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Abstract 

Tumor cell extensions called tumor microtubes (TMs) in glioma resemble neurites 

during neurodevelopment and connect glioma cells to a network that has considerable 

relevance for tumor progression and therapy resistance. The determination of 

interconnectivity in individual tumors has been challenging and the impact of tumor cell 

connectivity on patient survival remained unresolved so far. Here, a connectivity 

signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary 

glioblastoma (GB) cells was established and clinically validated. Thirty-four of 40 

connectivity genes were related to neurogenesis, neural tube development or glioma 

progression, including the TM-network-relevant GAP43 gene. Astrocytic-like and 

mesenchymal-like GB cells had the highest connectivity signature scores in scRNA-

Seq data of patient-derived xenografts and patient samples. In 230 human GBs, high 

connectivity correlated with the mesenchymal expression subtype, TP53 wildtype, and 

with dismal patient survival. CHI3L1 was identified as a robust molecular marker of 

connectivity. Thus, the connectivity signature allows novel insights into brain tumor 

biology, provides a proof-of-principle that tumor cell connectivity is relevant for patients’ 

prognosis, and serves as a robust biomarker that can be used for future clinical trials. 

 

Statement of significance 

Integration of GB cells into functional networks drives tumor progression and 

resistance. Here, we established and validated a novel connectivity gene expression 

signature of single GB cells and whole tumors that can be easily applied to clinical and 

preclinical samples. It is shown that connectivity is determining prognosis combining 

molecular, functional and clinical insights into the disease.  
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Introduction 

Glioblastoma (GB) is the most common malignant primary brain tumor and patients 

have a median survival of about 15-20 months even when treated with full standard 

therapy (1). Resistance against new targeted approaches is pre-existing or acquired 

early and regularly, with no targeted therapy today that had proven efficacy in 

unselected studies (2). Tumor heterogeneity may play a major role in treatment 

resistance, as a subset of tumor cells might not be treatment sensitive, causing 

frequent and early relapses. Although not yet related to clinical resistance, different 

tumor cell populations have been detected by single-cell RNA sequencing (scRNA-

Seq) techniques (3-5). Malignant cells in GB exist in at least four main cellular states 

that recapitulate distinct brain cell types, are influenced by the tumor microenvironment, 

and exhibit plasticity (5).  

We have recently discovered that ultralong cellular protrusions named tumor 

microtubes (TMs) connect about half of the tumor cells to a multicellular network in 

patient samples of GB and preclinical models (6). Integration into these networks 

promotes resistance against radiotherapy (6), chemotherapy and surgical lesions (7). 

Until today, these TM networks have also been detected in incurable pediatric glioma 

types (8). TM networks facilitate long range communication of glioma cells by 

intercellular calcium waves, which is used for directed tumor self-repair, and a better 

cellular homeostasis (9,10). TM networks receive synaptic neuronal input that activates 

glioma network communication, further driving glioma invasion and proliferation (8,11). 

Tumor network connectivity appeared however variable between individual tumors (6) 

and the degree of connectivity relevant for the degree of resistance. Improved 

molecular understanding of connectivity to unravel candidate structures for intervention 

and the detection and quantification of the degree of connectivity in difficult to assess 

patient samples would be necessary to develop and evaluate disconnecting therapies 
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(10). Few molecular drivers for TMs and their networks have been identified so far 

(6,12), and the relation to single cell heterogeneity in a tumor is unknown.  

Here, we develop and validate a gene expression signature of tumor network 

connectivity using a functional intravital dye transfer approach with subsequent bulk 

RNA sequencing (RNA-Seq) and scRNA-Seq. Next to fundamental insights into the 

molecular features of TM network connectivity, the resulting connectivity signature 

score proved to be a straightforward, reliable, and prognostic biomarker for this central 

cellular underpinning of glioma malignancy.  

 

Results 

Development of a connectivity signature for GB 

We first aimed to explore the transcriptomic landscape of TM-connected GB cells. 

Three patient derived glioblastoma cell lines (PDGCLs), “S24”, “T269” and 

“P3XX”, were tagged by green fluorescent protein (GFP) and xenografted into 

mouse brains (Figure 1A). All three PDGCLs were confirmed to form TMs and TM-

networks in the xenografted mouse models (Figure 1B), thus reflecting the TM 

connectivity regularly seen in diffuse astrocytomas and GBs of patients (Figure 1C). 

To label the TM-connected tumor cells, we utilized sulforhodamine (SR) 101 based 

staining method (Figure 1A). SR101 is a red fluorescent dye that is transported via 

cell-to-cell connections and has been shown to preferentially label highly connected 

glioma cells after local (6) and systemic (11,12) application. After intravenous injection 

of SR101, highly connected tumor cells showed higher SR101 staining intensity 

compared to lowly connected tumor cells in these mouse models confirming the validity 

of the SR101 model used (Figure 1D-E). Tumors were then harvested and subjected 

to fluorescence-activated cell sorting (FACS). The FACS-sorted SR101high cells (highly 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.465791doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.465791
http://creativecommons.org/licenses/by-nc-nd/4.0/


A connectivity signature for glioblastoma 

6 
 

connected tumor cells) and SR101low cells (lowly connected tumor cells) were 

sequenced by RNA-Seq and scRNA-Seq (Figure 1A, Supplementary Table 1).  

To identify differentially expressed genes (DEGs) between highly and lowly connected 

tumor cells, multiple differential expression analyses (see Methods) were performed 

in the scRNA-Seq dataset of PDGCL xenografted mouse models. We obtained 71 

DEGs that conserved in at least two PDGCL xenografted mouse models (Figure 1F). 

Among the 71 DEGs, 40 DEGs were found to be upregulated and 31 DEGs 

downregulated in highly connected tumor cells. 34 of 40 (85%) upregulated DEGs were 

previously described in the context of general cellular connectivity, but mainly not 

known in GB, development of neuronal cells, or as characteristic markers of GB 

progression (Supplementary Table 2). Of these, growth associated protein 43 

(GAP43) has been characterized as a key player in TMs formation and TM-dependent 

cell-to-cell connectivity in gliomas (6) and apolipoprotein E (APOE) has recently been 

identified as a singular cluster marker for highly connected tumor cells (11).  

For comparison to scRNA-Seq dataset, SR101high and SR101low tumor cells from two 

PDGCLs (“S24” and “T269”) were subjected to RNA-Seq. 245 DEGs were 

identified in RNA-Seq data (Figure 1G), of which, 13 DEGs were also identified in 

scRNA-Seq analyses with a high fold change correlation (R = 0.89, p = 4.8x10-5, 

Figure 1H).  

Chitinase-3-like protein 1 (CHI3L1) was among the overlapped genes that showed the 

highest fold-change in both scRNA-Seq and RNA-Seq analyses (Figure 1H). 

Remarkably, we have recently identified CHI3L1 as a key cerebrospinal fluid proteomic 

biomarker in GB in an independent study (13) . The mRNA level and protein level of 

CHI3L1 in GB were highly correlated (n = 93, R = 0.85, Supplementary Figure 1A). 

Previous analyses found an association of CHI3L1 with the mesenchymal subtype in 

GB (14). Treatment of PDGCLs with CHI3L1 recombinant protein increased cell-to-cell 
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connectivity and addition of a monoclonal antibody against CHI3L1 decreased cell-to-

cell connectivity, arguing for a functional role of CHI3L1 in tumor cell connectivity 

(Supplementary Figure 1B-C). Furthermore, CHI3L1 was described to be involved in 

several cancer promoting mechanisms (15), therefore being one particularly interesting 

marker of highly connected tumor cells. 

To compare the scRNA-Seq derived 71 DEGs and the RNA-Seq derived 245 DEGs 

on a gene set level, gene ontology (GO) enrichment analysis was performed. 

“Negative regulation of neurogenesis” and “Negative regulation of nervous system 

development” were part of the main enriched GO terms commonly in both gene sets 

(Figure 1I), which further supports the finding the TM-network formation follows 

neurodevelopmental mechanisms. The GO semantic similarity between these two 

gene sets were high (similarity = 0.814). In addition, we performed enrichment analysis 

against all gene pre-ranked by folder changes between SR101high and SR101low 

samples, and found that“Neurogenesis” was significantly upregulated in SR101low 

samples in both scRNA-Seq and RNA-Seq datasets (Supplementary Figure 2). 

Furthermore, we calculated scores (see Methods) based on the average expression 

levels of the RNA-Seq-derived or scRNA-Seq-derived gene set. The performances of 

both scores were tested against the labels of the SR101 FACS sorting. The score 

based on scRNA-Seq-derived gene set yielded incrementally higher accuracy 

compared to score based on RNA-Seq-derived gene set (0.83 vs. 0.79, 

Supplementary Table 3). However, the overall concordances between both scores 

tested on scRNA-Seq and RNA-Seq data were high (R = 0.87 and R = 0.84 

respectively, Figure 1J-K). In addition, scores based on random generated gene sets 

used as negative controls resulted in expected poor performance (average accuracy = 

0.49). Therefore, we decided to use the scRNA-Seq derived gene set as a connectivity 
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signature for further evaluation. Hereafter, the term “connectivity signature” refers 

to the gene set of 71 connectivity related DEGs derived from scRNA-Seq of PDGCL 

xenografted mouse models, whereas the term “connectivity signature score” refers 

to a number calculated to describe the extent of connectivity based on the expression 

levels of the 71 DEGs. 
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Figure 1. Development of the connectivity signature. A, Experimental design of the 

connectivity signature development. B, Representative two-photon microscopy images 

of three xenografted PDGCLs used for scRNA-seq. Arrowhead showing TMs. Scale 

bars, 20 µm. C, Representative confocal microscopy image from a GB patient in three 

dimensions. Arrowhead showing TMs. Scale bar, 20 µm. D, Representative two-

photon microscopy images of S24 xenografted PDGCL; Red, SR101; Green, 

TurboGFP. Arrow mark showing highly connected cells and arrowhead showing lowly 

connected cells. E, Box plot of normalized SR101 intensity in 287 highly connected 

and 228 lowly connected cells from S24 xenografted PDGCL. P value was calculated 

by Mann-Whitney U test. ****, p < 0.0001. F, Heat map showing average expression 

levels of scRNA-Seq-derived 71 connectivity genes in SR101high and SR101low tumor 

cells from three xenografted PDGCLs. G, Heat map showing expression levels of RNA-

Seq-derived 245 connectivity genes in SR101high and SR101low samples (n = 3) from 

two xenografted PDGCLs. Expression levels were normalized and batch effect 

removed. H, Scatter plot showing the log2 fold changes of SR101high and SR101low 

samples in scRNA-Seq and RNA-Seq datasets. 13 common connectivity genes were 

plotted. I, Enrichment map showing 10 most enriched GO biological processes in 

scRNA-Seq-derived gene set and/or RNA-Seq-derived gene set. The Pie charts with 

two colors indicating the consensus GOs between scRNA-Seq-derived and RNA-Seq-

derived gene sets. The size of pie chart showing the number of overlapped genes 

between gene sets and GOs. J-K, Scatter plot showing connectivity signature scores 

based on connectivity genes derived from scRNA-Seq and RNA-Seq datasets. J, 

35,822 cells from three xenografted PDGCLs scRNA-seq dataset. K, 230 samples 

from TCGA IDH wt GB RNA-Seq datasets. F-G, J-K, Values were scaled and centered 

across samples/cells, and winsorized to -3 and 3. H, J-K, Pearson correlation test was 
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used to calculate correlation coefficients and p values. PDGCL, patient derived 

glioblastoma cell line. 

