

1 **Identification of key interactions of benzimidazole resistance-associated amino acid mutations in**  
2 ***Ascaris*  $\beta$ -tubulins by molecular docking simulations**

3 Ben P. Jones<sup>1</sup>, Arnoud H.M. van Vliet<sup>2</sup>, E. James LaCourse<sup>3</sup>, Martha Betson<sup>1\*</sup>

4 1,2. Department of Veterinary Epidemiology and Public Health<sup>1</sup> and Department of Pathology and  
5 Infectious Diseases<sup>2</sup>, School of Veterinary Medicine, Faculty of Health and Medical Sciences,  
6 University of Surrey, Guildford GU2 7AL, United Kingdom

7 3. Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA,  
8 United Kingdom

9 \*Corresponding author: Martha Betson email: m.betson@surrey.ac.uk

10

11 **Abstract**

12 *Ascaris* species are soil-transmitted helminths that infect humans and livestock mainly in low and  
13 middle-income countries. Benzimidazole (BZ) class drugs have predominated for many years in the  
14 treatment of *Ascaris* infections, but persistent use of BZs has already led to widespread resistance in  
15 other nematodes, and treatment failure is emerging for *Ascaris*. Benzimidazoles act by binding to  $\beta$ -  
16 tubulin proteins and destabilising microtubules. Three mutations in the  $\beta$ -tubulin protein family are  
17 associated with BZ resistance. Seven shared  $\beta$ -tubulin isotypes were identified in *Ascaris*  
18 *lumbricoides* and *A. suum* genomes. Benzimidazoles were predicted to bind to all  $\beta$ -tubulin isotypes  
19 using *in silico* docking, demonstrating that the selectivity of BZs to interact with one or two  $\beta$ -tubulin  
20 isotypes is likely the result of isotype expression levels affecting the frequency of interaction. *Ascaris*  
21  $\beta$ -tubulin isotype A clusters with helminth  $\beta$ -tubulins previously shown to interact with BZ.  
22 Molecular dynamics simulations using  $\beta$ -tubulin isotype A highlighted the key role of amino acid  
23 E198 in BZ- $\beta$ -tubulin interactions. Simulations indicated that mutations at amino acids E198A and  
24 F200Y alter binding of BZ, whereas there was no obvious effect of the F167Y mutation. In conclusion,  
25 the key interactions vital for BZ binding with  $\beta$ -tubulins have been identified and show how  
26 mutations can lead to resistance in nematodes.

27

28

29

30

31

32

33

34

35

36

37

38 **Introduction**

39 The large intestinal roundworm *Ascaris lumbricoides* infects humans and causes ascariasis. *Ascaris*  
40 *lumbricoides* is a parasitic nematode that resides in the small intestine of its host and can persist  
41 there for up to 2 years<sup>1</sup>. Ascariasis is often asymptomatic, but in regions of high *A. lumbricoides*  
42 prevalence there can be significant effects on host wellbeing, with chronic ascariasis leading to  
43 reduced cognitive ability and stunted growth due to malnutrition<sup>2</sup>. The migrating larvae may also  
44 cause pulmonary ascariasis which results in asthma-like symptoms, whilst high worm burdens can  
45 lead to more serious pathologies such as organ blockages, which can result in death<sup>3,4</sup>. As of 2019  
46 there was an estimated 446,000 people infected with *A. lumbricoides* worldwide with an estimated  
47 loss of 754,000 disability adjusted life years (DALYs)<sup>5</sup>. Most of these infections occur in rural and  
48 poor urban areas of low- and middle-income countries, where hygiene and sanitation infrastructure  
49 can be of a lower standard than in higher income areas, and therefore people are more exposed to  
50 infection. *Ascaris suum* is a closely related roundworm of pigs, although it can also be zoonotic<sup>6,7</sup>.  
51 *Ascaris suum* has a wider geographical distribution than *A. lumbricoides* and is one of the most  
52 prevalent intestinal parasites of pigs worldwide<sup>8,9</sup>. *Ascaris suum* infection can lead to production  
53 losses from reduced growth rates, altered muscle composition and the condemnation of livers due  
54 to fibrotic lesions known as milk spots<sup>10,11</sup>.

55 There are only a small number of drugs available to treat ascariasis, which include the  
56 benzimidazoles (BZ), macrocyclic lactones and levamisole<sup>12</sup>. Overreliance on these drugs has led to  
57 the potential for drug resistance. Mass drug administration (MDA) of BZ anthelmintics, such as  
58 albendazole and mebendazole, in endemic regions is the strategy for control and elimination of a  
59 number of helminth diseases in humans, including ascariasis. The most recent 2021-World Health  
60 Organization roadmap for neglected tropical diseases has targeted the elimination of ascariasis as a  
61 public health problem in 96 countries by reaching 75% coverage of MDA in targeted populations<sup>13</sup>.  
62 Whilst repeated treatment in endemic communities may be able to reduce parasite burdens, it does  
63 not prevent reinfection, and it is well-established that pressure applied by MDA can lead to the  
64 evolution of drug resistance<sup>14</sup>. Benzimidazole resistance has been detected in many intestinal  
65 parasites of both veterinary and human importance, and the first signs of reduced susceptibility in  
66 *Ascaris* have been reported<sup>15-24</sup>. To date, BZ resistance has been linked to mutations in β-tubulin  
67 proteins, more specifically at amino acids 167, 198 or 200, based on the *Haemonchus contortus* β-  
68 tubulin reference sequence (accession number: AAA29170.1). Nematodes usually encode multiple β-  
69 tubulin isotypes but not all are expressed equally, with some being life-stage or cell-type specific<sup>25</sup>.  
70 One of the highly expressed isotypes, β-tubulin isotype 1, is commonly linked to resistance in  
71 parasitic nematodes<sup>16,18-21,26-29</sup>. Little is known about the contribution of other β-tubulin isotypes to  
72 drug interactions and resistance. Based on evidence from *Caenorhabditis elegans*, it is likely that  
73 most of these isotypes are redundant or have specialised roles within specific cells or at certain  
74 developmental stages<sup>30</sup>. So far, no work has been done to characterise the roles of the β-tubulins in  
75 ascarids or other common STHs and therefore the role they play in drug mechanisms and the  
76 development of BZ resistance is still unknown.

77 One of the biggest hindrances to answering these questions is the ability to culture the full lifecycle  
78 of these parasites *in vitro*, as well as the ethical considerations and costs associated with studying  
79 parasites in animal models. *In silico* approaches could help to solve these problems by predicting the  
80 differences seen between proteins and how they interact with drugs. *In silico* docking is a technique  
81 that uses computational software to try and mimic biological systems and monitor molecular  
82 interactions. A common use is to model protein-ligand docking to theoretically assess the ability of a  
83 ligand to bind within the active sites of a protein and to develop novel drugs<sup>31</sup>. *In silico* docking has

84 been performed using the  $\beta$ -tubulins of several helminths including *H. contortus*, *Trichinella spiralis*  
85 and filarial nematodes<sup>32-35</sup>. These studies have highlighted the changes in protein conformation that  
86 occur when resistance mutations are present and how that affects drug interactions. To date these  
87 methods have not been applied to *Ascaris*, nor has any study looked into the differences that may be  
88 seen between the individual  $\beta$ -tubulin isotypes within a genus or species.

89 The aims of this study were to investigate the interactions between commonly used BZ drugs and  
90 *Ascaris*  $\beta$ -tubulins, and identify what changes occur when mutations are present. The first objective  
91 was to confirm that BZ binding in *Ascaris* was similar to that of other helminths. The second  
92 objective was to compare the binding of these drugs in each of the  $\beta$ -tubulin isotypes present in  
93 *Ascaris*. The final objective was to repeat these experiments in proteins that contain the common  
94 resistance-associated mutations, to gain an insight into changes that lead to resistance.

## 95 **Results**

### 96 **Identification of *Ascaris* $\beta$ -tubulin isotypes**

97 Twenty-one  $\beta$ -tubulin sequences were retrieved from NCBI, which were reduced to six after removal  
98 of partial and duplicated sequences. BLAST searches against the three *Ascaris* genomes in  
99 Wormbase-Parasite identified a total of 122 matches, 51 of which were  $\beta$ -tubulins based on  
100 nomenclature and identity to reference sequence, with the remainder  $\alpha$ -tubulins. Of the 51  $\beta$ -  
101 tubulins, after duplicates had been removed, there were 8 sequences remaining from the *A.*  
102 *lumbricoides* genome (GCA\_000951055.1), seven from one *A. suum* genome (GCA\_000298755.1)  
103 and six from a second *A. suum* genome (GCA\_000187025.3). To extend the search for more distantly  
104 related tubulins, the Exonerate program predicted the presence several additional tubulin  
105 sequences in the three *Ascaris* genomes. A search of the Conserved Domain Database revealed that  
106 most were  $\alpha$ -tubulins, but a new  $\beta$ -tubulin sequence was identified for *A. suum* (E') and a more  
107 complete sequence for *A. lumbricoides* B' sequence was identified and added to the sequences used  
108 for phylogenetic analysis (Supplementary Table S1). The isotype G identified from *A. suum*  
109 (GCA\_000187025.3) was found to be split into two consecutive genes in the genome annotation,  
110 although manual alignment of these two genes with isotype G from *A. lumbricoides* confirmed that  
111 these two genes represented two halves of the full gene with an incorrect stop codon predicted at  
112 the end of an exon (at position 169-171 of the cDNA). Therefore, these two consecutive genes were  
113 concatenated and used as the *A. suum* isotype G gene for all further work (Supplementary Fig S1).  
114 The protein to gene alignment undertaken with the Exonerate program on the two newly available  
115 genomes (*A. lumbricoides* GCA\_015227635.1 and *A. suum* GCA\_013433145.1) found sequences for  
116 all isotypes, with the exception of isotype G in *A. lumbricoides*. These sequences were added to the  
117 existing data and a phylogeny was created which included  $\beta$ -tubulins from other Ascaridomorpha  
118 species. A full list of sequences used can found in Supplementary Tables 1 and 2.

119 The phylogenetic tree showed a clear separation into definitive isotypes that appear to have  
120 diverged early in the evolution of the Ascaridomorpha infraorder (Fig. 1). When phylogenetic trees  
121 for the amino acid and nucleotide sequences were compared, the structuring of the isotype clades  
122 were not consistent, although similar relationships were observed between sequences within clades.  
123 *Ascaris suum* isotype F3 had one truncated exon and so did not fit into the group as well as other  
124 sequences. *Ascaris suum* isotype E' was also seen to be divergent from the rest of the isotype E  
125 group, and as this sequence was only found in one genome it was not designated its own isotype.  
126 The effects of these sequence variations were seen more clearly in the phylogenetic tree based on  
127 amino acid sequences.

