samtools v. 1.10. Post-mortem-damage of the 2017 samples was already confirmed at
519 the screening step (Supplementary Figure S2) and the samples were USER-enzyme treated
520 for the deep sequencing. Hence, no further post-mortem assessment was carried out for these
521 libraries. Post-mortem-damage of the 2020 samples (Supplementary Figure S2) was
522 assessed with mapDamage, ver. 2.0 (Jónsson et al. 2013). Base quality scores were corrected
523 for post-mortem-damage by running mapDamage --rescale-only for the paired and unpaired
524 reads separately. The published data representing all recent samples was also quality trimmed
525 in Trimmomatic ver. 0.36 (Bolger et al., 2014) with settings ILLUMINACLIP:2:30:10
526 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:50 and bam files were generated
527 as described above.

528 We used HaplotypeCaller from GATK ver. 4.1.7 (Genome Analysis toolkit, Cooper and Poinar,
529 2000) to discover variant sites and produce g.vcf files for all recent, historic and ancient
530 samples, before combining them and perform joint genotyping using GenomicsDBimport and
531 GenotypeGVCFs. GATK VariantFiltration was used for hard filtering applying the following
532 criteria to retain a site: Quality by Depth (QD) > 2.0, Mapping Quality (MQ) > 20.0, Mapping

533 Quality Rank Sum (MQRankSum) >-3 or < 3., Fisher Strand (FS) < 40.0, Strands Odds Ratio
534 (SOR) < 5.0, ReadPosRankSum > -3.0 and < 3.0. We furthermore removed low quality
535 genotypes with a genotype quality (GQ) below 20 (vcftools, Danecek et al. 2011).

536

537 We produced two mitogenome datasets, which differed in the number of individuals/species
538 (Capra_all and Capra_ibex). For both datasets, we required a minimal genotyping rate per
539 site of 90% (vcftools, Danecek et al. 2011). Hence, also the number of sites included differed
540 between the two. The dataset Capra_all contained 80 individuals representing Alpine ibex
541 ($N=44$: 29 recent, 8 historic, 7 ancient), Iberian ibex ($N=4$), Bezoar ($N=6$), Siberian ibex ($N=2$),
542 Markhor (*C. falconeri*, $N=1$), Nubian ibex ($N=2$), domestic goat ($N=16$) and domestic sheep
543 (*Ovis* sp., $N=5$). This dataset contained a total of 15986 of a possible 16157 sites. We
544 furthermore produced a second dataset Capra_ibex, which only contained Alpine ibex
545 specimens ($N=44$: 29 recent, 8 historic, 7 ancient). It was composed of 16135 out of a total of
546 16157 sites.

547 Phylogeny

548 To explore the phylogenetic relationship among pre- and post-bottlenecked Alpine ibex and
549 related species, we built two maximum likelihood trees. The trees were also used to confirm
550 the species of our specimens, because the unambiguous morphological identification of small
551 remains of Alpine ibex in relation to other *Capra* species can be challenging. Both trees were
552 built using the dataset Capra_all, except that for the second tree, only Alpine ibex and Iberian
553 ibex were included in order to allow a more detailed analysis of the diversity found among
554 Alpine ibex. We used vcf2phylip to convert VCF to PHYLIP and defined all sheep (tree 1) or
555 individual py.M518_sn (tree 2) as outgroup. We used the program RAxML, ver. 8.2.10 with
556 the -GTRGAMMA model, which is a GTR model of nucleotide substitution under the Γ -model
557 of rate heterogeneity (Prost and Anderson 2011; Stamatakis 2014). We performed a rapid
558 bootstrap analysis with 100 repetitions and a search for the best-scoring Maximum Likelihood
559 tree. The results were visualized with FigTree, v1.4.3 (Rambaut 2012) and edited in Adobe
560 Indesign to improve readability.

561 Haplotype networks

562 To infer and visualise the haplotype diversity among recent and past Alpine ibex, we built a
563 haplotype network including all Alpine ibex specimens (ancient, historic and recent, dataset
564 Capra_ibex). The tool vcf-to-tab (Chen 2014) and the Perl script
565 vcf_tab_to_fasta_alignment.pl (Chen 2014) were used to convert the VCF format to FASTA.
566 The FASTA sequences were then aligned using clustal-omega v. 1.2.4 (Sievers et al. 2011)
567 which incorporates a clustalW algorithm. The resulting FASTA alignment was converted into

568 PHYLIP using the Perl script Fasta2Phylip.pl (Hughes 1.2007). The R package TempNet
569 (Prost and Anderson 2011) was then used to build the haplotype network using the
570 incorporated TCS algorithm. TCS calculates an absolute pairwise distance matrix of all
571 haplotypes and connects the haplotypes according to the parsimony criterion to minimize
572 mutation steps between haplotypes. The resulting haplotype network was edited for improved
573 readability in Adobe inDesign.

574 Description of Mitogenome

575 We calculated mitochondrial diversity statistics with the R-package PopGenome v 2.7.5
576 applied to dataset Capra_all (Pfeifer et al. 2014). In PopGenome, by default, only sites
577 genotyped in all individuals are retained. The gff3 file corresponding to the Alpine ibex
578 mitogenome sequence NC_020623.1 was adapted for compatibility with the package
579 {PopGenome} and was used with the command `set.synonym` to infer neutrality statistics.
580 Neutrality statistics such as Tajmias'D were calculated with `neutrality.stats`
581 (GENOME.class,detail=TRUE). We calculated the nucleotide diversity per each species (in
582 Alpine ibex per sample age group) with the function
583 `GENOME.class@Pi/GENOME.class@n.sites` and the haplotype diversity within each
584 population with `GENOME.class@hap.diversity.within`. Finally, we calculated nucleotide
585 diversity within coding regions with the `split_data_into_GFF_features` and command
586 `GENOME.class@nucleotide-diversity.within`. Using the dataset Capra_ibex, we furthermore
587 constructed circos plots for the historic, ancient and recent Alpine ibex specimens to visualise
588 the genetic variation along the mitogenome of the species with the R package `circlize` v.0.4.12
589 and a custom script programed in R, published in (Gu et al. 2014). SNP density among Alpine
590 ibex (dataset Capra_ibex) along the mitogenome was computed using the option --
591 `SNPdensity` in `vcftools` (window size of 500 bp) and visualized in R {ggplot2}.

