

1 **Complete genome sequence and Benzophenone-3 mineralisation**
2 **potential of *Rhodococcus* sp. USK10, a bacterium isolated from**
3 **riverbank sediment.**

4 Joseph Donald Martin¹, Urse Scheel Krüger², Athanasios Zervas¹, Morten Dencker
5 Schostag^{2,3}, Tue Kjærgaard Nielsen⁴, Jens Aamand², Lars Hestbjerg Hansen⁴, Lea
6 Ellegaard-Jensen^{1#}

7

8 ¹ Department of Environmental Science, Faculty of Technical Science, Aarhus University, Roskilde, Denmark

9 ² Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen K, Denmark

10 ³ Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark

11 ⁴ Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark

12

13 # Corresponding author: Lea Ellegaard-Jensen, leael@envs.au.dk

14 **Abstract**

15

16 Benzophenone-3 (BP3) is an organic UV filter whose presence in the aquatic environment
17 has been linked to detrimental developmental impacts in aquatic organisms such as coral
18 and fish. The genus *Rhodococcus* has been extensively studied and is known for
19 possessing large genomes housing genes for biodegradation of a wide range of
20 compounds, including aromatic carbons. Here, we present the genome sequence of
21 *Rhodococcus* sp. USK10, which was isolated from Chinese riverbank sediment and is
22 capable of utilising BP3 as the sole carbon source, resulting in full BP3 mineralisation.
23 The genome consisted of 9,870,030 bp in 3 replicons, a G+C content of 67.2%, and 9,722
24 coding DNA sequences (CDSs). Annotation of the genome revealed that 179 of these
25 CDSs are involved in metabolism of aromatic carbons. The complete genome of
26 *Rhodococcus* sp. USK10 is the first complete, annotated genome sequence of a
27 Benzophenone-3 degrading bacterium. Through radiolabelling, it is also the first
28 bacterium proven to mineralise Benzophenone-3. Due to the widespread environmental
29 prevalence of Benzophenone-3, coupled to its adverse impact on aquatic organisms, this
30 characterisation provides an integral first step in better understanding the environmentally
31 relevant degradation pathway of the commonly used UV filter. Given USK10's ability to
32 completely mineralise Benzophenone-3, it could prove to be a suitable candidate for
33 bioremediation application.

34

35 **Keywords:** Oxybenzone, UV filter, biodegradation, whole genome sequencing,
36 *Rhodococcus*

37 **1. Introduction**

38

39 Benzophenone-3 (BP3; 2-hydroxy-4-methoxybenzophenone; Oxybenzone) is an organic
40 UV filter typically used in personal care products to protect the skin from harmful solar
41 radiation. Organic UV filters have an aromatic chemical structure that allows for the
42 absorption and stabilisation of both UVA (315-400 nm) and UVB (280-315 nm) radiation
43 [1]. BP3 has been implemented as an active ingredient in sunscreens, cosmetics, and
44 plastic products for decades, and is still one of the most commonly used UV filters
45 worldwide. BP3 has been detected in surface waters, sediments and organisms within
46 various environments including remote areas such as seawater of the Polar Regions [2,3].

47 Elevated concentrations of BP3 in the aquatic environment have been reported to result
48 in adverse effects in aquatic organisms, such as deterioration of coral reefs and impaired
49 reproduction potential in fish [4–6,1]. These detrimental factors have caused the use of
50 BP3 containing sunscreens to be banned on the coasts of several countries, including the
51 United States (Hawaii, U.S. Virgin Islands), Mexico, and Palau [1,4,7]. The chemical
52 characteristics of BP3, and many other organic UV filters, is a cause of concern due to
53 their high lipophilicity allowing for them to easily bioaccumulate in aquatic organisms and
54 even in the body fluids of humans [2,8]. In addition, BP3 may also act as an endocrine
55 disruptor in humans, influencing birth weight and gestational age [9]. The presence of
56 BP3 in the aquatic environment worldwide begs the question of its persistence and,
57 therefore, it is important to further research the biodegradation potential of BP3 facilitated
58 by microorganisms found in natural environments.

59 In this study, we isolated and characterized the genome of *Rhodococcus* sp. USK10, to
60 provide additional evidence of the genetic background of this BP3 mineralising bacterium.
61 Currently, only two other bacterial strains, *Methylophilus* sp. strain FP-6 [10] and
62 *Sphingomonas wittichii* strain BP14P [11], have been reported capable of degrading BP3.
63 The phylogenetic characterisation of these strains was however solely based on 16S
64 rRNA gene sequences and their genetic make-up was not investigated. Furthermore,
65 both strains were hypothesized to be able to mineralise BP3, without, however, confirming
66 it experimentally.

67 Here, we present the first complete and annotated genome of a BP3 degrader found in
68 nature, including a potential linear megaplasmid and a smaller circular plasmid. Strain
69 USK10 shows increased number of genes involved in catalyzing aromatic compounds
70 compared to related *Rhodococcus* strains, which may indicate that it is a specialist strain.
71 In addition, we present experimental data that prove the biodegradation of BP3 by
72 *Rhodococcus* sp. USK10, when incubated in liquid media without any other carbon
73 source.

74

75 **2. Materials and Methods**

76

77 *2.1 Isolation of Rhodococcus sp. USK10*

78 Strain USK10 was isolated from enrichment cultures originating from a Chinese riverbank
79 sediment (GPS coordinates 25.569611, 119.781000). The sediment is characterised as
80 unpolluted, having no known prior exposure to BP3. In short, the sediment was
81 implemented into a series of enrichment cultures using radiolabeled BP3 to assess

82 degradation potential followed by a series of streak plating using BP3 enriched agar
83 plates as the sole carbon source. Single colonies were picked and further asses for BP3
84 mineralisation potential and later characterised, one of which being USK10.

