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A connectivity signature for glioblastoma
Abstract

Tumor cell extensions called tumor microtubes (TMs) in glioma resemble neurites
during neurodevelopment and connect glioma cells to a network that has considerable
relevance for tumor progression and therapy resistance. The determination of
interconnectivity in individual tumors has been challenging and the impact of tumor cell
connectivity on patient survival remained unresolved so far. Here, a connectivity
signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary
glioblastoma (GB) cells was established and clinically validated. Thirty-four of 40
connectivity genes were related to neurogenesis, neural tube development or glioma
progression, including the TM-network-relevant GAP43 gene. Astrocytic-like and
mesenchymal-like GB cells had the highest connectivity signature scores in sScCRNA-
Seq data of patient-derived xenografts and patient samples. In 230 human GBs, high
connectivity correlated with the mesenchymal expression subtype, TP53 wildtype, and
with dismal patient survival. CHI3L1 was identified as a robust molecular marker of
connectivity. Thus, the connectivity signature allows novel insights into brain tumor

biology, provides a proof-of-principle that tumor cell connectivity is relevant for patients’

prognosis, and serves as a robust biomarker that can be used for future clinical trials.

Statement of significance

Integration of GB cells into functional networks drives tumor progression and
resistance. Here, we established and validated a novel connectivity gene expression
signature of single GB cells and whole tumors that can be easily applied to clinical and
preclinical samples. It is shown that connectivity is determining prognosis combining

molecular, functional and clinical insights into the disease.
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Introduction

Glioblastoma (GB) is the most common malignant primary brain tumor and patients
have a median survival of about 15-20 months even when treated with full standard
therapy (1). Resistance against new targeted approaches is pre-existing or acquired
early and regularly, with no targeted therapy today that had proven efficacy in
unselected studies (2). Tumor heterogeneity may play a major role in treatment
resistance, as a subset of tumor cells might not be treatment sensitive, causing
frequent and early relapses. Although not yet related to clinical resistance, different
tumor cell populations have been detected by single-cell RNA sequencing (scRNA-
Seq) techniques (3-5). Malignant cells in GB exist in at least four main cellular states
that recapitulate distinct brain cell types, are influenced by the tumor microenvironment,
and exhibit plasticity (5).

We have recently discovered that ultralong cellular protrusions named tumor
microtubes (TMs) connect about half of the tumor cells to a multicellular network in
patient samples of GB and preclinical models (6). Integration into these networks
promotes resistance against radiotherapy (6), chemotherapy and surgical lesions (7).
Until today, these TM networks have also been detected in incurable pediatric glioma
types (8). TM networks facilitate long range communication of glioma cells by
intercellular calcium waves, which is used for directed tumor self-repair, and a better
cellular homeostasis (9,10). TM networks receive synaptic neuronal input that activates
glioma network communication, further driving glioma invasion and proliferation (8,11).
Tumor network connectivity appeared however variable between individual tumors (6)
and the degree of connectivity relevant for the degree of resistance. Improved
molecular understanding of connectivity to unravel candidate structures for intervention
and the detection and quantification of the degree of connectivity in difficult to assess

patient samples would be necessary to develop and evaluate disconnecting therapies
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(10). Few molecular drivers for TMs and their networks have been identified so far
(6,12), and the relation to single cell heterogeneity in a tumor is unknown.

Here, we develop and validate a gene expression signature of tumor network
connectivity using a functional intravital dye transfer approach with subsequent bulk
RNA sequencing (RNA-Seq) and scRNA-Seq. Next to fundamental insights into the
molecular features of TM network connectivity, the resulting connectivity signature
score proved to be a straightforward, reliable, and prognostic biomarker for this central

cellular underpinning of glioma malignancy.

Results
Development of a connectivity signature for GB
We first aimed to explore the transcriptomic landscape of TM-connected GB cells.

Three patient derived glioblastoma cell lines (PDGCLs), “S24” , “T269” and
“P3XX” , were tagged by green fluorescent protein (GFP) and xenografted into

mouse brains (Figure 1A). All three PDGCLs were confirmed to form TMs and TM-
networks in the xenografted mouse models (Figure 1B), thus reflecting the TM
connectivity regularly seen in diffuse astrocytomas and GBs of patients (Figure 1C).
To label the TM-connected tumor cells, we utilized sulforhodamine (SR) 101 based
staining method (Figure 1A). SR101 is a red fluorescent dye that is transported via
cell-to-cell connections and has been shown to preferentially label highly connected
glioma cells after local (6) and systemic (11,12) application. After intravenous injection
of SR101, highly connected tumor cells showed higher SR101 staining intensity
compared to lowly connected tumor cells in these mouse models confirming the validity
of the SR101 model used (Figure 1D-E). Tumors were then harvested and subjected

to fluorescence-activated cell sorting (FACS). The FACS-sorted SR101M9" cells (highly
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connected tumor cells) and SR101'°" cells (lowly connected tumor cells) were
sequenced by RNA-Seq and scRNA-Seq (Figure 1A, Supplementary Table 1).

To identify differentially expressed genes (DEGs) between highly and lowly connected
tumor cells, multiple differential expression analyses (see Methods) were performed
in the scRNA-Seq dataset of PDGCL xenografted mouse models. We obtained 71
DEGs that conserved in at least two PDGCL xenografted mouse models (Figure 1F).
Among the 71 DEGs, 40 DEGs were found to be upregulated and 31 DEGs
downregulated in highly connected tumor cells. 34 of 40 (85%) upregulated DEGs were
previously described in the context of general cellular connectivity, but mainly not
known in GB, development of neuronal cells, or as characteristic markers of GB
progression (Supplementary Table 2). Of these, growth associated protein 43
(GAP43) has been characterized as a key player in TMs formation and TM-dependent
cell-to-cell connectivity in gliomas (6) and apolipoprotein E (APOE) has recently been
identified as a singular cluster marker for highly connected tumor cells (11).

For comparison to scRNA-Seq dataset, SR101"9" and SR101'°* tumor cells from two

PDGCLs ( “S24” and “T269” ) were subjected to RNA-Seq. 245 DEGs were

identified in RNA-Seq data (Figure 1G), of which, 13 DEGs were also identified in
scRNA-Seq analyses with a high fold change correlation (R = 0.89, p = 4.8x107,
Figure 1H).

Chitinase-3-like protein 1 (CHI3L 1) was among the overlapped genes that showed the
highest fold-change in both scRNA-Seq and RNA-Seq analyses (Figure 1H).
Remarkably, we have recently identified CHI3L1 as a key cerebrospinal fluid proteomic
biomarker in GB in an independent study (13) . The mRNA level and protein level of
CHI3L1 in GB were highly correlated (n = 93, R = 0.85, Supplementary Figure 1A).
Previous analyses found an association of CHI3L1 with the mesenchymal subtype in

GB (14). Treatment of PDGCLs with CHI3L1 recombinant protein increased cell-to-cell
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connectivity and addition of a monoclonal antibody against CHI3L1 decreased cell-to-
cell connectivity, arguing for a functional role of CHI3L1 in tumor cell connectivity
(Supplementary Figure 1B-C). Furthermore, CHI3L1 was described to be involved in
several cancer promoting mechanisms (15), therefore being one particularly interesting
marker of highly connected tumor cells.

To compare the scRNA-Seq derived 71 DEGs and the RNA-Seq derived 245 DEGs
on a gene set level, gene ontology (GO) enrichment analysis was performed.

“Negative regulation of neurogenesis” and “Negative regulation of nervous system
development” were part of the main enriched GO terms commonly in both gene sets

(Figure 11), which further supports the finding the TM-network formation follows
neurodevelopmental mechanisms. The GO semantic similarity between these two
gene sets were high (similarity = 0.814). In addition, we performed enrichment analysis
against all gene pre-ranked by folder changes between SR101"" and SR101'o%

samples, and found that “Neurogenesis” was significantly upregulated in SR101'°%

samples in both scRNA-Seq and RNA-Seq datasets (Supplementary Figure 2).

Furthermore, we calculated scores (see Methods) based on the average expression
levels of the RNA-Seq-derived or scRNA-Seg-derived gene set. The performances of
both scores were tested against the labels of the SR101 FACS sorting. The score
based on scRNA-Seg-derived gene set yielded incrementally higher accuracy
compared to score based on RNA-Seqg-derived gene set (0.83 vs. 0.79,
Supplementary Table 3). However, the overall concordances between both scores
tested on scRNA-Seq and RNA-Seq data were high (R = 0.87 and R = 0.84
respectively, Figure 1J-K). In addition, scores based on random generated gene sets
used as negative controls resulted in expected poor performance (average accuracy =

0.49). Therefore, we decided to use the scRNA-Seq derived gene set as a connectivity
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signature for further evaluation. Hereafter, the term “connectivity signature ” refers

to the gene set of 71 connectivity related DEGs derived from scRNA-Seq of PDGCL

xenografted mouse models, whereas the term “connectivity signature score ” refers

to a number calculated to describe the extent of connectivity based on the expression

levels of the 71 DEGs.
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Figure 1. Development of the connectivity signature. A, Experimental design of the
connectivity signature development. B, Representative two-photon microscopy images
of three xenografted PDGCLs used for scRNA-seq. Arrowhead showing TMs. Scale
bars, 20 um. C, Representative confocal microscopy image from a GB patient in three
dimensions. Arrowhead showing TMs. Scale bar, 20 ym. D, Representative two-
photon microscopy images of S24 xenografted PDGCL; Red, SR101; Green,
TurboGFP. Arrow mark showing highly connected cells and arrowhead showing lowly
connected cells. E, Box plot of normalized SR101 intensity in 287 highly connected
and 228 lowly connected cells from S24 xenografted PDGCL. P value was calculated
by Mann-Whitney U test. ****, p < 0.0001. F, Heat map showing average expression
levels of sScRNA-Seq-derived 71 connectivity genes in SR101"9" and SR101'°% tumor
cells from three xenografted PDGCLs. G, Heat map showing expression levels of RNA-
Seq-derived 245 connectivity genes in SR101M" and SR101'°% samples (n = 3) from
two xenografted PDGCLs. Expression levels were normalized and batch effect
removed. H, Scatter plot showing the log2 fold changes of SR101"9" and SR101'%
samples in sScCRNA-Seq and RNA-Seq datasets. 13 common connectivity genes were
plotted. I, Enrichment map showing 10 most enriched GO biological processes in
scRNA-Seq-derived gene set and/or RNA-Seqg-derived gene set. The Pie charts with
two colors indicating the consensus GOs between scRNA-Seq-derived and RNA-Seq-
derived gene sets. The size of pie chart showing the number of overlapped genes
between gene sets and GOs. J-K, Scatter plot showing connectivity signature scores
based on connectivity genes derived from scRNA-Seq and RNA-Seq datasets. J,
35,822 cells from three xenografted PDGCLs scRNA-seq dataset. K, 230 samples
from TCGA IDH wt GB RNA-Seq datasets. F-G, J-K, Values were scaled and centered

across samples/cells, and winsorized to -3 and 3. H, J-K, Pearson correlation test was
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used to calculate correlation coefficients and p values. PDGCL, patient derived

glioblastoma cell line.

