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ABSTRACT

Early-life gut microbial colonization is an important process shaping host physiology, immunity
and long-term health outcomes in humans and other animals. However, our understanding of this
dynamic process remains poorly investigated in wild animals, where developmental mechanisms
can be better understood within ecological and evolutionary relevant contexts. Using 16s rRNA
amplicon sequencing on 525 fecal samples from a large cohort of infant and juvenile geladas
(Theropithecus gelada), we characterized gut microbiome maturation during the first three years
of life and assessed the role of maternal effects in shaping offspring microbiome assembly.
Microbial diversity increased rapidly in the first months of life, followed by more gradual changes
until weaning. As expected, changes in gut microbiome composition and function with increasing
age reflected progressive dietary transitions: in early infancy when infants rely heavily on their
mother’s milk, microbes that facilitate milk glycans and lactose utilization dominated, while later
in development as graminoids are progressively introduced into the diet, microbes that metabolize
plant complex polysaccharides became dominant. Furthermore, the microbial community of
nursing infants born to first-time (primiparous) mothers was more “milk-oriented” compared to
similarly-aged infants born to experienced (multiparous) mothers. Comparisons of matched
mother-offspring fecal samples to random dyads did not support vertical transmission as a conduit
for these maternal effects, which instead could be explained by slower phenotypic development
(and associated slower gut microbiome maturation) in infants born to first-time mothers. Together,
our findings highlight the dynamic nature of gut colonization in early life and the role of maternal

effects in modulating this trajectory in a wild primate.
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INTRODUCTION

The colonization of the gastrointestinal tract begins at birth and develops into a trajectory that can
be highly variable between individuals [1-8]. Variation in the source and timing of postnatal
microbial colonization influences somatic growth [9-12], neuroendocrine [13,14] and immune
physiology [15—17], with health and fitness consequences that can extend across the life course
[16,18,19]. In humans, for instance, infants that take antibiotics during the first year of life are
more likely to develop allergies, asthma, and inflammatory bowel disease during childhood [20—
23]. Germ-free rodent models demonstrate that at least some of these effects are causally related
to the microbiome and are long-lasting. For example, germ-free rodents develop structural
abnormalities of the gastrointestinal tract [15,24] that translate into immune system dysfunction
later in life [25,26], an outcome that can only be partly reversed by introducing microbes during
critical periods of development [27,28]. Despite the critical role that early-life gut microbial
colonization plays in host development, research thus far has mainly focused on clinical studies in
humans [14,22,29-31], complemented by experimental studies on laboratory rodents [32-35] and
domestic animals [9,36—39]. Studies of wild animals are needed if we want to understand host-
microbiome coevolution within a broader ecological and evolutionary context and without the
confounding factors associated with medical interventions (e.g., Cesarean section, antibiotic use,
formula feeding) [17,40,41].

The maternal microbiota drives gut microbiome assembly in offspring via vertical
transmission of a large number of microbial lineages [42—46]. Vertical transmission is thought to
be particularly strong in mammals due to viviparity and extended periods of lactation and post-
weaning maternal care [47]. The first important exposure to microbes occurs during birth, when

infants are inoculated with maternal vaginal, fecal, and skin microbiota [3,5,8,29,44,48].
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Postnatally, vertical transmission is primarily accomplished through nursing, with numerous
microbes and milk glycans (i.e., oligosaccharides) transmitted through milk that, together,
determine the microbial composition of the infant’s gut [42,49,50]. While milk microbes directly
seed the offspring's gut, milk glycans promote the growth of beneficial microbes, such as
Bifidobacterium and Bacteroides, that in turn break the glycans down into forms usable by the host
[51-53]. Although breastmilk is the most obvious route by which vertical transmission takes place
[10,49,50,54], studies on humans suggest that the maternal gut microbiome is also a major source
of transmitted strains [42,44,55,56]. Maternal gut microbes might be transmitted to offspring via
milk, as the gastrointestinal tract is hypothesized to be the major reservoir of microbes colonizing
the mammary gland (the enteromammary pathway) [49,57]. Alternatively or additionally, mothers
may transmit gut microbes to offspring via preferential body contact [58], a mechanism that
suggests vertical transmission can continue in some capacity past weaning [47]. Because maternal
microbial taxa are the first to colonize and tend to be better adapted to the gut ecological niche
compared to other environmental microbes, they often persist longer in offspring than those
acquired from other sources [42,56,59].

Recent studies suggest that microbiome-mediated maternal effects are indeed possible. In
several mammals, maternal traits, such as parity (i.e., the number of times a mother has given
birth), have been associated with differences in the composition of both maternal [39,60] and
offspring microbial communities [10,39]. In nonhuman primates (vervet monkeys: Chlorocebus
pygerythrus), infants born to low-parity mothers harbored reduced microbial diversity and a
greater abundance of Bacteroides fragilis [10], a bacterium derived from the milk microbiota that
is specialized in digesting milk glycans [61,62]. In turn, infants from low-parity females grew

faster, suggesting that low-parity mothers may compensate for poor milk production by vertically
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90 transmitting milk microbes that could help infants extract more energy from lower milk volumes
91  [10]. Such strategies may be broadly beneficial to dyads in which mothers cannot provide adequate
92  nutritional resources to offspring (e.g., low-ranking mothers) [63,64]. Thus, maternal vertical
93 transmission of microbes may be an important mechanism of phenotypic plasticity during lactation
94  [64,65].
95 Primates are particularly relevant models for understanding postnatal microbiome
96 development and maternal effects because they are closely related to humans, display prolonged
97 lactation periods, and engage in high maternal investment [66,67]. Furthermore, maternal
98 condition (e.g., energetic status) and maternal traits (e.g., dominance rank, social integration
99  parity) are known to influence offspring developmental and long-term fitness outcomes [68—71].
100  Although studies on host-associated microbial communities in wild primates are emerging, many
101  remain limited in scope, hampered by cross-sectional samples and small sample sizes of unweaned
102  infants (particularly in the first few weeks of life), which together prevent longitudinal
103  characterization of gut microbial colonization processes [72—75]. Here, we used dense cross-
104  sectional and longitudinal monitoring to characterize gut microbial colonization during the first
105  three years of life and assess the role of maternal effects in shaping offspring maturation
106  trajectories in wild gelada monkeys (Theropithecus gelada). Geladas live in the high-altitude
107  plateaus of Ethiopia and have a specialized graminivorous diet (at times, comprising 90% grass)
108  [76,77], which strongly shapes the composition and function of the adult gut microbiome [78,79].
109 Because geladas live in polygynous reproductive units that range together in larger bands
110  (comprised of 200 or more individuals) [80], we are able to monitor over 50 immatures at any
111 given time, offering an unprecedented sample size to examine gut microbial characteristics during

112 early life in a wild primate. We used 16s rRNA amplicon sequencing on 525 fecal samples from
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113 89 immatures to profile changes in gut microbiome diversity, composition, and function during
114 the first three years of life (N=5.94+5.5 samples per individual, range:1-18, Figure S1). In our
115  population, geladas reach weaning at approximately 1.5 years of age and become sexually mature
116  around 4.6 years [81]; and maternal characteristics, such as parity and dominance rank, are known
117  to influence inter-individual variation at both of these developmental milestones [Feder et al., in
118  revision; Lu et al., unpublished]. We predicted that early life microbial changes would reflect
119  dietary transitions associated with weaning, as infants transition from milk to a plant-based diet
120  [5,48,82,83]. We also predicted that maternal traits, such as dominance rank and parity would be
121 associated with inter-individual differences in gut microbiome diversity, composition, and
122  function in offspring. More specifically, we predicted that infants born to primiparous and low-
123  ranking mothers would have a microbiome more functionally adapted to digest milk to compensate
124  for poorer maternal energetic allocation during lactation. Lastly, we tested if we could detect
125  evidence of vertical transmission between mother and offspring using fecal-fecal comparisons of
126  mother-infant dyads (with 398 matched fecal samples between mother and offspring collected on
127  the same day throughout development) and if greater vertical transmission in certain females (e.g.,
128  low rank, first-time mothers) could be the conduit for putative maternal effects on offspring’s
129  microbiome composition. We expected a stronger signal of vertical transmission in early life
130 [10,42,44,55,56], likely driven by a combination of greater microbial transfer via milk when

131  infants are nursing and are also in more frequent body contact with their mother.
132

133  RESULTS
134  General pattern of gut microbiome maturation in geladas
135  We characterized the gut microbiome across 525 immature gut microbiome samples, and detected

136 3,784 Amplicon Sequence Variants (ASVs) (mean+SD per sample: 728+261, min-max: 65-1,498)
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137  belonging to 19 phyla and 76 families. The gut microbiome composition of immature geladas
138  changed quickly following birth, with an initial phase of taxonomic succession and diversification
139  during the first few months of life, followed by a progressive stabilization of the overall community
140  (Figures 1A,B).

