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11 Abstract

12 Ascaris species are soil-transmitted helminths that infect humans and livestock mainly in low and

13 middle-income countries. Benzimidazole (BZ) class drugs have predominated for many years in the
14  treatment of Ascaris infections, but persistent use of BZs has already led to widespread resistance in
15  other nematodes, and treatment failure is emerging for Ascaris. Benzimidazoles act by binding to B-
16  tubulin proteins and destabilising microtubules. Three mutations in the B-tubulin protein family are
17  associated with BZ resistance. Seven shared B-tubulin isotypes were identified in Ascaris

18  lumbricoides and A. suum genomes. Benzimidazoles were predicted to bind to all B-tubulin isotypes
19  usingin silico docking, demonstrating that the selectivity of BZs to interact with one or two B-tubulin
20  isotypes s likely the result of isotype expression levels affecting the frequency of interaction. Ascaris
21 B-tubulin isotype A clusters with helminth B-tubulins previously shown to interact with BZ.

22 Molecular dynamics simulations using B-tubulin isotype A highlighted the key role of amino acid

23 E198 in BZ-B-tubulin interactions. Simulations indicated that mutations at amino acids E198A and

24 F200Y alter binding of BZ, whereas there was no obvious effect of the F167Y mutation. In conclusion,
25  the key interactions vital for BZ binding with B-tubulins have been identified and show how

26  mutations can lead to resistance in nematodes.
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38 Introduction

39  The large intestinal roundworm Ascaris lumbricoides infects humans and causes ascariasis. Ascaris
40  lumbricoides is a parasitic nematode that resides in the small intestine of its host and can persist
41  there for up to 2 years . Ascariasis is often asymptomatic, but in regions of high A. lumbricoides

42  prevalence there can be significant effects on host wellbeing, with chronic ascariasis leading to

43 reduced cognitive ability and stunted growth due to malnutrition >. The migrating larvae may also
44  cause pulmonary ascariasis which results in asthma-like symptoms, whilst high worm burdens can
45  lead to more serious pathologies such as organ blockages, which can result in death >*. As of 2019
46  there was an estimated 446,000 people infected with A. lumbricoides worldwide with an estimated
47 loss of 754,000 disability adjusted life years (DALYs) °. Most of these infections occur in rural and
48  poor urban areas of low- and middle-income countries, where hygiene and sanitation infrastructure
49  can be of alower standard than in higher income areas, and therefore people are more exposed to
50 infection. Ascaris suum is a closely related roundworm of pigs, although it can also be zoonotic ®’.
51  Ascaris suum has a wider geographical distribution than A. lumbricoides and is one of the most

52 prevalent intestinal parasites of pigs worldwide ®°. Ascaris suum infection can lead to production
53  losses from reduced growth rates, altered muscle composition and the condemnation of livers due
54 tofibrotic lesions known as milk spots *>**.

55  There are only a small number of drugs available to treat ascariasis, which include the

56 benzimidazoles (BZ), macrocyclic lactones and levamisole **. Overreliance on these drugs has led to
57  the potential for drug resistance. Mass drug administration (MDA) of BZ anthelmintics, such as

58 albendazole and mebendazole, in endemic regions is the strategy for control and elimination of a

59 number of helminth diseases in humans, including ascariasis. The most recent 2021-World Health
60  Organization roadmap for neglected tropical diseases has targeted the elimination of ascariasis as a
61  public health problem in 96 countries by reaching 75% coverage of MDA in targeted populations *.
62  Whilst repeated treatment in endemic communities may be able to reduce parasite burdens, it does
63  not prevent reinfection, and it is well-established that pressure applied by MDA can lead to the

64  evolution of drug resistance **. Benzimidazole resistance has been detected in many intestinal

65  parasites of both veterinary and human importance, and the first signs of reduced susceptibility in
66  Ascaris have been reported **. To date, BZ resistance has been linked to mutations in B-tubulin

67  proteins, more specifically at amino acids 167, 198 or 200, based on the Haemonchus contortus B-
68  tubulin reference sequence (accession number: AAA29170.1). Nematodes usually encode multiple B-
69  tubulin isotypes but not all are expressed equally, with some being life-stage or cell-type specific *°.
70 One of the highly expressed isotypes, B-tubulin isotype 1, is commonly linked to resistance in

71 parasitic nematodes ***2%%*2°_|jttle is known about the contribution of other B-tubulin isotypes to
72 druginteractions and resistance. Based on evidence from Caenorhabditis elegans, it is likely that

73  most of these isotypes are redundant or have specialised roles within specific cells or at certain

74  developmental stages . So far, no work has been done to characterise the roles of the -tubulins in
75  ascarids or other common STHs and therefore the role they play in drug mechanisms and the

76  development of BZ resistance is still unknown.