85

86 *2.2 BP3 Biodegradation experiment*

87 Precultures for the mineralisation experiment were grown on R2B media supplemented
88 with 100ppm BP3. After incubation at 20°C in the dark on an orbital shaker (120rpm) for
89 3 days, extracts were centrifuged (12,000g x 5 minutes), washed twice, and resuspended
90 in Difco™ Bushnell-Hass Broth (BHB). The mineralisation experiment was conducted in
91 triplicate with each microcosm containing 5 mL of BHB with BP3 as the sole carbon
92 source. Each USK10 microcosm had approximately 1.4×10^8 cells, while the abiotic control
93 had no cells. The initial BP3 concentration of each microcosm was 10 mg L⁻¹, including
94 [¹⁴C(U)]-labeled BP3 (Moravek Biochemicals Inc.; Brea, California, USA)
95 amounting to 7055 DPM. The flasks further contained a 2 mL glass tube with 1 mL 1M
96 NaOH serving as a basetrap to capture the evolved ¹⁴CO₂ during BP3 mineralisation. The
97 microcosms were incubated in the dark at 20°C and sampled once a day for 10 days. At
98 each sampling time point, the NaOH was removed, replaced, and transferred to a plastic
99 scintillation vial containing 10 mL of OptPhase HiSafe 3 scintillation cocktail (PerkinElmer,
100 Waltman, MA, USA). All vials were counted for 10min using a Tri-Carb 2810 TR liquid
101 scintillation analyzer (PerkinElmer, Waltman, MA, USA).

102

103 *2.3 DNA Extraction and library preparation*

104 High Molecular Weight DNA was extracted from USK10 grown on R2B liquid media. Prior
105 to DNA extraction, strain purity was confirmed via streak plating on agar plates containing
106 BP3 at a concentration of 250 ppm. DNA extractions were conducted using the Genomic
107 Mini AX Bacteria kit (A&A Biotechnology, Gdynia, Poland). After extraction, the DNA was
108 cleaned and concentrated using the Genomic DNA Clean & Concentrator kit (Zymo
109 Research, Irvine, CA, USA) to remove any impurities that may have been present in the
110 extracts. Concentration and quality of the DNA extracts were measured using Qubit 2.0
111 Fluorometer with the 1x DS DNA Assay (Invitrogen, Carlsbad, CA, USA) and NanoDrop
112 Spectrophotometer ND-1000 (Thermo Fisher Scientific, Walther, MA, USA), respectively.
113 For Illumina sequencing an Illumina Nextera XT library was prepared for paired-end
114 sequencing on an Illumina NextSeq550 (Illumina Inc., San Diego, CA, USA) according to
115 the manufacturer's protocol. For Oxford Nanopore sequencing, a library was prepared
116 using the Rapid Sequencing kit (SQK-RBK004) according to the manufacturer's
117 instructions. Sequencing was performed on a MinION (Oxford Nanopore Technologies,
118 Oxford, UK) with a FLO-MIN106 flow cell, controlled using MinKnow (19.10.1).

119

120 *2.4 Bioinformatics analyses*

121 Sequencing adapters for Illumina reads were trimmed with Trim Galore (0.6.4)
122 (<https://github.com/FelixKrueger/TrimGalore>). Raw Nanopore fast5 reads were
123 basecalled with GPU-Guppy (3.2.6+afc8e14). A long-read only assembly was created
124 using Raven (1.2.2) [12] and subsequently polished with the Unicycler polish module from
125 the Unicycler assembler (0.4.8) [13], which applies long-read polishing with Racon [14]
126 and short-read polishing with Pilon [15]. The completeness of the genomes was verified

127 by mapping to reference using the Illumina and Nanopore reads with BBmap [16] and
128 Minimap2 [17] under default settings, implemented in Geneious Prime v2020.2.4
129 (Biomatters). Plasmid sequences were classified using MOB-suite (3.0.0) [18]. The
130 assembled draft genome was annotated using Rapid Annotation using Subsystem
131 Technology (RAST), an online prokaryotic genome annotation platform [19]. Genome
132 completeness was evaluated using BUSCO v5.2.2 using the bacteria_odb10 lineage and
133 "genome" mode [20]. For 16S phylogenetic tree construction, 16S rRNA gene sequences
134 of strains related to USK10 were retrieved by BLAST
135 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>). The 16S rRNA gene sequences were collected
136 and aligned with MAAFT [21] under default settings in Geneious Prime v2020.2.4. The
137 alignment was subsequently used for the construction of a 16S rRNA based phylogenetic
138 tree using RAxML [22] in Geneious Prime, specifically the Rapid Bootstrapping and
139 search for best-scoring ML tree algorithm with 100 iterations. Whole genome-based
140 phylogenetic analysis was conducted using the Genome Taxonomy Database (GTDB)
141 [23,24]. The classify workflow (classify_wf) of the Genome Taxonomy Database Toolkit
142 (GTDB-Tk) was used to determined USK10's taxonomic assignment [25]. The workflow
143 produced a list of genomes similar to that of USK10 along with ANI scores for comparison
144 purposes. Those genome assemblies were retrieved via NCBI and implemented in the
145 lineage workflow (lineage_wf) of CheckM to assess the similarities of their core genomes
146 [26]. The alignment produced via CheckM was uploaded to Geneious Prime. A
147 phylogenetic tree was created using RAxML, which utilised the GTR GAMMA nucleotide
148 model under the "Rapid Bootstrapping and search for besting-scoring ML tree" algorithm
149 with 100 boostraps replicated.