141 To characterize broad changes in gut microbial community composition across
142  development, we first focused on patterns of alpha diversity (i.e., the microbial diversity within a
143  sample) and beta diversity (i.e., the overall difference of composition between samples). The
144  Shannon Index of alpha diversity was initially low in early life and increased rapidly with age
145 (GAMM: edf=7.2, P<2.0x10°'%) (Figure 1C, Table S1), converging to adult-like values at 7.3
146 months (nonlinear quadratic plateau model: R?=0.62) (see Figure S2, Table S1 for similar results
147  on alternative alpha diversity metrics). Furthermore, age was one of the strongest predictors of the
148  difference in microbial composition between samples (PERMANOVA based on Aitchison
149  dissimilarity metric of beta diversity: R?=0.75, P<9.9x10°°, Table S2, Figures 1D,E) and samples
150  clustered tightly by age on the first axis (PC1) of a Principal component analysis of beta diversity
151  (Pearson correlation coefficient between age and PC1=0.62, P<2.2x107'%). Compared to alpha
152  diversity, beta diversity reached an adult-like composition later in development, at 17.2 months
153  (nonlinear quadratic plateau model between PC1 and age: R?=0.55; Figure 1D), which is
154  approximately the age at which gelada mothers return from lactational amenorrhea and resume
155  reproductive cycles [81]. Other important structuring factors of the immature gut microbiome
156  included infant identity (R?>=0.24) and group membership (R?>=0.05) (Table S2).

157 To assess the compositional maturation of the gut microbiome of immature geladas relative
158  to the maternal gut microbiome across age, we calculated the number of shared ASVs and beta

159  diversity dissimilarity (unweighted and weighted UniFrac) between 398 matched immature-
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160  mother pairs of fecal samples collected the same day. As offspring got older, they shared an
161  increasing number of bacteria with their mother (GAMM: effective degree of freedom, edf=4.7,
162  P<2.0x10°'%; Table S3, Figure 1F) and became more similar to maternal (i.e., adult-like) gut
163  microbiome composition (unweighted UniFrac: edf=4.7, P<2.0x107'%; weighted UniFrac: edf=3.5,
164  P<2.0x10°'S; Table S3, Figure S3). Convergence with maternal gut occurred at 14.5 months for
165  the number of shared ASVs (nonlinear quadratic plateau model: R?>=0.44; Figure 1F) and 14.8-
166  15.5 months for beta diversity dissimilarity (R?=0.48 for unweighted UniFrac and R?>=0.17 for
167  weighted UniFrac; Figure S3).

168 Despite the strong age-related patterns noted above, inter-individual variability in
169  composition (as measured by the minimal pairwise beta diversity dissimilarity value among
170  immature samples, see Methods) was higher among younger infants compared to older juveniles
171 (Figure 1G). Some young infants (~3-6 months) in particular had a gut microbiome that were
172  relatively mature (i.e. adult-like) for their age (Figure 1D). Such “individuality” in the gut
173  microbiome in early life was likely driven by the presence of rare taxa, since the pattern was
174  stronger using unweighted UniFrac (which does not take into account taxa abundance) as opposed
175  to weighted UniFrac measures of beta diversity (Figure 1G).

176

177  Taxonomic and functional changes during development

178 To characterize age-associated changes in microbial composition and function, we used
179  autoregressive integrated moving average (ARIMA) models to identify significant developmental
180  changes in the abundance of each microbial taxa (at the family and genus levels) and each predicted
181  functional pathway (at the metabolic level: KEGG Orthologs, KOs and enzymatic level: Enzyme

182  Commission numbers, EC [84]). We then used hierarchical clustering to group microbial taxa and
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183  functional pathways based on similar age-related abundance trajectories. Maturational trajectories
184  fell into one of four distinct clusters at both the taxonomic (Figure 2, S4; Table S4) and functional
185  (KOs: Figure S5-S6, Table S5; EC: Figure S7, Table S6) levels.

186

187  Cluster 1: The early-life microbiome is adapted to process milk

188  Cluster 1 contained microbes that were abundant during the earliest months of infancy (18
189  families: Figure 2A, Table S4 and 39 genera: Figure S4, Table S4) and are broadly involved in
190  using and fermenting milk sugars (see supplemental results 1 for additional details on cluster 1).
191  These early colonizers comprised bacteria that break down milk glycans (Bacteroidaceae,
192  Bifidobacteriaceae) and lactose (Streptococcaceae, [Ruminococcus] gnavus group) and other
193  groups that ferment glycans and lactose into butyrate (Lachnospiraceae: Lachnoclostridium,
194  Blautia, Anaerostipes, and Ruminococcaceae: Faecalibacterium, Butyricicoccus, Butyricimonas)
195  or propionate (Veillonellaceae) (Figures 2B and 3A). Bacteroides appeared to be the main
196  degrader of milk glycans in geladas, representing the most abundant genus in early life (~30% of
197  the gut microbes at 1 month) (Figure 3A). One Bacteroides ASV — B. fragilis, a proficient
198  degrader of milk glycans [61] — was particularly abundant in early life (i.e., with a high loading
199  score on PCI1, Table S7). By contrast, Bifidobacterium — an important milk glycan degrader in
200 humans — was present at extremely low abundance across development (<0.01% at 1 month in
201  geladas vs ~40% in humans [85]) (Figure 3A).

202 Functional cluster 1 also reflected the involvement of the gut microbiome in milk
203  utilization and immunity pathways (metabolic cluster 1: Figures S5-S6, Tables S5 and enzymatic
204  cluster 1: Figure S7, Table S6). Young infant gut microbiomes contained high levels of bacterial
205  genes involved in carbohydrate metabolism, notably in the catabolism of fructose, mannose, and

206  galactose (3 abundant milk sugars [86]), and in the conversion of sugars to energy (e.g., via
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207  glycolysis/gluconeogenesis, pyruvate metabolism, pentose phosphate pathway) (Figure 4A).
208 Similar functional signatures of cluster 1 were also apparent at the enzymatic level, as the gut
209 microbes encoded a specialized enzymatic toolkit (alpha and beta glucosidase, alpha and beta
210  galactosidase, fucosidase, sialidase, beta-hexosaminidase) necessary to cleave complex milk
211 glycans (Figure S8, Table S6). Bacteroides was the main microbial group encoding those
212  enzymes (Figure S8), confirming its central role in milk glycan degradation in geladas.

213 Interestingly, cluster 1 also included several putatively pathogenic genera (Figure 3B),
214  including some bacterial species most responsible for enteric infections and diarrheal diseases in
215 human newborns and captive animals (e.g., Clostridioides difficile, Helicobacter macacae,
216  Clostridium butyricum, C. perfringens [87-91]) (Table S7). It also included 3 major groups of
217  mucin-degrading bacteria (Akkermansia, [Ruminococcus] gnavus group and [Ruminococcus]
218  torques) (Figure 3C) that are involved in the development of the intestinal mucosa, a primary line
219  of immune defense [92]. These taxa reflect the importance of the developing immune system at
220  this stage in life. In line with this interpretation, the early life microbial metabolic pathways tended
221  to be more involved in processes related to the host immune system (e.g NOD-like receptor) and
222  nervous system (e.g., glutamatergic synapse pathway) (Figure 4A, Tables S5).