77  One of the biggest hindrances to answering these questions is the ability to culture the full lifecycle
78  of these parasites in vitro, as well as the ethical considerations and costs associated with studying
79  parasites in animal models. In silico approaches could help to solve these problems by predicting the
80  differences seen between proteins and how they interact with drugs. In silico docking is a technique
81  that uses computational software to try and mimic biological systems and monitor molecular

82  interactions. A common use is to model protein-ligand docking to theoretically assess the ability of a
83  ligand to bind within the active sites of a protein and to develop novel drugs *'. In silico docking has
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84  been performed using the B-tubulins of several helminths including H. contortus, Trichinella spiralis
85  and filarial nematodes *~°. These studies have highlighted the changes in protein conformation that
86  occur when resistance mutations are present and how that affects drug interactions. To date these

87  methods have not been applied to Ascaris, nor has any study looked into the differences that may be

88  seen between the individual B-tubulin isotypes within a genus or species.

89  The aims of this study were to investigate the interactions between commonly used BZ drugs and
90  Ascaris B-tubulins, and identify what changes occur when mutations are present. The first objective
91  was to confirm that BZ binding in Ascaris was similar to that of other helminths. The second

92  objective was to compare the binding of these drugs in each of the B-tubulin isotypes present in

93  Ascaris. The final objective was to repeat these experiments in proteins that contain the common
94  resistance-associated mutations, to gain an insight into changes that lead to resistance.

95 Results
96 Identification of Ascaris B-tubulin isotypes

97  Twenty-one B-tubulin sequences were retrieved from NCBI, which were reduced to six after removal

98  of partial and duplicated sequences. BLAST searches against the three Ascaris genomes in

99  Wormbase-Parasite identified a total of 122 matches, 51 of which were B-tubulins based on
100 nomenclature and identity to reference sequence, with the remainder a- tubulins. Of the 51 -
101  tubulins, after duplicates had been removed, there were 8 sequences remaining from the A.
102  lumbricoides genome (GCA_000951055.1), seven from one A. suum genome (GCA_000298755.1)
103  and six from a second A. suum genome (GCA_000187025.3). To extend the search for more distantly
104  related tubulins, the Exonerate program predicted the presence several additional tubulin
105 sequences in the three Ascaris genomes. A search of the Conserved Domain Database revealed that
106  most were a-tubulins, but a new B-tubulin sequence was identified for A. suum (E’) and a more
107 complete sequence for A. lumbricoides B’ sequence was identified and added to the sequences used
108 for phylogenetic analysis (Supplementary Table S1). The isotype G identified from A. suum
109 (GCA_000187025.3) was found to be split into two consecutive genes in the genome annotation,
110  although manual alignment of these two genes with isotype G from A. lumbricoides confirmed that
111  these two genes represented two halves of the full gene with an incorrect stop codon predicted at
112  the end of an exon (at position 169-171 of the cDNA). Therefore, these two consecutive genes were
113  concatenated and used as the A. suum isotype G gene for all further work (Supplementary Fig S1).
114  The protein to gene alignment undertaken with the Exonerate program on the two newly available
115  genomes (A. lumbricoides GCA_015227635.1 and A. suum GCA_013433145.1) found sequences for
116  all isotypes, with the exception of isotype G in A. lumbricoides. These sequences were added to the
117  existing data and a phylogeny was created which included B-tubulins from other Ascaridomorpha
118  species. A full list of sequences used can found in Supplementary Tables 1 and 2.

119  The phylogenetic tree showed a clear separation into definitive isotypes that appear to have

120 diverged early in the evolution of the Ascaridomorpha infraorder (Fig. 1). When phylogenetic trees
121 for the amino acid and nucleotide sequences were compared, the structuring of the isotype clades
122  were not consistent, although similar relationships were observed between sequences within clades.
123 Ascaris suum isotype F3 had one truncated exon and so did not fit into the group as well as other
124  sequences. Ascaris suum isotype E’ was also seen to be divergent from the rest of the isotype E

125  group, and as this sequence was only found in one genome it was not designated its own isotype.
126  The effects of these sequence variations were seen more clearly in the phylogenetic tree based on
127  amino acid sequences.
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128  Only the seven isotypes that had homologues in both Ascaris species were used in further analysis.
129  Isotype A clustered with sequences from other species, such as Parascaris, that have been previously
130 linked with BZ interaction through gene expression studies, and is the isotype which is currently used
131  in diagnostic tests for BZ resistance in Ascaris *>******* For this reason, isotype A was used as the
132  focus of molecular docking simulations. Interestingly the isotype previously designated as isotype-1
133  in A. suum did not fall within isotype A, but instead was found to be isotype C, suggesting the past
134 labelling of this sequence as isotype-1 was incorrect *°.