592 Skyline plot

593 We inferred the demographic trajectories for the female Ne of Alpine ibex during the Holocene
594 with a Bayesian Skyline approach (Drummond et al. 2005). This method facilitates Markov
595 chain Monte Carlo (MCMC) sampling to infer a posterior distribution of effective population
596 size through time by sampling directly from gene sequences. We used the dataset
597 Capra_ibex, including all Alpine ibex samples. We performed the analysis with BEAST2 v2.5.2
598 (Bouckaert et al. 2014) and used model averaging by applying the BEAST Model Test as site
599 model (Bouckaert and Drummond 2017), enabled estimation of mutation rate under strict clock
600 assumption and ran a MCMC chain of 1.5×10^7 samples and a burn-in of 10%. Change in initial
601 mutation rates yielded similar results (not shown). Tracer v1.7.1 was used for visualization.

602 Acknowledgements

603 We would like to acknowledge the different institutions for granting us access to ancient and
604 historical Alpine ibex samples. The following institutions supplied samples for the aDNA
605 analysis: Archäologischer Dienst Graubünden, Naturhistorisches Museum Bern, Nationalpark
606 Hohe Tauern, Naturhistorisches Museum Winterthur, Natur-Museum Luzern, Stiftung
607 Naturerbe Karst und Höhlen, Naturhistorisches Museum Basel, Naturhistorisches Museum
608 Freiburg, Naturmuseum Olten and the Zoologisches Museum Zürich. Special thanks goes to
609 Martin Trüssel for his engagement in collecting and organizing the ancient samples. We also
610 thank Urlich Schneppat for valuable inputs and training regarding the petrous bone extraction.
611 We further thank Daniel Wegmann for insightful discussions regarding the analyses and
612 Daniel Croll for helpful comments on a previous version of this manuscript. We acknowledge
613 the Functional genomics center Zürich for sequencing and the National Genomics
614 Infrastructure in Stockholm funded by the Science for Life Laboratory, the Knut and Alice
615 Wallenberg Foundation and the Swedish Research Council, and SNIC/Uppsala
616 Multidisciplinary Center for Advanced Computational Science for assistance with massively
617 parallel sequencing and access to the UPPMAX computational infrastructure.

618 This work was supported by the University of Zürich through a University Research Priority
619 Program “Evolution in Action” pilot project grant, the Swiss National Science Foundation
620 (31003A_182343 to C.G.), the University of Zurich’s University Research Priority Program
621 “Evolution in Action: From Genomes to Ecosystems” (to V.J.S and G.F) and by FORMAS
622 (grant numbers 2018-01640 and 2015-676 to L.D. and J.v.S). This study makes use of data
623 generated by the NextGen Consortium (grant number 244356) of the European Union’s
624 Seventh Framework Program (FP7/2010-2014).

625 Data availability

626 Mitochondrial alignments produced for this project were deposited at the NCBI Short Read
627 Archive under the Accession nos. SAMN21895033-SAMN21895047 (BioProject
628 PRJNA767255).

629 Author contributions

630 G.F. and C.G. conceived the project. M.R. acquired all samples. M.R., G.F., J.v.S. and G.A.
631 carried out the sample and library preparation. L.D. and V.J.S. supported the project by
632 enabling access to laboratory, consumables and sequencing facilities and giving advice. C.G.

633 and M.R conducted all bioinformatic analysis and wrote the manuscript with input from all co-
634 authors.

635 Figure legends

636 Fig. 1 (A) *Capra* species distribution (except domestic goat) as stated by the IUCN and their
637 phylogenetic relationship (Maximum likelihood tree, RAxML) based on 80 whole
638 mitogenomes. Alpine ibex (*C. ibex*, N=44), Iberian ibex (*C. pyrenaica*, N=4), Bezoar (*C.*
639 *aegagrus*, N=6), Siberian ibex (*C. sibirica*, N=2), Markhor (*C. falconeri*, N=1), Nubian ibex (*C.*
640 *nubiana*, N=2) and the domestic goat (*C. hircus*, N=16) were included in the phylogeny. Sheep
641 (*Ovis* sp., N=5) were used as the outgroup. Nodes with Bootstrap support lower than 100 are
642 explicitly stated and branches with a bootstrap support lower than 78 were collapsed. N
643 indicates the number of mitogenomes used, dotted lines indicate a trans-species assignment.
644 (B) Pairwise sequentially Markovian coalescent approach (PSMC) analysis based on Alpine
645 ibex specimens from the Gran Paradiso National Park (N=6) and five related *Capra* species
646 (N=2 per each species). The PSCM was constructed over 29 autosomes, a generation time
647 of 8 years and a mutation rate of 3.568e-08 sites per generation was assumed. Marine oxygen
648 isotope stage MSI 2 and MSI 4 are depicted in blue. (C) Mitogenome nucleotide diversity π
649 per each *Capra* species with N>2 (Alpine ibex per sample age group) based on 15986 known
650 sites and shown as boxplots. Siberian ibex are not included due to a cyto-nuclear discordance
651 (see main text). The solid line indicates the median, the box spans from 25 % to 75 % of the
652 interquartile ranges and upper and lower whisker spanning 1.5 * interquartile range.

653

654 Fig 2. (A) Sample locations of ancient, historic and recent Alpine ibex specimens used for the
655 study. Specimens which originated from the northern side of the main Alpine divide are colored
656 in dark tones, whereas specimens originating from the southern part are colored in light tones.
657 Specimens sampled on the Alpine ridge are shown in both color tones. The diameter of
658 symbols indicates the sample size. Furthermore, triangles indicate ancient, diamond shapes
659 historic and circles recent Alpine ibex specimens. (B) Maximum likelihood tree performed with
660 a rapid bootstrap analysis and 100 repetitions for Alpine ibex and Iberian ibex. Major branches
661 with a bootstrap value >60 are indicated. Color coding as in a. 1 indicates one individual with
662 unknown origin. (C) Haplotype network including seven ancient, eight historic and 29 recent
663 Alpine ibex samples. Little dots indicate mutational steps, size of pie chart indicates number
664 of specimens representing the respective haplotype, color coding as described above (see
665 Figure S4 for further detail).