128 Only the seven isotypes that had homologues in both *Ascaris* species were used in further analysis.  
129 Isotype A clustered with sequences from other species, such as *Parascaris*, that have been previously  
130 linked with BZ interaction through gene expression studies, and is the isotype which is currently used  
131 in diagnostic tests for BZ resistance in *Ascaris*<sup>15,16,22,36,37</sup>. For this reason, isotype A was used as the  
132 focus of molecular docking simulations. Interestingly the isotype previously designated as isotype-1  
133 in *A. suum* did not fall within isotype A, but instead was found to be isotype C, suggesting the past  
134 labelling of this sequence as isotype-1 was incorrect<sup>20</sup>.

135 ***In silico* docking shows similar binding for all β-tubulin isotypes**

136 *In silico* ligand docking simulations were performed on the seven β-tubulin isotypes shared by both  
137 *Ascaris* species. An alignment of each isotype highlighting some active site amino acids can be seen  
138 in Figure 2. Five BZ drugs were docked into the active sites of each isotype and simulations showed a  
139 consistent trend between species, drug and isotype. However, the 3D structures and the 2D maps  
140 were not always in complete agreement when labelling hydrogen bonds (H-bonds). Hydrogen bond  
141 formation between BZs and amino acids Q134, E198 and V236 were the most common interactions  
142 and were consistently seen in all isotypes. Amino acid A315 and the amino acids at position 165  
143 were also seen numerous times in docking poses. In the majority of cases amino acid 165 was a  
144 serine (S), although in isotypes E and F, amino acid 165 was asparagine (N) and threonine (T)  
145 respectively. These changes did not cause a change to the overall amino acid properties as all three  
146 amino acids are polar (neutral) hydrophobic amino acids, and similar interaction were observed  
147 between the drugs and all three amino acids. Other amino acids interacted with the BZs in some  
148 isotypes, and although these were not consistently seen, they could be of some importance and  
149 would require further investigation (Fig. 3).

150 Isotype D had tyrosine (Y) at position 200 and this formed bonds with glutamate (E) at position 198.  
151 Isotype D was the only isotype to naturally contain tyrosine at position 200 which has been linked to  
152 resistance when seen in other β-tubulins<sup>21,27</sup>. Recent work in *Parascaris* has shown that having  
153 tyrosine as the wildtype amino acid in this β-tubulin isotype is not restricted to *Ascaris* only<sup>38</sup>.

154 It was only in isotype D and the mutated F200Y models that binding was seen between the drugs  
155 and amino acid 200. In the mutated F167Y protein models, the mutation of phenylalanine (F) to  
156 tyrosine resulted in extra bonds being formed with the drugs in most cases. In the mutated E198A  
157 models no bonds were formed with E198A in any drug model. The models with the F200Y mutation  
158 showed a bond between the mutated F200Y amino acid and E198. The full details of the binding of  
159 each drug to each individual isotype are provided in Supplementary Figures S2 – S21.

160 **Molecular dynamics simulations highlight BZ resistance mechanisms**

161 Molecular dynamics simulations calculate the pressure and heat energies that are likely found within  
162 a physiological system and apply these to the protein-drug structure to mimic natural systems over a  
163 period of time to find the optimum binding poses. These simulations show how protein-drug  
164 interactions fluctuate over a period of time and give an indication of how these molecules may react  
165 in a physiological system. As the molecular docking simulations showed no difference between  
166 species or isotype, molecular dynamics simulations were performed only on *A. suum* isotype A.  
167 Simulations showed no major changes from the initial ligand docking. For *A. suum* isotype A, bonds  
168 between the protein and drugs formed with E198 in all models. Several other bonds were seen  
169 depending on the drug, but all models had similar binding affinities (Fig. 4, Table 1 and Table 2).

170 In the E198A mutation model there was a reduced binding affinity and complete loss of bonding  
171 with amino acid E198A, although weaker bonds still formed with other common amino acids (Fig. 5c,

172 Table 1 and Table 2). No difference in drug interactions were seen in the F200Y model compared to  
173 the wildtype model, although the mutated F200Y amino acid did form a self-binding interaction with  
174 E198 (Fig. 5e). In the F167Y model the additional bond formed with F167Y in the ligand docking  
175 models was not seen and there was no direct effect of this mutation on drug binding (Fig. 5).

176 Resistance to BZs has been best documented in *H. contortus* and previous *in silico* modelling  
177 simulations have been performed on this species to explore BZ resistance mechanisms<sup>32,34</sup>. For  
178 these reasons we performed molecular dynamics simulations on *H. contortus*  $\beta$ -tubulin isotype-1 to  
179 compare our results with previous studies in this model organism. All simulations using *H. contortus*  
180 models compared well with *A. suum* models (Fig. 6). For the wildtype susceptible protein, H-bonds  
181 formed with E198 (Fig. 6a). There was no direct interaction observed between the drug and the  
182 F167Y amino acid amino acid (Fig. 6). In the E198A models reduced binding affinity was observed,  
183 and a loss of interaction with E198A with only weak bonds formed with other amino acids (Fig. 6c,  
184 Table 2). Finally, the F200Y mutation resulted in interactions between E198 and the F200Y amino  
185 acid amino acids and drug interactions with E198 were weakened (Fig. 6d, Table 2).

## 186 Discussion

187 The widespread resistance to BZs in ruminant nematodes such as *H. contortus* has illustrated the  
188 effects that resistance can have on both animal health and economic returns<sup>39</sup>. We have not yet  
189 seen widespread resistance to BZs in *Ascaris* in either humans or pigs, although, with increasing drug  
190 pressure to reach the 2030 World Health Organisation targets, limited studies on drug efficacy in  
191 either humans or pigs, and limited alternative treatments, a better understanding of the  
192 mechanisms leading towards BZ resistance in *Ascaris* is urgently required. This work identified seven  
193  $\beta$ -tubulin isotypes shared by both *Ascaris* species considered here, and compared, *in silico*, BZ  
194 interactions between them. We observed that all  $\beta$ -tubulin isotypes are predicted to interact with  
195 BZs in a similar manner, except for one isotype that contains a resistance-associated amino acid at  
196 position 200 in its wildtype protein. *In silico* ligand docking and molecular dynamics simulations  
197 highlighted E198 as a key amino acid in BZ-binding, with E198A mutations leading to weaker protein-  
198 drug interaction. We also found that the common resistance associated F200Y mutation acts  
199 indirectly by binding to E198 and reducing drug stability within the binding pocket.

200 By utilising multiple databases, we were able to identify seven  $\beta$ -tubulin isotypes from both *A. suum*  
201 and *A. lumbricoides*. Phylogenetic analysis showed that *Ascaris*  $\beta$ -tubulin isotypes were shared with  
202 other Ascaridomorpha species, and it is isotype A that is used as a marker of BZ resistance and is  
203 usually referred to as isotype-1<sup>15,16,22,36,37</sup>. The identification of isotype A as the main group involved  
204 in BZ interaction allowed *in silico* work to focus on this isotype. Concurrent work in *Ascaris* by Roose  
205 *et al.*<sup>40</sup> also found these same  $\beta$ -tubulin isotypes in both species and identified isotype A as the  
206 isotype used in previous surveillance studies. Isotype A was shown to be the most highly expressed  
207  $\beta$ -tubulin isotype and therefore one of the main isotypes likely to be involved in BZ interaction<sup>40</sup>.  
208 Whilst the expression levels of the  $\beta$ -tubulin isotypes in *Ascaris* are now known, the contribution of  
209 these to drug mechanisms of action have not yet been defined<sup>40</sup>. Our work has shown that the drug  
210 interaction with these isotypes does not differ on the whole, with the exception of isotype D.  
211 Therefore, it likely that the contribution of each isotype to drug-binding is relative to the expression  
212 level during the different stages of the *Ascaris* life-cycle.

213 The most common binding amino acids predicted from molecular dynamics simulations were E198,  
214 L253 and N256. Several other amino acids interacted with the BZs, although these were not  
215 consistent. Most of these interactions had weak binding affinity, although N256 and K350 were  
216 shown to form stronger bonds and could be of potential importance. It has been assumed that E198  
217 is the key binding amino acid for BZs, and indeed the key role E198 has in BZ binding and the self-

218 binding interaction between amino acid E198 and F200Y in the mutated models was observed<sup>33,34</sup>.  
219 By investigating binding energies at each amino acid it has been shown here that the bonds between  
220 the BZs and E198 are much weaker in the *H. contortus* F200Y mutated models than in *Ascaris*  
221 models. This has not been demonstrated before, and adds further evidence to the theory that  
222 interactions between E198 and F200Y destabilize BZ binding<sup>34</sup>.

223 Our results suggest that E198 is the key amino acid in  $\beta$ -tubulin for BZ binding in *Ascaris*, as  
224 interactions were seen in every model except for the mutated E198A structure. Bonds with E198  
225 also showed the strongest binding affinity; at least three times as strong as any other amino acid  
226 interaction in most cases. In models that contained the E198A mutation, the change led to a loss of  
227 interaction at this important site. In F200Y simulations, the self-binding between E198 and F200Y  
228 was observed, which could lead to the blocking or destabilising of interactions between BZs and  
229 E198, resulting in resistance to BZs. Interestingly, the binding energy between BZ and E198 in the *A.*  
230 *suum* F200Y models was not reduced as much as it was for *H. contortus*. In F167Y models there was  
231 no clear change, and this lack of any clear negative effect may explain why the F167Y mutation has  
232 been found in field isolates of *A. lumbricoides* without any effect on drug susceptibility<sup>23</sup>. However,  
233 in *H. contortus* F167Y models, there was also no effect on binding, although in *H. contortus* this  
234 mutation is known to cause resistance, which suggests that the models may still be unable to predict  
235 more complicated mechanisms of resistance. It has been hypothesised that the F167Y mutation  
236 leads to self-binding with amino acids that close off the binding pocket and prevent the drugs from  
237 entering<sup>34</sup>. In our work no such self-binding could be seen between the tyrosine at position 167 and  
238 any other amino acids.

239 Benzimidazole resistance is common for *H. contortus* and other clade V nematodes but is yet to  
240 become a common problem for *Ascaris*. In all the searches for drug resistance in *Ascaris* to date only  
241 the three common resistance associated mutations, F167Y, E198A and F200Y have been  
242 investigated, which means the contributions of other mutations that may affect the BZ susceptibility  
243 will be missed. There are reports of Ascarid helminths displaying reduced susceptibility to BZ, but do  
244 not contain these classical mutations, and hence there is a possibility that there may be other  
245 mechanisms or mutations involved in BZ resistance<sup>15,38</sup>. In this study several other amino acids were  
246 identified as possible candidates, such as N256 and K350 (see Fig. 3 and Table 2 for full list of  
247 interacting amino acids), that may play an important role in drug binding and may lead to BZ  
248 resistance if mutations occur.