135  Insilico docking shows similar binding for all B-tubulin isotypes

136  Insilico ligand docking simulations were performed on the seven B-tubulin isotypes shared by both
137  Ascaris species. An alignment of each isotype highlighting some active site amino acids can be seen
138  in Figure 2. Five BZ drugs were docked into the active sites of each isotype and simulations showed a
139  consistent trend between species, drug and isotype. However, the 3D structures and the 2D maps
140  were not always in complete agreement when labelling hydrogen bonds (H-bonds). Hydrogen bond
141 formation between BZs and amino acids Q134, E198 and V236 were the most common interactions
142  and were consistently seen in all isotypes. Amino acid A315 and the amino acids at position 165
143  were also seen numerous times in docking poses. In the majority of cases amino acid 165 was a
144  serine (S), although in isotypes E and F, amino acid 165 was asparagine (N) and threonine (T)

145 respectively. These changes did not cause a change to the overall amino acid properties as all three
146  amino acids are polar (neutral) hydrophobic amino acids, and similar interaction were observed
147 between the drugs and all three amino acids. Other amino acids interacted with the BZs in some
148  isotypes, and although these were not consistently seen, they could be of some importance and
149  would require further investigation (Fig. 3).

150 Isotype D had tyrosine (Y) at position 200 and this formed bonds with glutamate (E) at position 198.
151 Isotype D was the only isotype to naturally contain tyrosine at position 200 which has been linked to
152  resistance when seen in other B-tubulins *?’. Recent work in Parascaris has shown that having

153 tyrosine as the wildtype amino acid in this B-tubulin isotype is not restricted to Ascaris only *.

154 It was onlyin isotype D and the mutated F200Y models that binding was seen between the drugs
155 and amino acid 200. In the mutated F167Y protein models, the mutation of phenylalanine (F) to
156  tyrosine resulted in extra bonds being formed with the drugs in most cases. In the mutated E198A
157 models no bonds were formed with E198A in any drug model. The models with the F200Y mutation
158 showed a bond between the mutated F200Y amino acid and E198. The full details of the binding of
159  each drugto each individual isotype are provided in Supplementary Figures S2 —S21.

160  Molecular dynamics simulations highlight BZ resistance mechanisms

161 Molecular dynamics simulations calculate the pressure and heat energies that are likely found within
162 a physiological system and apply these to the protein-drug structure to mimic natural systems over a
163  period of time to find the optimum binding poses. These simulations show how protein-drug

164  interactions fluctuate over a period of time and give an indication of how these molecules may react
165 in a physiological system. As the molecular docking simulations showed no difference between

166  species or isotype, molecular dynamics simulations were performed only on A. suum isotype A.

167  Simulations showed no major changes from the initial ligand docking. For A. suum isotype A, bonds
168  between the protein and drugs formed with E198 in all models. Several other bonds were seen

169  depending on the drug, but all models had similar binding affinities (Fig. 4, Table 1 and Table 2).

170  Inthe E198A mutation model there was a reduced binding affinity and complete loss of bonding
171  with amino acid E198A, although weaker bonds still formed with other common amino acids (Fig. 5c,
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172 Table 1 and Table 2). No difference in drug interactions were seen in the F200Y model compared to
173  the wildtype model, although the mutated F200Y amino acid did form a self-binding interaction with
174  E198 (Fig. 5e). In the F167Y model the additional bond formed with F167Y in the ligand docking

175 models was not seen and there was no direct effect of this mutation on drug binding (Fig. 5).

176  Resistance to BZs has been best documented in H. contortus and previous in silico modelling

177  simulations have been performed on this species to explore BZ resistance mechanisms *>**. For

178  these reasons we performed molecular dynamics simulations on H. contortus B-tubulin isotype-1 to
179  compare our results with previous studies in this model organism. All simulations using H. contortus
180 models compared well with A. suum models (Fig. 6). For the wildtype susceptible protein, H-bonds
181  formed with E198 (Fig. 6a). There was no direct interaction observed between the drug and the

182  F167Y amino acid amino acid (Fig. 6). In the E198A models reduced binding affinity was observed,
183  andaloss of interaction with E198A with only weak bonds formed with other amino acids (Fig. 6¢,
184 Table 2). Finally, the F200Y mutation resulted in interactions between E198 and the F200Y amino
185  acid amino acids and drug interactions with E198 were weakened (Fig. 6d, Table 2).