 

Two distinct GB cell subpopulations are characterized by high connectivity 

signature scores 

In scRNA-Seq of three PDGCL xenografted mouse models, we obtained 35,822 tumor 

cells with a median of 5,686 cells per sample and 2,086 genes per cell. We confirmed 

higher connectivity signature scores in SR101high compared to SR101low tumor cells 

(Figure 2A-B, Supplementary Figure 3A-C). The connectivity signature genes 

GAP43, APOE, and CHI3L1 had higher expression in the highly connected group 

(Figure 2C). Recent large single-cell studies have identified gene expression 

signatures that allow to identify distinct glioma cell states: astrocytic-like (AC), 

mesenchymal-like (MES), oligodendrocyte progenitor-like (OPC), and neuronal 

progenitor-like (NPC) (5). We applied these signatures on the scRNA-Seq data of 

PDGCL xenografted mouse models to associate connectivity signature scores with 

certain cell states (Figure 2D). Highly connected SR101high tumor cells were 

predominantly assigned to the AC and MES cell states while lowly connected SR101low 

tumor cells were mainly assigned to the NPC and OPC cell states (Figure 2D-E). The 

connectivity signature scores were higher in AC and MES1 cell states compared to 

NPC and OPC cell states (Figure 2F). An unexpectedly high degree of overlap was 

found between the connectivity signature genes and cell-state-defining genes, in 

particular in the AC and MES1 cell states (AC 10/40, 25%; MES1 7/51, 14%; MES2 

2/51, 4%; NPC1 1/51, 2%, Figure 2G). Several cell-state-defining genes of AC and 

MES1 cell states (5) are tumor cell connectivity associated genes in GB, like connexin 

43, also known as gap junction protein alpha 1 (GJA1, (6), tweety-homologue 1 

(TTYH1, (16) and the correlative marker APOE (11). Of the 40 upregulated DEGs in 
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highly connected tumor cells, a subset was primarily expressed in the AC or/and MES 

cells, while the 31 downregulated DEGs were expressed in OPC or/and NPC cells 

(Figure 2H). In summary, the SR101 methodology allowed us to not only provide a 

broad map of the transcriptomic properties of highly connected versus lowly connected 

GB cells, but also to link functional and molecular connectivity features to known 

distinct tumor cell subpopulations in GB. 

 

 

Figure 2. Connectivity signature scores in scRNA-seq of PDGCL xenografted mouse 

models. A, UMAPs of 35,822 cells in three xenografted PDGCLs scRNA-seq datasets. 
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Left, colored by the derived PDGCL. Middle, colored by SR101-based sorting. Right, 

colored by connectivity signature scores.  B, Box plot of connectivity signature scores 

in SR101high and SR101low cells. Left, cells from all three PDGCLs. Right, separated in 

each PDGCLs. P values were calculated by Mann-Whitney U test. ****, p < 0.0001.C, 

Density plot of normalized expression levels of genes in SR101high and SR101low cells. 

Upregulated common genes in scRNA-Seq-derived and RNA-Seq-derived 

connectivity genes (i.e., CHI3L1, HOPX, AGT, NMB, CLU, ID3) and the two 

upregulated scRNA-Seq-derived connectivity genes APOE and GAP43 are shown. D, 

UMAP of cells in PDGCLs colored by cell states. E, Distribution of cell states in 

SR101high and SR101low cells. F, Box plot of connectivity signature scores in each cell 

state. P values in MES1 and MES2 were calculated by Mann-Whitney U test. G, Venn 

diagram showing the number of overlap genes between 71 connectivity genes and 

cell-state-defining genes. H, Dot plot of average expression levels of each connectivity 

gene in each cell state. Dot size indicates the frequency of cells that express the 

respective gene. Top, 40 upregulated connectivity genes in SR101high cells. Bottom, 

31 downregulated connectivity genes in SR101high cells. A, B, F, Connectivity signature 

scores were scaled and centered across cells, and winsorized to -3 and 3. 

 

The connectivity signature score reflects true cell-to-cell connections in GB 

To cross-validate that the connectivity signature score reflects actual morphological 

and physiological tumor cell connectivity, we first assessed its performance in induced 

connectivity of tumor cells experimentally in vitro. Four PDGCLs were subjected to 

different culture conditions: in the “TM+” condition, the cells adhered to the bottom 

of the flask and increasingly extended TMs, interconnecting single GB cells to tumor 

cell networks, while in the “TM-” condition, the cells formed floating spheroids and 

cells interconnections by TM were much less observed (Figure 3A-B).  
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We then performed scRNA-Seq of tumor cells from four PDGCLs cultured under TM+ 

and TM- conditions and obtained 735 cells with a median of 90 cells per sample and 

4,893 genes per cell (Supplementary Table 1). PDGCLs cultured under the two 

conditions clustered separately from each other in a Uniform Manifold Approximation 

and Projection (UMAP) analysis (Figure 3C), with a higher connectivity signature score 

in TM+ cultured cells when compared to those cultured under TM- conditions (Figure 

3D) confirming that experimental induction of TMs and their multicellular networks 

accompanied with an increase in the connectivity signature score. Furthermore, 

increased expression of three main markers of connectivity, GAP43, APOE and 

CHI3L1 in TM+ cells was confirmed by qPCR (Supplementary Figure 4A).  

Next, we aimed to validate the impact of the connectivity signature score in GB patient 

tumor tissues. We used immunofluorescence staining of nestin to assess connectivity 

in three patient tumor samples with high connectivity signature scores and three 

samples with low connectivity signature scores (Figure 3E and Supplementary 

Figure 4B). Samples with high connectivity signature scores showed increased length 

of TM-like structures compared to those with low connectivity signature scores (Figure 

3F), which is a good estimation for TM connectivity in thin paraffin sections (6).  

Together, this data supports the validity of the connectivity gene expression signature, 

both by in vitro assays and patient samples, confirming a meaningful interrelation of 

cellular and connectivity signature score-determined molecular connectivity. 
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Figure 3. Connectivity signature scores reflected the true cell-to-cell connections. A, 

Representative confocal microscopy images from four PDGCLs. Top, cells cultured in 

TM- condition. Scale bars, 500 µm. Middle, zoom in from the top panel. Scale bars, 

100 µm. Arrows indicate TMs.  Bottom, cells cultured in TM+ condition. Scale bars, 

500 µm. B, Box plot of the sum of TM lengths (µm) per live cell in 63 image crops of 
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PDGCLs. Left, cells from all four PDGCLs. Right, separated in each PDGCL. C, 

UMAPs of 735 cells of the four PDGCLs. Left, colored by the derived PDGCL. Middle, 

colored by culturing conditions. Right, colored by connectivity signature scores. Scores 

were scaled and centered across cells, and winsorized to -3 and 3. D, Box plot of 

connectivity signature scores in cells. Left, cells from all four PDGCLs. Right, separated 

in each PDGCL. E, Representative immunohistochemistry staining images of TMs in 

six GB patients. Top, three patients with high connectivity signature scores (H1, H2 

and H3). Bottom, three patients with low connectivity signature scores (L1, L2 and L3). 

Scale bars, 20 µm. F, Box plot of 898 TM lengths (µm) in patients. Left, TM lengths in 

all patients. Right, median of TM lengths per image crop in each patient (n = 3). B, D, 

F, P values in TM+ and TM- groups or high and low connectivity signature score groups 

were calculated by Mann-Whitney U test. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, 

p < 0.0001.  

 

Applying the connectivity signature to GB patient samples 

To test the performance of the connectivity signature in patient GB cells, 21 GB tumor 

samples were subjected to scRNA-Seq. All tumors were diagnosed as GB, isocitrate 

dehydrogenase (IDH) wildtype (wt), world health organization (WHO) grade 4, and the 

diagnoses were confirmed with methylation array analysis (Supplementary Table 4). 

A median of 11,192 cells per sample and 995 genes per cell passed quality control 

totaling in 213,444 single cells (Figure 4A, Supplementary Figure 5A, 

Supplementary Table 4).  

We classified malignant and non-malignant cells using previously defined marker 

genes (5,17,18) and copy number variation (CNV) analysis (Figure 4A-C, 

Supplementary Figure 5A-D). Within the malignant cells, the AC cells were 

predominant in most tumors although a high degree of heterogeneity in the cell states 
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was observed between the tumors (Figure 4D). The connectivity signature score was 

also highly heterogeneous between tumors (Figure 4E), but consistently highest in AC 

and MES1 tumor cells and lowest in OPC and NPC like cells, confirming the results 

from the xenografted mouse models (Figure 4F-I).  

Furthermore, the higher number of analyzed tumor cells allowed us to detect that AC 

tumor cells, similarly to the MES tumor cells, display two subgroups with higher (named 

AC1) and lower (named AC2) connectivity signature score (Figure 4J-K). The 

frequency of AC1 tumor cells in patient samples, but not the frequency of AC2, highly 

correlated with the median connectivity signature scores in each sample (Figure 4L). 

We analyzed DEGs between AC1 and AC2 cells and found APOE and CHI3L1 to be 

significantly upregulated in AC1. GO term enrichment analysis on DEGs identified 

“synapse organization” as the GO term involving the largest number of DEGs 

(Figure 4M). This is in line with the recent discovery that glutamatergic neuron-glioma 

synapses do exist, mainly located on TMs, with the glioma cell as the principle 

postsynaptic partner, and with neuronal synaptic input which is strongly associated 

with glioma network activation (8,11).  

Here, we could validate in human GB samples that in particular tumor cells from two 

distinct subpopulations - AC1 and MES1 – are responsible for the establishment of 

cell-to-cell connectivity. 
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Figure 4. Connectivity signature scores in snRNA-Seq of patient samples. A, UMAP 

of 213,444 single cells from 21 GB patient samples. Left, colored by samples. Right, 
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colored by cell types. B, Heat map of average expression levels of top 50 markers per 

cell type. Expression levels were scaled and centered across cell types, and winsorized 

to -3 and 3. C, Frequency of malignant and non-malignant cell types in each sample. 

D, Frequency of malignant cell states in each sample. E, Frequency of connectivity 

signature score group in each sample. Connectivity signature scores were grouped by 

four quartiles. F, Heat map showing connectivity signature scores and cell state 

signature scores in patient malignant cells. Each column represents one cell. G, 

UMAPs of patient malignant cells. Left, colored by cell states. Right, colored by 

connectivity signature scores. H-J, Two-dimensional representation of patient 

malignant cells according to cell state signature scores. H, colored by connectivity 

signature scores. I, colored by cell states. J, represented only AC cells (zoomed in 

from H). AC cells are separated by a line with slope 1 into AC1 and AC2 subtypes. K, 

Box plot of connectivity signature scores in AC1 and AC2 subtypes. P values in two 

groups were calculated by Mann-Whitney U test. ****, p < 0.0001. L, Scatter plot 

showing frequency of AC subtypes (Left, AC1; Right, AC2) and the median connectivity 

signature scores per patient sample. Dot indicates patient sample. 21 patient samples 

were shown. Pearson correlation test was used to calculate correlation coefficients and 

p values. M, The enriched GOs of 100 DEGs between AC1 and AC2 subtypes. Top 10 

GOs were ordered by the number of genes overlapped between GO genes and DEGs. 

F, G, H, J, K, Signature scores were scaled and centered across cells, and winsorized 

to -3 and 3. 