249 In conclusion, we have identified the full repertoire of  $\beta$ -tubulin genes from *A. lumbricoides* and *A.*  
250 *suum* and have shown that whilst almost all have the potential to interact with BZs, there is one  
251 isotype, isotype A, that is likely key to BZ binding. By identifying the importance of isotype A, our  
252 findings will allow future studies to refine and focus their approach to studying the effects of BZs in  
253 non-clade V nematodes and monitor resistance development. Our results show that E198 is a vital  
254 amino acid for BZ binding of  $\beta$ -tubulins in *Ascaris*, as has been seen for other helminths species; and  
255 the E198A and F200Y mutations both take effect by disrupting this key anchor point. However, it  
256 appears that in *H. contortus* the F200Y mutation causes more disruption to E198 binding than is seen  
257 in *Ascaris* and could be the key difference between the two groups of parasites. This new  
258 information may prove to be of significance for the molecular monitoring and modelling of  
259 resistance in *Ascaris* and could be key to understanding why resistance is so commonly reported in  
260 strongyle nematodes but as yet rarely so in Ascaridomorpha.

261 **Methods**

262 Five *Ascaris* genomes: two for *A. lumbricoides* (GCA\_000951055.1 and GCA\_015227635.1) and three  
263 for *A. suum* (GCA\_000298755.1, GCA\_000187025.3 and GCA\_013433145.1) were analysed to  
264 identify potential  $\beta$ -tubulin isotypes. Based on previous literature it was found that one *A.*  
265 *lumbricoides*  $\beta$ -tubulin gene had been characterised and deposited in the National Center for  
266 Biotechnology Information (NCBI) along with 21  $\beta$ -tubulin sequences from *A. suum*<sup>20,22,41</sup>. These  
267 sequences were retrieved from the database and the *A. suum* sequences were aligned with each  
268 other to remove the partial sequences that were duplicates of the longer sequences. The  $\beta$ -tubulin  
269 gene from *A. lumbricoides* (EU814697.1) retrieved from NCBI was used to carry out BLAST<sup>42</sup>  
270 searches against the three available *Ascaris* genomes in WormBase-Parasite (GCA\_000187025.3,  
271 GCA\_000298755.1 and GCA\_000951055.1)<sup>43,44</sup>. To ensure that no  $\beta$ -tubulin genes had been missed,  
272 the paralogues of each gene were checked, and the search term “tubulin beta” was used for each  
273 annotated genome. An  $\alpha$ -tubulin sequence for each species was also retrieved to be used as the  
274 outgroup in further analysis.

275 Exonerate v2.2.0<sup>45</sup> protein2genome was used to identify any  $\beta$ -tubulin genes within the *Ascaris*  
276 genomes that had not been detected by BLAST or in the genome annotation. Each isotype retrieved  
277 from the database search was run against all three genomes with the best 10 results being saved  
278 from each test. This number of tests were saved as we found up to eight potential isotypes from the  
279 database searches, and this allowed for the potential of at least two further sequences to be  
280 identified. Any new sequence found by Exonerate was tested in the Conserved Domain Database<sup>46</sup>  
281 to check that the sequence was a  $\beta$ -tubulin gene and then any new sequences predicted to be  $\beta$ -  
282 tubulins were added to the  $\beta$ -tubulin dataset. The two newest genomes (*A. lumbricoides*  
283 GCA\_015227635.1 and *A. suum* GCA\_013433145.1) had not been fully annotated and so Exonerate  
284 protein2genome was used to identify  $\beta$ -tubulin genes.

285 After all the sequences, both nucleotide and peptide, had been collected, they were aligned with  
286 tubulin sequences from other Ascaridomorpha using the MUSCLE server (available at:  
287 <https://www.ebi.ac.uk/Tools/msa/muscle/> [Accessed 09 December 2020])<sup>47</sup> and a maximum  
288 likelihood phylogeny was created with MEGA version X<sup>48</sup>, using the JTT+G model for the amino acid  
289 sequences and the K2+G+I model for the nucleotide sequences. Each phylogeny was bootstrapped  
290 1000 times. Genomes are numbered in the phylogenies as follows: *A. lumbricoides* 1  
291 (GCA\_000951055.1); *A. lumbricoides* 2 (GCA\_015227635.1); *A. suum* 1 (GCA\_000298755.1); *A. suum*  
292 2 (GCA\_000187025.3) and *A. suum* 3 (GCA\_013433145.1). The peptide sequences of these genes  
293 were used to create homology models.

#### 294 Homology models

295 Homology models were created for all  $\beta$ -tubulin isotypes of *A. lumbricoides* and *A. suum* using  
296 SWISS-MODEL server (available at: <https://swissmodel.expasy.org/> [Accessed 22 February 2021])  
297<sup>49,50</sup>. The  $\beta$ -tubulin crystal structure 6fkj was used as the reference structure. This structure was  
298 chosen as it is an experimentally determined crystal structure containing multiple  $\alpha$ / $\beta$ -tubulin  
299 dimers with a ligand bound in the colchicine binding site in a similar way as predicted previously for  
300 BZs. The ligand bound to this structure is a cyclohexanedione derivative called TUB075 used as a  
301 tubulin targeting, antiproliferation cancer drug<sup>51</sup>. Sequences for  $\beta$ -tubulin isotype A were edited to  
302 provide sequences with the common BZ resistance associated mutations (F167Y, E198A and F200Y)  
303<sup>17,24</sup>. These were again submitted to SWISS-MODEL to create homology models. This isotype was  
304 used as it was this isotype that had been identified as being highly expressed in previous studies of  
305 Ascaridomorpha<sup>37</sup>.

#### 306 Quality checks

307 Homology models were submitted to multiple servers for quality checks to confirm the validity of  
308 structures created in SWISS-MODEL and help predict any potentially erroneous sites. ProSA-web  
309 (Protein Structure analysis) server (available at: <https://prosa.services.came.sbg.ac.at/prosa.php>  
310 [Accessed 15 March 2021])<sup>52,53</sup> assesses protein model quality. Verify3D<sup>54,55</sup> compares the 3D  
311 structure of the model to the 1D peptide sequence. PROCHECK v3.5<sup>56</sup> analyses the structural  
312 geometry of the protein structures using Ramachandran plots. Both Verify3D and PROCHECK are  
313 part of the UCLA SAVES v6.0 server (available at: <https://saves.mbi.ucla.edu/> [Accessed 15 March  
314 2021]).

315 **Energy minimisation**

316 Structures were minimised using the YASARA energy minimization server (available at:  
317 <http://www.yasara.org/minimizationserver.htm> [Accessed 25 February 2021])<sup>57</sup>. This server uses  
318 the YASARA forcefield to optimise the positions of atoms and reduce interatomic energies. After all  
319 structures were minimised quality checks were performed again. The quality checks of minimised  
320 homology models show acceptable results; with Z-scores within the expected range in ProSA,  
321 verify3D scores over 80% and no errors found with PROCHECK.

322 ***In-silico* ligand docking**

323 3D ligand structure files for commonly used BZ drugs were downloaded from PubChem<sup>58</sup> in SDF  
324 format. The drugs used include three of the most commonly used BZ, albendazole (ABZ),  
325 mebendazole (MBZ) and fendazole (FBZ), as well as albendazole sulfoxide (ABZSO) and oxfendazole  
326 (OXBZ), which are the active metabolites of ABZ and FBZ respectively. These were converted into  
327 pdb format using Pymol v2.3.4<sup>59</sup>. Pdb structures of ligands were uploaded to Autodock tools v1.5.6  
328<sup>60,61</sup>. The number of allowable rotatable bonds was set to maximum, and structures were saved in  
329 pdbqt format suitable for docking simulations. Protein models were uploaded to Autodock tools to  
330 be prepared for docking simulations. Water was deleted from the protein structures; polar  
331 hydrogens were added, and structures were saved in pdbqt format. The docking grid was centred on  
332 amino acid 200 of the protein as this is the primary amino acid believed to be associated with BZ  
333 resistance. Grid spacings were set to 1 Angstrom (Å) and box size was set to 24Å for x, y and z sizes.  
334 This grid box encased all three resistance associated amino acids within a small pocket of the protein  
335 and the co-ordinates of the box were saved for later use.

336 Autodock vina v1.1.2<sup>62</sup> was used to perform *in-silico* ligand docking simulations between the β-  
337 tubulin isotypes and BZ drugs, using the grid co-ordinates and spacings to identify the target binding  
338 region and an exhaustiveness level of 8. Docking results were opened in Pymol to view the 3D  
339 structure and interactions. Polar contacts between the drug and proteins were identified and  
340 protein-ligand complexes were exported in pdb format. Protein-ligand complexes were opened in  
341 Discovery studio v20.1.0.19295<sup>63</sup> to create 2D ligand interaction maps which show multiple types of  
342 interaction between the protein and ligand in a clear and easily read format.

343 **Molecular dynamics**

344 Molecular dynamics simulation were carried out using Molecular Operating Environment (MOE)  
345 2020.01<sup>64</sup>. The β-tubulin structures were optimised using the Protonate3D method with default  
346 settings in MOE. The site finder algorithm was then implemented to identify binding pockets within  
347 the protein. The pocket corresponding to the known binding region of BZs was selected and dummy  
348 atoms were inserted as markers for the docking. Initial docking simulations were run for each BZ  
349 with the *A. suum* β-tubulin isotype A using the dummy atoms as the site of binding. The initial  
350 scoring of docking poses used the London dG method to identify the best 30 ligand poses. This was

351 followed by final scoring of the best 10 poses using GBVI/WSA dG method. Only ABZSO was used for  
352 the mutated versions of isotype A. The results of the MOE docking were then used for molecular  
353 dynamics simulations using the NPA algorithm and the Amber10: EHT forcefield using default  
354 configurations. Structures were equilibrated for 100 picoseconds (ps) at 300°K before a production  
355 run of 500 ps at 300°K with a time step of 0.002 ps. Once completed, the binding energy of each  
356 interacting amino acid and the overall energy in the binding pocket is calculated.

357 A selection of timesteps were taken every 50 ps. For each of the selected timesteps the ligand was  
358 constrained, and the structure was minimised to give the binding affinity of the ligand. The pose with  
359 the strongest binding affinity was then selected as the final result and 2D and 3D representations of  
360 the final model were saved. Due to the similarity between species and  $\beta$ -tubulin isotypes, only A.  
361 *suum* isotype A complexes, and their mutated forms were subject to this analysis. As a point of  
362 comparison with a better studied organism, *H. contortus*  $\beta$ -tubulin 1 (ACS29564.1), and mutated  
363 versions of this protein containing the BZ resistance associated SNPs were also analysed by  
364 molecular dynamics simulations.