223

224 Clusters 2 & 3: The weaning transition is accompanied by important gut microbial

225 rearrangements

226  Around 10 months of age, a small number of microbial taxa (Figures 2A and S4, Tables S4) and
227  metabolic pathways (Figures S5-S6, Tables S5) peak (cluster 2) or decrease (cluster 3) in
228 abundance. Of these changes, the most notable included peaks in Lactobacillaceae (genus
229  Lactobacillus), Prevotellaceae, and Lachnospiraceae (cluster 2, Figure 2C). While

230 Lactobacillaceae is a keystone lactic acid bacterial group producing large amounts of lactate from
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231  milk sugars, Prevotellaceae and Lachnospiraceae (Figure 2C) are fiber-degrading genera. These
232  transient shifts highlight the role of the gut microbiome in digesting both milk and plant items at
233  this age.

234 Taxonomic changes at ten months translated at the functional level into a remodeling of
235  the metabolism of amino acids, with an increase in microbial genes involved in alanine, aspartate,
236  glutamate, cysteine, and methionine metabolism (cluster 2), and a decrease in microbial genes
237 involved in phenylalanine (found in breast milk), glutathione (antioxidant typically enriched in the
238  first weeks of life in humans), and tyrosine metabolism (cluster 3) (Figure 4B, Tables S5).
239  Microbial genes involved in sporulation and germination were also more highly expressed (Figure
240 4B, Table S5), suggesting some changes in persistence strategy from the spore-forming microbes
241 in the gut.

242

243  Cluster 4: The later-life gut microbiome is adapted to a plant-based diet

244  Cluster 4 was characterized by 22 families (Figure 2A, Table S4) and 63 genera (Figure S4,
245  Table S4) that increased sharply with age and plateaued in older immatures (from 10 months of
246  age onward), including cellulolytic (Spirochaetaceae, Fibrobacteraceae, Cellulosilyticum) and
247  fermentative taxa (Lachnospiraceae, Clostridiales Family XIII, several genera from Prevotellaceae
248  and Ruminococcaceae), as well as RFP12 (Figure 2D), which are all commonly found in adult
249  geladas [79]. These taxa are involved in metabolizing complex plant polysaccharides found in
250  graminoid leaves and roots, which comprise the majority of the adult gelada diet.

251 At the functional level (cluster 4, Figures S5-S6, Tables S5), the gut of old immatures
252  harbored more bacterial genes involved in energy, amino acid, and lipid metabolism and in the

253  regulation of genetic expression and bacteria growth (nucleotide metabolism, replication and
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254  repair, genetic information processing and translation) (Figure 4C), a functional profile that is
255  typical of the adult gelada gut [79].

256

257  Maternal effects on offspring gut microbiome composition and function

258  We next examined whether inter-individual variability in gut microbiome composition early in life
259  (Figure 1D,G) could be explained, in part, by maternal traits, including maternal dominance rank
260  and parity. We ran these analyses using (1) all samples (0-3 years, N=525), but since we predicted
261  that maternal effects on the offspring microbiome would be strongest in early life (when infants
262  are still nursing), we also ran separate analyses only focusing on (ii) young infants (<12 months of
263  age, still relying largely on milk, N=184) and (iii) old immatures (>18 months, relying largely on
264  plants, N=259). Note that we ran separate analyses for each age group because it is not possible to
265 fit an interaction between a smooth term (i.e., age) and covariates (i.e., maternal attributes) in
266 GAMMs.

267 Maternal dominance rank did not influence the alpha or beta diversity (Tables S1-S2,
268  Figure S9) of immature gut microbiomes, nor did it predict differences in microbial families,
269  genera, or functional pathways (Tables S8-S10 for (ii) young infants, results not shown for (i) all
270  immatures or for (iii) old immatures). Maternal parity also did not exert a significant influence on
271 the diversity, composition, or relative abundance of taxa in the immature gut microbiome (Tables
272  S1, S2, S8). However, parity was significantly associated with the relative abundance of several
273  microbial metabolic pathways (Table S9) and enzymes (Table S10) during the first 12 months of
274  life (results non-significant for (i) all immatures or (ii1) old immatures). Namely, infants born to
275  primiparous females had functional profiles more typical of early life (<12 months) and related to

276  milk digestion, both at the metabolic and enzymatic levels. Their gut microbes were more involved
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277  in carbohydrate metabolism (e.g., galactose, fructose and mannose metabolism), cellular processes
278  and signaling, and nervous system function (Figure 5A); and they harbored a higher abundance
279  of key enzymes that cleave milk glycans (Figure S10). By contrast, young infants (<12 months)
280  born to multiparous females had a more functionally “mature” gut microbiome for their age, with
281  higher abundance of later-life microbial pathways such as amino acid metabolism and nucleotide
282  metabolism (Figure 5B). To determine why maternal parity had an effect at the functional level
283  but not at the taxonomic level, we examined the bacterial taxa that showed a statistical trend to be
284  more abundant in young infants (<12 months) born to primiparous females (i.e., with p-values<0.1
285  before FDR correction, Table S9). Offspring of primiparous mothers indeed tended to harbor a
286  higher abundance of microbial taxa involved in milk digestion (e.g., Lachnospiraceae,
287  Bacteroidaceae, Clostridiaceae 1) (Figure S11, see supplemental results 2), which suggests that

288 individual taxa exert small additive effects that were only detected at the functional level.
289

290  Mother-to-infant vertical transmission

291  Previous work on captive primates suggests that the effect of maternal parity on microbial function
292  could be mediated by differences in vertical transmission between multi- and primiparous females,
293  with primiparous females transferring more milk-oriented microbes to their offspring (via the
294  milk) [10]. We tested if we could statistically detect evidence of vertical transmission between
295 mother and offspring using fecal-fecal microbiome comparisons. We used a nonparametric
296  resampling approach to test if mother-offspring pairs of fecal samples were more similar than
297  expected by chance (i.e compared to when we match the immature sample with random adult
298 female samples), as measured by the number of shared ASVs or beta dissimilarity. We predicted
299 that vertical transmission would be strongest in early life (when infants are still nursing), thus we

300 ran analyses using either (i) all samples (0-3 years, N=398 pairs) or focusing on (ii) young infants
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301 (<12 months of age, N=136 pairs) and (iii) old immatures (>18 months of age, N=201 pairs)
302  separately. Using all pairs, we found that immatures shared 3.4% more ASVs (observed
303  value=355, random value=343, P<1.0x103) and were 1.8% more similar compositionally
304 (unweighted UniFrac dissimilarity: observed=0.55, random=0.56, P=1.0x10) to their own
305 mother than with random adult females of the population (Table S11), potentially indicative of
306  vertical transmission. However, unexpectedly, this signal was weaker and non-significant in the
307  youngest infants (0-12 months: number of shared ASVs: observed=251, random=245, P=0.09 and
308 unweighted UniFrac dissimilarity: observed=0.67, random=0.67, P=0.26; Figures 5C and S12,
309 Table S11), and was strongest and significant in older juveniles (>18 months: number of shared
310  ASVs: observed=412, random=398, P=2.0x10 and unweighted UniFrac dissimilarity: observed
311 value=0.49, random value=0.50, P=1.0x10-; Figures 5C and S12, Table S11). The finding of
312 greater vertical transmission after, rather than before, nursing cessation suggests that these mother-
313  offspring similarities were mostly mediated by non-nursing interactions and that milk vertical
314  transmission may not be adequately captured by comparing infant and maternal fecal microbiomes.
315 Moreover, the ASVs shared between mother-infant pairs in the first 12 months of life were
316  not the same ASVs found abundant in early-life (i.e., ASVs with a negative score on PC1) and
317  therefore not related to nursing (Figure SD, Table S12). For example, Bacteroides fragilis is found
318  in 49% of infants <12 months but is only shared in 9% of mother-infant pairs. Instead, the most
319  commonly shared ASVs among mother-infant pairs between 0-12 months tended to be ASVs
320  characterizing later life (i.e., with positive scores on PC1), characteristic of older offspring and of
321  adult females (Figure 5D, Table S12). Thus, mother-infant pairs share more bacteria and have

322  more similar gut microbial community than expected by chance, but this shared community
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323  Dbelongs to the typical adult microbiome of geladas, and is not specific to microbes functionally
324  beneficial to processing milk during the early developmental period.

