

1 **Glioma synapses recruit mechanisms of adaptive plasticity**

2 Kathryn R. Taylor¹, Tara Barron¹, Helena Zhang¹, Alexa Hui¹, Griffin Hartmann¹, Lijun Ni¹,
3 Humsa S. Venkatesh¹, Peter Du¹, Rebecca Mancusi¹, Belgin Yalçın¹, Isabelle Chau¹,
4 Anitha Ponnuswami¹, Razina Aziz-Bose¹ and Michelle Monje^{1, 2, 3, 4},

5

6 ¹ Department of Neurology, Stanford University, Stanford, California USA

7 ² Department of Pediatrics, Stanford University, Stanford, California USA

8 ³ Department of Pathology, Stanford University, Stanford, California USA

9 ⁴ Department of Neurosurgery, Stanford University, Stanford, California USA

10

11 Correspondence to:

12 Michelle Monje

13 265 Campus Drive, G3077

14 Stanford, CA 94305

15 mmonje@stanford.edu

16

17 *Keywords:* Cancer Neuroscience, glioma, synapse, synaptic plasticity, AMPAR, BDNF,

18 TrkB, DIPG, GBM

19

20

21

22

23

24 **The nervous system plays an increasingly appreciated role in the regulation of**
25 **cancer. In malignant gliomas, neuronal activity drives tumor progression not only**
26 **through paracrine signaling factors such as neuroligin-3 and brain-derived**
27 **neurotrophic factor (BDNF)¹⁻³, but also through electrophysiologically functional**
28 **neuron-to-glioma synapses⁴⁻⁶. Malignant synapses are mediated by calcium-**
29 **permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)**
30 **receptors in both pediatric and adult high-grade gliomas^{4,5}, and consequent**
31 **depolarization of the glioma cell membrane drives tumor proliferation⁴. The**
32 **nervous system exhibits plasticity of both synaptic connectivity and synaptic**
33 **strength, contributing to neural circuit form and functions. In health, one factor that**
34 **promotes plasticity of synaptic connectivity^{7,8} and strength⁹⁻¹³ is activity-regulated**
35 **secretion of the neurotrophin BDNF. Here, we show that malignant synapses**
36 **exhibit similar plasticity regulated by BDNF-TrkB (tropomyosin receptor kinase B)**
37 **signaling. Signaling through the receptor TrkB¹⁴, BDNF promotes AMPA receptor**
38 **trafficking to the glioma cell membrane, resulting in increased amplitude of**
39 **glutamate-evoked currents in the malignant cells. This potentiation of malignant**
40 **synaptic strength shares mechanistic features with the long-term potentiation**
41 **(LTP)¹⁵⁻²³ that is thought to contribute to memory and learning in the healthy brain**
42 ^{22 24-27 28,29}. BDNF-TrkB signaling also regulates the number of neuron-to-glioma
43 **synapses. Abrogation of activity-regulated BDNF secretion from the brain**
44 **microenvironment or loss of TrkB in human glioma cells exerts growth inhibitory**
45 **effects *in vivo* and in neuron:glioma co-cultures that cannot be explained by**
46 **classical growth factor signaling alone. Blocking TrkB genetically or**
47 **pharmacologically abrogates these effects of BDNF on glioma synapses and**
48 **substantially prolongs survival in xenograft models of pediatric glioblastoma and**
49 **diffuse intrinsic pontine glioma (DIPG). Taken together, these findings indicate that**
50 **BDNF-TrkB signaling promotes malignant synaptic plasticity and augments tumor**
51 **progression.**

52

53 Gliomas are the most common primary brain cancers in both children and adults³⁰.
54 Glioma progression is robustly regulated by interactions with neurons¹⁻⁵, including tumor
55 initiation³ and growth^{1,3}. Neuron-glioma interactions include both paracrine factor
56 signaling^{1,3} and electrochemical signaling through AMPAR-mediated neuron-to-glioma
57 synapses^{4,5}. Synaptic integration of high-grade gliomas such as glioblastoma and DIPG
58 into neural circuits is fundamental to cancer progression in preclinical model systems^{4,5}.
59 We hypothesized that gliomas may recruit mechanisms of adaptive neuroplasticity to
60 elaborate and reinforce these powerful neuron-glioma interactions.

61

62 **Strength of Glutamatergic Currents in Malignant Glioma**

63 In neurons, activity-regulated^{24,25,31} plasticity of synaptic strength dynamically modulates
64 neural circuit function³² and these synaptic changes are thought to underlie learning and
65 memory^{28 29}. One form of long-term potentiation (LTP) of synaptic strength involves
66 increased AMPAR channel insertion in the postsynaptic membrane^{33,34}. Glutamatergic
67 neurotransmission through NMDAR (N-methyl-D-aspartate receptor) channels and
68 consequent calcium signaling can increase AMPAR channel trafficking to the
69 postsynaptic membrane¹⁵⁻²³ (Figure 1a). Another activity-regulated mechanism that can
70 promote LTP is BDNF-TrkB signaling, which similarly recruits calcium signaling pathways
71 and promotes AMPAR channel trafficking to the post-synaptic membrane⁹⁻¹³.

72 Hypothesizing that gliomas may exhibit plasticity of the recently discovered glutamatergic
73 synapses⁴⁻⁶ formed between presynaptic neurons and post-synaptic glioma cells, we
74 explored single cell transcriptomic datasets to elucidate potential mechanisms of synaptic
75 plasticity. Pediatric gliomas express very low levels of NMDAR subunits⁴, but express
76 high levels of TrkB (*NTRK2*) in malignant cells (Extended Data Fig. 1, Supplementary
77 Note 1, Supplementary Table S1). Unlike adult glioblastoma³⁵, pediatric high-grade
78 gliomas, such as DIPG, do not express *BDNF* ligand (Extended Data Fig. 1). We therefore
79 tested the hypothesis that BDNF-TrkB signaling could induce plasticity of the malignant
80 synapse, focusing on pediatric high-grade gliomas to specifically probe interactions
81 between the neural microenvironment and the tumor. We performed whole-cell patch
82 clamp electrophysiology of glioma cells xenografted to the hippocampus in an acute slice
83 preparation (Figure 1b, c). In response to transient and local glutamate application,

84 voltage-clamp recordings of xenografted glioma cells demonstrated inward currents that
85 increased in amplitude after BDNF incubation (Figure 1d, e, f). This effect of BDNF on
86 glutamate-evoked inward currents illustrates the potential for plasticity of the malignant
87 postsynaptic response.

88 To confirm that glioma cell TrkB activation alters the glutamate-mediated currents, we
89 used CRISPR technology to delete *NTRK2* from human glioma cells (referred to as
90 *NTRK2* knockout (KO)). The knockout was a direct deletion within exon 1 of *NTRK2* and
91 produced a ~ 80% decrease in TrkB protein levels (Extended Data Fig. 2). This reduction
92 of TrkB expression in the glioma cells blocked the BDNF-induced increase in glutamate-
93 evoked inward current compared to *NTRK2* WT, Cas9-control glioma xenografts (Figure
94 1e, f), demonstrating the BDNF-TrkB signaling pathway modulates the strength of the
95 glutamate-mediated currents in the tumor cells.

96 To explore the intracellular consequences of BDNF-induced current amplification we
97 performed *in situ* calcium imaging of xenografted glioma cells that express the genetically
98 encoded calcium indicator GCaMP6s (Figure 1g). As expected⁴, local glutamate
99 application induced calcium transients in glioma cells (Figure 1h, i). The intensity of the
100 glutamate-induced calcium transient was increased by BDNF incubation (Figure 1i, j).
101 Glioma calcium transients evoked by glutamate were blocked by the AMPAR channel
102 inhibitor, NBQX (Figure 1k), consistent with the known role for AMPAR channels
103 mediating glutamatergic signaling in glioma^{4,5}. Taken together, these data illustrate that
104 BDNF increases the strength of the glutamate-evoked response.

105

106

107 **Trafficking of AMPA Receptors in Malignant Glioma**

108 In healthy neurons, BDNF activation of TrkB increases the levels and trafficking of
109 AMPAR channels to the postsynaptic membrane via the PKC/CAMKII calcium signaling
110 pathway (Figure 2a)^{36,10}. Given the findings above that BDNF increased AMPAR-
111 mediated inward currents and calcium transients in glioma, we next investigated the effect
112 of BDNF on AMPAR channel trafficking to the cell membrane. Glioma cell surface
113 proteins were captured using biotinylation with avidin pull-down and probed for levels of
114 AMPAR subunits. Consistent with the hypothesis that BDNF increases AMPAR channel
115 trafficking to the glioma cell membrane, BDNF treatment increased glioma cell surface
116 expression of the AMPAR subunit GluA4, compared to vehicle-treated control glioma cells
117 (Figure 2b).

118 To further test this hypothesis, we leveraged pHluorin technology for live imaging of
119 AMPAR trafficking within glioma cells co-cultured with neurons. We expressed GluA2
120 AMPAR subunit tagged to a pH sensitive GFP (pHluorin) in glioma cells and then
121 performed high-resolution confocal live imaging of these AMPAR channels within glioma
122 cultures³⁷. We additionally expressed PSD95 tagged to RFP in glioma cells in order to
123 confirm the localization of the AMPAR channels to the glioma postsynaptic site. Super
124 ecliptic pHluorins (SEPs) fluoresce when the N-terminus of the channel moves from the
125 acidic pH within the trafficking vesicle, to the neutral pH on the outside of the cell
126 membrane (Figure 2c). To validate the pHluorin strategy, we confirmed that exposure of
127 GluA2(Q)-SEP:PSD95-RFP-expressing glioma cells to acidic medium (pH 5.5) quenched
128 the signal, demonstrating that the majority of the AMPAR fluorescent signal at the
129 postsynaptic puncta is from membrane-bound GluA2 (Figure 2d, e). Time course imaging

130 of individual puncta demonstrated that BDNF exposure elicits an increase in the
131 postsynaptic levels of AMPAR channels on the glioma cells (Figure 2f, g). Taken together,
132 these findings indicate that BDNF-TrkB signaling increases trafficking of AMPAR
133 channels to the cell membrane, accounting for the increased glutamate-evoked currents
134 described above.

135 We next explored the signaling mechanisms of BDNF in patient-derived pediatric glioma
136 cells. Several signaling pathways are known to be activated upon BDNF binding to the
137 TrkB receptor, and the expression of different TrkB splice variants can alter the function
138 of the receptor³⁸. Using the publicly available transcript data of pediatric glioma, we
139 compared the expression of the *NTRK2* splice variants and found that whilst gliomas do
140 express full-length TrkB, the tumors have a higher expression of truncated TrkB, as has
141 been previously described³⁹ (Extended Data Fig. 3). Western blot analysis of glioma cells
142 demonstrates that BDNF recombinant protein treatment activates three main signaling
143 cascades; MAPK, PI3K and calcium signaling (Extended Data Fig. 4). In neurons, BDNF
144 increases AMPAR trafficking via CAMKII/PKC calcium signaling¹⁰, kinases known to play
145 roles in neuronal LTP^{19,22,40}. MAPK and PI3K have also been shown to play a role in
146 AMPAR transmission⁴¹. Signaling-induced posttranslational modifications, such as
147 phosphorylation, instruct the activation, conductance and trafficking of AMPAR subunits
148 ⁴². We found that BDNF exposure increases phosphorylation of the subunit GluA4 at
149 ser862, a site shown to facilitate the delivery of the channel to the postsynaptic density in
150 glioma cells (Figure 2h)⁴³. Treatment with a pan-Trk inhibitor, Entrectinib, abrogated this
151 BDNF-induced increase in glioma GluA4 phosphorylation (Figure 2i). In contrast to these
152 protein phosphorylation and trafficking effects of BDNF, pediatric glioma cells exhibited

153 few gene expression changes in response to BDNF exposure, with the exception of VGF
154 (Extended Data Fig. 5) - a gene recently shown to be regulated by BDNF in adult GBM
155 as well³⁵.

156

157 ***Plasticity of Synaptic Connectivity***

158 A subset of glioma cells engage in synapses^{4,5} and accordingly we observed a subset
159 xenografted glioma cells that exhibit an inward current in response to glutamate using
160 patch clamp electrophysiology as above. *NTRK2* KO tumors exhibited a reduced number
161 of cells that responded to glutamate application with an inward current (Figure 3a, b). We
162 hypothesized that *NTRK2* loss in glioma cells may alter the level of malignant synaptic
163 connectivity.

164 To investigate whether BDNF-TrkB signaling regulates the number of neuron-glioma
165 synaptic connections we performed immuno-electron microscopy in wild-type and *NTRK2*
166 KO patient-derived glioma xenografts expressing green fluorescent protein (GFP). Using
167 immuno-electron microscopy with immunogold labeling of GFP+ cells to unambiguously
168 identify the malignant cells, we identified fewer neuron-to-glioma synaptic structures in
169 the *NTRK2* KO tumors compared to wild-type tumors (Figure 3c, d). Glioma cultures
170 expressing RFP-tagged PSD95 were subjected to shRNA knockdown of *NTRK2* (KD)
171 and cultured in the presence of neurons (Extended Data Fig. 2). We found that co-culture
172 of *NTRK2* KD glioma cells exhibited fewer structural synapses with neurons evident as
173 co-localized neuronal presynaptic puncta (synapsin) with glioma postsynaptic puncta
174 (PSD95-RFP) in comparison to *NTRK2* wild-type glioma cells (Figure 3e, f). A similar
175 reduction in structural neuron-to-glioma synapses was seen upon the addition of the pan-

176 Trk inhibitor, entrectinib, to neuron-glioma co-cultures (Figure 3g). Taken together, these
177 data demonstrate that BDNF-TrkB signaling modulates neuron-glioma synaptic
178 connectivity.

179

180 ***BDNF regulates glioma proliferation in the context of neurons***

181 BDNF alone can increase glioma proliferation^{1,3,35}, albeit not as robustly as other neuron-
182 glioma signaling mechanisms¹. In contrast to adult glioblastoma³⁵, single cell
183 transcriptomic studies demonstrate that pediatric glioma cells do not express BDNF
184 ligand (Extended Data Figure 1) and thus the chief source of BDNF is the brain
185 microenvironment. Testing the effects of BDNF alone on glioma proliferation *in vitro*, we
186 found that the addition of recombinant BDNF (100 nM) increases pediatric glioma (DIPG)
187 cell proliferation from a rate of ~20% to ~30%. This effect is completely abrogated - as
188 expected - with CRISPR knockout of *NTRK2* (Figure 4a,b). Similar results of a small
189 increase in proliferation are observed in a range of patient-derived glioma cultures
190 exposed to BDNF, including thalamic DMG and pediatric cortical glioblastoma (Extended
191 Data Fig. 6).