Two distinct GB cell subpopulations are characterized by high connectivity
signature scores

In scRNA-Seq of three PDGCL xenografted mouse models, we obtained 35,822 tumor
cells with a median of 5,686 cells per sample and 2,086 genes per cell. We confirmed
higher connectivity signature scores in SR101M9" compared to SR101"°% tumor cells
(Figure 2A-B, Supplementary Figure 3A-C). The connectivity signature genes
GAP43, APOE, and CHI3L1 had higher expression in the highly connected group
(Figure 2C). Recent large single-cell studies have identified gene expression
signatures that allow to identify distinct glioma cell states: astrocytic-like (AC),
mesenchymal-like (MES), oligodendrocyte progenitor-like (OPC), and neuronal
progenitor-like (NPC) (5). We applied these signatures on the scRNA-Seq data of
PDGCL xenografted mouse models to associate connectivity signature scores with
certain cell states (Figure 2D). Highly connected SR101M" tumor cells were
predominantly assigned to the AC and MES cell states while lowly connected SR101'°%
tumor cells were mainly assigned to the NPC and OPC cell states (Figure 2D-E). The
connectivity signature scores were higher in AC and MES1 cell states compared to
NPC and OPC cell states (Figure 2F). An unexpectedly high degree of overlap was
found between the connectivity signature genes and cell-state-defining genes, in
particular in the AC and MES1 cell states (AC 10/40, 25%; MES1 7/51, 14%; MES2
2/51, 4%; NPC1 1/51, 2%, Figure 2G). Several cell-state-defining genes of AC and
MESH1 cell states (5) are tumor cell connectivity associated genes in GB, like connexin
43, also known as gap junction protein alpha 1 (GJA17, (6), tweety-homologue 1

(TTYH1, (16) and the correlative marker APOE (11). Of the 40 upregulated DEGs in

10
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highly connected tumor cells, a subset was primarily expressed in the AC or/and MES
cells, while the 31 downregulated DEGs were expressed in OPC or/and NPC cells
(Figure 2H). In summary, the SR101 methodology allowed us to not only provide a
broad map of the transcriptomic properties of highly connected versus lowly connected
GB cells, but also to link functional and molecular connectivity features to known

distinct tumor cell subpopulations in GB.
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Figure 2. Connectivity signature scores in scRNA-seq of PDGCL xenografted mouse

models. A, UMAPs of 35,822 cells in three xenografted PDGCLs scRNA-seq datasets.
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Left, colored by the derived PDGCL. Middle, colored by SR101-based sorting. Right,

colored by connectivity signature scores. B, Box plot of connectivity signature scores
in SR101Mdh and SR101'°¥ cells. Left, cells from all three PDGCLs. Right, separated in
each PDGCLs. P values were calculated by Mann-Whitney U test. ****, p < 0.0001.C,
Density plot of normalized expression levels of genes in SR101"9" and SR101'°% cells.
Upregulated common genes in scRNA-Seqg-derived and RNA-Seq-derived
connectivity genes (i.e., CHI3L1, HOPX, AGT, NMB, CLU, ID3) and the two
upregulated scRNA-Seqg-derived connectivity genes APOE and GAP43 are shown. D,
UMAP of cells in PDGCLs colored by cell states. E, Distribution of cell states in
SR101Mdh and SR101'% cells. F, Box plot of connectivity signature scores in each cell
state. P values in MES1 and MES2 were calculated by Mann-Whitney U test. G, Venn
diagram showing the number of overlap genes between 71 connectivity genes and
cell-state-defining genes. H, Dot plot of average expression levels of each connectivity
gene in each cell state. Dot size indicates the frequency of cells that express the
respective gene. Top, 40 upregulated connectivity genes in SR101"s" cells. Bottom,
31 downregulated connectivity genes in SR101"sh cells. A, B, F, Connectivity signature

scores were scaled and centered across cells, and winsorized to -3 and 3.

The connectivity signature score reflects true cell-to-cell connections in GB

To cross-validate that the connectivity signature score reflects actual morphological
and physiological tumor cell connectivity, we first assessed its performance in induced
connectivity of tumor cells experimentally in vitro. Four PDGCLs were subjected to

different culture conditions: in the “TM+” condition, the cells adhered to the bottom

of the flask and increasingly extended TMs, interconnecting single GB cells to tumor

cell networks, while in the “TM-" condition, the cells formed floating spheroids and

cells interconnections by TM were much less observed (Figure 3A-B).
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We then performed scRNA-Seq of tumor cells from four PDGCLs cultured under TM+
and TM- conditions and obtained 735 cells with a median of 90 cells per sample and
4,893 genes per cell (Supplementary Table 1). PDGCLs cultured under the two
conditions clustered separately from each other in a Uniform Manifold Approximation
and Projection (UMAP) analysis (Figure 3C), with a higher connectivity signature score
in TM+ cultured cells when compared to those cultured under TM- conditions (Figure
3D) confirming that experimental induction of TMs and their multicellular networks
accompanied with an increase in the connectivity signature score. Furthermore,
increased expression of three main markers of connectivity, GAP43, APOE and
CHI3L1 in TM+ cells was confirmed by qPCR (Supplementary Figure 4A).

Next, we aimed to validate the impact of the connectivity signature score in GB patient
tumor tissues. We used immunofluorescence staining of nestin to assess connectivity
in three patient tumor samples with high connectivity signature scores and three
samples with low connectivity signature scores (Figure 3E and Supplementary
Figure 4B). Samples with high connectivity signature scores showed increased length
of TM-like structures compared to those with low connectivity signature scores (Figure
3F), which is a good estimation for TM connectivity in thin paraffin sections (6).
Together, this data supports the validity of the connectivity gene expression signature,
both by in vitro assays and patient samples, confirming a meaningful interrelation of

cellular and connectivity signature score-determined molecular connectivity.
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Figure 3. Connectivity signature scores reflected the true cell-to-cell connections. A,

Representative confocal microscopy images from four PDGCLs. Top, cells cultured in

TM- condition. Scale bars, 500 um. Middle, zoom in from the top panel. Scale bars,

100 um. Arrows indicate TMs. Bottom, cells cultured in TM+ condition. Scale bars,

500 ym. B, Box plot of the sum of TM lengths (um) per live cell in 63 image crops of
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PDGCLs. Left, cells from all four PDGCLs. Right, separated in each PDGCL. C,

UMAPs of 735 cells of the four PDGCLs. Left, colored by the derived PDGCL. Middle,
colored by culturing conditions. Right, colored by connectivity signature scores. Scores
were scaled and centered across cells, and winsorized to -3 and 3. D, Box plot of
connectivity signature scores in cells. Left, cells from all four PDGCLs. Right, separated
in each PDGCL. E, Representative immunohistochemistry staining images of TMs in
six GB patients. Top, three patients with high connectivity signature scores (H1, H2
and H3). Bottom, three patients with low connectivity signature scores (L1, L2 and L3).
Scale bars, 20 ym. F, Box plot of 898 TM lengths (um) in patients. Left, TM lengths in
all patients. Right, median of TM lengths per image crop in each patient (n = 3). B, D,
F, P values in TM+ and TM- groups or high and low connectivity signature score groups
were calculated by Mann-Whitney U test. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,

p <0.0001.

Applying the connectivity signature to GB patient samples

To test the performance of the connectivity signature in patient GB cells, 21 GB tumor
samples were subjected to scRNA-Seq. All tumors were diagnosed as GB, isocitrate
dehydrogenase (IDH) wildtype (wt), world health organization (WHO) grade 4, and the
diagnoses were confirmed with methylation array analysis (Supplementary Table 4).
A median of 11,192 cells per sample and 995 genes per cell passed quality control
totaling in 213,444 single cells (Figure 4A, Supplementary Figure 5A,
Supplementary Table 4).

We classified malignant and non-malignant cells using previously defined marker
genes (5,17,18) and copy number variation (CNV) analysis (Figure 4A-C,
Supplementary Figure 5A-D). Within the malignant cells, the AC cells were

predominant in most tumors although a high degree of heterogeneity in the cell states
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was observed between the tumors (Figure 4D). The connectivity signature score was
also highly heterogeneous between tumors (Figure 4E), but consistently highestin AC
and MES1 tumor cells and lowest in OPC and NPC like cells, confirming the results
from the xenografted mouse models (Figure 4F-I).

Furthermore, the higher number of analyzed tumor cells allowed us to detect that AC
tumor cells, similarly to the MES tumor cells, display two subgroups with higher (named
AC1) and lower (named AC2) connectivity signature score (Figure 4J-K). The
frequency of AC1 tumor cells in patient samples, but not the frequency of AC2, highly
correlated with the median connectivity signature scores in each sample (Figure 4L).
We analyzed DEGs between AC1 and AC2 cells and found APOE and CHI3L1 to be
significantly upregulated in AC1. GO term enrichment analysis on DEGs identified

“synapse organization” as the GO term involving the largest number of DEGs

(Figure 4M). This is in line with the recent discovery that glutamatergic neuron-glioma
synapses do exist, mainly located on TMs, with the glioma cell as the principle
postsynaptic partner, and with neuronal synaptic input which is strongly associated
with glioma network activation (8,11).

Here, we could validate in human GB samples that in particular tumor cells from two
distinct subpopulations - AC1 and MES1 — are responsible for the establishment of

cell-to-cell connectivity.
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Figure 4. Connectivity signature scores in snRNA-Seq of patient samples. A, UMAP

of 213,444 single cells from 21 GB patient samples. Left, colored by samples. Right,
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colored by cell types. B, Heat map of average expression levels of top 50 markers per
cell type. Expression levels were scaled and centered across cell types, and winsorized
to -3 and 3. C, Frequency of malignant and non-malignant cell types in each sample.
D, Frequency of malignant cell states in each sample. E, Frequency of connectivity
signature score group in each sample. Connectivity signature scores were grouped by
four quartiles. F, Heat map showing connectivity signature scores and cell state
signature scores in patient malignant cells. Each column represents one cell. G,
UMAPs of patient malignant cells. Left, colored by cell states. Right, colored by
connectivity signature scores. H-J, Two-dimensional representation of patient
malignant cells according to cell state signature scores. H, colored by connectivity
signature scores. |, colored by cell states. J, represented only AC cells (zoomed in
from H). AC cells are separated by a line with slope 1 into AC1 and AC2 subtypes. K,
Box plot of connectivity signature scores in AC1 and AC2 subtypes. P values in two
groups were calculated by Mann-Whitney U test. ****, p < 0.0001. L, Scatter plot
showing frequency of AC subtypes (Left, AC1; Right, AC2) and the median connectivity
signature scores per patient sample. Dot indicates patient sample. 21 patient samples
were shown. Pearson correlation test was used to calculate correlation coefficients and
p values. M, The enriched GOs of 100 DEGs between AC1 and AC2 subtypes. Top 10
GOs were ordered by the number of genes overlapped between GO genes and DEGs.
F, G, H, J, K, Signature scores were scaled and centered across cells, and winsorized

to -3 and 3.

The connectivity signature gene CHI3L1 is a robust marker for connectivity
The analyses outlined previously suggested a role for CHI3L1 in our connectivity
signature. Therefore, we investigated the expression pattern of CHI3L1 more deeply.

CHI3L1 is a conserved marker for SR101high cells across all cell states. CHI3L1
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expression was highly correlated with connectivity signature scores in both The Cancer
Genome Atlas (TCGA, n = 230) and Chinese Glioma Genome Atlas (CGGA, n = 141)
IDH wt GB datasets (r=0.73, p <2.2*10-'6, Figure 5A), which is the highest correlation
of any single gene. Furthermore, higher CHI3L1 expression was associated with worse
overall survival in both patient datasets (Figure 5B-C). This effect was retained in a
multivariate analysis adjusting for ages and genders (Figure 5C). High CHI3L1
expression was found to be highly specific for GB compared to 30 other tumor types
and related normal tissues (Figure 5D). Consistently, in our scRNA-Seq data of patient
samples, CHI3L1 expression was high in the high connectivity AC1 and MES1 tumor
cell populations, but low in low connectivity tumor cell populations as well as non-
malignant astrocytes, oligodendrocytes, vascular and immune cells (Figure 5E). To
test whether CHI3L1 expressed areas are directly associated with cell-to-cell
connected areas, we used tumors with high connectivity signature scores and long
protrusions, and tumors with low connectivity signature scores and short protrusions.
In tumors with long protrusions and high connectivity signature scores, we measured
higher CHI3L1 protein levels assessed by immunohistochemistry for each sample
(Figure 5F-H). In particular, even in heterogenous tumors, the correlation of CHI3L1
staining intensity and TM length assessment was also valid within the matched crops
in adjacent sections (Supplementary Figures 6-7).

