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Deep Learning (DL) is rapidly changing the field of microscopy,
allowing for efficient analysis of complex data while often out-
performing classical algorithms. This revolution has led to a
significant effort to create user-friendly tools allowing biomed-
ical researchers with little background in computer sciences to
use this technology effectively. Thus far, these approaches have
mainly focused on analysing microscopy images from eukary-
otic samples and are still underused in microbiology. In this
work, we demonstrate how to use a range of state-of-the-art
artificial neural-networks particularly suited for the analysis of
bacterial microscopy images, using our recently developed Ze-
roCostDL4Mic platform. We showcase different DL approaches
for segmenting bright field and fluorescence images of differ-
ent bacterial species, use object detection to classify different
growth stages in time-lapse imaging data, and carry out DL-
assisted phenotypic profiling of antibiotic-treated cells. To also
demonstrate the DL capacity to enhance low-phototoxicity live-
cell microscopy, we showcase how image denoising can allow re-
searchers to attain high-fidelity data in faster and longer imag-
ing. Finally, artificial labelling of cell membranes and predic-
tions of super-resolution images allow for accurate mapping of
cell shape and intracellular targets. To aid in the training of
novice users, we provide a purposefully-built database of train-
ing and testing data, enabling bacteriologists to quickly explore
how to analyse their data through DL. We hope this lays a fertile
ground for the efficient application of DL in microbiology and
fosters the creation of novel tools for bacterial cell biology and
antibiotic research.
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Introduction
The study of microorganisms and microbial communities is
a multidisciplinary approach bringing together molecular bi-
ology, biochemistry, and biophysics. It covers large spatial
scales ranging from single molecules over individual cells
to entire ecosystems. The amount of data collected in mi-

Fig. 1. Overview of the DL tasks and datasets used in DeepBacs. We demon-
strated the capabilities of DL in microbiology for segmentation (1), object detection
(2), denoising (3), artificial labelling (4) and prediction of super-resolution images
(5) of microbial microscopy data. A list of datasets can be found in Table S1, com-
prising different strains such as B. subtilis (1), E. coli (2-4) and S. aureus (5) and
imaging modalities (i.e. widefield and confocal fluorescence microscopy, bright field
imaging or super-resolution techniques). NN: neural network output. CAM = Chlo-
ramphenicol. Scale bars: 2 µm.

crobial studies constantly increases with technical develop-
ments, which can become challenging for classical data anal-
ysis and interpretation, requiring more complex computa-
tional approaches to extract relevant features from the data
landscape. Therefore, manual analysis is replaced increas-
ingly by automated analysis, notably with machine learn-
ing (ML) (1). In bioimage analysis, ML contributed to a
better understanding of viral organisation (2) and the mode
of action of antimicrobial compounds (3). In recent years,
the interest in deep learning (DL) tools for bioimage anal-
ysis has significantly increased, as their high versatility al-
lows them to perform many different image analysis tasks
with high performance and speed (4–7). This was impres-
sively demonstrated for image segmentation (8–12), artifi-
cial labelling (13, 14) or recovery of high-quality (15, 16)
and even prediction of super-resolution images (15, 17, 18)
from low-quality images. Other networks facilitate image-
to-image translation (19) or object detection and classifica-
tion (20, 21). Next to the development of novel DL ap-
proaches, effort has been put into their democratisation and
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in providing an entry-point for non-experts by simplifying
their use and providing pretrained models (22–25). To fur-
ther democratise expensive model training, recent develop-
ments employ cloud-based hardware solutions, thus bypass-
ing the need for specialised hardware (23, 26, 27). However,
these methodologies dominantly focused on the study of eu-
karyotes, particularly given the wealth of pre-existing imag-
ing data (18, 28). In image-based microbiology, DL is used
mainly for segmentation (29–32), while other DL-assisted
bioimage analysis tasks remain largely underexploited. To
address this gap, we propose that existing open-source DL
approaches can be easily expanded or adapted to analyse
bacterial bioimages. As the key requirement for success-
ful application of DL is suitable training data, we generated
various image datasets comprising different bacterial species
(E. coli, S. aureus and B. subtilis) and imaging modalities
(bright field, widefield and confocal fluorescence imaging
and super-resolution microscopy) (Supplementary Table 1).
We used these datasets to train DL models for a wide range
of applications (Figure 1) using the recently developed Zero-
CostDL4Mic platform (23), benefitting from its ease-of-use
and low-cost capabilities. Specifically, we demonstrate the
potential of open-source DL technology in image segmenta-
tion of both rod and spherically shaped bacteria (both fluores-
cence and noisy bright field images); in the detection of cells
and their classification based on growth stage and antibiotic-
induced phenotypic alterations; on denoising of live-cell mi-
croscopy data, such as nucleoid and FtsZ dynamics; and fi-
nally, we explore the potential of DL approaches for artifi-
cial labelling of bacterial membranes in bright field images
and prediction of super-resolution images from diffraction-
limited widefield images. We share our data and models for
researchers to explore the different DL networks and to test
and use pretrained models on existing data. Using pretrained
models, researchers can train custom models more efficiently
via transfer learning, requiring less time and less data to reach
high performance (23, 33). We envision that this work will
help microbiology researchers seamlessly leverage DL for
microscopy image analysis, allowing them to benefit from
high performance and high-speed algorithms.