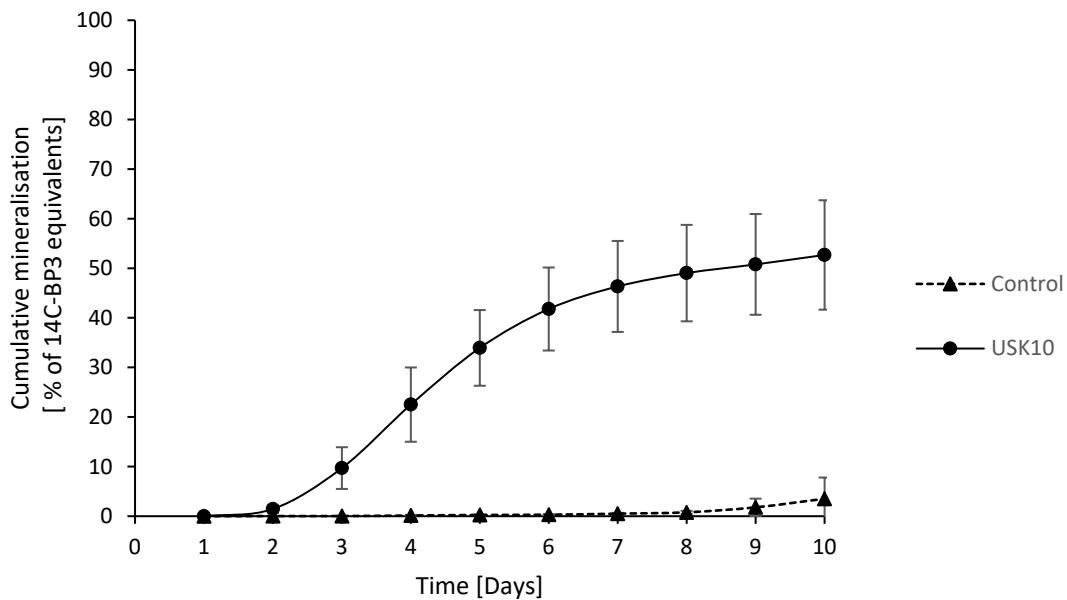
150

151 **2.5 Data availability**

152 The genome and plasmid sequence of *Rhodococcus* sp. USK10 has been deposited in
153 GenBank under the accession numbers CP076046-CP076048.

154

155 **3. Results and Discussion**


156

157 **3.1 BP3 degradation potential of *Rhodococcus* sp. USK10**

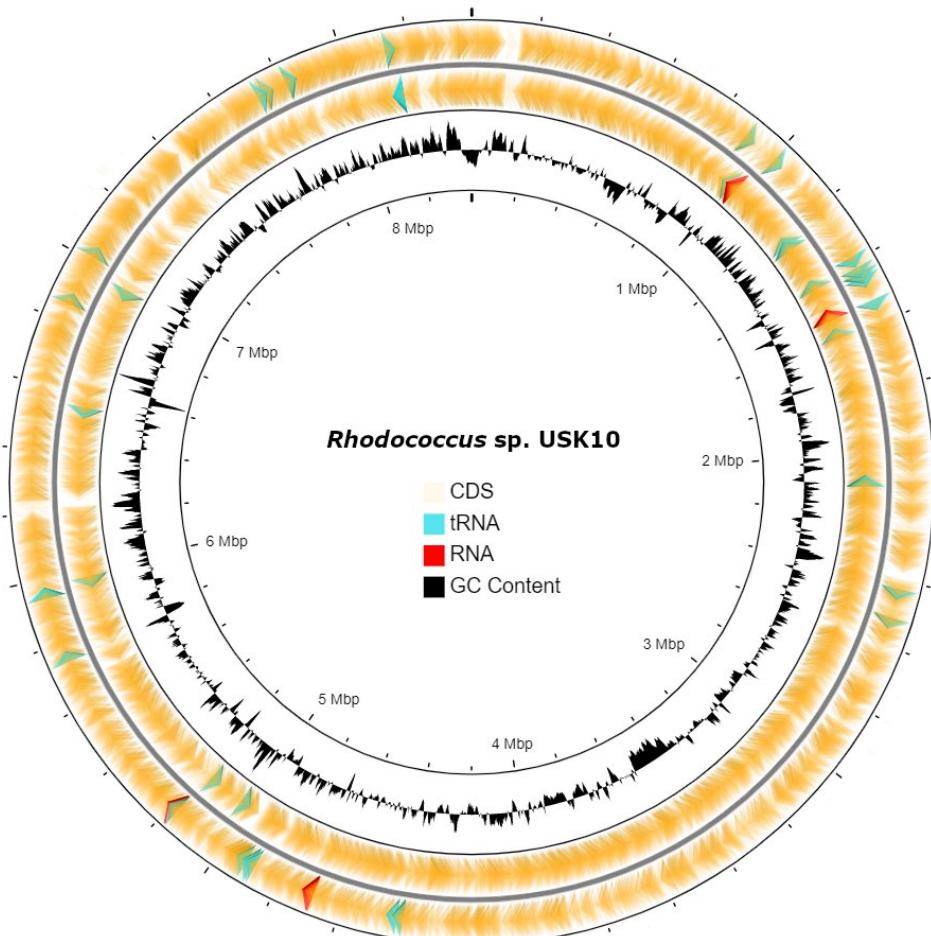
158 BP3 mineralization potential of *Rhodococcus* sp. USK10 was evaluated by measuring
159 released carbon dioxide originating from labelled BP3 added as sole carbon source in a
160 liquid medium microcosm. Figure 1 depicts the complete mineralisation of BP3 by strain
161 USK10. USK10 starts to mineralise BP3 following a two days lag-phase. On the 10th day
162 of the experiment, cumulatively 52.7% of the initial ^{14}C label was collected in the form of
163 $^{14}\text{CO}_2$ and complete mineralisation was assumed. The remaining labelled carbon fraction
164 has likely been incorporated into construction of cellular biomass or metabolites [27].
165 Comparatively, Lui and colleagues [28] studied biodegradation of BP3 in activated sludge
166 microcosms, focusing on the biodegradation under various redox conditions. They
167 reported that BP3 was completely biodegraded within 42 days of incubation. However,
168 the half-lives of BP3 were observed to be relatively shorter at approximately 4-11 days.
169 *Rhodococcus* sp. USK10 demonstrates the ability to mineralise BP3 within 10 days under
170 aerobic conditions. Furthermore, degradation of BP3 has been shown in water via the
171 UV/ H_2O_2 and UV/persulfate (UV/PS) reactions, but also using persulfate, metal ions,