666

667 Fig. 3 (A) Allele frequency of polymorphic sites along the mitogenome in ancient, historic and
668 recent Alpine ibex. Coding regions are indicated in green. Vertical lines join the same site
669 among sample age groups. Colors indicate frequency differences compared to recent Alpine
670 ibex, with large differences indicated in red. Circle size represents absolute allele frequencies.
671 The D-loop is zoomed in for better readability (B) Comparison of allele frequencies between
672 recent and historic Alpine ibex. Circle size indicates the number of observations of a certain
673 frequency combination.

674

675 Fig. 4. Bayesian Skyline-plot based on seven ancient (6601 ± 33 BCE) and eight historic (1000
676 CE to 1919 CE) as well as 29 recent Alpine ibex mitogenomes with a total of 16135 input sites.
677 We used model averaging, incorporated a strict clock assumption, MCMC chain of 1.5×10^7
678 samples and used a burn-in of 10%. Sample ages are indicated by ibex silhouettes along the
679 time axis. Color tones indicate geographic origin (as in Figure 2).

680

681 Table 1: Summary statistics calculated based on 15986 mitochondrial sites per each *Capra*
682 species with $N > 2$ (Alpine ibex per sample age group). Siberian ibex are not included due to a
683 cyto-nuclear discordance (see main text). Age group specifies the age of the samples: ancient
684 (1302 ± 26 BCE to 6601 ± 33 BCE), historic (1000 CE to 1919 CE), and recent. Individuals [N]
685 = Number of individuals, Segregating Sites [N] = number of segregating sites in the
686 mitogenome, Segregating Sites CDS [N] = Number of segregating sites in coding regions,
687 Monomorphic CDS [N] = number of monomorphic coding regions. Haplotypes [N] = Number
688 of Haplotypes, Haplotype Diversity = Number of Haplotypes / Number of individuals,
689 Nucleotide Diversity = Nucleotide diversity across whole mitogenome, Nucleotide Diversity in
690 CDS = Nucleotide diversity in coding regions.

691

692 Bibliography

693 Acevedo P, Cassinello J. 2009. Biology, ecology and status of Iberian ibex, *Capra pyrenaica*:
694 a critical review and research prospectus. *Mamm. Rev.* 39:17–32.

695 Alberto FJ, Boyer F, Orozco-terWengel P, Streeter I, Servin B, de Villemereuil P, Benjelloun
696 B, Librado P, Biscarini F, Colli L, et al. 2018. Convergent genomic signatures of
697 domestication in sheep and goats. *Nature Communications* 9:813.

698 Barlow A, Pajjmans JLA, Alberti F, Gasparyan B, Bar-Oz G, Pinhasi R, Foronova I,
699 Puzachenko AY, Pacher M, Dalén L, et al. 2020. Middle Pleistocene Cave Bear
700 Genome Calibrates the Evolutionary History of Palaearctic Bears. *Current Biology*
701 31:1771–1779.e7

702 Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J, Lam ET, Liachko I,

703 Sullivan ST, et al. 2017. Single-molecule sequencing and chromatin conformation
704 capture enable de novo reference assembly of the domestic goat genome. *Nat. Genet.*
705 49:643–650.

706 Biebach I, Keller LF. 2009. A strong genetic footprint of the re-introduction history of Alpine
707 ibex (*Capra ibex ibex*). *Mol. Ecol.* 18:5046–5058.

708 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
709 data. *Bioinformatics* 30:2114–2120.

710 Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A,
711 Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis.
712 *PLoS Comput. Biol.* 10:e1003537.

713 Bouckaert RR, Drummond AJ. 2017. bModelTest: Bayesian phylogenetic site model
714 averaging and model comparison. *BMC Evol. Biol.* 17:42.

715 Boxleitner M, Musso A, Waroszewski J, Malkiewicz M, Maisch M, Dahms D, Brandová D,
716 Christl M, de Castro Portes R, Egli M. 2017. Late Pleistocene-Holocene surface
717 processes and landscape evolution in the central Swiss Alps. *Geomorphology* 295:306–
718 322.

719 Bozzuto C, Biebach I, Muff S, Ives AR, Keller LF. 2019. Inbreeding reduces long-term
720 growth of Alpine ibex populations. *Nat Ecol Evol* 3:1359–1364.

721 Brambilla A, Keller L, Bassano B, Grossen C. 2018. Heterozygosity-fitness correlation at the
722 major histocompatibility complex despite low variation in Alpine ibex (*Capra ibex*). *Evol.
723 Appl.* 11:631–644.

724 Brambilla A, Von Hardenberg A, Nelli L, Bassano B. 2020. Distribution, status, and recent
725 population dynamics of Alpine ibex (*Capra ibex*) in Europe. *Mamm. Rev.* 50:267–277.

726 Campos PF, Willerslev E, Sher A, Orlando L, Axelsson E, Tikhonov A, Aaris-Sørensen K,
727 Greenwood AD, Kahlke R-D, Kosintsev P, et al. 2010. Ancient DNA analyses exclude
728 humans as the driving force behind late Pleistocene musk ox (*Ovibos moschatus*)
729 population dynamics. *Proc. Natl. Acad. Sci. U. S. A.* 107:5675–5680.

730 Casas-Marce M, Marmesat E, Soriano L, Martínez-Cruz B, Lucena-Perez M, Nocete F,
731 Rodríguez-Hidalgo A, Canals A, Nadal J, Detry C, et al. 2017. Spatiotemporal Dynamics
732 of Genetic Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with
733 Ancient DNA. *Mol. Biol. Evol.* 34:2893–2907.

734 Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated
735 modern human-induced species losses: Entering the sixth mass extinction. *Science
736 Advances* 1:e1400253.

737 Ceballos G, Ehrlich PR, Raven PH. 2020. Vertebrates on the brink as indicators of biological
738 annihilation and the sixth mass extinction. *Proc. Natl. Acad. Sci. U. S. A.* 117:13596–
739 13602.