Results
In the following sections, we describe the individual datasets
(Supplementary Table 1) that we used to perform the tasks
shown in Figure 1. We explain how we designed our
experiments, how data was prepared and analysed, and
showcase results for the different image analysis tasks.
Datasets and selected trained models are publicly available
via the data-sharing platform Zenodo (Supplementary Table
2), allowing users to explore the DL technology described in
this work.

Image segmentation
Up to date, image segmentation represents the main applica-
tion of DL technology for bacterial bioimages. It facilitates
single-cell analysis in larger image analysis pipelines and au-
tomated analysis of large datasets (29–32, 34, 35). Due to the

considerable variety in microscopy techniques and bacterial
shapes, to our knowledge, there is no universal DL network
that excels for all types of data, leading to the emergence of
many highly specific networks. However, the requirement
of specific hardware prevents microbiologists from applying
them to their data. We thus sought to test different easily ap-
plicable DL networks for their capability to segment the types
of bacterial bioimages frequently encountered in microbio-
logical studies. For this, we generated and annotated different
datasets (see methods), comprising bright field and fluores-
cence microscopy images of rod- and cocci-shaped bacteria
(E. coli and S. aureus for bright field, S. aureus and B. sub-
tilis for fluorescence) (Figure 2). For all datasets, we trained
DL models using ZeroCostDL4Mic, as it provides simple
and rapid access to a range of popular DL networks (23).
To evaluate their performance, we calculated common met-
rics, which compare the network output of test images to the
respective annotated ground truth (see Supplementary Note
1). Here we discriminate between semantic and instance seg-
mentation. Semantic segmentation mostly creates a binary
image of the background and foreground pixels, while in-
stance segmentation extracts individual objects from seman-
tic segmentations. Model performance in semantic segmenta-
tion is assessed using the intersection-over-union (IoU) met-
ric that reports on the overlap of output and ground truth
segmentation masks, with higher overlap representing better
agreement. To assess the quality of instance segmentation,
we determined the recall and precision metrics, which report
on the model sensitivity and specificity (Supplementary Note
1).

Five popular networks were used for segmentation, namely
U-Net (8), CARE (15), pix2pix (19), StarDist (9) and its re-
cent variant SplineDist (36) (Supplementary Table 3). As
the underlying network architectures vary, the workflows to
obtain instance segmentations differ in terms of e.g. in-
put/output data formats and image post-processing (Figure
S1). While StarDist and SplineDist provide instance seg-
mentation directly as network output, instances have to be
generated from U-Net, CARE and pix2pix predictions by
post-processing the outputs. CARE and pix2pix were not ex-
plicitly designed for segmentation but are versatile enough
to generate segmentable probability maps. Similar to U-Net,
the instance segmentation performance does not only depend
on the trained model, but also depends on the applied post-
processing routine.
For our first dataset, we recorded live S. aureus cells immo-
bilised under agarose pads, either in bright field mode or us-
ing the fluorescent membrane stain Nile Red (Figure 2B).
Due to their coccoid shape, we speculated that StarDist (9)
is well suited to segment this kind of data. StarDist is a U-
Net-based network developed to segment star-convex objects
(e.g. cell nuclei) at high object densities. We manually anno-
tated 7 images with varying cell densities (46 - 335 cells) and
split these into 28 image patches. We then trained two inde-
pendent StarDist models (one for bright field and one for flu-
orescence image segmentation) using the ZeroCostDL4Mic
StarDist implementation. As a general strategy to increase
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Fig. 2. Segmentation of bacterial images using open-source deep learning approaches. [A] Overview of the datasets used for image segmentation. Shown are repre-
sentative regions of interest for (i) S. aureus bright field and (ii) fluorescence images (Nile Red membrane stain), E. coli bright field images (iii) and (iv) fluorescence images
of B. subtilis expressing FtsZ-GFP. [B] Segmentation of S. aureus bright field and membrane-stain fluorescence images using StarDist (9). Bright field and fluorescence
images were acquired in the same measurements. Yellow dashed lines indicate the cell outlines detected in the test images shown. [C] Segmentation of E. coli bright field
images using the U-Net type network CARE (15) and GAN-type network pix2pix (19). A representative region of a training image pair (bright field and GT mask) is shown.
[D] Segmentation of fluorescence images of B. subtilis expressing FtsZ-GFP using U-Net and SplineDist (36). GT = ground truth. Scale bars are 2 µm (C, E) and 3 µm (B,
D).