172 PbO/TiO₂ and Sb₂O₃/TiO₂ and other chemicals [29–31]. However, these solutions are not
173 considered “green solutions”.

174

175

176 **Figure 1.** Cumulative mineralisation of BP3 by strain USK10 in pure culture and an abiotic control over ten days. Mean
177 values and standard deviation based on three replicates are shown for ¹⁴CO₂ production relative to the initial amount
178 of ¹⁴C-BP3 added (¹⁴C₀).

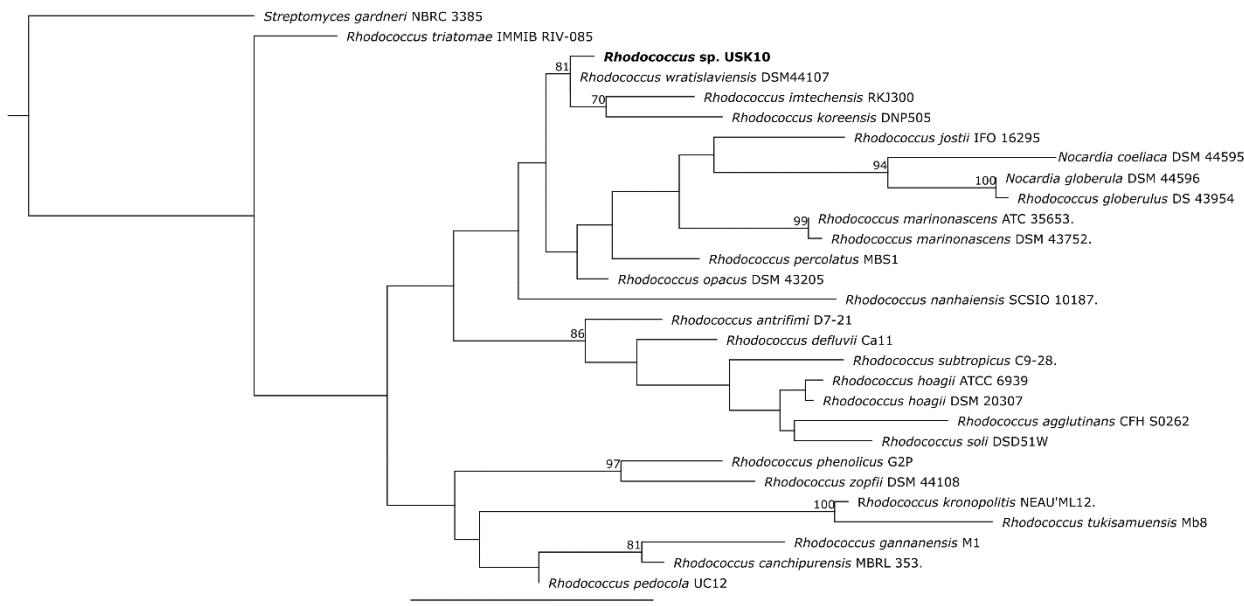

179

180 3.2 Genome analysis

181 The complete genome sequence of *Rhodococcus* sp. USK10 is composed of three
182 replicons with a total assembly of 9,870,030 bp and a G+C content of 67.2%. The
183 chromosome is 8,396,788bp (G+C content 67.6%), while the two mobilisable plasmids
184 are 1,355,759 bp (linear, G+C content 64.6%) and 117,483 (circular, GC content 66%).
185 The genomic map of the chromosome is presented in Figure 2. The circularity of the 3
186 replicons was verified by mapping-to-reference runs using the Illumina and Nanopore

187 reads in Geneious Prime. For the chromosome and the small plasmid, these were
188 successful. For the larger plasmid, manual forcing of circularity in Geneious Prime and
189 subsequent mapping-to-reference yielded negative results for both the Illumina and
190 Nanopore reads. *Rhodococcus* spp. as well as other Actinobacteria (e.g. *Micrococcus*
191 spp. [32]) are known for having large linear plasmids housing genes coding for
192 degradation potential [33,34]. The assembly is of high quality as revealed by BUSCO
193 analysis (123 complete BUSCOs / 120 single copy and 3 double BUSCOs / 1 fragmented
194 BUSCO / 99,2% coverage of bacteria_odb10).