192 In contrast to the relatively weak mitogenic effect of BDNF on glioma cells alone, co-
193 culture with neurons elicits a robust increase in proliferation rate from ~20% to ~60%
194 EdU+ glioma cells, underscoring the powerful effects of neurons on glioma proliferation
195 that includes neuroligin-3 signaling and neuron-to-glioma synaptic mechanisms^{1,3-5}. We
196 sought to investigate the relative contribution of BDNF-TrkB signaling in neuron-glioma
197 interactions using neuronal co-culture with WT or *NTRK2* KO glioma cells. A reduction in
198 pediatric glioma proliferation from *NTRK2* loss was not observed in the absence of

199 neurons (Figure 4c, d), consistent with the lack of BDNF ligand expression in pediatric
200 glioma cells (Extended Data Fig. 1). However, TrkB loss in glioma cells co-cultured with
201 neurons resulted in a stark reduction in neuron-induced proliferation, decreasing the
202 proliferation rate from ~60% to ~30% EdU+ glioma cells. This reduction was
203 disproportionate to the loss accounted for by BDNF mitogenic signaling alone (Figure 4b).
204 The magnitude of the change in glioma proliferation elicited by *NTRK2* loss in response
205 to BDNF recombinant protein compared to that elicited by co-culture with neurons (Figure
206 4b, d, $10.02\% \pm 1.2$ vs $26.06\% \pm 2.3$ $P = 0.0004$) suggests that BDNF is playing a more
207 complex role in neuron-glioma interactions than simply acting as an activity-regulated
208 growth factor. This is consistent with the idea that BDNF-TrkB signaling regulates neuron-
209 to-glioma synaptic strength and connectivity, as demonstrated above.

210

211 ***Activity-dependent BDNF promotes tumor progression***

212 We next tested the necessity of neuronal activity-regulated BDNF for glioma growth using
213 a genetically engineered mouse model deficient in activity-induced expression of *Bdnf*
214 (*Bdnf^{TMKI}*; TMKI, triple-site mutant knockin⁴⁴). This mouse model expresses baseline
215 levels of BDNF, but does not exhibit activity-regulated increase in BDNF expression and
216 secretion due to loss of the CREB binding site in the *Bdnf* promotor⁴⁴. First, to confirm
217 the relative contribution of activity-regulated BDNF ligand to the mitogenic effect of
218 activity-regulated secreted factors, we crossed the *Bdnf^{TMKI}* mouse to mice expressing
219 the excitatory opsin channelrhodopsin in deep cortical projection neurons (Thy1::ChR2,
220 Figure 4e), then optogenetically stimulated cortical slices from Thy1::ChR2-expressing
221 mice with *Bdnf^{TMKI}* or wild-type *Bdnf*. The effects of conditioned media (CM) from

222 optogenetically-stimulated cortical slices on glioma cell proliferation was assessed using
223 our well-validated experimental paradigm¹. Exposure of glioma patient-derived cultures
224 to CM from WT optogenetically stimulated slices increased proliferation rate, as we have
225 previously shown¹ (Figure 4f). Conditioned media collected from optogenetically
226 stimulated *Bdnf^{TMKI}* slices elicited a mildly reduced proliferative response compared to
227 WT, indicating a small role for BDNF ligand in paracrine neuron-glioma interactions
228 (Figure 4f), as expected¹. Given the results in neuron-glioma co-culture described above,
229 we would anticipate that loss of activity-regulated BDNF would hinder glioma growth *in*
230 *vivo* to a greater extent. Concordantly, survival analysis of orthotopic pediatric glioma
231 xenografts in WT and *Bdnf^{TMKI}* mice demonstrated markedly increased survival in *Bdnf^{TMKI}*
232 mice lacking activity-regulated BDNF secretion (Figure 4g, Extended Data Fig. 7),
233 concordant with the hypothesis that activity-regulated BDNF signaling influences glioma
234 progression in the context of the brain microenvironment in important ways.

235

236 ***Therapeutic targeting of TrkB in pediatric glioma***

237 We next tested the effects of genetic or pharmacological blockade of TrkB on pediatric
238 glioma growth. Mice were xenografted orthotopically with patient-derived cells in which
239 *NTRK2* was wild type (Cas9 control) or had been CRISPR-deleted. Mice bearing
240 orthotopic xenografts of *NTRK2* KO DIPG or *NTRK2* KO pediatric cortical glioblastoma
241 exhibited a marked increase in overall survival compared with littermate controls
242 xenografted with *NTRK2* WT cells (Figure 4h, Extended Data Fig. 7).

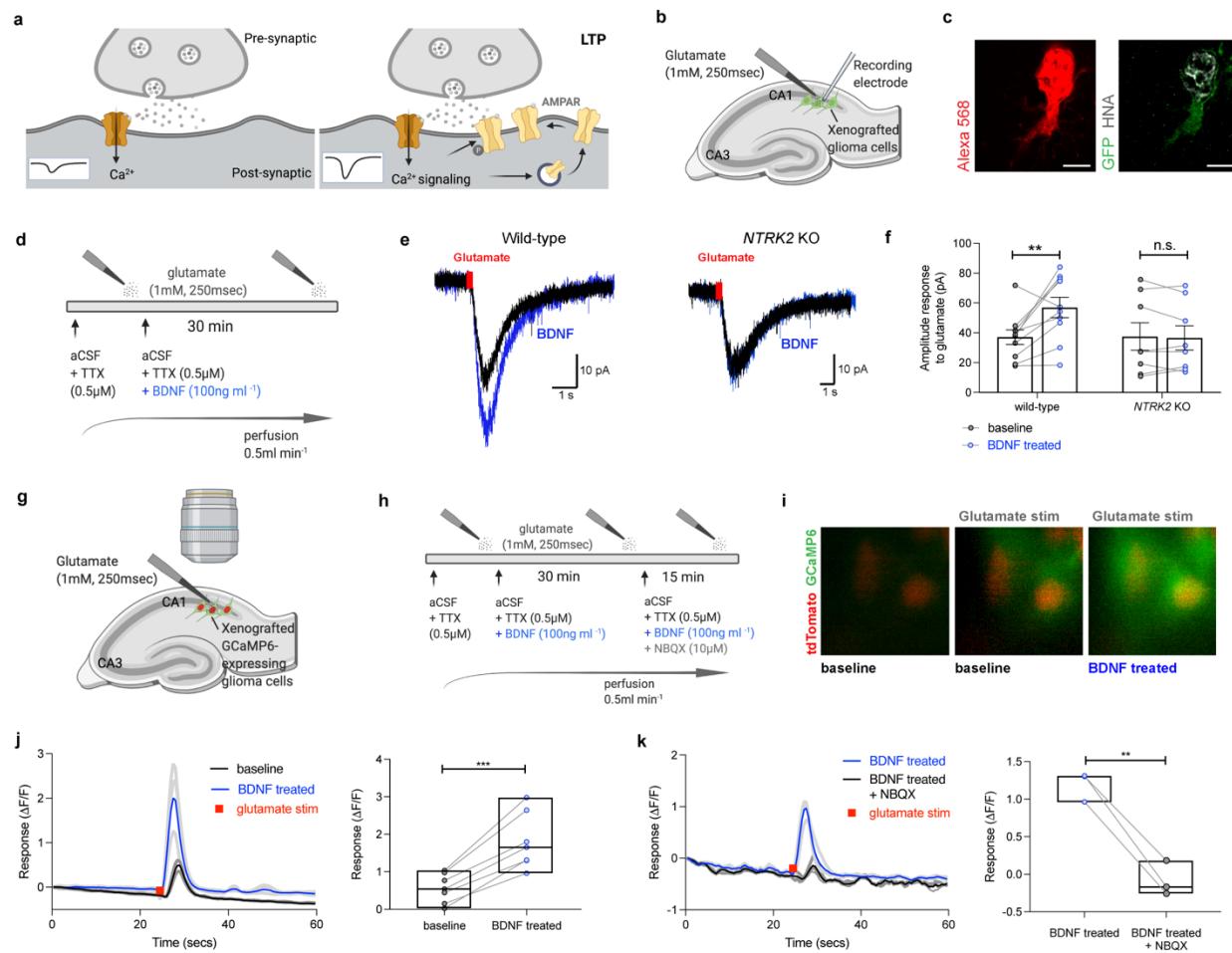
243 We next performed preclinical efficacy studies of pan-Trk inhibitors. Trk inhibitors have
244 recently been developed for treatment of NTRK-fusion malignancies, including *NTRK*

245 fusion infant gliomas⁴⁵⁻⁴⁷. Here, we tested the preclinical efficacy of these inhibitors in
246 *NTRK* non-fusion gliomas like DIPG. We first confirmed that both entrectinib and
247 larotrectinib abrogated glioma proliferation in response to BDNF ligand stimulation (Figure
248 4i). We then tested the ability of entrectinib to cross the blood brain barrier and
249 demonstrated that systemic entrectinib (120 mg/kg PO) reduced TrkB phosphorylation
250 and downstream ERK phosphorylation in brain tissue (Extended Data Fig. 8). Treatment
251 of an aggressive patient-derived pediatric glioma (DIPG) orthotopic xenograft model with
252 entrectinib increased overall survival compared to vehicle-treated controls (Figure 4j,
253 Extended Data Fig. 7).

254

255 **DISCUSSION**

256 Neurons form synapses with glioma cells via calcium permeable AMPA
257 receptors^{4,5} and the consequent membrane depolarization promotes glioma growth
258 through voltage-sensitive mechanisms that remain to be fully elucidated⁴. Tumor cells
259 form a network with each other through long processes called tumor microtubes
260 connected by gap junctions⁴⁸⁻⁵⁰, and neuron-glioma electrochemical communication
261 propagates through the glioma network through this gap junctional coupling^{4,5} such that
262 a single neuron-glioma synapse may affect numerous glioma cells. Here, we find that
263 malignant synapses exhibit plasticity of both strength and number. Increased AMPAR
264 channel trafficking to the glioma cell membrane mediates this plasticity of synaptic
265 strength, recapitulating a mechanism of long-term potentiation (LTP) operational in
266 healthy neurons that contributes to learning and memory^{22,24-29}. Whether other


267 mechanisms of synaptic plasticity³² occur in glioma remain to be determined in future
268 work.

269 Neuronal activity promotes glioma progression through paracrine¹⁻³ and synaptic^{4,5}
270 signaling mechanisms. The findings here illustrate that neuronal activity-regulated factors
271 such as BDNF not only directly promote glioma growth^{1,3,35,39}, but can also further
272 reinforce neuron-glioma interactions. This potential for plasticity of malignant synaptic
273 strength and connectivity raises a number of questions about neuron-to-glioma network
274 evolution over the disease course. Could this activity-dependent reinforcement of neuron-
275 glioma interactions and increased synaptic integration contribute to treatment resistance
276 later in disease course? Could experience and activity patterns in certain patients
277 contribute to neuroanatomical location of disease progression? Limiting malignant
278 network elaboration by targeting malignant synaptogenesis and plasticity may be crucial
279 for disease control, a concept supported by the therapeutic potential of disrupting BDNF-
280 TrkB signaling demonstrated here.

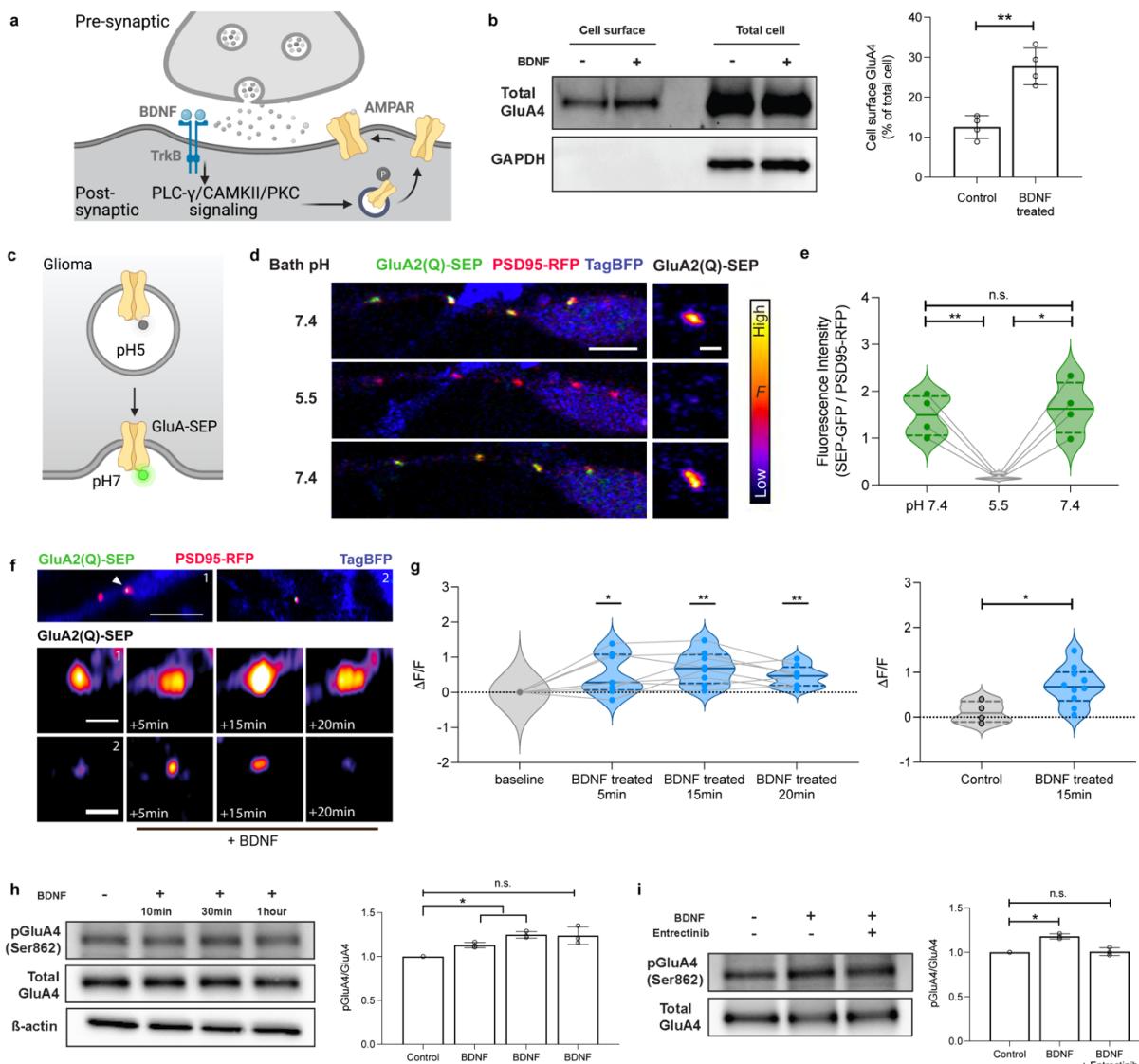
281 Gliomas hijack processes of neural plasticity and integrate into neural networks in
282 complex and dynamic ways, leveraging mechanisms that normally regulate neural circuit
283 establishment during development and plasticity contributing to cognition in the healthy
284 brain. Understanding and targeting neural circuit mechanisms in glioma will be critical for
285 effective treatment of these deadly brain cancers.