the training dataset, we used data augmentation (23, 37) for
all DL learning tasks performed in this study. Testing an
unseen and fully annotated dataset demonstrated cell count-
ing accuracies (recall) of 98 ± 2% (membrane fluorescence)
and 90 ± 2% (bright field). The reduced accuracy for bright
field images is caused by optical artefacts at high cell den-
sity, leading to merging of defocussed cells (see Figure 2Ai).
Next to performing segmentation in the cloud, trained mod-
els can also be downloaded and conveniently used with the
StarDist plugin distributed via the image analysis platform
Fiji (38) (Supplementary Video 1). Similar to the Zero-
CostDL4Mic notebook, this enables efficient segmentation
of live-cell time-lapse data (Supplementary Video 2).
Motivated by this finding, we sought to know whether
StarDist is also suitable to segment rod-shaped cells. For
this, we recorded bright field time-lapse images of live E.
coli cells immobilised under agarose pads (39) (Figure 2C).
Bright field images show less contrast than phase contrast
images and suffer from high noise, making them challeng-
ing to be segmented. Still, they are widespread in bacte-
rial imaging, and proper segmentation would be beneficial
to study bacterial proliferation (i.e. cell counts over time)
and morphology (cell dimensions and shape). We annotated
individual image frames spread over the entire time series
and trained supervised DL networks to reflect varying cell
sizes and densities. All networks showed a good perfor-
mance for semantic segmentation, as indicated by high IoU
values for all time points (IoU > 0.75) (Supplementary Fig-
ure 2A). For instance segmentation, however, the model per-

formance varied strongly. We found that instance segmen-
tation of U-Net, CARE and pix2pix worked well for early
time points and thus low cell density (Figure 2B). Individual
cells in crowded regions could not be resolved using basic
image post-processing (i.e. thresholding), which led to a suc-
cessive decrease of the recall value over time and thus a de-
creasing number of correctly identified cells (Supplementary
Figure 2A). The best counting performance at low and high
cell densities was achieved using StarDist, which correctly
identified 87% of the cells for the entire test dataset. How-
ever, as StarDist assumes star-convex shaped objects, the ac-
curacy of the predicted cell shape decreased with increasing
cell length (and thus axial ratio), rendering this network less
suited for morphometry of elongated rod-shaped cells (Sup-
plementary Figure 2B). Using a multilabel U-Net (trained to
detect cell cytosol and boundary) instead of a single-label U-
Net provided the best compromise between instance segmen-
tation performance and proper prediction of cell morphology.
Applying this model to time-lapse videos allows to extract
single-cell instances that can subsequently be tracked using
e.g. TrackMate (40) (Supplementary Video 3).

Next, we were interested in the performance of DL networks
for the segmentation of complex fluorescence data. While
typical images used for segmentation show a high contrast
(fluorescent membrane stains, phase contrast images), im-
ages with complex fluorescence distributions or low signal
represent a significant challenge. This is particularly true
for classical segmentation methods like intensity threshold-
ing. We here demonstrate this task being applied on fluores-
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Fig. 3. Figure 3: DL-based object detection. [A] A YOLOv2 model was trained to detect and classify different growth stages of live E. coli cells. “Dividing” cells (green
bounding boxes) show visible septation, the class “Rod” (blue bounding boxes) represents growing cells without visible septation and regions with high cell densities are
classified as “Microcolonies” (red bounding boxes). Lower panel shows three frames from a live cell measurement. [B] Antibiotic phenotyping using object detection. A
YOLOv2 model was trained on drug-treated cells (upper panel). The model was tested on synthetic images randomly stitched from patches of different drug treatments.
Bounding box colors refer to the color-code in the upper image panel, vesicles (V, orange boxes) and oblique cells (O, green boxes) were added as additional classes during
training. Mecillinam-treated cells were misclassified as MP265-treated cells (red arrows). Scale bars are 10 µm (A, overview), 3 µm (B, lower panel) and 1 µm (B, upper
panel).