195

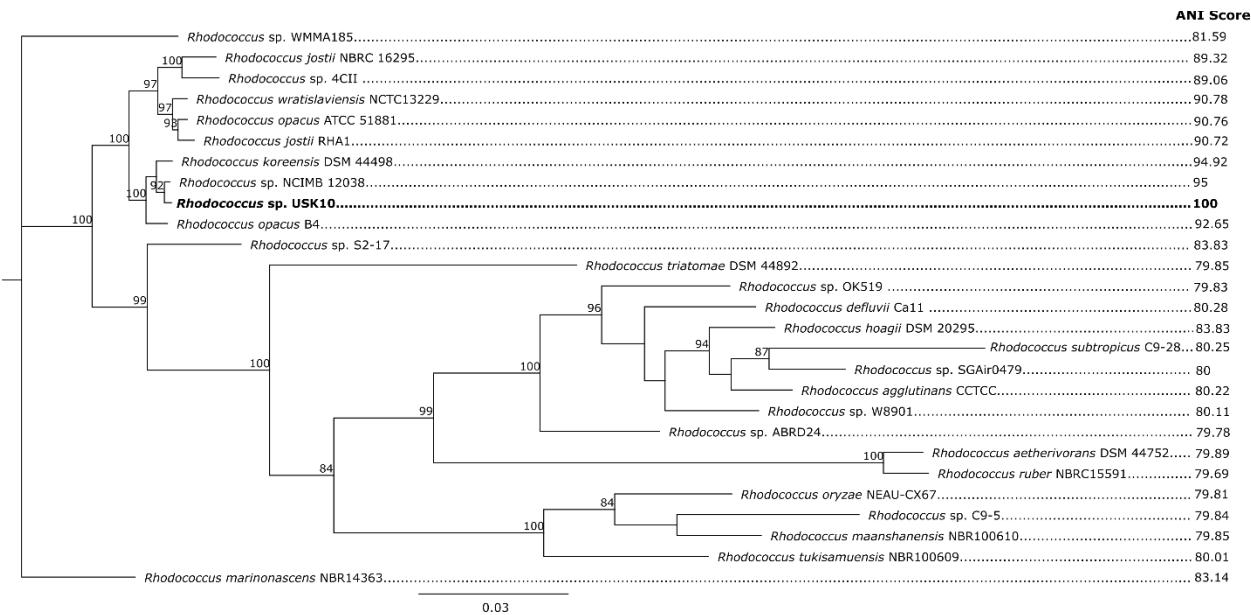

196

197 **Figure 1.** Circular map of *Rhodococcus* sp. USK10 chromosome. The two outer rings represent the coding sequences
198 of the chromosome; the outermost being the forward strand and the innermost being the reverse strand. The inner
199 most ring represents GC content. The G+C content of the chromosome is 67.2%. Created using CGview Server [35].

200

201 **3.3 Phylogenetic placement of *Rhodococcus* sp. USK10**

202 The phylogenetic analysis of both the 16S rRNA gene sequences and whole genome
203 showed that USK10 is well supported within the *Rhodococcus* genus. Based on 16s rRNA
204 gene sequences, *R. wratislaviensis* DSM 44107 and *R. koreensis* DNP505 are the closest
205 relatives of USK10, having pairwise identities of 99.5% and 99.2%, respectively. Figure
206 3 presents the phylogenetic tree based on 16S rRNA gene sequences.


207

208 **Figure 3.** A phylogenetic tree based on 16S rRNA gene sequences showing the position of USK10 in relation to other
209 *Rhodococcus* species and related genera of Actinobacteria. The nucleotide sequences were obtained from NCBI and
210 aligned using the MAAFT alignment plugin via Geneious Prime 2020.2.4. The tree was constructed by RAxML (version
211 8.2.11) in Geneious Prime 2020.2.4. Node numbers denote bootstrap support values above 60%. The nucleotide

212 module used was GTR GAMMA and the algorithm used was “Rapid Bootstrapping and search for the best-scoring ML
213 tree” with 100 replicates. Bar, 0.02 substitutions per nucleotide position.

214

215 For whole genome analysis, GTDB-Tk classified the bacterial genomes based on
216 phylogeny of 120 marker genes and ANI [25]. The ANI scores of each genome in relation
217 to USK10 are presented jointly with the CheckM whole genome tree in Figure 4. From
218 this analysis, the *Rhodococcus* strain determined to be the most related to USK10 was
219 *Rhodococcus* sp. NCIMB 12038 with an ANI score of 95. This borders the species
220 demarcation threshold. The next most related bacterium was *Rhodococcus koreensis*
221 DSM 44489 which had an ANI score of 94.92. Considering the limited number of available
222 *Rhodococcus* genomes, the exact ANI threshold for species affiliation is not certain. It
223 has been seen on other bacterial groups (e.g. the *Bacillus cereus* group [36], the genus
224 *Serratia* [37]), that this threshold ranges between 92 and 96%. Based on the topology of
225 both the 16S rRNA sequences and the whole genome comparison, USK10 can be
226 definitely placed and is well supported within the *Rhodococcus* genus. Additional
227 characterisation analyses, such chemotaxonomic and biochemical assays, which are
228 outside the scope of this study, would need to be conducted to assign proper taxonomic
229 assessment to strain USK10 as well as strain NCIMB 12038 to be entirely confident.

230

231 **Figure 4.** Phylogenetic tree constructed around the position of USK10 based on whole genome sequences using
232 CheckM alignment. The genome sequences were obtained via the NCBI assembly database. The tree was constructed
233 by RAxML (version 8.2.11) in Geneious Prime 2.0. The nucleotide substitution model used was GTR GAMMA and the
234 algorithm used was “Rapid Bootstrapping and search for the best-scoring ML tree” with 100 replicates. Node numbers
235 denote bootstrap support values above 80%. Score values on the right indicate ANI scores obtained via whole genome
236 comparison of USK10 using the GTDB-Tk classify workflow. The distance scale indicates 0.03 substitutions per
237 nucleotide position.