740 Chen J. 2014. vcf-tab-to-fasta. Available from: <https://github.com/JinfengChen/vcf-tab-to-fasta>

742 Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, Bibi F, Yang Y, Wang J, Nie W, et al. 2019.
743 Large-scale ruminant genome sequencing provides insights into their evolution and
744 distinct traits. *Science* 364:1130–1131.

745 Chirichella R, Apollonio M, Putman R. 2014. Competition between domestic and wild
746 Ungulates. In: Behaviour and Management of European Ungulates. Whittles Publishing.
747 p. 110–123.

748 Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera C, García
749 N, Pääbo S, Arsuaga J-L, et al. 2013. Complete mitochondrial genome sequence of a
750 Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. *Proc. Natl.*
751 *Acad. Sci. U. S. A.* 110:15758–15763.

752 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter
753 G, Marth GT, Sherry ST, et al. 2011. The variant call format and VCFtools.
754 *Bioinformatics* 27:2156–2158.

755 Díez-Del-Molino D, Sánchez-Barreiro F, Barnes I, Gilbert MTP, Dalén L. 2018. Quantifying
756 Temporal Genomic Erosion in Endangered Species. *Trends Ecol. Evol.* 33:176–185.

757 Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005. Bayesian coalescent inference of
758 past population dynamics from molecular sequences. *Mol. Biol. Evol.* 22:1185–1192.

759 Dussex N, Rawlence NJ, Robertson BC. 2015. Ancient and contemporary DNA reveal a pre-
760 human decline but no population bottleneck associated with recent human persecution
761 in the kea (*Nestor notabilis*). *PLoS One* 10:e0118522.

762 Frankham R. 2010. Inbreeding in the wild really does matter. *Heredity* 104:124.

763 Frankham R, Scientist Emeritus Jonathan, Briscoe DA, Ballou JD. 2002. Introduction to
764 Conservation Genetics. Cambridge University Press

765 Gretzinger J, Molak M, Reiter E, Pfrengle S, Urban C, Neukamm J, Blant M, Conard NJ,
766 Cupillard C, Dimitrijević V, et al. 2019. Large-scale mitogenomic analysis of the
767 phylogeography of the Late Pleistocene cave bear. *Sci. Rep.* 9:10700.

768 Grignolio S, Parrini F, Bassano B, Luccarini S, Apollonio M. 2003. Habitat selection in adult
769 males of Alpine ibex, *Capra ibex ibex*. *Folia Zoologica* 52:113–120.

770 Grignolio S, Rossi I, Bertolotto E, Bassano B, Apollonio M. 2007. Influence of the kid on
771 space use and habitat selection of female alpine ibex. *J. Wildl. Manage.* 71:713–719.

772 Grodinsky C, Stüwe M. 1987. With lots of help alpine ibex return to their mountains.
773 *Smithsonian* 18:68–77.

774 Grossen C, Biebach I, Angelone-Alasaad S, Keller LF, Croll D. 2018. Population genomics
775 analyses of European ibex species show lower diversity and higher inbreeding in
776 reintroduced populations. *Evol. Appl.* 11:123–139.

777 Grossen C, Guillaume F, Keller LF, Croll D. 2020. Purging of highly deleterious mutations
778 through severe bottlenecks in Alpine ibex. *Nat. Commun.* 11:1001.

779 Groves C, Grubb P. 2011. Ungulate Taxonomy. JHU Press

780 Gu Z, Gu L, Eils R, Schlesner M, Brors B. 2014. circlize Implements and enhances circular
781 visualization in R. *Bioinformatics* 30:2811–2812.

782 Hasselgren M, Norén K. 2019. Inbreeding in natural mammal populations: historical
783 perspectives and future challenges. *Mamm. Rev.* 49:369–383.

784 Head-König A-L. 2011. Migration in the Swiss Alps and Swiss Jura from the Middle Ages to

785 the mid-20th century: a brief review. *Rev. Geogr. Alp.*:99.

786 Hedrick PW, Garcia-Dorado A. 2016. Understanding Inbreeding Depression, Purgling, and
787 Genetic Rescue. *Trends Ecol. Evol.* 31:940–952.

788 Heller R, Chikhi L, Siegismund HR. 2013. The confounding effect of population structure on
789 Bayesian skyline plot inferences of demographic history. *PLoS One* 8:e62992.

790 Hughes J. 2007. Sequence-manipulation. Github Available from:
791 <https://github.com/josephhughes/Sequence-manipulation>

792 Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. 2013. mapDamage2.0: fast
793 approximate Bayesian estimates of ancient DNA damage parameters. *Bioinformatics*
794 29:1682–1684.

795 Keller LF, Waller DM. 2002. Inbreeding effects in wild populations. *Trends Ecol. Evol.*
796 17:230–241.

797 Kessler C, Brambilla A, Waldvogel D, Camenisch G, Biebach I, Leigh DM, Grossen C, Croll
798 D. 2020. A robust sequencing assay of a thousand amplicons for the high-throughput
799 population monitoring of Alpine ibex immunogenetics. *Molecular Ecology Resources*:1–
800 20.

801 Kircher M, Sawyer S, Meyer M. 2012. Double indexing overcomes inaccuracies in multiplex
802 sequencing on the Illumina platform. *Nucleic Acids Res.* 40:e3.

803 Koch PL, Barnosky AD. 2006. Late Quaternary Extinctions: State of the Debate. *Annu. Rev.*
804 *Ecol. Evol. Syst.* 37:215–250.

805 Kozma R, Lillie M, Benito BM, Svenning J-C, Höglund J. 2018. Past and potential future
806 population dynamics of three grouse species using ecological and whole genome
807 coalescent modeling. *Ecol. Evol.* 8:6671–6681.

808 Kozma R, Melsted P, Magnússon KP, Höglund J. 2016. Looking into the past - the reaction
809 of three grouse species to climate change over the last million years using whole
810 genome sequences. *Mol. Ecol.* 25:570–580.

811 Kundu S, Ghosh SK. 2015. Trend of different molecular markers in the last decades for
812 studying human migrations. *Gene* 556:81–90.

