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Abstract

Rare variant association tests (RVAT) have been developed to study the contribution of rare variants
widely accessible through high-throughput sequencing technologies. RVAT require to aggregate rare
variants in testing units and to filter variants to retain only the most likely causal ones. In the exome,
genes are natural testing units and variants are usually filtered based on their functional consequences.
However, when dealing with whole-genome sequence (WGS) data, both steps are challenging. No
natural biological unit is available for aggregating rare variants. Sliding windows procedures have been
proposed to circumvent this difficulty, however they are blind to biological information and result in a

large number of tests.

We propose a new strategy to perform RVAT on WGS data: “RAVA-FIRST” (RAre Variant Association
using Functionally-InfoRmed STeps) comprising three steps. (1) New testing units are defined genome-
wide based on functionally-adjusted Combined Annotation Dependent Depletion (CADD) scores of
variants observed in the GhomAD populations, which are referred to as “CADD regions”. (2) A region-
dependent filtering of rare variants is applied in each CADD region. (3) A functionally-informed burden
test is performed with sub-scores computed for each genomic category within each CADD region. Both
on simulations and real data, RAVA-FIRST was found to outperform other WGS-based RVAT. Applied
to a WGS dataset of venous thromboembolism patients, we identified an intergenic region on
chromosome 18 that is enriched for rare variants in early-onset patients and that was that was missed

by standard sliding windows procedures.

RAVA-FIRST enables new investigations of rare non-coding variants in complex diseases, facilitated by

its implementation in the R package Ravages.
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Author Summary

Technological progresses have made possible whole genome sequencing at an unprecedented scale,
opening up the possibility to explore the role of genetic variants of low frequency in common diseases.
The challenge is now methodological and requires the development of novel methods and strategies
to analyse sequencing data that are not limited to assessing the role of coding variants. With RAVA-
FIRST, we propose a novel strategy to investigate the role of rare variants in the whole-genome that
takes benefit from biological information. Especially, RAVA-FIRST relies on testing units that go beyond
genes to gather rare variants in the association tests. In this work, we show that this new strategy
presents several advantages compared to existing methods. RAVA-FIRST offers an easy and
straightforward analysis of genome-wide rare variants, especially the intergenic ones which are
frequently left behind, making it a promising tool to get a better understanding of the biology of

complex diseases.
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Introduction

With advance in sequencing technologies, it is now possible to explore the role of rare genetic variants
in complex diseases. Different rare variant association tests (RVAT) have been developed that gather
rare variants into testing units and compare rare variant content in these testing units between cases
and controls (1-3). While the impact of rare variants has already been shown in several complex
diseases (4—6), RVAT face two key challenges: (i) the definition of the testing units and (ii) the selection
of the qualifying rare variants to include in these units. The proportion of causal variants in the testing
units being a major driver of power, especially for burden tests, it is indeed important to ensure that
qualifying variants are enriched in variants likely to have some functional impact (3,7). When exome
analyses are undertaken, rare variants are most often grouped by genes and included in the analysis
depending on their impact on the corresponding protein (8,9). Nevertheless, the gene definition is not
always optimal as differences in rare variants burden between cases and controls could sometimes
only be found in a sub-region of a gene. This is for example the case in the RNF213 gene where an
enrichment in rare variants located in the C-terminal region is found in Moyamoya cases (10). Defining
testing units and qualifying variants is also much more challenging in the non-coding genome due to
the lack of defined genomic elements and the higher difficulty to predict the functional impact of non-
coding variants (11). It is yet a question of interest as several studies have shown the importance of
rare non-coding variants in the development of complex diseases (12—14). Functional elements such
as enhancers or promoters can be used as testing units (5,15,16) but they prevent the analysis of all
rare variants in the genome and can be too small to get a sufficient number of rare variants for
association analysis. On the other hand, sliding windows procedures such as SCAN-G (17) or WGSCAN
(18) can be used to test for association over the whole genome. Nevertheless, they present several
limits including the window definition that is arbitrary and blind to biological information, the high
number of tests and the associated computation time. With overlapping windows, there is also a

strong correlation between tests performed in the different testing units that requires the use of
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82 permutation procedures to account for multiple testing. Finally, to filter rare variants in the testing
83 units, pathogenicity scores are often used but without guidelines on which score to use and which

84  threshold to apply.

