

1 **Two-speed genome expansion drives the evolution of pathogenicity in animal
2 fungal pathogens**

3

4 Theresa Wacker¹, Nicolas Helmstetter¹, Duncan Wilson¹, Matthew C. Fisher², David J.
5 Studholme³, Rhys A. Farrer^{1,*}.

6

7 ¹Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter,
8 United Kingdom

9 ²MRC Centre for Global Infectious Disease Analysis, Imperial College London, London,
10 United Kingdom

11 ³Biosciences, University of Exeter, Exeter, United Kingdom

12 *Corresponding author: r.farrer@exeter.ac.uk

13

14 **Abstract**

15 The origins of virulence in amphibian-infecting chytrids *Batrachochytrium dendrobatidis* (*Bd*)
16 and *Batrachochytrium salamandrivorans* (*Bsal*) are largely unknown. Here, we use deep
17 nanopore sequencing of *Bsal* and comparative genomics against 21 high-quality genome
18 assemblies that span the fungal Chytridiomycota. *Bsa* has the most repeat-rich genome,
19 comprising 40.9% repetitive elements, which has expanded to more than 3X the length of its
20 conspecific *Bd*. M36 metalloprotease virulence factors are highly expanded in *Bsal* and 53%
21 of the 177 unique genes are flanked by transposable elements, suggesting repeat-driven
22 expansion. The largest M36 sub-family are mostly (84%) flanked upstream by a novel LINE
23 element, a repeat superfamily implicated with gene copy number variations. We find that
24 *Bsal* has a highly compartmentalized genome architecture, with virulence factors enriched in
25 gene-sparse/repeat-rich compartments, while core conserved genes occur in gene-
26 rich/repeat-poor compartments. This is a hallmark of two-speed genome evolution.
27 Furthermore, genes with signatures of positive selection in *Bd* are enriched in repeat-rich
28 regions, suggesting they are a cradle for chytrid pathogenicity evolution, and *Bd* also has a
29 two-speed genome. This is the first evidence of two-speed genomes in any animal
30 pathogen, and sheds new light on the evolution of fungal pathogens of vertebrates driving
31 global declines and extinctions.

32

33 **Introduction**

34 *Batrachochytrium salamandrivorans* (*Bsal*) threatens amphibians globally and is
35 currently expanding its geographic range across Europe. It infects highly susceptible fire
36 salamanders, with outbreaks reported in the wild in Germany, Belgium, the Netherlands and

37 Spain (Beukema et al., 2021; Martel et al., 2014). This ecologically important fungal
38 pathogen belongs to the Rhizophydiales order of the Chytridiomycota which includes genera
39 with saprobic free-living as well as pathogenic life histories. For example, *Entophysalctis*
40 *helioformis* and *Homolaphlyctis polyrhiza* are the two closest known relatives to
41 *Batrachochytrium*. However, unlike those amphibian pathogens, *E. helioformis* and *H.*
42 *polyrhiza* are saprotrophs found on algae and leaf litter and are unable to grow on amphibian
43 skin (Joneson et al., 2011; Longcore et al., 2012).

44

45 *Bsal* likely diverged from *Bd* between 30 and 115 million years ago in the Late
46 Cretaceous or early Paleogene, and both species have likely been endemic to Asian
47 salamanders and newts (Urodela) for millions of years. Both species have expanded their
48 ranges in recent time with *Bd* becoming globally established in the early to mid-20th Century
49 while *Bsal* emerged in the Netherlands only in 2010 and spread to naïve European
50 populations (Martel et al., 2014). Since diverging, *Bd* and *Bsal* have evolved to infect
51 different amphibian species and display different pathologies. While *Bd* is a generalist
52 pathogen that infects all three orders of amphibian, *Bsal* has evolved as a specialist
53 pathogen of the Urodela order (newts and salamanders) (Martel et al., 2013), yet is able to
54 survive asymptotically on amphibians of other orders, potentially contributing to its spread
55 (More et al., 2018). While *Bd* causes hyperplasia (proliferation of cells) and hyperkeratosis
56 (thickening of the stratum corneum), *Bsal* causes multifocal superficial erosions and deep
57 ulcerations in the skin of its host (Martel et al., 2013). The evolutionary route to pathogenicity
58 and the genetic mechanisms underlying host-specificity and pathology in the
59 *Batrachochytrium* genus remain largely unknown.

60

61 Evolution shapes genomes unevenly, resulting in both conserved and faster evolving
62 genomic regions. In extreme cases, a phenomenon termed the ‘two-speed genome’ has
63 been identified, whereby rapidly-evolving genes comprise a substantial portion of the
64 genome and is associated with an enrichment of repeat families that are likely contributing to
65 or driving gene variation (Dong et al., 2015; Faino et al., 2016b; Frantzeskakis et al., 2019;
66 Gijzen, 2009; Haas et al., 2009; Lamour et al., 2012; Raffaele et al., 2010; Raffaele &
67 Kamoun, 2012a; Tyler et al., 2006). In plant pathogens with two-speed genomes, fast-
68 evolving regions are enriched for genes that are upregulated *in planta* (Raffaele et al., 2010),
69 have signatures of positive selection (Sánchez-Vallet et al., 2018), and have undergone
70 increased gene family expansions (Raffaele et al., 2010). To date, two-speed genome
71 compartmentalization has been identified in a range of fungal and oomycete plant pathogens
72 (Faino et al., 2016b; Plissonneau et al., 2016; Raffaele et al., 2010; Torres et al., 2020; Q.
73 Wang et al., 2017; Winter et al., 2018). Among the chytrids, *Synchytrium endobioticum*

74 responsible for potato wart disease has been noted to have effector genes within repeat-rich
75 regions (van de Vossenberg et al., 2019). However, there has been no comprehensive
76 analysis or identification of two-speed genomes among the Chytridiomycota to date, or
77 indeed among any animal pathogens.

78

79 In 2017, we sequenced *Bsal*'s genome for the first time (R. A. Farrer et al., 2017),
80 discovering it had an expanded genome relative to its closest relatives. We found that *Bsal*/
81 has undergone several large protein family expansions, including the M36 metalloproteases
82 that are thought to be involved in the breakdown of amphibian skin and extracellular matrix
83 (Joneson et al., 2011). The M36 metalloprotease family expansions were noted to coincide
84 with an increase in repeat-rich regions; however, that study found only 17% of the genome
85 assembly to be repetitive (R. A. Farrer et al., 2017). We also found evidence that unlike *Bd*,
86 *Bsal* does not illicit a clear immune response during infection in a shared host species (R. A.
87 Farrer et al., 2017). However, the use of exclusively short-read sequencing limited us to a
88 highly fragmented genome from which we were unable to fully explore its modes of genome
89 evolution and resolve repeat-rich regions. Furthermore, the genomes of only four chytrid
90 species were compared as opposed to the 22 chytrids investigated in the present study.
91 Here, we use long-read nanopore sequencing to more fully understand the genome
92 evolution of *Bsal* underpinning its host-range and pathogenicity.

93

94 **Results**

95

96 **The repeat-driven expansion of *Batrachochytrium salamandrivorans***

97 Deep nanopore sequencing and genome assembly of *Batrachochytrium*
98 *salamandrivorans* (*Bsal*) revealed that it has undergone a large genome expansion
99 compared with all known and genome-sequenced Rhizophydiales (**Figure 1**). Notably, the
100 genome of *Bsal* is >3X longer than its closest known relative *B. dendrobatidis* (*Bd*). Our
101 updated genome assembly (version 2; v.2) is a substantial improvement on our previous
102 Illumina-based assembly (version 1; v.1). Notably, v.2 has a total length of 73.3 Mb across
103 165 supercontigs (N_{Max} 5.6 Mb, N_{50} 0.9 Mb) compared with v.1 that is 32.6 Mb across 5,358
104 contigs (N_{50} 10.5 kb) (**Table S1**). *Bsal*'s updated genome length elevates it to the second-
105 largest in the Chytridiomycota fungal phyla, after *Cladophytrium polystromum* (81.2 Mb) - a
106 species that is mainly associated with aquatic plants (Czeczuga, Mazalska, et al., 2007;
107 Czeczuga, Muszyńska, et al., 2007; Powell et al., 2018). Our updated gene annotation also
108 revealed slightly higher numbers of predicted protein-coding genes ($n = 10,867$ with a
109 combined length of 16.38 Mb) and was more complete (94.1% of BUSCO core conserved
110 fungal genes) compared to the v.1 assembly (BUSCO = 92.2%). Synteny indicated there

111 were no newly evolved or acquired chromosomes in *Bsal*'s genome, although its genome
112 expansion relative to *Bd* was accompanied by an abundance of chromosomal
113 rearrangements (**Figure S1**).
114

115 *Bsal* has the most repeat-rich genome of any chytrid sequenced to date, with 40.9%
116 (30 Mb) of the genome predicted to be repetitive (**Figure S2**). *Bsal* has undergone a unique
117 repeat-driven expansion compared with other chytrids including *Bd*, resulting in distinct
118 repeat family profile (**Figure 2**). Repeat content across the Chytridiomycota (as a
119 percentage of genome length) has a positive monotonic correlation with genome length
120 (Spearman's $r_s = 0.62$, $p = 0.0019$), as do transposable elements (Spearman's $r_s = 0.56$, $p =$
121 0.0059). Conversely, repeat content does not correlate with assembly contiguity (N_{50})
122 (Spearman's $r_s = 0.19$, $p = 0.39$) or degree of fragmentation (number of contigs)
123 (Spearman's $r_s = -0.022$, $p = 0.92$) (**Figure S3**). Genome length in the Chytridiomycota is
124 therefore a good predictor of repeat-richness.
125

126 Transposable elements (TE), long terminal repeat (LTR) and long interspersed
127 nuclear elements (LINE) retrotransposons are uniquely expanded in the *Bsal* genome
128 compared with *Bd* (**Figure 2**). *Bsal* has the highest overall content of TEs of any chytrid
129 (**Figure S4**). TEs comprise 19.36% of all *Bsal* repetitive content and are not uniformly
130 distributed in the genome but appear in clusters. Conversely, repeats in general, including
131 simple repeats are uniformly distributed (**Figure S5**). *C. polystomum* (the largest genome)
132 has the second highest proportion of TEs (12.3%). All other chytrids have <10% TEs
133 (geometric mean: 3.43%, σ : 2.52%; excluding *Bsal* and *C. polystomum*), indicating that TE
134 content associates with genome expansions. LTRs are the second most abundant repeat
135 family in *Bsal* (6.6 Mb; 9% of genome), most of which (97%) are Gypsy elements. Gypsy
136 repeats are far less common in other Rhizophydiales including *Bd* (4.8 kb; 0.02% of
137 genome), *H. polyrhiza* (absent), and *E. helioformis* (988 kb; 3.2%). Similarly, LINEs make up
138 6.4 Mb (8.8%) of the *Bsal* genome (**Table S2**), yet are not detected in most of the other
139 genomes belonging to the Rhizophydiales including *H. polyrhiza*, BdMADA_210 (amphibian-
140 associated chytrid recovered from Madagascar) and *Globomyces pollinis-pini* (a
141 saprotrophic chytrid found in aquatic habitats (Pm et al., 2008)). The three remaining
142 Rhizophydiales species (*Bd*, *E. helioformis* and *G. haynaldii*) have only low numbers of LINE
143 elements (0.28%, 0.6% and 0.47% of genome, respectively).
144

145 **The 'two-speed' compartmentalized genome of *Batrachochytrium salamandrivorans***

146 Analysis of chytrid intergenic distances revealed *Bsal* has a compartmentalized,
147 bipartite genome. Disparate flanking intergenic region (FIR) lengths for several gene families

148 and biological functions were identified across the Chytridiomycota (**Figure 3, Figure S6**).
149 To assess differences between FIR lengths and gene categories, we characterised four
150 groups or quadrants partitioned by the 5' and 3' median intergenic distances (upper-left; Q_{UL} ,
151 upper-right; Q_{UR} , lower-left; Q_{LL} and lower-right; Q_{LR}) and tested for enrichment of genes
152 using hypergeometric tests (HgT) and χ^2 tests. The set of all *BsaI* genes were evenly
153 dispersed across quadrants ($Q_{UL} = 2,269$ genes, $Q_{UR} = 2,998$ genes, $Q_{LR} = 2,268$ genes,
154 and $Q_{LL} = 2,998$ genes). However, the subset of core conserved genes (CCGs) is enriched
155 in Q_{LL} (HgT $p = 5.88E-6$, χ^2 test $p = 7.16E-6$). Furthermore, M36 protease genes, other
156 genes encoding proteins with secretion signals and genes encoding small secreted proteins
157 (SSPs) were all enriched in Q_{UR} according to HgT ($p = 1.2E-38$, $p = 5.42E-92$, $p = 9.13E-7$,
158 respectively) and χ^2 tests ($p = 1.93E-43$, $p = 5.39E-102$, $p = 4.4E-7$, respectively). This is a
159 hallmark of a two-speed genome (**Table S3B-C**). Accordingly, *BsaI* has 3.5X more
160 repetitive sequence and 4.5X more TE in Q_{UR} compared with Q_{LL} based on gene identities in
161 10 kb non-overlapping windows (**Table S3K**).
162

163 FIR lengths are significantly longer for M36 proteases, genes encoding proteins with
164 secretion signals and SSPs compared to overall mean intergenic distances in *BsaI*/
165 (Wilcoxon rank-sum tests: $p = 1.42E-61$, $2.45E-121$ and $2.50E-07$, respectively) (**Table**
166 **S3D**). Mean intergenic distances for M36 proteases, genes encoding proteins with secretion
167 signals and SSPs are also significantly longer than CCGs (Wilcoxon rank-sum tests: $p =$
168 $1.46E-61$, $8.54E-72$ and $2.4E-13$, respectively). Separately, CCGs are flanked by
169 significantly shorter intergenic regions than the genome-wide average (Wilcoxon rank-sum
170 test $p = 2.03E-09$) (**Figure 4, Table S3D**). Intriguingly, most chytrids (18 out of 23) had an
171 enrichment of CCGs in Q_{LL} and nearly half (10 out of 23) had an enrichment for genes
172 encoding proteins with secretion signals in Q_{UR} (HgT and χ^2 test $q < 0.01$), indicating those
173 are common features of Chytridiomycota evolution. However, *BsaI* has the most significant
174 enrichment of genes with secretion signals in Q_{UR} of any chytrid tested (HgT $p = 5.42E-92$,
175 χ^2 -test $p = 5.39E-102$) (**Table S3B-C**), while *Bd* had the second strongest enrichment (HgT p
176 = $9.75E-67$, χ^2 -test $p = 4.18E-74$).
177