813 Larsson P, von Seth J, Hagen IJ, Götherström A, Androsov S, Germonpré M, Bergfeldt N,
814 Fedorov S, Eide NE, Sokolova N, et al. 2019. Consequences of past climate change
815 and recent human persecution on mitogenomic diversity in the arctic fox. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 374:20190212.

817 Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
818 MEM. *arXiv*. Available from: <http://arxiv.org/abs/1303.3997>

819 Li H. 2016. PSMC. Github Available from: <https://github.com/lh3/psmc>

820 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler
821 transform. *Bioinformatics* 25:1754–1760.

822 Li H, Durbin R. 2011. Inference of human population history from individual whole-genome
823 sequences. *Nature* 475:493–496.

824 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin

825 R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence
826 Alignment/Map format and SAMtools. *Bioinformatics* 25:2078–2079.

827 Liu S, Hansen MM. 2017. PSMC (pairwise sequentially Markovian coalescent) analysis of
828 RAD (restriction site associated DNA) sequencing data. *Mol. Ecol. Resour.* 17:631–641.

829 Lord E, Dussex N, Kierczak M, Díez-Del-Molino D, Ryder OA, Stanton DWG, Gilbert MTP,
830 Sánchez-Barreiro F, Zhang G, Sinding M-HS, et al. 2020. Pre-extinction Demographic
831 Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros. *Curr. Biol.*
832 30:3871–3879.e7.

833 de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F, Zepeda
834 Mendoza ML, Liu S, Martin MD, Sinding M-HS, Mak SST, et al. 2020. The evolutionary
835 history of extinct and living lions. *Proc. Natl. Acad. Sci. U. S. A.* 117:10927–10934.

836 Mather N, Traves SM, Ho SYW. 2020. A practical introduction to sequentially Markovian
837 coalescent methods for estimating demographic history from genomic data. *Ecol. Evol.*
838 10:579–589.

839 Mazet O, Rodríguez W, Chikhi L. 2015. Demographic inference using genetic data from a
840 single individual: Separating population size variation from population structure. *Theor.
841 Popul. Biol.* 104:46–58.

842 Mazet O, Rodríguez W, Grusea S, Boitard S, Chikhi L. 2015. On the importance of being
843 structured: instantaneous coalescence rates and human evolution-lessons for ancestral
844 population size inference? *Heredity* 116:362–371.

845 Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed
846 target capture and sequencing. *Cold Spring Harb. Protoc.* 2010

847 Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. 2016. PSMC analysis of effective
848 population sizes in molecular ecology and its application to black-and-white Ficedula
849 flycatchers. *Mol. Ecol.* 25:1058–1072.

850 Nicholls TJ, Minczuk M. 2014. In D-loop: 40 years of mitochondrial 7S DNA. *Exp. Gerontol.*
851 56:175–181.

852 Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N, Li H, Omrak A, Vartanyan S,
853 Poinar H, Götherström A, et al. 2015. Complete genomes reveal signatures of
854 demographic and genetic declines in the woolly mammoth. *Curr. Biol.* 25:1395–1400.

855 Pečnerová P, Garcia-Erill G, Liu X, Nursyifa C, Waples RK, Santander CG, Quinn L,
856 Frandsen P, Meisner J, Stæger FF, et al. 2021. High genetic diversity and low
857 differentiation reflect the ecological versatility of the African leopard. *Curr. Biol.* 31:1862–
858 1871.

859 Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ. 2014. PopGenome: an efficient
860 Swiss army knife for population genomic analyses in R. *Mol. Biol. Evol.* 31:1929–1936.

861 Pidancier N, Jordan S, Luikart G, Taberlet P. 2006. Evolutionary history of the genus *Capra*
862 (Mammalia, Artiodactyla): discordance between mitochondrial DNA and Y-chromosome
863 phylogenies. *Mol. Phylogenet. Evol.* 40:739–749.

864 Prost S, Anderson CNK. 2011. TempNet: a method to display statistical parsimony networks
865 for heterochronous DNA sequence data. *Methods in Ecology and Evolution* 2:663–667.

866 Rambaut A. 2012. FigTree v1. 4.

867 Ramos-Madrigal J, Sinding M-HS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA,
868 Fedorov S, Kandyba A, Germonpré M, Bocherens H, et al. 2021. Genomes of
869 Pleistocene Siberian Wolves Uncover Multiple Extinct Wolf Lineages. *Curr. Biol.*
870 31:198–206.e8.

871 Ripple WJ, Abernethy K, Betts MG, Chapron G, Dirzo R, Galetti M, Levi T, Lindsey PA,
872 Macdonald DW, Machovina B, et al. 2016. Bushmeat hunting and extinction risk to the
873 world's mammals. *R Soc Open Sci* 3:160498.

874 Sandom C, Faurby S, Sandel B, Svenning J-C. 2014. Global late Quaternary megafauna
875 extinctions linked to humans, not climate change. *Proc. Biol. Sci.* 281:1905–1934.

876 Schiffels S, Wang K. 2020. MSMC and MSMC2: The Multiple Sequentially Markovian
877 Coalescent. *Methods Mol. Biol.* 2090:147–166.

878 Seersholm FV, Werndly DJ, Grealy A, Johnson T, Keenan Early EM, Lundelius EL Jr,
879 Winsborough B, Farr GE, Toomey R, Hansen AJ, et al. 2020. Rapid range shifts and
880 megafaunal extinctions associated with late Pleistocene climate change. *Nat. Commun.*
881 11:2770.

882 Seguinot J, Ivy-Ochs S, Jouvet G, Huss M, Funk M, Preusser F. 2018. Modelling last glacial
883 cycle ice dynamics in the Alps. *The Cryosphere* 12:3265–3285.

884 Sharawat SK, Bakhshi R, Vishnubhatla S, Bakhshi S. 2010. Mitochondrial D-loop variations
885 in paediatric acute myeloid leukaemia: a potential prognostic marker. *Br. J. Haematol.*
886 149:391–398.

887 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert
888 M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple
889 sequence alignments using Clustal Omega. *Mol. Syst. Biol.* 7:539.