85 In this paper, we propose RAVA-FIRST (RAre Variant Association using Functionally InfoRmed STeps), a
86 new strategy for analysing rare variants in the coding and the non-coding genome that addresses the
87 previous issues. First, we provide pre-defined testing units in the whole genome called “CADD regions”
88 based on the Combined Annotation Dependent Depletion (CADD) scores of deleteriousness of variants
89  observed in the GhomAD general population. These regions prevent the use of sliding windows
90 procedures while enabling the study of rare variants in the whole genome. Second, we propose a
91 filtering approach based on CADD scores with region-dependant thresholds to represent the genetic
92  context of each CADD region and avoid the use of a fix threshold along the genome. Finally, we
93 integrate functional information into the burden test to detect an accumulation of rare variants in
94  specific genomic categories within CADD regions. Through a statistical description of these testing
95 units, we show that they preserve the integrity of the majority of functional elements in the genome.
96 We also show that the RAVA-FIRST filtering strategy enables a better discrimination between
97  functional and non-functional variants within the testing units. We applied RAVA-FIRST to real whole-
98 genome sequencing data from individuals with venous thromboembolism (VTE) and detected an
99 intergenic association signal that would have been missed with sliding windows and a classical filtering
100  of rare variants. RAVA-FIRST is implemented in the R package Ravages available on the CRAN and

101 maintained on github (19,20).

102

103


https://doi.org/10.1101/2021.11.04.467235
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467235; this version posted November 4, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

104 Description of the Method

105 RAVA-FIRST is developed to test for association with rare variants in the whole genome. It deals with
106 all steps from the definition of testing units and the filtering of rare variants, to the association test
107 accounting for functional information. The main steps are represented in S1 Fig and further details are

108 presented hereafter.

109 Testing units in RAVA-FIRST: the CADD regions

110  Following Havrilla et al. (2019) (21), we seek to identify some genomic regions that were significantly
111  depleted in functional variants to use them as testing units in RVAT. For that purpose, Havrilla et al.
112 (2019) defined “constrained coding regions” (CCR) as exonic regions where no important functional
113  variation (defined as being at least missense) was found in the general population of GhomAD (22). In
114  our experience, two limits prevent the direct use of CCR as testing units in the whole genome: they are
115  too small to gather a sufficient number of rare variants (224 bp being the maximum length of a CCR)
116 and their definition relies on the consequence of the variants on the translated protein, not available
117 in the non-coding genome. We therefore decided to expand the proposed approach by estimating the
118  functionality of variants through CADD scores (23). CADD scores were chosen because of their
119 availability for every substitution in the genome and because they rank well in the comparison test of

120  functional annotation tools (24).

121 Coding variants tend to present higher CADD values than non-coding variants (23). A selection based
122 on a CADD threshold would therefore result in a majority of coding variants selected. In order to avoid
123  this pattern, we adjusted the RAW CADD scores on a PHRED scale within each of three genomic
124  categories: “coding”, “regulatory” and “intergenic” regions. Coding regions correspond to CCDS (25)
125  andrepresent 1.2% of the genome. Regulatory regions represent 44.3% of the genome and are defined

126 by the union of introns, 5’ and 3’ UTR, promoters and enhancers, all being involved in gene regulation

127  (26). Enhancers and promoters have been obtained with the SCREEN tool from ENCODE which enables
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128  the definition of a large number of regulatory elements in diverse cell types (27). Finally, intergenic
129 regions correspond to all regions not being described as coding or regulatory regions, representing

130  54.5% of the genome. More details are given in the Supporting Information.

131  Adjusted CADD scores were used to select the variants that will bound the “CADD regions”. First, we
132 selected the variants with an adjusted CADD score greater than 20, that is the top 1% of variants with
133  the highest predicted functional impact within each of the three genomic categories. Then, among
134  those variants, only the ones observed at least two times in GnomAD r2.0.1 genomes were further
135  selected and used as boundaries of CADD regions. For CADD regions to be used as testing units in RVAT,
136  they need to be large enough to contain several rare variants. Contiguous small regions of less than
137 10 kb were therefore grouped together to form clusters of variants with high adjusted CADD scores.
138 Non-sequenced regions and low-covered regions in GnomAD containing potential important
139 functional variants were excluded from CADD regions, leading to gaps within CADD regions of at least
140  one base pair (i.e. no CADD region overlap them to avoid artificially long regions due to a lack of
141  variants in GnomAD). Finally, CADD regions are only defined for regions where CADD scores are
142 available (removing among others centromeres and telomeres). Note that CADD regions can overlap
143  different genomic categories (coding, regulatory or intergenic). More details about the steps and

144  parameters used for the definition of CADD regions are presented in the Supporting Information.