178 FIR based quadrants are present throughout *BsaI*'s genome and not exclusively from
179 individual chromosomes or large sub-chromosomal or subtelomeric regions (**Figure 3F**).
180 Similarly, M36 metalloproteases are encoded throughout the *BsaI* and *Bd* genomes (**Figure**
181 **S1**). Of the 28 contigs that feature a (TTAGGG)_n terminal telomeric repeat, 14 feature
182 clusters of up to 10 M36s or gene with secretion signal in those subtelomeric regions. Six
183 contigs overall deviate from the null hypothesis of 25% of genes populating each quadrant
184 (χ^2 -test for goodness of fit; **Table S4**), three of which (scaffolds 94, 329 and 334) are >1 Mb

185 in length. Twelve contigs were enriched for one of the quadrants (HgT $p < 0.01$) including
186 Q_{UR} ($n = 9$) and Q_{LL} ($n = 3$) and no enrichments were found for either Q_{UL} or Q_{LR} (**Table S4**).
187 The longest stretch of consecutive Q_{UR} genes is 16 (128 kb), Q_{LL} genes is 13 (33 kb), Q_{LR}
188 genes is 5 (25 kb), and for Q_{UL} it is only 4 (16 kb; **Table S5A**).
189

190 The probabilities for each set of consecutive genes from any given quadrant was
191 calculated using a custom discrete-time pattern Markov chain approach, which identified 35
192 contigs with significant consecutive gene counts ($p < 0.01$) from either Q_{UR} ($n = 15$) or Q_{LL} (n
193 = 20; **Table S5B**). The two most significant of these were scaffold0320 with 16 consecutive
194 genes in Q_{UR} (total genes on contig = 122, $p = 1.44\text{E-}07$) and scaffold0334 with 15
195 consecutive genes in Q_{UR} (total genes on contig = 380, $p = 1.71\text{E-}06$). The 16 consecutive
196 Q_{UR} genes on contig320 included 6 genes with secretion signals (three belonged to Tribe 31
197 (unknown function), and two belonged to Tribe 17 with a S1-P1 nuclease domain
198 (PF02265.16)). The 15 consecutive Q_{UR} genes on scaffold0334 included only 1 gene with a
199 secretion signal (Tribe 536, with a kelch4 galactose oxidase central domain (PF13418.6)).
200

201 Genes with long intergenic distances are associated with positive selection in *Bd*.
202 While all reported isolates of *Bsal* to date are clonal, there have been substantial sampling
203 efforts for *Bd* revealing five genetically diverse lineages, providing an opportunity to explore
204 intra-population genetic variation and associations with intergenic distances, which is an
205 opportunity not currently available for *Bsal*. By calculating dN/dS (ω) for every *Bd* gene in
206 each lineage, we discovered that genes with a signature of positive selection ($\omega > 1$) were
207 significantly enriched in Q_{UR} for each lineage (HgT $p < 2.59\text{E-}10$, χ^2 -test $p < 6.5\text{E-}11$) (**Table**
208 **S3E**). Notably, genes with $\omega > 1$ and secretion signals were enriched in Q_{UR} for each *Bd*
209 lineage (HgT $p < 8.48\text{E-}13$, χ^2 -test $p < 3.64\text{E-}14$). This is consistent with both
210 Batrachochytrids (*Bd* and *Bsal*) having two-speed genomes.
211

212 Recently, it was shown that ricin-like B lectins play a crucial role in the initial stages
213 of pathogenesis in *Bsal* (Y. Wang et al., 2021). Previous studies have also found that these
214 lectins are expressed during exposure of *Bsal* to salamander skin (R. A. Farrer et al., 2017).
215 Of the two ricin-like B lectins identified in this study, one of them, BSLG_002240, can be
216 found in Q_{UR}, providing evidence that virulence genes are indeed sequestered to this
217 dynamic compartment.
218

219 *Bsal* encodes the greatest number of secreted proteins ($n = 1,047$) in the
220 Rhizophydiales. Clustering secreted proteins by amino acid sequence for *Bsal* and its three
221 closest relatives *Bd*, *Hp* and *Eh*, revealed 854 distinct secreted tribes, including the M36

222 metalloproteases that is the largest ($n = 167$, of which 142 belong to *Bsal*; Tribe 1). The ten
223 largest secreted tribes encompass nearly a quarter of all secreted proteins of *Bsal*, *Bd*, *Hp*
224 and *Eh* (24.08%; $n = 593$) (**Table S3J**). Notable gene tribes included the M36s (Tribe 1),
225 polysaccharide deacetylases (Tribe 4), tyrosinases (Tribe 6), aspartyl proteases (Tribe 7),
226 phosphate-induced proteins (Tribe 8) and lipases (Tribe 10), each of which may be involved
227 in pathogenicity. *Bsal* genes in Tribes 1, 4, 8 and 10 are enriched in Q_{UR} . *Bd* genes in Tribes
228 1, 2, 3, 5, 7 and 9 are enriched in Q_{UR} (**Figure 5, Table S3I-J, Table S6**).
229

230 **M36 metalloprotease expansion linked to transposable elements**

231 *Bsal* encodes the most M36 metalloproteases ($n = 177$) of any other chytrid (**Fig. S1**), which is >5X more than *Bd* encodes ($n = 35$) (Joneson et al., 2011). M36
232 metalloproteases in *Bsal* can be divided into six species-specific families (*Bsal* M36 family 1-
233 6) and two more evolutionary conserved families based on sequence similarity and a gene
234 tree (**Figure 6**). The largest M36 sub-family ($n = 70$; *Bsal* M36 family 6) was previously
235 named *Bsal* G2M36 (R. A. Farrer et al., 2017) and is uniquely associated with two repeat
236 families including the transposable LINE element rnd2 family2 (**Table S2, Table S7**). The
237 majority of *Bsal* M36 family 6 genes are flanked by this LINE element upstream ($n = 59/70$;
238 84.3%; $p = 3.33E-99$) and flanked by an uncharacterised repeat rnd1 family182 downstream
239 (53/70; 75.7%; $p = 8.56E-75$), as well as 67.1% of *Bsal* M36 family 6 are flanked either side
240 by both repeats. No other *Bsal* M36 family has a flanking rnd1 family182 and only 2 *Bsal*
241 M36s have a flanking rnd2 family2 (M36 families 1 and 3). The 8.8% of *Bsal*'s genome
242 comprising LINE elements is therefore associated with its genome expansion and gene
243 family expansion of putative virulence factors.
244

245
246 *Bsal* M36-associated repeats are highly enriched upstream and downstream of the
247 M36 metalloprotease coding genes (rnd2 family2 upstream of M36s: $p = 8.56E-75$; rnd1
248 family182 downstream of M36s: 3.33E-99) and genes with secretion signals (rnd2 family2
249 upstream of secreted: $p = 4.50E-28$; rnd1 family182 downstream of secreted: $p = 1.48E-42$;
250 **Table S3F-H**). Rnd1 family182 and rnd2 family2 are disproportionately found in gene-
251 sparse/repeat-rich compartments of the genome (Q_{UR} : $p_{rnd2\ family2} = 2.53E-25$, $p_{rnd1\ family182} =$
252 1.16E-11). Rnd2 family 2 has a homologous repeat family in *Bd* (rnd1 family109), which is
253 also classified as a LINE. However, this repeat family is only present upstream of 1 M36
254 metalloproteases and 8 genes with secretion signals in *Bd*. Rnd1 family182 has no
255 homologous repeat family in *Bd*. We found only 66/734 *Bsal* repeat families had homologs in
256 *Bd* suggesting that *Bsal*'s two-speed genome is largely driven by repeat families that have
257 emerged since it speciated with *Bd*.
258

259 **Discussion**

260

261 The chytridiomycosis panzootic has been identified as one of the key drivers
262 of global amphibian declines, contributing to earth's sixth mass extinction. Since the
263 discovery of *Bd* (Berger et al., 1998) and more recently *Bsal* (Martel et al., 2013),
264 efforts have been made to understand their evolution and mechanisms of
265 pathogenicity and virulence. *Bsal*'s virulence is likely shaped by an "arms race"
266 between host and pathogen, resulting in large and diverse families of proteolytic
267 enzymes for skin and extracellular matrix destruction (R. A. Farrer et al., 2017;
268 Fisher et al., 2021; Papkou et al., 2019). Here, we assemble and annotate an
269 improved *Bsal* genome assembly and perform comparative genomics across the
270 Chytridiomycota, discovering that both *Bsal* and *Bd* have hallmarks of two-speed
271 genomes.

272

273 *Bsal* has an extremely repeat-rich genome (40.9%) compared with most
274 fungal species, which typically range from ~5-35% (Wöstemeyer & Kreibich, 2002).
275 However, there are other fungal pathogens with even greater repeat content (>62%)
276 such as *Venturia* and *Blumeria* species (Cam et al., 2019; Castanera et al., 2016;
277 Frantzeskakis et al., 2018; Peter et al., 2016; Wöstemeyer & Kreibich, 2002). Many
278 of *Bsal*'s repeats are transposable elements (TEs) (19.36%) which underpin the
279 genome expansion described in other species including the fungal wheat pathogen
280 *Zymoseptoria tritici*, the barley powdery mildew, *Blumeria graminis* f.sp. *hordei*, the
281 oomycete causative agent of potato blight, *Phytophthora infestans* and the symbiotic
282 fungus *Cenococcum geophilum* (Oggenfuss et al., 2021; Peter et al., 2016; Raffaele
283 & Kamoun, 2012a; Spanu et al., 2010). TEs are abundant in the genomes of various
284 fungal pathogens, comprising 36% of the genome for plant pathogen *Leptosphaeria*
285 *maculans*, 64% of the genome for *B. graminis* and 74% for *P. infestans*
286 (Grandaubert et al., 2014; Raffaele & Kamoun, 2012a; Spanu et al., 2010). TEs in
287 *Bsal*'s closest known relative *Bd*, however, only comprises 3.37% of its genome,
288 suggesting they have expanded recently in *Bsal* and that the differences in genome
289 size in the batrachochytrids associates with TE expansion in *Bsal*. The most
290 abundant TE family in *Bsal* is LTR/Gypsy, which is almost absent in *Bd* (0.02%).
291 LTR/Gypsy has been previously identified as a driver of genome expansion and also
292 has been implicated with adaptation along environmental gradients and under stress

293 conditions (Marcon et al., 2015; Pietzenuk et al., 2016; Y. Wang et al., 2018; Wos et
294 al., 2021; Zhang et al., 2020). More broadly, we found a strong correlation between
295 TE and repeat content with genome size across the Chytridiomycota. To our
296 knowledge, this is the first time that a statistical correlation between TE and repeat
297 content with genome size has been shown for an order of fungi, with previous
298 studies finding correlations in insects, chordates, larvaceans and tetrapodes, but not
299 fungi or fungal orders specifically (Canapa et al., 2015; Kidwell, 2002; Naville et al.,
300 2019).

301

302 Host-pathogen interactions exerts strong selective pressures, leading to
303 adaptive co-evolution (Papkou et al., 2019; Tellier et al., 2014). Under Red Queen
304 dynamics, both host and pathogen constantly adapt to the ongoing selective
305 pressures imposed by their coevolutionary interactions, with the host's immune
306 system evolving to detect and mount defences against the pathogen and the
307 pathogen evolving to colonize the host (Brockhurst et al., 2014; Cook et al., 2015;
308 Papkou et al., 2019; Torres et al., 2020; Van Valen, 1973). Pathogens with fluid
309 genotypes may co-evolve more effectively with their host and adapt to new hosts
310 more ably, thereby outcompeting other lineages with less plastic genomes ("clade
311 selection") (Dong et al., 2015; Raffaele & Kamoun, 2012b; Torres et al., 2020). Many
312 filamentous fungal plant pathogens and oomycetes have bipartite genome
313 architectures with gene-sparse/repeat-rich compartments enriched with effector
314 genes (such as those coding for secreted proteins that function outside of the
315 organism they were synthesised in), acting as "cradles of adaptive evolution" (Dong
316 et al., 2015; Frantzeskakis et al., 2019; Haas et al., 2009; Raffaele et al., 2010;
317 Raffaele & Kamoun, 2012b). These repeat-rich/gene-sparse compartments are
318 associated with higher evolvability and genome plasticity and are often enriched in
319 TEs, feature structural and copy number variations and are enriched with genes
320 under positive selection (Croll & McDonald, 2012; Faino et al., 2016b; Grandaubert
321 et al., 2014; Haas et al., 2009; Plissonneau et al., 2016; Raffaele et al., 2010; Rouxel
322 et al., 2011; Schrader & Schmitz, 2019). Conversely, gene-rich/repeat-sparse
323 compartments are enriched in core conserved genes (Raffaele et al., 2010). This
324 two-speed genome therefore provides an evolutionary solution for high evolvability in
325 some parts and conservation in others, providing genome plasticity while reducing
326 the risk of excessive deleterious mutations in essential genes.

327

328 Here we show that the batrachochytrids have such a bipartite “two-speed”
329 genome compartmentalization, which is especially pronounced in *Bsal*. The gene-
330 sparse compartment in both batrachochytrids are enriched in putative effector genes
331 encoding secreted proteins, metalloproteases, and ricin B-like lectins, implicated with
332 chemotaxis, adhesion, and the early stages of a pathogenesis (R. A. Farrer et al.,
333 2017; Gao et al., 2019; Jousson et al., 2004; Ramakrishna Rao &
334 Shanmugasundaram, 1970; Shende et al., 2018; Y. Wang et al., 2021; Xu et al.,
335 2020). In *Bd*, gene-sparse compartments are enriched for genes with signatures of
336 positive selection, indicating that the gene-sparse compartment is a hotspot of
337 adaptive evolutionary processes in batrachochytrids.

338

339 M36 metalloproteases are thought to break down the amphibian skin and
340 extracellular matrix during infection of the host (R. A. Farrer et al., 2017). We
341 discovered that large gene families of *Bsal* M36 metalloproteases (such as family 6)
342 are enriched for flanking LINE elements. Furthermore, LINEs are recognized as a
343 source of gene duplications and implicated with genetic novelty where duplicated
344 genes can evolve new functions (Chen et al., 2013; Wicker et al., 2007). Of all the
345 chytrid genomes analysed, only *Bsal* and *Bd* have groups of TEs enriched around
346 putative virulence genes, a further hallmark of two-speed genomes.

347

348 In fungi, repeats in genomes are targeted for mutation *via* the repeat induced
349 point mutation (RIP) mechanism, which protects the genome from duplications and
350 transposable element proliferation. In *Bd*, RIP is thought to be absent (van de
351 Vossenberg et al., 2019). Absence of RIP is generally associated with a uniform
352 distribution and with the erosion of compartmentalization of TEs, something that has
353 been found in genomes lacking a compartmentalized structure before (so-called one-
354 speed genomes) (Frantzeskakis et al., 2018, 2019). It is unknown if RIP occurs in
355 *Bsal*. If RIP is absent, the observed compartmentalization of TEs, especially in the
356 context of the uniform distribution of repeats overall, might be achieved by other
357 mechanisms of TE silencing, such as histone modification and methylation (Deniz et
358 al., 2019). The strong association of putative effector genes with TEs and their
359 uneven distribution in *Bsal* suggests that TEs are actively and passively shaping its
360 genome architecture, as well as driving higher evolvability of compartments enriched

361 in virulence factors (Bao et al., 2017; Dong et al., 2015; Faino et al., 2016a;
362 Frantzeskakis et al., 2018; Grandaubert et al., 2014; Raffaele & Kamoun, 2012b;
363 Rouxel et al., 2011; Schrader & Schmitz, 2019).