365 **Data availability**

366 The genomic datasets analysed during the current study are available in the Wormbase-Parasite and  
367 NCBI repositories, [https://parasite.wormbase.org/Ascaris\\_lumbricoides\\_prjeb4950/Info/Index/](https://parasite.wormbase.org/Ascaris_lumbricoides_prjeb4950/Info/Index/) ;  
368 [https://parasite.wormbase.org/Ascaris\\_suum\\_prjna62057/Info/Index/](https://parasite.wormbase.org/Ascaris_suum_prjna62057/Info/Index/) ;  
369 [https://parasite.wormbase.org/Ascaris\\_suum\\_prjna80881/Info/Index/](https://parasite.wormbase.org/Ascaris_suum_prjna80881/Info/Index/) ;  
370 [https://www.ncbi.nlm.nih.gov/genome/350?genome\\_assembly\\_id=925559](https://www.ncbi.nlm.nih.gov/genome/350?genome_assembly_id=925559) ;  
371 [https://www.ncbi.nlm.nih.gov/genome/11969?genome\\_assembly\\_id=1482971](https://www.ncbi.nlm.nih.gov/genome/11969?genome_assembly_id=1482971) .

372 **References**

- 373 1. CDC. Ascariasis - Biology. <https://www.cdc.gov/parasites/ascariasis/biology.html> (2019).
- 374 2. Brooker, S. J. & Pullan, R. L. *Ascaris lumbricoides* and Ascariasis: estimating numbers infected  
375 and burden of disease. in *Ascaris: The Neglected Parasite* 343–362 (Elsevier, 2013).  
376 doi:10.1016/B978-0-12-396978-1.00013-6.
- 377 3. de Silva, N. R., Guyatt, H. L. & Bundy, D. A. P. Morbidity and mortality due to *Ascaris*-induced  
378 intestinal obstruction. *Trans. R. Soc. Trop. Med. Hyg.* **91**, 31–36 (1997).
- 379 4. Gelpi, A. P. & Musta, A. *Ascaris* pneumonia. *Am. J. Med.* **44**, 337–389 (1968).
- 380 5. The Institute for Health Metrics and Evaluation. Ascariasis — Level 4 cause | Institute for  
381 Health Metrics and Evaluation.  
382 [http://www.healthdata.org/results/gbd\\_summaries/2019/ascariasis-level-4-cause](http://www.healthdata.org/results/gbd_summaries/2019/ascariasis-level-4-cause).
- 383 6. Betson, M., Nejsum, P., Bendall, R. P., Deb, R. M. & Stothard, J. R. Molecular epidemiology of  
384 ascariasis: A global perspective on the transmission dynamics of *Ascaris* in people and pigs. *J.*  
385 *Infect. Dis.* **210**, 932–941 (2014).
- 386 7. Palma, A. *et al.* Molecular analysis of human- and pig-derived *Ascaris* in Honduras. *J.*  
387 *Helminthol.* **93**, 154–158 (2019).
- 388 8. Eijck, I. A. J. M. J. M. & Borgsteede, F. H. M. M. A survey of gastrointestinal pig parasites on  
389 free-range, organic and conventional pig farms in The Netherlands. *Vet. Res. Commun.* **29**,  
390 407–414 (2005).
- 391 9. Katajam, K. K., Thamsborg, S. M., Dalsgaard, A., Kyvsgaard, N. C. & Mejer, H. Environmental  
392 contamination and transmission of *Ascaris suum* in Danish organic pig farms. *Parasites and*

393                    *Vectors* **9**, 1–12 (2016).

394    10. Massaglia, S. *et al.* Impact of swine ascariasis on feeding costs and revenues in farms  
395                    associated with the Italian PDOS dry-cured hams industry. *Qual. - Access to Success* **19**, 146–  
396                    154 (2018).

397    11. Guardone, L. *et al.* A retrospective study after 10 years (2010–2019) of meat inspection  
398                    activity in a domestic swine abattoir in tuscany: The slaughterhouse as an epidemiological  
399                    observatory. *Animals* **10**, 1907 (2020).

400    12. World Health Organization. *World Health Organization model list of essential medicines for  
401                    children-8th List*. <https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.03>  
402                    (2021).

403    13. World Health Organization. *Ending the neglect to attain the Sustainable Development Goals:  
404                    a road map for neglected tropical diseases 2021–2030*. Geneva: World Health Organization  
405                    ([https://www.who.int/neglected\\_diseases/Revised-DraftNTD-Roadmap-23Apr2020.pdf](https://www.who.int/neglected_diseases/Revised-DraftNTD-Roadmap-23Apr2020.pdf)).  
406                    (WHO Press, 2020).

407    14. Prichard, R. K. *et al.* A research agenda for helminth diseases of humans: intervention for  
408                    control and elimination. *PLoS Negl. Trop. Dis.* **6**, e1549 (2012).

409    15. Krücken, J. *et al.* Reduced efficacy of albendazole against *Ascaris lumbricoides* in Rwandan  
410                    schoolchildren. *Int. J. Parasitol. Drugs Drug Resist.* **7**, 262–271 (2017).

411    16. Furtado, L. F. V. *et al.* First identification of the benzimidazole resistance-associated F200Y  
412                    SNP in the betatubulin gene in *Ascaris lumbricoides*. *PLoS One* **14**, 1–11 (2019).

413    17. Von Samson-Himmelstjerna, G., Blackhall, W. J., McCarthy, J. S. & Skuce, P. J. Single  
414                    nucleotide polymorphism (SNP) markers for benzimidazole resistance in veterinary  
415                    nematodes. *Parasitology* **134**, 1077–1086 (2007).

416    18. Redman, E. *et al.* The emergence of resistance to the benzimidazole anthelmintics in parasitic  
417                    nematodes of livestock is characterised by multiple independent hard and soft selective  
418                    sweeps. *PLoS Negl. Trop. Dis.* **9**, 1–24 (2015).

419    19. Furtado, L. F. V., Bello, A. C. P. de P., dos Santos, H. A., Carvalho, M. R. S. & Rabelo, É. M. L.  
420                    First identification of the F200Y SNP in the  $\beta$ -tubulin gene linked to benzimidazole resistance  
421                    in *Ancylostoma caninum*. *Vet. Parasitol.* **206**, 313–316 (2014).

422    20. Demeler, J. *et al.* Phylogenetic characterization of  $\beta$ -tubulins and development of  
423                    pyrosequencing assays for benzimidazole resistance in cattle nematodes. *PLoS One* **8**, (2013).

424    21. Melville, L. A. *et al.* Large scale screening for benzimidazole resistance mutations in  
425                    *Nematodirus battus*, using both pyrosequence genotyping and deep amplicon sequencing,  
426                    indicates the early emergence of resistance on UK sheep farms. *Int. J. Parasitol. Drugs Drug  
427                    Resist.* **12**, 68–76 (2020).

428    22. Diawara, A. *et al.* Assays to detect  $\beta$ -tubulin codon 200 polymorphism in *Trichuris trichiura*  
429                    and *Ascaris lumbricoides*. *PLoS Negl. Trop. Dis.* **3**, (2009).

430    23. Diawara, A. *et al.* Association between response to albendazole treatment and  $\beta$ -tubulin  
431                    genotype frequencies in soil-transmitted helminths. *PLoS Negl. Trop. Dis.* **7**, (2013).

432    24. Furtado, L. F. V., de Paiva Bello, A. C. P. & Rabelo, É. M. L. Benzimidazole resistance in  
433                    helminths: From problem to diagnosis. *Acta Trop.* **162**, 95–102 (2016).

434    25. Saunders, G. I. *et al.* Characterization and comparative analysis of the complete *Haemonchus*

435                   *contortus*  $\beta$ -tubulin gene family and implications for benzimidazole resistance in strongylid  
436                   nematodes. *Int. J. Parasitol.* **43**, 465–475 (2013).

437           26. Mottier, M. de L. & Prichard, R. K. Genetic analysis of a relationship between macrocyclic  
438                   lactone and benzimidazole anthelmintic selection on *Haemonchus contortus*.  
439                   *Pharmacogenet. Genomics* **18**, 129–140 (2008).

440           27. Kwa, M. S. G., Veenstra, J. G. & Roos, M. H. Benzimidazole resistance in *Haemonchus*  
441                   *contortus* is correlated with a conserved mutation at amino acid 200 in  $\beta$ -tubulin isotype 1.  
442                   *Mol. Biochem. Parasitol.* **63**, 299–303 (1994).

443           28. Ghisi, M., Kaminsky, R. & Mäser, P. Phenotyping and genotyping of *Haemonchus contortus*  
444                   isolates reveals a new putative candidate mutation for benzimidazole resistance in  
445                   nematodes. *Vet. Parasitol.* **144**, 313–320 (2006).

446           29. Silvestre, A. & Cabaret, J. Mutation in position 167 of isotype 1  $\beta$ -tubulin gene of  
447                   Trichostrongylid nematodes: role in benzimidazole resistance? *Mol. Biochem. Parasitol.* **120**,  
448                   297–300 (2002).

449           30. Hurd, D. D. Tubulins in *C. elegans*. in *WormBook* 1–32 (2018).  
450                   doi:10.1895/wormbook.1.182.1.

451           31. Dar, A. M. & Mir, S. Molecular docking: approaches, types, applications and basic challenges.  
452                   *J. Anal. Bioanal. Tech.* **2017** *82* **8**, 1–3 (2017).

453           32. Robinson, M. W., McFerran, N., Trudgett, A., Hoey, L. & Fairweather, I. A possible model of  
454                   benzimidazole binding to  $\beta$ -tubulin disclosed by invoking an inter-domain movement. *J. Mol.*  
455                   *Graph. Model.* **23**, 275–284 (2004).

456           33. Aguayo-Ortiz, R. *et al.* Towards the identification of the binding site of benzimidazoles to  $\beta$ -  
457                   tubulin of *Trichinella spiralis*: Insights from computational and experimental data. *J. Mol.*  
458                   *Graph. Model.* **41**, 12–19 (2013).

459           34. Aguayo-Ortiz, R. *et al.* Molecular basis for benzimidazole resistance from a novel  $\beta$ -tubulin  
460                   binding site model. *J. Mol. Graph. Model.* **45**, 26–37 (2013).

461           35. Halder, S., Dhorajiwala, T. & Samant, L. Molecular docking studies of filarial  $\beta$ -tubulin protein  
462                   models with antifilarial phytochemicals. *Biomed. Biotechnol. Res. J.* **3**, 162–170 (2019).