186 Discussion

187  The widespread resistance to BZs in ruminant nematodes such as H. contortus has illustrated the
188 effects that resistance can have on both animal health and economic returns *. We have not yet
189  seen widespread resistance to BZs in Ascaris in either humans or pigs, although, with increasing drug
190  pressure to reach the 2030 World Health Organisation targets, limited studies on drug efficacy in
191 either humans or pigs, and limited alternative treatments, a better understanding of the

192  mechanisms leading towards BZ resistance in Ascaris is urgently required. This work identified seven
193  B-tubulin isotypes shared by both Ascaris species considered here, and compared, in silico, BZ

194  interactions between them. We observed that all B-tubulin isotypes are predicted to interact with
195 BZs in a similar manner, except for one isotype that contains a resistance-associated amino acid at
196  position 200 in its wildtype protein. In silico ligand docking and molecular dynamics simulations

197  highlighted E198 as a key amino acid in BZ-binding, with E198A mutations leading to weaker protein-
198  druginteraction. We also found that the common resistance associated F200Y mutation acts

199  indirectly by binding to E198 and reducing drug stability within the binding pocket.

200 By utilising multiple databases, we were able to identify seven B-tubulin isotypes from both A. suum
201  and A. lumbricoides. Phylogenetic analysis showed that Ascaris B-tubulin isotypes were shared with
202  other Ascaridomorpha species, and it is isotype A that is used as a marker of BZ resistance and is
203 usually referred to as isotype-1 *>'%*°*% The identification of isotype A as the main group involved
204  in BZ interaction allowed in silico work to focus on this isotype. Concurrent work in Ascaris by Roose
205  etal. * also found these same B-tubulin isotypes in both species and identified isotype A as the

206 isotype used in previous surveillance studies. Isotype A was shown to be the most highly expressed
207  B-tubulin isotype and therefore one of the main isotypes likely to be involved in BZ interaction “.
208  Whilst the expression levels of the B-tubulin isotypes in Ascaris are now known, the contribution of
209  these to drug mechanisms of action have not yet been defined *°. Our work has shown that the drug
210 interaction with these isotypes does not differ on the whole, with the exception of isotype D.

211  Therefore, it likely that the contribution of each isotype to drug-binding is relative to the expression
212 level during the different stages of the Ascaris life-cycle.

213 The most common binding amino acids predicted from molecular dynamics simulations were E198,
214 L253 and N256.Several other amino acids interacted with the BZs, although these were not

215  consistent. Most of these interactions had weak binding affinity, although N256 and K350 were

216  shown to form stronger bonds and could be of potential importance. It has been assumed that E198
217  isthe key binding amino acid for BZs, and indeed the key role E198 has in BZ binding and the self-
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218  binding interaction between amino acid E198 and F200Y in the mutated models was observed ***.

219 By investigating binding energies at each amino acid it has been shown here that the bonds between
220  the BZs and E198 are much weaker in the H. contortus F200Y mutated models than in Ascaris

221 models. This has not been demonstrated before, and adds further evidence to the theory that

222 interactions between E198 and F200Y destabilize BZ binding **.

223 Our results suggest that E198 is the key amino acid in B-tubulin for BZ binding in Ascaris, as

224  interactions were seen in every model except for the mutated E198A structure. Bonds with E198
225  also showed the strongest binding affinity; at least three times as strong as any other amino acid
226 interaction in most cases. In models that contained the E198A mutation, the change led to a loss of
227  interaction at this important site. In F200Y simulations, the self-binding between E198 and F200Y
228  was observed, which could lead to the blocking or destabilising of interactions between BZs and

229  E198, resulting in resistance to BZs. Interestingly, the binding energy between BZ and E198 in the A.
230  suum F200Y models was not reduced as much as it was for H. contortus. In F167Y models there was
231  no clear change, and this lack of any clear negative effect may explain why the F167Y mutation has
232 been found in field isolates of A. lumbricoides without any effect on drug susceptibility . However,
233 in H. contortus F167Y models, there was also no effect on binding, although in H. contortus this

234  mutation is known to cause resistance, which suggests that the models may still be unable to predict
235 more complicated mechanisms of resistance. It has been hypothesised that the F167Y mutation

236  leads to self-binding with amino acids that close off the binding pocket and prevent the drugs from
237  entering *. In our work no such self-binding could be seen between the tyrosine at position 167 and
238  any other amino acids.

239  Benzimidazole resistance is common for H. contortus and other clade V nematodes but is yet to

240  become a common problem for Ascaris. In all the searches for drug resistance in Ascaris to date only
241 the three common resistance associated mutations, F167Y, E198A and F200Y have been

242  investigated, which means the contributions of other mutations that may affect the BZ susceptibility
243 will be missed. There are reports of Ascarid helminths displaying reduced susceptibility to BZ, but do
244 not contain these classical mutations, and hence there is a possibility that there may be other

245  mechanisms or mutations involved in BZ resistance ">, In this study several other amino acids were
246  identified as possible candidates, such as N256 and K350 (see Fig. 3 and Table 2 for full list of

247  interacting amino acids), that may play an important role in drug binding and may lead to BZ

248 resistance if mutations occur.