364

365 For the first time, we discover that two important pathogens of vertebrates,
366 *Bsal* and *Bd*, have the hallmarks of two-speed genomes. Such bipartite genome
367 architectures found in several plant pathogens is therefore not limited to plant-
368 pathogens. In the batrachochytrids, their two-speed genomes underpins size and
369 content of their genome, with genes likely to be involved in pathogenicity enriched
370 within genomic compartments that allow for their rapid adaptive evolution.

371

372 **Figure and Table legends**

373

374 **Figure 1.** Phylogeny of 22 Chytrids based on multiple alignments of 143 core orthologs (left)
375 next to genome content (right). Tree branches with a round tip have been sequenced using
376 short-read sequencing technologies (Illumina). Tree branches with squares have been
377 sequenced with long-read sequencing technologies (*B. salamandrivorans*: Oxford Nanopore
378 sequencing technology; all others: PacBio sequencing technology). The percentage of 1000
379 ultrafast bootstrap resampling's that support the major topological elements in neighbour
380 joining is indicated. The scale bar indicates the number of substitutions per site.

381

382 **Figure 2.** Repeat superfamily abundance in 23 Chytrids. The dendrogram is based on
383 euclidean distances and hierarchical clustering. Only repeat families that have more than 1%
384 abundance in at least one chytrid are included.

385

386 **Figure 3.** The two-speed genome of *Bsal*. **A)** a phylogenetic tree of *Bsal* and its three
387 closest relatives: *Bd*, *Hp*, and *Eh* constructed using a core-ortholog multiple alignment and
388 RAxML. Vertical branch lengths indicating the mean number of nucleotide substitutions per
389 site. Asterisks indicate 100% bootstrap support from 1,000 replicates. Density plots of
390 intergenic distance for all non-terminal protein coding genes are shown (measured as \log_{10}
391 length of 5' and 3' flanking intergenic distances; FIRs), with the median values shown in
392 dotted blue line. **B-E)** density plots of intergenic distance for *Bsal* gene categories. Individual
393 plots are non-terminal **B)** core-conserved genes, **C)** M36 metalloprotease, **D)** secreted
394 genes and **E)** small secreted genes respectively. The median intergenic distance for all
395 genes is shown as a dotted blue line. Asterisks indicate enrichment of genes in one of the

396 four quadrants based on the median intergenic distances (hypergeometric test, α -level =
397 0.01). **F**) shows the positions of 10kb windows assigned to the quadrants in the genome.
398

399 **Figure 4.** Rhizophydiales Intergenic Distance Analysis. \log_{10} mean intergenic distances of
400 core-conserved genes (CCGs), SSPs (small secreted proteins; <300 aa and ≥ 4 cysteines),
401 secreted proteins and M36 metalloproteases for chytrids of the clade Rhizophydiales.
402 Boxplots indicate median and interquartile range. To determine statistically significant
403 differences of the \log_{10} mean intergenic distances for pairs of different features of interest, a
404 Wilcoxon rank-sum test was performed. P-values were Bonferroni adjusted with an α -level of
405 1 and $n = 6$. *: $p \leq 0.0017$, **: $p \leq 0.00017$, ***: $p \leq 1.7E-5$, ****: $p \leq 1.7E-6$

406

407 **Figure 5.** Secreted protein tribes in *Bsal*, *Bd*, *Eh* and *Hp*. The 10 biggest secreted protein
408 tribes identified by clustering all predicted secreted genes using MCL found in one or more
409 of the 4 chytrids *Bsal*, *Bd*, *Eh*, and *Hp*. Significance of enrichment was determined using
410 hypergeometric tests. Q_{UR} = gene-sparse region, Q_{LL} = gene-rich region. Asterisks indicate
411 enrichment of genes in one of the four quadrants (hypergeometric test, $p_{adjusted} < 0.00063$).
412

413 **Figure 6.** Phylogenetic tree inferred using RaxML from protein alignments of all identified
414 M36 proteins in four chytrids. RaxML-inferred tree of all known M36 metalloproteases in
415 *Bsal*, *Bd*, *Eh* and *Hp*. The branch lengths (Tree scale) indicate the mean number of
416 nucleotide substitutions per site. Upstream and downstream flanking repeat families, rnd2
417 family2 (LINE) and rnd1 family182 (Unknown) are indicated as circles and squares,
418 respectively. Localization of the M36 metalloprotease genes in the gene-sparse region is
419 indicated by triangles. G1M36 and G2M36 (as previously defined (R. A. Farrer et al., 2017))
420 are marked by star outlines and filled star shapes, respectively. Gene IDs: *Enthel1* = *E.*
421 *helioformis*, *Hp* = *H. polyrhiza*, *BSLG* = *B. salamandivorans* and *BDEG* = *B. dendrobatidis*.
422

423 **Figure S1.** Synteny plots between **A**) *Bsal* and its three closest relative *Bd*, *Hp* and *Eh*, and
424 **B**) *Bsal* v.1 genome assembly and *Bsal* v.2 genome assembly. The positions of M36
425 metalloproteases are indicated as blue squares. The phylogenetic tree of *Bsal* and its three
426 closest relatives was constructed using core-ortholog multiple alignment and RAxML (with
427 WAG transition matrix). Branch lengths indicating the mean number of nucleotide
428 substitutions per site. Asterisks indicate 100% bootstrap support from 1,000 replicates.
429

430 **Figure S2.** Overall repeat content (%) of all 22 chytrids. Overall repeat content in percent of
431 all 22 chytrids excluding lower-scoring matches.

432

433 **Figure S3.** Linear regression plots with Spearman correlation coefficients. **A)** Correlation
434 plot of transposable element content (%) and genome length (bp) for 22 chytrids, **B)** repeat
435 content (%) and the genome length, **C)** repeat content (%) and N% and **D)** repeat content
436 and the number of contigs. R-squared (R^2), equation of the linear equation and Spearman's
437 rank correlation coefficient are indicated in each plot. Data points are blue, the linear
438 regression line is red, the confidence interval is grey.

439

440 **Figure S4.** Overall content of transposable elements (%) of all 22 chytrids. Overall content
441 of transposable elements in percent of all 22 chytrids excluding lower-scoring matches
442 (stringent criterion).

443

444 **Figure S5.** Repeat and TE distributions in the *Bsal* genome.

445

446 **Figure S6.** Density plots for all 22 chytrids analysed. Density plots of intergenic distances for
447 all non-terminal protein coding genes are shown (measured as \log_{10} length of 5' and 3'
448 flanking upstream and downstream intergenic distances), with the median values shown in
449 dotted blue line.

450

451 **Table S1.** Whole genome assembly statistics. All genome assemblies apart from V1
452 Allpaths (R. A. Farrer et al., 2017), are *de novo* long read assemblies generated in this
453 study. V2 Canu default settings Pilon corrected = *Bsal* assembly v2.0 (our chosen assembly,
454 highlighted in blue).

455

456 **Table S2.** Repeat superfamily distributions of the 22 chytrids based on RepeatModeller
457 classifications. Lower-scoring matches were excluded. All values are in base pairs (bp).

458

459 **Table S3.** Parameters and *p*-values of hypergeometric tests, χ^2 -tests and Wilcoxon rank
460 sum tests. For all enrichment tests, the four quadrants (Q_{UL} , Q_{UR} , Q_{LR} and Q_{LL}) are based on
461 the 5' and 3' median \log_{10} intergenic distances.

462 **A)** Number of M36 metalloprotease genes, genes coding for secreted proteins, small
463 secreted protein (SSP) genes and core-conserved protein (CCG) genes in all 22 chytrids.
464 SSPs are defined as either having fewer than 200 amino acids (aa; all chytrids) or proteins
465 with fewer than 200 aa and ≥ 4 cysteines (for Rhizophydiales).

466 **B)** *p*-values of hypergeometric tests for enrichment of M36 metalloproteases, secreted
467 proteins, core-conserved genes and small secreted proteins (defined as smaller than 200 aa
468 and ≥ 4 cysteines for Rhizophydiales and only as smaller than 200 aa for the rest) in the four

469 quadrants for all 22 chytrids. Significant p -values ($p_{\text{adjusted}} < 0.00063$; α -level = 0.01, $n = 16$)
470 are highlighted in blue.

471 **C)** p -values for χ^2 -tests for enrichment of M36 metalloproteases, secreted proteins, core-
472 conserved genes and small secreted proteins (defined as smaller than 200 aa and ≥ 4
473 cysteines for Rhizophydiales and only as smaller than 200 aa for the rest) in the four
474 quadrants for all 22 chytrids. Significant p -values ($p_{\text{adjusted}} < 0.00063$; α -level = 0.01, $n = 16$)
475 are highlighted in blue.

476 **D)** Wilcoxon rank-sum test results for distributions of all mean upstream and downstream
477 \log_{10} intergenic regions compared to mean upstream and downstream \log_{10} intergenic
478 regions of M36 metalloproteases, secreted proteins, core-conserved genes and small
479 secreted proteins (defined as smaller than 200 aa and ≥ 4 cysteines for Rhizophydiales and
480 only as smaller than 200 aa for the rest) in all 22 chytrids. **** = 1e-04, *** = 0.001, ** = 0.01,
481 * = 0.05, ns = 1. Significant p -values ($p_{\text{adjusted}} < 3.0303E-05$; α -level = 0.01, $n = 330$) are
482 highlighted in blue.

483 **E)** Enrichment of M36 metalloproteases, secreted proteins, core-conserved genes and small
484 secreted proteins in *Bd* among the four Quadrants was calculated by hypergeometric tests
485 and χ^2 -tests (p -values shown). Significant p -values ($p_{\text{adjusted}} < 0.0005$; α -level = 0.01, $n = 20$)
486 are highlighted in blue.

487 **F)** Enrichment of rnd2 family2 (LINE) and rnd1 family182 (unknown) repeat families in the
488 four quadrants in *Bsal* was calculated using hypergeometric tests and for χ^2 -tests (p -values
489 shown). Significant p -values ($p_{\text{adjusted}} < 0.0025$; α -level = 0.01, $n = 4$) are highlighted in blue.

490 **G)** Enrichment of repeat-families upstream and downstream of M36 metalloproteases in
491 *Bsal*. p -values are calculated for hypergeometric tests and χ^2 -tests. Repeat families were
492 annotated according to RepeatModeller classifications. Significant p -values ($p_{\text{adjusted}} <$
493 0.000083; α -level = 0.01, $n = 120$) are highlighted in blue.

494 **H)** Enrichment of repeat-families upstream and downstream of secreted protein coding
495 genes in *Bsal*. p -values are calculated for hypergeometric tests and χ^2 -tests. Significant p -
496 values ($p_{\text{adjusted}} < 0.00001639$; α -level = 0.01, $n = 610$) are highlighted in blue.

497 **I)** Enrichment of the 10 largest secreted tribes in the four quadrants was calculated for *Bsal*,
498 *Bd*, *Eh* and *Hp*. p -values were determined using hypergeometric tests. Significant p -values
499 ($p_{\text{adjusted}} < 0.00063$; α -level = 0.01, $n = 16$ (four quadrants and four species for each tribe))
500 are highlighted in blue.

501 **J)** Numbers of genes in each secreted Tribe and the number and names of assigned
502 PFAMs. NA = Non applicable.

503 **K)** Details of 10 kb non-overlapping windows categorised according to internal gene
504 Quadrants. Windows with no predicted genes or only terminal genes were considered
505 uncharacterised (Q_{unchar.}).

506

507 **Table S4.** Quadrant enrichment and distribution on the chromosomes. The enrichment tests
508 for the four quadrants Q_{UL} , Q_{UR} , Q_{LR} and Q_{LL} are based on the 5' and 3' median \log_{10}
509 intergenic distances.

510 **A)** Enrichment of genes belonging to one of the 4 quadrants on each chromosome was
511 calculated using Hypergeometric tests, testing if there are more genes in a given quadrant
512 on that chromosome than would be expected for the overall number of genes on the
513 chromosome, given the number of genes in the quadrants in the entire genome. The
514 significance level was adjusted to $p < 0.0025$ (α -level = 0.01, $n = 4$). Significant enrichments
515 are highlighted in blue.

516 **B)** χ^2 -test for goodness of fit of quadrant distribution on chromosomes. Significant deviations
517 from the distribution of numbers of genes in quadrants from the expected 25% each are
518 highlighted in blue. The significance level is Bonferroni adjusted to $p < 0.000633$ (α -level =
519 0.01, $n = 158$). Obs = observed count; Exp = expected count.

520

521 **Table S5.** Consecutive gene counts and discrete-time Markov Chain probabilities.

522 **A)** Consecutive gene counts for the four quadrants (Q_{UL} , Q_{UR} , Q_{LR} and Q_{LL}) are based on the
523 5' and 3' median \log_{10} intergenic distances. Start and end position of the block of
524 consecutive genes are indicated.

525 **B)** Probabilities for the number of consecutive genes found in the four quadrants.
526 Probabilities of finding consecutive genes of length k on contigs with n genes, computed
527 using discrete-time pattern Markov chains. Significant (Sig) p -values ($p < 0.01$) are marked
528 with *.

529 **C)** Longest number of consecutive genes in each of the four quadrants for each chytrid.

530

531 **Table S6.** Matching tribes of *Bsal* assemblies v2.0 and v1.0. Gene IDs of genes assigned to
532 the respective tribes are denoted in *Bsal* v2.0 Gene ID and *Bsal* v1.0 Gene ID. Note that IDs
533 in the same row are not homologous.

534

535 **Table S7.** M36 Metalloprotease encoding genes in the *Bsal* genome assembly v2.0 and
536 their matching genes and classifications according to *Farrer et al.* 2017 (R. A. *Farrer et al.*,
537 2017). Contig numbers (terminal numbers of scaffolds), gene IDs, gene IDs in *Farrer et al.*
538 2017, IDs of upstream flanking genes and repeats (upstream ID), IDs of downstream
539 flanking repeats and genes (downstream ID), classification as secreted (secreted) or not
540 (NA), Tribes of *Bsal* assembly v2.0, the matching clades in Fig. 5 and M36 clades G1M36 or
541 G2M36 designation (according to *Farrer et al.* 2017) of all M36 metalloproteases in *Bsal*
542 assembly v2.0.

543

544 **Table S8.** Gene IDs for genes with a secretion signal, M36 metalloproteases, core-
545 conserved genes (CCGs) and short secreted proteins (SSPs) for *B.salamandrivorans* and *B.*
546 *dendrobatidis*. SSPs IDs are for SSPs defined as being shorter than 200 amino acids and
547 with ≥ 4 cysteines.