cence images of B. subtilis cells expressing FtsZ-GFP (41).
Next to the characteristic localisation in the septal region,
diffusing FtsZ monomers produce dim labelling of the cy-
tosol, leading to a heterogeneous intensity distribution (Fig-
ure 2D). Growth for several cell cycles results in the well-
known B. subtilis filaments and microcolonies, providing a
dataset with increasing cell density and a large amount of
cell-to-cell contacts. When we tested different networks for
this challenging dataset, we found that U-Net and pix2pix
provided well segmentable predictions at low to medium cell
density (Figure 2D, Supplementary Figure 2C/D). At high
cell densities, however, these networks also suffered from
the undesired merging of cells, leading to reduced recall and
precision values (Supplementary Figure 2C/D). As for seg-
mentation of E. coli bright field images, StarDist and its vari-
ant SplineDist (36) showed high recall and precision values
also for mid- and high-density regions, while the multi-label
U-Net preserved cell morphology at slightly lower instance
segmentation accuracy (Supplementary Figure 2D). In con-
trast to StarDist, SplineDist is not limited to convex shapes,
which makes it a good candidate network for the segmen-
tation of curved bacteria (e.g. Caulobacter crescentus). It
is, however, computationally more expensive and thus sup-
ports smaller training datasets than StarDist using the Zero-
CostDL4Mic platform.

Finally, and motivated by generalist approaches such as
Cellpose (11), we were interested in whether a single
StarDist model is able to perform all the segmentation tasks
presented in this study. We thus trained a model on pooled
training data and evaluated its performance (Supplementary
Figure 3). Although bright field and fluorescence images
differ significantly, the obtained ‘all-in-one’ model showed
similar precision and recall values compared to the specialist
models (Supplementary Table 4). However, it also shows

the same limitations, such as incomplete predictions for
long and curved bacteria (Supplementary Figure 3, lowest
panel). For cells with suitable morphology, StarDist allows
segmenting large images with thousands of cells, as shown
for live Agrobacterium tumefaciens imaged at various mag-
nifications (Supplementary Figure 4). It also demonstrates
that DL segmentation models can perform well on images
with low signal and noisy background.

Object detection and classification
Object detection is a task closely related to image segmen-
tation. However, instead of the network classifying pixels
as background or foreground pixels, it outputs a bounding
box and class label for each detected object. This is used
extensively in real-life applications, such as self-driving
cars or detecting items in photographs (20). To explore the
potential of object detection for microbiological applications,
we employed an implementation of YOLOv2 (20) for two
distinct tasks: Identification of cell cycle events such as cell
division in bright field images (Figure 3A) and antibiotic
phenotyping using membrane and DNA stains (Nile Red
and DAPI, respectively) (Figure 3B) (Supplementary Table
5). These labels are commonly used to study antibiotic
action, as they are easy to use and also facilitate live-cell
staining of bacterial cells (42). We chose YOLOv2 due to its
good performance in a recent study, in which a network was
trained to classify cell nuclei in fluorescence images (43).
For growth stage classification of live E. coli cells in bright
field images we used the same dataset employed for segmen-
tation (Figure 2C). Here, we wanted to discriminate between
rod-shaped cells, dividing cells, and microcolonies (Figure
3A). Microcolonies emerge during constricted growth under
agarose pads, but can also be caused by cell clumping under
unfavourable growth conditions. Imaging such regions is
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often undesired, as they complicate single-cell studies, and
automated skipping can thus save time and resources. To test
YOLOv2 for growth stage classification we annotated a set of
bright field images by drawing bounding boxes around non-
dividing cells, dividing cells and microcolonies (4+ cells in
close contact) online (https://www.makesense.ai/)
or locally (LabelImg) (44) (see methods).
Initially, we wanted to know how the object size influences
the performance of YOLOv2. We thus annotated both whole
images (512 x 512 px²) and cropped images (256 x 256
px²). Since object detection networks scale input images to a
specific size (for YOLOv2: 416 x 416 px²), cropping results
in a larger relative object size in the network input. When we
trained our model on large images, we encountered missed
objects, wrong bounding box positioning or false classifica-
tions (Supplementary Video 4). To quantify this effect, we
applied the model to the annotated test dataset and deter-
mined recall and precision values as well as the mean average
precision (mAP, see Supplementary Note 1) (Supplementary
Table 6). mAP represents the common metric for object
detection, taking into account model precision and recall
over a range of object detection thresholds (20). For object
detection challenges (e.g. PASCAL visual object classes
(VOC) challenge (45)), well-performing models typically
yield mAP values in the range of 0.6 - 0.8. However, for our
large-FoV growth stage classification dataset, we obtained
a mAP of 0.386. The observed per-class AP values hereby
show the size-dependent performance in object detection
(APMicrocolony > APdividing > AProd (non-dividing)) (Supplemen-
tary Table 6). Using cropped images resulted in improved
network performance on the classification of most cells in the
image (Figure 3A) and an improved mAP of 0.667 (Supple-
mentary Table 6). Knowing the size-dependent performance
is important for the design of an object detection experiment.
If the focus is e.g on the detection of large structures, e.g.
microcolonies, the YOLOv2 model can be trained on large
fields of view. However, small regions of interest or higher
optical magnification should be used if small objects are to
be detected. Object density is another parameter that affects
performance of YOLOv2 models. To identify objects in
different parts of the image, YOLOv2 divides the image
into a grid, and each grid region can only contain a single
object. For the YOLOv2 implementation that we employed,
this is a 13x13 grid, resulting in a maximum of 169 objects
detected for optimal object distribution. If the centroids
of two or more bounding boxes fall into the same region,
only one object will be detected. Very close objects (i.e.
non-dividing cells at t = 0 in Figure 3A or dividing cells at t =
19 min, yellow arrows) are hence not resolved, instead only
one bounding box of the corresponding class is predicted.
Object density should thus be considered as a limiting factor
when planning to train a network for object detection. When
applied to time-lapse recordings of growing E. coli cells,
the model facilitates identification of class transitions, e.g.
from rod-shaped (non-dividing) cells to dividing cells and at
later time points to microcolonies (Figure 3A, lower panel,
Supplementary Video 5).