 

The connectivity signature gene CHI3L1 is a robust marker for connectivity 

The analyses outlined previously suggested a role for CHI3L1 in our connectivity 

signature. Therefore, we investigated the expression pattern of CHI3L1 more deeply. 

CHI3L1 is a conserved marker for SR101high cells across all cell states. CHI3L1 
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expression was highly correlated with connectivity signature scores in both The Cancer 

Genome Atlas (TCGA, n = 230) and Chinese Glioma Genome Atlas (CGGA, n = 141) 

IDH wt GB datasets (r = 0.73, p < 2.2*10-16, Figure 5A), which is the highest correlation 

of any single gene. Furthermore, higher CHI3L1 expression was associated with worse 

overall survival in both patient datasets (Figure 5B-C). This effect was retained in a 

multivariate analysis adjusting for ages and genders (Figure 5C). High CHI3L1 

expression was found to be highly specific for GB compared to 30 other tumor types 

and related normal tissues (Figure 5D). Consistently, in our scRNA-Seq data of patient 

samples, CHI3L1 expression was high in the high connectivity AC1 and MES1 tumor 

cell populations, but low in low connectivity tumor cell populations as well as non-

malignant astrocytes, oligodendrocytes, vascular and immune cells (Figure 5E). To 

test whether CHI3L1 expressed areas are directly associated with cell-to-cell 

connected areas, we used tumors with high connectivity signature scores and long 

protrusions, and tumors with low connectivity signature scores and short protrusions. 

In tumors with long protrusions and high connectivity signature scores, we measured 

higher CHI3L1 protein levels assessed by immunohistochemistry for each sample 

(Figure 5F-H). In particular, even in heterogenous tumors, the correlation of CHI3L1 

staining intensity and TM length assessment was also valid within the matched crops 

in adjacent sections (Supplementary Figures 6-7).  

Together, this data suggests a functional role of CHI3L1 in tumor cell connectivity and 

CHI3L1 RNA and protein expression as an alternative way to determine overall tumor 

(cell) connectivity in GB if determination of the connectivity signature score by scRNA-

Seq or RNA-Seq analysis is not possible. 
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Figure 5. CHI3L1 expression levels are correlated with connectivity. A, Scatter plot 

showing correlation between CHI3L1 expression level (log2(FPKM+1)) and 

connectivity signature scores in 230 TCGA IDH wt GB RNA-Seq samples (left panel) 

and 141 CGGA IDH wt GB RNA-Seq samples (right panel). Connectivity signature 

scores were scaled and centered across samples, and winsorized to -3 and 3. Pearson 

correlation test was used to calculate correlation coefficients and p values. B, Kaplan-

Meier survival analysis (Left, TCGA; Right, CGGA) according to CHI3L1 expression 

groups (grouping by the first quartile [Q1], the two middle quartiles [Q2-Q3], and the 
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last quartile [Q4] of CHI3L1 expression levels). C, Cox proportional hazards regression 

survival analysis in cohorts (Top, TCGA; Bottom, CGGA). Univariate analysis with 

CHI3L1 expression levels and multivariate analysis with CHI3L1 expression levels 

(log2[FPKM+1]) adjusted for ages and genders. Exponents of the coefficients (Exp. 

coef.) with 95% confidence intervals (95% int.) indicated the hazard ratio of higher 

CHI3L1 expression levels. D, Median CHI3L1 expression levels (TPM) in 31 tumor 

types and related normal tissue retrieved from GEPIA. GB cohort is highlighted in red. 

E, Box plot of CHI3L1 expression levels in malignant cell states and non-malignant cell 

types from snRNA-Seq dataset of 21 GB patient samples. F-H, Immunohistochemistry 

staining of CHI3L1 in three patients with high connectivity signature score (H1, H2 and 

H3), and three patients with low connectivity signature score (L1, L2 and L3). F, 

Representative images of CHI3L1 staining. G, Box plot of weighted histoscores of 

CHI3L1 staining per sample. H, Frequency of CHI3L1 staining intensity of cells per 

sample. 

 

Higher connectivity is found in tumors of the mesenchymal expression 

subtype and TP53 wt tumors 

Next, the connectivity signature was applied to the 230 IDH wt GBs from the TCGA 

RNA-Seq dataset. The goal of this analysis was to identify the associations between 

the connectivity signature scores, expression subtypes (19), and gene mutations. The 

mesenchymal expression subtype was associated with the highest connectivity 

signature score, while the lowest score was observed in the proneural subtype (Figure 

6A). Mesenchymal subtype consisted mainly of MES1 and AC1 signatures, whereas 

classical tumors were found to be purely AC and proneural tumors had high frequency 

of OPC and NPC signatures (Figure 6B). In the classical and proneural tumors, we 

found a higher fraction of the low connectivity AC2 signatures probably accounting for 
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lower connectivity signature score (Figures 6B-C). The associations of the 

connectivity signature score and expression subtypes were validated in the CGGA 

cohort (n = 141, Supplementary Figure 8A-D). 

Among the recurrent mutated genes in at least 5% GB patients (27 genes), two 

mutated genes, neurofibromatosis type 1 (NF1) and tumor protein p53 (TP53), were 

associated with connectivity signature scores (false discovery rate [FDR] < 0.25). NF1 

mutations were present in 35/230 (15%) of GB patients in the TCGA cohort, which are 

associated with the mesenchymal subtype (14), were correlated with higher 

connectivity signature scores. Even when comparing tumors only of the mesenchymal 

subtype, NF1 mutations were still associated with a higher connectivity signature score 

(Supplementary figure 8E). TP53 mutations were present in 57/230 (25%) of the GB 

patients in the TCGA cohort and were correlated with a lower connectivity signature 

score (Figure 6D), which might be in line with the TP53 dependency of nanomembrane 

tube formation in astrocytes (20). Moreover, expression of CHI3L1 was higher in TP53 

wt tumor tissue samples than in samples with TP53 mutation (Supplementary Figure 

8F). Despite the same trend, no significant difference was observed for GAP43 and 

APOE (Supplementary Figure 8F). On a functional level overexpression of TP53 wt 

in GB tumor cells had only a minor effect on CHI3L1 expression (Supplementary 

Figure 8G). However, overexpression of the two different dominant mutant GB TP53 

hotspot mutations R175H and R248W inhibited TP53 downstream activity as 

measured by with cyclin dependent kinase inhibitor 1A (CDKN1A) expression and 

most importantly reduced RNA expression of two main connectivity markers CHI3L1 

and GAP43 (Figure 6E). This argues for a functional relation between CHI3L1 and 

GAP43 expression and TP53 mutations. Previous studies already suggested that 

functional TP53 is necessary for GAP43 expression and axon outgrowth (21), 

supporting the functional role of TP53 mutations in tumor cell connectivity.   
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Cell-to-cell connectivity is associated with worse patient survival 

Importantly, the impact of tumor cell connectivity on patient survival remained 

unresolved so far. To clarify this point, multiple survival analyses of connectivity 

signature scores were performed in TCGA and CGGA IDH wt GB patient cohorts. The 

shortest survival was found for patients with the highest quartile of connectivity 

signature score (Kaplan-Meier survival analysis on three connectivity signature score 

groups, Figure 6F). A constant increase in the risk of death correlated with the increase 

of connectivity signature score (Cox proportional hazards regression survival analysis 

on continuous connectivity signature scores, Figure 6G). The association of the 

connectivity signature score with patient survival remained significant after adjusting 

for ages and genders in a multivariate analysis (Figure 6G).  

Furthermore, we adjusted the survival analysis for ages, genders as well as expression 

subtypes in the TCGA cohort, and found that patients with higher connectivity signature 

scores had an increasing risk of death (p = 0.0128, Supplementary Figure 9A). To 

more specific, in proneural subtype patients, high connectivity signature score group 

had lower survival probability (p = 0.031, Supplementary Figure 9B). Mesenchymal 

subtype patients had a similar trend as proneural subtype patients, but not significant 

(p = 0.065, Supplementary Figure 9B). This trend was not found in classical subtype 

patients (Supplementary Figure 9B). As a comparison to connectivity signature score, 

we performed similar survival analysis for CHI3L1 expression levels (Supplementary 

Figure 9C-D). CHI3L1 expression did not show a significant association with patient 

survival after adjusting for expression subtypes (Supplementary Figure 9C-D). At this 

point of view, the 71-gene-synthesized connectivity signature score outperformed one-

gene marker CHI3L1. 

Even though the connectivity signature was not particularly developed for IDH mutant 

gliomas, the connectivity signature score proved to be higher in astrocytic (1p/19q 
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intact) compared to oligodendroglial (1p/19q codeleted) IDH mutant gliomas, reflecting 

previous histology-based morphological data (6). In IDH mutant glioma, only a trend 

for worse survival (p = 0.097) was detectable for patients with high connectivity 

signature score (Supplementary Figure 9E-G).  

Finally, as sampling of tumor tissue for sequencing is mainly performed in one spot per 

tumor in routine analysis, we estimated the impact of different locations in the tumor 

on the connectivity signature score by analyzing the Ivy Glioblastoma Atlas Project 

(IvyGAP) dataset. The connectivity signature scores were lower in the leading edge 

compared to cellular and infiltrating tumors (Figure 6H), in line with the known higher 

anatomical and functional tumor cell connectivity in more solid established glioma 

areas (6,16).  
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Figure 6. Expression subtype and patient prognosis are related to connectivity 

signature scores in validation cohorts. A-D, F-G, 230 TCGA GB samples. F-G, 141 

CGGA GB samples. H, 73 IvyGAP GB samples. A, Box plot of connectivity signature 

scores in three GB expression subtypes (81 mesenchymal, 87 classical and 62 

proneural). B, Frequency of dominant cell states in each expression subtype. C, 

Frequency of connectivity signature score groups in each expression subtype. 

Connectivity signature scores grouped by Q1, Q2-Q3 and Q4. D, Connectivity 
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signature scores in samples grouped by mutation status (synonymous mutations were 

removed). Left, 195 NF1 wt and 35 NF1 mutated samples. Right, 173 TP53 wt and 57 

TP53 mutated samples. P values were calculated by Mann-Whitney U test. *, p < 0.05; 

**, p < 0.01; ***, p < 0.001. E, Bar plot of relative gene expression by qPCR of TP53, 

CDKN1A, CHI3L1, GAP43 and APOE in TP53-mutant overexpressing (TP53 R175H 

and TP53 R248W) against TP53 wt overexpressing (TP53 WT) GB cell lines (n = 3). 

F, Kaplan-Meier survival analysis in cohorts (Left, TCGA; Right, CGGA) stratified into 

groups using Q1, Q2-Q3 and Q4 of the connectivity signature score. G, Cox 

proportional hazards regression survival analysis in cohorts (Top, TCGA; Bottom, 

CGGA). Univariate analysis with connectivity signature scores and multivariate 

analysis with connectivity signature scores adjusted for ages and genders. H, Boxplot 

of connectivity signature scores in three structure groups (30 cellular tumor, 24 

infiltrating tumor and 19 leading edge) from IvyGAP cohort. A, D, H, Connectivity 

signature scores were scaled and centered across samples per cohort, and winsorized 

to -3 and 3. 