325 Since infants of primiparous females possessed more milk-oriented microbes (i.e., far from
326  adult-like microbes), we also found that they shared fewer ASVs (8=-74.5, P=0.01) and were more
327  dissimilar to their mother (unweighted UniFrac: 3=0.07, P=0.03) in the first 12 months of life than
328 infants born to multiparous females (Figure SE, Table S3). However, this effect of greater
329  dissimilarity in primiparous-infant dyads disappeared later in life (>18 months of age) when the
330 effect of maternal parity was no longer detected (number of shared ASVs: (=11.0, P=0.46,
331  unweighted UniFrac: B=-3.5x103, P=0.81) (Figure 5E, Table S3). This result shows that the
332  effect of maternal parity on the offspring gut microbiome in the first 12 months of life is not
333 mediated by stronger vertical transmission of milk-oriented microbes when using fecal-fecal
334  comparisons.

335

336 DISCUSSION

337  We provide a detailed description of the compositional assemblage and functional development of
338 the infant gut microbiome in a nonhuman primate during the first three years of life. As expected,
339 age was the strongest structuring factor of the diversity, composition, and function of the gut
340 microbiome. Most microbial taxa had clear age-related trajectories and could be grouped into four
341  main clusters that reflected progressive dietary transitions associated with weaning. In addition,
342  our data show that maternal effects were an important factor modulating offspring gut microbiome
343  both during nursing and after weaning.

344 The broad dynamic of microbial colonization in geladas presents many similarities with

345  previous reports on humans [2,5,8] and other mammals ([10,37,73], but see[74]). We observed a
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346  low initial number of microbes and a rapid increase in microbial diversity in the first seven months
347  of life, followed by more gradual changes in microbial composition until weaning (~17 months).
348  The fact that maximal microbial diversity was attained by the time infants reached 7 months, while
349  the microbial community continued to evolve until weaning, suggests that numerous events of
350 lineage extinction and de novo colonization continue to take place in the gelada gut until weaning.
351  Similar to humans [5,42,93], it is the cessation of nursing rather than just the introduction of solid
352  foods (which usually starts as early as the first few weeks after birth in geladas) that really drives
353  the maturation of the developing gut microbiome to an adult-like composition. Indeed, weaning
354  marks two important transitions that can have dramatic effects on the maturing gut microbiome.
355  First, as milk is replaced by solid foods, the nutrient sources for host and microbes both change,
356 altering the types of microbes that are likely to flourish. Second, weaning is accompanied by the
357  loss of maternal-origin immunologic factors and milk-derived microbes [94], both of which can
358 further alter the microbiome through processes of selective seeding. Shifts in gut microbiome
359  composition and function closely followed progressive dietary transitions: gut bacteria that
360 facilitate milk glycans and lactose utilization were dominant in the gelada microbiome during early
361 infancy, while cellulolytic and fibrolytic bacteria that metabolize plant complex polysaccharides
362  were dominant later in development as graminoids were progressively introduced in the diet [76].
363 Many of the early life colonizers were similar to those found in humans, such as Bacteroides,
364  Streptococcus, Faecalibacterium, Lachnospiraceae, Blautia, Clostridium, Veillonea, Escherichia-
365  Shigella, and Pasteurellaceae [48,82,95] which perhaps suggest a set of universal mammalian or
366  primate infant microbial taxa. These early-life microbes work as a metabolic network that relies
367  on cross-feeding between primary degraders (e.g., lactose-degraders such as Streptococcus) and

368  secondary fermenters (e.g., lactate-utilizers such as Veillonea) to convert milk sugars into energy
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369  [96]. The functional enrichment in carbohydrate metabolism and fermentative pathways found in
370  gelada infants is also typically observed in human newborns [2,5,55,97].

371 Bacteroides, and in particular B. fragilis [61,98], appear to be the primary microbial taxa
372  involved in milk glycan degradation in geladas, as evidenced by their high abundance in early-life
373  and the fact that they encode the enzymatic toolkits necessary to cleave complex milk glycans
374  (e.g., fucosidase, sialidase, beta-galactosidase). These bacterial enzymes are critical for host
375  nutrition, as mammalian hosts are unable to produce them and therefore cannot utilize milk glycans
376  independently of gut bacteria [82]. In humans, this function is largely met by Bifidobacterium, a
377  taxa commonly found in high abundance in breastfed humans that also breaks down milk glycans
378  [8,48,99,100]; however this taxon was almost entirely absent in young geladas. In fact, variation
379  in the dominance of Bifidobacterium and Bacteroides appears the norm at both the species and
380  population level: several studies in mammals [10,37,72,101] and in some human populations
381 [3,85,95,97,102] have noticed the absence of Bifidobacterium but abundance of Bacteroides in
382  most or at least some nursing infants. Bifidobacterium and Bacteroides have different glycan-use
383  profiles [61,62,97] linked to species and population differences in milk composition, particularly
384 the structure and the relative abundance of different milk glycans [103—105].

385 The early-life microbiome of geladas was also characterized by a high number of
386  potentially pathogenic bacteria known to cause enteric infection in human newborns and captive
387  animals (Clostridioides, Helicobacter, Clostridium) [8§7-91] and several bacterial groups involved
388 in the activation of the host immune system such as butyrate-producing (Blautia,
389  Faecalibacterium, Butyricicoccus, Butyricimonas) and mucin-degrading bacteria (4kkermansia,
390  Ruminococcus gnavus and R. torques). Collectively, this microbial profile suggests that immune

391  function is a priority for gelada infants. Butyrate plays a key role in the maintenance of gut integrity
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392 [106,107] and protection against enteric infection [108]. This microbial metabolite is also an
393 important immunoregulator via its action on intestinal macrophages [109,110]. Mucolytic bacteria
394 play an essential role in mucus turnover [111] and contribute to an essential immune barrier
395  protecting the underlying epithelium from luminal pathogens [111] and are thus strongly involved
396  in immunity in early life. Bacteroides are also likely involved in regulation of intestinal immunity
397  in early life [112,113]. Bacteroides fragilis in particular is directly involved in the maturation of
398 the immune system by directing the production of regulatory T cells and ensuring a balance
399  between Thl and Th2 immunologic response [114—117]. Functional analyses revealed that the gut
400  microbes were more strongly involved in host immunity during the nursing period, highlighting
401  that microbial colonization plays an important role in priming of the host immune system in
402  geladas.

403 We detected important compositional and functional signatures of microbial rearrangement
404 around 10 months of age (i.e., 5-7 months before nursing cessation). Bacteroides decrease
405  substantially in the gelada gut microbiome, while two other taxa, Lactobacillus and Prevotella,
406 increase in abundance. Lactobacillus is a lactic acid bacterium that consumes lactose [118,119].
407  Its rise in abundance around the weaning transition indicates an increase in lactose availability in
408 the colon, likely due to the loss of endogenous lactase of infants in the upper gut [120]. Prevotella
409 s a keystone fiber-degrading bacterium typically enriched in individuals with a plant-based diet.
410  In two other mammalian species (vervet monkeys: [10] and northern elephant seals (Mirounga
411  angustirostris): [72]), Prevotella also increased in abundance during the weaning transition. The
412  abundance of Bacteroides and Prevotella are generally inversely correlated in the gut, due to the
413  trade-off between saccharolytic and proteolytic fermentation [121]. Thus, the growth of Prevotella

414  closer to weaning might be related to the decrease in milk degrading bacteria (i.e., Bacteroides)
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415  and could be a good indicator of the transition from milk to solid food consumption in mammals
416  [10]. These taxonomic changes were also accompanied by important functional changes in the
417  metabolism of amino acids, vitamins, and cofactors, setting up the microbial activity characteristic
418  of the adult gut.