Together, this data suggests a functional role of CHI3L1 in tumor cell connectivity and
CHI3L1 RNA and protein expression as an alternative way to determine overall tumor
(cell) connectivity in GB if determination of the connectivity signature score by scRNA-

Seq or RNA-Seq analysis is not possible.
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Figure 5. CHI3L1 expression levels are correlated with connectivity. A, Scatter plot
showing correlation between CHI3L1 expression level (log2(FPKM+1)) and
connectivity signature scores in 230 TCGA IDH wt GB RNA-Seq samples (left panel)
and 141 CGGA IDH wt GB RNA-Seq samples (right panel). Connectivity signature
scores were scaled and centered across samples, and winsorized to -3 and 3. Pearson
correlation test was used to calculate correlation coefficients and p values. B, Kaplan-
Meier survival analysis (Left, TCGA; Right, CGGA) according to CHI3L1 expression

groups (grouping by the first quartile [Q1], the two middle quartiles [Q2-Q3], and the
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last quartile [Q4] of CHI3L1 expression levels). C, Cox proportional hazards regression
survival analysis in cohorts (Top, TCGA; Bottom, CGGA). Univariate analysis with
CHI3L1 expression levels and multivariate analysis with CHI3L1 expression levels
(log2[FPKM+1]) adjusted for ages and genders. Exponents of the coefficients (Exp.
coef.) with 95% confidence intervals (95% int.) indicated the hazard ratio of higher
CHI3L1 expression levels. D, Median CHI3L1 expression levels (TPM) in 31 tumor
types and related normal tissue retrieved from GEPIA. GB cohort is highlighted in red.
E, Box plot of CHI3L1 expression levels in malignant cell states and non-malignant cell
types from snRNA-Seq dataset of 21 GB patient samples. F-H, Immunohistochemistry
staining of CHI3L1 in three patients with high connectivity signature score (H1, H2 and
H3), and three patients with low connectivity signature score (L1, L2 and L3). F,
Representative images of CHI3L1 staining. G, Box plot of weighted histoscores of
CHI3L1 staining per sample. H, Frequency of CHI3L1 staining intensity of cells per

sample.

Higher connectivity is found in tumors of the mesenchymal expression
subtype and TP53 wt tumors

Next, the connectivity signature was applied to the 230 /DH wt GBs from the TCGA
RNA-Seq dataset. The goal of this analysis was to identify the associations between
the connecitivity signature scores, expression subtypes (19), and gene mutations. The
mesenchymal expression subtype was associated with the highest connectivity
signature score, while the lowest score was observed in the proneural subtype (Figure
6A). Mesenchymal subtype consisted mainly of MES1 and AC1 signatures, whereas
classical tumors were found to be purely AC and proneural tumors had high frequency
of OPC and NPC signatures (Figure 6B). In the classical and proneural tumors, we

found a higher fraction of the low connectivity AC2 signatures probably accounting for
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lower connectivity signature score (Figures 6B-C). The associations of the
connectivity signature score and expression subtypes were validated in the CGGA
cohort (n = 141, Supplementary Figure 8A-D).

Among the recurrent mutated genes in at least 5% GB patients (27 genes), two
mutated genes, neurofibromatosis type 1 (NF7) and tumor protein p53 (TP53), were
associated with connectivity signature scores (false discovery rate [FDR] < 0.25). NF1
mutations were present in 35/230 (15%) of GB patients in the TCGA cohort, which are
associated with the mesenchymal subtype (14), were correlated with higher
connectivity signature scores. Even when comparing tumors only of the mesenchymal
subtype, NF1 mutations were still associated with a higher connectivity signature score
(Supplementary figure 8E). TP53 mutations were present in 57/230 (25%) of the GB
patients in the TCGA cohort and were correlated with a lower connectivity signature
score (Figure 6D), which might be in line with the TP53 dependency of nanomembrane
tube formation in astrocytes (20). Moreover, expression of CHI3L1 was higher in TP53
wt tumor tissue samples than in samples with TP53 mutation (Supplementary Figure
8F). Despite the same trend, no significant difference was observed for GAP43 and
APOE (Supplementary Figure 8F). On a functional level overexpression of TP53 wt
in GB tumor cells had only a minor effect on CHI3L1 expression (Supplementary
Figure 8G). However, overexpression of the two different dominant mutant GB TP53
hotspot mutations R175H and R248W inhibited TP53 downstream activity as
measured by with cyclin dependent kinase inhibitor 1A (CDKN1A) expression and
most importantly reduced RNA expression of two main connectivity markers CHI3L1
and GAP43 (Figure 6E). This argues for a functional relation between CHI3L1 and
GAPA43 expression and TP53 mutations. Previous studies already suggested that
functional TP53 is necessary for GAP43 expression and axon outgrowth (21),

supporting the functional role of TP53 mutations in tumor cell connectivity.

22


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma

Cell-to-cell connectivity is associated with worse patient survival

Importantly, the impact of tumor cell connectivity on patient survival remained
unresolved so far. To clarify this point, multiple survival analyses of connectivity
signature scores were performed in TCGA and CGGA IDH wt GB patient cohorts. The
shortest survival was found for patients with the highest quartile of connectivity
signature score (Kaplan-Meier survival analysis on three connectivity signature score
groups, Figure 6F). A constant increase in the risk of death correlated with the increase
of connectivity signature score (Cox proportional hazards regression survival analysis
on continuous connectivity signature scores, Figure 6G). The association of the
connectivity signature score with patient survival remained significant after adjusting
for ages and genders in a multivariate analysis (Figure 6G).

Furthermore, we adjusted the survival analysis for ages, genders as well as expression
subtypes in the TCGA cohort, and found that patients with higher connectivity signature
scores had an increasing risk of death (p = 0.0128, Supplementary Figure 9A). To
more specific, in proneural subtype patients, high connectivity signature score group
had lower survival probability (p = 0.031, Supplementary Figure 9B). Mesenchymal
subtype patients had a similar trend as proneural subtype patients, but not significant
(p = 0.065, Supplementary Figure 9B). This trend was not found in classical subtype
patients (Supplementary Figure 9B). As a comparison to connectivity signature score,
we performed similar survival analysis for CHI3L1 expression levels (Supplementary
Figure 9C-D). CHI3L1 expression did not show a significant association with patient
survival after adjusting for expression subtypes (Supplementary Figure 9C-D). At this
point of view, the 71-gene-synthesized connectivity signature score outperformed one-
gene marker CHI3L1.

Even though the connectivity signature was not particularly developed for IDH mutant

gliomas, the connectivity signature score proved to be higher in astrocytic (1p/19q
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intact) compared to oligodendroglial (1p/19q codeleted) IDH mutant gliomas, reflecting
previous histology-based morphological data (6). In /DH mutant glioma, only a trend
for worse survival (p = 0.097) was detectable for patients with high connectivity
signature score (Supplementary Figure 9E-G).

Finally, as sampling of tumor tissue for sequencing is mainly performed in one spot per
tumor in routine analysis, we estimated the impact of different locations in the tumor
on the connectivity signature score by analyzing the Ivy Glioblastoma Atlas Project
(lvyGAP) dataset. The connectivity signature scores were lower in the leading edge
compared to cellular and infiltrating tumors (Figure 6H), in line with the known higher
anatomical and functional tumor cell connectivity in more solid established glioma

areas (6,16).
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Figure 6. Expression subtype and patient prognosis are related to connectivity

signature scores in validation cohorts. A-D, F-G, 230 TCGA GB samples. F-G, 141

CGGA GB samples. H, 73 IvyGAP GB samples. A, Box plot of connectivity signature

scores in three GB expression subtypes (81 mesenchymal, 87 classical and 62

proneural). B, Frequency of dominant cell states in each expression subtype. C,

Frequency of connectivity signature score groups in each expression subtype.

Connectivity signature scores grouped by Q1, Q2-Q3 and Q4. D, Connectivity
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signature scores in samples grouped by mutation status (synonymous mutations were
removed). Left, 195 NF1 wt and 35 NF1 mutated samples. Right, 173 TP53 wt and 57
TP53 mutated samples. P values were calculated by Mann-Whitney U test. *, p < 0.05;
** p <0.01; ***, p <0.001. E, Bar plot of relative gene expression by qPCR of TP53,
CDKN1A, CHI3L1, GAP43 and APOE in TP53-mutant overexpressing (TP53 R175H
and TP53 R248W) against TP53 wt overexpressing (TP53 WT) GB cell lines (n = 3).
F, Kaplan-Meier survival analysis in cohorts (Left, TCGA; Right, CGGA) stratified into
groups using Q1, Q2-Q3 and Q4 of the connectivity signature score. G, Cox
proportional hazards regression survival analysis in cohorts (Top, TCGA; Bottom,
CGGA). Univariate analysis with connectivity signature scores and multivariate
analysis with connectivity signature scores adjusted for ages and genders. H, Boxplot
of connectivity signature scores in three structure groups (30 cellular tumor, 24
infiltrating tumor and 19 leading edge) from IvyGAP cohort. A, D, H, Connectivity
signature scores were scaled and centered across samples per cohort, and winsorized

to -3 and 3.

Discussion

While the discovery of communicating, self-repairing and resistant tumor cell networks
has changed our understanding of incurable gliomas, with multiple clinical implications
(22), the measurement of this crucial tumor cell connectivity in patient samples, and a
deeper understanding of its molecular underpinnings remained elusive. In this study,
a connectivity signature score was established that proved feasible and valid to rapidly
assess the degree of TM connectivity in various gliomas, was associated with AC1 and
MES1 cell states, the mesenchymal expression subtype, and with worse patient
survival (Figure 7). Furthermore, a considerable number of known and unknown genes

associated with TM connectivity in GB were identified. The unexpectedly high
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proportion of upregulated genes (34/40, 85%) in the scRNA-Seqg-derived connectivity
signature that have been previously associated with neurogenesis, neural tube
development or glioma progression highlights its biological plausibility (6,22,23) and
the utility of this new connectivity signature for further in-depth gene analysis and use

in clinical studies.

Features of highly connected cells
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Figure 7. Summary and graphical abstract: TurboGFP-labeled PDGCLs (left box) were
orthotopically implanted into mice. After tumor establishment, highly connected and
lowly connected populations were sorted using a SR101 and sequenced by RNA-Seq
and scRNA-Seq (left box). Differentially expressed genes revealed a potential

molecular signature associated with connected and unconnected cells (bottom of the
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middle part). Applying this connectivity signature to previously reported GB cell states
deciphered MES1 and AC as the ones with the highest connectivity signature score.
Within the AC population, a subpopulation with an increased connectivity signature
was identified (center). High-scoring cells were enriched for TP53 wt and NF1 mutation.
CHI3L1 is a robust marker of highly connected cells (top box). In vitro PDGCL and
patient paraffin sections with a high connectivity signature score showed a highly
connected phenotype. Lastly, patients with a high connectivity signature score had a

less favorable outcome than patients with a low score (right box).

For comparison to scRNA-Seq-derived connectivity signature, we also identified the
RNA-Seq-derived connectivity signature. These two signatures have only a small
proportion of overlapping genes (18% in scRNA-Seq-derived signature, 5% in RNA-
Seq-derived signature), because of the differences between the sequencing
technologies, especially the high drop-out rate in 10X scRNA-Seq technology. The
correlation of fold changes in all 16,759 quantified genes between scRNA-Seq and
RNA-Seq is low (R = 0.33, Supplementary Figure 10A). While focusing on the genes
expressed in at least 10% cells of scRNA-Seq dataset, the correlation increased to
medium (R = 0.56, Supplementary Figure 10B). While only focusing on the significant
DEGs, the correlation further increased to R = 0.77 (Supplementary Figure 10C). The
overlapping genes between two connectivity signatures have a high correlation (R =
0.89, Figure 1H). What’s more, the enriched GO biological processes, semantic
similarity, and connectivity signature scores between two connectivity signatures have
high concordances. These indicate a robustness of the development of connectivity
signature, even with the two different experimental approaches.

It is challenging to measure tumor cell connectivity in patient samples robustly and

reproducibly with standard histology (6). Therefore, a molecular gene expression
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connectivity signature that can be easily used to calculate a score has several
advantages and can be applied on sequencing datasets from fresh tumor material, by

RNA-Seq or - when available - scRNA-Seq.