145

146  The RAVA-FIRST filtering strategy

147 In addition to the definition of new testing units in the whole genome, we propose a new filtering
148  strategy in RAVA-FIRST to select qualifying variants. Using gene-specific CADD thresholds rather than
149  afixed threshold for all genes was previously found to improve prediction (28). Building on the same
150 idea, we defined thresholds that are specific to each CADD region. To define these region-specific
151 thresholds, we derived the median of all adjusted CADD scores of variants observed at least two times

152  in GnomAD in each CADD region. This value represents the median score level that is tolerated in the
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153 general population within each CADD region. Adjusted CADD scores refer here to the PHRED CADD
154  scores computed respectively for coding, regulatory and intergenic genomic categories as defined
155 before. Qualifying variants are then defined as rare variants with an adjusted CADD score above the
156  threshold specific to their region. Note that because CADD scores are only available for SNVs, other

157  types of variants are excluded from the analyses.

158

159  Burden test in RAVA-FIRST: taking into account functional information

160  As mentioned before, several of the CADD regions overlap different genomic categories (coding,
161 regulatory or intergenic, Figs S1 and S3). As the effects of variants belonging to these different genomic

162  categories may not be the same, we extended the burden test defined as:

P(Y;=1)
163 lnm = Bo+ BeovXcov + BaXg

164  With Y, the vector of phenotypes for the n individuals: 0 for the group of controls and 1 for the group
165  of cases. B represents the intercept of the model and X¢,,, the matrix of covariates (if any) with their
166 associated effect, Scou. B¢ corresponds to the estimated effect of the burden X; computed for
167 example using WSS (1) which corresponds to a weighted sum of rare alleles based on their frequency,

168  the rarest alleles having the highest weights.

169  To take into account functional information, we integrated a sub-score for each genomic category into
170  the regression model, similarly to the analysis of rare and frequent variants proposed by Li and Leal
171 (2008) (7):

P(Y;=1)

172 nm

= Bo+ BcovXcov T+ Z BeXe

G={cod;reg;inter}
173

174  Sub-scores X are constructed for each genomic category within a CADD region, with at most three
175  sub-scores (coding, regulatory or intergenic). The p-value can be determined using a likelihood ratio

8
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176  test comparing this model to the null model where the sub-scores are not included. This sub-score
177 analysis, also called RAVA-FIRST burden test, is also available for continuous and for categorical
178 phenotypes using the extension of burden tests developed in Bocher et al. (2019) (19). The RAVA-FIRST
179 burden test coupled with the region-specific filtering on the adjusted CADD score enables to keep the
180  most important functional variants within each genomic category and to take into account those

181  categories in the association test while performing only one test by CADD region.

182

183 Verification and Comparison

184  Statistics on CADD regions and comparison with genomic elements

185  Atotal of 135,224 CADD regions were defined covering 93.2% of the genome (in build GRCh37). Among
186  CADD regions, several are very small in size, despite our approach to combine small regions, due to
187  the removal of low-covered regions, preventing their use in RVAT. We therefore decided to focus on
188  the 106,251 CADD regions larger than 1kb, which cover 93% of the genome. Among those CADD
189 regions, 28.3% span only one type of genomic category, 58.5% span two of the three types of genomic
190 categories, and 13.2% overlap the three genomic categories (S3 Fig). Some CADD regions are extremely
191 large, mainly around the centromeres (Table 1). About 80% of CADD regions have a size between 5
192 and 50 kb with a mean of 25 kb, making them completely compatible with the size of genes commonly

193 used as testing units used in RVAT.
194

195  Table 1: Summary statistics of the lengths of CADD regions (larger than 1 kb)

Quantiles
Mean
0% 25% 50% 75% 100%
Length (kb) 1 10.790 16.579 29.116 1,731.228 25.224
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196
197 We then compared the position of genomic elements relative to the defined CADD regions (Table in
198 S1 Table shows how the different genomic elements have been obtained). A large majority of genomic
199 elements are entirely included into a single CADD region and thus their integrity is preserved (Table 2).
200 This is expected as all these genomic elements are substantially smaller than the CADD regions and
201  therefore have a high probability of being included in a CADD region. For larger elements such as
202  introns or IncRNA, the percentage decreases but remains high (more than 80% of IncRNA are
203  overlapped by at most 2 CADD regions). The genomic elements spanning more than one CADD region
204  areon average longer than the ones being entirely included into a single CADD region. However, when
205  comparing CCR and CADD regions, it is interesting to note that the CCRs entirely encompassed within
206 a single CADD region are the longest ones that should also represent the most constrained regions.
207  Table 2: Percentage of genomic elements entirely encompassed within a CADD region