890 Sommer RS. 2020. Late Pleistocene and Holocene History of Mammals in Europe. In:
891 Hackländer K, Zachos FE, editors. *Mammals of Europe - Past, Present, and Future*.
892 Cham: Springer International Publishing. p. 83–98.

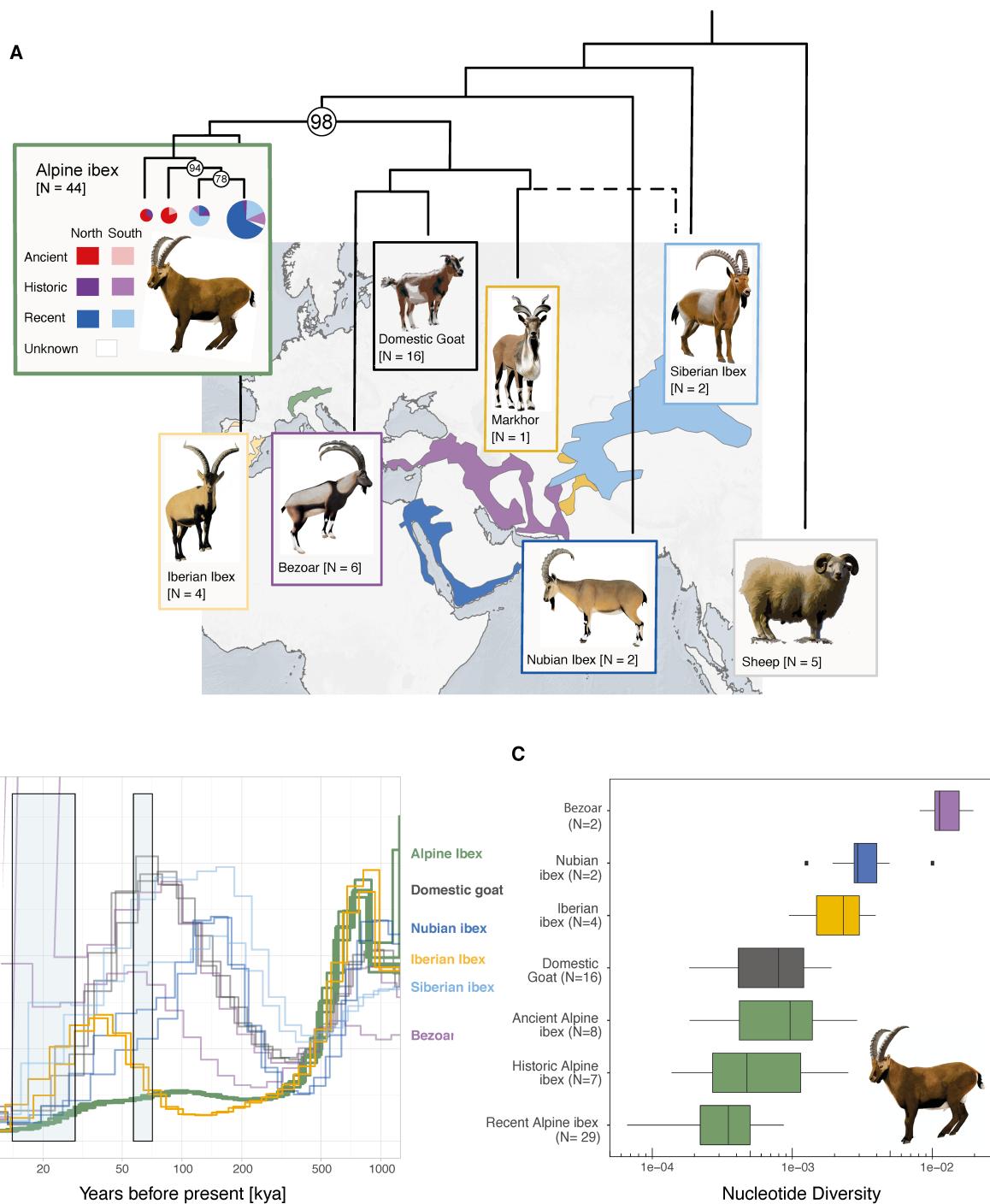
893 Sourp E, Pérez J, García-González R, Fonseca C, de Luco DF, Arnal M, Herrero J. 2020.
894 IUCN Red List of Threatened Species: *Capra pyrenaica*. *IUCN Red List of Threatened
895 Species*:1–5.

896 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
897 large phylogenies. *Bioinformatics* 30:1312–1313.