As a second task for object detection, we explored its
suitability for antibiotic phenotyping (Figure 3B). In antibi-
otic phenotyping, bacterial cells are classified as non- or
drug-treated cells based on cell morphology and subcellular
features (commonly DNA and membrane stains). This
facilitates the assignment of a mode of action to antibiotics
or potential candidate compounds, being a promising tool in
drug discovery (3, 42). To explore whether object detection
networks can be used for this purpose, we generated a dataset
of images including membrane- and DNA-labelled E. coli
cells grown in the absence or presence of antibiotics. We
used five different antibiotics that target different cellular
pathways (Figure 3B). Nalidixate blocks DNA gyrase and
stalls DNA replication. Mecillinam and MP265 perturb
cell morphology by inhibiting peptidoglycan crosslinking
by PBP2 or MreB polymerisation, while rifampicin and
chloramphenicol inhibit transcription and translation, re-
spectively (Supplementary Table 7). As additional classes,
we included untreated cells (control), membrane vesicles
and oblique cells. The latter class represents cells that are
only partially attached to the surface during immobilisation.
Such cells can be identified by a focus shift and are present
in all growth conditions (Figure 3B, upper panel). Further
examples for each class are provided in Supplementary
Figure 5. We trained a YOLOv2 model on our annotated
dataset and tested its performance on two test datasets: The
first dataset consists of images containing bacteria with
different treatments (stitched images, see methods) (Figure
3B, lower panel). These images were randomly assembled
from patches of different drug treatments by merging four
200 x 200 px² patches on a 2 x 2 grid. The second test dataset
includes images that only show one condition, similar to
the dataset used for model training (Supplementary Figure
4). The YOLOv2 model showed a comparable performance
for both datasets with mAP values of 0.66 (stitched image
dataset) and 0.69 (individual conditions), indicating a good
generalisability of our model. Interestingly, AP values
for the different classes varied substantially, ranging from
0.21 (vesicles) to 0.94 (control) (Supplementary Table 8).
Poor prediction of membrane vesicles is likely caused by
their small size, which agrees with the observations made
for growth stage prediction. Intermediate AP values are
observed when antibiotics induce similar morphological
changes, as it is the case for mecillinam (AP = 0.605) and
MP265 (AP = 0.526). This led to misclassification between
these classes (Figure 3B, red arrows, Supplementary Figure
6), indicating that both treatments result in a highly similar
phenotype. This similarity allowed us to test whether
YOLOv2 can identify antibiotic modes of actions in unseen
images. We omitted MP265 data during model training,
but included images of MP265-treated cells in the test
data. Due to their similar phenotype MP265-treated cells
should hence be predicted as Mecillinam-treated. This was
indeed the case, as shown by the high mAP value (0.866)
and specificity (recall = 0.961) (Supplementary Figure 6B),
demonstrating the applicability of object detection networks
for mode-of-action-based drug screening.
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Fig. 4. Image denoising for improved live-cell imaging in bacteriology. [A]
Low and high signal-to-noise ratio (SNR) image pairs (ground truth, GT) of fixed E.
coli cells, labeled for H-NS-mScarlet-I. Denoising was performed with PureDenoise
(parametric approach), Noise2Void (self-supervised DL) and CARE (supervised
DL). Structural similarity (SSIM) maps (right panel) comparing low-SNR or pre-
dictions to ground truth (GT) high-SNR data. SSIM and Peak-signal-to-noise ratio
(PSNR) values are mean values of the two test images. [B] 10s interval representa-
tive time points of a live-cell measurement recorded at 1 Hz frame rate, demonstrat-
ing CARE can provide prolonged imaging at high SNR using low-intensity images
as input. t1/2 represents the decay half time. A.U. = arbitrary units. [C] Intensity
over time for different imaging conditions providing low/high SNR images shown in
[A/B]. [D] Structural similarity between subsequent imaging frames (see Methods)
was calculated for raw and restored time-lapse measurements. [E] Denoising of
FtsZ-GFP dynamics in live B. subtilis. Cells were vertically trapped and imaged
using the VerCINI method (41). Details are restored by Noise2Void (N2V), rainbow
colour-coded images were added for better visualisation. [C] and [D] show mean
values and respective standard deviations from 3 measurements. Scale bars are 1
µm.