548

549 **Methods**

550 **Sequencing and library preparation**

551 *Bsal* zoosporangia and zoospores were cultured in tryptone-gelatin hydrolysate-
552 lactose (TgFI) broth in cell culture flasks at 18°C. 200ml of 6 days old cultures were
553 harvested and centrifugated at 1700g for 10 mins at 4°C. Cell pellet was washed with ice
554 cold water and snap frozen in liquid nitrogen. High-molecular weight DNA for Nanopore
555 sequencing was obtained by a customized cetyltrimethylammonium bromide (CTAB)
556 extraction procedure (Schwessinger, 2019; Schwessinger & Rathjen, 2017) with the
557 modification of using RNase A (T3018, NEB) instead of RNase T1. Briefly, cell pellet was
558 ground with a mortar and pestle in liquid nitrogen with 2g of sand, followed by lysis with
559 CTAB, two-step purification with phenol/chloroform/isoamyl alcohol and precipitation with
560 isopropanol. Care was taken to avoid DNA shearing (cut off tips, no heating of samples).
561 DNA concentration was checked using the Qubit BR assay (Invitrogen) and DNA size range
562 profile was checked by Tapestation gDNA screentape (Agilent).

563

564 Two independent sequencing libraries were constructed, one with long unfragmented
565 DNA, one with DNA fragmented to 12kb with a gTube (520079, Covaris). DNA ends were
566 FFPE repaired and end-prepped/dA-tailed using the NEBNext FFPE DNA Repair kit
567 (M6630, NEB) and the NEBNext Ultra II End-Repair/dA-tailing Module (E7546, NEB)
568 followed by AMPure XP bead clean-up (A63882, Beckman Coulter). Adapters were ligated
569 using the Genomic DNA by Ligation kit (SQK-LSK109, Oxford Nanopore Technologies) and
570 NEBNext Quick T4 DNA Ligase (E6056, NEB) followed by AMPure XP bead clean-up. The
571 two libraries were successively loaded onto a single PromethION (FLO-PRO002, type
572 R9.4.1) flowcell. The unfragmented library was loaded first. Guppy Basecalling Software v.
573 3.2.8+bd67289 was used for base calling. A total of 24,402,905 reads were base called and
574 of these 18,678,675 (76.5%) passed the quality check. Passed reads contained 63.78 Gb of
575 DNA sequence (85% of the total DNA nucleotide bases sequenced) amounting to ~868X
576 depth of coverage. The mean length of nanopore read was 3,415 nt, with an N_{50} of 9,248
577 and a Mean Read Quality of 10.2. The longest read was 318,012nt long.

578

579 **Genome assembly and quality control**

580 Nanopore reads were trimmed using PoreChop v.0.2.3_seqan2.1 (Wick et al., 2017)
581 with default parameters, and filtered where < 500 bp or average read quality > 10 using
582 NanoFilt v.2.6.0 (De Coster et al., 2018). Canu v.1.8 (Koren et al., 2017) was used to
583 assemble reads \geq 100 kb (~13X coverage) with stopOnLowCoverage=0.5,
584 genomeSize=0.6g and minReadLength=500 (assembly name = V2 Canu default settings) or
585 with additional parameters corMhapFilterThreshold=0.000000002 corMhapOptions="--
586 threshold 0.80 --num-hashes 512 --num-min-matches 3 --ordered-sketch-size 1000 --
587 ordered-kmer-size 14 --min-olap-length 2000 --repeat-idf-scale 50" mhapMemory=60g
588 mhapBlockSize=500 ovIMerDistinct=0.975 (assembly name = V2 Canu non-default
589 settings). Raven v1.1.10 (Vaser & Sikic, 2019) was used to assembly all reads \geq 50 kb (~83X
590 coverage) with default parameters (assembly name = V2 Raven default settings). Medaka
591 v.1.0.3 (<https://github.com/nanoporetech/medaka>; default parameters) and the trimmed
592 nanopore reads were used for polishing. The polished assembly (V2 Canu default settings
593 Medaka polished) and the unpolished assembly (V2 Canu default settings) were filtered for
594 contigs \leq 500bp and corrected with Illumina paired-end sequence data (R. A. Farrer et al.,
595 2017) using Pilon v1.2 (Walker et al., 2014).

596

597 We compared the previously published assembly for *Bsal* (assembly name = V1) (R.
598 A. Farrer et al., 2017) to our new assemblies using a variety of tools and metrics (**Table S1**).
599 Assembly quality was assessed using Quast v.5.0.2 (Mikheenko et al., 2018). We evaluated
600 each assembly for pre-annotation gene completeness using Tblastn (-e 1e-10 -v 5 -b 5 -F F)
601 to the 248 Core Eukaryotic Genes (CEG) (Parra et al., 2007) and BUSCO v4.1.1 (Seppey et
602 al., 2019) analysis (datasets eukaryote_odb10 and fungi_odb10). Reapr v1.0.18 (Hunt et al.,
603 2013) was used on the assemblies with Illumina paired-end sequence data (insert size:
604 441). Internal duplication was assessed by MUMMER v4.0.0beta2 (Kurtz et al., 2004)
605 nucmer (parameters --coords --maxmatch --nosimplify). Non-self-hits (>500bp and >99%
606 identity) were flagged as possible duplications. Dnadiff was run for comparative
607 quantifications of duplications and gaps identified by MUMMER. While all V2 *Bsal* genome
608 assemblies were improvements in multiple metrics compared with V1, we chose the V2
609 Canu default assembly polished with Pilon only for all subsequent analysis based on high
610 accuracy, contiguity, completeness and coverage (**Supplemental Material**).
611

612

612 **Gene annotation**

613 Gene annotation on the repeat masked V2 assembly was guided by our previous
614 14.4Gb *Bsal* *in vitro* RNAseq (NCBI BioProject PRJNA326249) using the Braker2 (Hoff et
615 al., 2019) pipeline (parameters --fungus, --softmasking), which uses Samtools v.0.1.19-
616 44428cd (Li et al., 2009), Bamtools v.2.4.0 (Barnett et al., 2011), Diamond v.2.0.4 (Buchfink

617 et al., 2014), Genemark-ET v4.15 (Lomsadze et al., 2014), and Augustus v.3.2.1 (Stanke et
618 al., 2008). The pipeline identified 11,929 genes, from which 92.74% core eukaryotic genes
619 could be identified via BLASTP (e-value < 1e⁻¹⁰). Next, using the Broad Institute's Vesper
620 annotation pipeline, the genome was BLASTx against Swiss-Prot (Bairoch & Apweiler, 2000)
621 and KEGG (Kanehisa & Goto, 2000), and HMMER hmmscan (Finn et al., 2011) against
622 PFAM (Finn et al., 2014). We ran tRNAscan (Lowe & Eddy, 1997) and RNAmmer (Lagesen
623 et al., 2007) to identify non-protein-coding genes. M36 genes from the V1 assembly were
624 blasted to the Braker2 softmasked predictions, and included in our gene set.

625

626 Gene predictions were checked for a variety of issues, including overlapping of
627 noncoding genes, overlapping of coding genes, and the presence of in-frame stops. Genes
628 were named according to evidence from BLASTx and HMMER in the
629 following order of precedence: (i) Swiss-Pro t(Bairoch & Apweiler, 2000), (ii) TIGRfam (Haft
630 et al., 2003), and (iii) KEGG (Kanehisa & Goto, 2000) (where BLASTx hits must meet the
631 70% identity and 70% overlap criteria to be considered a good hit and for the name to be
632 applied). Otherwise, genes were classified as hypothetical proteins. Genes were functionally
633 annotated by assigning PFAM (release 27) domains (Finn et al., 2014), and BLASTx for
634 KEGG assignment (each where E-value <1x10⁻¹⁰), as well as ortholog mapping to genes of
635 known function. SignalP 4.0 (Petersen et al., 2011) and TMHMM (Krogh et al., 2001) were
636 used to identify secreted proteins and transmembrane proteins, respectively.

637

638 The protease composition of each chytrid was determined using top high scoring
639 pairs from BLASTp searches (e-value < 1e⁻⁵) made to the file 'pepunit.lib', which is a non-
640 redundant library of protein sequences of all the peptidases and peptidase inhibitors that are
641 included in the MEROPS database (Release 12.1), and compared to the 447 thousand
642 protein sequences in the 2014 version we used in our previous genomic analyses (R. A.
643 Farrer et al., 2017). All proteases with matches to M36 metalloproteases were aligned using
644 MUSCLE v3.8.31 (Edgar, 2004) and trimmed of excess gaps using trimAI 1.2rev59
645 (Capella-Gutiérrez et al., 2009) gappyout. We constructed the gene trees with RAxML
646 v7.7.8(Stamatakis, 2006) using the JTT amino acid transition model, which was visualized
647 using iTOL v6 (Letunic & Bork, 2021).

648

649 Secreted proteins were predicted in each of the 22 chytrid species using SignalP 4.0
650 (Petersen et al., 2011). These gene sequences had their secretion signal cleaved according
651 to the predicted cleavage site, which were then clustered according to sequence similarity
652 using MCL (<http://micsans.org/mcl/man/clmprotocols.html>) with recommended settings '-I 1.4'.
653 Secreted families were classified using PFAM domains (release 34.0) (Finn et al., 2014).

654 Small secreted proteins (SSPs) were classified as those secreted proteins with <300 amino
655 acids and >4 cysteines.

656

657 **Chytridiomycota genomic and phylogenetic analysis**

658 The genomes and gene annotation for *B. dendrobatidis* (Bd) JEL423, *S. punctatus*
659 (Sp) and *H. polychiza* (Hp) (R. A. Farrer et al., 2017) were downloaded from NCBI
660 (BioProject PRJNA13653, PRJNA37881 and GenBank AFSM00000000 respectively) and
661 FigShare (R. Farrer, 2016). Nineteen further chytrid genomes were downloaded from the
662 Mycocosm portal of the US Department of Energy (DOE) Joint Genome Institute (JGI)
663 (Grigoriev et al., 2014) including *B. helicus* (Ahrendt et al., 2018), *C. hyalinus* JEL632, *C.*
664 *lagenaria* Arg66, *Chytromyces* sp. nov. MP71, *E. helioformis* JEL805, *F. jonesii* JEL569, *G.*
665 *haynaldii* MP57, *G. pollinis-pini* Arg68, *G. prolifer a*(Chang et al., 2015), *G. semiglobifer* Barr
666 43, *G. variabilis* JEL559, *H. curvatum* SAG235-1, *O. mucronatum* JEL802, *P. hirtus* BR81,
667 *R. globosum* JEL800 (Mondo et al., 2017), *T. arcticum* BR59, *C. replicatum* JEL714
668 (Mozley-Standridge et al., 2009) and *C. polystomum* WB228. We excluded *B. helicus* from
669 further analysis as it had <75% complete BUSCOs, suggesting the assembly or gene calls
670 are incomplete.

671

672 Single copy orthologs were identified between chytrids using the Synima (R. A.
673 Farrer, 2017) pipeline with Orthofinder, and aligned using MUSCLE v3.8.31 (Edgar, 2004). A
674 maximum likelihood tree was constructed using IQ-Tree v1.6.12 (Nguyen et al., 2015, p.)
675 with the LG amino acid substitution model (the best fitting model according to ProtTest
676 v3.4.2 (Darriba et al., 2011)) with 1000 ultrafast bootstraps, and visualized using Figtree
677 v1.4.4 with midpoint rooting.

678

679 **Repeat Analysis**

680 Repeat content was identified using Repeatmodeler v.2.0.1 (Flynn et al., 2020) with
681 rmblast v.2.10.0+ and Tandem Repeat Finder v.4.09(Benson, 1999), RepeatScout v.1.06
682 and RepeatMasker v.4.0.5 (Smit et al., 2015). The output of Repeatmodeler
683 (consensi.fa.classified) was then used as a library for RepeatMasker. The repeat content
684 and family distribution for each chytrid species was determined from RepeatMasker.out,
685 excluding lower scoring matches whose domain partly (<80%) includes the domain of
686 another match.

687

688 TE and repeat distributions in the genome were assessed using Repeatmasker .gff
689 outfile and visualized using IGV 2.8.2 (Robinson et al., 2011). TE distribution in relation to
690 GC content was analyzed using Pilon's GC.wig files. Additionally, TE and repeat content of

691 10kb windows assigned to different quadrants was calculated using custom scripts based on
692 RepeatMasker .out files & lists of genes assigned to quadrants.

693

694 To assess if repeat content was correlated to genome assembly quality, Spearman's
695 Rank Correlation Coefficients, Spearman's correlation and linear regression (linear model
696 fitting based on formula by Wilkinson and Rogers (1973) (Wilkinson & Rogers, 1973)) were
697 calculated between repeat content and N_{50} , the number of contigs, genome length, as well
698 as the number of genes using ggpibr (<https://github.com/kassambara/ggpibr>).

699

700 For the heatmap showing repeat superfamily profiles, heatmap.2 was used with
701 hierarchical clustering and Euclidian as a distance measure. Repeat families that did not
702 exceed 1% abundance in any of the chytrids were excluded. Repeat families in *Bd* and *Bsa*
703 were aligned using blastn with an e-value of 0.01, no filtering (-dust no, -soft_masking false)
704 and a wordsize of 7 to determine homologs. Telomeric sequences were manually curated.

705

706 **Genome compartmentalization analysis**

707 Flanking intergenic distance was calculated for all non-terminal protein coding genes.
708 For each chytrid species, the median distance was used define four quadrants: Density plots
709 of intergenic distances were constructed for all non-terminal protein coding genes, and
710 several gene subsets including genes with a secretion signal, SSPs, conserved chytrid
711 BUSCO genes and M36 metalloproteases. The median 5' and 3' intergenic distance for all
712 protein coding genes in a given species was used to define four quadrants including bottom
713 left (gene-rich/repeat-sparse), top right (gene-poor/repeat-rich), bottom right (long 3'
714 intergenic distance, short 5' intergenic distance) and top left (short 3' intergenic distance,
715 long 5' intergenic distance).

716

717 To identify enrichment of gene categories in each quadrant, Hypergeometric tests
718 were performed on all genes, the aforementioned four gene categories, and the largest 10
719 secreted families (determined by MCL). Hypergeometric tests were also used to determine
720 enrichment for flanking repeat families and to determine whether genes falling in one of the
721 quadrants are enriched on certain chromosomes compared to the overall distribution of
722 genes in quadrants on all chromosomes. Critical p -values for hypergeometric and χ^2
723 enrichments were determined using Bonferroni correction with an α -level of 0.01. For gene
724 category enrichment, we performed 16 tests = 0.00063. For secreted families and quadrant
725 enrichments tests on chromosomes, we performed 4 tests = 0.0025. For flanking repeat
726 families, the correction was adjusted based on the total number of repeat families flanking.