Even simpler, CHI3L1 expression correlates particularly well with the connectivity
signature score, and the addition of recombinant CHI3L1 protein as well as antibody
blocking modulates connectivity, strongly suggesting a functional role of CHI3L1 in
tumor cell connectivity rather than a pure correlative marker. RNA expression or
immunohistochemistry of CHI3L1 could therefore be a good estimator of tumor cell
connectivity that could be easily used in a clinical setting from formalin-fixed paraffin
embedded (FFPE) tissue when high-throughput scRNA-Seq or RNA-Seq methods are
not feasible or available.

TP53 mutations were identified to be associated with higher connectivity signature
score. This is remarkable as besides NF1 mutation as a mesenchymal marker no other
small nuclear variant was associated with the connectivity signature score. TP53
mutations may not be all alike and therefore more mutation type specific investigations
are warranted in further studies.

Besides the increased TM-connectivity in AC tumor cells, which appears plausible
given the principal connective nature of astrocytic cells, and AC tumor cells reflecting
astrocytic programs, also a subset of MES tumor cells showed TM-connectivity.

Accordingly, it has been observed long ago that “mesenchymal development” is

characterized by single cells connected via long cellular processes to a functional

syncytium” (24), not unlike the tumor cell networks in GB.

Finally, survival analysis showed a clear association of the tumors with the highest
connectivity signature scores and worse patient outcome. This is in line with our
previous preclinical findings that tumor cell connectivity by a cellular network of TM

connections is a resistance factor to all standard glioma therapies (6,7,10,22). We have
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shown before that the prognostically favorable oligodendrogliomas (25,26) do not form
a relevant TM-connected tumor cell network and a low expression of key TM drivers.
As a further validation, we confirmed a lower connectivity signature score in the
oligodendroglial tumors (6,16).

Besides O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for
alkylating chemotherapy, there is no clinically established marker for assessing the
resistance to radiotherapy, chemotherapy, and surgery in glioma. The connectivity
signature developed here can serve as a molecular fingerprint for a key mechanism of
resistance, and thus as a prognostic and even predictive biomarker. This biomarker,
however, needs further validation in prospective clinical trials before it can be used to
assign patients to treatment groups in clinical trials. Finally, it can also serve as a
biomarker for future disconnection strategies that are currently in preclinical
development (27).

This proof-of-concept study to collectively investigate the genetic background of glioma
cell-to-cell connectivity on single cell level has several limitations. The main limitation
is based on the SR101 dye transfer model, which is a proven (11,12) yet not dichotomic
discriminator of existing or non-existing cellular connectivity in gliomas. Therefore, we
implemented several confirmatory measures on functional experimental and
anatomical levels to assure that changes in connectivity signature score are
accompanied by true changes of TM network formation. Other limitations are related
to the ability to transduce the connectivity signature from a xenografted patient derived
model to patient samples. In particular, current practice of taking samples from one or
at best a few parts of the tumor for RNA sequencing may not account for potential
intratumoral heterogeneity of TM-connectivity which may relate to cell density, hypoxia,

molecular heterogeneity and the microenvironment. Analyses of the IlvyGAP shows

30


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma

lower connectivity results in the leading edge part of tumors, which at least argues for
an important role of the side from where the sample is taken.

In conclusion, we developed a connectivity signature with a respective score
calculation for GBs based on scRNA-Seq analysis and identified biologically plausible
markers in highly connected tumor cells for further investigation and confirmation in
preclinical and clinical trials. CHI3L1 expression has emerged as the easiest to assess
single marker gene of the signature that can even be determined in standard paraffin
sections. This offers the opportunity to translate the recent fundamental insights into
key elements of tumor biology in GB into clinical trials and ultimately into clinical

practice.
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Methods

Cell culture of PDGCL xenografted mouse models

PDGCLs S24 and T269 were established from freshly dissected GB tissue from adult
patients after informed consent (28). PDGCLs P3XX and BG5 were kindly provided by
Hrvoje Miletic, K. G. Jebsen Brain Tumour Research Centre, University of Bergen (29).
All four tumors have been diagnosed as GB, IDH wt. Methylation profiling with the
methylation EPIC array (#WG-317-1003, Illlumina, San Diego, California, USA) was
used to confirm GB origin. S24 is characterized by a GB receptor tyrosine kinase (RTK)
I, whereas BG5, P3XX and T269 exhibit a GB RTK Il methylation subtype
(Supplementary Table 1 and (30). PDGCLs were cultured as neurospheres under

serum-free, non-adherent, ” stem-like” conditions in PDGCL media, consisting of

DMEM/F-12 (#11330-032, Life Technologies, part of ThermoFisherScientific, Waltham,
Massachusetts, USA), B27 supplement (#17504044, Life Technologies, part of
ThermoFisherScientific, Waltham, Massachusetts, USA), insulin (#9278, Sigma, part
of Merck, Darmstadt, Germany), heparin (#H4784, Sigma, part of Merck, Darmstadt,
Germany) epidermal growth factor (EGF; #PHGO0311, Life Technologies, part of
ThermoFisherScientific, Waltham, Massachusetts, USA) fibroblast growth factor (FGF;
#PHGO0021, Life Technologies part from ThermoFisherScientific, Waltham,
Massachusetts, USA).

In order to allow identification and re-isolation after tumor resection, PDGCLs were
lentivirally transduced with the MISSION® shRNA vector pLKO.1-puro-CMV-Turbo
green fluorescent protein (TurboGFP)_shnon-target (#SHC016, Sigma, part of Merck,
Darmstadt, Germany) for cytosolic TurboGFP expression. The production of lentiviral
particles and cellular transductions was carried out as described previously (6).
Successfully transduced tumor cells were selected using 1 pg/ml puromycin

(#A2856.0100, Applichem, Darmstadt, Germany) and FACS sorting.
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All four PDGCLs were regularly checked for authenticity and absence of infections, e.g.
with mycoplasms and non-human cell contamination by multiplex cell contamination

test (Multiplexion GmbH, Heidelberg, Germany).

Correlation of SR101 staining with TMs in PDGCL xenografted mouse models

All in vivo experiments in this study were approved by the local authorities
(Regierungsprasidium Karlsruhe, Germany) and compliant with the institutional
laboratory animal research guidelines. All efforts were made to minimize animal
suffering and to reduce the number of animals used according to the 3R’s principles.
Experiments were carried out as already described (6). Striatal tumor bearing male
Crl:NMRI-Foxn1" nude mice (RRID:MGI:5653040, Charles River, Wilmington,
Massachusetts, USA) were intravenously injected with SR101 (#S359, Invitrogen, part
of ThermoFisherScientific, Waltham, Massachusetts, USA) dissolved in sterilized
saline solution (#2350748, B. Braun Melsungen AG, Melsungen, Germany) using a
dose of 0.12 mg per g body weight. Repetitive intravital 2-photon microscopy was
performed after SR101 injection using a Zeiss 7MP microscope (Zeiss, Oberkochen,
Germany) equipped with a Coherent Chameleon Ultrall laser (Coherent, Santa Clara,
California, USA) and a band-pass 500-550 and 575-610 nm filter. SR101 was excited
at 900 nm and TurboGFP at 950 nm 38-150 cells were analyzed in n=5 regions in 3
animals on D64+/-9 days. SR101 intensities of highly connected and lowly connected
GB cells were measured in the cell bodies. The signal intensity was normalized by the

mean value of the highest 10% of intensities in the respective region.
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Separation of highly and lowly connected cells in PDGCL xenografted mouse models
PDGCL spheroids were dissociated into a single cell suspension using Stem-Pro
Accutase™ (#1110501, ThermoFisherScientific, Waltham, Massachusetts, USA).
5x10* viable cells were slowly injected into the right hemisphere of 8-10 week old male
Crl:NMRI-Foxn1" nude mice (RRID:MGI:5653040; Charles River, Wilmington,
Massachusetts, USA) using a 10 pl micro-syringe (#80308, Hamilton, Reno, Nevada,
USA) driven by a stereotactic device (Stoelting, Wood Dale, lllinois, USA). The exact
coordinates were 2 mm right lateral of the bregma and 1 mm anterior to the coronal
suture with an injection depth of 2-3 mm below the dural surface. Tumors were grown
until the mice showed first symptoms or 220% weight loss were met. Mice were
intraperitoneally injected with SR101 (#S359, Invitrogen, S359, Invitrogen, part of
ThermoFisherScientific, Waltham, Massachusetts, USA) dissolved in sterilized saline
solution (#2350748, B. Braun Melsungen AG, Melsungen, Germany) using a dose of
0.12 mg per g body weight. After an incubation period to ensure maximum SR101
uptake from PDGCL cells, mice were deeply anesthetized with ketamine/Ketaset®
(#794-523, Zoetis, Berlin, Germany) and xylazine/Rompun® (#770-081, Bayer,
Leverkusen, Germany) and transcardially perfused with sterilized phosphate buffer
saline (PBS, #D8537, Sigma, part of Merck, Darmstadt, Germany). The whole brain
samples were removed and prepared into cell suspension using brain tumor
dissociation kit (#130-095-942, Miltenyi Biotec, Bergisch Gladbach, Germany) and
gentleMACSTM Dissociator (#130-093-235, Miltenyi Biotec, Bergisch Gladbach,
Germany). The cell pellet was resuspended in FACS buffer, consisting of 1% fetal calf
serum (FCS; #S0615, Sigma, part of Merck, Darmstadt, Germany) in PBS, and
proceeded with FACS sorting.

EACS: The single cell suspension freshly prepared from xenografted brains was

incubated with eBioscience™ Calcein Violet 450 AM (#65-0854-39, Invitrogen, part of
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ThermoFisherScientific, Waltham, Massachusetts, USA) and TO-PRO™-3 lodide

(#T3605, Invitrogen, part of ThermoFisherScientific, Waltham, Massachusetts, USA)
for 10 min on ice prior to sorting. Standard gating techniques were used to discriminate
doublets and dead cells. The viable fraction was defined by TO-PRO™-3 |odide
negativity and Calcein Violet 450 AM positivity. To further allow discrimination of the
non-malignant cells, the TurboGFP population was selected for separation of highly
connected tumor cells (SR101M9") and lowly connected tumor cells (SR101'°%) using
the FACSAria™ cell sorter (BD Biosystems, Franklin Lakes, New Jersey, USA). The
following filters were used: V450/50 (Calcein Violet), B530/30(TurboGFP), YG586/15

(SR101) and R650/17 (TO-PROT™M-3).

RNA-Seq data generation and preprocessing from PDGCL xenografted mouse models
Sorted tumor cells were resuspended in lysis buffer included as a part of the RNeasy®
Micro Kit (#74004, Qiagen, Hilden, Germany). mRNA was then isolated and purified in
accordance with the manufacturer’s instructions. The conversion of RNA to DNA was
done with the SMARTer® Ultra® Low Input RNA for lllumina Sequencing (#634940,
TakaraBio, Kusatsu, Japan). The libraries were then prepared using NEBNext® ChIP-
Seq Library Prep Master Mix Set for lllumina (#£6240, New England Biolabs, Ipswich,
Massachusetts, USA) and sequenced on an lllumina HiSeq 2000 sequencer
(RRID:SCR_020132, v.4, lllumina, San Diego, California, USA) in 50 bp single-end
mode by Genomics and Proteomics Core facility, DKFZ. The bioinformatics tools for
gene expression quantification from RNA-Seq were used with default parameters: The
quality of bases was evaluated and controlled using FASTX-Toolkit
(RRID:SCR_005534). HOMER (RRID:SCR_010881, v.4.7) was applied for PolyA-tail
trimming; reads with a length of < 17 bp were removed. The filtered reads were mapped

with  STAR (RRID:SCR_004463, v.2.3) against the human reference genome
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(GRCh38) and Picard (RRID:SCR_006525, v.1.78) with CollectRNASeqgMetrics were

used for quality checking. Count data were generated by htseqg-count
(RRID:SCR_011867, v.0.9.1) using the GENCODE (RRID:SCR_014966, v26) for

annotation. Genes with a total count of less than 10 were discarded.