Exon Protejn CCR Introns/UTR Fnh-prom Silencers CTCF | IncRNA

CCDS | domains DECRES | ENCODE

97.8% 81.8% | 99.2% 85.9% 93.1% 96.4% 95.1% 95.8% | 65.5%
208
200 Performance of RAVA-FIRST filtering based on adjusted CADD scores
210 To assess the performance of the adjusted CADD scores and the RAVA-FIRST filtering, we evaluated its
211 capacity in discriminating benign from pathogenic variants using the Clinvar database (29). We
212  computed true positive rate (TPR), true negative rate (TNR) and precision for the RAVA-FIRST filtering
213  and compared the results to the ones obtained by applying a fixed CADD threshold of 10, 15 or 20 on
214  variants annotated with CADD scores v1.4. After the selection of rare variants included in RVAT (see
215  the Supporting Information), the dataset of analysis contains 70,931 variants of which 25,931 are
216 benign and 45,000 are pathogenic. All filtering strategies show a very high TPR (Fig 1A), meaning that
217  the majority of pathogenic variants would be selected as qualifying variants for RVAT. The TNR

10
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218 increases with the increasing CADD score threshold which is expected as less variants, and therefore
219 less benign variants, are included in the analysis. The RAVA-FIRST filtering shows the highest TNR and
220  the highest precision. While the TPR value is extremely important to select the most probable causal
221  variants in RVAT, it is also important to have a high TNR value, otherwise the signal will be diluted by
222  ahigh proportion of non-causal variants. The precision value summarises the TPR and TNR parameters
223  and therefore, to a certain extent, is representative of the percentage of causal variants among
224  selected variants. Therefore, we show that the RAVA-FIRST filtering strategy is the most accurate to
225 select qualifying rare variants for RVAT. Focusing on the coding genome, we also compared the
226 performance of RAVA-FIRST filtering approach against two others approaches classically used on genes

227 as testing units: (1) filter for variants with a functional impact expected to change the protein

228 (“missense_variant", "missense_variant&splice_region_variant", "splice_acceptor_variant",
229  "splice_donor_variant", "start_lost", "start_lost&splice_region_variant", "stop_gained",
230  "stop_gained&splice_region_variant", “stop_lost", "stop_lost&splice_region_variant" and

231  "stop_retained_variant”), and (2) filter on the MSC value, a gene-specific CADD threshold(28). These
232  two filtering approaches resulted in a slightly higher TPR than our proposed strategy but lower TNR
233  and lower precision (Fig 1B). Therefore, even in an exome analysis, the RAVA-FIRST filtering

234  outperforms classical filtering strategies to select qualifying rare variants for RVAT.

235  Figure 1: TPR, TNR and precision of different filtering strategies on the whole Clinvar dataset or

236  only Clinvar coding variants.

237 Finally, we investigated the performances of these different strategies on different classes of non-
238  coding variants (S4 Fig). All the performances are lower than in the coding genome, especially the TPR
239  that is much lower for strategies based on a fixed CADD threshold, highlighting the fact that CADD
240  values are lower in the non-coding genome and adjusted CADD threshold may therefore be preferred.
241 RAVA-FIRST filtering using region-dependant thresholds keeps the highest precision in the different

242 classes of variants, except for UTR variants where a slight decrease of TNR and precision is observed.

11
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243 Note however that these results may not be as accurate as those obtained on the coding regions as
244 much fewer variants are included: 2,309, 4,048 and 617 for UTR, introns and intergenic variants

245 respectively compared to 54,664 coding variants.

246

247 RAVA-FIRST burden test — Simulations

248  To validate the RAVA-FIRST burden test, we performed simulations under the null hypothesis and
249  under different scenarios of association using data from the 1000 Genomes European populations (30)
250 in the LCT gene. We simulated 1,000 controls and 1,000 cases using the simulations based on
251 haplotypes implemented in the R package Ravages (19). A total of 201 variants was considered in the
252  LCT gene. These variants were polymorphic in the European populations and rare variants were
253  defined with a MAF lower than 1%. Two CADD regions overlap the LCT gene, R019233 and R019234,

254  containing respectively 75 and 126 variants, both overlapping coding and regulatory categories.

255 Typel error

256  We first simulated data under the null hypothesis to verify that the RAVA-FIRST burden test maintains
257 appropriate type | errors. We simulated two groups of 1,000 individuals in the R019234 CADD region
258  without any genetic effect and we applied the classical WSS and the RAVA-FIRST WSS. Type | errors
259  were computed using 5-10° simulations at three significance levels: 5-:102, 10 and 2.5-10°° (the usual
260  threshold for whole exome rare variant association tests). The RAVA-FIRST WSS maintains good type |
261 error levels at these different significance thresholds, similar to the ones obtained with the classical

262 WSS (Table in S2 Table).

263  Power analysis

264  We then performed a power study based on simulations at two levels: at the level of the R019234
265 CADD region and at the level of the LCT gene. In both cases, we simulated 50% of causal variants

266  randomly in the whole unit (scenarios S1 and S3), in the coding regions (scenarios S2A and S4A) or in

12
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the regulatory regions (scenarios S2B and S4B). All the scenarios are summarised in Table 3. We
compared the classical WSS to the RAVA-FIRST WSS using the gene or the two CADD regions as testing
units. When CADD regions were used as testing units, analyses were performed for each of the two
CADD regions and the minimum p-value was taken and multiplied by two to correct for multiple
testing. A total of 1,000 replicates were simulated for each scenario and power was assessed at a

genome-wide significance threshold of 2.5-10.