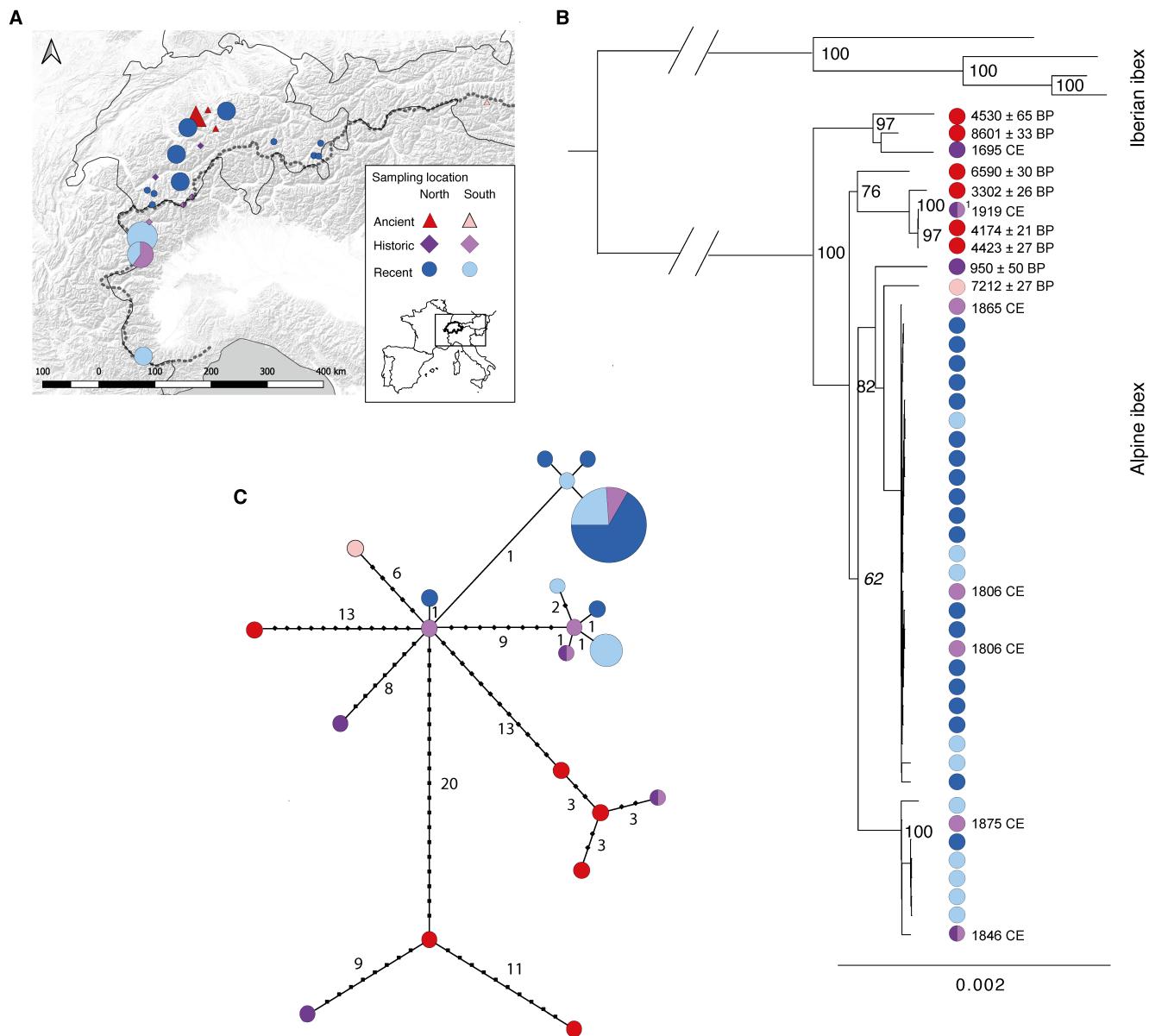
898 Stewart M, Carleton WC, Groucutt HS. 2021. Climate change, not human population growth,
899 correlates with Late Quaternary megafauna declines in North America. *Nat. Commun.*
900 12:965.

901 Stüwe M, Nievergelt B. 1991. Recovery of alpine ibex from near extinction: the result of
902 effective protection, captive breeding, and reintroductions. *Appl. Anim. Behav. Sci.*
903 29:379–387.

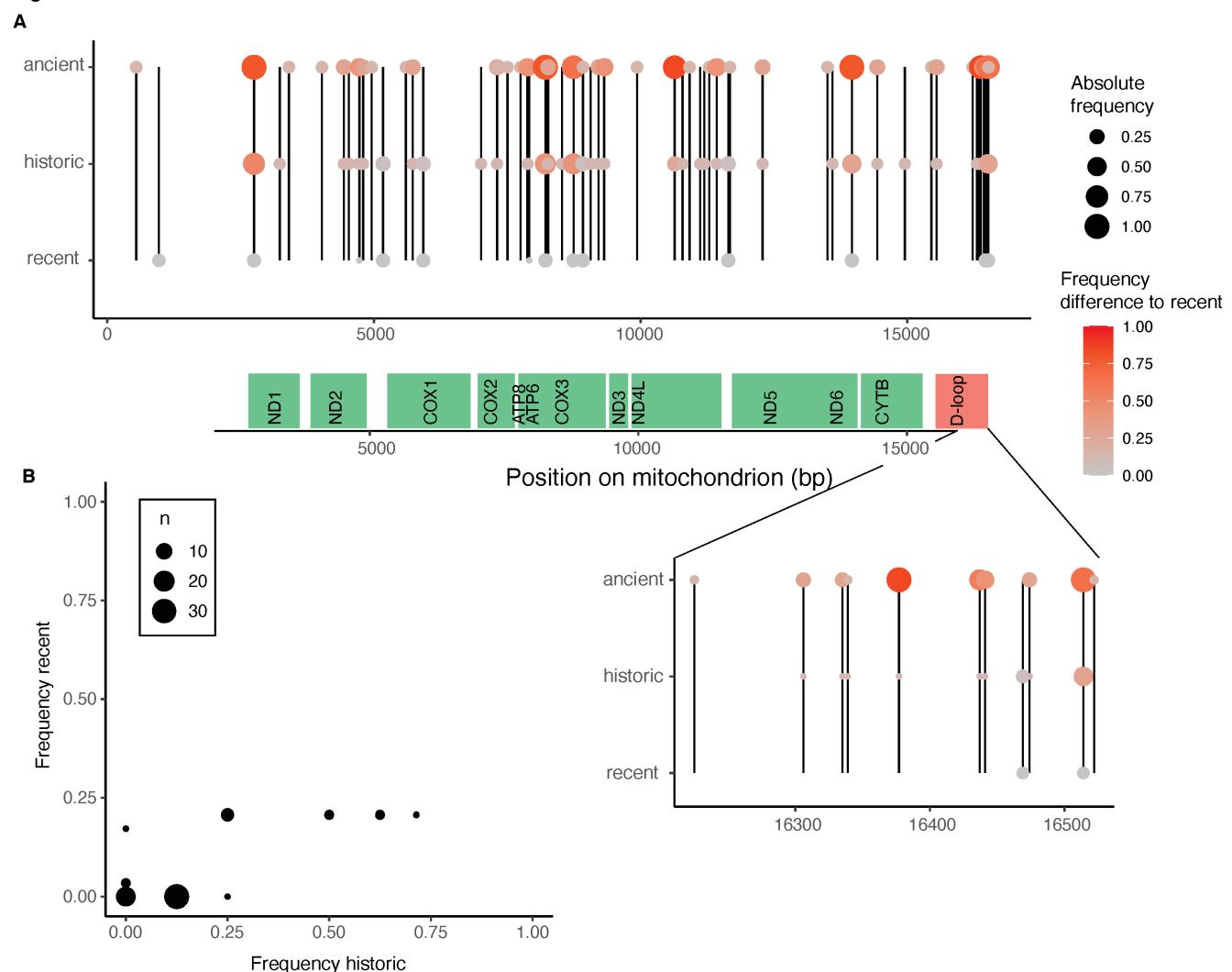
904 Toews DPL, Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance
905 in animals. *Mol. Ecol.* 21:3907–3930.