SCcRNA-Seq data generation from PDGCL xenografted mouse models

A total of 5x10* highly and lowly connected cells from at least 3 mice/replicates per
PDGCL suspension were FACS-sorted and subjected to a 10x Chromium Controller
(10x Genomics, Pleasanton, California, USA) and further processed according to the
manufacturer’s instructions. The technology samples a pool of around 750,000
barcodes to separately index each cells transcriptome. In brief, 10x barcoded gel
beads are mixed with cells, enzyme and partitioning oil to create single cell gel beads
in emulsion. Barcoded cDNA is generated by reverse transcription so that cDNA from
individual cells share a common barcode. Afterwards, sequencing was carried out on
a HiSeq 4000 sequencer (SY-401-4001, lllumina, San Diego, California, USA) or on a
NovaSeq 6000 sequencer (20012850, lllumina, San Diego, California, USA) to obtain

approximately 2 x 350 million reads per sample.

Single nuclei (sn)RNA-Seq data generation from patient samples

Case selection and ethics approval: All 21 patients included have been treated at the

Heidelberg University Hospital. All patients gave informed consent either prior to
inclusion to the NCT Neuro Master Match (N> M?) pilot study (31) or to exploratory
molecular analyses. The research is conducted in concordance with the declaration of
Helsinki and was approved by the Ethics Committee at the University of Heidelberg,

Germany (applications 206/2005 and AFmu-207/2017). The N> M?* pilot study included
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patients with MGMT promoter unmethylated tumors, leading to an enrichment of
MGMT promoter unmethylated samples in our analysis (18/21, 86%).

Frozen resected tumor material was retrieved from the Department of Neuropathology
in Heidelberg and reviewed by a board-certified neuropathologist. Diagnoses were
molecularly confirmed according to the recent WHO classification and methylation
profiles were confirmed with methylation EPIC array (#WG-317-1003, lllumina, San
Diego, California, USA).

For single nuclei isolation, resected tumor material underwent the following quality
control. Exclusively material with a tumor content =2 70% and a low percentage of
necrosis, as determined on hematoxylin and eosin-stained sections by a board-
certified neuropathologist (Department of Neuropathology, University Hospital
Heidelberg, Germany) was considered for further processing. Clinical and pathological
characterization of patients are summarized in Table 1. Human patient samples were
anonymized manually.

Single nuclei preparation: Tumor sections were roughly chopped on ice and

resuspended in lysis buffer consisting of 320 mM sucrose (#84097, Sigma, part of
Merck, Darmstadt, Germany), 5 mM CaCl2 (#21115, Sigma, part of Merck, Darmstadt,
Germany), 3 mM Mg acetate (#63052, Sigma, part of Merck, Darmstadt, Germany), 2
mM EDTA (#AM9260G, Invitrogen, part of ThermoFisherScientific, Waltham,
Massachusetts, USA), 0.5 mM ethylene glycol tetraacetic acid (EGTA, #J61721, Alfa
Aesar, part of ThermoFisherScientific, Waltham, Massachusetts, USA), 1 mM
dithiothreitol (DTT; #43816, Sigma, part of Merck, Darmstadt, Germany), 0.1% Triton
X-100  (#A4975, AppliChem, Darmstadt, @ Germany) and 10 mM
Tris(hydroxymethyl)aminomethan (Tris) pH 8.0 (#15568025, Life Technologies, part of
Thermo Fisher Scientific, Waltham, Massachusetts, USA). The suspension was

transferred to a dounce homogenizer (#9651617, Th. Geyer, Renningen, Germany) for
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nuclei isolation. Large debris was removed by 100 um (#542000, Greiner Bio-one,

Kremsmiinster, Austria) and 70 um (#542070, Greiner Bio-one, Kremsmiinster, Austria)

strainer meshes and the suspension collected in separate 50 ml tubes (#227261,

Greiner Bio-one, Kremsm i nster, Austria). Next, nuclei were subjected to three
repeated wash cycles consisting of centrifugation (5650 g, 5 min, 4° C), supernatant

removal and resuspension in 1.5 ml washing buffer. Adaptions for the last cycle
included addition of 500 ul homogenization buffer (320 mM Sucrose, 30 mM CaClz, 18
mM Mg(Ac)2, 0.1 mM EDTA, 0.1% Nonidet P40 [#APA1694.0250, Applichem,
Darmstadt, Germany], 0.1 mM phenylmethylsulfonyl fluoride [PMSF, #6367.2, Roth,
Karlsruhe, Germany], 1 mM beta-Mercaptoethanol [#M7522, Sigma, part of Merck,
Darmstadt, Germany], 60 mM Tris pH 8.0) to the nuclei pellet and a resting time of 5
min before resuspension in another 1 ml homogenization buffer. Further purification
was done using a iodixanol (#07820, Stem Cell Technologies, Vancouver, Canada)
gradient. Briefly, the pellet was resuspended in 200 ul gradient buffer consisting of 30
mM CaClz, 18 mM Mg(Ac)2, 0.1 mM PMSF, 1 mM beta-Mercaptoethanol and 60 mM
Tris pH 8.0. After transfer to a new microcentrifuge tube, 200 ul of 50% iodixanol in
gradient buffer was used to generate a final concentration of 25% iodixanol. The nuclei
suspension was carefully layered onto a gradient consisting of equivoluminous 300 pl
layers of 29% and 35% iodixanol in gradient buffer supplemented with 160 mM sucrose.

Separation was performed at 4° C for 20 min with 3000 g. 200 pl of the nuclei-

containing interphase was collected and passed through a 20 um filter (#130-101-812,
Miltenyi Biotec, Bergisch Gladbach, Germany). Partially, trituration using wide-bore
tips (#10089010, Thermo Fisher Scientific, Waltham, Massachusetts, USA) was

necessary to facilitate disaggregation of the nuclei.
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All aforementioned steps were performed on ice and all plastic consumables having
contact with nuclei were pre-coated with 0.1% Triton X-100 prior to use to prevent
sample loss.

Finally, integrity and purity of the nuclei was confirmed using Trypan Blue (#15250-061,
LifeTechnologies, part of Thermo Fisher Scientific, Waltham, Massachusetts, USA)
staining and the nuclei sequenced according to the 10x protocol (see section “scRNA-

Seq data generation from PDGCL xenografted model”).

Single cell data preprocessing

The gene expression count matrices of PDGCL xenografted mouse models scRNA-
Seq were generated using Cell Ranger (RRID:SCR_017344, v.2.1.1, 10X Genomics)
with default parameters, against the pre-built hg19 human reference genome (Cell
Ranger reference, v.1.2.0). The count matrices of patient samples snRNA-Seq were
generated using Cell Ranger (RRID:SCR_017344, v.3.0.1, 10X Genomics) with
standard parameters, against a custom pre-mRNA hg19 human reference genome
generated by mkref function following the official guideline
(https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/3.1/advanced/references). We discarded cells by
uniform exclusion criteria: (1) discarding cells which had fewer than 200 or more than
8,000 genes detected. (2) discarding cells which had fewer than 500 or more than
80,000 counts detected. (3) discarding cells which had a percentage of counts that
came from mitochondrial genes of more than 10%.

After the uniform exclusion, sample-wise outlier cells were detected and removed if the
number of genes or counts are more than three median absolute deviations (MADs)
above the median using isOutliers function in the scater (RRID:SCR_015954, v.1.10.1).

In each sample, per-cell doublet scores and per-sample doublet score thresholds were
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estimated by Scrublet (RRID:SCR_018098, v.0.2.1) with default parameters. If one

doublet score threshold was located between two peaks of a doublet score histogram,
this threshold was accepted and the cells with a doublet score higher than this
threshold were removed. Unsupervised clusters were visualized in uniform manifold
approximation and projection (UMAP) to further detect low quality clusters using Seurat
(RRID:SCR_007322, v.3.1.5). In PDGCL xenografted mouse model dataset, outlier
clusters were removed according to the MADs of the median number of genes or
embeddings of UMAP in clusters. In patient samples dataset, one cluster that
expressed markers of two different cell types was removed.

In the end, we obtained 35,822 cells from six samples of three PDGCL xenografted

mouse models and 213,444 cells from 21 patient samples.

Single cell data processing and integration

Data processing: After data preprocessing and quality control, scRNA-Seq data of

PDGCL xenografted mouse models and patient samples were further processed using
Seurat (RRID:SCR_007322, v.3.1.5) with default parameters: The gene expression
counts were normalized using the NormalizeData function. Then 2000 highly variable
genes were identified using the FindVariableFeatures function. The variation of
number of counts among cells was regressed out, and the resulting residuals were
scaled and centered by the ScaleData function. Next, we reduced dimensionality of
the data by principal component analysis using the RunPCA function. The number of
principal components (PCs) used for further analyses was determined using the
ElbowPlot function (PDGCL dataset: 11 PCs; patient dataset: 24 PCs). The data was
visualized in UMAP using RunUMAP function with determined PCs.

Data integration: To remove the differences of individuals and perform batch correction,

an integration method based on identification of shared ‘anchors’ between pairs of
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samples was applied using the Seurat (RRID:SCR_007322, v.3.1.5) with default

parameters: The gene expression count of each PDGCL or patient sample was
normalized and selected highly variable genes using the NormalizeData and
FindVariableFeatures functions. Then the normalized data (three PDGCLs or 21
patient samples) were integrated with the FindintegrationAnchors function (dims = 1:30)
and the IntegrateData function (dims = 1:30). The integrated data was used the
ScaleData, RunPCA, ElbowPlot, RunUMAP functions as section “Single cell data
processing and visualization” (PDGCL integrated dataset: 24 PCs; patient integrated

dataset: 22 PCs).

Identification of malignant and non-malignant cell types in snRNA-Seq of patient
samples

Cell type signature scores: In patient integrated snRNA-Seq dataset, cell type

signature scores (i.e., malignant signature score, macrophage signature score, T-cell
signature score, oligodendrocyte signature score, endothelial signature score, pericyte
signature score, and astrocyte signature score) based on cell type markers (see the
next paragraph) were calculated in each cell using the AddModuleScore function in
Seurat (RRID:SCR_007322, v.3.1.5).

Cell type marker collections: The top 100 upregulated markers per cell types (i.e.,

malignant cells, macrophages, T-cells and oligodendrocytes) were identified from a GB
scRNA-Seq dataset (5) using the FindAlIMarkers function with default parameters in
Seurat (RRID:SCR_007322, v.3.1.5). The top 100 upregulated markers of endothelial
cells were obtained from a healthy brain RNA-Seq dataset (17).The top 100 enriched
markers in pericytes were obtained from brain mural cells RNA-Seq dataset (18). The
upregulated markers of healthy astrocytes compared to malignant astrocytes were

obtained from a human brain RNA-Seq dataset (17).
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Cell type assignment: The patient integrated dataset was performed unsupervised

clustering using the FindNeighbors function with 22 PCs and the FindClusters function
(resolution = 0.7), 24 clusters were obtained. In each cluster, the medians of each cell

type signature score were calculated and represented as S;;, with i being one cell type
and j being one cluster. Then the non-malignant scores NMS;; were defined as S;;
minus malignant signature score S,,; (m indicates malignant cells): NMS;; = S;; — Sy,;.
The clusters were assigned to non-malignant cell types if NMS;; more than MAD above
the median of all NMS;;: cluster 8, 9, and 23 as macrophages, cluster 5 as

oligodendrocytes, cluster 19 as T-cells, cluster 22 as pericytes and cluster 17 as
endothelial cells. The remaining clusters were assigned as malignant clusters and
were validated based on CNV estimation using the infercnv (RRID:SCR_021140,
v.1.2.1) with recommended parameters for 10x Genomics data (cutoff = 0.1,
cluster_by groups = TRUE, denoise = TRUE, HMM = TRUE). The assigned
macrophages, oligodendrocytes, T-cells, pericytes and endothelial cells were used as
reference non-malignant cells. Each non-malignant cell type and malignant clusters
were downsampled to 500 cells. We found that the malignant clusters contained large-
scale CNVs except cluster 21. The cluster 21 showed the highest astrocyte signature

score and, accordingly, cluster 21 was reassigned as astrocyte cluster.