286

Figure 1.

287

288 **Fig. 1 | BDNF-TrkB signaling increases glutamatergic current amplitude in glioma.**


289 **a**, Simplified schematic outlining long-term potentiation via AMPAR channel trafficking to
 290 the postsynaptic density. NMDA-mediated LTP is the most extensively studied form of
 291 postsynaptic plasticity in CA1 hippocampal neurons. Activation of NMDAR channels
 292 following AMPAR-mediated cell depolarization allows calcium to enter the cell, inducing
 293 downstream activation of calcium pathway signaling²⁰. Several kinases, such as
 294 CAMKII/PKC/MAPK have been demonstrated to alter AMPAR channel levels at the
 295 postsynaptic density²⁹. **b**, Electrophysiological model of GFP+ glioma cells (green)
 296 xenografted in mouse hippocampal CA1 region to receive local and transient glutamate

297 puff. **c**, Left, representative image of Alexa 568 (red)- filled GFP+ glioma cell post whole-
298 cell patch clamp recording. Right, co-labelled with GFP (green) and HNA (grey). Scale
299 bar = 5 μ m. **d**, Experimental outline of whole cell patch-clamp electrophysiological
300 recordings in glioma cells. Hippocampal slices were perfused with ACSF containing 0.5
301 μ M tetrodotoxin (TTX), and response to a local puff (250msec) application of 1 mM
302 glutamate was recorded from xenografted glioma cells before and after perfusing with
303 100ng/ml BDNF for 30 min. **e**, Representative traces of glutamate-evoked inward
304 currents in patient-derived glioma xenografted cells, Left wild-type glioma cells inward
305 current response to glutamate puff, without (black) and with perfusion of aCSF containing
306 100ng/ml BDNF recombinant protein for 30mins (blue). Right, recordings of CRISPR-
307 deleted *NTRK2* knockout glioma cells. **f**, Quantification of data in **e** ($n = 10$ wild-type cells,
308 6 mice and 8 knockout cells, 6 mice). **g**, Model of calcium imaging of tdTomato nuclear
309 tag; GCaMP6s-expressing glioma cells xenografted into the mouse hippocampal region.
310 **h**, Experimental outline of calcium transient recordings in patient-derived glioma cell
311 xenografts. **i**, In-situ imaging of calcium transients in glioma cells evoked by local
312 glutamate puff (1mM, 250msecs) at baseline (middle) and after perfusion with 100ng/ml
313 BDNF in aCSF for 30mins. Green denotes glioma GCaMP6s fluorescence and red
314 denotes tdTomato nuclear tag. **j**, Left, representative traces of glioma GCaMP6s intensity
315 during local, transient glutamate application (red). GCaMP6s intensity response shown in
316 three individual glioma cells (dark grey) to glutamate puff at baseline (average: black) and
317 after BDNF perfusion (individual cells: light grey, average intensity: blue). Right, individual
318 GCaMP6s cell response to glutamate puff at baseline and after BDNF application ($n = 7$
319 cells, 3 mice). **k**, Left, representative traces of glioma GCaMP6s intensity in the presence

320 of BDNF. Response to glutamate application (red) were recorded with BDNF perfusion
321 only (individual cells: light grey, average: blue) or with the addition of 10 μ m NBQX
322 (individual cells: dark grey, average: black). Right, response of individual GCaMP6s cells
323 to glutamate puff with BDNF application, in the presence and absence of NBQX. (n= 3
324 cells, 2 mice). Data are mean \pm s.e.m. **P< 0.01, ***P<0.001, two-tailed paired Student's
325 *t*-test.

326

Figure 2.

327

328 **Fig. 2 | BDNF regulates trafficking of AMPAR to the glioma postsynaptic membrane.**

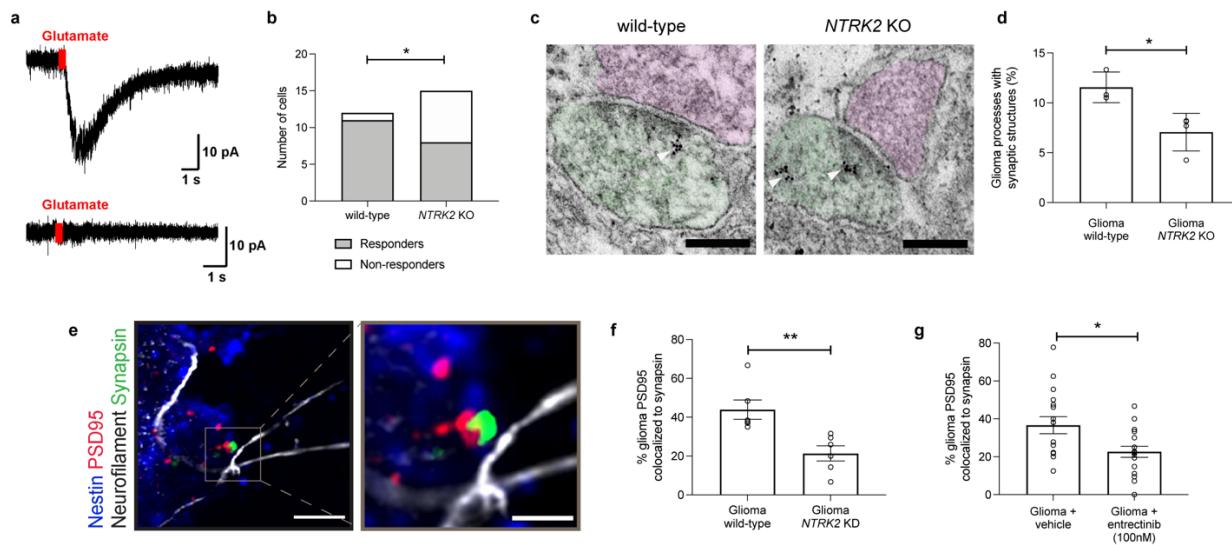
329 **a**, Schematic depicting AMPAR channel trafficking downstream of BDNF-TrkB signaling.

330 BDNF-TrkB induces activation of Ca^{2+} /calmodulin-dependent kinase II (CAMKII) and

331 protein kinase C (PKC), which phosphorylates AMPAR subunits and increases synaptic

332 delivery³⁶. **b**, Western blot analysis of cell membrane surface and total cell protein from

333 SU-DIPGVI cells treated with 100nM BDNF for 30mins. Surface proteins were labelled


334 with Biotin and extracted from total protein with Avidin bead pull-down. Right,

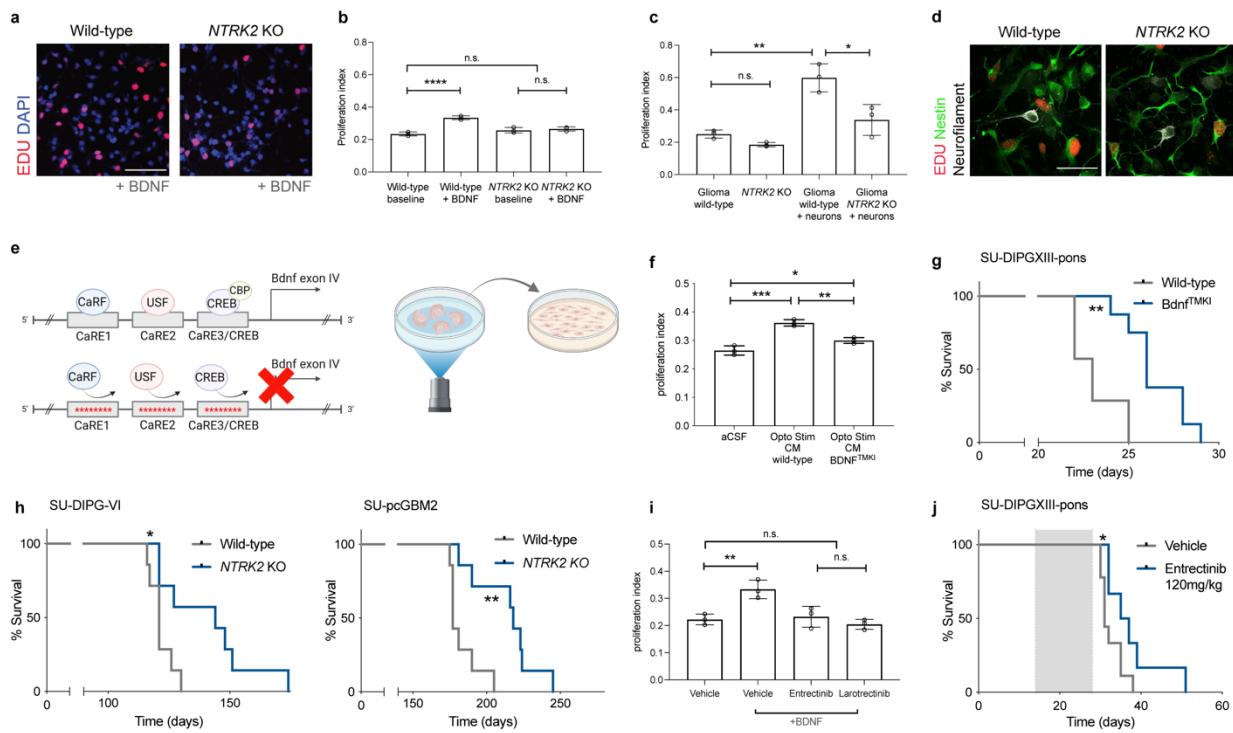
335 quantification of % of biotinylated cell surface proteins from total ($n = 4$ biological
336 replicates). **c**, Super ecliptic pHluorin tagged GluA subunit (GluA-SEP). **d-e**, Validation of
337 pHluorin. **d**, Left, confocal image of a glioma cell expressing the calcium permeable
338 AMPAR subunit tagged with SEP (GluA2(Q)-SEP), PSD95-RFP and whole cell TagBFP,
339 in co-culture with neurons. Right, individual representative puncta of GluA2(Q)-SEP.
340 Scale bars = 5 μ m and 1 μ m, respectively. Cells were perfused with pH 7.4 aCSF followed
341 by exposure to aCSF containing membrane impermeable acid at pH 5.5 and then
342 returned to pH 7.4. **e**, Quantification of GluA2(Q)-SEP puncta intensities before, during
343 and after acidic aCSF exposure, as a ratio to PSD95-RFP puncta intensity ($n = 4$ puncta,
344 one cell). **f**, confocal images of two representative GluA2(Q)-SEP; PSD95-RFP, TAG-
345 BFP expressing glioma cells in co-culture with neurons. Co-localized puncta intensity was
346 measured over a time course with BDNF (100nM) perfusion. **g**, Left, quantification of
347 GluA2(Q)-SEP / PSD95-RFP puncta intensities over time with BDNF as compared to
348 initial baseline intensity ($n = 8$ puncta, 6 cells). Right, quantification of one 15-minute time
349 point with control cells (vehicle, $n = 4$ puncta, 2 cells) vs BDNF treatment (100nM, $n = 8$
350 puncta, 6 cells). **h**, Representative Western blot analysis of primary patient-derived
351 glioma culture, SU-DIPGV1, treated with 100nM recombinant BDNF at several timepoints
352 using indicated antibodies. Right, quantification of the phospho-immunoblots ratio to
353 corresponding total protein levels and normalized to vehicle treated control (y axis is in
354 arbitrary units, $n = 3$ biological replicates). **i**, Representative Western blot analysis of
355 100nM BDNF treated glioma cells (as in **h**) at 30mins with and without entrectinib (5 μ M).
356 Right, quantification of phospho-immunoblots (as in **h**, y axis is in arbitrary units, $n = 3$
357 biological replicates). Data are mean \pm s.e.m. * $P < 0.05$, ** $P < 0.01$, two-tailed paired

358 Student's *t*-test for **b**, **e**, One sample *t* and Wilcoxon test for **g** (left panel), **h** and **i**.

359 Unpaired *t*-test for **g** (right panel).

Figure 3.

360


361 **Fig. 3 | TrkB regulates neuron-glioma connectivity.**

362 **a**, Representative electrophysiological traces of glutamate-evoked inward currents in
363 patient-derived glioma xenografted cells (as in Figure 1b), with cells that respond to
364 glutamate puff (top) and those that have no current change (bottom). **b**, Quantification of
365 data in **a** ($n = 12$ wild-type cells, 6 mice and 15 knockout cells, 7 mice). **c**, Immuno-electron
366 microscopy of patient-derived DIPG cells SU-DIPG-VI wild-type (left) and *NTRK2* KO
367 (right) xenografted into the mouse hippocampus. Arrowheads denote immuno-gold
368 particle labelling of GFP. Synapses confirmed as GFP+ postsynaptic density in glioma
369 cells (colored green), a synaptic cleft and clustered synaptic vesicles in opposing
370 presynaptic neuron (colored magenta). Scale bar = 2 μ m. **d**, Quantification of identified
371 synapses in **c** for mice harboring wild-type and *NTRK2* KO tumors ($n = 3$ mice/group). **e**,
372 Confocal images of neurons co-cultured with PSD95-RFP labelled wild-type and *NTRK2*
373 KO glioma cells. White denotes neurofilament (axon); green denotes nestin staining
374 (glioma cell process); blue denotes synapsin (presynaptic puncta). Scale bar = 5 μ m. **f**,
375 Quantification of the colocalization of postsynaptic glioma-derived PSD95-RFP with

376 neuronal presynaptic synapsin in co-cultures of wild-type ($n = 6$ cells, 3 coverslips from 3
377 biological replicates), or *NTRK2* KO glioma cells (SU-DIPG-VI, $n = 6$ cells, 3 coverslips
378 from 3 biological replicates). **g**, Quantification of the colocalization of postsynaptic glioma-
379 derived PSD95-RFP with neuronal presynaptic synapsin in neuron co-cultures with SU-
380 DIPG-VI glioma cells treated with vehicle or entrectinib (100nM) ($n = 18$ cells, 6 coverslips
381 from 3 biological replicates). Data are mean \pm s.e.m. ** $P < 0.01$, *** $P < 0.001$, * $P < 0.05$,
382 Fisher's exact test for **b**. Two-tailed unpaired Student's t-test for **d, f** and **g**.

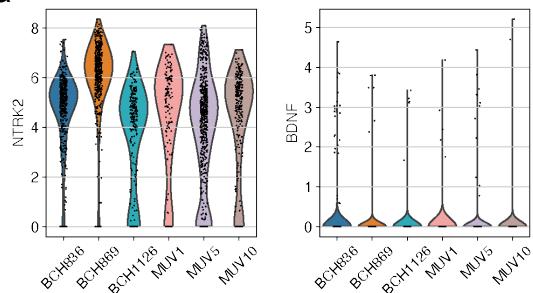
383

Figure 4.