Denoising
High contrast and fast image acquisition are critical to cap-
ture the dynamic nature of biology in full detail. How-
ever, these usually come associated with high power imaging
regimes often not compatible with live-cell imaging. Several
denoising techniques such as PureDenoise (46) or DL-based
approaches, both self-supervised (e.g. Noise2Void (16)) and

supervised (e.g. CARE (15)), have been proposed to cir-
cumvent this experimental paradox. As these approaches al-
low for faster and more gentle imaging, we consider them
as powerful tools for bacteriology. To test the applicabil-
ity of denoising approaches to bacterial data, we recorded
paired low and high signal-to-noise ratio (SNR) images of
an H-NS-mScarlet-I (47) fusion protein in live E. coli cells.
H-NS decorates the bacterial nucleoid homogeneously under
nutrient-rich growth conditions and maintains nucleoid asso-
ciation after chemical fixation (48). This allows the study of
chromosome organisation and dynamics, an important field
of bacterial cell biology. We trained the CARE and N2V
models on image pairs acquired using chemically fixed cells
to prevent motion blur in the training dataset (Supplementary
Table 9). We found that both parametric and DL-based ap-
proaches strongly increased the SNR of noise-corrupted im-
ages, as indicated by the peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) (49) (Figure 4A, right
panel). These metrics are commonly used to access SNR and
quality of image pairs, with higher values representing im-
proved performance (Supplementary Note 1).

Under the conditions tested, we obtained the best results us-
ing the supervised network CARE (SSIM = 0.894, PSNR =
36.7). We next applied the trained models to denoise live-
cell time series recorded at low SNR conditions (Figure 4B,
Supplementary Video 6). This led to an apparent increase
in SNR, and intensity analysis revealed a 20x lower photo-
bleaching rate as indicated by the exponential intensity decay
time t1/2 (Figure 4C). However, the performance of the differ-
ent denoising approaches in fast live cell measurements could
not be assessed by the standard PSNR and SSIM metrics due
to the lack of paired high-SNR images. As noise reduces
contrast and structural information content in images, subse-
quent image frames in low-SRN time series should exhibit
higher signal variation than in their high-SNR counterparts.
We hence speculated that calculating the structural similarity
between successive image frames (e.g. between frame 1 and
frame 2, frame 2 and frame 3, etc.) could report on denois-
ing performance for live-cell time series (Figure 4D). Indeed,
all denoising approaches significantly increased SSIM values
while preserving relative intensities over time (Supplemen-
tary Figure 7A).