463           36. Diawara, A., Schwenkenbecher, J. M., Kaplan, R. M. & Prichard, R. K. Molecular and biological  
464                   diagnostic tests for monitoring benzimidazole resistance in human soil-transmitted  
465                   helminths. *Am. J. Trop. Med. Hyg.* **88**, 1052–1061 (2013).

466           37. Tydén, E., Skarin, M., Andersson-Franko, M., Sjöblom, M. & Hoglund, J. Differential  
467                   expression of  $\beta$ -tubulin isotypes in different life stages of *Parascaris spp.* after exposure to  
468                   thiabendazole. *Mol. Biochem. Parasitol.* **205**, 22–28 (2016).

469           38. Martin, F., Halvarsson, P., Delhomme, N., Höglund, J. & Tydén, E. Exploring the  $\beta$ -tubulin gene  
470                   family in a benzimidazole-resistant *Parascaris univalens* population. *Int. J. Parasitol. Drugs*  
471                   *Drug Resist.* **17**, 84–91 (2021).

472           39. Charlier, J. *et al.* Initial assessment of the economic burden of major parasitic helminth  
473                   infections to the ruminant livestock industry in Europe. *Prev. Vet. Med.* **182**, (2020).

474           40. Roose, S. *et al.* Characterization of the  $\beta$ -tubulin gene family in *Ascaris lumbricoides* and  
475                   *Ascaris suum* and its implication for the molecular detection of benzimidazole resistance.  
476                   *PLoS Negl. Trop. Dis.* **15**, e0009777 (2021).

477 41. Wang, J. *et al.* Deep small RNA sequencing from the nematode *Ascaris* reveals conservation,  
478 functional diversification, and novel developmental profiles. *Genome Res.* **21**, 1462–1477  
479 (2011).

480 42. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search  
481 tool. *J. Mol. Biol.* **215**, 403–410 (1990).

482 43. Howe, K. L. *et al.* WormBase 2016: expanding to enable helminth genomic research. *Nucleic  
483 Acids Res.* **44**, D774–D780 (2015).

484 44. Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite – a  
485 comprehensive resource for helminth genomics. *Mol. Biochem. Parasitol.* **215**, 2–10 (2017).

486 45. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence  
487 comparison. *BMC Bioinformatics* **6**, 1–11 (2005).

488 46. Marchler-Bauer, A. *et al.* CDD/SPARCLE: functional classification of proteins via subfamily  
489 domain architectures. *Nucleic Acids Res.* **45**, D200–D203 (2017).

490 47. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.  
491 *Nucleic Acids Res.* **32**, 1792–1797 (2004).

492 48. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary  
493 genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547 (2018).

494 49. Waterhouse, A. *et al.* SWISS-MODEL: homology modelling of protein structures and  
495 complexes. *Nucleic Acids Res.* **46**, W296–W303 (2018).

496 50. Bienert, S. *et al.* The SWISS-MODEL Repository-new features and functionality. *Nucleic Acids  
497 Res.* **45**, 313–319 (2016).

498 51. Bueno, O. *et al.* High-affinity ligands of the colchicine domain in tubulin based on a structure-  
499 guided design. *Sci. Rep.* **8**, 1–17 (2018).

500 52. Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of  
501 errors in three-dimensional structures of proteins. *Nucleic Acids Res.* **35**, 407–410 (2007).

502 53. Sippl, M. J. Recognition of errors in three-dimensional structures of proteins. *Proteins Struct.  
503 Funct. Genet.* **17**, 355–362 (1993).

504 54. Bowie, J. U., Luthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a  
505 known three-dimensional structure. *Science* **253**, 164–170 (1991).

506 55. Luthy, R., Bowie, J. U. & Eisenberg, D. Assessment of protein models with three-dimensional  
507 profiles. *Nature* **356**, 83–85 (1992).

508 56. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to  
509 check the stereochemical quality of protein structures. *J. Appl. Crystallogr.* **26**, 283–291  
510 (1993).

511 57. Krieger, E. *et al.* Improving physical realism, stereochemistry, and side-chain accuracy in  
512 homology modeling: Four approaches that performed well in CASP8. *Proteins Struct. Funct.  
513 Bioinforma.* **77**, 114–122 (2009).

514 58. Kim, S. *et al.* PubChem 2019 update: Improved access to chemical data. *Nucleic Acids Res.* **47**,  
515 D1102–D1109 (2019).

516 59. Schrödinger LLC. The PyMOL Molecular Graphics System, Version 2.3.4. (2019).

517 60. Morris, G. M. *et al.* Software news and updates AutoDock4 and AutoDockTools4: Automated  
518 docking with selective receptor flexibility. *J. Comput. Chem.* **30**, 2785–2791 (2009).

519 61. Sanner, M. F. Python: A programming language for software integration and development. *J.*  
520 *Mol. Graph. Model.* **17**, 57–61 (1999).

521 62. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a  
522 new scoring function, efficient optimization, and multithreading. *J. Comput. Chem.* **31**, 455–  
523 461 (2009).

524 63. Dassault Systèmes BIOVIA. Discovery Studio Visualizer. (2019).

525 64. ULC, C. C. G. Molecular Operating Environment (MOE). (2020).

526 **Acknowledgements**

527 This study was funded by the Kenneth Longhurst legacy PhD studentship Award from the University  
528 of Surrey.

529 **Author contributions statement**

530 B.P.J, M.B., A.H.M.V., E.J.L. designed the study. B.P.J. performed experiments. B.P.J, M.B., A.H.M.V.  
531 contributed to analysis of results. B.P.J, M.B., A.H.M.V., E.J.L contributed to writing manuscript. All  
532 authors have reviewed the final manuscript.

533 **Competing interests**

534 The authors declare no competing interests.

535 **Figures and Tables**

536 **Figure 1: Phylogenetic reconstruction of Ascaridomorpha  $\beta$ -tubulins.** Phylogenies show the  
537 relationship between each isotype from the *Ascaris* genomes as well as previously published  
538 Ascaridomorpha species  $\beta$ -tubulins. (a) shows the phylogeny reconstructed using the peptide  
539 sequences under the assumptions of the JTT+G model. (b) shows the nucleotide phylogeny  
540 reconstructed under the K2+G+I model. Both phylogenies underwent 1000 bootstraps. Bootstrap  
541 values are shown at each node. Sequences collected for members of the Ascaridomorpha have  
542 retained the nomenclature given in the database (e.g., *Toxocara canis*  $\beta$ -tub4B). The species  
543 included were *Anisakis simplex*, *Ascaridia galli*, *Parascaris equorum* and *Toxocara canis*. For the  
544 *Ascaris* sequences identified from the genomes each sample is named by species, isotype and then  
545 genome number (e.g., *Ascaris suum* C3 is the isotype C sequence from *A. suum* genome 3).

546 **Figure 2: Representative amino acid alignment of *Ascaris*  $\beta$ -tubulins.** Alignments for each *Ascaris*  $\beta$ -  
547 tubulin isotype used in docking simulations. The common resistance associated amino acids (F167,  
548 E198 and F200Y) and the amino acids that were found to interact with BZs (Q134, L253, N256 and  
549 K350) and may be of some importance are highlighted in yellow.

550 **Figure 3: Ligand docking amino acid binding frequencies.** The amino acids in *Ascaris lumbricoides*  
551 and *Ascaris suum* that form bonds with benzimidazole drugs in the ligand docking simulations are  
552 shown. Green represents an amino acid that interacts with more than one drug and yellow  
553 represents an interaction seen only once.

554 **Figure 4: 2D and 3D representations of the molecular dynamics simulations of *Ascaris suum***  
555 **isotype A models with various benzimidazole drugs.** The figure shows the protein-ligand  
556 interactions made in each model. In 2D models (left) bonds formed with amino acids are depicted