238

239 3.4 Genome annotation

240 The annotated genome contains a total of 9,722 CDSs along with 61 RNA encoding
241 genes. RAST was able to provide a general overview of the biological features within the
242 genome, achieving a subsystem coverage of 39% of the annotated genes, 3,817
243 subsystem feature counts. Of those counts, 179 were responsible for metabolism of
244 aromatic compounds, some of which are likely involved in the degradation process of
245 BP3. Out of the six enzyme classes, five are present in the coding sequences, which

246 involve the metabolism of aromatic compounds (26 hydrolases, 5 isomerases, 15 lyases,
247 and 63 oxidoreductases.). Additionally, 13 transfer proteins involved in the degradation
248 process were identified. The remainder of the CDSs annotated for involvement in
249 metabolism of aromatic compounds, 2 were part of the Pca regulatory protein PcaR
250 family and 39 part of the Transcriptional regulator IclR family. Both these protein families
251 have been well documented to be involved in the degradation of aromatic carbons and
252 present in other *Rhodococcus* species [38]. In *Sphingomonas wittichii* RW1 and DC-6,
253 the first step in the degradation of aromatic compounds is performed by a dioxygenase
254 gene located on a megaplasmid. USK10 bears 6 dioxygenase on its linear megaplasmid,
255 1 on the small circular plasmid and 65 dioxygenase on its chromosome. Interestingly, the
256 1 dioxygenase on the small plasmid (3-carboxyethylcatechol 2,3-dioxygenase) is placed
257 next to a FAD-binding monooxygenase (PheA/TfdB family, similar to 2,4-dichlorophenol
258 6-monooxygenase) which is involved in the degradation of another phenolic compound,
259 2,4-dichlorophenol. As another alternative, hydroxylases have been suggested to be
260 implemented in the first step of BP3 biodegradation. USK10 possesses 11 hydroxylases
261 on its megaplasmid, 1 on its small plasmid, and 26 on its genome. The megaplasmid
262 contains 65 oxidoreductases that may also play a role in USK10's biodegradation
263 potential of BP3. Further exploitation of the *Rhodococcus* sp. USK10 genome, and that
264 of other degraders, could lead to more confident identification of potential genes and
265 processes involved in the biodegradation of BP3. Transcriptome sequencing and
266 potentially proteomics analysis of BP3 degrading bacteria may also illuminate the
267 involved genes and pathways in BP3 and other aromatic compounds degradation.

268 In this regard, *Rhodococcus* sp. USK10 has the potential to be used in large scale efforts
269 to clean BP3-contaminated water sustainably. A key point to be investigated is the
270 survivability and persistence of USK10 in mixed cultures. Other efforts to use microbes
271 for biodegradation of xenobiotics have revealed a plethora of factors that may impact the
272 effect of such approaches that need to be investigated and addressed accordingly [39].

273

274 **Acknowledgements**

275 This project was funded by Aarhus University Research Foundation starting grant (AUFF-
276 E-2017-7-21) and Rural Water and Food Security (PI RURAL), the European Commission
277 (Contract No. PI/2017/382/-112).

278

279 **Conflict of interest**

280 No conflict of interest declared.

281

282 **Author contributions**

283 Conceptualization: Joseph Donald Martin, Urse Scheel Krüger; Methodology: Joseph
284 Donald Martin, Athanasios Zervas, Urse Scheel Krüger, Tue Kjærgaard Nielsen;
285 Validation: Joseph Donald Martin, Urse Scheel Krüger; Resources: Jens Aamand, Lars
286 Hestbjerg Hansen, Lea Ellegaard-Jensen; Writing: Joseph Donald Martin, Athanasios
287 Zervas, Urse Scheel Krüger, Tue Kjærgaard Nielsen; Review and Editing: Joseph Donald
288 Martin, Athanasios Zervas, Urse Scheel Krüger, Morten Dencker Schostag, Tue
289 Kjærgaard Nielsen, Jens Aamand, Lars Hestbjerg Hansen, Lea Ellegaard-Jensen;