Development of the connectivity signatures

In scRNA-Seq data of the PDGCL xenografted models, DEGs between highly and
lowly connected groups were identified in each PDGCL xenografted model using the
FindMarkers function with default parameters in Seurat (RRID:SCR_007322, v.3.1.5).
We then aggregated the significant DEGs (adjusted p value < 0.05) from all three
PDGCLs. Among the aggregated DEGs, we examined the direction of regulation of the

DEGs, only the DEGs which were significantly differentially expressed with the same

43


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma

direction of regulation in at least two PDGCLs were kept. The remaining DEGs were
further refined to obtain strongly regulated genes with an absolute log fold-change
greater than 0.4. 50 DEGs were obtained. Additionally, the FindConservedMarkers
function with default parameters was used to identify conserved DEGs between highly
and lowly connected groups irrespective to PDGCLs. Among the conserved DEGs, the
DEGs regulated in the same direction across all three PDGCL xenografted models
were kept. 21 additional DEGs were obtained. In total, 71 DEGs were derived from
scRNA-Seq dataset and served as a connectivity signature.

In RNA-Seq of PDGCL xenografted models, DEGs between highly and lowly
connected groups were identified using DESeq2 (RRID:SCR_015687, v.1.22.2): The
PDGCL xenografted models information was included in the design formula of the
DESegDataSet function to obtain conserved DEG of highly and lowly connected
groups across PDGCL xenografted models. Differential expression analysis was
performed using the DESeq function. Then the results were shrinked with apeglm
method in the [fcShrink function. Other parameters are by default. The significant DEGs
(adjusted p value < 0.05) with an absolute log2 fold-change greater than 1 were kept.

Finally, 245 DEGs were derived from the RNA-Seq dataset.

Heatmap visualization of the connectivity signatures

For each connectivity gene derived from scRNA-Seq, the gene expression level of the
gene in cells of each sample were averaged using the AverageExpression function in
Seurat (RRID:SCR_007322, v.3.1.5). The average expression levels were scaled,
centered, winsorized at -3 and 3, and then visualized as heatmap using
ComplexHeatmap (RRID:SCR_017270, v.2.5.4).

The bulk count matrix was transformed with variance stabilizing transformation using

the vst function in DESeg2 (RRID:SCR_015687, v.1.22.2), and the batch effects
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between the PDGCL xenografted models were corrected with the removeBatchEffect
function of the LIMMA package (RRID:SCR_010943, v.3.36.5). Finally, the expression
levels of connectivity genes derived from RNA-Seq were scaled, centered, winsorized
at -3 and 3, and then visualized as heatmap using ComplexHeatmap

(RRID:SCR_017270, v.2.5.4).

GO enrichment analysis

GO enrichment analysis of connectivity signature derived from scRNA-Seq (71 genes)
or connectivity signature derived from RNA-Seq (245 genes) was performed by the
compareCluster function using clusterProfiler (RRID:SCR_016884, v.3.18.1) against
“GO Biological Process” with setting fun = enrichGO and ont = "BP". The most enriched
GOs were visualized with the emapplot function using enrichplot (v.1.10.2). The
semantic similarity of both connectivity signatures against GO biological process were
performed by mclusterSim function using GOSemSim (v.2.16.1).

There are 16,759 genes commonly expressed in both scRNA-seq and RNA-Seq
datasets of PDGCL xenografted models. Gene set enrichment analysis of these genes
preranked by the fold change between highly and lowly connected groups in the
scRNA-Seq dataset or the fold change between highly and lowly connected groups in
the RNA-Seq dataset was calculated by Gene Set Enrichment Analysis
(RRID:SCR_003199, v.4.1.0) against “neurogenesis” gene set.

GO enrichment analysis of 100 DEGs between the two AC subgroups was performed
using clusterProfiler (RRID:SCR_016884, v.3.18.1) against GO biological process

terms (Molecular Signatures Database, RRID:SCR_016863, v.7.1).

Connectivity signature score
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The connectivity signature derived from scRNA-Seq data contains 71 genes, among
which, 40 genes are upregulated in highly connected cells and 31 genes are
downregulated. The 40 upregulated genes were used as a gene set to calculate a
score (connectivity-upregulated signature score) in each cell using the
AddModuleScore function in Seurat (RRID:SCR_007322, v.3.1.5). The score
represents the relative expression of a gene set. Similarly, a second score
(connectivity-downregulated signature score) based on the 31 downregulated genes
was calculated. Finally, the connectivity signature score was defined as the
connectivity-upregulated signature score minus the connectivity-downregulated
signature score. Another connectivity signature score based on 245 genes (57
upregulated genes and 188 downregulated genes) derived from the RNA-Seq data

were generated accordingly.

The performance of the connectivity signatures for prediction of SR101-sorted labels
In each cell of scRNA-Seq data from PDGCL xenografted models, connectivity-
upregulated signature score based on 40 scRNA-Seqg-derived upregulated
connectivity genes and connectivity-downregulated signature score based on 31
scRNA-Seq-derived downregulated connectivity genes were calculated. If the
connectivity-upregulated signature score was higher than the connectivity-
downregulated signature score, the cell was predicted as “Highly connected” cell,
otherwise, the cell was predicted as “Lowly connected” cell. Confusion matrix and
prediction metrics (i.e accuracy, sensitivity, specificity, positive predictive value and
negative predictive value) were obtained between the number of cells predicted as
“Highly connected” or “Lowly connected” base on calculated scores and the number of
cells labelled as “Highly connected” or “Lowly connected” after SR101-based cell

sorting, using R package caret (RRID:SCR_021138, v.6.0-80). Another prediction
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based on 57 RNA-Seq-derived upregulated connectivity genes and 188 RNA-Seq-
derived downregulated connectivity genes were calculated in the same way.

Negative control: 100 random gene sets, each gene set including 71 randomly selected

genes (40 gene as an upregulated gene set and 31 as a downregulated gene set, the
same as scRNA-Seqg-derived connectivity signature), were utilized to calculate scores
and obtained the average prediction metrics. Another 100 random gene sets, each
gene set including 245 randomly selected genes (57 gene as an upregulated gene set
and 188 as a downregulated gene set, the same as RNA-Seq-derived connectivity
signature), were utilized to calculate scores and obtained the average prediction
metrics.

Malignant cell state assignment

Cell state markers from a GB scRNA-Seq study (5) were utilized to calculate cell state
signature scores in each malignant cell in our patient sample snRNA-Seq dataset using
the AddModuleScore function in Seurat (RRID:SCR_007322, v.3.1.5). Malignant cells
were assigned to this cell state that gained the highest signature score among all cell

state signature scores.

Two-dimensional projection of patient malignant cells by cell state

Similar to (5), we obtained signature scores for each cell state in single cells and
projected the cells according to the cell state signature scores. Y axis values represent
the maximum score from the AC/MES1/MES2 states from which the maximum score
from the OPC/NPC1/NPC2 states have been subtracted. If Y > 0, the X axis values
represent AC minus the maximum of MES1 and MES2. If Y < 0, the X axis values
represent OPC minus the maximum of NPC1 and NPC2. Cells were colored by
connectivity scores and plotted by ggplot2 (RRID:SCR_014601, v.3.3.2).

Y = max(Suc, Smes1, Smesz) — max(Sopc, Snpcr, Snpcz)
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ifY >0, X = Syc — max( Sygs1, Smes2)

ifY <o, X = Sopc — max( Sypc1, Snpcz)

Identification of subpopulations of astrocyte-like cells

In the two-dimensional projection of astrocyte-like cells only, we separated cells into

Sac—max(Sopc,Snpc1Snpcz) _ 1)

two groups by a line with slope 1 ( P ——

. We obtained one group

with higher connectivity scores and the other with lower connectivity scores. DEGs
between these two groups were identified using the FindMarkers function in Seurat
(RRID:SCR_007322, v.3.1.5).

PDGCL in vitro models of connectivity

Quantification of TMs: PDGCLs S24, BG5, P3XX and T269 stably transduced with

cytosolic TurboGFP, as previously described (6,16), were used to allow visualization
of TMs during confocal microscopy. All PDGCLs were cultured under two different
culture conditions. For TM-, non-adherent conditions cells were cultured in PDGCL
media as described before. In order to induce the formation of TMs, cells were kept in
adherent culture conditions using DMEM (#11965-118, Life Technologies, part of
ThermoFisherScientific, Waltham, Massachusetts, USA) supplemented with 10% FCS.
Briefly, ethidium-homodimer 2  (EthD2, #E3599, Invitrogen, part of
ThermoFisherScientific, Waltham, Massachusetts, USA) and Hoechst33342 (#H3570,
Invitrogen, part of ThermoFisherScientific, Waltham, Massachusetts, USA) were
added. Images were acquired on a LSM710 confocal microscope (Zeiss, Oberkochen,
Germany) and an EC plan Neofluar® 10x0.3 M27 objective (Zeiss, Oberkochen,
Germany). The following excitations and detection wavelengths were used: 405/410-
587 (Hoechst33342), 488/493-598 (TurboGFP) and 561/597-685 (EthD2). Laser
power and maximum imaging time were tuned as low as possible to avoid phototoxicity.

Images with a pixel size of 0.89 ym and an imaging frequency of 0.3 Hz were used for
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quantification. Mann-Whitney U test was used to compare connectivity in TM+ and TM-
conditions.

Image processing and quantification: Multi photon laser scanning microscope (MPLSM)

data were acquired by Zeiss ZEN® Black Software (RRID:SCR_018163, Zeiss, Jena,
Germany), which was also used for primary image calculation. Images were then
transferred to Fiji 2.0.0 (RRID:SCR_002285) for analysis and processing. In the figures,
maximum intensity projections are shown. Analyses were performed semi-
automatically using the pixel classification and object quantification workflows in llastik
software (RRID:SCR_015246, DOI:10.1109/ISB1.2011.5872394) after appropriate

training.

SCcRNA-Seq data generation from PDGCL in vitro models of connectivity

Cell lines and cell culture: PDGCLs S24, BG5, P3XX, T269 were cultured under TM-

and TM+ conditions as described before.

EACS: After cultivation under both culture conditions, cells were blocked with 1% BSA
in PBS. Cells were washed with PBS and subsequently resuspended in 1.5 ml of
PBS/1%BSA containing 1 uM calcein AM (#C1430, Life Technologies, part of
ThermoFisherScientific, Waltham, Massachusetts, USA) and 0.33 yM TO-PRO™-3
(#T3605, Invitrogen, part of ThermoFisherScientific, Waltham, Massachusetts, USA)
to co-stain before sorting. Sorting was performed with FACSAria™ Fusion Special
Order System (BD Biosystems, Franklin Lakes, New Jersey, USA) using 488nm
(Calcein AM, 530/30 filter) and 640nm (TO-PRO-3™, 670/14 filter) lasers. An
unstained control was included with every sample. Standard, strict forward scatter
height versus area criteria were applied to discriminate doublets and gate only for
single cells. Viable cells were detected as staining positive for calcein AM and negative

for TO-PRO™-3.
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scRNA-Seq: Cells were sorted into 96 well plates (#0030128.648, Eppendorf,
Hamburg, Germany) containing cold TCL Buffer (#1070498, Qiagen, part of
ThermoFisherScientific, Waltham, Massachusetts, USA) including 1% beta-
mercaptoethanol (#M7522, Sigma, part of Merck, Darmstadt, Germany), snap frozen

on dry ice and stored at -80° C. Whole transcriptome amplification, library preparation

and sequencing were performed according to the SmartSeq2 protocol (32) with the
following modifications as previously published (5): RNA purification from single cells
was performed with Agencourt RNAClean XP beads (#A63987, Beckmann Coulter,
Brea, California, USA) prior to olio-dT primed reverse transcription with Maxima
reverse transcriptase (#EP0753, Life Technologies part of Thermo Fisher Scientific,
Waltham, Massachusetts, USA) and locked template switch oligonucleotide (#339413,
Qiagen, part of Thermo Fisher Scientific, Waltham, Massachusetts, USA). This was
followed by 20 cycles of polymerase chain reaction (PCR) amplification using KAPA
HiFi HotStart ReadyMix (#KK2602, Roche, Basel, Switzerland) and subsequent
purification with Agencourt AMPure XP beads as described. Library construction was
performed using the Nextera XT Library Prep kit (#FC-131-1024, lllumina, San Diego,
California, USA) and custom barcode adapters (sequences available upon request).
Libraries from 864 cells with unique barcodes were combined and sequenced with a

NextSeq 500 sequencer (#SY-415-1001, lllumina, San Diego, California, USA).