As all the previous models were trained on fixed-cell data,
the results on live-cell data could be compromised by po-
tential fixation artefacts. Because N2V is self-supervised, it
was possible to train it directly on the live-cell data. Hence,
we could compare the performance of a N2V model trained
on fixed cell images with the one trained on live-cell im-
ages. This resulted in a high structural similarity over the
entire time series (Supplementary Figure 7B), indicating that
no artefacts were introduced by training on fixed-cell data.
Similar observations were made when comparing the fixed-
cell N2V and CARE models. Analysis of raw and denoised
fixed-cell time series using CARE further showed a constant
SSIM value of 0.96 in the subsequent frame analysis (Supple-
mentary Figure 7C). This indicates that the high contribution
of shot-noise under low-SNR conditions can be overcome by
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the denoising method. Of note, the SSIM value obtained in
fixed-cell measurements is higher than for denoised live-cell
time series (0.82) (compare Figure 4D and Supplementary
Figure 7C). To test whether this effect is caused by nucleoid
dynamics (Supplementary Video 6), we recorded a time se-
ries under high-SNR imaging conditions using a small region
of interest. High SNR leads to lower contribution of noise
and higher SSIM values for subsequent image frames. As
expected, the high laser power and longer exposure time in-
duced strong photobleaching, leading to a rapid drop in struc-
tural similarity over time (Figure 4B, Supplementary Figure
7D). However, the first SSIM value of the high-SNR time se-
ries (representing the similarity between frame 1 and frame 2)
is close to the corresponding SSIM value of the denoised low-
SNR time series. This indicates that (i) the model provides
optimal denoising performance and that (ii) the lower SSIM
values in live-cell measurements originate from nucleoid dy-
namics rather than representing denoising artefacts.

As another example, we denoised time-lapse images of
FtsZ treadmilling in live B. subtilis cells. These movies
were recorded in vertically aligned cells using the so-called
VerCINI approach (Figure 4E) and contributed to study the
critical role of FtsZ treadmilling in cell division (41). As
the constant movement of FtsZ-GFP renders acquisition
of low and high SNR image pairs difficult, we used the
self-supervised N2V method for the denoising task. Here,
denoising emphasises subtle details that are difficult to be
identified in the raw image data (Figure 4E). This allows for
long time-lapse imaging of FtsZ dynamics with enhanced
image quality (Supplementary Video 7).

Artificial labelling and super-resolution prediction
Artificial labelling creates pseudo-fluorescent images from
bright field, histology or EM images (13, 14, 50). It is
beneficial for bright field-to-fluorescence transformation,
as it does not require fluorophore excitation, being even
less phototoxic than denoising of low SNR images while
providing molecular specificity. Here, the neural network
learns features in bright field images imprinted by specific
structures or biomolecules (for example, membranes or
nucleic acids) and creates a virtual fluorescence image of
these structures. In contrast to image segmentation, artificial
labelling does not require manual annotation, which reduces
the time required for data curation. In the original published
work, this allowed predicting multiple subcellular structures
from single bright field stacks in mammalian tissue culture
samples (13, 14). Because of a much smaller size, bacteria
provide less structural information in bright field images than
eukaryotic cells (Figure 5A). However, we regard the cell
envelope as a promising target for artificial labelling, as exact
cell shape determination is of interest for morphometric stud-
ies (e.g. for antibiotic treatments) or investigating the precise
positioning of target molecules in individual cells (51–53).
This is even more valuable if super-resolution information
is obtained. To explore whether such information can be
extracted using DL, we recorded different training datasets.
The first dataset includes bright field and corresponding

Fig. 5. Artificial labelling of E. coli membranes. [A] fnet and CARE predictions
of diffraction-limited (top row) and PAINT super-resolution (bottom row) membrane
labels obtained from bright field (BF) images. GT = ground truth. [B] Pseudo-dual-
color images of drug-treated E. coli cells. Nucleoids were super-resolved using
PAINT imaging with JF646-Hoechst. Membranes were predicted using the trained
fnet model. CAM = Chloramphenicol. Scale bars are 2 µm (A) and 1 µm (B).