249  In conclusion, we have identified the full repertoire of B-tubulin genes from A. lumbricoides and A.
250  suum and have shown that whilst almost all have the potential to interact with BZs, there is one
251 isotype, isotype A, that is likely key to BZ binding. By identifying the importance of isotype A, our
252  findings will allow future studies to refine and focus their approach to studying the effects of BZs in
253  non-clade V nematodes and monitor resistance development. Our results show that E198 is a vital
254 amino acid for BZ binding of B-tubulins in Ascaris, as has been seen for other helminths species; and
255  the E198A and F200Y mutations both take effect by disrupting this key anchor point. However, it
256  appears that in H. contortus the F200Y mutation causes more disruption to E198 binding than is seen
257  in Ascaris and could be the key difference between the two groups of parasites. This new

258 information may prove to be of significance for the molecular monitoring and modelling of

259  resistance in Ascaris and could be key to understanding why resistance is so commonly reported in
260  strongyle nematodes but as yet rarely so in Ascaridomorpha.

261 Methods
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262  Five Ascaris genomes: two for A. lumbricoides (GCA_000951055.1 and GCA_015227635.1) and three
263  for A. suum (GCA_000298755.1, GCA_000187025.3 and GCA_013433145.1) were analysed to

264  identify potential B-tubulin isotypes. Based on previous literature it was found that one A.

265  lumbricoides B-tubulin gene had been characterised and deposited in the National Center for

266  Biotechnology Information (NCBI) along with 21 B-tubulin sequences from A. suum *>****. These
267  sequences were retrieved from the database and the A. suum sequences were aligned with each
268  other to remove the partial sequences that were duplicates of the longer sequences. The B-tubulin
269  gene from A. lumbricoides (EU814697.1) retrieved from NCBI was used to carry out BLAST *?

270  searches against the three available Ascaris genomes in WormBase-Parasite (GCA_000187025.3,
271 GCA_000298755.1 and GCA_000951055.1) ****, To ensure that no B-tubulin genes had been missed,
272 the paralogues of each gene were checked, and the search term “tubulin beta” was used for each
273  annotated genome. An a-tubulin sequence for each species was also retrieved to be used as the
274 outgroup in further analysis.

275 Exonerate v2.2.0 *° protein2genome was used to identify any B-tubulin genes within the Ascaris

276  genomes that had not been detected by BLAST or in the genome annotation. Each isotype retrieved
277  from the database search was run against all three genomes with the best 10 results being saved
278  from each test. This number of tests were saved as we found up to eight potential isotypes from the
279  database searches, and this allowed for the potential of at least two further sequences to be

280 identified. Any new sequence found by Exonerate was tested in the Conserved Domain Database *°
281  to check that the sequence was a B-tubulin gene and then any new sequences predicted to be B-
282  tubulins were added to the B-tubulin dataset. The two newest genomes (A. lumbricoides

283  GCA_015227635.1 and A. suum GCA_013433145.1) had not been fully annotated and so Exonerate
284  protein2genome was used to identify B-tubulin genes.

285  After all the sequences, both nucleotide and peptide, had been collected, they were aligned with
286  tubulin sequences from other Ascaridomorpha using the MUSCLE server (available at:

287  https://www.ebi.ac.uk/Tools/msa/muscle/ [Accessed 09 December 2020]) *” and a maximum

288 likelihood phylogeny was created with MEGA version X %, using the JTT+G model for the amino acid
289  sequences and the K2+G+I model for the nucleotide sequences. Each phylogeny was bootstrapped
290 1000 times. Genomes are numbered in the phylogenies as follows: A. lumbricoides 1

291  (GCA_000951055.1); A. lumbricoides 2 (GCA_015227635.1); A. suum 1 (GCA_000298755.1); A. suum
292 2 (GCA_000187025.3) and A. suum 3 (GCA_013433145.1). The peptide sequences of these genes
293  were used to create homology models.

294  Homology models

295  Homology models were created for all B-tubulin isotypes of A. lumbricoides and A. suum using

296  SWISS-MODEL server (available at: https://swissmodel.expasy.org/ [Accessed 22 February 2021])
297  ***° The B-tubulin crystal structure 6fkj was used as the reference structure. This structure was
298  chosen as it is an experimentally determined crystal structure containing multiple a/B-tubulin

299  dimers with aligand bound in the colchicine binding site in a similar way as predicted previously for
300 BZs. The ligand bound to this structure is a cyclohexanedione derivative called TUBO75 used as a
301 tubulin targeting, antiproliferation cancer drug >*. Sequences for B-tubulin isotype A were edited to
302  provide sequences with the common BZ resistance associated mutations (F167Y, E198A and F200Y)
303 1724 These were again submitted to SWISS-MODEL to create homology models. This isotype was
304 used as it was this isotype that had been identified as being highly expressed in previous studies of
305  Ascaridomorpha .