SCRNA-Seq data processing of PDGCL in vitro models of connectivity

Sequencing reads were aligned using STAR (RRID:SCR_004463, v.2.5.3a) against
the human reference genome hg19, and gene counts were generated and annotated
using GENCODE (RRID:SCR_014966, v19) by featureCounts function of Subread
package (RRID:SCR_009803, v.1.5.3). Gene counts were normalized to fragments per

kilobase million (FPKM) values and log2 transformed. We identified low quality cells
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by the number of expressed genes lower than 2000 or higher than 8000. We obtained
735 cells from four PDCGLs. Then the data were integrated by ‘anchors’ and visualized

in UMAPs with Seurat (RRID:SCR_007322, v.3.1.5).

Quantitative real-time polymerase chain reaction (QPCR)

RNA extraction and cDNA synthesis: Harvested cells were washed with ice-cold PBS

(#D8537-500ML, Sigma, part of Merck, Darmstadt, Germany). Afterwards, cells were
resuspended in 1% beta-Mercaptoethanol (#M3148-100ml, Sigma, part of Merck,
Darmstadt, Germany)-supplemented RLT lysis buffer, which is part of the QIAGEN
RNeasy MicroKit (#79216, Qiagen, Hilden, Germany) or QIAGEN RNeasy Mini Kit
(#74004, Qiagen, Hilden, Germany).

The kit type for subsequent RNA extraction was tailored to the absolute cell numbers.
Lysates containing up to 500,000 cells were processed with the QIAGEN RNeasy®
Micro Kit whereas samples with 500,000 to one million cells were processed with the
QIAGEN RNeasy® Mini Kit. All steps were carried out according to the manual. On
column DNAse digestion was performed with the RNAse free DNAse set (#79254,
Qiagen, Hilden, Germany). RNA was eluted into RNAse-free water (#4387936,
ThermoFisherScientific, Waltham, Massachusetts, USA). Reverse transcription was
performed according to the manufacturer’s recommendations using the High-Capacity
cDNA Reverse Transcription Kit with RNAse Inhibitor (#4374967, Applied Biosciences
Applied Biosciences, Foster City, California, USA) and 1 ug RNA per 20 pl reaction.
Amplification: gPCR was performed with 9 ng cDNA, Tagman™ Gene Expression
Master Mix (#4369016, ThermoFisherScientific, Waltham, Massachusetts, USA) and
the respective TagMan™ probes (Applied Biosystems, Foster City, California, USA).
The following probes were used: Hypoxanthine Phosphoribosyltransferase 1 (HPRT1;

Hs002800695_m1), CHI3L1 (Hs01072228_m1), GAP43 (Hs00967138_m1), APOE

51


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma
(Hs00171168_m1), TP53 (Hs01034249_m1) and CDKN1A (Hs00923894 m1). All

reactions were carried out in a 96-well reaction plate (#N8010560, Applied
Biosciences), covered with MicroAmp™ optical adhesion film (#4311971, Applied
Biosciences, Foster City, California, USA) on a QuantStudio™ 3 Real Time PCR
System (RRID:SCR_018712, ThermoFisherScientific, Waltham, Massachusetts, USA).
= 2 independent experiments with each having = 2 technical replicates were performed.
PCR reactions were checked by omission of templates and by melting curve and
agarose gel electrophoresis. Standard curves were generated for each gene and the
amplification was 85-115% efficient. Relative quantification of gene expression was
determined by comparison of threshold values. All results were normalized to HPRT1

as the housekeeping gene.

Antibody and recombinant blocking in vitro experiments

PDGCLs S24-TurboGFP, T269-TurboGFP and BG5-TurboGFP were cultured and
singularized as described before. Cells were resuspended in PDGCL media as
described before, however without growth factors but supplemented with glucose
(#G7021-1KG, Sigma, part of Merck, Darmstadt, German) and cells seeded into a
precoated uClear® 96-well plate. Growth factor reduced Matrigel® (#356231, Corning,
Corning Inc., Corning, New York, USA ) dissolved in PDGCL media was used for
coating. Recombinant CHI3L1, CHI3L1 antibody or IgG1 Ctrl antibody were added
immediately after cell seeding. Subsequently, cells were cultured under standard
conditions (20% 02, 5% CO2, 37°C). All further procedures were described before. =
9 images were acquired and analyzed per condition in each of = 2 independent

experiments. The Mann-Whitney U test was used.

TP53 overexpression
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Cloning: For functional analysis open reading frames (ORFs) of TP53 wt and the
mutation variants R175H (CGC>CAC), R248W (CGG>TGG) and R248Q (CGG>CAG)
lacking a stopcodon were generated in a universal entry vector (p-DONR221) for the
use with the Gateway™ recombination system (Thermo Fisher Scientific, Waltham,
Massachusetts, USA). After sequence validation, the ORFs were recombined in into a
lentiviral expression vector rwpLX305-GW-Flag-CT-IRES-NeoR (Cellular Tools GPCF
DKFZ, Heidelberg, Germany). The vector adds a short immunogenic Flag-Tag at the
C-terminal end of the TP53 proteins to test for expression of the recombinant protein
and couples a Neomycin resistance marker for selection of transduced and expressing
cells via an IRES sequence.

Virus production and infection: For generation of lentiviral particles, HEK293FT cells

(#R70007, Thermo Fisher Scientific, Waltham, Massachusetts, USA) were co-
transfected with the lentiviral TP53 expression constructs and 2nd generation viral
packaging plasmids VSV.G (kind gift from Tannishtha Reya, Addgene plasmid # 14888,
RRID:Addgene_14888, http://n2t.net/addgene:14888) and psPAX2 (kind gift from
Didier Trono, Addgene plasmid #12260, RRID:Addgene_12260,
http://n2t.net/addgene:12260). 48h after transfection, virus containing supernatant was
removed and cleared by centrifugation (5min/500g). The supernatant was passed
through a 0.45 um filter (#760517, Ahlstrom, Helsinki, Finland). U87 (#HTB-14,
RRID:CVCL_0022, ATCC, Manassas, Virginia, USA) cells were transduced with
lentiviral particles at 70% confluency in the presence of polybrene (TR-1003-G, Merck,
Darmstadt, Germany). 24 h after transduction virus containing medium was replaced
byG-418 sulfate (#M3118.0050, GENAXXON bioscience, Ulm, Germany) containing

selection media.

Target staining and TM quantification in patient tumor tissues
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General preparation of slides: To validate the degree of connectivity and underlying

markers we chose the three patients with high and three with low connectivity signature
scores from which specimens were available at the Department of Neuropathology.

Several consecutive sections were generated using the HM 355S automated microtom
(#905200, ThermoFisherScientific, Waltham, Massachusetts, USA) and mounted on
Superfrost slides (#J1800AMNZ, ThermoFisherScientific, Waltham, Massachusetts,
USA). Subsequent drying was allowed for 30 min on a 37° C hot plate followed by

baking for 10 min in a 75° C oven.

CHI3L1 and nestin staining: CHI3L1 and nestin expression was detected using the
ultraView DAB protocol on the automated VENTANA® BenchMark ULTRA platform
(Roche, Basel, Switzerland).

After pretreatment involving deparaffinization CHI3L1 antigen retrieval CC1 solution
(#05279801001, Roche, Basel, Switzerland) was applied for 32 min. Slides were
subsequently incubated with anti-CHI3L1 antibody for 32 min. To detect nestin
expression no heat induced epitope retrieval (HIER) was performed and slides were
incubated with with anti-nestin antibody for 32 min. VENTANA® standard signal
amplification and ultra-wash was followed by counterstaining with Hematoxylin Il
(#790-2208, Roche, Basel, Switzerland) and blueing reagent (#760-2037, Roche,
Basel, Switzerland) for 4 min each. Slides were removed from the staining platform,
washed with tap water and rinsed with deionized water. After staining, all specimens
were immersed in a series of ethanol (EtOH) solutions (#20821.330, VWR, part of
Aventor, Radnor, Pennsylvania, USA) of increasing concentrations until 100% and
Xylol (#534056-4L, Sigma, part of Merck, Darmstadt, Germany). Eukitt®
(#6.00.01.0001.06.01.01, ORSAtec GmbH, Bobingen, Germany) was used for

mounting.
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Hematoxylin-Eosin (HE) staining: Slides were prepared as described before. For

dewaxing and rehydration sections were passed through xylol (#9713.3, Roth,
Karlsruhe, Germany) and decreasing concentrations of EtOH (#200-678-6; Fisher
Scientific, Waltham, Massachusetts, USA) until the solution evenly flowed across the
slide. Staining with Mayer’s hematoxylin solution consisting of 0.1% hematoxylin
(#1.04302.0100, Merck, Darmstadt, Germany), 0.02% sodium iodate (#6525; Merck,
Darmstadt, Germany), 5% potassium aluminum sulfate (#8896.1; Roth, Karlsruhe,
Germany), 5% chloralhydrate (#K318.1; Roth, Karlsruhe, Germany) and 0.1% citric
acid (#3958.1; Roth, Karlsruhe, Germany) for 1 min was followed by blueing in running
tap water for 3 min. Slides were incubated in eosin solution consisting of 10% Eosin G
(#7089.2, Roth, Karlsruhe, Germany) and 2 drops of glacial acetic acid (#3738.1; Roth,
Karlsruhe, Germany) in 70% EtOH (#200-678-6, Fisher Scientific, Waltham,
Massachusetts, USA) for 30 s and subsequently rinsed in aqua bidest. Mounting of HE

sections was done as described before.

Quantification of TMs in FFPE patient samples

For image analysis three 500 x 500 pixel regions in each patient sample were selected
based on number of nuclei (100 + 20), nestin positivity and adjacency to denser tumor
tissue. Then TMs were measured manually in these regions using Fiji. There were 20-
84 TMs measured per image with a total of n = 898.