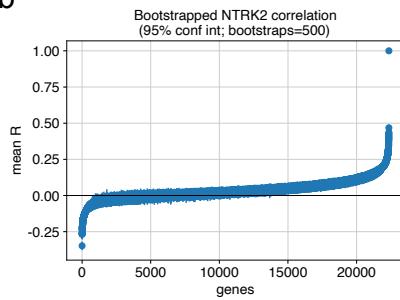
384

385 **Fig. 4 | Activity-regulated BDNF promotes glioma progression**

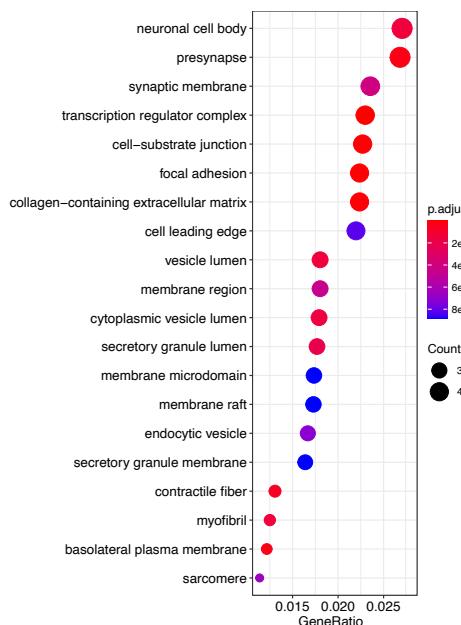
386 **a**, Confocal image of wild-type and *NTRK2* KO patient-derived glioma cultures (SU-DIPG-
387 VI) cultured with and without 100 μM of BDNF protein. Red denotes EdU incorporation
388 and DAPI marked nuclei in blue. Scale bar = 100 μm **b**, Proliferation index of cultures in a
389 with and without BDNF treatment. **c**, Proliferation index of wild-type and *NTRK2* KO
390 glioma cultures (SU-DIPG-VI) cultured alone or with neurons. **d**, Representative image of
391 wild-type and *NTRK2* KO glioma cells (SU-DIPG-VI) co-cultured with neurons quantified
392 in c. Green denotes nestin positive glioma cells; white denotes Neurofilament (neurons);
393 red denotes EdU (proliferative marker). Scale bar = 50 μm. **e**, Left, schematic of *BDNF*^{TMKI}
394 mouse, which lacks activity-regulated *BDNF* expression. Right, collection of conditioned
395 medium (CM) from optogenetically stimulated acute cortical slices. **f**, Proliferation index
396 of SU-DIPG-VI cells exposed to wild-type or *BDNF*^{TMKI} CM. **g**, Kaplan-Meier survival

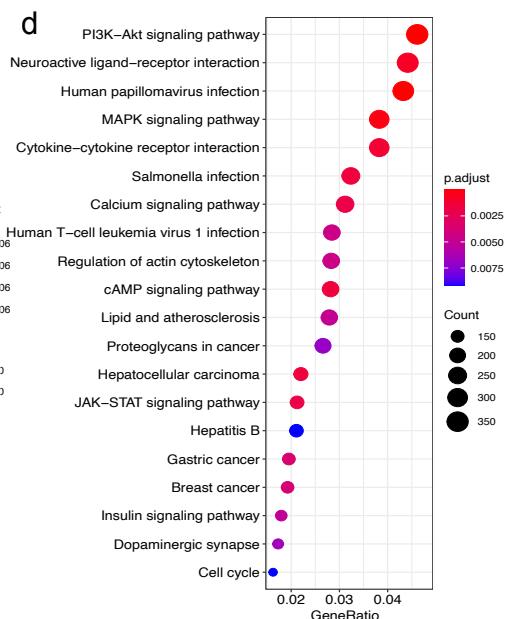

397 curves of wild-type and BDNF^{TMKI} mice bearing patient-derived orthotopic xenografts of
398 SU-DIPGXIII-P* ($n = 7$ wild-type mice, 8 BDNF^{TMKI} mice). **h**, Survival curves of mice
399 bearing wild-type and *NTRK2* KO orthotopic xenografts for two patient-derived pediatric
400 glioma models (SU-pcGBM2, H3WT pediatric cortical glioblastoma model and SU-DIPG-
401 VI, DIPG model; $n = 7$ mice in each group). **i**, Proliferation index of SU-DIPG-VI cells
402 treated with 100 μ M of BDNF protein in the presence of pan-Trk inhibitors, entrectinib and
403 larotrectinib at 500nM ($n = 3$ biological replicates per group for **b, c, f, i**). **j**, Survival curves
404 of pontine-injected SU-DIPGXIII-P* patient-derived orthotopically xenografted mice
405 treated with 120mg/kg entrectinib vs vehicle treated controls. Data are mean \pm s.e.m. *P<
406 0.05, **P< 0.01, ***P<0.001, one way ANOVA with Tukey's post hoc analysis for **b, c, f**
407 and **i**. Two-tailed log rank analysis for **g, h** and **j**.
408
409

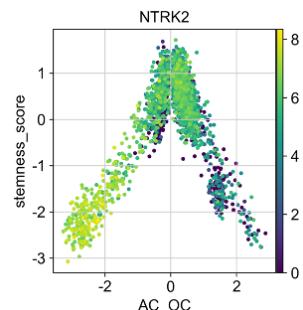
410 **Supplementary Figures**

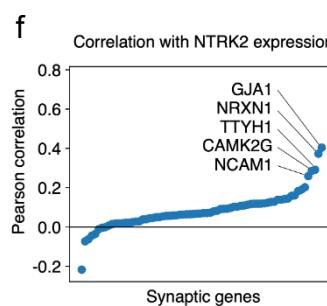

411

Extended Data Fig 1.


a


b


c

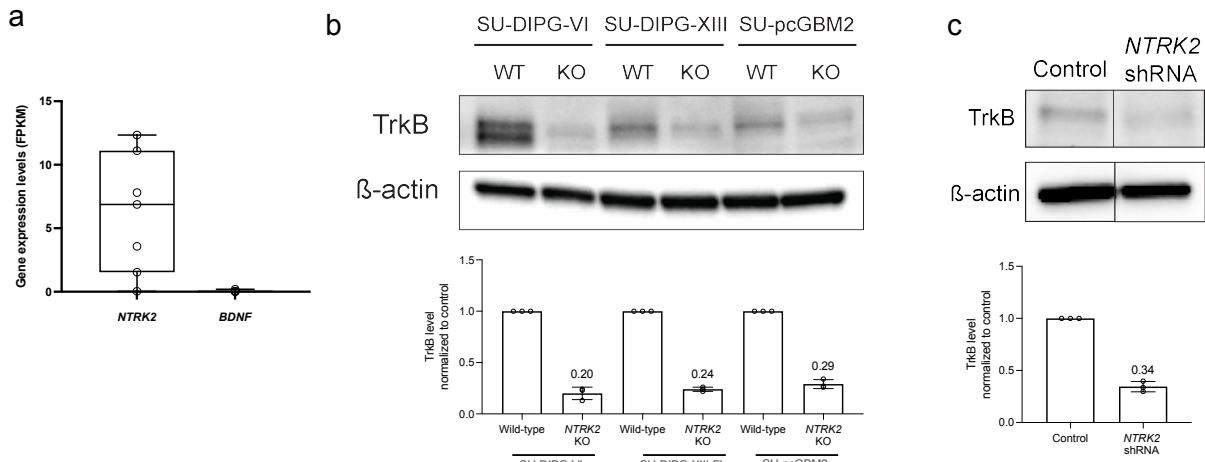

d

e

f

412

413 **Extended Data Fig. 1 | NTRK2 and BDNF expression in pediatric gliomas.**


414 **See Supplemental Note 1. a, NTRK2 (left) and BDNF (right) expression in H3K27M⁺**

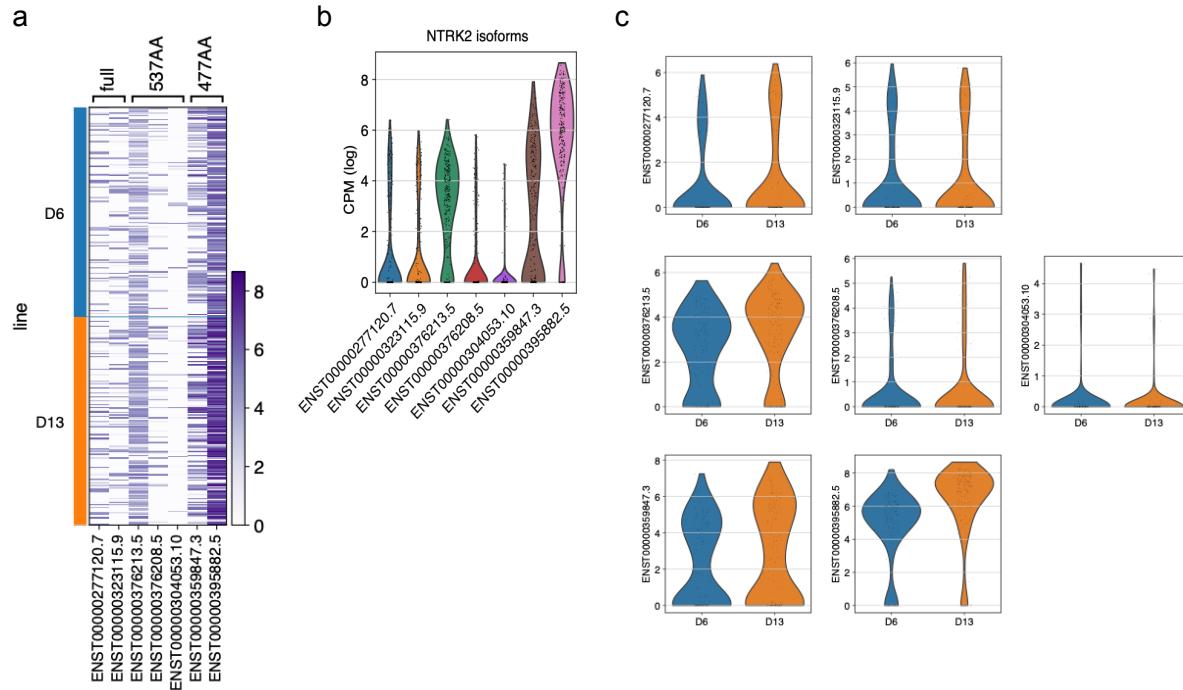
415 **DMG malignant single cells from primary human biopsy single-cell transcriptomic data**

416 (scRNASeq, $n = 2,259$ cells, 6 study participants). ($P < 0.0001$ for *NTRK2* vs *BDNF*
417 expression in each tumor sample, value estimated using paired t-test). **b**, Plot of
418 expression correlation analysis, performed using the bootstrap method on the H3K27M⁺
419 DMG scRNASeq data, to identify genes which correlate with *NTRK2* expression. **c**, Gene
420 Ontology (GO) cellular compartments enriched for the top 92 genes correlated with
421 *NTRK2* expression (identified in **b**). **d**, KEGG analysis demonstrated key signaling
422 pathways enriched for the top 92 genes correlated with *NTRK2* expression (identified in
423 **b**). **e**, *NTRK2* expression level in malignant H3K27M⁺ malignant single cells plotted using
424 the lineage (x axis) and stemness (undifferentiated to differentiated; y axis) scores. **f**,
425 Pairwise Pearson correlation analysis of 73 synaptic-associated genes with expression
426 of *NTRK2*, the genes with a Pearson correlation > 0.25 are highlighted.

427

Extended Data Fig. 2

428

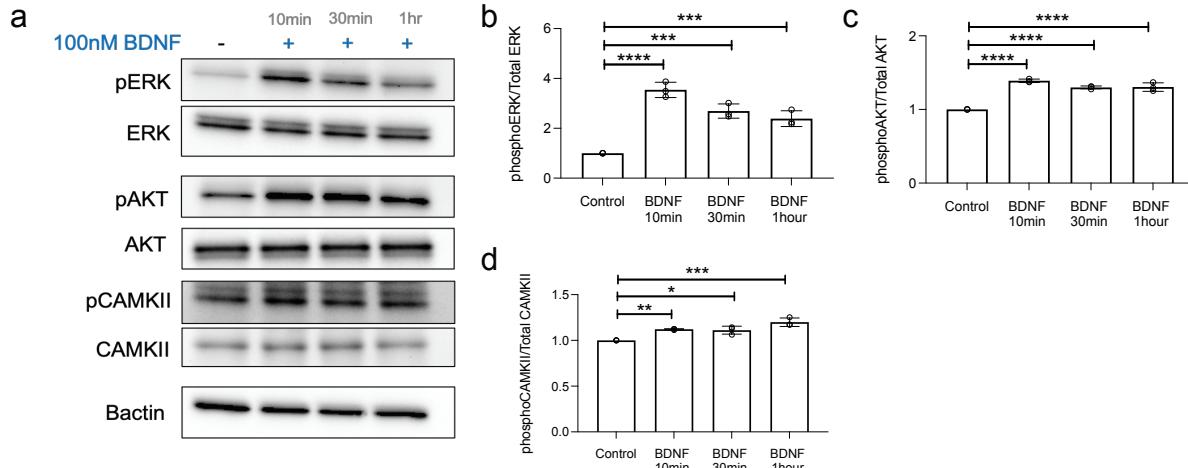

429 **Extended Data Fig. 2 | Genetic deletion of *NTRK2* from pediatric glioma patient-
430 derived cultures.**

431 **a**, Analysis of previously published bulk RNA sequencing data of patient derived cultures
432 (including SU-DIPG-VI, SU-DIPG-XIII used in our experiments), confirmed the expression
433 of *NTRK2* in these cultures (in Ext Data Fig. 1a), with little expression of BDNF (mean
434 6.180 vs 0.052 FPKM respectively, *P* value estimated by Wilcoxon matched pairs signed
435 rank test). **b**, Top, representative western blot analysis of TrkB protein levels in wild-type,
436 Cas9-control and *NTRK2* KO cultures (SU-DIPG-VI, SU-pcGBM2, SU-DIPG-XIII-FL),
437 using indicated antibodies. Bottom, quantification of western blot analysis with levels of
438 TrkB normalized to total protein loading using β-actin levels and compared to wild-type,
439 Cas9-scramble control, cultures (*y* axis is in arbitrary units, *n* = 3 biological replicates). **c**,
440 Top, representative western blot analysis of TrkB protein levels in control scramble
441 shRNA and *NTRK2* shRNA knockdown cultures (SU-DIPG-VI), using indicated
442 antibodies and analyzed as in **b**. The samples were run together in the same western
443 blot experiments, but had one additional sample in between from another shRNA

444 knockdown culture that was not used in these experiments. Bottom, quantification of
445 western blot analysis with levels of TrkB normalized to total protein loading using β -actin
446 levels and compared to wild-type, shRNA-scramble control, cultures (y axis is in arbitrary
447 units, $n = 3$ biological replicates). Data are mean \pm s.e.m. ** $P < 0.01$, *** $P < 0.001$, One
448 sample *t*-test.