Table 3: Scenarios of association simulated to assess the performance of the RAVA-FIRST burden test

LCT gene
R019233 R019234
Coding Regulatory Coding Regulatory

S1 50%
S2A 50% 0%
S2B 0% 50%

S3 50%
S4A 50% 0% 50% 0%
S4B 0% 50% 0% 50%

Table 4 presents the power results obtained from this simulation study for both the classical WSS and
the RAVA-FIRST WSS. Similar trends were observed between the two analyses, regardless if the
simulations are performed at the scale of CADD regions or at the scale of the gene. When the causal
variants were randomly sampled across the entire region (scenarios S1 and S3), the classical WSS with
only one score for the entire region slightly outperformed the RAVA-FIRST method with sub-scores.
Nevertheless, the loss of power for the latter was modest (less than 10%). By contrast, when causal
variants were present only in the coding categories (scenarios S2A and S4A), which represent a small
proportion of the entire region (approximately 15%), the RAVA-FIRST strategy was much more
powerful than the classical WSS (approximately 50% gain in power). When causal variants were

present in the regulatory categories only (scenarios S2B and S4B), both strategies showed similar

13
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285 power. All these results highlight the gain of power using the RAVA-FIRST WSS when a cluster of causal
286  variants is present within a functional category of the CADD region while maintaining good power
287 levels when causal variants are spread all across the region. When comparing the simulations with
288  causal variants sampled at the gene level or at the CADD region level, burden tests gathering variants
289  within the corresponding testing units show, as expected, the highest levels of power. Nevertheless,
290 the loss of power when using CADD regions as testing units instead of the entire gene is lower when
291 causal variants are sampled across the entire gene (scenario S3) than the gain of power they present
292  when causal variants are sampled within a specific CADD region (scenario S1). This is particularly true

293 for the RAVA-FIRST WSS.

294  Table 4: Power at the genome-wide significance level of 2.5:10% under the different simulation
295  scenarios using either the classical WSS or the RAVA-FIRST WSS at the scale of either the entire gene

296 or CADD regions

By gene By CADD regions
Classical WSS RAVA-FIRST WSS Classical WSS RAVA-FIRST WSS
S1 0.409 0.370 0.782 0.701
S2A 0 0.431 0.002 0.602
S2B 0.408 0.404 0.689 0.706
S3 0.751 0.678 0.512 0.433
S4A 0.004 0.564 0.012 0.474
S4B 0.657 0.64 0.39 0.391

297
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208 Applications

299  Ethics Statement

300 The MARTHA study was approved by its institutional ethics committee and informed written consent
301  was obtained in accordance with the Declaration of Helsinki. Ethics approval were obtained from the
302  “Departement santé de la direction générale de la recherche et de I'innovation du ministere” (Projects

303 DC: 2008-880 and 09.576).

304 RAVA-FIRST analysis

305 RAVA-FIRST was used on whole genome sequence (WGS) data from patients affected by venous
306 thromboembolism (VTE). VTE is a multifactorial disease with a strong genetic component (31). There
307  exists a huge heterogeneity between patients in the age at first VTE event. To study the role of rare
308  variants on VTE age of onset, WGS data were used from 200 individuals from the MARTHA cohort (32).
309 These individuals were selected among patients with unprovoked VTE event who were previously
310 genotyped for a genome-wide association study (33) and present no known genetic predisposing
311  factor. Individuals were dichotomized based on the age at first VTE event either before 50 years of age
312  (early-onset) or after (late-onset). The threshold of 50 years was chosen based on the results of recent
313  studies(34) that hint toward a genetic heterogeneity between these two groups. A quality control (QC)
314  of the sequencing data was performed using the program RAVAQ

315 (https://gitlab.com/gmarenne/ravaq). After QC, 184 individuals were included for analysis with 127

316 presenting an early-onset VTE and 57 a late-onset VTE. Only variants passing all QC steps and with a
317 MAF lower than 1% in the sample were considered in the association tests comparing early and late-
318  onset groups. For these comparisons, rare variants were gathered either by CADD regions or by using
319  the sliding windows procedure implemented in WGScan (18). Qualifying variants were selected based
320 on CADD scores and using two filtering strategies: a fixed CADD threshold of 15 (as recommended by