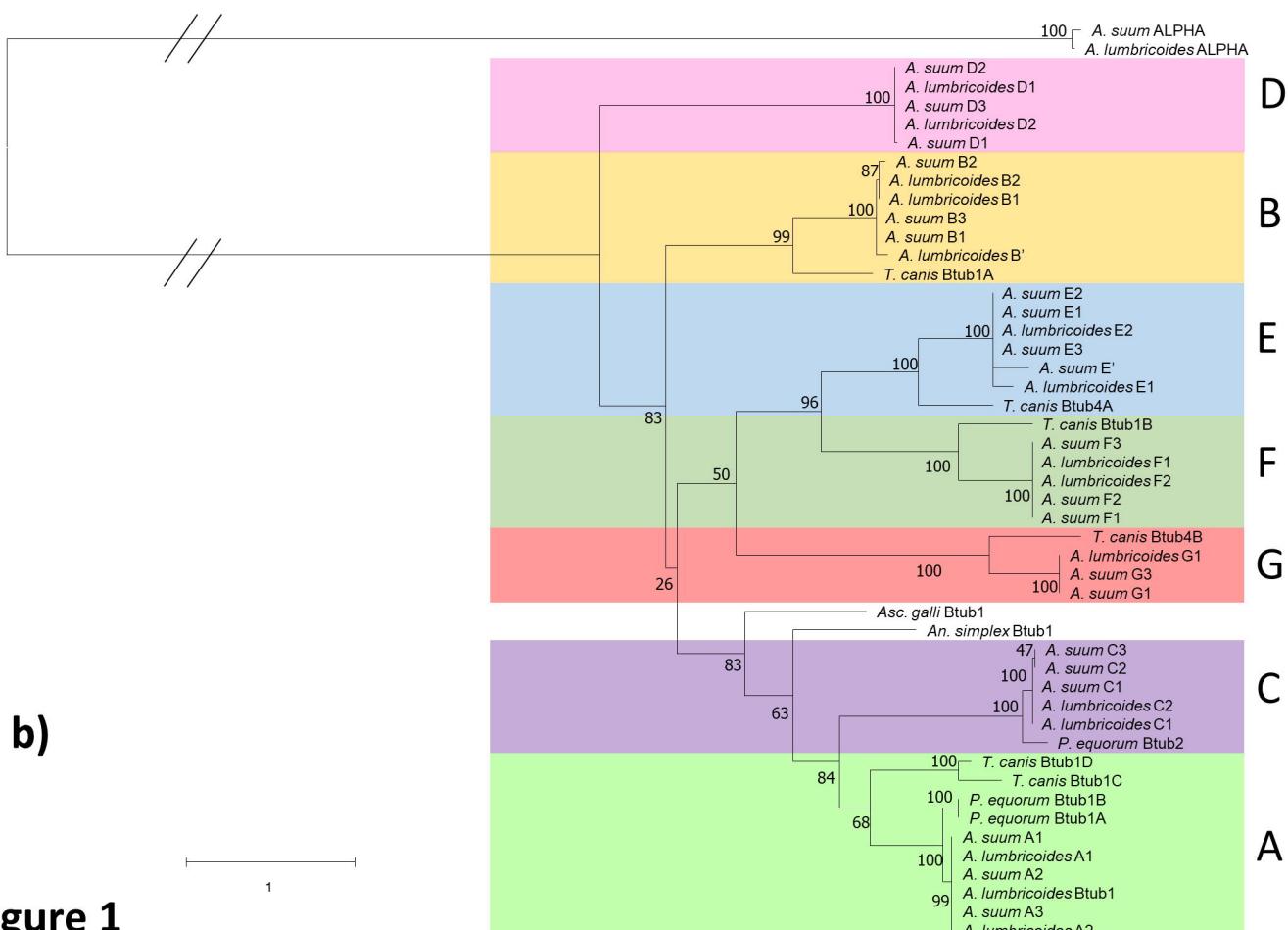
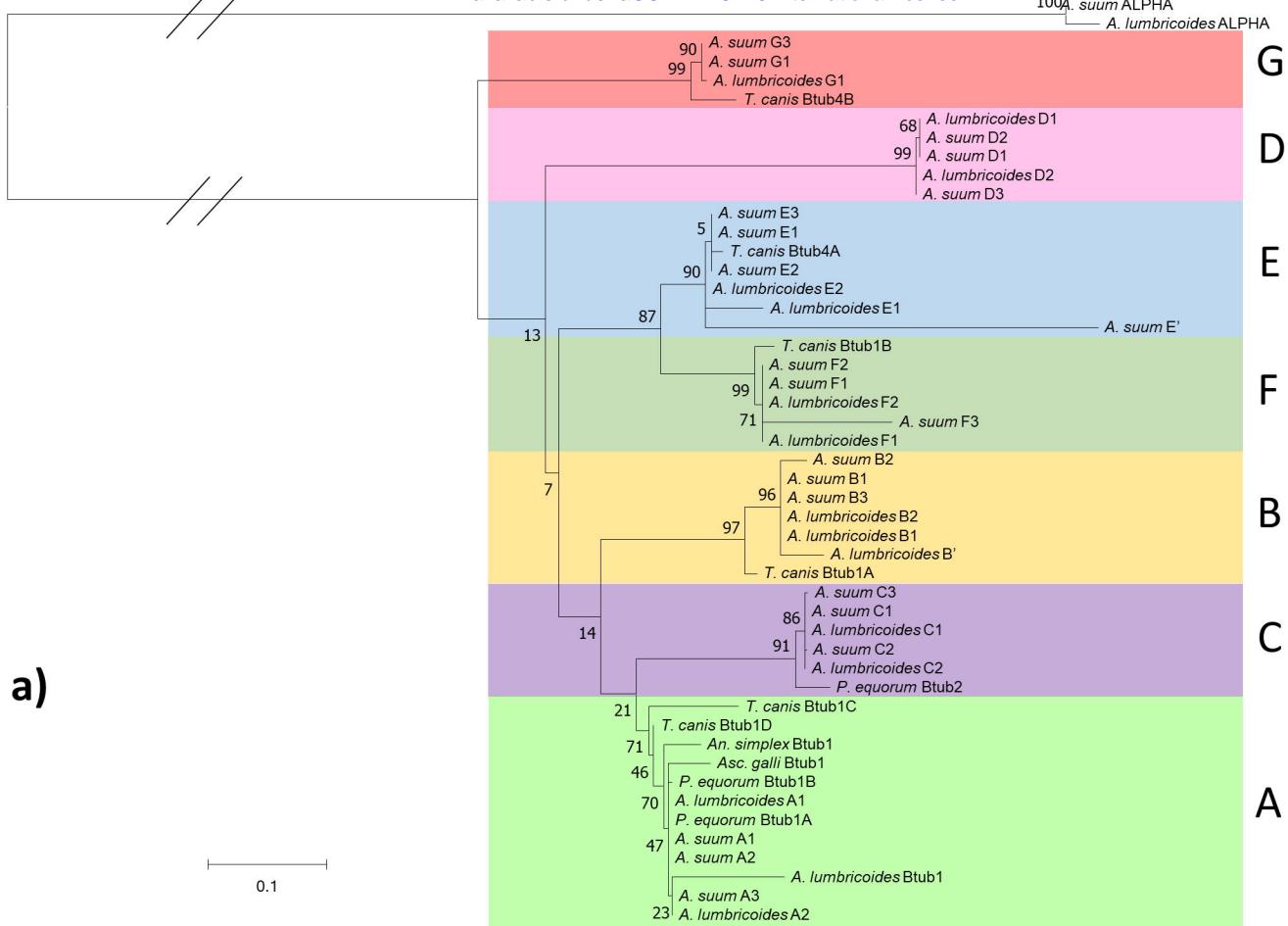
557 with dashed lines with the specific type of bond indicated in the key. All amino acids shown in 2D  
558 models without bonds are predicted to interact via Van der Waals forces. In the 3D models (right)  
559 the protein structure is shown in ribbon format (blue) with only binding amino acids or the  
560 resistance associated amino acid shown in full (green). Hydrogen bonds (H-bonds) between protein  
561 and ligand are highlighted in red and arene bonds are highlighted in amber. The benzimidazole drugs  
562 are shown in yellow. Binding affinity is shown to the right of each model.

563 **Figure 5: 2D and 3D representations of the molecular dynamics simulations of *Ascaris suum*  $\beta$ -  
564 tubulin isotype A wildtype and mutant models with albendazole sulfoxide.** The figure shows the  
565 protein-ligand interactions made within each model. In 2D models (left) bonds formed with amino  
566 acids are depicted with dashed lines with the specific type of bond indicated in the key. All amino  
567 acids shown in 2D models without bonds are predicted to interact via Van der Waals forces. In the  
568 3D models (right) the protein structure is shown in ribbon format (blue) with only binding amino  
569 acids or the resistance associated amino acid shown in full (green). Hydrogen bonds (H-bonds)  
570 between protein and ligand are highlighted in red and arene bonds are highlighted in amber. The  
571 drug ABZSO is shown in yellow. Binding affinity is shown to the right of each model. Models shown  
572 are (a) wildtype ASA, (b) mutated 167Y ASA, (c) mutated 198A ASA and (d) mutated 200Y ASA. (e)  
573 shows the H-bonds between the drug and Y50 and E198 as seen in (d) but also shows a rotated view  
574 of this model so that the bond between E198 and 200Y is made visible.

575 **Figure 6: 2D and 3D representations of the molecular dynamics simulations of *Haemonchus*  
576 *contortus*  $\beta$ -tubulin isotype 1 wildtype and mutant models with albendazole sulfoxide.** The figure  
577 shows the protein-ligand interaction made in each model. In 2D models (left) bonds formed with  
578 amino acids are depicted with dashed lines with the specific type of bond indicated in the key. All  
579 amino acids shown in 2D models without bonds are predicted to interact via Van der Waals forces.  
580 In the 3D models (right) the protein structure is shown in ribbon format (blue) with only binding  
581 amino acids or the resistance associated amino acid shown in full (green). Hydrogen bonds (H-  
582 bonds) between protein and ligand are highlighted in red and arene bonds are highlighted in amber.  
583 The drug albendazole sulfoxide (ABZSO) is shown in yellow. Binding affinity shown to the right of  
584 each model. Models shown are (a) wildtype Hcon1, (b) mutated 167Y Hcon1, (c) mutated 198A  
585 Hcon1 and (d) mutated 200Y Hcon1.

586

587 **Table 1: Binding affinities of wildtype and mutated *Ascaris suum* and *Haemonchus contortus*  $\beta$ -  
588 tubulin proteins with benzimidazole drugs.** Binding affinities of the protein-drug interactions from  
589 molecular dynamics simulations are measured in kcal/mol. The proteins used in these analyses were  
590 ASA, the three mutated ASA proteins, Hcon1 and the three mutated Hcon1 proteins. ASA = *Ascaris*  
591 *suum*  $\beta$ -tubulin isotype A, Hcon1 = *Haemonchus contortus*  $\beta$ -tubulin isotype-1, ABZ = albendazole,  
592 ABZSO = albendazole sulfoxide, FBZ = fenbendazole, MBZ = mebendazole, OXBZ = oxfendazole.



| Protein-drug model       | Affinity (kcal/mol) |
|--------------------------|---------------------|
| <b>ASA-ABZSO</b>         | -8.16               |
| <b>ASA-F167Y-ABZSO</b>   | -8.28               |
| <b>ASA-E198A-ABZSO</b>   | -7.84               |
| <b>ASA-F200Y-ABZSO</b>   | -8.07               |
| <b>ASA-ABZ</b>           | -8.02               |
| <b>ASA-FBZ</b>           | -8.85               |
| <b>ASA-MBZ</b>           | -8.56               |
| <b>ASA-OXBZ</b>          | -8.84               |
| <b>Hcon1-ABZSO</b>       | -8.54               |
| <b>Hcon1-F167Y-ABZSO</b> | -8.22               |
| <b>Hcon1-E198A-ABZSO</b> | -7.12               |
| <b>Hcon1-F200Y-ABZSO</b> | -8.16               |

593

594 **Table 2: Interactions between benzimidazole drugs and specific amino acid amino acids in *Ascaris*  
595 *suum* and *Haemonchus contortus*  $\beta$ -tubulin proteins.** The proteins used in these analyses were  
596 *Ascaris suum*  $\beta$ -tubulin ASA, the three mutated ASA proteins, Hcon1 and the three mutated Hcon1  
597 proteins. The drugs used were ABZ, ABZSO, FBZ, MBZ and OXBZ). The table shows the type of bonds  
598 formed (H – hydrogen bond, A – arene bond), the amino acid the bond is formed with and the drug  
599 used. The energy of the bonds between the amino acid and drug are given in kcal/mol, the distance  
600 between the bonded atoms is given in Angstroms (Å) and the number of bonds formed between the  
601 amino acid and the drug is shown (frequency). ASA = *Ascaris suum*  $\beta$ -tubulin isotype A, Hcon1 =  
602 *Haemonchus contortus*  $\beta$ -tubulin isotype-1, ABZ = albendazole, ABZSO = albendazole sulfoxide, FBZ =  
603 fenbendazole, MBZ = mebendazole, OXBZ = oxfendazole.