 

Discussion 

While the discovery of communicating, self-repairing and resistant tumor cell networks 

has changed our understanding of incurable gliomas, with multiple clinical implications 

(22), the measurement of this crucial tumor cell connectivity in patient samples, and a 

deeper understanding of its molecular underpinnings remained elusive. In this study, 

a connectivity signature score was established that proved feasible and valid to rapidly 

assess the degree of TM connectivity in various gliomas, was associated with AC1 and 

MES1 cell states, the mesenchymal expression subtype, and with worse patient 

survival (Figure 7). Furthermore, a considerable number of known and unknown genes 

associated with TM connectivity in GB were identified. The unexpectedly high 
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proportion of upregulated genes (34/40, 85%) in the scRNA-Seq-derived connectivity 

signature that have been previously associated with neurogenesis, neural tube 

development or glioma progression highlights its biological plausibility (6,22,23) and 

the utility of this new connectivity signature for further in-depth gene analysis and use 

in clinical studies.  

 

 

Figure 7. Summary and graphical abstract: TurboGFP-labeled PDGCLs (left box) were 

orthotopically implanted into mice. After tumor establishment, highly connected and 

lowly connected populations were sorted using a SR101 and sequenced by RNA-Seq 

and scRNA-Seq (left box). Differentially expressed genes revealed a potential 

molecular signature associated with connected and unconnected cells (bottom of the 
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middle part). Applying this connectivity signature to previously reported GB cell states 

deciphered MES1 and AC as the ones with the highest connectivity signature score. 

Within the AC population, a subpopulation with an increased connectivity signature 

was identified (center). High-scoring cells were enriched for TP53 wt and NF1 mutation. 

CHI3L1 is a robust marker of highly connected cells (top box). In vitro PDGCL and 

patient paraffin sections with a high connectivity signature score showed a highly 

connected phenotype. Lastly, patients with a high connectivity signature score had a 

less favorable outcome than patients with a low score (right box). 

 

For comparison to scRNA-Seq-derived connectivity signature, we also identified the 

RNA-Seq-derived connectivity signature. These two signatures have only a small 

proportion of overlapping genes (18% in scRNA-Seq-derived signature, 5% in RNA-

Seq-derived signature), because of the differences between the sequencing 

technologies, especially the high drop-out rate in 10X scRNA-Seq technology. The 

correlation of fold changes in all 16,759 quantified genes between scRNA-Seq and 

RNA-Seq is low (R = 0.33, Supplementary Figure 10A). While focusing on the genes 

expressed in at least 10% cells of scRNA-Seq dataset, the correlation increased to 

medium (R = 0.56, Supplementary Figure 10B). While only focusing on the significant 

DEGs, the correlation further increased to R = 0.77 (Supplementary Figure 10C). The 

overlapping genes between two connectivity signatures have a high correlation (R = 

0.89, Figure 1H). What´s more, the enriched GO biological processes, semantic 

similarity, and connectivity signature scores between two connectivity signatures have 

high concordances. These indicate a robustness of the development of connectivity 

signature, even with the two different experimental approaches.  

It is challenging to measure tumor cell connectivity in patient samples robustly and 

reproducibly with standard histology (6). Therefore, a molecular gene expression 
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connectivity signature that can be easily used to calculate a score has several 

advantages and can be applied on sequencing datasets from fresh tumor material, by 

RNA-Seq or – when available – scRNA-Seq. 

Even simpler, CHI3L1 expression correlates particularly well with the connectivity 

signature score, and the addition of recombinant CHI3L1 protein as well as antibody 

blocking modulates connectivity, strongly suggesting a functional role of CHI3L1 in 

tumor cell connectivity rather than a pure correlative marker. RNA expression or 

immunohistochemistry of CHI3L1 could therefore be a good estimator of tumor cell 

connectivity that could be easily used in a clinical setting from formalin-fixed paraffin 

embedded (FFPE) tissue when high-throughput scRNA-Seq or RNA-Seq methods are 

not feasible or available.  

TP53 mutations were identified to be associated with higher connectivity signature 

score. This is remarkable as besides NF1 mutation as a mesenchymal marker no other 

small nuclear variant was associated with the connectivity signature score. TP53 

mutations may not be all alike and therefore more mutation type specific investigations 

are warranted in further studies.  

Besides the increased TM-connectivity in AC tumor cells, which appears plausible 

given the principal connective nature of astrocytic cells, and AC tumor cells reflecting 

astrocytic programs, also a subset of MES tumor cells showed TM-connectivity. 

Accordingly, it has been observed long ago that “mesenchymal development” is 

characterized by single cells connected via long cellular processes to a functional 

syncytium” (24), not unlike the tumor cell networks in GB.  

Finally, survival analysis showed a clear association of the tumors with the highest 

connectivity signature scores and worse patient outcome. This is in line with our 

previous preclinical findings that tumor cell connectivity by a cellular network of TM 

connections is a resistance factor to all standard glioma therapies (6,7,10,22). We have 
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shown before that the prognostically favorable oligodendrogliomas (25,26) do not form 

a relevant TM-connected tumor cell network and a low expression of key TM drivers. 

As a further validation, we confirmed a lower connectivity signature score in the 

oligodendroglial tumors (6,16).   

Besides O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for 

alkylating chemotherapy, there is no clinically established marker for assessing the 

resistance to radiotherapy, chemotherapy, and surgery in glioma. The connectivity 

signature developed here can serve as a molecular fingerprint for a key mechanism of 

resistance, and thus as a prognostic and even predictive biomarker. This biomarker, 

however, needs further validation in prospective clinical trials before it can be used to 

assign patients to treatment groups in clinical trials. Finally, it can also serve as a 

biomarker for future disconnection strategies that are currently in preclinical 

development (27).  

This proof-of-concept study to collectively investigate the genetic background of glioma 

cell-to-cell connectivity on single cell level has several limitations. The main limitation 

is based on the SR101 dye transfer model, which is a proven (11,12) yet not dichotomic 

discriminator of existing or non-existing cellular connectivity in gliomas. Therefore, we 

implemented several confirmatory measures on functional experimental and 

anatomical levels to assure that changes in connectivity signature score are 

accompanied by true changes of TM network formation. Other limitations are related 

to the ability to transduce the connectivity signature from a xenografted patient derived 

model to patient samples. In particular, current practice of taking samples from one or 

at best a few parts of the tumor for RNA sequencing may not account for potential 

intratumoral heterogeneity of TM-connectivity which may relate to cell density, hypoxia, 

molecular heterogeneity and the microenvironment. Analyses of the IvyGAP shows 
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lower connectivity results in the leading edge part of tumors, which at least argues for 

an important role of the side from where the sample is taken.  

In conclusion, we developed a connectivity signature with a respective score 

calculation for GBs based on scRNA-Seq analysis and identified biologically plausible 

markers in highly connected tumor cells for further investigation and confirmation in 

preclinical and clinical trials. CHI3L1 expression has emerged as the easiest to assess 

single marker gene of the signature that can even be determined in standard paraffin 

sections. This offers the opportunity to translate the recent fundamental insights into 

key elements of tumor biology in GB into clinical trials and ultimately into clinical 

practice. 
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Methods 

Cell culture of PDGCL xenografted mouse models 

PDGCLs S24 and T269 were established from freshly dissected GB tissue from adult 

patients after informed consent (28). PDGCLs P3XX and BG5 were kindly provided by 

Hrvoje Miletic, K. G. Jebsen Brain Tumour Research Centre, University of Bergen (29). 

All four tumors have been diagnosed as GB, IDH wt. Methylation profiling with the 

methylation EPIC array (#WG-317-1003, Illumina, San Diego, California, USA) was 

used to confirm GB origin. S24 is characterized by a GB receptor tyrosine kinase (RTK) 

I, whereas BG5, P3XX and T269 exhibit a GB RTK II methylation subtype 

(Supplementary Table 1 and (30). PDGCLs were cultured as neurospheres under 

serum-free, non-adherent, ”stem-like” conditions in PDGCL media, consisting of 

DMEM/F-12 (#11330-032, Life Technologies, part of ThermoFisherScientific, Waltham, 

Massachusetts, USA), B27 supplement (#17504044, Life Technologies, part of 

ThermoFisherScientific, Waltham, Massachusetts, USA), insulin (#I9278, Sigma, part 

of Merck, Darmstadt, Germany), heparin (#H4784, Sigma, part of Merck, Darmstadt, 

Germany) epidermal growth factor (EGF; #PHG0311, Life Technologies, part of 

ThermoFisherScientific, Waltham, Massachusetts, USA) fibroblast growth factor (FGF; 

#PHG0021, Life Technologies part from ThermoFisherScientific, Waltham, 

Massachusetts, USA).  

In order to allow identification and re-isolation after tumor resection, PDGCLs were 

lentivirally transduced with the MISSION® shRNA vector pLKO.1-puro-CMV-Turbo 

green fluorescent protein (TurboGFP)_shnon-target (#SHC016, Sigma, part of Merck, 

Darmstadt, Germany) for cytosolic TurboGFP expression. The production of lentiviral 

particles and cellular transductions was carried out as described previously (6). 

Successfully transduced tumor cells were selected using 1 µg/ml puromycin 

(#A2856.0100, Applichem, Darmstadt, Germany) and FACS sorting. 
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All four PDGCLs were regularly checked for authenticity and absence of infections, e.g. 

with mycoplasms and non-human cell contamination by multiplex cell contamination 

test (Multiplexion GmbH, Heidelberg, Germany). 

 

Correlation of SR101 staining with TMs in PDGCL xenografted mouse models 

All in vivo experiments in this study were approved by the local authorities 

(Regierungspräsidium Karlsruhe, Germany) and compliant with the institutional 

laboratory animal research guidelines. All efforts were made to minimize animal 

suffering and to reduce the number of animals used according to the 3R’s principles. 

Experiments were carried out as already described (6). Striatal tumor bearing male 

Crl:NMRI-Foxn1nu nude mice (RRID:MGI:5653040, Charles River, Wilmington, 

Massachusetts, USA) were intravenously injected with SR101 (#S359, Invitrogen, part 

of ThermoFisherScientific, Waltham, Massachusetts, USA) dissolved in sterilized 

saline solution (#2350748, B. Braun Melsungen AG, Melsungen, Germany) using a 

dose of 0.12 mg per g body weight. Repetitive intravital 2-photon microscopy was 

performed after SR101 injection using a Zeiss 7MP microscope (Zeiss, Oberkochen, 

Germany) equipped with a Coherent Chameleon UltraII laser (Coherent, Santa Clara, 

California, USA) and a band-pass 500–550 and 575–610 nm filter. SR101 was excited 

at 900 nm and TurboGFP at 950 nm 38-150 cells were analyzed in n=5 regions in 3 

animals on D64+/-9 days. SR101 intensities of highly connected and lowly connected 

GB cells were measured in the cell bodies. The signal intensity was normalized by the 

mean value of the highest 10% of intensities in the respective region.   
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Separation of highly and lowly connected cells in PDGCL xenografted mouse models 

PDGCL spheroids were dissociated into a single cell suspension using Stem-Pro 

Accutase™ (#1110501, ThermoFisherScientific, Waltham, Massachusetts, USA). 