321  https://cadd.gs.washington.edu/info, version v1.4) or the RAVA-FIRST CADD region-specific filtering
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322 (applied on adjusted scores). Association was tested using the WSS burden test. When the RAVA-FIRST
323 filtering was used, the corresponding WSS test with sub-scores was applied. Table 5 shows the number
324  of testing units and variants kept under each strategy. For all tests with CADD regions, only regions
325  containing at least 5 rare variants were kept. WGScan was used with default parameters, i.e. with

326 testing units of 5, 10, 15, 25 or 50 kb.

327  Table 5: Number of testing units and variants kept under the three strategies

. ) L Number of Number of
Testing units Filtering . . .

testing units variants
WGScan o . MAF < 1%

) Sliding windows 377,092 96,347

Fixed CADD threshold CADDv1.4>15
RAVA-FIRST units

. MAF < 1%

(CADD regions) 10,389 96,294

CADDv1.4 > 15
Fixed CADD threshold v

- CADD regions
RAVA-FIRST units
MAF < 1%

(CADD regions) . ) 95,690 3,641,502
T Adjusted CADD = median
RAVA-FIRST filtering

328

329 QQ-plots for the WSS tests using those three strategies are shown in Fig 2. As expected, a lower
330 significance threshold is required to reach genome-wide significance with the sliding window
331 procedure due to the higher number of testing units. Accordingly, the computation time was much
332 lower for the two analyses by CADD regions (6min when filtering based on a fixed CADD score
333 threshold and 25min when using the region-specific CADD thresholds) than for the sliding windows
334 procedure (47min). Our dataset contains less than 200 individuals, suggesting that the gain in
335 computation time of CADD regions compared to sliding window procedures would be even greater in
336 larger WGS datasets. No significant result was found when selecting variants with a CADD score greater
337  than 15 using neither the sliding window strategies nor the CADD regions to gather rare variants,
338  whereas one association reached borderline significance (p = 6.41:107) when using the RAVA-FIRST

339 strategy.
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340 Figure 2: QQ-plot of WSS analyses on VTE data using the three strategies of analysis. Early-onset

341 patients (<50 years old) were compared to late-onset patients (=50 years old).

342  This association maps to R126442, a CADD region of 21 kb on chromosome 18:66788277-66809402
343 that contains 31 rare variants after RAVA-FIRST filtering. In this region, none of the variants observed
344 in VTE patients or in GhomAD achieved a CADD score above 15. This explains why the association could
345 not have been detected by the two other strategies based on fixed CADD score 2 15. The median of
346  CADD scores observed for GnomAD variants in this region is 1.44 and the adjusted CADD scores of
347  selected variants range from 1.62 to 8.50. These observations emphasize the need to adapt thresholds
348  depending on the genomic region under analysis. Interestingly, only early-onset VTE patients carry
349 qualifying rare variants and have non-null WSS scores (Fig 3). Among early-onset patients, a trend is

350 also observed for WSS scores to decrease with increasing age of onset.

351  Figure 3: WSS scores in the CADD region depending on the age at first VTE event. The dashed line

352  corresponds to the age 50 discriminating early onset from late onset events.

353  The CADD region R126442 was then tested for association with 20 biological VTE biomarkers available
354 in MARTHA patients: antithrombin, basophil, eosinophil, Factor VIII, Factor XI, fibrinogen, hematocrit,
355 lymphocytes, mean corpuscular volume, mean platelet volume, monocytes, neutrophils, PAI-1,
356 platelets count, protein C, protein S, prothrombin time, red blood cells count, von Willebrand Factor,
357 and white blood cells count. For this, a linear regression model was used where adjustment was made
358 on age at sampling and sex. At the Bonferonni threshold of 0.0025, one significant association
359 (p =7.1-10%) was observed, VTE patients with a non-null WSS score exhibiting decreased haematocrit
360 levels, a surrogate marker of red blood cells (Table in S3 Table). A similar trend (p = 4.6:103) was

361 observed with red blood cell count.

362 We also investigated the association of the identified region with 376 plasma protein antibodies that
363 were selected to be involved in thrombosis-related processes and that have been previously profiled

364  in MARTHA (32,35). Regression analysis were conducted on log transformed values of antibodies and
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365 were adjusted for age, sex, and three internal control antibodies. In order to handle the correlation
366 between measured protein antibodies, we used the Li and Ji method (36) to estimate the number of
367 effective independent tests. This number, calculated to be 163, was then used to define a Bonferroni
368  threshold for declaring study-wide statistical significance. While not reaching the study-wise
369  significance level of p = 3.1:10* after correction for multiple testing, it is worth noting that the two
370  proteins that exhibited the strongest significance with marginal association at p < 0.001, procalcitonin
371  tagged by the HPA043700 antibody (p = 7.2:10*) and PDPK1 tagged by HPA035199 (p = 7.5:10%), have

372 been both proposed to be involved in red blood cell biology (37,38).