306  Quality checks
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307 Homology models were submitted to multiple servers for quality checks to confirm the validity of
308  structures created in SWISS-MODEL and help predict any potentially erroneous sites. ProSA-web
309  (Protein Structure analysis) server (available at: https://prosa.services.came.sbg.ac.at/prosa.php
310  [Accessed 15 March 2021]) ***° assesses protein model quality. Verify3D >*>> compares the 3D
311  structure of the model to the 1D peptide sequence. PROCHECK v3.5 *° analyses the structural
312  geometry of the protein structures using Ramachandran plots. Both Verify3D and PROCHECK are
313  part of the UCLA SAVES v6.0 server (available at: https://saves.mbi.ucla.edu/ [Accessed 15 March
314 2021]).

315 Energy minimisation

316  Structures were minimised using the YASARA energy minimization server (available at:

317 http://www.yasara.org/minimizationserver.htm [Accessed 25 February 2021]) *’. This server uses
318  the YASARA forcefield to optimise the positions of atoms and reduce interatomic energies. After all
319  structures were minimised quality checks were performed again. The quality checks of minimised
320 homology models show acceptable results; with Z-scores within the expected range in ProSA,

321  verify3D scores over 80% and no errors found with PROCHECK.

322 In-silico ligand docking

323 3D ligand structure files for commonly used BZ drugs were downloaded from PubChem > in SDF

324  format. The drugs used include three of the most commonly used BZ, albendazole (ABZ),

325 mebendazole (MBZ) and fendazole (FBZ), as well as albendazole sulfoxide (ABZSO) and oxfendazole
326  (OXBZ), which are the active metabolites of ABZ and FBZ respectively. These were converted into
327  pdb format using Pymol v2.3.4 *°. Pdb structures of ligands were uploaded to Autodock tools v1.5.6
328 981 The number of allowable rotatable bonds was set to maximum, and structures were saved in
329  pdbgt format suitable for docking simulations. Protein models were uploaded to Autodock tools to
330 be prepared for docking simulations. Water was deleted from the protein structures; polar

331  hydrogens were added, and structures were saved in pdbqt format. The docking grid was centred on
332  amino acid 200 of the protein as this is the primary amino acid believed to be associated with BZ
333 resistance. Grid spacings were set to 1 Angstrom (A) and box size was set to 24A for x, y and z sizes.
334  This grid box encased all three resistance associated amino acids within a small pocket of the protein
335 and the co-ordinates of the box were saved for later use.

336  Autodock vina v1.1.2 ® was used to perform in-silico ligand docking simulations between the p-

337  tubulinisotypes and BZ drugs, using the grid co-ordinates and spacings to identify the target binding
338 region and an exhaustiveness level of 8. Docking results were opened in Pymol to view the 3D

339  structure and interactions. Polar contacts between the drug and proteins were identified and

340  protein-ligand complexes were exported in pdb format. Protein-ligand complexes were opened in
341 Discovery studio v20.1.0.19295 ®° to create 2D ligand interaction maps which show multiple types of
342 interaction between the protein and ligand in a clear and easily read format.

343  Molecular dynamics

344  Molecular dynamics simulation were carried out using Molecular Operating Environment (MOE)
345  2020.01°%". The B-tubulin structures were optimised using the Protonate3D method with default
346  settings in MOE. The site finder algorithm was then implemented to identify binding pockets within
347  the protein. The pocket corresponding to the known binding region of BZs was selected and dummy
348  atoms were inserted as markers for the docking. Initial docking simulations were run for each BZ
349  with the A. suum B-tubulin isotype A using the dummy atoms as the site of binding. The initial

350  scoring of docking poses used the London dG method to identify the best 30 ligand poses. This was
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followed by final scoring of the best 10 poses using GBVI/WSA dG method. Only ABZSO was used for
the mutated versions of isotype A. The results of the MOE docking were then used for molecular
dynamics simulations using the NPA algorithm and the Amber10: EHT forcefield using default
configurations. Structures were equilibrated for 100 picoseconds (ps) at 300°K before a production
run of 500 ps at 300°K with a time step of 0.002 ps. Once completed, the binding energy of each
interacting amino acid and the overall energy in the binding pocket is calculated.

A selection of timesteps were taken every 50 ps. For each of the selected timesteps the ligand was
constrained, and the structure was minimised to give the binding affinity of the ligand. The pose with
the strongest binding affinity was then selected as the final result and 2D and 3D representations of
the final model were saved. Due to the similarity between species and B-tubulin isotypes, only A.
suum isotype A complexes, and their mutated forms were subject to this analysis. As a point of
comparison with a better studied organism, H. contortus p-tubulin 1 (ACS29564.1), and mutated
versions of this protein containing the BZ resistance associated SNPs were also analysed by
molecular dynamics simulations.