| Protein-drug model | Type | Amino acid | Drug  | Energy | Distance (Å) | Frequency |
|--------------------|------|------------|-------|--------|--------------|-----------|
| ASA-ABZSO          | H    | Glu198     | ABZSO | -9.4   | 3.06         | 2         |
|                    | A    | Phe200     | ABZSO | -0.5   | 4.65         | 1         |
|                    | H    | Val236     | ABZSO | -6.7   | 2.93         | 1         |
|                    | A    | Leu253     | ABZSO | -2.6   | 3.97         | 3         |
|                    | H    | Lys350     | ABZSO | -15.7  | 2.81         | 1         |
| ASA-F167Y-ABZSO    | H    | Glu198     | ABZSO | -15.9  | 2.76         | 2         |
|                    | A    | Phe200     | ABZSO | -1.2   | 4.13         | 2         |
|                    | H    | Met257     | ABZSO | -0.5   | 3.68         | 1         |
|                    | H    | Met316     | ABZSO | -1.4   | 3.94         | 2         |
| ASA-E198A-ABZSO    | H    | Gln134     | ABZSO | -5.3   | 2.86         | 1         |
|                    | H    | Leu253     | ABZSO | -1.3   | 3.03         | 1         |
| ASA-F200Y-ABZSO    | H    | Tyr50      | ABZSO | -2     | 2.77         | 1         |
|                    | H    | Glu198     | ABZSO | -18.4  | 2.77         | 2         |
| ASA-ABZ            | H    | Glu198     | ABZ   | -18.3  | 2.82         | 3         |
|                    | A    | Phe200     | ABZ   | -0.6   | 4.03         | 1         |
|                    | A    | Leu253     | ABZ   | -1.5   | 3.68         | 2         |
|                    | A    | Ile368     | ABZ   | -0.5   | 3.66         | 1         |
| ASA-FBZ            | H    | Glu198     | FBZ   | -16.3  | 2.84         | 3         |
| ASA-MBZ            | H    | Glu198     | MBZ   | -17.2  | 2.87         | 3         |
|                    | A    | Phe200     | MBZ   | -0.5   | 3.67         | 1         |
| ASA-OXBZ           | H    | Glu198     | OXBZ  | -7.6   | 2.89         | 1         |
|                    | A    | Phe200     | OXBZ  | -0.5   | 4.2          | 1         |
|                    | A    | Leu246     | OXBZ  | -0.8   | 3.99         | 1         |
|                    | H    | Asn256     | OXBZ  | -6     | 2.82         | 1         |
|                    | H    | Lys350     | OXBZ  | -1     | 3.52         | 1         |
| Hcon1-ABZSO        | H    | Glu198     | ABZSO | -16.9  | 2.87         | 3         |
| Hcon1-F167Y-ABZSO  | H    | Glu198     | ABZSO | -11.6  | 2.75         | 2         |
|                    | A    | Leu253     | ABZSO | -0.7   | 3.99         | 1         |
|                    | H    | Asn256     | ABZSO | -5.6   | 2.82         | 1         |
| Hcon1-E198A-ABZSO  | H    | Leu253     | ABZSO | -3.5   | 2.85         | 1         |
| Hcon1-F200Y-ABZSO  | H    | Glu198     | ABZSO | -0.5   | 3.56         | 1         |
|                    | H    | Cys239     | ABZSO | -3.1   | 2.98         | 1         |
|                    | H    | Asn256     | ABZSO | -7.6   | 2.92         | 2         |
|                    | H    | Met316     | ABZSO | -2     | 3.54         | 2         |





**Figure 1**

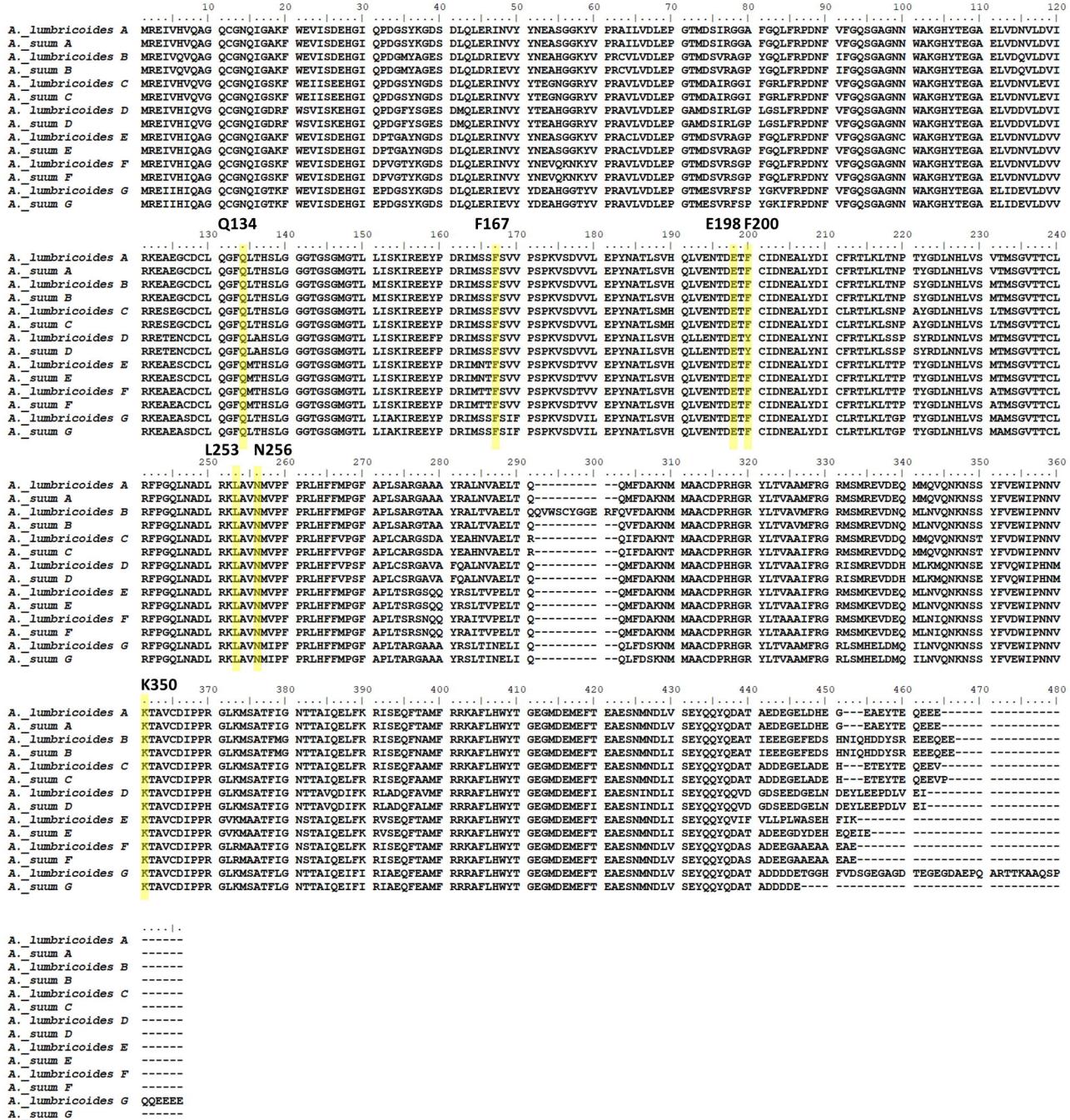
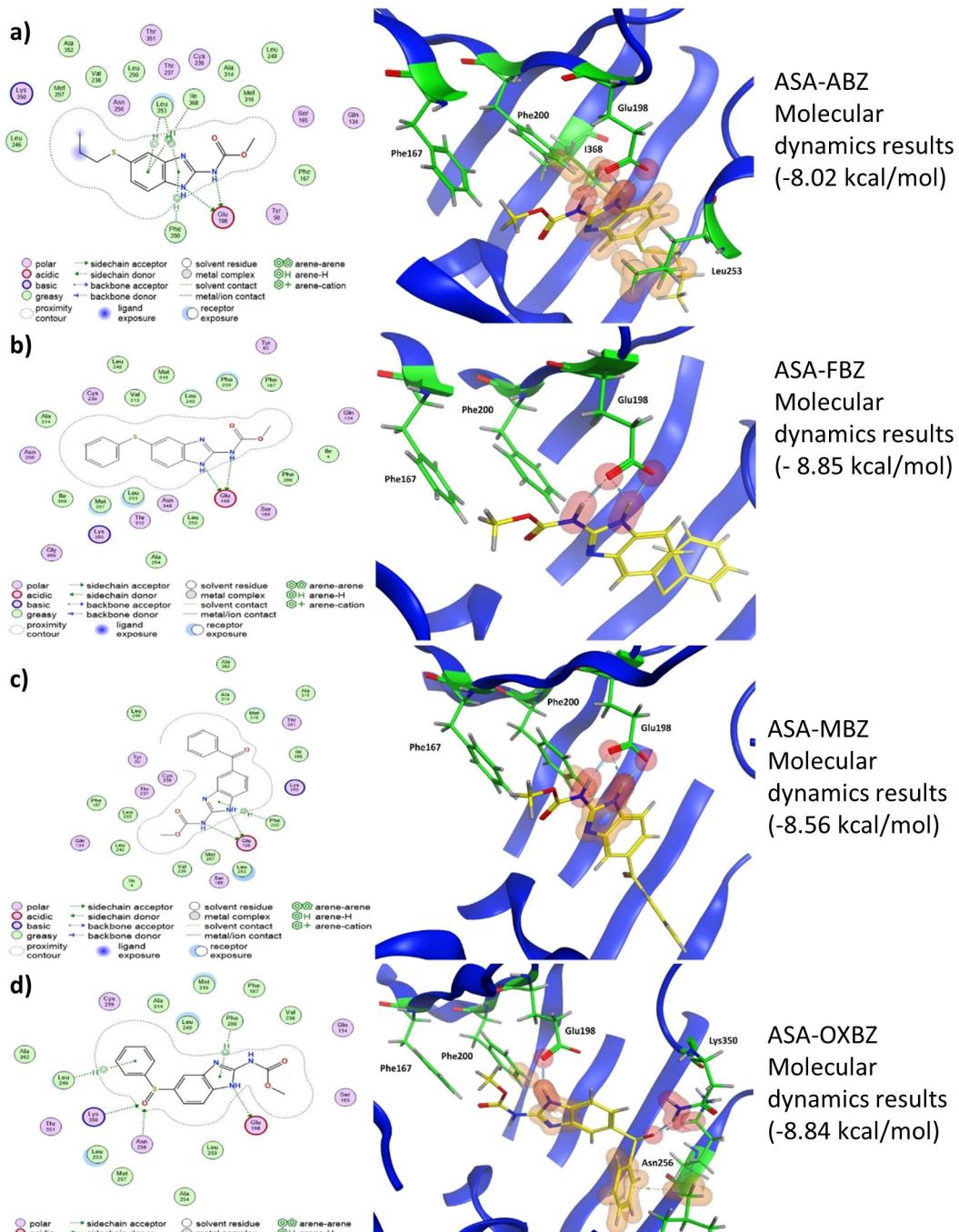