449

Extended Data Fig. 3

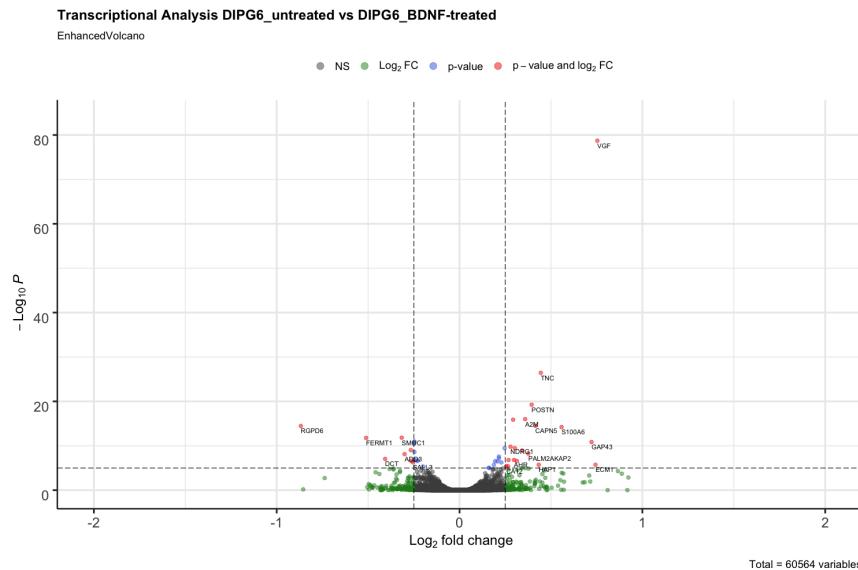

450

451 **Extended Data Fig. 3 | TrkB isoform expression in DIPG**

452 **a**, Heatmap of single-cell RNASeq data of patient derived glioma xenograft models (SU-
453 DIPG-VI and SU-DIPGXIII) cells ($n = 321$ cells, 4 mice) demonstrating relative expression
454 of TrkB (*NTRK2*) isoforms; Full (ENST-277120.7 and ENST-323115.9) and Truncated
455 (527aa ENST-376208.5 and ENST-376208.5; 477aa ENST-359847 and ENST-
456 395882.5), with representative Ensembl codes depicted below. **b**, Violin plots of relative
457 expression level of TrkB isoforms (depicted in **a**) for both SU-DIPG-VI and SU-DIPGXIII
458 cells combined, shown as log-transformed counts per million (CPM). **c**, Violin plots of
459 relative expression of TrkB isoforms (depicted in **a**) separated out by patient-derived
460 xenograft model type (SU-DIPG-VI (D6) and SU-DIPGXIII (D13)). X-axis is in log-
461 transformed counts per million (CPM).

462

Extended Data Fig. 4


463

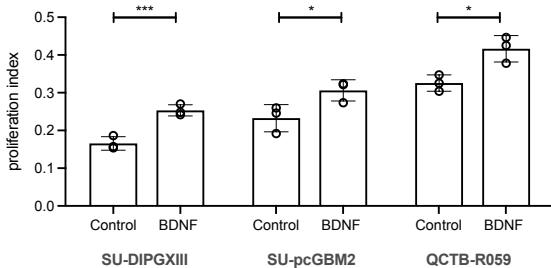
464 **Extended Data Fig. 4 | BDNF treatment induces PI3K, MAPK and CAMKII activation.**

465 **a**, Western blot of proteins from SU-DIPG-VI cells treated with BDNF recombinant protein
466 (100nM) over a time course and probed for the indicated antibodies to demonstrate
467 activation of downstream signaling pathways in comparison to untreated cells (vehicle
468 only). **b**, Quantification of MAPK pathway activation in **a**, by comparing the ratio of the
469 normalized phospho-ERK (T202/Y204) levels to corresponding total protein levels for
470 BDNF treated cultures compared to control (y-axis is in arbitrary units, $n = 3$ biological
471 replicates). **c**, Quantification of PI3K pathway activation in **a**, by comparing the ratio of the
472 normalized phospho-AKT (S473) to corresponding total protein levels for BDNF treated
473 cultures compared to control (y-axis is in arbitrary units, $n = 3$ biological replicates). **d**,
474 Quantification of calcium pathway activation in **a**, by comparing the ratio of the normalized
475 phospho-CAMKII (T286) to corresponding total protein levels for BDNF treated compared
476 to control (y axis is in arbitrary units, $n = 3$ biological replicates). Data are mean \pm s.e.m.
477 * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, one-way analysis of variance (ANOVA) with Tukey's
478 post hoc analysis.

Extended Data Fig. 5

a

479


480 **Extended Data Fig. 5 | Gene expression changes induced by BDNF treatment in
481 glioma.**

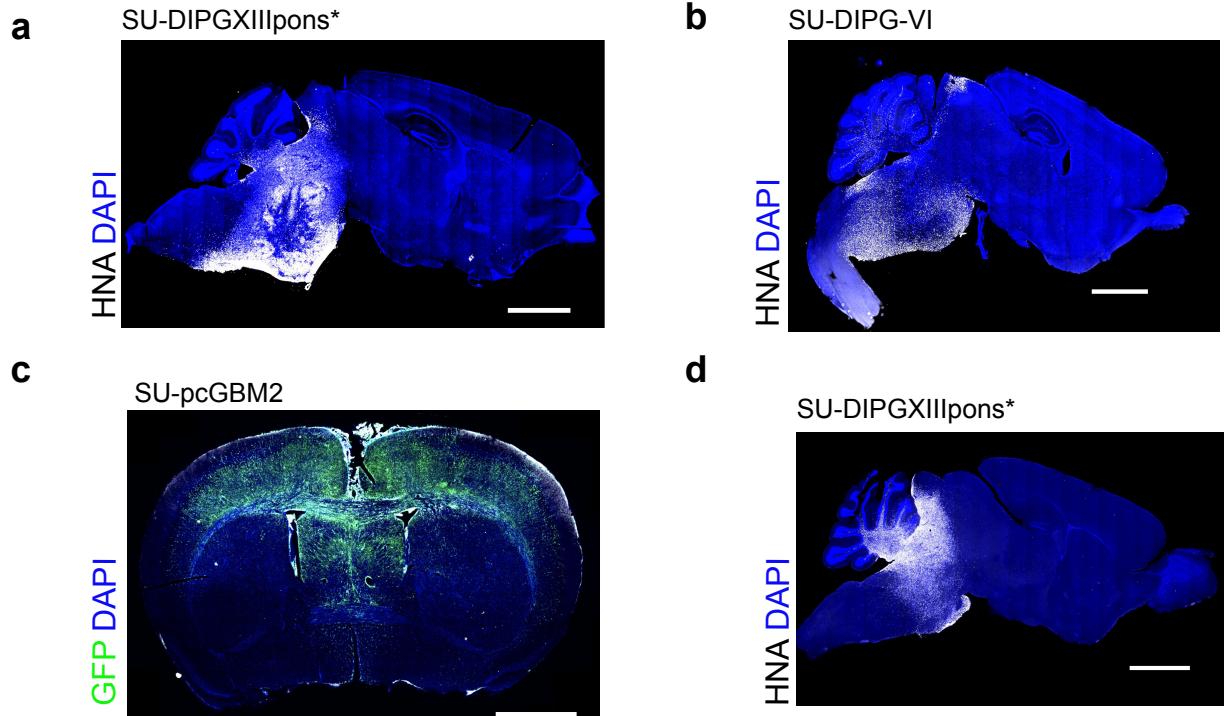
482 **a**, Scatterplot demonstrating gene expression changes in SU-DIPG-VI after 16 hours of
483 treatment with and without BDNF recombinant protein (100nM) compared to control cells
484 (vehicle treated). The x axis demonstrates log₂ (fold change of BDNF compared to
485 vehicle) and the y axis demonstrates Log₁₀P of the gene expression level. Points shown
486 in red represent genes showing statistically significant change (adjusted $P < 0.1$,
487 Benjamin-Hochberg for multiple comparison testing).

488

Extended Data Fig. 6

a

489


490 **Extended Data Fig. 6 | BDNF-induced proliferation in pediatric glioma.**

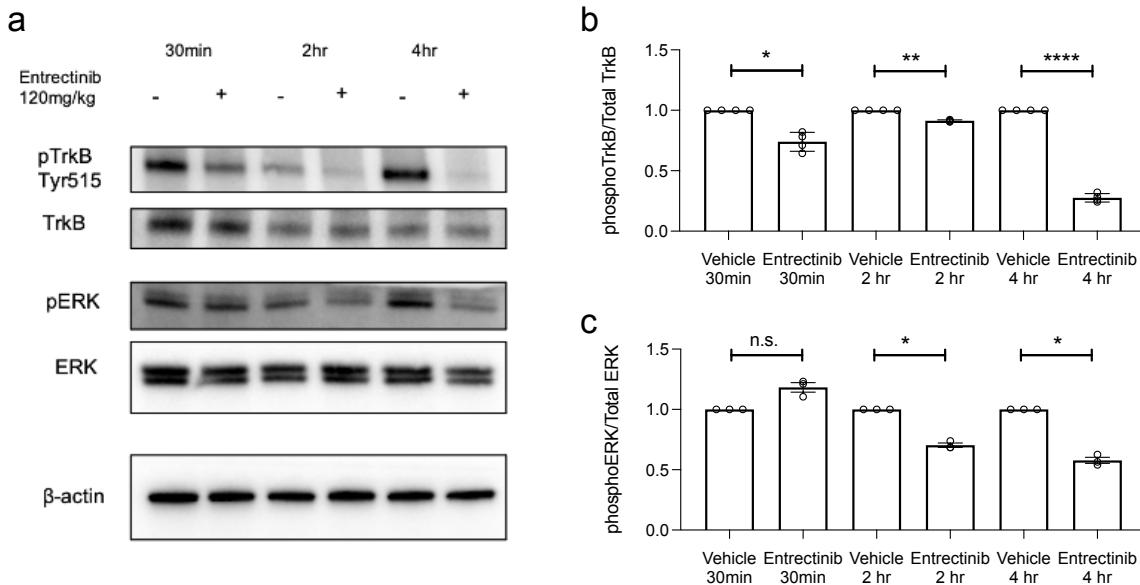
491 **a**, Proliferation index of DIPG (XIII-FL), cortical (pcGBM2) and thalamic (QCTB-R059)
492 pediatric glioblastoma cultures treated with BDNF recombinant protein (100nM)
493 compared to control cells (vehicle treated). Confocal images of the treated glioma cultures
494 were taken (as in Figure 4a), with EdU+ cells counted as a proportion of total cells marked
495 by DAPI nuclei staining ($n = 3$ biological replicates for all).

496

497

Extended Data Fig. 7

498


499 **Extended Data Fig. 7 | Orthotopic xenograft models used in survival analyses**

500 **a**, Representative image of tumor burden in a mouse brain (sagittal section) bearing
501 orthotopic xenograft of SU-DIPGXIIPons* xenografted to the pons at endpoint. Survival
502 analysis presented in Figure 4g. White denotes HNA (tumor cells); DAPI nuclei are shown
503 in blue. **b** and **c**, Representative images of tumors at survival endpoint for Figure 4h. **b**,
504 Orthotopic xenograft of SU-DIPG-VI into pons (sagittal section of mouse brain), and in **c**,
505 cortical orthotopic xenograft of SU-PCGBM2 (coronal section of mouse brain). White
506 denotes HNA (tumor cells); Green denotes GFP (tumor cells); DAPI nuclei are shown in
507 blue. **d**, Representative image of mouse brain (sagittal section) from SU-DIPGXIIPons*
508 xenografted to the pons treated with entrectinib at 120mg/kg PO at endpoint in survival

509 analyses (presented in Figure 4j). White denotes HNA (tumor cells); DAPI nuclei are
510 shown in blue. Scale bar for all = 2000 μ m.

511

Extended Data Fig. 8

512

513 **Extended Data Fig. 8 | Trk inhibitor brain penetration.**

514 **a**, Western blot of whole brain protein lysate collected from NOD-SCID-gamma (NSG)
515 mice that were either treated with one PO dose of 120mg/kg of entrectinib or one dose of
516 vehicle control (PO). The mouse brains were harvested after transcardial perfusion and
517 mice were collected at either 30min, 2 hr and 4 hr post vehicle or entrectinib dosing. The
518 protein lysate was probed for the indicated antibodies to demonstrate inhibition of BDNF-
519 TrkB signaling as an indication of effective drug penetration into brain tissue. **c**,
520 Quantification of TrkB phosphorylation by comparing the ratio of the normalized phospho-
521 TrkB (Tyr515) levels to corresponding total TrkB protein levels between the entrectinib
522 treated and vehicle control mice (y axis is in arbitrary units, $n = 3$ technical replicates). **c**,
523 Quantification of MAPK pathway activation by comparing the ratio of the normalized
524 phospho-ERK (T202/Y204) to corresponding total protein levels between the entrectinib
525 treated and vehicle control treated mice (y axis is in arbitrary units, $n = 3$ technical

526 replicates). Data are mean \pm s.e.m. *P< 0.05, **P< 0.01, ****P<0.0001, one-way analysis
527 of variance (ANOVA) with Tukey's post hoc analysis.

528

529 **Supplementary**

530

531 **Supplementary Table S1** – Analysis of H3K27M+ DMG biopsy single cell RNASeq data.
532 **a**, Expression level of *NTRK2* and *BDNF* in H3K27M+ DMG. **b**, correlation of genes co-
533 expressed with *NTRK2* in glioma. **c**, GO analysis of top 92 genes co-expressed with
534 *NTRK2* in H3K27M+ DMG. **d**, KEGG analysis of top 92 genes co-expressed with *NTRK2*
535 in H3K27M+ DMG.

536

537 **Supplementary Note 1** – Discussion of results of scRNASeq analyses provided in
538 Extended Data Fig.1.

539

540

541 **MATERIALS AND METHODS**

542 *Bioinformatic analysis*

543 For scRNAseq processing, RSEM normalized gene abundances for the Filbin data set

544 were downloaded from the Single Cell Portal

545 (https://singlecell.broadinstitute.org/single_cell, GEO accession: GSE102130). The data

546 were log transformed with a pseudocount of one. The top 50 principal components were

547 calculated using the top 10,000 most variable genes and batch normalized using

548 Harmony until convergence ⁵¹. The normalized principal components were used to

549 calculate the UMAP embedding. Bootstrapping with 500 iterations was used to calculate

550 95% confidence intervals. Pathway enrichment analyses were conducted using genes

551 with a bootstrapped lower 95% confidence interval Pearson correlation > 0.25, resulting

552 in a list of 92 genes. The R package clusterProfiler v3.18.1 was used to perform and

553 visualize GO and KEGG enrichment analyses [{Yu et al., 2012}](#). Stemness and lineage

554 signature scores were calculated as described in ⁵². All analysis was performed using the

555 Scanpy Python package ⁵³. For synaptic gene co-expression with *NTRK2*, pairwise

556 Pearson correlation for all synaptic genes (gene list as previously published ⁴) was

557 calculated using malignant cells from patient biopsies.