Data availability

The genomic datasets analysed during the current study are available in the Wormbase-Parasite and
NCBI repositories, https://parasite.wormbase.org/Ascaris lumbricoides prieb4950/Info/Index/ ;
https://parasite.wormbase.org/Ascaris suum prjna62057/Info/Index/ ;
https://parasite.wormbase.org/Ascaris suum_prina80881/Info/Index/ ;
https://www.ncbi.nlm.nih.gov/genome/350?genome _assembly id=925559 ;
https://www.ncbi.nlm.nih.gov/genome/11969?genome_assembly id=1482971 .
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535  Figures and Tables

536  Figure 1: Phylogenetic reconstruction of Ascaridomorpha B-tubulins. Phylogenies show the

537  relationship between each isotype from the Ascaris genomes as well as previously published

538  Ascaridomorpha species B-tubulins. (a) shows the phylogeny reconstructed using the peptide

539  sequences under the assumptions of the JTT+G model. (b) shows the nucleotide phylogeny

540  reconstructed under the K2+G+l model. Both phylogenies underwent 1000 bootstraps. Bootstrap
541  values are shown at each node. Sequences collected for members of the Ascaridomorpha have
542  retained the nomenclature given in the database (e.g., Toxocara canis B-tub4B). The species

543  included were Anisakis simplex, Ascaridia galli, Parascaris equorum and Toxocara canis. For the
544  Ascaris sequences identified from the genomes each sample is named by species, isotype and then
545 genome number (e.g., Ascaris suum C3 is the isotype C sequence from A. suum genome 3).

546  Figure 2: Representative amino acid alignment of Ascaris B-tubulins. Alignments for each Ascaris B-
547  tubulin isotype used in docking simulations. The common resistance associated amino acids (F167,
548 E198 and F200Y) and the amino acids that were found to interact with BZs (Q134, L253, N256 and
549  K350) and may be of some importance are highlighted in yellow.

550  Figure 3: Ligand docking amino acid binding frequencies. The amino acids in Ascaris lumbricoides
551  and Ascaris suum that form bonds with benzimidazole drugs in the ligand docking simulations are
552  shown. Green represents an amino acid that interacts with more than one drug and yellow

553 represents an interaction seen only once.

554  Figure 4: 2D and 3D representations of the molecular dynamics simulations of Ascaris suum
555  isotype A models with various benzimidazole drugs. The figure shows the protein-ligand
556 interactions made in each model. In 2D models (left) bonds formed with amino acids are depicted
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557  with dashed lines with the specific type of bond indicated in the key. All amino acids shown in 2D
558  models without bonds are predicted to interact via Van der Waals forces. In the 3D models (right)
559  the protein structure is shown in ribbon format (blue) with only binding amino acids or the

560 resistance associated amino acid shown in full (green). Hydrogen bonds (H-bonds) between protein
561  and ligand are highlighted in red and arene bonds are highlighted in amber. The benzimidazole drugs
562  are shown in yellow. Binding affinity is shown to the right of each model.

563  Figure 5: 2D and 3D representations of the molecular dynamics simulations of Ascaris suum -
564  tubulin isotype A wildtype and mutant models with albendazole sulfoxide. The figure shows the
565  protein-ligand interactions made within each model. In 2D models (left) bonds formed with amino
566  acids are depicted with dashed lines with the specific type of bond indicated in the key. All amino
567  acids shown in 2D models without bonds are predicted to interact via Van der Waals forces. In the
568 3D models (right) the protein structure is shown in ribbon format (blue) with only binding amino
569 acids or the resistance associated amino acid shown in full (green). Hydrogen bonds (H-bonds)
570 between protein and ligand are highlighted in red and arene bonds are highlighted in amber. The
571  drug ABZSO is shown in yellow. Binding affinity is shown to the right of each model. Models shown
572 are (a) wildtype ASA, (b) mutated 167Y ASA, (c) mutated 198A ASA and (d) mutated 200Y ASA. (e)
573  shows the H-bonds between the drug and Y50 and E198 as seen in (d) but also shows a rotated view
574 of this model so that the bond between E198 and 200Y is made visible.

575 Figure 6: 2D and 3D representations of the molecular dynamics simulations of Haemonchus

576  contortus B-tubulin isotype 1 wildtype and mutant models with albendazole sulfoxide. The figure
577  shows the protein-ligand interaction made in each model. In 2D models (left) bonds formed with
578  amino acids are depicted with dashed lines with the specific type of bond indicated in the key. All
579  amino acids shown in 2D models without bonds are predicted to interact via Van der Waals forces.
580 Inthe 3D models (right) the protein structure is shown in ribbon format (blue) with only binding
581  amino acids or the resistance associated amino acid shown in full (green). Hydrogen bonds (H-

582  bonds) between protein and ligand are highlighted in red and arene bonds are highlighted in amber.
583  The drug albendazole sulfoxide (ABZSO) is shown in yellow. Binding affinity shown to the right of
584 each model. Models shown are (a) wildtype Hcon1l, (b) mutated 167Y Hconl, (c) mutated 198A
585 Hconl and (d) mutated 200Y Hconl.