290 Supervision: Lea Ellegaard-Jensen, Morten Dencker Schostag, Jens Aamand, Lars
291 Hestbjerg Hansen.

292

293 **References**

- 294 1. He, T.; Tsui, M.M.P.; Tan, C.J.; Ng, K.Y.; Guo, F.W.; Wang, L.H.; Chen, T.H.; Fan, T.Y.; Lam, P.K.S.; Murphy, M.B. Comparative Toxicities of Four Benzophenone Ultraviolet Filters to Two Life Stages of Two Coral Species. *Science of The Total Environment* **2019**, *651*, 2391–2399, doi:10.1016/j.scitotenv.2018.10.148.
- 295 2. Tsui, M.M.P.; Leung, H.W.; Wai, T.-C.; Yamashita, N.; Taniyasu, S.; Liu, W.; Lam, P.K.S.; Murphy, M.B. Occurrence, Distribution and Ecological Risk Assessment of Multiple Classes of UV Filters in Surface Waters from Different Countries. *Water Research* **2014**, *67*, 55–65, doi:10.1016/j.watres.2014.09.013.
- 296 3. Emnet, P.; Gaw, S.; Northcott, G.; Storey, B.; Graham, L. Personal Care Products and Steroid Hormones in the Antarctic Coastal Environment Associated with Two Antarctic Research Stations, McMurdo Station and Scott Base. *Environmental Research* **2015**, *136*, 331–342, doi:10.1016/j.envres.2014.10.019.
- 297 4. Downs, C.A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F.R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C.M.; et al. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. *Arch Environ Contam Toxicol* **2016**, *70*, 265–288, doi:10.1007/s00244-015-0227-7.
- 298 5. Balázs, A.; Krifaton, C.; Orosz, I.; Szoboszlay, S.; Kovács, R.; Csenki, Z.; Urbányi, B.; Kriszt, B. Hormonal Activity, Cytotoxicity and Developmental Toxicity of UV Filters. *Ecotoxicology and Environmental Safety* **2016**, *131*, 45–53, doi:10.1016/j.ecoenv.2016.04.037.
- 299 6. DiNardo, J.C.; Downs, C.A. Dermatological and Environmental Toxicological Impact of the Sunscreen Ingredient Oxybenzone/Benzophenone-3. *Journal of Cosmetic Dermatology* **2018**, *17*, 15–19, doi:10.1111/jocd.12449.
- 300 7. Fitt, W.K.; Hofmann, D.K. The Effects of the UV-Blocker Oxybenzone (Benzophenone-3) on Planulae Swimming and Metamorphosis of the Scyphozoans *Cassiopea Xamachana* and *Cassiopea Frondosa*. *Oceans* **2020**, *1*, 174–180, doi:10.3390/oceans1040013.
- 301 8. Kim, S.; Choi, K. Occurrences, Toxicities, and Ecological Risks of Benzophenone-3, a Common Component of Organic Sunscreen Products: A Mini-Review. *Environment International* **2014**, *70*, 143–157, doi:10.1016/j.envint.2014.05.015.
- 302 9. Ghazipura, M.; McGowan, R.; Arslan, A.; Hossain, T. Exposure to Benzophenone-3 and Reproductive Toxicity: A Systematic Review of Human and Animal Studies. *Reproductive Toxicology* **2017**, *73*, 175–183, doi:10.1016/j.reprotox.2017.08.015.
- 303 10. Jin, C.; Geng, Z.; Pang, X.; Zhang, Y.; Wang, G.; Ji, J.; Li, X.; Guan, C. Isolation and Characterization of a Novel Benzophenone-3-Degrading Bacterium *Methylophilus* Sp. Strain FP-6. *Ecotoxicology and Environmental Safety* **2019**, *186*, 109780, doi:10.1016/j.ecoenv.2019.109780.

333 11. Fagervold, S.K.; Rohée, C.; Rodrigues, A.M.S.; Stien, D.; Lebaron, P. Efficient
334 Degradation of the Organic UV Filter Benzophenone-3 by *Sphingomonas Wittichii*
335 Strain BP14P Isolated from WWTP Sludge. *Science of The Total Environment*
336 **2021**, *758*, 143674, doi:10.1016/j.scitotenv.2020.143674.

337 12. Vaser, R.; Šikić, M. *Raven: A de Novo Genome Assembler for Long Reads*; 2021;
338 p. 2020.08.07.242461;

339 13. Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial
340 Genome Assemblies from Short and Long Sequencing Reads. *PLOS*
341 *Computational Biology* **2017**, *13*, e1005595, doi:10.1371/journal.pcbi.1005595.

342 14. Vaser, R.; Sović, I.; Nagarajan, N.; Šikić, M. Fast and Accurate de Novo Genome
343 Assembly from Long Uncorrected Reads. *Genome Res.* **2017**, *27*, 737–746,
344 doi:10.1101/gr.214270.116.

345 15. Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.;
346 Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool
347 for Comprehensive Microbial Variant Detection and Genome Assembly
348 Improvement. *PLOS ONE* **2014**, *9*, e112963, doi:10.1371/journal.pone.0112963.

349 16. Bushnell, B.; Rood, J.; Singer, E. BBMerge – Accurate Paired Shotgun Read
350 Merging via Overlap. *PLOS ONE* **2017**, *12*, e0185056,
351 doi:10.1371/journal.pone.0185056.

352 17. Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. *Bioinformatics*
353 **2018**, *34*, 3094–3100, doi:10.1093/bioinformatics/bty191.

354 18. Robertson, J.; Nash, J.H.E. MOB-Suite: Software Tools for Clustering,
355 Reconstruction and Typing of Plasmids from Draft Assemblies. *Microb Genom*
356 **2018**, *4*, e000206, doi:10.1099/mgen.0.000206.

357 19. Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma,
358 K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations
359 Using Subsystems Technology. *BMC Genomics* **2008**, *9*, 75, doi:10.1186/1471-
360 2164-9-75.

361 20. Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M.
362 BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-
363 Copy Orthologs. *Bioinformatics* **2015**, *31*, 3210–3212,
364 doi:10.1093/bioinformatics/btv351.

365 21. Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version
366 7: Improvements in Performance and Usability. *Molecular Biology and Evolution*
367 **2013**, *30*, 772–780, doi:10.1093/molbev/mst010.

368 22. Stamatakis, A. RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic
369 Analyses with Thousands of Taxa and Mixed Models. *Bioinformatics* **2006**, *22*,
370 2688–2690, doi:10.1093/bioinformatics/btl446.

371 23. Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarszewski, A.; Chaumeil,
372 P.-A.; Hugenholtz, P. A Standardized Bacterial Taxonomy Based on Genome
373 Phylogeny Substantially Revises the Tree of Life. *Nat Biotechnol* **2018**, *36*, 996–
374 1004, doi:10.1038/nbt.4229.