5x104 viable cells were slowly injected into the right hemisphere of 8-10 week old male 

Crl:NMRI-Foxn1nu nude mice (RRID:MGI:5653040; Charles River, Wilmington, 

Massachusetts, USA) using a 10 µl micro-syringe (#80308, Hamilton, Reno, Nevada, 

USA) driven by a stereotactic device (Stoelting, Wood Dale, Illinois, USA). The exact 

coordinates were 2 mm right lateral of the bregma and 1 mm anterior to the coronal 

suture with an injection depth of 2-3 mm below the dural surface. Tumors were grown 

until the mice showed first symptoms or ≥20% weight loss were met. Mice were 

intraperitoneally injected with SR101 (#S359, Invitrogen, S359, Invitrogen, part of 

ThermoFisherScientific, Waltham, Massachusetts, USA) dissolved in sterilized saline 

solution (#2350748, B. Braun Melsungen AG, Melsungen, Germany) using a dose of 

0.12 mg per g body weight. After an incubation period to ensure maximum SR101 

uptake from PDGCL cells, mice were deeply anesthetized with ketamine/Ketaset® 

(#794-523, Zoetis, Berlin, Germany) and xylazine/Rompun® (#770-081, Bayer, 

Leverkusen, Germany) and transcardially perfused with sterilized phosphate buffer 

saline (PBS, #D8537, Sigma, part of Merck, Darmstadt, Germany). The whole brain 

samples were removed and prepared into cell suspension using brain tumor 

dissociation kit (#130-095-942, Miltenyi Biotec, Bergisch Gladbach, Germany) and 

gentleMACSTM Dissociator (#130-093-235, Miltenyi Biotec, Bergisch Gladbach, 

Germany). The cell pellet was resuspended in FACS buffer, consisting of 1% fetal calf 

serum (FCS; #S0615, Sigma, part of Merck, Darmstadt, Germany) in PBS, and 

proceeded with FACS sorting. 

FACS: The single cell suspension freshly prepared from xenografted brains was 

incubated with eBioscienceTM Calcein Violet 450 AM (#65-0854-39, Invitrogen, part of 
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ThermoFisherScientific, Waltham, Massachusetts, USA) and TO-PROTM-3 Iodide 

(#T3605, Invitrogen, part of ThermoFisherScientific, Waltham, Massachusetts, USA) 

for 10 min on ice prior to sorting. Standard gating techniques were used to discriminate 

doublets and dead cells. The viable fraction was defined by TO-PROTM-3 Iodide 

negativity and Calcein Violet 450 AM positivity. To further allow discrimination of the 

non-malignant cells, the TurboGFP population was selected for separation of highly 

connected tumor cells (SR101high) and lowly connected tumor cells (SR101low) using 

the FACSAria™ cell sorter (BD Biosystems, Franklin Lakes, New Jersey, USA). The 

following filters were used: V450/50 (Calcein Violet), B530/30(TurboGFP), YG586/15 

(SR101) and R650/17 (TO-PROTM-3). 

 

RNA-Seq data generation and preprocessing from PDGCL xenografted mouse models  

Sorted tumor cells were resuspended in lysis buffer included as a part of the RNeasy® 

Micro Kit (#74004, Qiagen, Hilden, Germany). mRNA was then isolated and purified in 

accordance with the manufacturer’s instructions. The conversion of RNA to DNA was 

done with the SMARTer® Ultra® Low Input RNA for Illumina Sequencing (#634940, 

TakaraBio, Kusatsu, Japan). The libraries were then prepared using NEBNext® ChIP-

Seq Library Prep Master Mix Set for Illumina (#E6240, New England Biolabs, Ipswich, 

Massachusetts, USA) and sequenced on an Illumina HiSeq 2000 sequencer 

(RRID:SCR_020132, v.4, Illumina, San Diego, California, USA) in 50 bp single-end 

mode by Genomics and Proteomics Core facility, DKFZ. The bioinformatics tools for 

gene expression quantification from RNA-Seq were used with default parameters: The 

quality of bases was evaluated and controlled using FASTX-Toolkit 

(RRID:SCR_005534). HOMER (RRID:SCR_010881, v.4.7) was applied for PolyA-tail 

trimming; reads with a length of < 17 bp were removed. The filtered reads were mapped 

with STAR (RRID:SCR_004463, v.2.3) against the human reference genome 
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(GRCh38) and Picard (RRID:SCR_006525, v.1.78) with CollectRNASeqMetrics were 

used for quality checking. Count data were generated by htseq-count 

(RRID:SCR_011867, v.0.9.1) using the GENCODE (RRID:SCR_014966, v26) for 

annotation. Genes with a total count of less than 10 were discarded. 

 

scRNA-Seq data generation from PDGCL xenografted mouse models  

A total of 5x104 highly and lowly connected cells from at least 3 mice/replicates per 

PDGCL suspension were FACS-sorted and subjected to a 10x Chromium Controller 

(10x Genomics, Pleasanton, California, USA) and further processed according to the 

manufacturer’s instructions. The technology samples a pool of around 750,000 

barcodes to separately index each cells transcriptome. In brief, 10x barcoded gel 

beads are mixed with cells, enzyme and partitioning oil to create single cell gel beads 

in emulsion. Barcoded cDNA is generated by reverse transcription so that cDNA from 

individual cells share a common barcode. Afterwards, sequencing was carried out on 

a HiSeq 4000 sequencer (SY-401-4001, Illumina, San Diego, California, USA) or on a 

NovaSeq 6000 sequencer (20012850, Illumina, San Diego, California, USA) to obtain 

approximately 2 x 350 million reads per sample. 

 

Single nuclei (sn)RNA-Seq data generation from patient samples 

Case selection and ethics approval: All 21 patients included have been treated at the 

Heidelberg University Hospital. All patients gave informed consent either prior to 

inclusion to the NCT Neuro Master Match (N²M²) pilot study (31) or to exploratory 

molecular analyses. The research is conducted in concordance with the declaration of 

Helsinki and was approved by the Ethics Committee at the University of Heidelberg, 

Germany (applications 206/2005 and AFmu-207/2017). The N²M² pilot study included 
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patients with MGMT promoter unmethylated tumors, leading to an enrichment of 

MGMT promoter unmethylated samples in our analysis (18/21, 86%).  

Frozen resected tumor material was retrieved from the Department of Neuropathology 

in Heidelberg and reviewed by a board-certified neuropathologist. Diagnoses were 

molecularly confirmed according to the recent WHO classification and methylation 

profiles were confirmed with methylation EPIC array (#WG-317-1003, Illumina, San 

Diego, California, USA). 

For single nuclei isolation, resected tumor material underwent the following quality 

control. Exclusively material with a tumor content ≥ 70% and a low percentage of 

necrosis, as determined on hematoxylin and eosin-stained sections by a board-

certified neuropathologist (Department of Neuropathology, University Hospital 

Heidelberg, Germany) was considered for further processing. Clinical and pathological 

characterization of patients are summarized in Table 1. Human patient samples were 

anonymized manually. 

Single nuclei preparation: Tumor sections were roughly chopped on ice and 

resuspended in lysis buffer consisting of 320 mM sucrose (#84097, Sigma, part of 

Merck, Darmstadt, Germany), 5 mM CaCl2 (#21115, Sigma, part of Merck, Darmstadt, 

Germany), 3 mM Mg acetate (#63052, Sigma, part of Merck, Darmstadt, Germany), 2 

mM EDTA (#AM9260G, Invitrogen, part of ThermoFisherScientific, Waltham, 

Massachusetts, USA), 0.5 mM ethylene glycol tetraacetic acid (EGTA, #J61721, Alfa 

Aesar, part of ThermoFisherScientific, Waltham, Massachusetts, USA), 1 mM 

dithiothreitol (DTT; #43816, Sigma, part of Merck, Darmstadt, Germany), 0.1% Triton 

X-100 (#A4975, AppliChem, Darmstadt, Germany) and 10 mM 

Tris(hydroxymethyl)aminomethan (Tris) pH 8.0 (#15568025, Life Technologies, part of 

Thermo Fisher Scientific, Waltham, Massachusetts, USA). The suspension was 

transferred to a dounce homogenizer (#9651617, Th. Geyer, Renningen, Germany) for 
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nuclei isolation. Large debris was removed by 100 µm (#542000, Greiner Bio-one, 

Kremsmünster, Austria) and 70 µm (#542070, Greiner Bio-one, Kremsmünster, Austria) 

strainer meshes and the suspension collected in separate 50 ml tubes (#227261, 

Greiner Bio-one, Kremsm ü nster, Austria). Next, nuclei were subjected to three 

repeated wash cycles consisting of centrifugation (550 g, 5 min, 4°C), supernatant 

removal and resuspension in 1.5 ml washing buffer. Adaptions for the last cycle 

included addition of 500 µl homogenization buffer (320 mM Sucrose, 30 mM CaCl2, 18 

mM Mg(Ac)2, 0.1 mM EDTA, 0.1% Nonidet P40 [#APA1694.0250, Applichem, 

Darmstadt, Germany], 0.1 mM phenylmethylsulfonyl fluoride [PMSF, #6367.2, Roth, 

Karlsruhe, Germany], 1 mM beta-Mercaptoethanol [#M7522, Sigma, part of Merck, 

Darmstadt, Germany], 60 mM Tris pH 8.0) to the nuclei pellet and a resting time of 5 

min before resuspension in another 1 ml homogenization buffer. Further purification 

was done using a iodixanol (#07820, Stem Cell Technologies, Vancouver, Canada) 

gradient. Briefly, the pellet was resuspended in 200 µl gradient buffer consisting of 30 

mM CaCl2, 18 mM Mg(Ac)2, 0.1 mM PMSF, 1 mM beta-Mercaptoethanol and 60 mM 

Tris pH 8.0. After transfer to a new microcentrifuge tube, 200 µl of 50% iodixanol in 

gradient buffer was used to generate a final concentration of 25% iodixanol. The nuclei 

suspension was carefully layered onto a gradient consisting of equivoluminous 300 µl 

layers of 29% and 35% iodixanol in gradient buffer supplemented with 160 mM sucrose. 

Separation was performed at 4°C for 20 min with 3000 g. 200 µl of the nuclei-

containing interphase was collected and passed through a 20 µm filter (#130-101-812, 

Miltenyi Biotec, Bergisch Gladbach, Germany). Partially, trituration using wide-bore 

tips (#10089010, Thermo Fisher Scientific, Waltham, Massachusetts, USA) was 

necessary to facilitate disaggregation of the nuclei. 
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All aforementioned steps were performed on ice and all plastic consumables having 

contact with nuclei were pre-coated with 0.1% Triton X-100 prior to use to prevent 

sample loss. 

Finally, integrity and purity of the nuclei was confirmed using Trypan Blue (#15250-061, 

LifeTechnologies, part of Thermo Fisher Scientific, Waltham, Massachusetts, USA) 

staining and the nuclei sequenced according to the 10x protocol (see section “scRNA-

Seq data generation from PDGCL xenografted model”). 

 

Single cell data preprocessing 

The gene expression count matrices of PDGCL xenografted mouse models scRNA-

Seq were generated using Cell Ranger (RRID:SCR_017344, v.2.1.1, 10X Genomics) 

with default parameters, against the pre-built hg19 human reference genome (Cell 

Ranger reference, v.1.2.0). The count matrices of patient samples snRNA-Seq were 

generated using Cell Ranger (RRID:SCR_017344, v.3.0.1, 10X Genomics) with 

standard parameters, against a custom pre-mRNA hg19 human reference genome 

generated by mkref function following the official guideline 

(https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/3.1/advanced/references). We discarded cells by 

uniform exclusion criteria: (1) discarding cells which had fewer than 200 or more than 

8,000 genes detected. (2) discarding cells which had fewer than 500 or more than 

80,000 counts detected. (3) discarding cells which had a percentage of counts that 

came from mitochondrial genes of more than 10%.  