558 For *NTRK2* and *BDNF* expression levels in DIPG patient-derived cell cultures, FPKM data

559 were analysed from datasets kept in-house and are publicly available to download (GEO

560 accession: GSE94259). Cultures included were SU-DIPG-IV, SU-DIPG-VI, SU-DIPGXIII-

561 p, SU-DIPG-XVII, SU-DIPGXXI, SU-DIPG25, SU-DIPG-XIII-FL).

562 For TrkB isoform analysis, our previously published ⁴ scRNASeq dataset of patient-

563 derived orthotopic xenograft models was used. *NTRK2* isoform abundances were

564 quantified from FASTQ files using Kallisto ⁵⁴. Reads were pseudoaligned against a
565 reference transcriptome created from the hg38 reference genome using Ensembl hg38
566 transcript annotations. Estimated counts were library-size normalized to counts per million
567 and log transformed with a pseudocount of one. Cells with libraries containing irregular
568 GC content were identified and removed from analysis, resulting in a total of 321 cells.

569 For BDNF treated tumor cells, RNA was extracted from pelleted cell culture samples
570 using the RNeasy Isolation kit (Qiagen) as per manufacturer's instructions. Total RNA
571 samples were submitted to Stanford Functional Genomics Facility. RNA integrity was
572 established with Bioanalyzer trace (Agilent). The mRNA was prepared for sequencing
573 using the KAPA Stranded mRNASeq Library prep kit (KK8420), and libraries were indexed
574 with Truseq RNA UD from Illumina (#20021454) as per manufacturer's instructions. The
575 sequencing was performed on the Illumina NextSeq 500.

576 Reads were mapped to hg19 annotation using Tophat2 ⁵⁵ (version 2.0.13) and transcript
577 expression was quantified against RefSeq gene annotations using featureCounts ⁵⁶.
578 Differential gene expression and \log_2 fold change calculations were determined using the
579 DESeq2 package in R ⁵⁷. Volcano plot analysis was conducted using the R-based
580 'EnhancedVolcano' package (<https://github.com/kevinblighe/EnhancedVolcano>).

581

582 *Mice and housing conditions*

583 All animal experiments were conducted in accordance with protocols approved by the
584 Stanford University Institutional Animal Care and Use Committee (IACUC) and performed
585 in accordance with institutional guidelines. Animals were housed according to standard
586 guidelines with unlimited access to water and food, under a 12 hour light : 12 hour dark

587 cycle. For brain tumor xenograft experiments, the IACUC has a limit on indications of
588 morbidity (as opposed to tumor volume). Under no circumstances did any of the
589 experiments exceed the limits indicated and mice were immediately euthanized if they
590 exhibited signs of neurological morbidity or if they lost 15% or more of their initial body
591 weight.

592 For the *Bdnf^{TMKI}* mice (C57BL/6J background), knockin mutations in three calcium
593 regulatory element binding sites in the *Bdnf* promoter IV: CaRE1, CaRE2 and
594 CaRE3/CREB (M. Greenberg: ⁴⁴) were bred to *Thy1::ChR2^{+/−}* mice (line 18, The Jackson
595 Laboratory, C57BL/6J background) to produce the *Bdnf^{TMKI}; Thy1::ChR2^{+/−}* genotype.
596 These mice were then intercrossed with NSG mice (NOD-SCID-IL2R gamma chain-
597 deficient, The Jackson Laboratory) to produce a *Bdnf^{TMKI}; Thy1::ChR2^{+/−}; NSG* genotype
598 to facilitate to facilitate orthotopic xenografting.

599

600 *Orthotopic xenografting*

601 For all xenograft studies, NSG MICE (NOD-SCID-IL2R-gamma chain-deficient, The
602 Jackson Laboratory) were used. Male and female mice were used in cohorts equally. For
603 electrophysiological, immunoelectron microscopy and calcium imaging experiments, a
604 single cell suspension from SU-DIPGVI and SU-DIPGXIIIFL were injected into the
605 hippocampal region. For survival analysis, DIPG cultures (SU-DIPGVI, SU-DIPGXIIIP*)
606 were injected into the pontine region and for cortical GBM cultures (SU-*pc*GBM2), cells
607 were injected into the cortex. A single cell suspension of all cultures were prepared in
608 sterile culture medium (see *cell culture*) immediately before surgery. Animals at postnatal
609 day (P) 28-35 were anaesthetized with 1-4% isoflurane and placed on stereotactic

610 apparatus. Under sterile conditions, the cranium was exposed via a midline incision and
611 a 31-gauge burr hole made at exact coordinates. For hippocampal injections the
612 coordinates were as follows: 1.5mm lateral to midline, 1.8mm posterior to bregma, -1.4
613 deep to cranial surface. For pontine injections coordinates were: -1mm lateral to midline,
614 0.8mm posterior to lambda, -5 deep to cranial surface. For cortical injections coordinates
615 were: 1mm anterior to bregma, 0.5mm lateral to midline, 1.7mm deep to cranial surface.
616 Cells were injected using a 31-gauge Hamilton syringe at an infusion rate of 0.4 μ l min⁻¹
617 with a digital pump. At completion of infusion, the syringe needle was allowed to remain
618 in place for a minimum of 2min, then manually withdrawn. The wound was closed using
619 3M Vetbond (Thermo Fisher) and treated with Neo-Predef with Tetracaine Powder.

620

621 *Survival studies*

622 For survival studies, mice were xenografted at 4-5 weeks of age with the cultures SU-
623 DIPG-VI (WT and NTRK2 KO), SU-pcGBM2 (WT and NTRK2 KO) and SU-DIPGXIIIp*.
624 After xenografts, mice were continuously monitored for signs of neurological deficits or
625 health decline. For inhibitor treatment, SU-DIPGXIIIp* was treated with 120mg/kg PO
626 daily of entrectinib (HY-12678, MedChemExpress, 7% DMSO (Sigma), 10% Tween 80
627 (Sigma) in sterile H₂O) for 14 days, starting at 2 weeks post xenograft. Morbidity criteria
628 were a 15% reduction in weight or severe neurological motor deficits consistent with brain
629 dysfunction (brainstem tumors exhibited circling and barrel roles, cortical tumors
630 displayed seizures and loss of gait). Statistical analysis were performed with Kaplan-
631 Meier survival analysis using log rank testing.

632

633 *Slice preparation for electrophysiology and calcium imaging experiments.*

634 Coronal slices (300 μ m thick) containing the hippocampal region were prepared from mice
635 (4-8 weeks after xenografting) in accordance with a protocol approved by Stanford
636 University APLAC. After rapid decapitation, the brain was removed from the skull and
637 immersed in ice-cold slicing artificial cerebrospinal fluid (ACSF) containing (in mM): 125
638 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO₃ and 1.25 NaH₂PO₄, 3 MgCl₂ and 0.1 CaCl₂. After
639 cutting, slices were incubated for 30 min in warm (30 °C) oxygenated (95% O₂, 5% CO₂)
640 recovery ACSF containing (in mM): 100 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO₃, 1.25
641 NaH₂PO₄, 30 sucrose, 2 MgCl₂ and 1 CaCl₂ before being allowed to equilibrate at room
642 temperature for an additional 30 min.

643

644 *Electrophysiology*

645 Slices were transferred to a recording chamber and perfused with oxygenated, warmed
646 (28–30 °C) recording ACSF containing (in mM): 125 NaCl, 2.5 KCl, 25 glucose, 25
647 NaHCO₃, 1.25 NaH₂PO₄, 1 MgCl₂ and 2 CaCl₂. Tetrodotoxin (0.5 μ M) was perfused
648 with the recording ACSF to prevent neuronal action potential firing. Slices were visualized
649 using a microscope equipped with DIC optics (Olympus BX51WI). Recording patch
650 pipettes (2–3 M Ω) were filled with K-gluconate-based pipette solution containing (in mM):
651 130 K-gluconate, 20 KCl, 5 Na₂-phosphocreatine, 10 HEPES, 4 Mg-ATP, 0.3 GTP, and
652 50 μ M Fluo-4, pH = 7.3. Pipette solution additionally contained Alexa 568 (50 μ M) to
653 visualize the cell through dye-filling during whole-cell recordings. Glutamate (1 mM) in
654 recording ACSF was applied via a puff pipette approximately 100 μ m away from the
655 patched cell. Recombinant BDNF human protein (Peprotech, #450-02) was added to

656 ACSF at 100ng/ml, in addition to tetrodotoxin (0.5 μ M) for perfusion. Signals were
657 acquired with a MultiClamp 700B amplifier (Molecular Devices) and digitized at 10 kHz
658 with an InstruTECH LIH 8+8 data acquisition device (HEKA). Data were recorded and
659 analyzed using AxoGraph X (AxoGraph Scientific) and IGOR Pro 8 (Wavemetrics).

660

661 *Calcium imaging*

662 SU-DIPGVI and SU-DIPG-XIII-FL were transduced with lentivirus containing the
663 genetically encoded calcium indicator GCaMP6s (pLV-ef1-GCaMP6s-P2A-nls-
664 tdTomato) as published previously ⁴. Cells were xenograft into the CA1 region of the
665 hippocampus as described above.

666 Calcium imaging experiments were performed on *in situ* xenograft slices were visualized
667 using a microscope equipped with DIC optics (Olympus BX51WI). Slices were perfused
668 with oxygenated aCSF, as described above, at a constant temperature of (28–30 °C) and
669 containing (in mM): 125 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO₃, 1.25 NaH₂PO₄, 1 MgCl₂
670 and 2 CaCl₂. Tetrodotoxin (0.5 μ M) was perfused with the recording ACSF to prevent
671 neuronal action potential firing. Glutamate (1 mM) in recording ACSF was applied via a
672 puff pipette (250msec) approximately 100 μ m away from the tDTomato expressing cells.
673 Recombinant BDNF human protein (Peprotech, #450-02) was added to ACSF at
674 100ng/ml, in addition to tetrodotoxin (0.5 μ M) for perfusion. Excitation light was at 594
675 (for TdTomato) and 488 (for GCaMP6s) provided by pE-300^{ULTRA} (CoolLED). The
676 recording software used was FlyCapture2 (Point Grey) and analyzed using ImageJ.

677

678 *Cell culture*

679 Primary patient derived cultures were derived as described previously ^{1 58} with informed
680 consent and Institutional Review Board (IRB) approval granted. All cultures are monitored
681 by short tandem repeat (STR) fingerprinting for authenticity throughout the culture period
682 and mycoplasma testing was routinely performed.

683

684 Cultures are grown as neurospheres (unless otherwise stated) in serum free medium
685 consisting of DMEM (Invitrogen, Carlsbad, CA), Neurobasal(-A) (Invitrogen, Carlsbad,
686 CA), B27(-A) (Invitrogen, Carlsbad, CA), heparin (2ng/mL), human-bFGF (20ng/mL)
687 (Shenandoah, Biotech, Warwick, PA), human-bEGF (20ng/mL) (Shenandoah, Biotech,
688 Warwick, PA), human-PDGF-AA (10ng/mL) (Shenandoah, Biotech, Warwick, PA),
689 human-PDGF-BB (10ng/mL) (Shenandoah, Biotech, Warwick, PA). The spheres were
690 dissociated using TrypLE (Gibco) for seeding of *in vitro* experiments.

691

692 *Biotinylation*

693 Glioma cells (SU-DIPG-VI) were seeded on laminin coated wells of 6-well plates at a
694 density of 500,000 cells. One day after plating, the medium was changed to medium
695 without growth factors to “starve” the cells for three days. Cells were treated with either
696 vehicle (equal volume added of 0.1% BSA in H₂O) or 100nM BDNF recombinant protein
697 (Peprotech, #450-02, stock 0.25 μ g/ μ l in 0.1% BSA in H₂O) for specified time periods. To
698 label surface proteins, the cells were washed twice with ice cold PBS before adding
699 1mg/mL sulfo-NHS-SS-biotin (Thermo Scientific) for 10min at 4°C with continuous gentle
700 shaking. The reaction was quenched (100mM glycine, 25mM Tris-HCL, pH 7.4) for 5min
701 and then washed in ice-cold PBS three times; all procedures were carried out at 4°C. The

702 biotinylated cells were then lysed in RIPA lysis buffer (Santa Cruz Biotechnology)
703 supplemented with PMSF, protease inhibitor cocktail and sodium orthovanadate as per
704 manufacturers recommendations. Insoluble material was removed by centrifugation at
705 10,000xg at 4°C for 10min and the supernatant was incubated with 50ul NeutrAvidin
706 agarose resin (Thermo Scientific) with gentle mixing overnight at 4°C. Beads were
707 washed with lysis buffer three times and proteins bound to the beads were eluted with
708 NuPage LDS and sample reducing buffer (Life Technologies).

709

710 *Western blot analysis*

711 For ligand activation experiments, patient-derived cultures were incubated in media
712 supplemented with only B-27 supplement minus vitamin A for three days. Cells were
713 dissociated using 5mM EDTA in HBSS and resuspended in media with B-27 supplement
714 for 4 hours before incubation with recombinant BDNF protein (100nM, Peprotech, #450-
715 02) or vehicle (equal volume of 0.1% BSA in H2O). After ligand stimulation for the stated
716 time-points the cells were washed in PBS, before lysis using the RIPA Lysis Buffer
717 System containing PMSF, protease inhibitor cocktail and sodium orthovanadate (Santa
718 Cruz Biotechnology). Following quantification using the Pierce BCA Protein Assay Kit
719 (Thermo Fisher Scientific), equal amounts of total protein were loaded onto for each
720 sample for standard western blot.

721

722 *Mice and housing conditions*

723 All experiments were performed in accordance with Stanford University Institutional
724 Animal Care and Use Committee (IACUC) approved protocols and conducted using

725 institutional guidelines. Animal housing followed standard guidelines, with free access to
726 water and food in a 12h light:12h dark cycle. Mice were continuously monitored for their
727 condition, as per IACUC guidelines, and euthanized upon signs of morbidity (neurological
728 symptoms or a loss of >15% body weight).