375 24. Parks, D.H.; Chuvochina, M.; Chaumeil, P.-A.; Rinke, C.; Mussig, A.J.; Hugenholtz,
376 P. A Complete Domain-to-Species Taxonomy for Bacteria and Archaea. *Nat*
377 *Biotechnol* **2020**, *38*, 1079–1086, doi:10.1038/s41587-020-0501-8.

378 25. Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A Toolkit to
379 Classify Genomes with the Genome Taxonomy Database. *Bioinformatics* **2020**, *36*,
380 1925–1927, doi:10.1093/bioinformatics/btz848.

381 26. Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM:
382 Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells,
383 and Metagenomes. *Genome Res.* **2015**, *25*, 1043–1055,
384 doi:10.1101/gr.186072.114.

385 27. Bouchez, M.; Blanchet, D.; Vandecasteele, J.-P. The Microbiological Fate of
386 Polycyclic Aromatic Hydrocarbons: Carbon and Oxygen Balances for Bacterial
387 Degradation of Model Compounds. *Appl Microbiol Biotechnol* **1996**, *45*, 556–561,
388 doi:10.1007/BF00578471.

389 28. Liu, Y.-S.; Ying, G.-G.; Shareef, A.; Kookana, R.S. Biodegradation of the Ultraviolet
390 Filter Benzophenone-3 under Different Redox Conditions. *Environmental
391 Toxicology and Chemistry* **2012**, *31*, 289–295, doi:10.1002/etc.749.

392 29. Lee, Y.-M.; Lee, G.; Zoh, K.-D. Benzophenone-3 Degradation via UV/H₂O₂ and
393 UV/Persulfate Reactions. *Journal of Hazardous Materials* **2021**, *403*, 123591,
394 doi:10.1016/j.jhazmat.2020.123591.

395 30. Pan, X.; Yan, L.; Qu, R.; Wang, Z. Degradation of the UV-Filter Benzophenone-3 in
396 Aqueous Solution Using Persulfate Activated by Heat, Metal Ions and Light.
397 *Chemosphere* **2018**, *196*, 95–104, doi:10.1016/j.chemosphere.2017.12.152.

398 31. Wang, Z.; Deb, A.; Srivastava, V.; Iftekhar, S.; Ambat, I.; Sillanpää, M. Investigation
399 of Textural Properties and Photocatalytic Activity of PbO/TiO₂ and Sb₂O₃/TiO₂
400 towards the Photocatalytic Degradation Benzophenone-3 UV Filter. *Separation and
401 Purification Technology* **2019**, *228*, 115763, doi:10.1016/j.seppur.2019.115763.

402 32. Dib, J.R.; Wagenknecht, M.; Hill, R.T.; Farías, M.E.; Meinhardt, F. First Report of
403 Linear Megaplasmids in the Genus *Micrococcus*. *Plasmid* **2010**, *63*, 40–45,
404 doi:10.1016/j.plasmid.2009.10.001.

405 33. König, C.; Eulberg, D.; Gröning, J.; Lakner, S.; Seibert, V.; Kaschabek, S.R.;
406 Schrömann, M. A Linear Megaplasmid, P1CP, Carrying the Genes for
407 Chlorocatechol Catabolism of *Rhodococcus Opacus* 1CP. *Microbiology* **2004**, *150*,
408 3075–3087, doi:10.1099/mic.0.27217-0.

409 34. Görtler, V.; Seviour, R.J. Systematics of Members of the Genus *Rhodococcus*
410 (Zopf 1891) Emend Goodfellow et al. 1998. In *Biology of Rhodococcus*; Alvarez,
411 H.M., Ed.; Microbiology Monographs; Springer: Berlin, Heidelberg, 2010; pp. 1–28
412 ISBN 978-3-642-12937-7.

413 35. Stothard, P.; Wishart, D.S. Circular Genome Visualization and Exploration Using
414 CGView. *Bioinformatics* **2005**, *21*, 537–539, doi:10.1093/bioinformatics/bti054.

415 36. Zervas, A.; Aggerbeck, M.R.; Allaga, H.; Güzel, M.; Hendriks, M.; Jonuškienė, I.;
416 Kedves, O.; Kupeli, A.; Lamovšek, J.; Mülner, P.; et al. Identification and
417 Characterization of 33 *Bacillus Cereus* Sensu Lato Isolates from Agricultural Fields
418 from Eleven Widely Distributed Countries by Whole Genome Sequencing.
419 *Microorganisms* **2020**, *8*, 2028, doi:10.3390/microorganisms8122028.

420 37. *Serratia Inhibens* Sp. Nov., a New Antifungal Species Isolated from Potato
421 (*Solanum Tuberosum*) | Microbiology Society Available online:
422 <https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.004270?crawler=true> (accessed on 1 November 2021).

424 38. Tropel, D.; van der Meer, J.R. Bacterial Transcriptional Regulators for Degradation
425 Pathways of Aromatic Compounds. *Microbiology and Molecular Biology Reviews*
426 **2004**, *68*, 474–500, doi:10.1128/MMBR.68.3.474-500.2004.

427 39. Hylling, O.; Nikbakht Fini, M.; Ellegaard-Jensen, L.; Muff, J.; Madsen, H.T.;
428 Aamand, J.; Hansen, L.H. A Novel Hybrid Concept for Implementation in Drinking
429 Water Treatment Targets Micropollutant Removal by Combining Membrane
430 Filtration with Biodegradation. *Science of The Total Environment* **2019**, *694*,
431 133710, doi:10.1016/j.scitotenv.2019.133710.

432