727

728 There is currently no known population structure of *Bsal*, thereby precluding the
729 study of intra-population genetic variation. However, there are multiple lineages of *Bd*
730 described (R. A. Farrer et al., 2011; O'Hanlon et al., 2018) and therefore genetic variation for
731 this species can be compared to intergenic distance. Paired-end Illumina data from
732 representatives of all five known lineages (*Bd*GPL JEL423, *Bd*CAPE TF5a1, *Bd*CH ACON,
733 *Bd*Asia-1 KRBOOR_323, *Bd*Asia-2 CLFT065, and a hybrid of unknown parentage SA-EC3)
734 were obtained from the NCBI Sequence Read Archive (SRA) (R. A. Farrer et al., 2011,
735 2013; O'Hanlon et al., 2018). The Genome Analysis Toolkit (GATK) v.4.1.2.0 (McKenna et
736 al., 2010) was used to call variants. Our Workflow Description Language (WDL) scripts were
737 executed by Cromwell workflow execution engine v.48 (Voss et al., 2017). Briefly, raw
738 sequences were pre-processed by mapping reads to the reference genome *Bd* JEL423
739 using BWA-MEM v.0.7.17 (Li, 2013). Next, duplicates were marked, and the resulting file
740 was sorted by coordinate order. Intervals were created using a custom bash script allowing
741 parallel analysis of large batches of genomics data. Using the scatter-gather approach,
742 HaplotypeCaller was executed in GVCF mode with the diploid ploidy flag. Variants were
743 imported to GATK 4 GenomicsDB and hard filtered (QD < 2.0, FS > 60.0, MQ < 40.0, GQ ≥
744 50, AD ≥ 0.8, DP ≥ 10). The direction and magnitude of natural selection for each lineage
745 was assessed by measuring the rates of non-synonymous substitution (dN), synonymous
746 substitution (dS) and omega ($\omega = dN/dS$) using the yn00 program of PAML (Yang, 2007)
747 implementing the Yang and Nielsen method, taking into account codon bias (Yang &
748 Nielsen, 2000). The program was run on every gene in each isolate using the standard
749 nuclear code translation table. Hypergeometric tests were calculated for genes with $\omega > 1$ in
750 each quadrant. We performed 20 tests per lineage, thus the p -value was Bonferroni
751 corrected to 0.0005 at an α -level of 0.01
752

753 χ^2 enrichments tests of independence were performed on a range of genes including
754 1) genes with a secretion signal, 2) SSPs, 3) conserved chytrid BUSCO genes, 4) repeat
755 families flanking genes coding for secreted proteins, 5) M36 metalloproteases and 6) *Bd*
756 genes that have $\omega > 1$. Briefly, 2x2 contingency tables were generated for each test,
757 comprising two groups of dichotomous variables (number of genes in or not in the gene
758 category of interest, and the number of genes in or not in a given quadrant). χ^2 - tests for
759 goodness of fit were performed to determine whether the distribution of genes within each
760 quadrant was significantly different from the expected distribution (25% each). χ^2 - tests were
761 performed on each contig iteratively to test for genomic hot-spots for rapid evolution.
762

763 Wilcoxon rank-sum tests were computed to test the null hypothesis that the \log_{10}
764 mean intergenic distances of the feature category of interest (SSPs, HKGs, M36
765 metalloproteases and secreted proteins only) and the \log_{10} mean intergenic distances of all
766 the other genes that are either a) not in that feature category of interest or b) of a different
767 feature category have the same continuous distribution. Wilcoxon rank-sum tests were
768 performed using Rstatix v0.7 (<https://cran.r-project.org/web/packages/rstatix/index.html>)
769 wilcox_test (conf.level=0.95). Wilcoxon effectsize was determined using Rstatix
770 wilcox_effsize (conf.level=0.95,nboot=1000 and ci=TRUE). For Wilcoxon rank sum tests, the
771 adjusted p-values in the violin plots for α -levels of 0.01 to 0.0001 and 6 tests were as
772 follows: ns: $p > 0.0017$, *: $p \leq 0.0017$, **: $p \leq 0.00017$, ***: $p \leq 1.7E-5$, ****: $p \leq 1.7E-6$.
773

774 Consecutive gene counts were generated using lists of genes assigned to their
775 quadrants as defined above and a bespoke script. To assess the significance of finding a
776 certain number k of consecutive genes of the same quadrant, discrete pattern markov
777 chains were used. The probability of transitioning from one quadrant to the next was set to
778 0.25. Based on that, a $(k+1) \times (k+1)$ transition matrix was generated. Once the transition
779 matrix was constructed, for a given value of n the probability of having the number of
780 consecutive genes of a certain quadrant in the chain was $P(W|n) = \{P_n\}_{0,k}$. In the
781 calculation, n was set to 100 repetitions of equiprobable outcome. W is the event of the
782 occurrence of k consecutive genes of the same quadrant.

783

784 **Data availability**

785 Raw *B. salamandivorans* sequences are deposited at GenBank under Bioproject
786 PRJNA666901. The genome assembly and annotations for *Bsal* are deposited at GenBank
787 under Bioproject PRJNA666901.

788

789 **Acknowledgments**

790 RAF and NH are supported by MRC grant MR/N006364/2 and a Wellcome Trust
791 Seed Award (215239/Z/19/Z). TW is supported by an MRC Studentship (112189-G). This
792 project utilised equipment funded by the UK Medical Research Council (MRC) Clinical
793 Research Infrastructure Initiative (award number MR/M008924/1).

794

795 **References**

796 Ahrendt, S. R., Quandt, C. A., Ciobanu, D., Clum, A., Salamov, A., Andreopoulos, B.,
797 Cheng, J.-F., Woyke, T., Pelin, A., Henrissat, B., Reynolds, N. K., Benny, G. L.,
798 Smith, M. E., James, T. Y., & Grigoriev, I. V. (2018). Leveraging single-cell

799 genomics to expand the fungal tree of life. *Nature Microbiology*, 3(12), 1417–1428.

800 <https://doi.org/10.1038/s41564-018-0261-0>

801 Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its

802 supplement TrEMBL in 2000. *Nucleic Acids Research*, 28(1), 45–48.

803 Bao, J., Chen, M., Zhong, Z., Tang, W., Lin, L., Zhang, X., Jiang, H., Zhang, D., Miao, C.,

804 Tang, H., Zhang, J., Lu, G., Ming, R., Norvienyeku, J., Wang, B., & Wang, Z. (2017).
805 PacBio Sequencing Reveals Transposable Elements as a Key Contributor to Genomic

806 Plasticity and Virulence Variation in *Magnaporthe oryzae*. *Molecular Plant*, 10(11),

807 1465–1468. <https://doi.org/10.1016/j.molp.2017.08.008>

808 Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strambio, M. P., & Marth, G. T. (2011).
809 Bamtools: A C++ API and toolkit for analyzing and managing BAM files.

810 *Bioinformatics*, 27(12), 1691–1692. <https://doi.org/10.1093/bioinformatics/btr174>

811 Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. *Nucleic*

812 *Acids Research*, 27(2), 573–580. <https://doi.org/10.1093/nar/27.2.573>

813 Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L.,

814 Slocombe, R., Ragan, M. A., Hyatt, A. D., McDonald, K. R., Hines, H. B., Lips, K.

815 R., Marantelli, G., & Parkes, H. (1998). Chytridiomycosis causes amphibian mortality

816 associated with population declines in the rain forests of Australia and Central

817 America. *Proceedings of the National Academy of Sciences of the United States of*

818 *America*, 95(15), 9031–9036.

819 Beukema, W., Erens, J., Schulz, V., Stegen, G., Sluijs, A. S. der, Stark, T., Laudelout, A.,

820 Kinet, T., Kirschen, T., Poulain, M., Miaud, C., Steinfartz, S., Martel, A., & Pasmans,

821 F. (2021). Landscape epidemiology of *Batrachochytrium salamandrivorans*:
822 Reconciling data limitations and conservation urgency. *Ecological Applications*,

823 31(5), e2342. <https://doi.org/10.1002/ea.2342>

824 Brockhurst, M. A., Chapman, T., King, K. C., Mank, J. E., Paterson, S., & Hurst, G. D. D.
825 (2014). Running with the Red Queen: The role of biotic conflicts in evolution.
826 *Proceedings of the Royal Society B: Biological Sciences*, 281(1797), 20141382.
827 <https://doi.org/10.1098/rspb.2014.1382>

828 Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using
829 DIAMOND. *Nature Methods*, 12(1), 59–60. <https://doi.org/10.1038/nmeth.3176>

830 Cam, B. L., Sargent, D., Gouzy, J., Amselem, J., Bellanger, M.-N., Bouchez, O., Brown, S.,
831 Caffier, V., Gracia, M. D., Debuchy, R., Duvaux, L., Payen, T., Sannier, M., Shiller,
832 J., Collemare, J., & Lemaire, C. (2019). Population Genome Sequencing of the Scab
833 Fungal Species *Venturia inaequalis*, *Venturia pirina*, *Venturia aucupariae* and
834 *Venturia asperata*. *G3: Genes, Genomes, Genetics*, 9(8), 2405–2414.
835 <https://doi.org/10.1534/g3.119.400047>

836 Canapa, A., Barucca, M., Biscotti, M. A., Forconi, M., & Olmo, E. (2015). Transposons,
837 Genome Size, and Evolutionary Insights in Animals. *Cytogenetic and Genome
838 Research*, 147(4), 217–239. <https://doi.org/10.1159/000444429>

839 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for
840 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics
841 (Oxford, England)*, 25(15), 1972–1973. <https://doi.org/10.1093/bioinformatics/btp348>

842 Castanera, R., López-Varas, L., Borgognone, A., LaButti, K., Lapidus, A., Schmutz, J.,
843 Grimwood, J., Pérez, G., Pisabarro, A. G., Grigoriev, I. V., Stajich, J. E., & Ramírez,
844 L. (2016). Transposable Elements versus the Fungal Genome: Impact on Whole-
845 Genome Architecture and Transcriptional Profiles. *PLOS Genetics*, 12(6), e1006108.
846 <https://doi.org/10.1371/journal.pgen.1006108>

847 Chang, Y., Wang, S., Sekimoto, S., Aerts, A. L., Choi, C., Clum, A., LaButti, K. M.,
848 Lindquist, E. A., Yee Ngan, C., Ohm, R. A., Salamov, A. A., Grigoriev, I. V.,

849 Spatafora, J. W., & Berbee, M. L. (2015). Phylogenomic Analyses Indicate that Early
850 Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants. *Genome
851 Biology and Evolution*, 7(6), 1590–1601. <https://doi.org/10.1093/gbe/evv090>

852 Chen, S., Krinsky, B. H., & Long, M. (2013). New genes as drivers of phenotypic evolution.
853 *Nature Reviews Genetics*, 14(9), 645–660. <https://doi.org/10.1038/nrg3521>

854 Cook, D. E., Mesarich, C. H., & Thomma, B. P. H. J. (2015). Understanding Plant Immunity
855 as a Surveillance System to Detect Invasion. *Annual Review of Phytopathology*,
856 53(1), 541–563. <https://doi.org/10.1146/annurev-phyto-080614-120114>

857 Croll, D., & McDonald, B. A. (2012). The Accessory Genome as a Cradle for Adaptive
858 Evolution in Pathogens. *PLoS Pathogens*, 8(4), 3.

859 Czeczuga, B., Mazalska, B., & Godlewska, A. (2007). Fungi and fungus-like organisms
860 (Straminipila) on fruit tree petals floating in water. *Biological Letters*, 44(1).

861 Czeczuga, B., Muszyńska, E., Godlewska, A., & Mazalska, B. (2007). Aquatic fungi and
862 straminipilous organisms on decomposing fragments of wetland plants. *Mycologia
863 Balcanica*, 4, 31–44.

864 Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: Fast selection of
865 best-fit models of protein evolution. *Bioinformatics*, 27(8), 1164–1165.
866 <https://doi.org/10.1093/bioinformatics/btr088>

867 De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018).
868 NanoPack: Visualizing and processing long-read sequencing data. *Bioinformatics*,
869 34(15), 2666–2669. <https://doi.org/10.1093/bioinformatics/bty149>

870 Deniz, Ö., Frost, J. M., & Branco, M. R. (2019). Regulation of transposable elements by
871 DNA modifications. *Nature Reviews Genetics*, 20(7), 417–431.
872 <https://doi.org/10.1038/s41576-019-0106-6>

873 Dong, S., Raffaele, S., & Kamoun, S. (2015). The two-speed genomes of filamentous
874 pathogens: Waltz with plants. *Current Opinion in Genetics & Development*, 35, 57–
875 65. <https://doi.org/10.1016/j.gde.2015.09.001>

876 Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time
877 and space complexity. *BMC Bioinformatics*, 5, 113. [https://doi.org/10.1186/1471-2105-5-113](https://doi.org/10.1186/1471-
878 2105-5-113)

879 Faino, L., Seidl, M. F., Shi-Kunne, X., Pauper, M., Berg, G. C. M. van den, Wittenberg, A.
880 H. J., & Thomma, B. P. H. J. (2016a). Transposons passively and actively contribute
881 to evolution of the two-speed genome of a fungal pathogen. *Genome Research*, 26(8),
882 1091–1100.

883 Faino, L., Seidl, M. F., Shi-Kunne, X., Pauper, M., Berg, G. C. M. van den, Wittenberg, A.
884 H. J., & Thomma, B. P. H. J. (2016b). Transposons passively and actively contribute
885 to evolution of the two-speed genome of a fungal pathogen. *Genome Research*, 1091–
886 1100.

887 Farrer, R. (2016). *Homolaphlyctis polyrhiza annotation GFF3*. Figshare. Dataset.
888 <https://doi.org/10.6084/m9.figshare.4291274.v2>

889 Farrer, R. A. (2017). Synima: A synteny imaging tool for annotated genome assemblies.
890 *BMC Bioinformatics*, 18(1), 507. <https://doi.org/10.1186/s12859-017-1939-7>

891 Farrer, R. A., Henk, D. A., Garner, T. W. J., Balloux, F., Woodhams, D. C., & Fisher, M. C.
892 (2013). Chromosomal copy number variation, selection and uneven rates of
893 recombination reveal cryptic genome diversity linked to pathogenicity. *PLOS Genet*,
894 9(8), e1003703. <https://doi.org/10.1371/journal.pgen.1003703>

895 Farrer, R. A., Martel, A., Verbrugghe, E., Abouelleil, A., Ducatelle, R., Longcore, J. E.,
896 James, T. Y., Pasmans, F., Fisher, M. C., & Cuomo, C. A. (2017). Genomic

897 innovations linked to infection strategies across emerging pathogenic chytrid fungi.