373  According to ENCODE data, the R1246442 CADD region overlaps “intergenic” and “regulatory”
374  categories with one distant enhancer-like signature. To describe this region further, we looked at TADs

375 positions in https://dna.cs.miami.edu/TADKB/brows.php in HUVEC and HMEC cell lines, two cell types

376 known to be relevant for VTE pathophysiology. We found that the CADD region is included into the
377  topological associated domains (TADs) 18:66450000-68150000. By studying TADs described by
378 Lieberman-Aiden et al. 2009 in other cell lines such as KBM7, K562 or GM12878, we retrieved a TAD
379  with similar positions, giving additional evidence for the presence of this TAD around the CADD region
380  associated with early-onset patients. We then explored this TAD region for the presence of candidate
381  VTE genes whose regulation could be influenced by the enhancer region that maps our R1246442
382 region. Using the UCSC genome browser (40) integrating information about interactions between
383  GeneHancer regulatory elements and genes expression (see S5 Fig), we identified CD226 as a strong
384  biological candidate. CD226 codes for a glycoprotein expressed at the surface of several types of cells,
385 including blood cell, and several studies have shown that it was associated with vascular endothelial
386 dysfunction (41-43). Genetic variants in CD226 have also been found associated with several blood
387  celltraitsincluding platelets, white blood cells (e.g. neutrophil, eosinophil) (44) and reticulocyte counts

388  (45), another red blood cell biomarker.

389
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390 Discussion

391 Even though whole genome sequencing data are now more often available on cases and controls, rare
392  variant association tests (RVAT) usually remain restricted to the coding part of the genome. This is
393 explained by the lack of tools to explore rare variant associations outside genes (11). Indeed, RVAT
394  requires the definition of testing units that are easily defined through genes in coding regions and the
395  selection in these regions of the most functionally-relevant variants. This is also easier in the coding
396 genome as most prediction tools were developed and tested through the effects of variants on
397 encoded proteins. In the non-coding genome, testing units can be defined based on functional
398 elements such as enhancers or silencers, or through the use of sliding window procedures. The first
399 solution prevents RVAT from being applied to all rare variants in the genome as biological units are not
400 defined over the entire genome. The second strategy with sliding windows results in a large number
401 of tests and the need to adjust p-values to take into account the multiple correlated tests performed.
402 In this work, we propose an entire new strategy of analysis of rare variants in the coding and the non-
403 coding genome, RAVA-FIRST, which is composed of three steps. Firstly, RAVA-FIRST proposes some
404  new testing units to gather rare variants, the so-called “CADD regions” that we defined over the entire
405 genome based on CADD scores of variants observed in GhomAD. These CADD regions are large enough
406  to include a sufficient number of rare variants to allow RVAT. They tend to preserve functional
407  elements that, for a majority of them, are not split into several CADD regions. Secondly, RAVA-FIRST
408 filters variants based on region-specific adjusted CADD thresholds that allow to select the best
409 candidate variants within each region. This filtering approach was found to be more efficient than
410  traditional approaches to discriminate between benign and pathogenic variants within a set of
411  variants. Indeed, our benchmarking study using a set of Clinvar variants showed that the other filtering
412 strategies we considered were good at identifying true causal variants (true positive rates were high)
413 but bad at finding the non-causal variants (true negative rates were low). Both true positive and true

414  negative rates are important to achieve a high percentage of causal variants within testing units, this
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415 percentage being the main driver of power in RVAT, especially in burden tests (2,3,7). Thus, the RAVA-
416 FIRST filtering strategy is expected to result in an appreciable increase of power as compared to
417  classically used strategies. Indeed, RAVA-FIRST enables to keep the most important functional variants
418  within coding, regulatory and intergenic categories of the genome by adapting CADD score threshold
419  to the genomic context. Finally, RAVA-FIRST includes a burden test that integrates information on
420  genomic categories in the regression and that, coupled with the region-specific filtering, leads to a
421 better detection of causal variants, should they cluster in one of these genomic categories only. We
422 also showed through simulations that good power levels were maintained using RAVA-FIRST burden

423 test when causal variants were randomly sampled.