586
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587  Table 1: Binding affinities of wildtype and mutated Ascaris suum and Haemonchus contortus [3-
588  tubulin proteins with benzimidazole drugs. Binding affinities of the protein-drug interactions from
589  molecular dynamics simulations are measured in kcal/mol. The proteins used in these analyses were
590  ASA, the three mutated ASA proteins, Hconl and the three mutated Hconl proteins. ASA = Ascaris
591  suum B-tubulin isotype A, Hconl = Haemonchus contortus B-tubulin isotype-1, ABZ = albendazole,
592  ABZSO = albendazole sulfoxide, FBZ = fenbendazole, MBZ = mebendazole, OXBZ = oxfendazole.

Protein-drug model Affinity (kcal/mol)
ASA-ABZSO -8.16
ASA-F167Y-ABZSO -8.28
ASA-E198A-ABZSO -7.84
ASA-F200Y-ABZSO -8.07
ASA-ABZ -8.02
ASA-FBZ -8.85
ASA-MBZ -8.56
ASA-OXBZ -8.84
Hconl1-ABZSO -8.54
Hconl-F167Y-ABZSO -8.22
Hconl-E198A-ABZSO -7.12
Hcon1-F200Y-ABZSO -8.16
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594  Table 2: Interactions between benzimidazole drugs and specific amino acid amino acids in Ascaris
595  suum and Haemonchus contortus B-tubulin proteins. The proteins used in these analyses were

596  Ascaris suum B-tubulin ASA, the three mutated ASA proteins, Hconl and the three mutated Hconl
597  proteins. The drugs used were ABZ, ABZSO, FBZ, MBZ and OXBZ). The table shows the type of bonds
598 formed (H—hydrogen bond, A —arene bond), the amino acid the bond is formed with and the drug
599  used. The energy of the bonds between the amino acid and drug are given in kcal/mol, the distance
600 between the bonded atoms is given in Angstroms (A) and the number of bonds formed between the
601  amino acid and the drug is shown (frequency). ASA = Ascaris suum B-tubulin isotype A, Hconl =

602  Haemonchus contortus B-tubulin isotype-1, ABZ = albendazole, ABZSO = albendazole sulfoxide, FBZ =
603 fenbendazole, MBZ = mebendazole, OXBZ = oxfendazole.

Protein-drug model Type  Amino acid Drug Energy Distance (A) Frequency
H Glu19s ABZSO 9.4 3.06 2
A Phe200  ABZSO 0.5 4.65 1
ASA-ABZSO H Val236 ABZSO 6.7 2.93 1
A Leu253 ABZSO 2.6 3.97 3
H Lys350 ABZSO -15.7 2.81 1
H Glu198 ABZSO -15.9 2.76 2
ASA-F167Y-ABZSO A Phe200  ABZSO 1.2 4.13 2
H Met257  ABZSO 0.5 3.68 1
H Met316  ABZSO -1.4 3.94 2
ASA-E198A-ABZSO H GIn134 ABZSO 5.3 2.86 1
H Leu253 ABZSO 1.3 3.03 1
ASA-F200Y-ABZSO H Tyrs0 ABZSO 2 2.77 1
H Glu19s ABZSO -18.4 2.77 2
H Glu19s ABZ -18.3 2.82 3
ASA-ABZ A Phe200 ABZ 0.6 4.03 1
A Leu253 ABZ -1.5 3.68 2
A lle368 ABZ 0.5 3.66 1
ASA-FBZ H Glu19s FBZ -16.3 2.84 3
ASA-MBZ H Glu19s MBZ -17.2 2.87 3
A Phe200 MBZ 0.5 3.67 1
H Glu198 OXBZ 7.6 2.89 1
A Phe200 OXBZ 0.5 42 1
ASA-OXBZ A Leu246 OXBZ 0.8 3.99 1
H Asn256 OXBZ 6 2.82 1
H Lys350 OXBZ -1 3.52 1
Hcon1-ABZSO H Glu198 ABZSO -16.9 2.87 3
H Glu19s ABZSO -116 2.75 2
Hcon1-F167Y-ABZSO A Leu253 ABZSO 0.7 3.99 1
H Asn256  ABZSO 5.6 2.82 1
Hcon1-E198A-ABZSO H Leu253 ABZSO 3.5 2.85 1
H Glu198 ABZSO 0.5 3.56 1
Hcon1-F200Y-ABZSO H Cys239 ABZSO 3.1 2.98 1
H Asn256  ABZSO 7.6 2.92 2
H Met316  ABZSO 2 3.54 2
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