419 Finally, our results highlight that early-life gut microbiome composition and functionality
420 can be influenced by maternal effects, both during the nursing period, but also after weaning.
421  During the first 12 months of life, we found that infants of primiparous mothers harbored more
422  bacteria that were functionally relevant for processing milk sugars, which parallel recent findings
423  invervet monkeys [10]. The authors in that study hypothesized that infants of primiparous mothers
424  may compensate for poor maternal investment by seeding more milk-oriented microbes that help
425 infants extract more energy from milk [10]. In support of this, B fragilis was more abundant in the
426  milk of low-parity vervet females, which resulted in higher abundance of milk-oriented microbes
427  in the infant gut, which in turn promoted faster growth in low-parity infants [10]. In our study,
428  vertical transmission — as assessed by fecal-fecal comparison of maternal and offspring
429  communities — was not identified as the mechanism generating such a parity effect. First, we did
430 not find evidence of vertical transmission in the first 12 months of life (infants and mothers did
431  not share more ASVs than expected by chance during nursing). Second, the microbes that were
432  shared by mother-offspring pairs were associated with processing grass rather than early life
433  functions such as processing milk glycans or sugars. Third, infants from primiparous females
434  actually shared fewer microbes with their mother than infants from multiparous females (since the
435  detected shared microbes are later-life microbes). This result suggests that vertical transmission of
436  early colonizers/milk-oriented microbes might be more strongly mediated by the direct transfer of

437  milk microbiota in geladas [10,49,50,54] and, in contrast to reports in humans [42,44,55,56], not
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438  easily detected using fecal-fecal comparisons between infants and their mothers. In vervets, for
439 instance, infants aged 2-5 days shared more bacterial strains with their mother’s milk than with
440  their mother’s gut [10]. This parity effect could nonetheless result from host filtering processes
441  coming from the offspring themselves [56]. Maternal microbiomes might be similar across parity
442  status, but offspring of primiparous females might preferentially seed milk-oriented microbes from
443  milk in response to poorer maternal energetic allocation. In the absence of milk samples, evidence
444  for such mechanisms remains unclear in geladas.

445 Alternatively, the effect of maternal parity could reflect a faster pace of gut microbiome
446  maturation for offspring born to multiparous mothers. The pattern of vertical transmission might
447  be similar between primiparous and multiparous females, but offspring of multiparous females
448  might share more microbes with their mother during the first 12 months of life because they are
449  more mature for age (and because we only capture vertical transmission of grass-processing
450  microbes). This interpretation is supported by the evidence that multiparous mothers wean their
451  offspring about 5 months earlier than primiparous females in geladas (in our studied cohort and in
452  absence of takeover: multiparous=17.1 months, primiparous=21.9 months). The greater similarity
453  between multiparous mothers and their infants is thus more likely to be generated by accelerated
454  gut microbiome development, suggesting that these infants are undergoing the weaning transition
455  at a faster pace than their peers. Infants from multiparous females could be eating solid grass,
456  gaining physical independence, and becoming socially integrated earlier than their peermates, all
457  of which could explain greater microbial resemblance to mothers (and other adults). Behavioral
458 and development data, such as infant growth, are needed to investigate this hypothesis of

459  accelerated development and their consequences on offspring phenotype.


https://doi.org/10.1101/2021.11.06.467515
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.06.467515; this version posted November 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

460 Somewhat surprisingly, we did find that immature gut microbiomes were more similar to
461  maternal gut microbiomes than expected by chance after weaning regardless of the parity status of
462  the mother. Such an effect has been previously documented in wild red squirrels (Tamiasciurus
463  hudsonicus) [122] and chimpanzees (Pan troglodytes) ([74] but see [123]). Host genetics, or
464  socially transmitted microbes, may facilitate maternal-offspring gut microbiome similarities
465 beyond the early postnatal period [47]. A recent study in yellow baboons (Papio cynocephalus)
466  found that the gut microbiome, including both abundant and rare taxa, is highly heritable [124]
467  suggesting that the convergence of the gut microbiota between mother and offspring in geladas
468  could be due shared genes. Alternatively, or additionally, the higher similarity in later life could
469  be generated by high frequency of social contacts between mothers and offspring that extend past
470  weaning. Primate mothers and offspring form preferential social bonds long after weaning,
471  relationships that are characterized by a high degree of proximity, physical contact and grooming,
472  and are likely to represent an enduring source of maternal microbial inoculation for offspring
473  [58,125]. Further work is needed to understand the relative importance of these mechanisms in
474  explaining mother-infant similarity during juvenility.

475

476  Conclusion

477  Our results highlight that early-life gut microbiome composition and function can be influenced
478 by maternal effects, both during nursing as well as after weaning. Maternal parity in particular was
479  associated with the functional maturation of the microbiome in offspring, likely reflecting faster
480 developmental pace of infants born to reproductively experienced mothers. As infants age and are
481  weaned, they converge toward an adult-like gut microbiome that is more similar to the maternal

482  gut microbiome than expected by chance. The long-term consequences of such microbially-
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483  mediated maternal effects remain unknown but could potentially influence phenotypic outcomes
484  such as growth and immune function. Our work also emphasizes that early life vertical
485  transmission, mediated in large part by milk transfer, may not be detected using fecal-fecal
486  comparisons of maternal and infant communities and would ideally require data on the milk
487  microbiome whenever possible.

488

489 MATERIAL & METHODS

490  Study population and study site

491  The data for this study were collected between Jan 2015 and Jan 2019 from a population of wild
492  geladas living in the Simien Mountains National Park in northern Ethiopia (13°15'N, 38°00’E).
493  Geladas live in multi-level societies, where several reproductive units (comprising a leader male,
494  several adult females, their offspring, and occasionally 1-2 follower males) aggregate together
495  during the day to forage and sleep together forming a “band”, sharing a homerange [80]. Since Jan
496 2006, the Simien Mountains Gelada Research Project (SMGRP) has collected behavioral,
497  demographic, and genetic data on a near-daily basis from over 600 individuals living in 2 separate
498 bands of the area. All gelada subjects were habituated to human observers on foot and were
499  individually recognizable. Data were derived from 89 infants and juveniles aged between 0-3 years
500 old and 83 adult females living in 23 different reproductive units. The date of birth of each infant
501 was known within a few days’ accuracy. The reproductive state of each adult female was
502  monitored daily and recorded as cycling (as indicated by the presence of sex skin swellings on the
503 neck, chest, and perineum), lactating (if she had a nursing infant), or pregnant (the date of
504  conception was inferred by removing 183 days from the date of birth of subsequent offspring)

505 [81]. Records of female reproductive history were used to assign maternal parity status for each


https://doi.org/10.1101/2021.11.06.467515
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.06.467515; this version posted November 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

506 infant (first-time mother: primiparous or multi-time mother: multiparous) and to establish the date
507  at which the mother resumed cycling following the infant’s birth, which we used to estimate the
508 approximate age at weaning for each infant. For 8 infants, age at weaning began on the date of
509  maternal death.

510

511  Fecal sample collection

512  Fecal samples (N=525; 303 females, 222 male samples) from 89 immature geladas (i.e., infants
513 and juveniles sampled pre-reproductive maturity; female: N=51; male: N=38,
514  meantSD=5.90+5.53 samples per individual, range=1-18) were collected opportunistically from
515  2015-2016, and then regularly from 2017 to 2018) during the development using targeted protocols
516  (Figure S1). These samples come from individuals residing in 17 different reproductive units
517 (meantSD= 5.654+4.44 number of individuals sampled per unit, range=1-17). For a subset of
518  immature samples (N=398 samples from 61 infants), we also collected a matched fecal sample
519  from the mother (N=398 samples from 44 mothers) on the same day or on the following day of the
520 infant sample collection. Fecal samples of known adult females in all reproductive states were also
521  routinely collected (N=222 samples from 79 females) and were used to generate a random
522  distribution of gut microbiome composition similarity between females of the population and
523  immatures. Immediately upon defecation, approximately 1.5 g of feces was collected in 3 ml of
524  RNA later [126] stored at room temperature for up to 2 months, and subsequently shipped to the
525  University of Washington (UW). At UW, samples were stored at -80°C until the sequencing
526  libraries were prepared.

527

528  Maternal dominance ranks
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529  Female dominance ranks were established using ad libitum and focal observations of agonistic
530 interactions between all adult females belonging to the same unit with an Elo-rating procedure
531  [127] implemented in the R package EloRating [128]. Agonistic interactions included physical
532  aggression (hit, bite), chase, threats (vocal threats, non-vocal gestures), approach-avoid
533 interactions (displacements) and submissive behaviors (fear bark, crouch, grimace). In geladas,
534  agonistic interactions usually consist of a sequence of several behaviors in a row emitted and
535  received by both parties. Since it can be difficult to establish the winner of each agonistic sequence,
536  we consider each behavior of a sequence as a separate event and assign the winner and loser based
537  on the directionality of the behavior. We obtained a daily Elo-score that we then averaged per
538  month. Since Elo-scores can be sensitive to differences in sampling effort, we then converted this
539  monthly Elo-rank into a monthly proportional rank and controlling for female group size
540  (O=lowest-ranking females and 1= highest ranking female). In the analyses, we used maternal
541  dominance rank during the month of the infant’s birth since we expect microbially-mediated
542  maternal effects to be the strongest in the postnatal period (during nursing). However, we also
543  investigated maternal rank during pregnancy and at the date of immature sample collection, which
544  led to similar results (not reported here).