729

730 *Neuron-glioma co-culture*

731 For synaptic puncta assays, neurons were isolated from CD1 (The Jackson Laboratory)
732 at P₁ using the Neural Tissue Dissociation Kit – Postnatal Neurons (Miltenyi), and followed
733 by the Neuron Isolation Kit, Mouse (Miltenyi) per manufacturers instructions. After
734 isolation 200,000 neurons were plated onto circular glass coverslips (Electron Microscopy
735 Services) pre-coated with poly-L-lysine (Sigma) and mouse laminin (Thermo Fisher) as
736 described previously (Venkatesh). Neurons were cultured in BrainPhys neuronal medium
737 containing B27 (Invitrogen), BDNF (10ng ml⁻¹, Shenandoah), GDNF (5ng ml⁻¹,
738 Shenandoah), TRO19622 (5µM; Tocris), β- mercaptoethanol (Gibco). The medium was
739 replenished on days in vitro (DIV) 1. On DIV 5, fresh media was added containing 50,000
740 glioma cells expressing PSD95-RFP. The neuron-glioma culture was incubated for
741 72hours and then fixed with 4% paraformaldehyde (PFA) for 20min at room temperature
742 and stained for immunofluorescence analysis.

743

744 *Cloning constructs*

745 For SEP-GluA2(Q)-TagBFP, addgene plasmid EFS-Cas9-Puro (#138317) was digested
746 with AgeI, MluI, and EcoRV; the 6kb lentiviral backbone was isolated via gel extraction.
747 The SEP fragment with Gibson overhangs was amplified from Addgene plasmid pCI-

748 SEP-GluR2(Q) (#24002) with primers: 5'-
749 AACGGGTTGCCGCCAGAACACAGGACCGGTGCCACCATGCAAAAGATTATGCAT
750 ATTTC and 5'- CCCCCTATCTGTATGCTGTTGCTAGCTTGATAGTTCATC. Human
751 *GRIA2* (GluA2) with Gibson overhangs was amplified from pLV-EF1a-GFP-GRIA2
752 (described in Venkatesh et al., 2019) in two parts to introduce R583Q. GRIA-part 1 was
753 amplified with primers: 5'- CAAAGCTAGCAACAGCATACAGATAGGG and 5'-
754 TTGGCGAAATATCGCATCCCTGCTGCATAAAGGCACCCAAGGA. GRIA-part 2 was
755 amplified with primers: 5'- TTATGCAGCAGGGATGCGATATTCGCCAA and 5'-
756 TCTTCGACATCTCCGGCTTGTTCAGCAGAGAGAAGTTGCGCCGGATCCAAT
757 TTTAACACTTCGATGC. TagBFP2 with Gibson overhangs was amplified from Addgene
758 plasmid pLenti6.2-TagBFP (#113724) with primers: 5'-
759 TCTGCTGAAACAAGCCGGAGATGTCGAAGAGAATCCTGGACCGATGAGCGAGCTG
760 ATTAAG and 5'-
761 TTGTAATCCAGAGGTTGATTGTCGACTTAACGCGTTAATTAAGCTTGTGCC. DNA
762 fragments above were stitched together using Gibson Assembly and transformed.
763 For PSD95-PURO, Addgene plasmid EFS-Cas9-Puro (#138317) was digested with AgeI,
764 BamHI, and EcoRV; the 6.7kb lentiviral backbone was isolated via gel extraction. PSD95-
765 RFP with Gibson overhangs was amplified from PSD95-RFP (described in Venkatesh et
766 al., 2019) with primers: 5'-
767 TCGAACGGGTTGCCGCCAGAACACAGGTCTAGAGGCCACCATGGACTGTCTCG
768 TATAG and 5'-
769 TGTTTCAGCAGAGAGAAGTTGCGCCGGATCCATTAAGTTGTGCCAG.
770 DNA fragments above were stitched together using Gibson Assembly and transformed.

771

772 *CRISPR deletion*

773 Target sequencing for sgRNA was generated using the online predictor at
774 <https://cctop.cos.uni-heidelberg.de>. The validated sgRNA sequence used for *NTRK2*
775 deletion in all cultures was 5'- GTCGCTGCACCAGATCCGAG – 3'. The scrambled
776 control sequence used was 5'- GGAGACGTGACCGTCTCT -3'. The custom oligos were
777 purchased from Elim Biopharmaceuticals. The oligos were phosphorylated in a reaction
778 with the oligo (10uM), 1x T4 DNA ligase buffer (B0202, NEB) and T4 PNK (M020, NEB)
779 with a program 45min 37°C, 2min30sec at 95°C, cool 0.1°C/sec to 22°C. The sgRNA was
780 cloned into the Lenti vector (pL-CRISPR.EFS.RFP, Addgene #57819). First the vector
781 was digested in a reaction with Fast Digest Buffer (B64, Thermo fisher), BsmBI restriction
782 enzyme (FD0454, Thermo Fisher), DTT (10mM) with program 45min at 37°C, heat
783 inactivate 10min at 65°C. The digested vector backbone was dephosphorylated using
784 Antarctica phosphatase (M0289, NEB) in Antarctic phosphatase buffer (B0289, NEB) at
785 37°C for 30min, before purifying after running on a 1% agarose gel. The phosphorylated
786 oligo duplexes were ligated into the vector backbone in a reaction with T4 DNA ligase
787 buffer and T4 DNA ligase and incubated at room temperature for 1 hour. Stabl3
788 (Invitrogen) cells were transformed with the assembled plasmids and individual colonies
789 picked the next day for propagation and sanger sequencing (ElimBio). Lentiviral particles
790 for were produced following transfection of the lentiviral packaging vectors (pΔ8.9 and
791 VSV-g) and either the *NTRK2* CRISPR vector or the control scramble vector into
792 HEK293T cells and collected 48hours later. The viral particles were concentrated using

793 Lenti-X Concentrator (Takara Bio) and resuspended in TSM base and stored at -80°C for
794 future use. the RFP positive cells were FACS sorted for purity and returned to culture.
795 Lentiviral particles for shRNA knockdown of *NTRK2* were produced following transfection
796 of the lentiviral packaging vectors (pΔ8.9 and VSV-g) and either the *PIK3CA* shRNA
797 vector (TRCN0000197207; Sigma) or the control shRNA vector (SHCOO2; Sigma) into
798 HEK293T cells and collected 48hours later. The viral particles were concentrated using
799 Lenti-X Concentrator and resuspended in TSM base and stored at -80°C for future use.
800 Control or *PIK3CA* shRNA lentiviral particles were transduced into SU-DIPGVI cultures
801 and the transduced cells were selected with puromycin (4 µg/mL) from day 3.

802

803 *pHluorin live imaging*

804 Glioma cells (SU-DIPG-VI) expressing the SEP-GluA2(Q)-TagBFP and PSD95-RFP-
805 Puro constructs (see *Cloning constructs*) were cultured as adherent cells, with mouse
806 neurons, on laminin coated 27mm glass bottom plates (#150682, Thermo Scientific).
807 ACSF was made at pH 7.4 (See *Electrophysiology*) and at pH 5.5 using the membrane
808 impermeable acid, MES hydrate (Sigma) to replace NaHCO₃ at equimolar concentration.
809 The ACSF was perfused onto the culture dish using a 3D-printed custom-built stage and
810 tubing for manual perfusion of the solution. Images were collected using a Zeiss LSM980
811 confocal microscope equipped with a plexiglass environmental chamber, heated stage
812 and CO₂ module, and post-processed with Airyscan. The cells were kept at 37°C with
813 5% CO₂ for the duration of the imaging period. Puncta were identified as bright spots,
814 with colocalisation of the PSD95-RFP signal to the GFP signal from the SEP-GluA2(Q)
815 puncta. In ImageJ, an ROI was manually drawn over the PSD95-RFP signal and used to

816 measure both the RFP and SEP signal, thus blinding the area chosen for the SEP-
817 GluA2(Q) signal. All puncta were identified for the first timepoint and followed for all the
818 subsequent time images, thus the choice was blind with respect to outcome. The levels
819 of SEP-GluA2(Q) were represented as a ratio to the levels of PSD95-RFP, to account for
820 any fluorescence intensity changes that may occur due to photobleaching, or Z-Axis
821 drifting, during the imaging time course. For BDNF perfusion experiments, ACSF (pH 7.4)
822 containing 100nM BDNF (Peprotech, #450-02) was perfused into the chamber. After
823 imaging the signal in response to BDNF, the signal was then quenched with pH 5.5 to
824 confirm the puncta of interest were membrane bound GluA subunits. The fluorescence
825 intensity was measured using ImageJ.

826

827 *Immuno-electron microscopy*

828 Twelve weeks post xenografting, mice were euthanized by transcardial perfusion with
829 Karnovsky's fixative: 4% paraformaldehyde (EMS 15700) in 0.1M sodium cacodylate
830 (EMS 12300), 2% glutaraldehyde (EMS 16000), p.H 7.4. For all xenograft analysis,
831 transmission electron microscopy was performed in the tumor mass located in the CA1
832 region of the hippocampus. At room temperature the samples were post fixed in 1%
833 osmium tetroxide (EMS 19100) for 1 hour, washed 3 times with ultrafiltered water, before
834 2-hour en bloc staining. The samples were dehydrated in graded ethanol (50%, 75% and
835 95%) for 15 min each at 4°C before equilibrating to room temperature and washed in
836 100% ethanol twice, followed by a 15 min acetonitrile wash. Samples were immersed for
837 2 hours in Embed-812 resin (EMS 14120) with 1:1 ratio of acetonitrile, followed by a 2:1
838 Embed-812:acetonitrile for 2 hours, then in Embed-812 for 2 hour. The samples were

839 moved to TAAB capsules with fresh resin and kept at 65°C overnight. Sections of 40 and
840 60 nm were cut on an Ultracut S (Leica) and mounted on 100-mes Ni grids (EMS FCF100-
841 Ni). For immunohistochemistry, microetching was done with 10% periodic acid and eluting
842 of osmium with 10% sodium metaperiodate for 15 min at room temperature on parafilm.
843 Grids were rinsed with water three times, followed by 0.5 M glycine quench, and then
844 incubated in blocking solution (0.5% BSA, 0.5% ovalbumin in PBST) at room temperature
845 for 20 min. Primary rabbit anti-GFP (1:300; MBL International) was diluted in the same
846 blocking solution and incubated overnight at 4 °C. The next day, grids were rinsed in PBS
847 three times, and incubated in secondary antibody (1:10 10-nm gold-conjugated IgG TED
848 Pella15732) for one hour at room temperature and rinsed with PBST followed by water.
849 For each staining set, samples that did not contain any GFP-expressing cells were
850 stained simultaneously to control for any non-specific binding. Grids were contrast stained
851 for 30 s in 3.5% uranyl acetate in 50% acetone followed by staining in 0.2% lead citrate
852 for 90 s. Samples were imaged using a JEOL JEM-1400 TEM at 120 kV and images were
853 collected using a Gatan Orius digital camera.

854

855 *Conditioned media*

856 Wild-type or TMKI mice with Thy1::Chr2 were used at 4-7 weeks of age. Brief exposure
857 to isoflurane rendered the mice unconscious before immediate decapitation. Extracted
858 brains were placed in an oxygenated sucrose cutting solution containing xxx and sliced
859 at 350um as described previously (Venkatesh 2015). The slices were placed in ACSF
860 (see *Electrophysiology*) and allowed to recover for 30 minutes at 37C and 30mins at room
861 temperature. After recovery the slices were moved to fresh ACSF and stimulated using a

862 blue-light LED using a microscope objective. The stimulation paradigm was 20-Hz pulses
863 of blue light for 30 seconds on, 90 seconds off over a period of 30 minutes. The
864 surrounding conditioned medium was collected and used immediately or frozen at -80°C
865 for future use.

866

867 *Immunohistochemistry*

868 Animals were anaesthetized with intraperitoneal avertin (tribromoethanol), then
869 transcardially perfused with 20 ml of PBS. Brains were fixed in 4% PFA overnight at 4 °C,
870 then transferred to 30% sucrose for cryoprotection. Brains were then embedded in
871 Tissue-Tek O.C.T. (Sakura) and sectioned in the coronal plane at 40 µm using a sliding
872 microtome (AO 860, American Optical).

873 For immunohistochemistry, coronal or sagittal sections were incubated in blocking
874 solution (3% normal donkey serum, 0.3% Triton X-100 in TBS) at room temperature for
875 30 min. Mouse anti-human nuclei clone 235-1 (1:250; Millipore), rabbit anti-histone
876 H3.3K27M mutant (1:500; abcam) were diluted in antibody diluent solution (1% normal
877 donkey serum in 0.3% Triton X-100 in TBS) and incubated overnight at 4 °C. Sections
878 were then rinsed once with TBS, before an incubation with DAPI (1µg/ml in TBS, Thermo
879 Fisher) and then another rinse with TBS. Slices were incubated in secondary antibody
880 solution; Alexa 594 donkey anti-rabbit IgG, Alexa 647 donkey anti-mouse IgG, all used at
881 1:500 (Jackson Immuno Research) in antibody diluent at 4 °C overnight. Sections were
882 washed three times with TBS and mounted with ProLong Gold Mounting medium (Life
883 Technologies).

884

885 *EdU incorporation assay*

886 EdU staining was performed on *in vitro* cell culture slides or on glass coverslips in 24-well
887 plates which were precoated with poly-L-lysine (Sigma) and laminin (Thermo Fisher).
888 Neurosphere culture were dissociated with TrypLE and plated onto coated slides, once
889 the cells had adhered the media was replaced with growth factor-depleted media for
890 72hours. Recombinant protein (BDNF, peprotech), inhibitors (entrectinib HY-12678 and
891 Larotrectinib HY-12866, both MedChem Express) and vehicle (0.1% BSA and/or DMSO)
892 were added for specified times with 10uM of EdU. After added 24 hours the cells were
893 fixated with 4% paraformaldehyde in PBS for 20mins and then stained using the Click-iT
894 EdU kit and protocol (Invitrogen, Carlsbad, CA) and mounted using Prolong Gold
895 mounting medium with DAPI (Life Technologies). Proliferation index was determined by
896 quantifying the fraction of EdU labeled cells/DAPI labeled cells using confocal microscopy
897 at 20x magnification.

898

899 *Statistical analyses*

900 Statistical tests were conducted using Prism v9.1.0 (GraphPad) software unless
901 otherwise indicated. Gaussian distribution was confirmed by the Shapiro-Wilk normality
902 test. For parametric data, unpaired two-tailed Student's t-test or one-way ANOVA with
903 Tukey's post hoc tests to examine pairwise differences were used as indicated. Paired
904 two-tailed Student's t-tests were used in the case of same cell experiments (as in
905 electrophysiological recordings). For data normalized to a control mean (as in western
906 blot or pHluorin analyses) One Sample t-test were used against the mean of the control
907 (either 0 or 1), with Wilcoxon signed-rank test for non-parametric data. For non-parametric

908 data, a two-sided unpaired Mann-Whitney test was used as indicated, or a one-tailed
909 Wilcoxon matched pairs signed rank test was used for same-cell experiments. Two-tailed
910 log rank analyses were used to analyse statistical significance of Kaplan-Meier survival
911 curves. On the basis of variance of xenograft growth in control mice, we used at least
912 three mice per genotype to give 80% power to detect effect size of 20% with a significance
913 level of 0.05. For all mouse experiments, the number of independent mice used is listed
914 in the figure legend.