906 Ureña I, Ersmark E, Samaniego JA, Galindo-Pellicena MA, Crégut-Bonouire E, Bolívar H,
907 Gómez-Olivencia A, Ríos-Garaizar J, Garate D, Dalén L, et al. 2018. Unraveling the
908 genetic history of the European wild goats. *Quat. Sci. Rev.* 185:189–198.

909 Wakeley J, Aliacar N. 2001. Gene genealogies in a metapopulation. *Genetics* 159:893–905.


910 Wright S. 1921. The Effects of Inbreeding on the Genetic Composition of a Population.
911 *Genetics* 6:124–143.

912 Ziegler P. 1963. Die Verbreitung des Steinwils in der Schweiz in prähistorischer und
913 historischer Zeit.


Figure 1

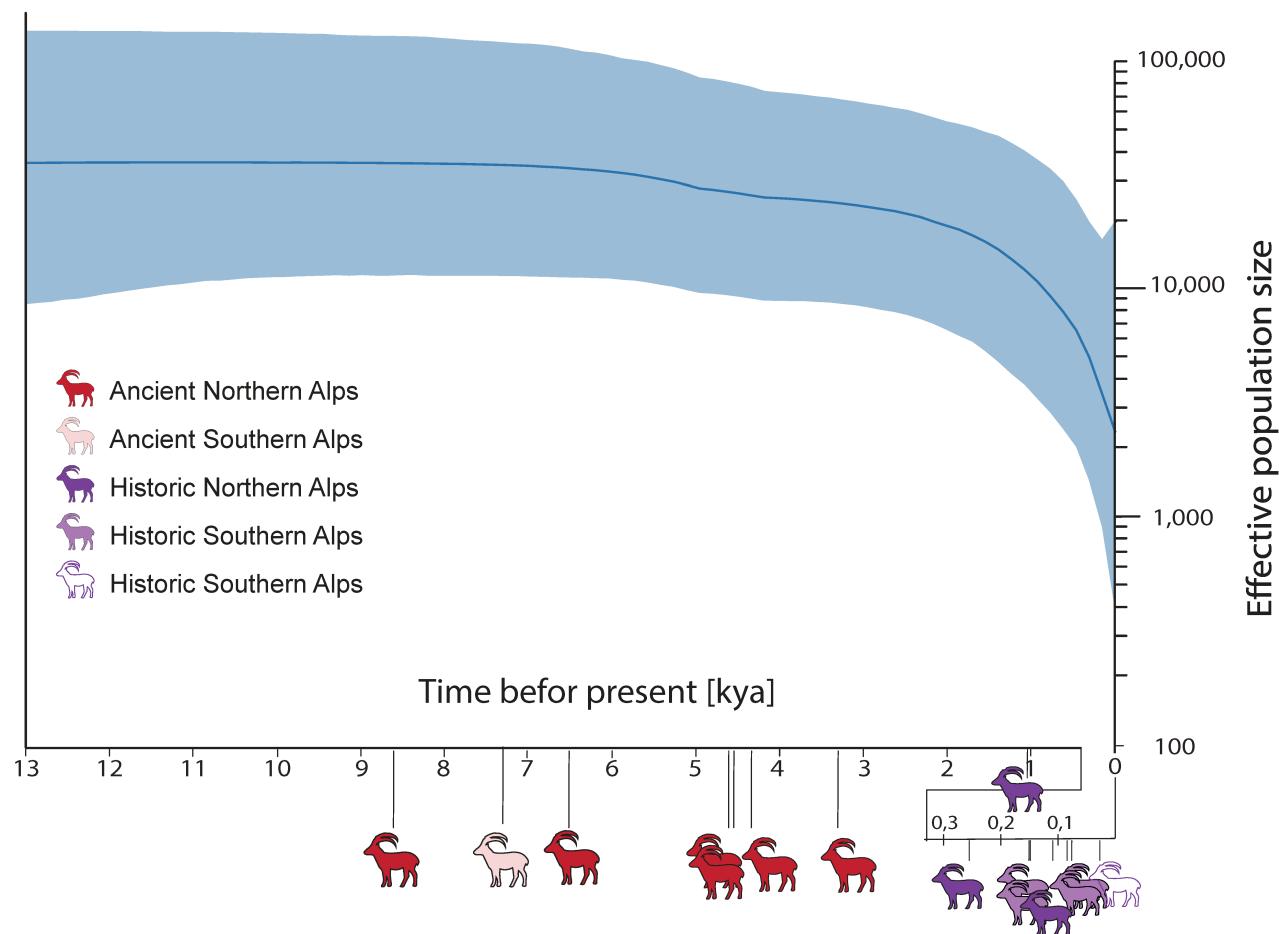

Figure 2

Figure 3

Figure 4

Age Group	Species	[N] Individuals	[N] Segregating Sites	[N] Segregating Sites in CDS	[N] Monomorphic CDS	[N] Haplotypes	Haplotype Diversity	Nucleotide Diversity	Nucleotide Diversity in CDS
ancient	Alpine ibex	7	34	22	2	6	0.86	8.09E-04	9.11E-04
historic	Alpine ibex	8	37	26	2	6	0.75	6.61E-04	7.23E-04
recent	Alpine ibex	29	10	6	8	5	0.17	1.71E-04	1.54E-04
recent	Domestic goat	16	91	70	0	16	1	7.78E-04	8.93E-04
recent	Iberian ibex	4	60	47	1	4	1	1.89E-03	2.13E-03
recent	Nubian ibex	2	49	36	2	2	1	2.97E-03	3.19E-03
recent	Bezoar	6	331	275	0	5	0.83	9.85E-03	1.27E-02
recent	Siberian ibex	2	624	518	0	2	1	3.79E-02	4.56E-02