545

546  Environmental data

547  The study area is located at 3200 m above sea level and is characterized as an Afroalpine grassland
548  ecosystem, consisting of grassland plateaus, scrublands, and Ericaceous forests [129]. The climate
549  in the Simien Mountains National Park exhibits marked inter- and intra-annual fluctuation in
550 rainfall and temperature and can be broadly divided into 3 distinct seasons : a cold-dry season (Oct

551  to Jan), a hot-dry season (Feb to May) and a cold-wet season (Jun to Sep) [130]. Fecal samples of
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552  immatures and adult females were collected across the year, with roughly equal coverage across
553  seasons (406 in cold-dry, 426 in cold-wet and 313 in hot-dry season). Daily cumulative rainfall
554  and minimum and maximum temperature are recorded on a near-daily basis by the SMGRP.
555  Geladas are graminivorous, with up to 90% of their diet composed of graminoids [76]. They eat
556  primarily graminoid leaves (i.e., grasses and sedges) all year long, but increase substantially their
557  consumption of underground storage organs (rhizome, corms, roots) in the dry season, as above-
558  ground graminoid leaves become less abundant [76]. A previous study established that the gut
559  microbiome composition of adults shifts in response to environmental variation, in particular with
560  cumulative rainfall which is a good proxy of diet. [79]. Thus, in all models we controlled the total
561  cumulative rainfall over the 30 days prior to the date of fecal sample collection (as a proxy for
562  grass availability) and the average minimum daily temperatures in the 30 days preceding the date
563  of sample collection (as a proxy of thermoregulatory constraints).

564

565  16S rRNA gene sequencing

566  We performed 16S rRNA gene amplicon sequencing on the immature and female fecal samples to
567  establish gut microbial composition. We first extracted microbial DNA using Qiagen’s
568  PowerLyzer PowerSoil DNA Isolation kit (Qiagen #12855) following standard protocols. We then
569  amplified the hypervariable V4 region of the 16S rRNA gene using PCR primer set 515F and 806R
570 from The Human Microbiome Project and a dual-indexing approach [131]. Details of the

571  amplification protocol can be found in [79] (see also: https://smack-lab.com/protocols/). The

572  libraries were then pooled in roughly equimolar amounts (each with their own unique indexing

573  primer combination), spiked with 10% PhiX to increase library complexity, and sequenced
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574  together on a single Illumina NovaSeq 6000 SP 250 bp paired-end sequence flowcell at the
575  Northwest Genomics Sequencing Core at the University of Washington, Seattle.

576 Data were processed using the Quantitative Insights Into Microbial Ecology 2 (QIIME?2)
577  platform [132] using the demux command to demultiplex raw reads and the DADA?2 pipeline [133]
578  to generate amplicon sequence variants (ASVs) feature tables. Forward and reverse reads were
579  trimmed to 220 and 180 bases, respectively, to remove the low-quality portion of the sequences.
580  Only samples with more than 20,000 reads were retained for analyses following observation of
581  rarefaction curves. After filtering, trimming, merging, and chimera removal, we retained a total of
582 219,125,888 reads across the 525 immature fecal samples (417,382+645,328 reads per sample,
583  range= 21,256- 7,976,983) and 293,003,271 reads across the 620 adult female fecal samples
584  (472,586+£869,181reads per sample, range= 20,068- 10,723,460). ASVs were taxonomically
585  assigned using the g2-feature classifier in QIIME2 against version 132 of the SILVA database
586  (updated December 2017) [134] based on 100% similarity.

587

588  Statistical analyses

589  The count and taxonomy files generated by QIIME2 were imported into R version 3.5.2 [135]
590 using the qiime2R package [136]. We filtered the count table to retain only ASVs that had at least
591 500 reads total in the dataset to eliminate potentially artifactual sequences. With this filtering
592  criteria, only 3,884 ASVs remained (out of the 29,686 initially observed). In total, 3,784 different
593  ASVs were found across the 525 immature fecal samples (mean+SD number of ASVs per sample:
594 7284261, range: 65-1498), while the 620 female samples contained 3,679 ASVs (mean+SD

595  number of ASVs per sample: 8294248, range: 98-1761). Most ASVs could be taxonomically
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596  assigned to the phylum (100%), class (99%), and order levels (99%), with assignments decreasing
597  substantially at the family (88%) and genus (63%) levels.
598

599  Alpha-diversity analyses

600 We calculated three complementary metrics of alpha diversity for each sample: the observed
601  richness (the total number of unique ASVs per sample), Shannon Index (taking into account both
602 richness and evenness in abundance of ASVs), and Faith’s phylogenetic diversity (a measure of
603 the diversity of phylogenetic lineages within a sample) using the “phyloseq” [137] and “picante”
604  package [138]. To assess which predictors affected immatures’ gut microbial alpha diversity, we
605 used generalized additive mixed models (GAMMSs) with the ‘mgcv’ package in R [139]. Such
606  models allow fitting of a nonlinear relationship between the response variable and the fixed effect
607  (by adding a smooth term), such as between alpha diversity and immature age (Figure 1C). Fitted
608  predictors included: immature age at the date of fecal sample collection (modeled as a smooth
609  term), immature sex, the parity status of mother, maternal dominance rank in the month of infant’s
610  birth, cumulative monthly rainfall, average monthly minimum temperature and the log-
611  transformed sequencing depth (i.e., the number of reads per sample). The use of rarefaction (i.e.,
612  subsampling of the read counts in each sample to a common sequencing depth) has been strongly
613  discouraged on microbiome dataset because it discards too much sequencing information and leads
614  to high rate of false positives [140], so we calculated alpha diversity on raw counts but controlled
615  for sequencing depth in our model. Graphical representation of alpha diversity metrics are
616  nonetheless displayed using a rarefied dataset at 20,000 reads. Individual identity and unit
617 membership were included as random effects. Model residual checks were performed using the

618 qq.gamViz and check.gamViz functions. Given that GAMMSs models can not accommodate the
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619 test of the interaction between a smooth and fixed term, we ran those models including all
620 immature samples or on only young infants (0-12 months) to test for the significance of maternal
621 effects in early life (i.e., when the infant is still nursing).

622 To quantitatively assess the age at which alpha diversity reaches a plateau (i.e., converges
623  to adult-like pattern), we used quadratic plateau models (formula: y ~ (a +b * x + ¢ * [(x"2)) * (x
624 <=-0.5 * b/c) + (a + I(-b"2/(4 * c))) * (x > -0.5 * b/c)) fitted using the nlsfit() function of the
625  easynls package [141] and extracted the critical point of inflexion and r-squared of the optimized
626  model (i.e., with the values of a, b and c fit best the data). Since it is not possible to control for
627  covariates in those analyses (e.g., sequencing depth), we ran those models on a rarefied dataset at
628 20,000 reads.

629

630  Beta-diversity analyses

631  Beta-diversity (between-sample dissimilarity in composition) was computed as the Aitchison
632  distance [142], which is simply the Euclidean distance between samples after centered log-ratio
633  (clr) transformation of the raw counts (a pseudo-count was added to the zeros using the imputation
634  based on a Bayesian-multiplicative replacement from the cmultRepl() function in the package
635  zCompositions [143]). The clr transformation allows us to account for differences in sequencing
636  depth between samples and is a better practice than rarefaction of the counts [144]. Principal
637  components analysis (PCA) on the Aitchison dissimilarity matrix (function “prcomp”) was used
638 to examine how immatures samples clustered by age. We extracted the loading scores for each
639  ASV onto the first Principal component (PC1) of the PCA to determine which specific ASVs have
640 the highest influence on the clustering by age of samples. A quadratic plateau model was

641  implemented to find the age at which Aitchison beta diversity reaches a plateau.
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642 Permutational Multivariate Analysis of Variance (PERMANOVA) was then carried out on
643  the Aitchison dissimilarity matrix using the adonis2 function in the vegan package [145] (with
644 10,000 permutations) to test for associations among gut microbial beta-diversity and the variables
645  of interest (immature age, sex, maternal parity, maternal rank, environmental variables, the log-
646  transformed sequencing depth, and unit membership). Individual identity was included as a
647  blocking factor (“strata”) to control for repeated sampling among individuals. PERMANOVA
648  models were run when including all immatures samples or on only young infants (0-12 months) to
649 test for the significance of maternal effects in early life. We also replicated those PERMANOVA
650 analyses using more classical measures of beta diversity (unweighted and weighted UniFrac
651  dissimilarity) on a rarefied dataset at 20,000 reads and found essentially similar results (Table
652 S13).