After the uniform exclusion, sample-wise outlier cells were detected and removed if the 

number of genes or counts are more than three median absolute deviations (MADs) 

above the median using isOutliers function in the scater (RRID:SCR_015954, v.1.10.1). 

In each sample, per-cell doublet scores and per-sample doublet score thresholds were 
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estimated by Scrublet (RRID:SCR_018098, v.0.2.1) with default parameters. If one 

doublet score threshold was located between two peaks of a doublet score histogram, 

this threshold was accepted and the cells with a doublet score higher than this 

threshold were removed. Unsupervised clusters were visualized in uniform manifold 

approximation and projection (UMAP) to further detect low quality clusters using Seurat 

(RRID:SCR_007322, v.3.1.5). In PDGCL xenografted mouse model dataset, outlier 

clusters were removed according to the MADs of the median number of genes or 

embeddings of UMAP in clusters. In patient samples dataset, one cluster that 

expressed markers of two different cell types was removed.  

In the end, we obtained 35,822 cells from six samples of three PDGCL xenografted 

mouse models and 213,444 cells from 21 patient samples.  

 

Single cell data processing and integration 

Data processing: After data preprocessing and quality control, scRNA-Seq data of 

PDGCL xenografted mouse models and patient samples were further processed using 

Seurat (RRID:SCR_007322, v.3.1.5) with default parameters: The gene expression 

counts were normalized using the NormalizeData function. Then 2000 highly variable 

genes were identified using the FindVariableFeatures function. The variation of 

number of counts among cells was regressed out, and the resulting residuals were 

scaled and centered by the ScaleData function. Next, we reduced dimensionality of 

the data by principal component analysis using the RunPCA function. The number of 

principal components (PCs) used for further analyses was determined using the 

ElbowPlot function (PDGCL dataset: 11 PCs; patient dataset: 24 PCs). The data was 

visualized in UMAP using RunUMAP function with determined PCs. 

Data integration: To remove the differences of individuals and perform batch correction, 

an integration method based on identification of shared ‘anchors’ between pairs of 
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samples was applied using the Seurat (RRID:SCR_007322, v.3.1.5) with default 

parameters: The gene expression count of each PDGCL or patient sample was 

normalized and selected highly variable genes using the NormalizeData and 

FindVariableFeatures functions. Then the normalized data (three PDGCLs or 21 

patient samples) were integrated with the FindIntegrationAnchors function (dims = 1:30) 

and the IntegrateData function (dims = 1:30). The integrated data was used the 

ScaleData, RunPCA, ElbowPlot, RunUMAP functions as section “Single cell data 

processing and visualization” (PDGCL integrated dataset: 24 PCs; patient integrated 

dataset: 22 PCs). 

 

Identification of malignant and non-malignant cell types in snRNA-Seq of patient 

samples 

Cell type signature scores: In patient integrated snRNA-Seq dataset, cell type 

signature scores (i.e., malignant signature score, macrophage signature score, T-cell 

signature score, oligodendrocyte signature score, endothelial signature score, pericyte 

signature score, and astrocyte signature score) based on cell type markers (see the 

next paragraph) were calculated in each cell using the AddModuleScore function in 

Seurat (RRID:SCR_007322, v.3.1.5). 

Cell type marker collections: The top 100 upregulated markers per cell types (i.e., 

malignant cells, macrophages, T-cells and oligodendrocytes) were identified from a GB 

scRNA-Seq dataset (5) using the FindAllMarkers function with default parameters in 

Seurat (RRID:SCR_007322, v.3.1.5). The top 100 upregulated markers of endothelial 

cells were obtained from a healthy brain RNA-Seq dataset (17).The top 100 enriched 

markers in pericytes were obtained from brain mural cells RNA-Seq dataset (18).  The 

upregulated markers of healthy astrocytes compared to malignant astrocytes were 

obtained from a human brain RNA-Seq dataset (17). 
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 Cell type assignment: The patient integrated dataset was performed unsupervised 

clustering using the FindNeighbors function with 22 PCs and the FindClusters function 

(resolution = 0.7), 24 clusters were obtained. In each cluster, the medians of each cell 

type signature score were calculated and represented as ���, with � being one cell type 

and � being one cluster. Then the non-malignant scores ����� were defined as ��� 

minus malignant signature score �	� (m indicates malignant cells): ����� =  ��� −  �	�. 

The clusters were assigned to non-malignant cell types if ����� more than MAD above 

the median of all ����� : cluster 8, 9, and 23 as macrophages, cluster 5 as 

oligodendrocytes, cluster 19 as T-cells, cluster 22 as pericytes and cluster 17 as 

endothelial cells. The remaining clusters were assigned as malignant clusters and 

were validated based on CNV estimation using the infercnv (RRID:SCR_021140, 

v.1.2.1) with recommended parameters for 10x Genomics data (cutoff = 0.1, 

cluster_by_groups = TRUE, denoise = TRUE, HMM = TRUE). The assigned 

macrophages, oligodendrocytes, T-cells, pericytes and endothelial cells were used as 

reference non-malignant cells. Each non-malignant cell type and malignant clusters 

were downsampled to 500 cells. We found that the malignant clusters contained large-

scale CNVs except cluster 21. The cluster 21 showed the highest astrocyte signature 

score and, accordingly, cluster 21 was reassigned as astrocyte cluster. 

 

Development of the connectivity signatures 

In scRNA-Seq data of the PDGCL xenografted models, DEGs between highly and 

lowly connected groups were identified in each PDGCL xenografted model using the 

FindMarkers function with default parameters in Seurat (RRID:SCR_007322, v.3.1.5). 

We then aggregated the significant DEGs (adjusted p value < 0.05) from all three 

PDGCLs. Among the aggregated DEGs, we examined the direction of regulation of the 

DEGs, only the DEGs which were significantly differentially expressed with the same 
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direction of regulation in at least two PDGCLs were kept. The remaining DEGs were 

further refined to obtain strongly regulated genes with an absolute log fold-change 

greater than 0.4. 50 DEGs were obtained. Additionally, the FindConservedMarkers 

function with default parameters was used to identify conserved DEGs between highly 

and lowly connected groups irrespective to PDGCLs. Among the conserved DEGs, the 

DEGs regulated in the same direction across all three PDGCL xenografted models 

were kept. 21 additional DEGs were obtained. In total, 71 DEGs were derived from 

scRNA-Seq dataset and served as a connectivity signature. 

In RNA-Seq of PDGCL xenografted models, DEGs between highly and lowly 

connected groups were identified using DESeq2 (RRID:SCR_015687, v.1.22.2): The 

PDGCL xenografted models information was included in the design formula of the 

DESeqDataSet function to obtain conserved DEG of highly and lowly connected 

groups across PDGCL xenografted models. Differential expression analysis was 

performed using the DESeq function. Then the results were shrinked with apeglm 

method in the lfcShrink function. Other parameters are by default. The significant DEGs 

(adjusted p value < 0.05) with an absolute log2 fold-change greater than 1 were kept. 

Finally, 245 DEGs were derived from the RNA-Seq dataset.  

 

Heatmap visualization of the connectivity signatures 

For each connectivity gene derived from scRNA-Seq, the gene expression level of the 

gene in cells of each sample were averaged using the AverageExpression function in 

Seurat (RRID:SCR_007322, v.3.1.5). The average expression levels were scaled, 

centered, winsorized at -3 and 3, and then visualized as heatmap using 

ComplexHeatmap (RRID:SCR_017270, v.2.5.4).  

The bulk count matrix was transformed with variance stabilizing transformation using 

the vst function in DESeq2 (RRID:SCR_015687, v.1.22.2), and the batch effects 
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between the PDGCL xenografted models were corrected with the removeBatchEffect 

function of the LIMMA package (RRID:SCR_010943, v.3.36.5). Finally, the expression 

levels of connectivity genes derived from RNA-Seq were scaled, centered, winsorized 

at -3 and 3, and then visualized as heatmap using ComplexHeatmap 

(RRID:SCR_017270, v.2.5.4). 

 

GO enrichment analysis 

GO enrichment analysis of connectivity signature derived from scRNA-Seq (71 genes) 

or connectivity signature derived from RNA-Seq (245 genes) was performed by the 

compareCluster function using clusterProfiler (RRID:SCR_016884, v.3.18.1) against 

“GO Biological Process” with setting fun = enrichGO and ont = "BP". The most enriched 

GOs were visualized with the emapplot function using enrichplot (v.1.10.2). The 

semantic similarity of both connectivity signatures against GO biological process were 

performed by mclusterSim function using GOSemSim (v.2.16.1). 

There are 16,759 genes commonly expressed in both scRNA-seq and RNA-Seq 

datasets of PDGCL xenografted models. Gene set enrichment analysis of these genes 

preranked by the fold change between highly and lowly connected groups in the 

scRNA-Seq dataset or the fold change between highly and lowly connected groups in 

the RNA-Seq dataset was calculated by Gene Set Enrichment Analysis 

(RRID:SCR_003199, v.4.1.0) against “neurogenesis” gene set.  

GO enrichment analysis of 100 DEGs between the two AC subgroups was performed 

using clusterProfiler (RRID:SCR_016884, v.3.18.1) against GO biological process 

terms (Molecular Signatures Database, RRID:SCR_016863, v.7.1).  

 

Connectivity signature score 
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The connectivity signature derived from scRNA-Seq data contains 71 genes, among 

which, 40 genes are upregulated in highly connected cells and 31 genes are 

downregulated. The 40 upregulated genes were used as a gene set to calculate a 

score (connectivity-upregulated signature score) in each cell using the 

AddModuleScore function in Seurat (RRID:SCR_007322, v.3.1.5). The score 

represents the relative expression of a gene set. Similarly, a second score 

(connectivity-downregulated signature score) based on the 31 downregulated genes 

was calculated. Finally, the connectivity signature score was defined as the 

connectivity-upregulated signature score minus the connectivity-downregulated 

signature score. Another connectivity signature score based on 245 genes (57 

upregulated genes and 188 downregulated genes) derived from the RNA-Seq data 

were generated accordingly. 

 

The performance of the connectivity signatures for prediction of SR101-sorted labels 

In each cell of scRNA-Seq data from PDGCL xenografted models, connectivity-

upregulated signature score based on 40 scRNA-Seq-derived upregulated 

connectivity genes and connectivity-downregulated signature score based on 31 

scRNA-Seq-derived downregulated connectivity genes were calculated. If the 

connectivity-upregulated signature score was higher than the connectivity-

downregulated signature score, the cell was predicted as “Highly connected” cell, 

otherwise, the cell was predicted as “Lowly connected” cell. Confusion matrix and 

prediction metrics (i.e accuracy, sensitivity, specificity, positive predictive value and 

negative predictive value) were obtained between the number of cells predicted as 

“Highly connected” or “Lowly connected” base on calculated scores and the number of 

cells labelled as “Highly connected” or “Lowly connected” after SR101-based cell 

sorting, using R package caret (RRID:SCR_021138, v.6.0-80). Another prediction 
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based on 57 RNA-Seq-derived upregulated connectivity genes and 188 RNA-Seq-

derived downregulated connectivity genes were calculated in the same way. 