898 *Nature Communications*, 8. <https://doi.org/10.1038/ncomms14742>

899 Farrer, R. A., Weinert, L. A., Bielby, J., Garner, T. W. J., Balloux, F., Clare, F., Bosch, J.,

900 Cunningham, A. A., Weldon, C., du Preez, L. H., Anderson, L., Pond, S. L. K.,

901 Shahar-Golan, R., Henk, D. A., & Fisher, M. C. (2011). Multiple emergences of

902 genetically diverse amphibian-infecting chytrids include a globalized hypervirulent

903 recombinant lineage. *Proceedings of the National Academy of Sciences of the United*

904 *States of America*, 108(46), 18732–18736. <https://doi.org/10.1073/pnas.1111915108>

905 Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A.,

906 Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L. L., Tate, J., & Punta, M.

907 (2014). Pfam: The protein families database. *Nucleic Acids Research*, 42(Database

908 issue), D222–D230. <https://doi.org/10.1093/nar/gkt1223>

909 Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: Interactive sequence

910 similarity searching. *Nucleic Acids Research*, 39(Web Server issue), W29–W37.

911 <https://doi.org/10.1093/nar/gkr367>

912 Fisher, M. C., Pasmans, F., & Martel, A. (2021). Virulence and Pathogenicity of Chytrid

913 Fungi Causing Amphibian Extinctions. *Annual Review of Microbiology*, 75(1), null.

914 <https://doi.org/10.1146/annurev-micro-052621-124212>

915 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F.

916 (2020). RepeatModeler2 for automated genomic discovery of transposable element

917 families. *Proceedings of the National Academy of Sciences of the United States of*

918 *America*, 117(17), 9451–9457. <https://doi.org/10.1073/pnas.1921046117>

919 Frantzeskakis, L., Kracher, B., Kusch, S., Yoshikawa-Maekawa, M., Bauer, S., Pedersen, C.,

920 Spanu, P. D., Maekawa, T., Schulze-Lefert, P., & Panstruga, R. (2018). Signatures of

921 host specialization and a recent transposable element burst in the dynamic one-speed

922 genome of the fungal barley powdery mildew pathogen. *BMC Genomics*, 19(1), 381.

923 <https://doi.org/10.1186/s12864-018-4750-6>

924 925 Frantzeskakis, L., Kusch, S., & Panstruga, R. (2019). The need for speed: Compartmentalized genome evolution in filamentous phytopathogens. *Molecular Plant Pathology*, 20(1), 926 3–7. <https://doi.org/10.1111/mpp.12738>

927 928 Gao, F., Zhang, B.-S., Zhao, J.-H., Huang, J.-F., Jia, P.-S., Wang, S., Zhang, J., Zhou, J.-M., & Guo, H.-S. (2019). Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. *Nature Plants*, 5(11), 1167–1176.

929 <https://doi.org/10.1038/s41477-019-0527-4>

930 931 Gijzen, M. (2009). Runaway repeats force expansion of the *Phytophthora infestans* genome. *Genome Biology*, 10(10), 241. <https://doi.org/10.1186/gb-2009-10-10-241>

932 933 Grandaubert, J., Lowe, R. G., Soyer, J. L., Schoch, C. L., Van de Wouw, A. P., Fudal, I., Robbertse, B., Lapalu, N., Links, M. G., Ollivier, B., Linglin, J., Barbe, V., 934 935 Mangenot, S., Cruaud, C., Borhan, H., Howlett, B. J., Balesdent, M.-H., & Rouxel, T. (2014). Transposable element-assisted evolution and adaptation to host plant within 936 937 the *Leptosphaeria maculans*-*Leptosphaeria biglobosa* species complex of fungal 938 939 pathogens. *BMC Genomics*, 15(1), 891. <https://doi.org/10.1186/1471-2164-15-891>

940 941 Grigoriev, I. V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otiillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I., & Shabalov, I. (2014). MycoCosm portal: Gearing up for 1000 fungal genomes. *Nucleic Acids Research*, 42(D1), D699–D704. <https://doi.org/10.1093/nar/gkt1183>

942 943 Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano, L. M., Grabherr, M., Kodira, C. D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T. O., Ah-Fong, 944 945 A. M. V., Alvarado, L., Anderson, V. L., Armstrong, M. R., Avrova, A., Baxter, L., 946 Beynon, J., Boevink, P. C., ... Nusbaum, C. (2009). Genome sequence and analysis of

947 the Irish potato famine pathogen *Phytophthora infestans*. *Nature*, 461(7262), 393–
948 398. <https://doi.org/10.1038/nature08358>

949 Haft, D. H., Selengut, J. D., & White, O. (2003). The TIGRFAMs database of protein
950 families. *Nucleic Acids Research*, 31(1), 371–373.

951 Hoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. (2019). Whole-genome annotation
952 with BRAKER. In M. Kollmar (Ed.), *Methods in Molecular Biology* (1962nd ed., pp.
953 62–95). Humana, New York, NY.

954 Hunt, M., Kikuchi, T., Sanders, M., Newbold, C., Berriman, M., & Otto, T. D. (2013).
955 REAPR: A universal tool for genome assembly evaluation. *Genome Biology*, 14(5).
956 <https://doi.org/10.1186/gb-2013-14-5-r47>

957 Joneson, S., Stajich, J. E., Shiu, S.-H., & Rosenblum, E. B. (2011). Genomic transition to
958 pathogenicity in chytrid fungi. *PLOS Pathog*, 7(11), e1002338.
959 <https://doi.org/10.1371/journal.ppat.1002338>

960 Jousson, O., Léchenne, B., Bontems, O., Capoccia, S., Mignon, B., Barblan, J., Quadroni, M.,
961 & Monod, M. 2004. (2004). Multiplication of an ancestral gene encoding secreted
962 fungalysin preceded species differentiation in the dermatophytes *Trichophyton* and
963 *Microsporum*. *Microbiology*, 150(2), 301–310. <https://doi.org/10.1099/mic.0.26690-0>

964 Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes.
965 *Nucleic Acids Research*, 28(1), 27–30.

966 Kidwell, M. G. (2002). Transposable elements and the evolution of genome size in
967 eukaryotes. *Genetica*, 115(1), 49–63. <https://doi.org/10.1023/A:1016072014259>

968 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M.
969 (2017). Canu:scalable and accurate long-read assembly via adaptive k-mer weighting
970 and repeat separation. *Genome Research*, 27(2), 722–736.
971 <https://doi.org/10.1101/gr.215087.116>.Freely

972 Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting
973 transmembrane protein topology with a Hidden Markov Model: Application to
974 complete genomes. *Journal of Molecular Biology*, 305(3), 567–580.
975 <https://doi.org/10.1006/jmbi.2000.4315>

976 Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., &
977 Salzberg, S. L. (2004). Versatile and open software for comparing large genomes.
978 *Genome Biology*, 5(2). <https://doi.org/10.1186/gb-2004-5-2-r12>

979 Lagesen, K., Hallin, P., Rødland, E. A., Staerfeldt, H.-H., Rognes, T., & Ussery, D. W.
980 (2007). RNAmmer: Consistent and rapid annotation of ribosomal RNA genes.
981 *Nucleic Acids Research*, 35(9), 3100–3108. <https://doi.org/10.1093/nar/gkm160>

982 Lamour, K. H., Mudge, J., Gobena, D., Hurtado-Gonzales, O. P., Schmutz, J., Kuo, A.,
983 Miller, N. A., Rice, B. J., Raffaele, S., Cano, L. M., Bharti, A. K., Donahoo, R. S.,
984 Finley, S., Huitema, E., Hulvey, J., Platt, D., Salamov, A., Savidor, A., Sharma, R., ...
985 Kingsmore, S. F. (2012). Genome sequencing and mapping reveal loss of
986 heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen
987 *Phytophthora capsici*. *Molecular Plant-Microbe Interactions* □: MPMI, 25(10),
988 1350–1360. <https://doi.org/10.1094/MPMI-02-12-0028-R>

989 Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for
990 phylogenetic tree display and annotation. *Nucleic Acids Research*, 49(W1), W293–
991 W296. <https://doi.org/10.1093/nar/gkab301>

992 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-
993 MEM. *ArXiv:1303.3997 [q-Bio]*. <http://arxiv.org/abs/1303.3997>

994 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
995 G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools.
996 *Bioinformatics*, 25(16), 2078–2079. <https://doi.org/10.1093/bioinformatics/btp352>

997 Lomsadze, A., Burns, P. D., & Borodovsky, M. (2014). Integration of mapped RNA-Seq
998 reads into automatic training of eukaryotic gene finding algorithm. *Nucleic Acids
999 Research*, 42(15), 1–8. <https://doi.org/10.1093/nar/gku557>

1000 Longcore, J. E., Letcher, P. M., & James, T. Y. (2012). *Homolaphlyctis polyrhiza* gen. Et sp.
1001 Nov., a species in the Rhizophydiales (Chytridiomycetes) with multiple rhizoidal
1002 axes. *Mycotaxon*, 118(1), 433–440. <https://doi.org/10.5248/118.433>

1003 Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A program for improved detection of
1004 transfer RNA genes in genomic sequence. *Nucleic Acids Research*, 25(5), 955–964.

1005 Marcon, H. S., Domingues, D. S., Silva, J. C., Borges, R. J., Matioli, F. F., de Mattos Fontes,
1006 M. R., & Marino, C. L. (2015). Transcriptionally active LTR retrotransposons in
1007 Eucalyptus genus are differentially expressed and insertionally polymorphic. *BMC
1008 Plant Biology*, 15(1), 198. <https://doi.org/10.1186/s12870-015-0550-1>

1009 Martel, A., Blooi, M., Adriaensen, C., Van Rooij, P., Beukema, W., Fisher, M. C., Farrer, R.
1010 A., Schmidt, B. R., Tobler, U., Goka, K., Lips, K. R., Muletz, C., Zamudio, K. R.,
1011 Bosch, J., Lötters, S., Wombwell, E., Garner, T. W. J., Cunningham, A. A., Spitzen-
1012 van der Sluijs, A., ... Pasmans, F. (2014). Wildlife disease. Recent introduction of a
1013 chytrid fungus endangers Western Palearctic salamanders. *Science (New York, N.Y.)*,
1014 346(6209), 630–631. <https://doi.org/10.1126/science.1258268>

1015 Martel, A., Spitzen-van der Sluijs, A., Blooi, M., Bert, W., Ducatelle, R., Fisher, M. C.,
1016 Woeltjes, A., Bosman, W., Chiers, K., Bossuyt, F., & Pasmans, F. (2013).
1017 *Batrachochytrium salamandrivorans* sp. Nov. causes lethal chytridiomycosis in
1018 amphibians. *Proceedings of the National Academy of Sciences of the United States of
1019 America*, 110(38), 15325–15329. <https://doi.org/10.1073/pnas.1307356110>

1020 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
1021 Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The

1022 Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation
1023 DNA sequencing data. *Genome Research*, 20(9), 1297–1303.
1024 <https://doi.org/10.1101/gr.107524.110>

1025 Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., & Gurevich, A. (2018). Versatile
1026 genome assembly evaluation with QUAST-LG. *Bioinformatics*, 34(13), i142–i150.
1027 <https://doi.org/10.1093/bioinformatics/bty266>

1028 Mondo, S. J., Dannebaum, R. O., Kuo, R. C., Louie, K. B., Bewick, A. J., LaButti, K.,
1029 Haridas, S., Kuo, A., Salamov, A., Ahrendt, S. R., Lau, R., Bowen, B. P., Lipzen, A.,
1030 Sullivan, W., Andreopoulos, B. B., Clum, A., Lindquist, E., Daum, C., Northen, T. R.,
1031 ... Grigoriev, I. V. (2017). Widespread adenine N6-methylation of active genes in
1032 fungi. *Nature Genetics*, 49(6), 964–968. <https://doi.org/10.1038/ng.3859>

1033 More, S., Miranda, M. A., Bicout, D., Bøtner, A., Butterworth, A., Calistri, P., Depner, K.,
1034 Edwards, S., Garin-Bastuji, B., Good, M., Michel, V., Raj, M., Nielsen, S. S.,
1035 Sihvonen, L., Spoolder, H., Stegeman, J. A., Thulke, H.-H., Velarde, A., Willeberg,
1036 P., ... Schmidt, C. G. (2018). Risk of survival, establishment and spread of
1037 *Batrachochytrium salamandrivorans* (Bsal) in the EU. *EFSA Journal*, 16(4), e05259.
1038 <https://doi.org/10.2903/j.efsa.2018.5259>

1039 Mozley-Standridge, S. E., Letcher, P. M., Longcore, J. E., Porter, D., & Simmons, D. R.
1040 (2009). Cladochytriales—A new order in Chytridiomycota. *Mycological Research*,
1041 113(Pt 4), 498–507. <https://doi.org/10.1016/j.mycres.2008.12.004>

1042 Naville, M., Henriet, S., Warren, I., Sumic, S., Reeve, M., Volff, J.-N., & Chourrout, D.
1043 (2019). Massive Changes of Genome Size Driven by Expansions of Non-autonomous
1044 Transposable Elements. *Current Biology*, 29(7), 1161-1168.e6.
1045 <https://doi.org/10.1016/j.cub.2019.01.080>

1046 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast
1047 and Effective Stochastic Algorithm for Estimating Maximum-Likelihood
1048 Phylogenies. *Molecular Biology and Evolution*, 32(1), 268–274.
1049 <https://doi.org/10.1093/molbev/msu300>

1050 Oggendorf, U., Badet, T., Wicker, T., Hartmann, F. E., Singh, N. K., Abraham, L. N.,
1051 Karisto, P., Vonlanthen, T., Mundt, C. C., McDonald, B. A., & Croll, D. (2021). A
1052 population-level invasion by transposable elements triggers genome expansion in a
1053 fungal pathogen. *BioRxiv*. <https://doi.org/10.1101/2020.02.11.944652>

1054 O'Hanlon, S. J., Rieux, A., Farrer, R. A., Rosa, G. M., Waldman, B., Bataille, A., Kosch, T.
1055 A., Murray, K. A., Brankovics, B., Fumagalli, M., Martin, M. D., Wales, N.,
1056 Alvarado-Rybäk, M., Bates, K. A., Berger, L., Böll, S., Brookes, L., Clare, F.,
1057 Courtois, E. A., ... Fisher, M. C. (2018). Recent Asian origin of chytrid fungi causing
1058 global amphibian declines. *Science (New York, N.Y.)*, 360(6389), 621–627.
1059 <https://doi.org/10.1126/science.aar1965>

1060 Papkou, A., Guzella, T., Yang, W., Koepper, S., Pees, B., Schalkowski, R., Barg, M.-C.,
1061 Rosenstiel, P. C., Teotónio, H., & Schulenburg, H. (2019). The genomic basis of Red
1062 Queen dynamics during rapid reciprocal host–pathogen coevolution. *Proceedings of
1063 the National Academy of Sciences*, 116(3), 923–928.
1064 <https://doi.org/10.1073/pnas.1810402116>

1065 Parra, G., Bradnam, K., & Korf, I. (2007). CEGMA: A pipeline to accurately annotate core
1066 genes in eukaryotic genomes. *Bioinformatics*, 23(9), 1061–1067.
1067 <https://doi.org/10.1093/bioinformatics/btm071>

1068 Peter, M., Kohler, A., Ohm, R. A., Kuo, A., Krützmann, J., Morin, E., Arend, M., Barry, K.
1069 W., Binder, M., Choi, C., Clum, A., Copeland, A., Grisel, N., Haridas, S., Kipfer, T.,
1070 LaButti, K., Lindquist, E., Lipzen, A., Maire, R., ... Martin, F. M. (2016).