Figure 2

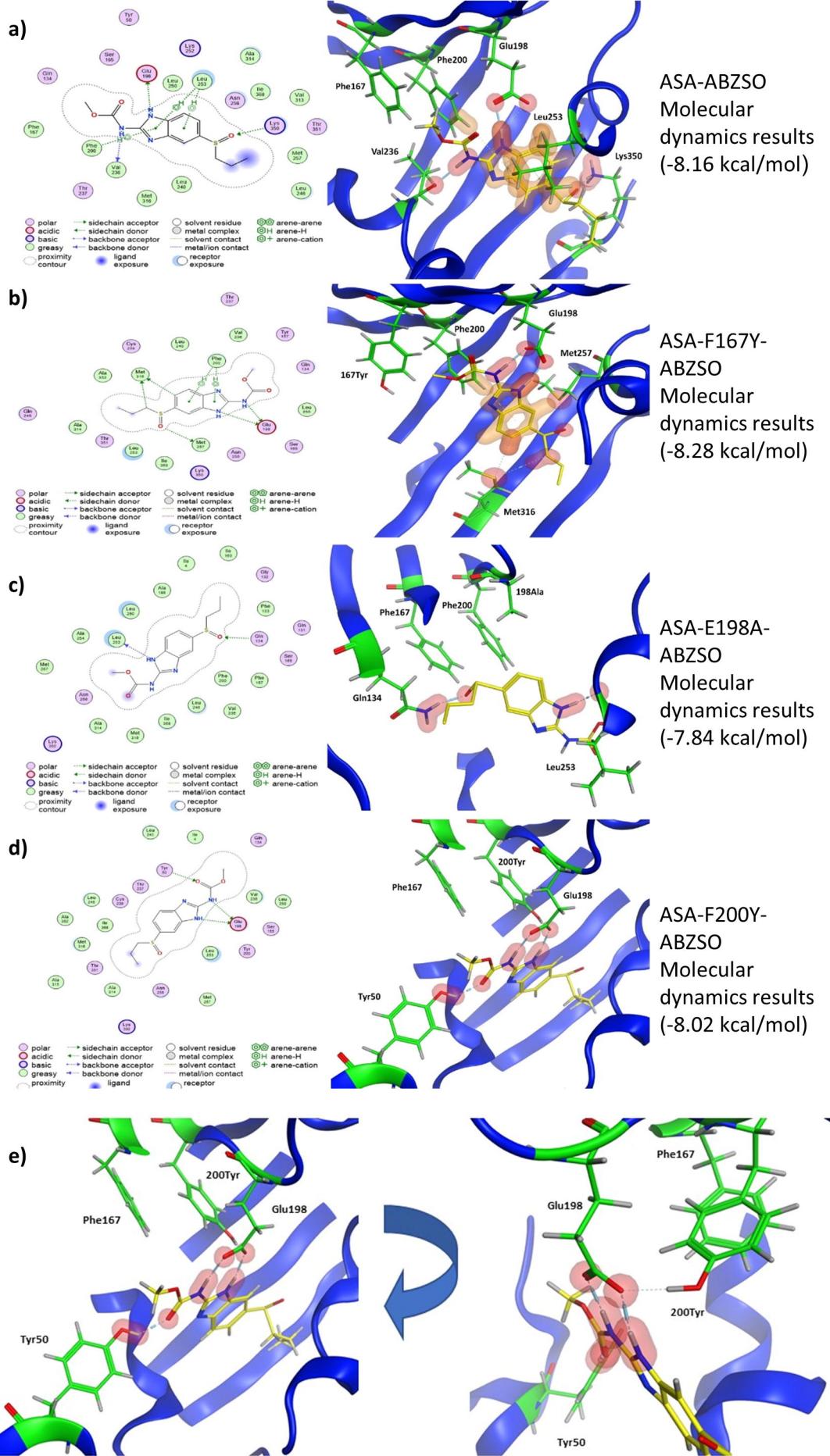

|                        |         | $\beta$ -tubulin peptide residues interacting with benzimidazoles |          |        |        |        |      |       |      |       |
|------------------------|---------|-------------------------------------------------------------------|----------|--------|--------|--------|------|-------|------|-------|
| Species                | Isotype | Q134                                                              | S/T/N165 | E198   | F/Y200 | V236   | L253 | N256  | A315 | other |
| <i>A. suum</i>         | A       | green                                                             |          |        |        | yellow |      |       |      |       |
| <i>A. lumbricoides</i> | A       | green                                                             |          |        |        | yellow |      |       |      |       |
| <i>A. suum</i>         | B       |                                                                   |          |        |        |        |      |       |      |       |
| <i>A. lumbricoides</i> | B       | green                                                             |          |        |        | green  |      |       |      | Y50   |
| <i>A. suum</i>         | C       |                                                                   | yellow   |        |        |        |      |       |      | C239  |
| <i>A. lumbricoides</i> | C       | green                                                             | yellow   |        |        |        |      |       |      | C239  |
| <i>A. suum</i>         | D       | green                                                             |          |        | green  |        |      |       |      | K350  |
| <i>A. lumbricoides</i> | D       | green                                                             |          |        | green  |        |      |       |      | K350  |
| <i>A. suum</i>         | E       | green                                                             |          |        |        |        |      |       |      |       |
| <i>A. lumbricoides</i> | E       |                                                                   | white    |        |        | yellow |      |       |      |       |
| <i>A. suum</i>         | F       | green                                                             |          |        |        | yellow |      |       |      |       |
| <i>A. lumbricoides</i> | F       | green                                                             |          |        |        | yellow |      |       |      |       |
| <i>A. suum</i>         | G       | yellow                                                            | white    |        |        | yellow |      | green |      |       |
| <i>A. lumbricoides</i> | G       | green                                                             |          |        |        | yellow |      |       |      |       |
| Isotype A              |         |                                                                   |          |        |        |        |      |       |      |       |
| Species                | mutants | Q134                                                              | F167Y    | E198A  | F200Y  | V236   |      |       |      |       |
| <i>A. suum</i>         | F167Y   |                                                                   |          |        |        | yellow |      |       |      |       |
| <i>A. lumbricoides</i> | F167Y   |                                                                   |          |        |        | yellow |      |       |      |       |
| <i>A. suum</i>         | E198A   |                                                                   |          |        |        |        |      |       |      |       |
| <i>A. lumbricoides</i> | E198A   |                                                                   |          |        |        |        |      |       |      |       |
| <i>A. suum</i>         | F200Y   | yellow                                                            |          | yellow | green  |        |      |       |      |       |
| <i>A. lumbricoides</i> | F200Y   |                                                                   |          |        |        |        |      |       |      |       |

Figure 3



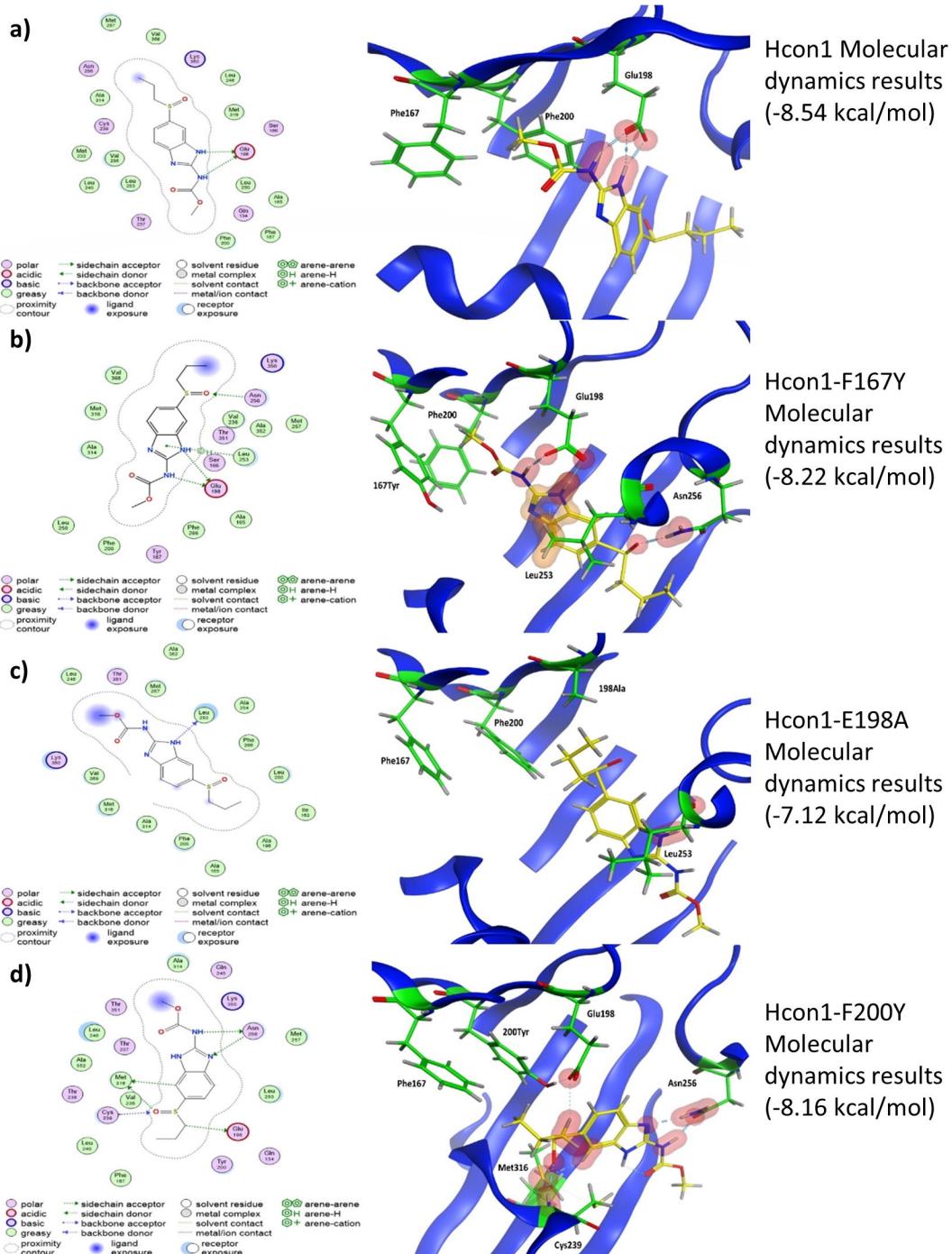

ASA = *Ascaris suum*  $\beta$ -tubulin isotype A, ABZ = albendazole, FBZ = fenbendazole, MBZ = mebendazole, OXBZ = oxfendazole

Figure 4



ASA = *Ascaris suum*  $\beta$ -tubulin isotype A, ABZSO = albendazole sulfoxide

**Figure 5**



**Figure 6**