Negative control: 100 random gene sets, each gene set including 71 randomly selected 

genes (40 gene as an upregulated gene set and 31 as a downregulated gene set, the 

same as scRNA-Seq-derived connectivity signature), were utilized to calculate scores 

and obtained the average prediction metrics. Another 100 random gene sets, each 

gene set including 245 randomly selected genes (57 gene as an upregulated gene set 

and 188 as a downregulated gene set, the same as RNA-Seq-derived connectivity 

signature), were utilized to calculate scores and obtained the average prediction 

metrics. 

Malignant cell state assignment 

Cell state markers from a GB scRNA-Seq study (5) were utilized to calculate cell state 

signature scores in each malignant cell in our patient sample snRNA-Seq dataset using 

the AddModuleScore function in Seurat (RRID:SCR_007322, v.3.1.5). Malignant cells 

were assigned to this cell state that gained the highest signature score among all cell 

state signature scores. 

 

Two-dimensional projection of patient malignant cells by cell state 

Similar to (5), we obtained signature scores for each cell state in single cells and 

projected the cells according to the cell state signature scores. Y axis values represent 

the maximum score from the AC/MES1/MES2 states from which the maximum score 

from the OPC/NPC1/NPC2 states have been subtracted. If Y > 0, the X axis values 

represent AC minus the maximum of MES1 and MES2. If Y ≤ 0, the X axis values 

represent OPC minus the maximum of NPC1 and NPC2. Cells were colored by 

connectivity scores and plotted by ggplot2 (RRID:SCR_014601, v.3.3.2). 

Y = max���� , �����, ������ − max����� , �����, ������ 
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��  > 0, " =  ��� − max� �����, ������ 

��  ≤ 0, " =  ���� − max� �����, ������ 
 

Identification of subpopulations of astrocyte-like cells 

In the two-dimensional projection of astrocyte-like cells only, we separated cells into 

two groups by a line with slope 1 ( 
�#$%&'(��)*$,�+*$,,�+*$-�

�#$%&'(� �./0,,�./0-� = 1). We obtained one group 

with higher connectivity scores and the other with lower connectivity scores. DEGs 

between these two groups were identified using the FindMarkers function in Seurat 

(RRID:SCR_007322, v.3.1.5). 

PDGCL in vitro models of connectivity  

Quantification of TMs: PDGCLs S24, BG5, P3XX and T269 stably transduced with 

cytosolic TurboGFP, as previously described (6,16), were used to allow visualization 

of TMs during confocal microscopy. All PDGCLs were cultured under two different 

culture conditions. For TM-, non-adherent conditions cells were cultured in PDGCL 

media as described before. In order to induce the formation of TMs, cells were kept in 

adherent culture conditions using DMEM (#11965-118, Life Technologies, part of 

ThermoFisherScientific, Waltham, Massachusetts, USA) supplemented with 10% FCS. 

Briefly, ethidium-homodimer 2 (EthD2, #E3599, Invitrogen, part of 

ThermoFisherScientific, Waltham, Massachusetts, USA) and Hoechst33342 (#H3570, 

Invitrogen, part of ThermoFisherScientific, Waltham, Massachusetts, USA) were 

added. Images were acquired on a LSM710 confocal microscope (Zeiss, Oberkochen, 

Germany) and an EC plan Neofluar® 10x0.3 M27 objective (Zeiss, Oberkochen, 

Germany).  The following excitations and detection wavelengths were used: 405/410-

587 (Hoechst33342), 488/493-598 (TurboGFP) and 561/597-685 (EthD2). Laser 

power and maximum imaging time were tuned as low as possible to avoid phototoxicity. 

Images with a pixel size of 0.89 µm and an imaging frequency of 0.3 Hz were used for 
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quantification. Mann-Whitney U test was used to compare connectivity in TM+ and TM- 

conditions. 

Image processing and quantification: Multi photon laser scanning microscope (MPLSM) 

data were acquired by Zeiss ZEN® Black Software (RRID:SCR_018163, Zeiss, Jena, 

Germany), which was also used for primary image calculation. Images were then 

transferred to Fiji 2.0.0 (RRID:SCR_002285) for analysis and processing. In the figures, 

maximum intensity projections are shown. Analyses were performed semi-

automatically using the pixel classification and object quantification workflows in Ilastik 

software (RRID:SCR_015246, DOI:10.1109/ISBI.2011.5872394) after appropriate 

training. 

 

scRNA-Seq data generation from PDGCL in vitro models of connectivity 

Cell lines and cell culture: PDGCLs S24, BG5, P3XX, T269 were cultured under TM- 

and TM+ conditions as described before. 

FACS: After cultivation under both culture conditions, cells were blocked with 1% BSA 

in PBS. Cells were washed with PBS and subsequently resuspended in 1.5 ml of 

PBS/1%BSA containing 1 µM calcein AM (#C1430, Life Technologies, part of 

ThermoFisherScientific, Waltham, Massachusetts, USA) and 0.33 µM TO-PRO™-3 

(#T3605, Invitrogen, part of ThermoFisherScientific, Waltham, Massachusetts, USA) 

to co-stain before sorting. Sorting was performed with FACSAria™ Fusion Special 

Order System (BD Biosystems, Franklin Lakes, New Jersey, USA) using 488nm 

(Calcein AM, 530/30 filter) and 640nm (TO-PRO-3™, 670/14 filter) lasers. An 

unstained control was included with every sample. Standard, strict forward scatter 

height versus area criteria were applied to discriminate doublets and gate only for 

single cells. Viable cells were detected as staining positive for calcein AM and negative 

for TO-PRO™-3. 
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scRNA-Seq: Cells were sorted into 96 well plates (#0030128.648, Eppendorf, 

Hamburg, Germany) containing cold TCL Buffer (#1070498, Qiagen, part of 

ThermoFisherScientific, Waltham, Massachusetts, USA) including 1% beta-

mercaptoethanol (#M7522, Sigma, part of Merck, Darmstadt, Germany), snap frozen 

on dry ice and stored at -80°C. Whole transcriptome amplification, library preparation 

and sequencing were performed according to the SmartSeq2 protocol (32) with the 

following modifications as previously published (5): RNA purification from single cells 

was performed with Agencourt RNAClean XP beads (#A63987, Beckmann Coulter, 

Brea, California, USA) prior to olio-dT primed reverse transcription with Maxima 

reverse transcriptase (#EP0753, Life Technologies part of Thermo Fisher Scientific, 

Waltham, Massachusetts, USA) and locked template switch oligonucleotide (#339413, 

Qiagen, part of Thermo Fisher Scientific, Waltham, Massachusetts, USA). This was 

followed by 20 cycles of polymerase chain reaction (PCR) amplification using KAPA 

HiFi HotStart ReadyMix (#KK2602, Roche, Basel, Switzerland) and subsequent 

purification with Agencourt AMPure XP beads as described. Library construction was 

performed using the Nextera XT Library Prep kit (#FC-131-1024, Illumina, San Diego, 

California, USA) and custom barcode adapters (sequences available upon request). 

Libraries from 864 cells with unique barcodes were combined and sequenced with a 

NextSeq 500 sequencer (#SY-415-1001, Illumina, San Diego, California, USA). 

 

scRNA-Seq data processing of PDGCL in vitro models of connectivity 

Sequencing reads were aligned using STAR (RRID:SCR_004463, v.2.5.3a) against 

the human reference genome hg19, and gene counts were generated and annotated 

using GENCODE (RRID:SCR_014966, v19) by featureCounts function of Subread 

package (RRID:SCR_009803, v.1.5.3). Gene counts were normalized to fragments per 

kilobase million (FPKM) values and log2 transformed. We identified low quality cells 
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by the number of expressed genes lower than 2000 or higher than 8000. We obtained 

735 cells from four PDCGLs. Then the data were integrated by ‘anchors’ and visualized 

in UMAPs with Seurat (RRID:SCR_007322, v.3.1.5). 

 

Quantitative real-time polymerase chain reaction (qPCR)  

RNA extraction and cDNA synthesis: Harvested cells were washed with ice-cold PBS 

(#D8537-500ML, Sigma, part of Merck, Darmstadt, Germany). Afterwards, cells were 

resuspended in 1% beta-Mercaptoethanol (#M3148-100ml, Sigma, part of Merck, 

Darmstadt, Germany)-supplemented RLT lysis buffer, which is part of the QIAGEN 

RNeasy MicroKit (#79216, Qiagen, Hilden, Germany) or QIAGEN RNeasy Mini Kit 

(#74004, Qiagen, Hilden, Germany).  

The kit type for subsequent RNA extraction was tailored to the absolute cell numbers. 

Lysates containing up to 500,000 cells were processed with the QIAGEN RNeasy® 

Micro Kit whereas samples with 500,000 to one million cells were processed with the 

QIAGEN RNeasy® Mini Kit. All steps were carried out according to the manual. On 

column DNAse digestion was performed with the RNAse free DNAse set (#79254, 

Qiagen, Hilden, Germany). RNA was eluted into RNAse-free water (#4387936, 

ThermoFisherScientific, Waltham, Massachusetts, USA). Reverse transcription was 

performed according to the manufacturer´s recommendations using the High-Capacity 

cDNA Reverse Transcription Kit with RNAse Inhibitor (#4374967, Applied Biosciences 

Applied Biosciences, Foster City, California, USA) and 1 µg RNA per 20 µl reaction.  

Amplification: qPCR was performed with 9 ng cDNA, Taqman™ Gene Expression 

Master Mix (#4369016, ThermoFisherScientific, Waltham, Massachusetts, USA) and 

the respective TaqMan™ probes (Applied Biosystems, Foster City, California, USA). 

The following probes were used: Hypoxanthine Phosphoribosyltransferase 1 (HPRT1; 

Hs002800695_m1), CHI3L1 (Hs01072228_m1), GAP43 (Hs00967138_m1), APOE 
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(Hs00171168_m1), TP53 (Hs01034249_m1) and CDKN1A (Hs00923894_m1). All 

reactions were carried out in a 96-well reaction plate (#N8010560, Applied 

Biosciences), covered with MicroAmp™ optical adhesion film (#4311971, Applied 

Biosciences, Foster City, California, USA) on a QuantStudio™ 3 Real Time PCR 

System (RRID:SCR_018712, ThermoFisherScientific, Waltham, Massachusetts, USA).  

≥ 2 independent experiments with each having ≥ 2 technical replicates were performed. 

PCR reactions were checked by omission of templates and by melting curve and 

agarose gel electrophoresis. Standard curves were generated for each gene and the 

amplification was 85-115% efficient. Relative quantification of gene expression was 

determined by comparison of threshold values. All results were normalized to HPRT1 

as the housekeeping gene.  

 

Antibody and recombinant blocking in vitro experiments 

PDGCLs S24-TurboGFP, T269-TurboGFP and BG5-TurboGFP were cultured and 

singularized as described before. Cells were resuspended in PDGCL media as 

described before, however without growth factors but supplemented with glucose 

(#G7021-1KG, Sigma, part of Merck, Darmstadt, German) and cells seeded into a 

precoated uClear® 96-well plate. Growth factor reduced Matrigel® (#356231, Corning, 

Corning Inc., Corning, New York, USA ) dissolved in PDGCL media was used for 

coating. Recombinant CHI3L1, CHI3L1 antibody or IgG1 Ctrl antibody were added 

immediately after cell seeding. Subsequently, cells were cultured under standard 

conditions (20% O2, 5% CO2, 37°C). All further procedures were described before. ≥ 

9 images were acquired and analyzed per condition in each of ≥ 2 independent 

experiments. The Mann-Whitney U test was used. 