653

654  Mother-infant comparison of gut microbiome composition

655  To assess similarity in gut microbiome composition between mother and offspring, we calculated
656 (1) the number of shared ASVs across maternal and immature communities, and (2) the beta
657  diversity dissimilarity (unweighted and weighted UniFrac distances) between the matched infant-
658  mother fecal samples collected the same day (N=398). The dataset of immature and mother fecal
659  samples was rarefied at 20,000 reads to calculate these metrics since sequencing depth is likely to
660  affect the similarity between paired samples. Quadratic plateau models were implemented on the
661  three metrics to identify the age at which infants converged toward the maternal (i.e., adult-like)
662  gut microbial composition. To assess which predictors affected the compositional similarity
663  between mother-offspring pairs, we used GAMMs to model those three metrics as a function of

664 immature age (as a smooth term), immature sex, maternal parity and maternal dominance rank,
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665 climatic variables (cumulative monthly rainfall and average monthly minimum temperature),
666  while individual identity and unit membership were included as random effects. These GAMMs
667  were also run separately on young infant samples (<12 months) or only on old immatures (>18
668  months) to assess how the strength of vertical transmission varies with maternal traits.

669

670 Individuality of the microbiomes in immatures

671  To capture the compositional divergence between immature samples, we calculated a measure of
672  “individuality” of the microbiomes among the 525 immature samples, as defined in [146], which
673  corresponds to the beta diversity dissimilarity value between a sample and the most similar sample
674  (i.e., the minimum pairwise values from a beta diversity dissimilarity matrix, based on unweighted
675 and weighted UniFrac metrics). The higher the value, the more distinct the gut microbiome
676  composition is from all other immature samples in the cohort. This was calculated using the
677  rarefied dataset at 20,000 reads.

678

679  Age-associated changes in microbial taxonomic composition

680  To identify the microbial taxa that vary significantly in abundance as immatures age, we used a
681  statistical framework that is commonly used to analyze time series (and, in our case, longitudinal
682  dataset). Autoregressive Integrated Moving Average (ARIMA) models allowed us to model and
683  test for chronological trends in temporal data [147]. First, raw microbial counts were aggregated
684  at the family or genus level, normalized using a clr-transformation, and z-transformed per taxon
685  (i.e., across samples) to correct for variation in library size and unaccounted variance due to other
686  covariates. Only microbial families or genera > 0.01% relative abundance across the samples were

687  selected for further analyses. Second, the counts were averaged across samples belonging to the
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688  same chronological age and converted into z-ordered objects (using R package zoo [148]) and into
689  time series objects. Formatted time series were then analyzed using auto.arima (from the forecast
690 R package [149]), using stepwise search and Akaike Information Criterion (AIC) to select the best
691  model. This algorithm scans a wide range of possible ARIMA models and selects the one with the
692  smallest AIC. ARIMA models that exhibited significant non-stationary trends (as opposed to
693  unstructured “noise” fluctuations indistinguishable from stationary data) were selected following
694  the criteria in [147]: (1) the difference order from stationary was higher than zero, and (2) at least
695  one autoregressive (AR) and moving average (MA) coefficient was included in the model. LOESS
696  regressions were then fitted to re-predict the count of each taxon as a function of age.

697 We then grouped bacterial taxa into clusters based on similarities in age-associated
698  abundance trajectories. Pairwise distances between microbial taxa trajectories (i.e., the predicted
699  values of the LOESS regression) were computed using correlation coefficients as a distance
700  measure [150], and hierarchical clustering was performed using the complete method (using the
701  function hclust from the stats R package). The optimal number of clusters was determined using
702 the Elbow method (i.e., choosing a number of clusters so that adding another cluster does not
703  highly improve the total within-cluster sum of squares) [151]. Results of hierarchical clustering
704  were visualized using the R package heatmap3 [152] to provide an overview of gut microbiome
705  composition changes with age.

706

707  Age-associated changes in microbial functional composition

708  To predict the microbial functional metagenomes of each sample from 16S rRNA data, we used
709  Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2

710 (PICRUSt2) v.2.1.3-b software [84] with default options (picrust2 pipeline.py). We then
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711 computed the relative abundance of Kyoto Encyclopedia of Genes and Genomes (KEGG)
712 Orthologs (KOs) (agglomerated at level 2 or 3 of the BRITE map) and of Enzyme Commission
713  (EC) numbers for each sample. The accuracy of the PICRUSt2 predictions for each sample were
714  assessed by calculating the weighted Nearest Sequence Taxon Index (NSTI) score, a measure of
715  how similar the bacteria from the sample are to reference genome sequences. The mean+SD NSTI
716  score across the 525 immature samples was 0.49 £ 0.19 (range: 0.01-0.89).

717 The age-related temporal trajectory of each KO pathway and EC was assessed using
718  ARIMA models in a similar fashion than described above. The only difference is that the raw
719  metagenome counts were transformed into relative abundance (instead of clr transformed). Only
720  microbial pathways > 0.01% relative abundance across the samples were included. Hierarchical
721  clustering was used to group the pathways with similar aging trajectories.

722

723  Maternal effects on offspring’s gut microbiome development

724  We examined how maternal traits (dominance rank, parity) were associated with differences in
725  offspring gut microbiome (1) composition (at the family and genus levels) and (2) function (KO
726  pathways at level 2 or 3 and EC numbers) using GAMMs models. We modelled the relative
727  abundance of each taxon and each functional pathway as a function of maternal parity and maternal
728  dominance rank in the month of infant’s birth, while controlling for immature age (as a smooth
729  term), immature sex, climatic variables (cumulative monthly rainfall and average monthly
730 minimum temperature. For (1), the logarithm of the relative abundance of each taxon was fit
731  (adding a pseudo-count of 0.001% to include zero counts). In all models, individual identity and
732 unit membership were included as random effects. P-values were adjusted for multiple hypothesis

733  testing by calculating the Benjamini-Hochberg FDR multiple-test correction. Only taxa that had
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734  an average relative abundance across samples > 0.01% were tested. Given the number of metabolic
735  pathways and the correction of p-values for multiple testings, only pathways that had an average
736  relative abundance across samples > 0.10% were tested. Taxa or functional pathways with a p-
737  value < 0.05 were considered statistically significant. These analyses were run including all
738  immatures samples (0-3 years), only young infant samples (<12months) or only old samples (>18
739  months).

740

741 Mother-to-infant vertical transmission

742  To assess if maternal and infant gut microbiome communities were more similar than expected by
743  chance, we took a resampling approach (with 1000 repetitions) to compare the number of shared
744  ASVs and beta diversity dissimilarity metrics (unweighted and weighted UniFrac) between (1)
745  actual mother-infant matched samples (the observed value) and (2) random pairs of fecal samples
746  of an infant and an adult female of the population (the random distribution). Since mother-infant
747  pairs always shared the same social unit and were always collected 0-1 day apart (i.e., in the same
748  season), we needed to match the random female samples accordingly to avoid introducing
749  consistent bias in the random distribution. The random matching was thus done by either matching
750  the infant sample to (i) a female of the same unit (to control for higher similarity only due to
751  sharing the same social group) or (ii) a female sample collected in the same season (to control for
752  higher similarity only due to seasonality). We did not have enough female samples to match by
753  Dboth criteria simultaneously. After we created the set of random pairs, we use GAMMs to compare
754  the observed and random distribution of the metrics (number of shared ASVs or beta diversity
755  dissimilarity) (response variable) by fitting a variable (“type of pairs?”’) coding whether the value