Image analysis of patient tissue: All slides were scanned at 20x resolution using an

Axioscan Z1 slide scanner (RRID:SCR_020927, Zeiss, Jena, Germany). Zen 2.6 Blue
Edition ® software (RRID:SCR_013672, Zeiss, Jena, Germany) was used to globally
adjust the copies of original photomicrographs for white and black balance.
Photomicrographs were additionally cropped, rotated and resampled to allow

alignment with other stainings.
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Alignment of nestin, CHI3L1 and HE staining: The procedure for scanning CHI3L1 and

HE stained consecutive sections was similar to Nestin stained sections. Zen 2.6 Blue
Edition ® software (RRID:SCR_013672, Zeiss, Jena, Germany) was used to globally
adjust the copies of original photomicrographs for white and black balance.
Photomicrographs were additionally cropped, rotated and resampled to allow
alignment with other stainings. Subsequent removal of background shadows at the tile
edges of no-sample containing tiles was done using Zen 2.6 Blue Edition ® software
(RRID:SCR_013672, Zeiss, Jena, Germany)

Histoscoring of CHI3L1: A histoscore was used to assess the quantity of the CHI3L1

staining intensities of both global tumor tissue level but also of 500 x 500 pixel CHI3L1
crops aligned with the nestin crops, which had been independently selected before by
a blinded person. A histoscore was used to assess the quantity of the CHI3L1 staining
intensities of both global tumor tissue level but also of 500 x 500 pixel CHI3L1 crops
perfectly aligned with the nestin crops, which had been independently selected before
by a blinded person.
Histoscoring is a widely used semiquantitative classification of the staining intensity of
heterogeneously stained tissues. Technically, the staining intensity of each individual
cell is assigned to a scaled rating: O (negative), 1 (low), 2 (moderate), and 3 (high). A
weighted histoscore is calculated by the formula:
3
Weighted fistoscore = Z SI. * P.
=0
where r represents the rating of staining intensity; SI,. represents the staining intensity
of cell with r; B. represents the percentage of cells with r in the whole sample.
Based on this, the maximum score being reached is 300 (if 100% of cells have a high

intensity) and the minimum score is 0 (if 100% of cells do not stain). All ratings were
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performed by a board-certified neuropathologist (Department of Neuropathology,

University Hospital Heidelberg, Germany).
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Patient cohorts for validation of connectivity signature

TCGA (RRID:SCR 003193, https://www.cancer.gov/tcga, (33)) cohort: The RNA-Seq

gene expression matrix, somatic mutation information, CNV information and clinical
data of TCGA diffuse glioma samples were downloaded from UCSC Xena
(RRID:SCR_018938, http://xena.ucsc.edu). We obtained 146 samples from TCGA GB
cohort and 502 samples from TCGA lower grade glioma cohort. We further investigated
IDH mutation status and chromosome 1p/19q co-deletion status in all samples. Finally,
we obtained 230 IDH wt samples, 176 IDH mutant with 1p/19q co-deletion samples,
241 IDH mutant without 1p/19q co-deletion samples and one sample without clear
classification. The 230 IDH wt samples were subjected for connectivity signature
validation and survival analysis.

CGGA (RRID:SCR 018802, http://www.cgga.org.cn, (34)) cohort: We downloaded

clinical data and RNA-Seq gene expression matrix of 325 GB samples from the CGGA
webpage, of which 141 samples had /IDH wt and intact 1p/19q status. These 141
samples were subjected for connectivity signature validation and survival analysis.

IvyGAP (RRID:SCR 005044, (35)) cohort: We obtained RNA-Seq gene expression

matrix and corresponding laser micro-dissected anatomic structure information of 73
samples derived from 10 GB patients. Connectivity signature scores were calculated
in each sample.

Gene Expression Profiling Interactive Analysis (RRID:SCR 018294,

http://gepia.cancer-pku.cn, GEPIA, (36)): We downloaded the CHI3L1 gene

expression level (transcripts per million [TPM]) of RNA-Seq data from GEPIA, which
contains 31 tumor types from TCGA and related normal tissue samples from the

genotype-tissue expression (GTEXx).
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Molecular classification of TCGA RNA-seq

The TCGA and CGGA IDH wt GB samples were classified into three expression
subtypes (i.e., mesenchymal, classical and proneural) by single sample GSEA
analysis-based classification as described in (19) (ssGSEA, R codes from (19)). The
fragments per kilo base per million mapped reads (FPKM) expression matrix was used
as input for ssGSEA and 100,000 permutations was performed to obtain p values for

each subtype. Each sample was assigned to the subtype with the smallest p value.

Patient survival analyses

Connectivity signature scores were calculated in samples from TCGA and CGGA using
AddModuleScore function in Seurat (RRID:SCR_007322, v.3.1.5). The TCGA/CGGA
samples were assigned into three groups by Q1, Q2-Q3 and Q4 of connectivity scores.
Kaplan-Meier survival analysis in the three groups using overall survival times, and
Cox proportional hazards regression analysis with age, connectivity signature scores
and overall survival times were performed with the survival (RRID:SCR_021137, v.3.1-

12) and survminer (RRID:SCR_021094, v.0.4.2).

Statistical analyses

A p value of p < 0.05 was generally considered significant. The p value of mean
comparison between two groups was obtained by Mann-Whitney U test using ggpubr
(RRID:SCR_021139, v.0.4.0). Pearson correlation coefficients were calculated using
ggpubr (RRID:SCR_021139, v.0.4.0). Among the recurrent non-synonymous mutated
genes in at least 5% TCGA GB patients (27 genes), the connectivity signature score
related mutated genes were identified using wilcox.test function in R. Multiple testing

was adjusted and obtained FDR using p.adjust function in R.

59


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma

References

1. Alexander BM, Cloughesy TF. Adult Glioblastoma. J Clin Oncol
2017;35(21):2402-9 doi 10.1200/JC0O.2017.73.0119.

2. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al.
EANO guidelines on the diagnosis and treatment of diffuse gliomas of
adulthood. Nat Rev Clin Oncol 2021;18(3):170-86 doi 10.1038/s41571-020-
00447-z.

3. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al.
Single-cell RNA-seq supports a developmental hierarchy in human
oligodendroglioma. Nature 2016;539(7628):309-13 doi 10.1038/nature20123.

4. Venteicher AS, Tirosh |, Hebert C, Yizhak K, Neftel C, Filbin MG, et al.
Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by
single-cell RNA-seq. Science 2017;355(6332) doi 10.1126/science.aai8478.

5. Neftel C, Laffy J, Filboin MG, Hara T, Shore ME, Rahme GJ, et al. An Integrative
Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell
2019;178(4):835-49 e21 doi 10.1016/j.cell.2019.06.024.

6. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain
tumour cells interconnect to a functional and resistant network. Nature
2015;528(7580):93-8 doi 10.1038/nature16071.

7. Weil S, Osswald M, Solecki G, Grosch J, Jung E, Lemke D, et al. Tumor
microtubes convey resistance to surgical lesions and chemotherapy in gliomas.
Neuro Oncol 2017;19(10):1316-26 doi 10.1093/neuonc/nox070.

8. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M,
et al. Electrical and synaptic integration of glioma into neural circuits. Nature

2019;573(7775):539-45 doi 10.1038/s41586-019-1563-y.

60


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

10.

11.

12.

13.

14.

15.

16.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma
Gritsenko PG, Atlasy N, Dieteren CEJ, Navis AC, Venhuizen JH, Veelken C, et

al. p120-catenin-dependent collective brain infiltration by glioma cell networks.
Nat Cell Biol 2020;22(1):97-107 doi 10.1038/s41556-019-0443-x.

Osswald M, Solecki G, Wick W, Winkler F. A malignant cellular network in
gliomas: potential clinical implications. Neuro Oncol 2016;18(4):479-85 doi
10.1093/neuonc/now014.

Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L,
Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour
progression. Nature 2019;573(7775):532-8 doi 10.1038/s41586-019-1564-x.
Xie R, Kessler T, Grosch J, Hai L, Venkataramani V, Huang L, et al. Tumor cell
network integration in glioma represents a stemness feature. Neuro Oncol
2021;23(5):757-69 doi 10.1093/neuonc/noaa27s.

Schmid D, Warnken U, Latzer P, Hoffmann DC, Roth J, Kutschmann S, et al.
Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in
patients with brain malignancies. J Neurochem 2021 doi 10.1111/jnc.15350.
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al.
Integrated genomic analysis identifies clinically relevant subtypes of
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and
NF1. Cancer Cell 2010;17(1):98-110 doi 10.1016/j.ccr.2009.12.020.

Ku BM, Lee YK, Ryu J, Jeong JY, Choi J, Eun KM, et al. CHI3L1 (YKL-40) is
expressed in human gliomas and regulates the invasion, growth and survival of
glioma cells. Int J Cancer 2011;128(6):1316-26 doi 10.1002/ijc.25466.

Jung E, Osswald M, Blaes J, Wiestler B, Sahm F, Schmenger T, ef al. Tweety-
Homolog 1 Drives Brain Colonization of Gliomas. J Neurosci 2017;37(29):6837-

50 doi 10.1523/JNEUROSCI.3532-16.2017.

61


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma
17.  Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al.

Purification and Characterization of Progenitor and Mature Human Astrocytes
Reveals Transcriptional and Functional Differences with Mouse. Neuron
2016;89(1):37-53 doi 10.1016/j.neuron.2015.11.013.

18. He L, Vanlandewijck M, Raschperger E, Andaloussi Mae M, Jung B, Lebouvier
T, et al. Analysis of the brain mural cell transcriptome. Sci Rep 2016;6:35108
doi 10.1038/srep35108.

19.  Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor Evolution of
Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological
Changes in the Microenvironment. Cancer Cell 2017;32(1):42-56 e6 doi
10.1016/j.ccell.2017.06.003.

20. WangY, CuiJ, Sun X, Zhang Y. Tunneling-nanotube development in astrocytes
depends on pS53 activation. Cell Death Differ 2011;18(4):732-42 doi
10.1038/cdd.2010.147.

21.  Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. A p53-CBP/p300
transcription module is required for GAP-43 expression, axon outgrowth, and
regeneration. Cell Death Differ 2009;16(4):543-54 doi 10.1038/cdd.2008.175.

22.  Winkler F, Wick W. Harmful networks in the brain and beyond. Science
2018;359(6380):1100-1 doi 10.1126/science.aar5555.

23. Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F. Emerging
intersections between neuroscience and glioma biology. Nat Neurosci
2019;22(12):1951-60 doi 10.1038/s41593-019-0540-y.

24. Lewis WH. Mesenchyme and Mesothelium. J Exp Med 1923;38(3):257-62 doi
10.1084/jem.38.3.257.

25. van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC,

Delattre JY, et al. Adjuvant procarbazine, lomustine, and vincristine

62


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma

chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term
follow-up of EORTC brain tumor group study 26951. J Clin Oncol
2013;31(3):344-50 doi 10.1200/JC0O.2012.43.2229.

26. Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, et al.
Phase lll trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term
results of RTOG 9402. J Clin Oncol 2013;31(3):337-43 doi
10.1200/JC0.2012.43.2674.

27. Dolgin E. Cancer-neuronal crosstalk and the startups working to silence it. Nat
Biotechnol 2020;38(2):115-7 doi 10.1038/s41587-020-0411-9.

28. Lemke D, Weiler M, Blaes J, Wiestler B, Jestaedt L, Klein AC, et al. Primary
glioblastoma cultures: can profiling of stem cell markers predict radiotherapy
sensitivity? J Neurochem 2014;131(2):251-64 doi 10.1111/jnc.12802.

29. Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M.
Glioblastoma Stem-Like Cells Are More Susceptible Than Differentiated Cells
to Natural Killer Cell Lysis Mediated Through Killer Immunoglobulin-Like
Receptors-Human Leukocyte Antigen Ligand Mismatch and Activation
Receptor-Ligand Interactions. Front Immunol 2018;9:1345 doi
10.3389/fimmu.2018.01345.

30. Kessler T, Berberich A, Sadik A, Sahm F, Gorlia T, Meisner C, et al. Methylome
analyses of three glioblastoma cohorts reveal chemotherapy sensitivity markers
within DDR genes. Cancer Med 2020;9(22):8373-85 doi 10.1002/cam4.3447.

31.  Pfaff E, Kessler T, Balasubramanian GP, Berberich A, Schrimpf D, Wick A, et
al. Feasibility of real-time molecular profiling for patients with newly diagnosed
glioblastoma without MGMT promoter hypermethylation-the NCT Neuro Master
Match  (N2M2) pilot study. Neuro Oncol 2018;20(6):826-37 doi

10.1093/neuonc/nox216.

63


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.465791; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A connectivity signature for glioblastoma
32. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-

length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014;9(1):171-
81 doi 10.1038/nprot.2014.006.

33. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR,
et al. The somatic genomic landscape of glioblastoma. Cell 2013;155(2):462-77
doi 10.1016/j.cell.2013.09.034.

34. Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma
Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic
Data from Chinese Glioma Patients. Genomics Proteomics Bioinformatics 2021
doi 10.1016/j.gpb.2020.10.005.

35. Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, et al. An
anatomic  transcriptional atlas of human glioblastoma. Science
2018;360(6389):660-3 doi 10.1126/science.aaf2666.

36. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer
and normal gene expression profiling and interactive analyses. Nucleic Acids

Res 2017;45(W1):W98-W102 doi 10.1093/nar/gkx247.

64


https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/