1071 Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic
1072 fungus *Cenococcum geophilum*. *Nature Communications*, 7(1), 12662.
1073 <https://doi.org/10.1038/ncomms12662>

1074 Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0:
1075 Discriminating signal peptides from transmembrane regions. *Nature Methods*, 8(10),
1076 785–786. <https://doi.org/10.1038/nmeth.1701>

1077 Pietzenuk, B., Markus, C., Gaubert, H., Bagwan, N., Merotto, A., Bucher, E., & Pecinka, A.
1078 (2016). Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements.
1079 *Genome Biology*, 17(1), 209. <https://doi.org/10.1186/s13059-016-1072-3>

1080 Plissonneau, C., Stürchler, A., & Croll, D. (2016). The Evolution of Orphan Regions in
1081 Genomes of a Fungal Pathogen of Wheat. *MBio*, 7(5), e01231-16, /mbio/7/5/e01231-
1082 16.atom. <https://doi.org/10.1128/mBio.01231-16>

1083 Pm, L., Cg, V., Me, B., Mj, P., Pf, C., & Ws, W. (2008). Ultrastructural and molecular
1084 analyses of Rhizophydiales (Chytridiomycota) isolates from North America and
1085 Argentina. *Mycological Research*, 112(Pt 7), 759–782.
1086 <https://doi.org/10.1016/j.mycres.2008.01.025>

1087 Powell, M. J., Letcher, P. M., Longcore, J. E., & Blackwell, W. H. (2018). Zopfochytrium is
1088 a new genus in the Chytridiales with distinct zoospore ultrastructure. *Fungal Biology*,
1089 122(11), 1041–1049. <https://doi.org/10.1016/j.funbio.2018.08.005>

1090 Price, A. L., Jones, N. C., & Pevzner, P. A. (2005). De novo identification of repeat families
1091 in large genomes. *Bioinformatics*, 21(SUPPL. 1), 351–358.
1092 <https://doi.org/10.1093/bioinformatics/bti1018>

1093 Raffaele, S., Farrer, R. A., Cano, L. M., Studholme, D. J., MacLean, D., Thines, M., Jiang, R.
1094 H. Y., Zody, M. C., Kunjeti, S. G., Donofrio, N. M., Meyers, B. C., Nusbaum, C., &
1095 Kamoun, S. (2010). Genome Evolution Following Host Jumps in the Irish Potato

1096 Famine Pathogen Lineage. *Science*, 330(6010), 1540–1543.

1097 <https://doi.org/10.1126/science.1193070>

1098 Raffaele, S., & Kamoun, S. (2012a). Genome evolution in filamentous plant pathogens: Why

1099 bigger can be better. *Nature Reviews Microbiology*, 10(6), 417–430.

1100 <https://doi.org/10.1038/nrmicro2790>

1101 Raffaele, S., & Kamoun, S. (2012b). Genome evolution in filamentous plant pathogens: Why

1102 bigger can be better. *Nature Reviews Microbiology*, 10(6), 417–430.

1103 <https://doi.org/10.1038/nrmicro2790>

1104 Ramakrishna Rao, K., & Shanmugasundaram, E. R. B. (1970). Biochemical and genetical

1105 studies on host parasite relationship: Role of tyrosinase in pathogenicity and host

1106 resistance of two mutants of *Fusarium vasinfectum* Atk. *Mycopathologia et*

1107 *Mycologia Applicata*, 42(3), 299–304. <https://doi.org/10.1007/BF02051959>

1108 Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., &

1109 Mesirov, J. P. (2011). Integrative genomics viewer. *Nature Biotechnology*, 29(1), 24–

1110 26. <https://doi.org/10.1038/nbt.1754>

1111 Rouxel, T., Grandaubert, J., Hane, J. K., Hoede, C., van de Wouw, A. P., Couloux, A.,

1112 Dominguez, V., Anthouard, V., Bally, P., Bourras, S., Cozijnsen, A. J., Ciuffetti, L.

1113 M., Degrave, A., Dilmaghani, A., Duret, L., Fudal, I., Goodwin, S. B., Gout, L.,

1114 Glaser, N., ... Howlett, B. J. (2011). Effector diversification within compartments of

1115 the *Leptosphaeria maculans* genome affected by Repeat-Induced Point mutations.

1116 *Nature Communications*, 2(1), 202. <https://doi.org/10.1038/ncomms1189>

1117 Sánchez-Vallet, A., Fouché, S., Fudal, I., Hartmann, F. E., Soyer, J. L., Tellier, A., & Croll,

1118 D. (2018). The Genome Biology of Effector Gene Evolution in Filamentous Plant

1119 Pathogens. *Annual Review of Phytopathology*, 56(1), 21–40.

1120 <https://doi.org/10.1146/annurev-phyto-080516-035303>

1121 Schrader, L., & Schmitz, J. (2019). The impact of transposable elements in adaptive
1122 evolution. *Molecular Ecology*, 28(6), 1537–1549. <https://doi.org/10.1111/mec.14794>

1123 Schwessinger, B. (2019). High quality DNA from Fungi for long read sequencing e.g.
1124 PacBio. *Protocols.Io*. <https://doi.org/dx.doi.org/10.17504/protocols.io.2yfgftn>

1125 Schwessinger, B., & Rathjen, J. P. (2017). Extraction of High Molecular Weight DNA from
1126 Fungal Rust Spores for Long Read Sequencing. In S. Periyannan (Ed.), *Wheat Rust*
1127 *Diseases. Methods in Molecular Biology* (vol 1659, pp. 49–57). Humana Press.

1128 Seppey, M., Manni, M., & Zdobnov, E. M. (2019). BUSCO: Assessing Genome Assembly
1129 and Annotation Completeness. In M. Kollmar (Ed.), *Gene Prediction: Methods and*
1130 *Protocols* (Vol. 1962, pp. 227–245). Springer Science+Business Media.

1131 Shende, R., Wong, S. S. W., Rapole, S., Beau, R., Ibrahim-Granet, O., Monod, M., Gührs,
1132 K.-H., Pal, J. K., Latgé, J.-P., Madan, T., Aimanianda, V., & Sahu, A. (2018).
1133 *Aspergillus fumigatus* conidial metalloprotease Mep1p cleaves host complement
1134 proteins. *Journal of Biological Chemistry*, 293(40), 15538–15555.
1135 <https://doi.org/10.1074/jbc.RA117.001476>

1136 Smit, A., Hubley, R., & Green, P. (2015). *RepeatMasker Open-4.0*.

1137 Spanu, P. D., Abbott, J. C., Amselem, J., Burgis, T. A., Soanes, D. M., Stüber, K., Loren van
1138 Themaat, E. V., Brown, J. K. M., Butcher, S. A., Gurr, S. J., Lebrun, M.-H., Ridout,
1139 C. J., Schulze-Lefert, P., Talbot, N. J., Ahmadinejad, N., Ametz, C., Barton, G. R.,
1140 Benjdia, M., Bidzinski, P., ... Panstruga, R. (2010). Genome Expansion and Gene
1141 Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. *Science*,
1142 330(6010), 1543–1546. <https://doi.org/10.1126/science.1194573>

1143 Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses
1144 with thousands of taxa and mixed models. *Bioinformatics*, 22(21), 2688–2690.
1145 <https://doi.org/10.1093/bioinformatics/btl446>

1146 Stanke, M., Diekhans, M., Baertsch, R., & Haussler, D. (2008). Using native and syntenically
1147 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics*, 24(5),
1148 637–644. <https://doi.org/10.1093/bioinformatics/btn013>

1149 Tellier, A., Moreno-Gamez, S., & Stephan, W. (2014). *SPEED OF ADAPTATION AND*
1150 *GENOMIC FOOTPRINTS OF HOST-PARASITE COEVOLUTION UNDER ARMS*
1151 *RACE AND TRENCH WARFARE DYNAMICS*. 68, 2211–2224.

1152 Torres, D. E., Oggeneffuss, U., Croll, D., & Seidl, M. F. (2020). Genome evolution in fungal
1153 plant pathogens: Looking beyond the two-speed genome model. *Fungal Biology*
1154 *Reviews*, 34(3), 136–143. <https://doi.org/10.1016/j.fbr.2020.07.001>

1155 Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H. Y., Aerts, A., Arredondo, F. D.,
1156 Baxter, L., Bensasson, D., Beynon, J. L., Chapman, J., Damasceno, C. M. B.,
1157 Dorrance, A. E., Dou, D., Dickerman, A. W., Dubchak, I. L., Garbelotto, M., Gijzen,
1158 M., Gordon, S. G., ... Boore, J. L. (2006). *Phytophthora* genome sequences uncover
1159 evolutionary origins and mechanisms of pathogenesis. *Science (New York, N.Y.)*,
1160 313(5791), 1261–1266. <https://doi.org/10.1126/science.1128796>

1161 van de Vossenberg, B. T. L. H., Warris, S., Nguyen, H. D. T., van Gent-Pelzer, M. P. E.,
1162 Joly, D. L., van de Geest, H. C., Bonants, P. J. M., Smith, D. S., Lévesque, C. A., &
1163 van der Lee, T. A. J. (2019). Comparative genomics of chytrid fungi reveal insights
1164 into the obligate biotrophic and pathogenic lifestyle of *Synchytrium endobioticum*.
1165 *Scientific Reports*, 9(1), 8672. <https://doi.org/10.1038/s41598-019-45128-9>

1166 Van Valen, L. (1973). *A NEW EVOLUTIONARY LAW*. 1, 1–30.

1167 Vaser, R., & Sikic, M. (2019). Yet another de novo genome assembler. *International*
1168 *Symposium on Image and Signal Processing and Analysis, ISPA, 2019-Sept*, 147–
1169 151. <https://doi.org/10.1109/ISPA.2019.8868909>

1170 Voss, K., Auwera, G. V. der, & Gentry, J. (2017). Full-stack genomics pipelining with
1171 GATK4 + WDL + Cromwell. *18th Annual Bioinformatics Open Source Conference*
1172 (*BOSC 2017*), 6. <https://doi.org/10.7490/f1000research.1114634.1>

1173 Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A.,
1174 Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An integrated tool
1175 for comprehensive microbial variant detection and genome assembly improvement.
1176 *PLoS ONE*, 9(11). <https://doi.org/10.1371/journal.pone.0112963>

1177 Wang, Q., Jiang, C., Wang, C., Chen, C., Xu, J.-R., & Liu, H. (2017). Characterization of the
1178 Two-Speed Subgenomes of *Fusarium graminearum* Reveals the Fast-Speed
1179 Subgenome Specialized for Adaption and Infection. *Frontiers in Plant Science*, 8.
1180 <https://doi.org/10.3389/fpls.2017.00140>

1181 Wang, Y., Liang, W., & Tang, T. (2018). Constant conflict between Gypsy LTR
1182 retrotransposons and CHH methylation within a stress-adapted mangrove genome.
1183 *New Phytologist*, 220(3), 922–935. <https://doi.org/10.1111/nph.15209>

1184 Wang, Y., Verbrugghe, E., Meuris, L., Chiers, K., Kelly, M., Strubbe, D., Callewaert, N.,
1185 Pasmans, F., & Martel, A. (2021). Epidermal galactose spurs chytrid virulence and
1186 predicts amphibian colonization. *Nature Communications*, 12(1), 5788.
1187 <https://doi.org/10.1038/s41467-021-26127-9>

1188 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Completing bacterial genome
1189 assemblies with multiplex MinION sequencing. *Microbial Genomics*, 3(10), 1–7.
1190 <https://doi.org/10.1099/mgen.0.000132>

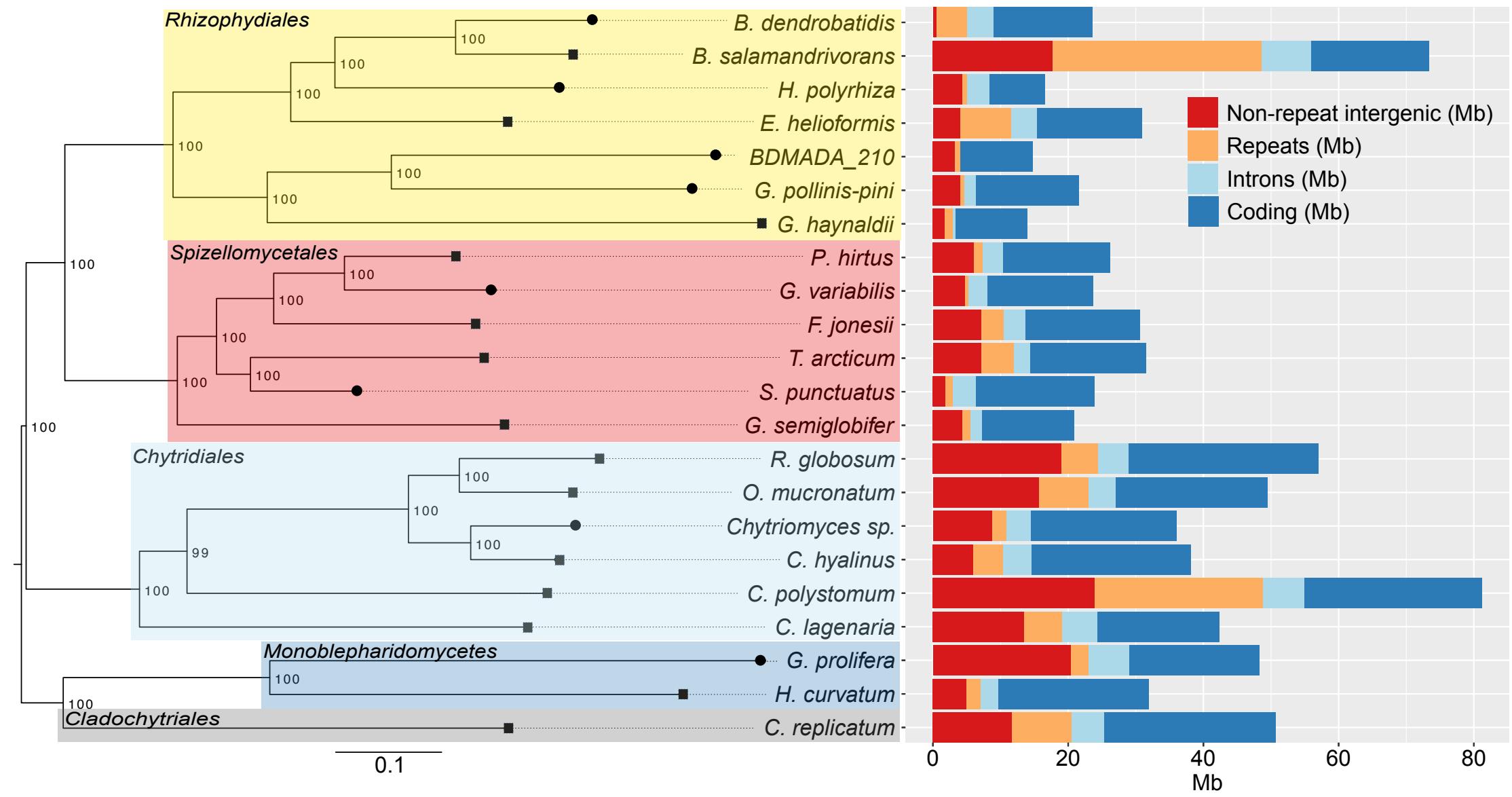
1191 Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A.,
1192 Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., & Schulman, A. H.
1193 (2007). A unified classification system for eukaryotic transposable elements. *Nature*
1194 *Reviews Genetics*, 8(12), 973–982. <https://doi.org/10.1038/nrg2165>