756  comes from an actual mother-offspring pair (1=observed) or a random infant-female pair
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757  (0O=random), and controlling for immature age (as a smooth term) and immature sex. Infant and
758  female identity were included as random effects to account for repeated observations of the same
759  individuals. We extracted the estimate of the “type of pairs?” variable for the model and re-ran the
760  model on a different set of random pairs (1000 times in total). We thus obtained a distribution of
761 1000 estimates for the “type of pairs?” variable. We report the exact p-value (calculated as the
762  proportion of models with positive estimates for the number of shared ASVs and the proportion of
763  models with negative estimates for beta dissimilarity) and the 95% confidence interval of the
764  estimates of the “type of pairs?” variable. Fecal samples were rarefied at 20,000 reads to control
765  for differences in sequence depth between infant and female samples. These analyses were run
766  including all immatures samples (0-3 years), only young infant samples (0-12 months), or only old
767  immatures (>18 months) to compare the strength of the effect among the different age categories.
768 To examine the nature of the shared microbes between mother and offspring in early life
769  (when infants are <12 months), we extracted all ASVs in common between the 136 mother-
770  offspring pairs (on the rarefied dataset). For each ASV found in the young infant samples (<12
771 months, N=3,402 ASVs total), we simply computed its relative abundance and prevalence across
772 samples and how many pairs shared this given ASV. We then plotted the loading score of the ASV
773  on PC1 of the beta diversity ordination (PC1 correlates strongly with age, so ASVs with the most
774  negative versus positive loading scores are found in early versus later life) according to the
775  percentage of mother-offspring pairs sharing this ASV.
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1203 Figure Legends

1204

1205 Figure 1. Gut microbiome taxonomic assembly in the first three years of life in immature
1206  geladas.

1207 (A, B) Taxonomic composition of the immature gelada gut microbiome at the phylum and family
1208 level as a function of age. The relative abundance of each taxon was calculated per sample by
1209  dividing the counts of the taxa by sequencing depth, and then averaged across samples belonging
1210  to the age category of interest. Age was split into categories for visualization purposes, but analyses
1211  treated age as a continuous variable. (C) Age-associated pattern of alpha diversity within samples,
1212  as calculated by the Shannon index (richness and evenness of Amplicon Sequencing Variants,
1213  ASVs). The vertical line represents the critical point of inflexion (calculated using quadratic
1214  plateau models) representing the age at which alpha diversity converges to adult-like patterns. The
1215  dataset was rarefied at 20,000 reads for the figure. (D,E) Age-associated pattern of beta diversity.
1216 A Principal Component Analysis (PCA) was used to ordinate the samples based on the Aitchison
1217  dissimilarity index (which is simply the Euclidean distance after centered-log-ratio transformation
1218  of the raw counts). Panel D represents the projection of the first principal component (PC1) that is
1219  best explained by the age of immatures. The vertical line represents the critical point of inflexion
1220  (calculated using quadratic plateau models) representing the age at which beta diversity converges
1221  to adult-like patterns. Panel E shows how age structures the gut microbiome composition of
1222  immatures on the two first principal components. (F) Comparison of gut microbiome composition
1223  between mother and offspring, as assessed using 398 matched mother-infant pairs of fecal samples
1224  collected on the same day. Here, the number of shared ASVs between pairs of samples is

1225  represented. The vertical line represents the critical point of inflexion (calculated using quadratic
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1226  plateau models) representing the age at which the number of shared ASVs stabilizes to its maximal
1227  value. The dataset was rarefied at 20,000 reads for the calculation. (G) Age distribution inter-
1228  individual variability in gut microbiomes using the ASV-level unweighted and weighted UniFrac
1229  distances. This score was calculated as the minimum pairwise dissimilarity value from a beta
1230  diversity matrix for a given immature sample, and captures how dissimilar a sample is from its
1231  nearest neighbor, given all other gut microbiome samples in the immature cohort. Higher values
1232  indicate a more distinct gut microbiome from the population. The dataset was rarefied at 20,000
1233  reads for the calculation.

1234

1235  Figure 2. Age-associated changes in microbial composition at the family level.

1236  (A) Heatmap of the microbial families exhibiting a significant chronological trend as a function of
1237  age (fitted values from ARIMA models and predicted using LOESS regression per taxa as a
1238  function of age). Values represent z-score normalized counts after centered-log-ratio (clr)
1239  transformation. Hierarchical clustering was used to group age-dependent trajectories into four
1240  clusters exhibiting similar chronological trends. Color bars on the left side identify the clusters.
1241  Taxa (i.e. rows) are ordinated on the heatmap using correlation as distance function. All microbial
1242  families above 0.01% abundance were analyzed (N=55) and the 53 that displayed a significant
1243  trend are represented. (B) Relative abundance of 8 functionally important microbial families that
1244  are enriched in early life (belonging to cluster 1), as a function of age. The age-dependent
1245  trajectories were calculated on clr-transformed counts, but here for interpretation purposes we
1246  represent the LOESS regression on the raw relative abundance across samples (same for panels C
1247 and D). (C) Relative abundance of 5 functionally important microbial families that peak in

1248  abundance around 10 months of age (belonging to cluster 2). Relative abundance is represented
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1249  on alog-scale to accommodate high and low abundance families together. (D) Relative abundance
1250  of 8 functionally important microbial families that are enriched in later life (belonging to cluster
1251  4). Relative abundance is represented on a log-scale to accommodate high and low abundance
1252  families together.

1253

1254  Figure 3. Composition of the early-life microbiota at the genus level.

1255  Relative abundance of functionally important genera in early life, as a function of age. The age-
1256  dependent trajectories were calculated on clr-transformed counts. For visualization purposes
1257  however, we represent the LOESS regression on the raw relative abundance across samples (on a
1258  log-transformed scale).

1259

1260  Figure 4. Age-associated changes in the functional profile of the gut microbiome of
1261  immatures based on predicted KEGG orthologs (KO) metagenomes.

1262  (A) Relative abundance of metabolic pathways (left: KO level 2 and right: KO level 3 of the
1263  carbohydrate metabolism) enriched in early life, as a function of age. (B) Relative abundance of
1264  metabolic pathways (KO level 3) that peak in abundance or decrease in abundance at 10 months
1265  of age. (C) Relative abundance of metabolic pathways (at KO level 2) enriched in later life, as a
1266  function of age. In all plots, the average curve is the LOESS regression on the raw relative
1267  abundance across samples.

1268

1269  Figure 5. The effect of maternal parity on offspring’s gut microbiota functional capacity.
1270  (A) Metabolic pathways (KO level 2 for upper row and KO level 3 for lower row) that are more

1271  abundant in infants <12 months) born to primiparous females than infants of multiparous females.
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1272  (B) Metabolic pathways (KO level 2) that are less abundant in infants (<12 months) born to
1273  primiparous females than infants of multiparous females. (C) Results of the nonparametric
1274  resampling approach testing if offspring share more Amplicon Sequencing Variants (ASVs) and
1275  have a more similar gut microbiome composition (unweighted UniFrac dissimilarity) to their
1276  mother than to random adult females of the population. The histograms show the random
1277  distribution of the metric of interest (i.e. when matching each infant sample to a random female
1278  sample collected during the same season, with 1000 repetitions). The vertical line shows the
1279  observed value of the metric (i.e. between the actual mother-offspring pairs of fecal samples
1280  collected the same day). This analysis was performed separately on young (nursing) infants (aged
1281  0-12 months, N=136 samples) and old immatures (>18 months, N=201) that were likely weaned.
1282 (D) Composition of the shared ASVs between young infants (<12 months) and their mothers. The
1283  ASVs that are commonly shared between mother-offspring pairs (e.g. among > 70% of the pairs)
1284  in early life tend to have high loading scores of the first principal component (PC1) of a Principal
1285  Component Analysis ordination (based on Aitchison distance). Since PCI1 strongly correlates
1286  positively with age, these shared ASVs are characteristic of later life. (E) Vertical transmission
1287  differs for primiparous and multiparous females in early life. Young infants (<12 months) born to
1288  primiparous females share fewer ASVs with their mother and have a more dissimilar gut
1289  microbiome composition (unweighted UniFrac dissimilarity) compared to their mother than
1290  offspring born to multiparous females. Later in life (>18 months), immatures born to primiparous
1291  and multiparous females are equally similar to their mother in terms of gut microbiome

1292  composition.
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