 

TP53 overexpression 
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Cloning: For functional analysis open reading frames (ORFs) of TP53 wt and the 

mutation variants R175H (CGC>CAC), R248W (CGG>TGG) and R248Q (CGG>CAG) 

lacking a stopcodon were generated in a universal entry vector (pDONR221) for the 

use with the GatewayTM recombination system (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). After sequence validation, the ORFs were recombined in into a 

lentiviral expression vector rwpLX305-GW-Flag-CT-IRES-NeoR (Cellular Tools GPCF 

DKFZ, Heidelberg, Germany). The vector adds a short immunogenic Flag-Tag at the 

C-terminal end of the TP53 proteins to test for expression of the recombinant protein 

and couples a Neomycin resistance marker for selection of transduced and expressing 

cells via an IRES sequence. 

Virus production and infection: For generation of lentiviral particles, HEK293FT cells 

(#R70007, Thermo Fisher Scientific, Waltham, Massachusetts, USA) were co-

transfected with the lentiviral TP53 expression constructs and 2nd generation viral 

packaging plasmids VSV.G (kind gift from Tannishtha Reya, Addgene plasmid # 14888, 

RRID:Addgene_14888, http://n2t.net/addgene:14888) and psPAX2 (kind gift from 

Didier Trono, Addgene plasmid #12260, RRID:Addgene_12260, 

http://n2t.net/addgene:12260). 48h after transfection, virus containing supernatant was 

removed and cleared by centrifugation (5min/500g). The supernatant was passed 

through a 0.45 μm filter (#760517, Ahlstrom, Helsinki, Finland). U87 (#HTB-14, 

RRID:CVCL_0022, ATCC, Manassas, Virginia, USA) cells were transduced with 

lentiviral particles at 70% confluency in the presence of polybrene (TR-1003-G, Merck, 

Darmstadt, Germany). 24 h after transduction virus containing medium was replaced 

byG-418 sulfate (#M3118.0050, GENAXXON bioscience, Ulm, Germany) containing 

selection media.  

 

Target staining and TM quantification in patient tumor tissues 
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General preparation of slides: To validate the degree of connectivity and underlying 

markers we chose the three patients with high and three with low connectivity signature 

scores from which specimens were available at the Department of Neuropathology.  

Several consecutive sections were generated using the HM 355S automated microtom 

(#905200, ThermoFisherScientific, Waltham, Massachusetts, USA) and mounted on 

Superfrost slides (#J1800AMNZ, ThermoFisherScientific, Waltham, Massachusetts, 

USA). Subsequent drying was allowed for 30 min on a 37° C hot plate followed by 

baking for 10 min in a 75° C oven. 

CHI3L1 and nestin staining: CHI3L1 and nestin expression was detected using the 

ultraView DAB protocol on the automated VENTANA® BenchMark ULTRA platform 

(Roche, Basel, Switzerland).  

After pretreatment involving deparaffinization CHI3L1 antigen retrieval CC1 solution 

(#05279801001, Roche, Basel, Switzerland) was applied for 32 min. Slides were 

subsequently incubated with anti-CHI3L1 antibody  for 32 min. To detect nestin 

expression no heat induced epitope retrieval  (HIER) was performed and slides were 

incubated with with anti-nestin antibody for 32 min. VENTANA® standard signal 

amplification and ultra-wash was followed by counterstaining with Hematoxylin II 

(#790-2208, Roche, Basel, Switzerland) and blueing reagent (#760-2037, Roche, 

Basel, Switzerland) for 4 min each. Slides were removed from the staining platform, 

washed with tap water and rinsed with deionized water. After staining, all specimens 

were immersed in a series of ethanol (EtOH) solutions (#20821.330, VWR, part of 

Aventor, Radnor, Pennsylvania, USA) of increasing concentrations until 100% and 

Xylol (#534056-4L, Sigma, part of Merck, Darmstadt, Germany). Eukitt® 

(#6.00.01.0001.06.01.01, ORSAtec GmbH, Bobingen, Germany) was used for 

mounting. 
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Hematoxylin-Eosin (HE) staining: Slides were prepared as described before. For 

dewaxing and rehydration sections were passed through xylol (#9713.3, Roth, 

Karlsruhe, Germany) and decreasing concentrations of EtOH (#200-678-6; Fisher 

Scientific, Waltham, Massachusetts, USA) until the solution evenly flowed across the 

slide. Staining with Mayer´s hematoxylin solution consisting of 0.1% hematoxylin 

(#1.04302.0100, Merck, Darmstadt, Germany), 0.02% sodium iodate (#6525; Merck, 

Darmstadt, Germany), 5% potassium aluminum sulfate (#8896.1; Roth, Karlsruhe, 

Germany), 5% chloralhydrate (#K318.1; Roth, Karlsruhe, Germany) and 0.1% citric 

acid (#3958.1; Roth, Karlsruhe, Germany) for 1 min was followed by blueing in running 

tap water for 3 min. Slides were incubated in eosin solution consisting of 10% Eosin G 

(#7089.2, Roth, Karlsruhe, Germany) and 2 drops of glacial acetic acid (#3738.1; Roth, 

Karlsruhe, Germany) in 70% EtOH (#200-678-6, Fisher Scientific, Waltham, 

Massachusetts, USA) for 30 s and subsequently rinsed in aqua bidest. Mounting of HE 

sections was done as described before. 

 

Quantification of TMs in FFPE patient samples 

For image analysis three 500 x 500 pixel regions in each patient sample were selected 

based on number of nuclei (100 ± 20), nestin positivity and adjacency to denser tumor 

tissue. Then TMs were measured manually in these regions using Fiji. There were 20-

84 TMs measured per image with a total of n = 898.  

Image analysis of patient tissue: All slides were scanned at 20x resolution using an 

Axioscan Z1 slide scanner (RRID:SCR_020927, Zeiss, Jena, Germany). Zen 2.6 Blue 

Edition ® software (RRID:SCR_013672, Zeiss, Jena, Germany) was used to globally 

adjust the copies of original photomicrographs for white and black balance. 

Photomicrographs were additionally cropped, rotated and resampled to allow 

alignment with other stainings.  
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Alignment of nestin, CHI3L1 and HE staining: The procedure for scanning CHI3L1 and 

HE stained consecutive sections was similar to Nestin stained sections. Zen 2.6 Blue 

Edition ® software (RRID:SCR_013672, Zeiss, Jena, Germany) was used to globally 

adjust the copies of original photomicrographs for white and black balance. 

Photomicrographs were additionally cropped, rotated and resampled to allow 

alignment with other stainings. Subsequent removal of background shadows at the tile 

edges of no-sample containing tiles was done using Zen 2.6 Blue Edition ® software 

(RRID:SCR_013672, Zeiss, Jena, Germany) 

Histoscoring of CHI3L1: A histoscore was used to assess the quantity of the CHI3L1 

staining intensities of both global tumor tissue level but also of 500 x 500 pixel CHI3L1 

crops aligned with the nestin crops, which had been independently selected before by 

a blinded person. A histoscore was used to assess the quantity of the CHI3L1 staining 

intensities of both global tumor tissue level but also of 500 x 500 pixel CHI3L1 crops 

perfectly aligned with the nestin crops, which had been independently selected before 

by a blinded person. 

Histoscoring is a widely used semiquantitative classification of the staining intensity of 

heterogeneously stained tissues. Technically, the staining intensity of each individual 

cell is assigned to a scaled rating: 0 (negative), 1 (low), 2 (moderate), and 3 (high). A 

weighted histoscore is calculated by the formula: 

23�4ℎ536 ℎ�758798:3 =  ; �<= ∗ ?=
@

=AB
 

where : represents the rating of staining intensity; �<= represents the staining intensity 

of cell with :; ?= represents the percentage of cells with : in the whole sample. 

Based on this, the maximum score being reached is 300 (if 100% of cells have a high 

intensity) and the minimum score is 0 (if 100% of cells do not stain). All ratings were 
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performed by a board-certified neuropathologist (Department of Neuropathology, 

University Hospital Heidelberg, Germany).   
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Patient cohorts for validation of connectivity signature 

TCGA (RRID:SCR_003193, https://www.cancer.gov/tcga, (33)) cohort: The RNA-Seq 

gene expression matrix, somatic mutation information, CNV information and clinical 

data of TCGA diffuse glioma samples were downloaded from UCSC Xena 

(RRID:SCR_018938, http://xena.ucsc.edu). We obtained 146 samples from TCGA GB 

cohort and 502 samples from TCGA lower grade glioma cohort. We further investigated 

IDH mutation status and chromosome 1p/19q co-deletion status in all samples. Finally, 

we obtained 230 IDH wt samples, 176 IDH mutant with 1p/19q co-deletion samples, 

241 IDH mutant without 1p/19q co-deletion samples and one sample without clear 

classification. The 230 IDH wt samples were subjected for connectivity signature 

validation and survival analysis.  

CGGA (RRID:SCR_018802, http://www.cgga.org.cn, (34)) cohort: We downloaded 

clinical data and RNA-Seq gene expression matrix of 325 GB samples from the CGGA 

webpage, of which 141 samples had IDH wt and intact 1p/19q status. These 141 

samples were subjected for connectivity signature validation and survival analysis. 

IvyGAP (RRID:SCR_005044, (35)) cohort: We obtained RNA-Seq gene expression 

matrix and corresponding laser micro-dissected anatomic structure information of 73 

samples derived from 10 GB patients. Connectivity signature scores were calculated 

in each sample. 

Gene Expression Profiling Interactive Analysis (RRID:SCR_018294, 

http://gepia.cancer-pku.cn, GEPIA, (36)): We downloaded the CHI3L1 gene 

expression level (transcripts per million [TPM]) of RNA-Seq data from GEPIA, which 

contains 31 tumor types from TCGA and related normal tissue samples from the 

genotype-tissue expression (GTEx).  
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Molecular classification of TCGA RNA-seq 

The TCGA and CGGA IDH wt GB samples were classified into three expression 

subtypes (i.e., mesenchymal, classical and proneural) by single sample GSEA 

analysis-based classification as described in (19) (ssGSEA, R codes from (19)). The 

fragments per kilo base per million mapped reads (FPKM) expression matrix was used 

as input for ssGSEA and 100,000 permutations was performed to obtain p values for 

each subtype. Each sample was assigned to the subtype with the smallest p value. 

 

Patient survival analyses 

Connectivity signature scores were calculated in samples from TCGA and CGGA using 

AddModuleScore function in Seurat (RRID:SCR_007322, v.3.1.5). The TCGA/CGGA 

samples were assigned into three groups by Q1, Q2-Q3 and Q4 of connectivity scores. 

Kaplan-Meier survival analysis in the three groups using overall survival times, and 

Cox proportional hazards regression analysis with age, connectivity signature scores 

and overall survival times were performed with the survival (RRID:SCR_021137, v.3.1-

12) and survminer (RRID:SCR_021094, v.0.4.2). 

 

Statistical analyses 

A p value of p < 0.05 was generally considered significant. The p value of mean 

comparison between two groups was obtained by Mann-Whitney U test using ggpubr 

(RRID:SCR_021139, v.0.4.0). Pearson correlation coefficients were calculated using 

ggpubr (RRID:SCR_021139, v.0.4.0). Among the recurrent non-synonymous mutated 

genes in at least 5% TCGA GB patients (27 genes), the connectivity signature score 

related mutated genes were identified using wilcox.test function in R. Multiple testing 

was adjusted and obtained FDR using p.adjust function in R. 
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