915

916 **Data availability**

917 RNA sequencing of patient-derived cultures treated with recombinant BDNF protein will
918 be made available on Gene Expression Omnibus (GEO) prior to publication. All other
919 data are available in the manuscript or from the corresponding author upon reasonable
920 request. Source data will be uploaded with the final version of the manuscript.

921

922 **Code availability**

923 Sources for all code used have been provided, no custom code was created for this
924 manuscript.

925

926 **ACKNOWLEDGMENTS**

927 This work was supported by grants from the National Institute of Neurological Disorders
928 and Stroke (R01NS092597 to M.M.), NIH Director's Pioneer Award (DP1NS111132 to
929 M.M.), National Cancer Institute (P50CA165962), Abbie's Army (to M.M.), Robert J.
930 Kleberg, Jr. and Helen C. Kleberg Foundation (to M.M.), Cancer Research UK (to

931 M.M.), Damon Runyon Cancer Research (to K.R.T.), N8 Foundation (to M.M.), McKenna
932 Claire Foundation (to M.M.), Kyle O'Connell Foundation (to M.M.), Virginia and D.K.
933 Ludwig Fund for Cancer Research (to M.M.), Waxman Family Research Fund (to M.M.),
934 Will Irwin Research Fund (to M.M.)

935

936 **Competing Interests:** M.M. is on the SAB for Cygnal Therapeutics.

937

938 **AUTHOR CONTRIBUTIONS**

939 K.R.T and M.M. designed, conducted, and analysed experiments. T.B. conducted
940 electrophysiology experiments. K.R.T. conducted calcium imaging experiments,
941 xenografting for all experiments, pHluorin confocal imaging, in vitro and in vivo data
942 collection and analyses. L.N. and K.R.T contributed to electron microscopy data
943 acquisition, and K.R.T and H.S.V. to analyses. P.D. performed single-cell transcriptomic
944 analyses. R.M. performed RNASeq data analyses. K.R.T and H.Z contributed to synaptic
945 puncta confocal imaging. K.R.T performed western blot analyses. G.H. generated
946 constructs. A.P. performed CRISPR deletion. A.H., B.Y. and I.C. contributed to in vivo
947 data collection. K.R.T., H.S.V., T.B., G.H., and M.M. contributed to manuscript editing.
948 K.R.T. and M.M. wrote the manuscript. M.M. conceived of the project and supervised all
949 aspects of the work.

950

951

952 REFERENCES

Literature Cited

955 1 Venkatesh, H. S. *et al.* Neuronal Activity Promotes Glioma Growth through Neuroligin-3
956 Secretion. *Cell* **161**, 803-816, doi:10.1016/j.cell.2015.04.012 (2015).
957 2 Venkatesh, H. S. *et al.* Targeting neuronal activity-regulated neuroligin-3 dependency in
958 high-grade glioma. *Nature* **549**, 533-537, doi:10.1038/nature24014 (2017).
959 3 Pan, Y. *et al.* NF1 mutation drives neuronal activity-dependent initiation of optic glioma.
960 *Nature*, doi:10.1038/s41586-021-03580-6 (2021).
961 4 Venkatesh, H. S. *et al.* Electrical and synaptic integration of glioma into neural circuits.
962 *Nature* **573**, 539-545, doi:10.1038/s41586-019-1563-y (2019).
963 5 Venkataramani, V. *et al.* Glutamatergic synaptic input to glioma cells drives brain tumour
964 progression. *Nature* **573**, 532-538, doi:10.1038/s41586-019-1564-x (2019).
965 6 Barria, A. Dangerous liaisons as tumour cells form synapses with neurons. *Nature* **573**,
966 499-501, doi:10.1038/d41586-019-02746-7 (2019).
967 7 Luikart, B. W. *et al.* TrkB has a cell-autonomous role in the establishment of hippocampal
968 Schaffer collateral synapses. *J Neurosci* **25**, 3774-3786, doi:10.1523/JNEUROSCI.0041-
969 05.2005 (2005).
970 8 Chapleau, C. A. & Pozzo-Miller, L. Divergent roles of p75NTR and Trk receptors in
971 BDNF's effects on dendritic spine density and morphology. *Neural Plast* **2012**, 578057,
972 doi:10.1155/2012/578057 (2012).
973 9 Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic
974 transmission in the adult hippocampus. *Science* **267**, 1658-1662,
975 doi:10.1126/science.7886457 (1995).
976 10 Caldeira, M. V. *et al.* Brain-derived neurotrophic factor regulates the expression and
977 synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor
978 subunits in hippocampal neurons. *J Biol Chem* **282**, 12619-12628,
979 doi:10.1074/jbc.M700607200 (2007).
980 11 Nakata, H. & Nakamura, S. Brain-derived neurotrophic factor regulates AMPA receptor
981 trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. *FEBS Lett*
982 **581**, 2047-2054, doi:10.1016/j.febslet.2007.04.041 (2007).
983 12 Li, X. & Wolf, M. E. Brain-derived neurotrophic factor rapidly increases AMPA receptor
984 surface expression in rat nucleus accumbens. *Eur J Neurosci* **34**, 190-198,
985 doi:10.1111/j.1460-9568.2011.07754.x (2011).
986 13 Minichiello, L. TrkB signalling pathways in LTP and learning. *Nature reviews.*
987 *Neuroscience* **10**, 850-860, doi:10.1038/nrn2738 (2009).
988 14 Soppet, D. *et al.* The neurotrophic factors brain-derived neurotrophic factor and
989 neuroligin-3 are ligands for the TrkB tyrosine kinase receptor. *Cell* **65**, 895-903,
990 doi:10.1016/0092-8674(91)90396-g (1991).
991 15 Lynch, G., Larson, J., Kelso, S., Barrientos, G. & Schottler, F. Intracellular injections of
992 EGTA block induction of hippocampal long-term potentiation. *Nature* **305**, 719-721,
993 doi:10.1038/305719a0 (1983).
994 16 Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Postsynaptic calcium is
995 sufficient for potentiation of hippocampal synaptic transmission. *Science* **242**, 81-84,
996 doi:10.1126/science.2845577 (1988).

997 17 Muller, D., Joly, M. & Lynch, G. Contributions of quisqualate and NMDA receptors to the
998 induction and expression of LTP. *Science* **242**, 1694-1697, doi:10.1126/science.2904701
999 (1988).

1000 18 Shi, S. H. *et al.* Rapid spine delivery and redistribution of AMPA receptors after synaptic
1001 NMDA receptor activation. *Science* **284**, 1811-1816, doi:10.1126/science.284.5421.1811
1002 (1999).

1003 19 Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory
1004 phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term
1005 potentiation. *Science* **276**, 2042-2045, doi:10.1126/science.276.5321.2042 (1997).

1006 20 Malenka, R. C. Postsynaptic factors control the duration of synaptic enhancement in area
1007 CA1 of the hippocampus. *Neuron* **6**, 53-60, doi:10.1016/0896-6273(91)90121-f (1991).

1008 21 Malenka, R. C. & Nicoll, R. A. NMDA-receptor-dependent synaptic plasticity: multiple
1009 forms and mechanisms. *Trends Neurosci* **16**, 521-527, doi:10.1016/0166-2236(93)90197-
1010 t (1993).

1011 22 Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. *Neuron*
1012 **80**, 704-717, doi:10.1016/j.neuron.2013.10.025 (2013).

1013 23 Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. *Annu
1014 Rev Neurosci* **25**, 103-126, doi:10.1146/annurev.neuro.25.112701.142758 (2002).

1015 24 Bliss, T. V. & Lomo, T. Plasticity in a monosynaptic cortical pathway. *J Physiol* **207**, 61P
1016 (1970).

1017 25 Bliss, T. V. & Gardner-Medwin, A. R. Long-lasting potentiation of synaptic transmission
1018 in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path.
1019 *J Physiol* **232**, 357-374, doi:10.1111/jphysiol.1973.sp010274 (1973).

1020 26 Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. Learning-induced LTP in neocortex.
1021 *Science* **290**, 533-536, doi:10.1126/science.290.5491.533 (2000).

1022 27 Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term
1023 potentiation in the hippocampus. *Science* **313**, 1093-1097, doi:10.1126/science.1128134
1024 (2006).

1025 28 Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an
1026 evaluation of the hypothesis. *Annu Rev Neurosci* **23**, 649-711,
1027 doi:10.1146/annurev.neuro.23.1.649 (2000).

1028 29 Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms.
1029 *Neuropsychopharmacology* **33**, 18-41, doi:10.1038/sj.npp.1301559 (2008).

1030 30 Ostrom, Q. T. *et al.* CBTRUS Statistical Report: Primary Brain and Other Central Nervous
1031 System Tumors Diagnosed in the United States in 2009-2013. *Neuro Oncol* **18**, v1-v75,
1032 doi:10.1093/neuonc/now207 (2016).

1033 31 Hebb, D. *The Organization of Behavior*. (Wiley, 1949).

1034 32 Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. *Neuron* **44**, 5-
1035 21, doi:10.1016/j.neuron.2004.09.012 (2004).

1036 33 Kauer, J. A., Malenka, R. C. & Nicoll, R. A. A persistent postsynaptic modification
1037 mediates long-term potentiation in the hippocampus. *Neuron* **1**, 911-917,
1038 doi:10.1016/0896-6273(88)90148-1 (1988).

1039 34 Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for
1040 the expression of LTP. *Neuron* **15**, 427-434, doi:10.1016/0896-6273(95)90046-2 (1995).

1041 35 Wang, X. *et al.* Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated
1042 Tumor Cells Promotes Malignant Progression. *Cell Stem Cell* **22**, 514-528 e515,
1043 doi:10.1016/j.stem.2018.03.011 (2018).

1044 36 Park, H. & Poo, M. M. Neurotrophin regulation of neural circuit development and function.
1045 *Nature reviews. Neuroscience* **14**, 7-23, doi:10.1038/nrn3379 (2013).

1046 37 Kopec, C. D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis
1047 and spine enlargement during chemically induced long-term potentiation. *J Neurosci* **26**,
1048 2000-2009, doi:10.1523/JNEUROSCI.3918-05.2006 (2006).

1049 38 Luberg, K., Wong, J., Weickert, C. S. & Timmusk, T. Human TrkB gene: novel alternative
1050 transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during
1051 postnatal development. *J Neurochem* **113**, 952-964, doi:10.1111/j.1471-
1052 4159.2010.06662.x (2010).

1053 39 Pattwell, S. S. *et al.* A kinase-deficient NTRK2 splice variant predominates in glioma and
1054 amplifies several oncogenic signaling pathways. *Nature communications* **11**, 2977,
1055 doi:10.1038/s41467-020-16786-5 (2020).

1056 40 Malenka, R. C., Madison, D. V. & Nicoll, R. A. Potentiation of synaptic transmission in
1057 the hippocampus by phorbol esters. *Nature* **321**, 175-177, doi:10.1038/321175a0 (1986).

1058 41 Thomas, G. M. & Huganir, R. L. MAPK cascade signalling and synaptic plasticity. *Nature
1059 reviews. Neuroscience* **5**, 173-183, doi:10.1038/nrn1346 (2004).

1060 42 Diering, G. H. & Huganir, R. L. The AMPA Receptor Code of Synaptic Plasticity. *Neuron*
1061 **100**, 314-329, doi:10.1016/j.neuron.2018.10.018 (2018).

1062 43 Cabanero, D. *et al.* Pain after discontinuation of morphine treatment is associated with
1063 synaptic increase of GluA4-containing AMPAR in the dorsal horn of the spinal cord.
1064 *Neuropsychopharmacology* **38**, 1472-1484, doi:10.1038/npp.2013.46 (2013).

1065 44 Hong, E. J., McCord, A. E. & Greenberg, M. E. A biological function for the neuronal
1066 activity-dependent component of Bdnf transcription in the development of cortical
1067 inhibition. *Neuron* **60**, 610-624, doi:10.1016/j.neuron.2008.09.024 (2008).

1068 45 Laetsch, T. W. *et al.* Larotrectinib for paediatric solid tumours harbouring NTRK gene
1069 fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. *Lancet Oncol* **19**,
1070 705-714, doi:10.1016/S1470-2045(18)30119-0 (2018).

1071 46 Doebele, R. C. *et al.* Entrectinib in patients with advanced or metastatic NTRK fusion-
1072 positive solid tumours: integrated analysis of three phase 1-2 trials. *Lancet Oncol* **21**, 271-
1073 282, doi:10.1016/S1470-2045(19)30691-6 (2020).

1074 47 Hong, D. S. *et al.* Larotrectinib in patients with TRK fusion-positive solid tumours: a
1075 pooled analysis of three phase 1/2 clinical trials. *Lancet Oncol* **21**, 531-540,
1076 doi:10.1016/S1470-2045(19)30856-3 (2020).

1077 48 Osswald, M. *et al.* Brain tumour cells interconnect to a functional and resistant network.
1078 *Nature* **528**, 93-98, doi:10.1038/nature16071 (2015).

1079 49 Jung, E. *et al.* Tweety-Homolog 1 Drives Brain Colonization of Gliomas. *J Neurosci* **37**,
1080 6837-6850, doi:10.1523/JNEUROSCI.3532-16.2017 (2017).

1081 50 Weil, S. *et al.* Tumor microtubes convey resistance to surgical lesions and chemotherapy
1082 in gliomas. *Neuro Oncol* **19**, 1316-1326, doi:10.1093/neuonc/nox070 (2017).

1083 51 Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
1084 Harmony. *Nature methods* **16**, 1289-1296, doi:10.1038/s41592-019-0619-0 (2019).

1085 52 Filbin, M. G. *et al.* Developmental and oncogenic programs in H3K27M gliomas dissected
1086 by single-cell RNA-seq. *Science* **360**, 331-335, doi:10.1126/science.aa04750 (2018).

1087 53 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
1088 data analysis. *Genome biology* **19**, 15, doi:10.1186/s13059-017-1382-0 (2018).

1089 54 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq
1090 quantification. *Nature biotechnology* **34**, 525-527, doi:10.1038/nbt.3519 (2016).

1091 55 Kim, D. *et al.* TopHat2: accurate alignment of transcriptomes in the presence of insertions,
1092 deletions and gene fusions. *Genome biology* **14**, R36, doi:10.1186/gb-2013-14-4-r36
1093 (2013).

1094 56 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
1095 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930,
1096 doi:10.1093/bioinformatics/btt656 (2014).

1097 57 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
1098 for RNA-seq data with DESeq2. *Genome biology* **15**, 550, doi:10.1186/s13059-014-0550-
1099 8 (2014).

1100 58 Monje, M. *et al.* Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine
1101 glioma. *Proc Natl Acad Sci U S A* **108**, 4453-4458, doi:1101657108 [pii]
1102 10.1073/pnas.1101657108 (2011).

1103