424  RAVA-FIRST was applied on real WGS data from VTE patients where an accumulation of rare variants
425 in patients with early-onset events was investigated. We did not detect any significant signal using the
426 sliding window procedure or CADD regions when qualifying rare variants were selected based on a
427  fixed CADD threshold. However, we detected an association signal using both the grouping and filtering
428 of rare variants proposed in RAVA-FIRST. The associated CADD region is intergenic, contains a
429 predicted enhancer and is surrounded by a TAD containing 5 genes including CD226, a strong candidate
430 for blood cell traits that are new well recognized to be key players in VTE physiopathology (31). All rare
431  variants in this region present low CADD scores and were not even included in analyses based on a fix
432  CADD threshold, highlighting the importance of taking into account the genetic context to detect the
433 most important predicted functional variants within each CADD region. These 31 rare variants are
434  exclusively observed in early-onset cases. Fourteen of these variants are absent from GnomAD, and 10
435 of the 17 remaining variants have a lower frequency in GhomAD population than in our sample. This
436 reinforces the value of the association signal in this CADD region, although it should be further
437 described and validated using functional experiments. Preliminary investigations that need to be
438  further explored, at both experimental and epidemiological levels, strongly suggest that this region is
439  associated with several inflammatory markers impaired in anaemia of inflammation (38,46) and in

440  platelets, both mechanisms being involved in thrombotic processes (47).
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441 Some limits can be pointed out on our RAVA-FIRST approach. Firstly, the definition of CADD regions
442 relies on the GnomAD population and on the adjusted CADD threshold. We chose to use the whole
443  GnomAD dataset but it could be of interest to select some of the populations to be more specific. It
444  has for example been suggested that different expression patterns could be found between different
445 populations (48). Nevertheless, in classical exome analyses, rare variants are mostly filtered based on
446  the maximum frequency observed among multiple populations. Furthermore, CADD regions are not
447 defined for low-covered and non-sequenced genomic regions in GnomAD and their definition could
448  therefore be improved in the future. Concerning the definition of the genomic categories, we decided
449  toinclude all genomic elements directly implicated into regulatory functions to define the regulatory
450 regions of the genome, but we did not include silencers or IncRNA for example. However, the choice
451 of elements to include as the regulatory category will only impact the adjusted CADD scores that are
452 similar between regulatory and intergenic regions, and won’t therefore have a huge impact on CADD
453 regions definition. As an example, using DECRES (49) to predict enhancers and promoters instead of
454  SCREEN results in a very high correlation between the definition of CADD regions, 80% of them being

455 identical.

456  On the other hand, the pre-definition of regions in the whole genome offers several advantages,
457  including the region-specific filtering mentioned before. In addition, the newly defined CADD regions
458  can be used in existing software that require regions as input parameters (50,51), enabling to apply a
459  wide variety of RVAT available in those programs to the whole genome. Especially, Bayesian methods
460  which have been shown to be of great promise in the analysis and filtering of rare variants (52,53)

461 could be applied beyond genes by using CADD regions.

462  To our knowledge, CADD regions represent predefined testing units for RVAT that cover the highest
463 proportion of the genome. These regions have been made publicly available (cf “Data availability”
464  section below). CADD regions are part of a whole new strategy of rare variant analysis in the whole

465 genome, RAVA-FIRST, that further benefits from the integration of functional information both for the
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466 filtering of rare variants and their analysis with burden tests. RAVA-FIRST has been implemented in the
467 package R Ravages available in the CRAN and on Github, offering an easy and straightforward tool to
468 perform RVAT in the whole genome. We believe that our developments will help researchers to
469  explore the role of genome-wide rare variants in complex diseases. Firstly, through the redefinition of
470  testing units in the coding genome where cluster of causal variants can be found within genes and
471 retrieved using CADD regions (10). Secondly, through the study of non-coding variants, especially
472 intergenic ones, which are currently often excluded from the analysis. Going beyond the gene and the
473 consequences on proteins, RAVA-FIRST will help for a better understanding of biological mechanisms

474 behind complex diseases.

475 Data availability

476  The files containing the positions of CADD regions, the positions of genomic categories and the

477  adjusted CADD scores are available at https://lysine.univ-brest.fr/RAVA-FIRST/. All the functions

478 needed for RAVA-FIRST to annotate, group, filter and analyse rare variants have been implemented in

479  the package R Ravages (https://cran.r-project.org/web/packages/Ravages/,

480  https://github.com/genostats/Ravages) which directly downloads the files from https://lysine.univ-

481 brest.fr/RAVA-FIRST/.

482 Information about the CADD region R126442 that was found associated with VTE age at first event is
483  available in the Supporting Information File 2. Information about individuals (WSS score, age and sex)

484  and variants (position, adjusted CADD score and weight in WSS) are given.
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