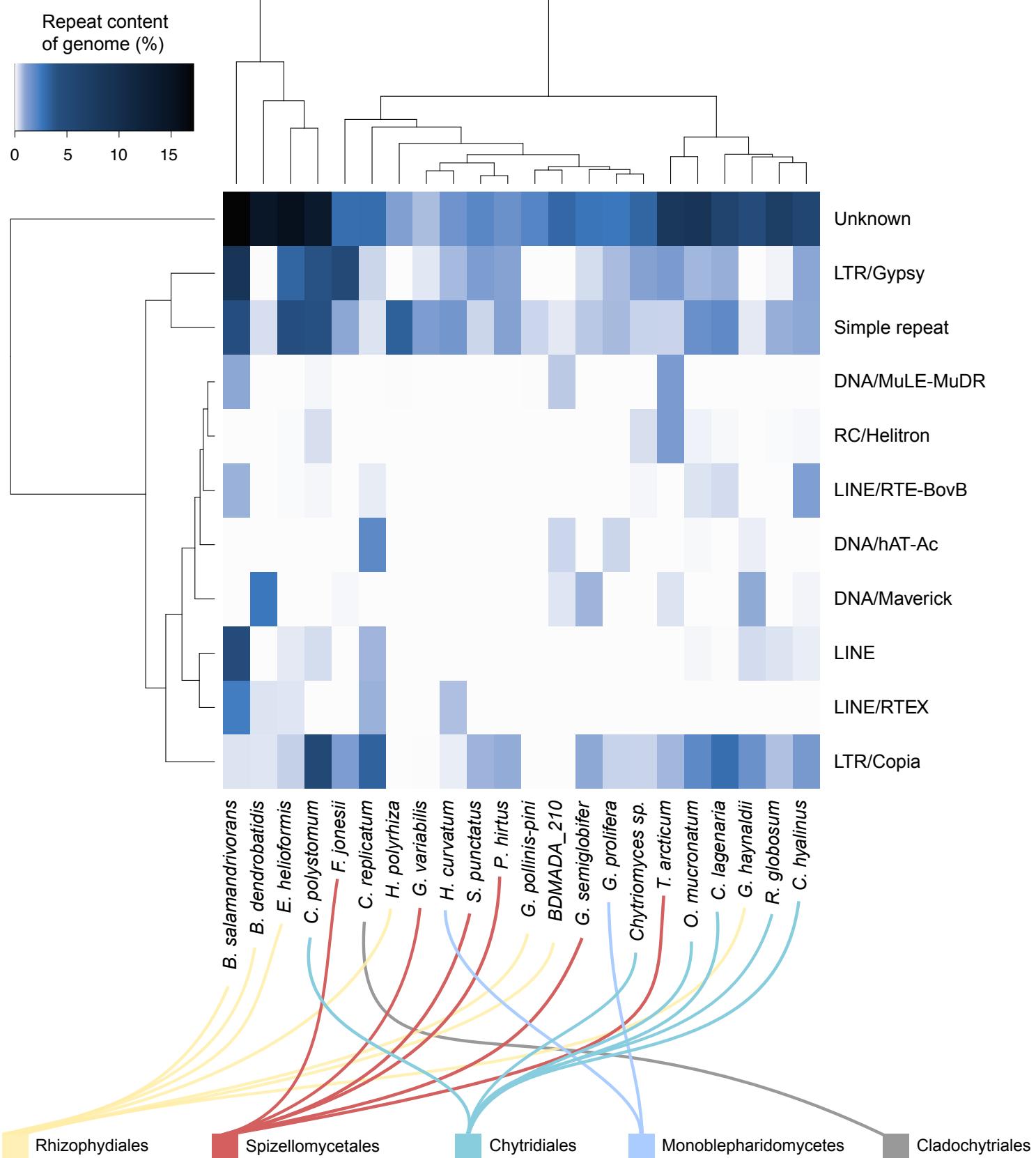
1195 Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for
1196 Analysis of Variance. *Journal of the Royal Statistical Society. Series C (Applied*
1197 *Statistics)*, 22(3), 392–399. <https://doi.org/10.2307/2346786>

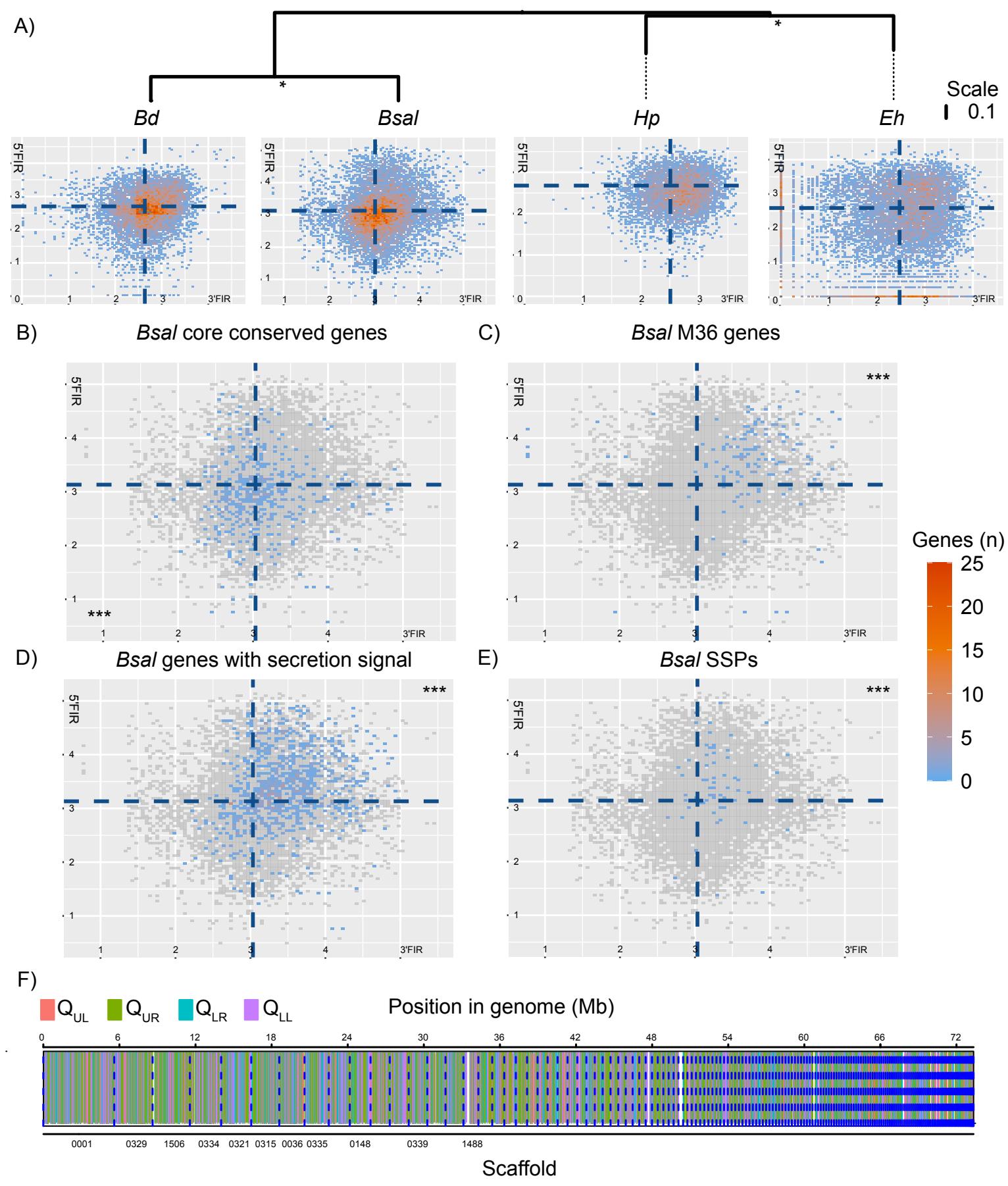
1198 Winter, D. J., Ganley, A. R. D., Young, C. A., Liachko, I., Schardl, C. L., Dupont, P.-Y.,
1199 Berry, D., Ram, A., Scott, B., & Cox, M. P. (2018). Repeat elements organise 3D
1200 genome structure and mediate transcription in the filamentous fungus *Epichloë*
1201 *festucae*. *PLOS Genetics*, 14(10), e1007467.
1202 <https://doi.org/10.1371/journal.pgen.1007467>

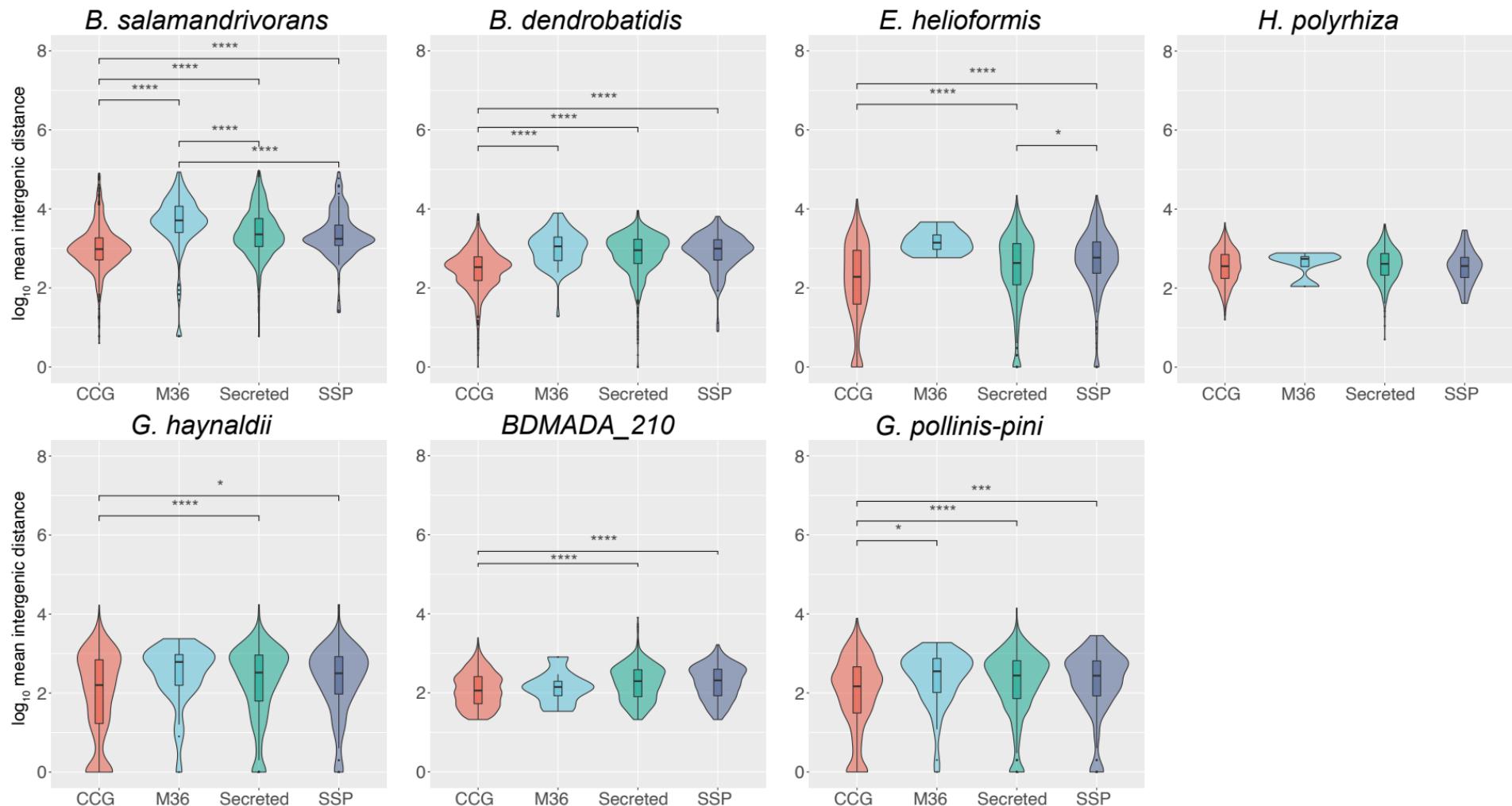
1203 Wos, G., Choudhury, R. R., Kolář, F., & Parisod, C. (2021). Transcriptional activity of
1204 transposable elements along an elevational gradient in *Arabidopsis arenosa*. *Mobile*
1205 *DNA*, 12(1), 7.

1206 Wöstemeyer, J., & Kreibich, A. (2002). Repetitive DNA elements in fungi (Mycota): Impact
1207 on genomic architecture and evolution. *Current Genetics*, 41(4), 189–198.
1208 <https://doi.org/10.1007/s00294-002-0306-y>


1209 Xu, Q., Wang, J., Zhao, J., Xu, J., Sun, S., Zhang, H., Wu, J., Tang, C., Kang, Z., & Wang,
1210 X. (2020). A polysaccharide deacetylase from *Puccinia striiformis f. Sp. Tritici* is an
1211 important pathogenicity gene that suppresses plant immunity. *Plant Biotechnology*
1212 *Journal*, 18(8), 1830–1842. <https://doi.org/10.1111/pbi.13345>


1213 Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology*
1214 *and Evolution*, 24(8), 1586–1591. <https://doi.org/10.1093/molbev/msm088>


1215 Yang, Z., & Nielsen, R. (2000). Estimating synonymous and nonsynonymous substitution
1216 rates under realistic evolutionary models. *Molecular Biology and Evolution*, 17(1),
1217 32–43.


1218 Zhang, S.-J., Liu, L., Yang, R., & Wang, X. (2020). Genome Size Evolution Mediated by
1219 Gypsy Retrotransposons in Brassicaceae. *Genomics, Proteomics & Bioinformatics*,
1220 18(3), 321–332. <https://doi.org/10.1016/j.gpb.2018.07.009>
1221