diffraction-limited widefield fluorescence images, in which
the E. coli membrane is stained by the lipophilic dye Nile
Red (Figure 5A, upper row). For the second dataset, we ac-
quired super-resolved PAINT images (54, 55) and upsampled
the respective brightfield image to match the resolution of the
super-resolved membrane images (Figure 5A, lower row).
For both datasets, we tested a 2D version of fnet (14), as well
as CARE. For the diffraction-limited dataset, both networks
were able to predict pseudo-fluorescence images from bright
field images, with fnet showing slightly better performance
according to the structural similarity metric (SSIMfnet =
0.88 ± 0.06, SSIMCARE = 0.83 ± 0.05) (Figure 5A). This is
not surprising as fnet was designed for artificial labelling,
while the good performance of CARE demonstrates the
versatility of this network. Similar values were obtained
for the super-resolution dataset (Figure 5A, Supplementary
Figure 8), with predictions showing good agreement also on
the sub-diffraction level (see cross-section as inset in Figure
5A). Additionally, although trained on fixed cells, the model
can also be used to predict highly resolved membrane signal
in live-cell time series (Supplementary Video 8). We then
wanted to know how well our model generalises, i.e. whether
it can predict the super-resolved membrane of bacteria grown
in the presence of different antibiotics (see methods). Both
fnet and CARE models successfully predicted the membrane
stains in drug-treated cells (SSIM 0.8 - 0.9), indicating
that it detects image features independent from the cell
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Fig. 6. Prediction of SIM images from widefield fluorescence images.
Widefield-to-SIM image transformation was performed with CARE for [A] live E. coli
(FM5-95) and [B] S. aureus (Nile Red) cells. WF = widefield; NN = neural network
output. Line profiles show a good agreement between prediction and ground-truth
(bottom panel). Scale bars are 10 µm (overview images), 1 µm (magnified areas)
and 0.5 µm (bottom panel)

shape (Supplementary Figure 8). The increased resolution
and contrast in membrane predictions allow to map the
positioning of subcellular structures (here, the nucleoid)
with higher precision (Figure 5B). This typically requires
the acquisition of multi-colour super-resolution images (55),
which is far more intricate and time-consuming.

Super-resolution membrane images can also be obtained
by training a supervised DL network on paired low-
resolution/high-resolution image datasets (15, 17, 18, 23).
Here, we used structured illumination microscopy (SIM)
(56) to record membrane images of dye-labelled live E.
coli and S. aureus cells. SIM images are reconstructed
from a set of images recorded at different grid positions
and angles, which hence requires higher light doses than a
single widefield image. As acquisition of such image sets
is only required during the network training, but not during
its application, super-resolution prediction reduces the light
dose and also increases the achievable temporal resolution.
Training of two CARE models on paired low/high-resolution
images of E. coli and S. aureus using the ZeroCostDL4Mic
notebook provided models that facilitate robust prediction
of SIM images from single widefield snapshots (Figure
6). Here, contrast and resolution of predictions agreed

well with reconstructed SIM images (Supplementary Video
9), as shown for cross sections along single E. coli and
S. aureus cells (Figure 6, bottom panel). To evaluate the
results, we performed SQUIRREL analysis, which detects
reconstruction artefacts in super-resolution images (57).
This analysis yielded similar errors for neural network
predictions compared to SIM reconstructions, both for E.
coli (resolution-scaled Pearson coefficient of 0.898 ± 0.018
(SIM) vs 0.907 ± 0.018 (prediction)) and S. aureus (0.957 ±
0.012 (SIM) vs 0.963 ± 0.010 (prediction)) (Supplementary
Figure 9). SSIM values between predictions and GT SIM
images were determined as 0.84 ± 0.03 (E. coli) and 0.92
± 0.01 (S. aureus). Estimating the spatial resolution using
image decorrelation (58) verified the very good agreement
between the predicted (137 ± 7 nm for E. coli and 134 ±
5 nm for S. aureus images) and reconstructed SIM images
(122 ± 2 nm for E. coli and 134 ± 1 nm for S. aureus images)
with the expected 2x increase in resolution (308 ± 24 nm
for E. coli and 289 ± 5 nm for S. aureus widefield images).
This strategy is hence well suited to perform single-image
super-resolution microscopy (18) in bacterial cells.

Discussion
In this work we demonstrate the potential of open-source DL
technology for the analysis of bacterial bioimages. We em-
ploy popular DL networks that were developed by the open-
source research community and are implemented in, but not
limited to, the user-friendly ZeroCostDL4Mic platform (23).
This enabled us to perform a variety of different image anal-
ysis tasks, such as image segmentation, object detection, im-
age denoising, artificial labelling and the prediction of super-
resolution images (Figure 1). Using the datasets that we pro-
vide, well-performing models can be trained within the time
course of hours (see Supplementary Tables 3, 5, 9-11). De-
pending on the network, several tens of input images were
sufficient, showing that valuable models can be generated
even with a limited dataset size and thus moderate effort in
data curation. For example, we annotated 7 images for seg-
mentation of S. aureus cells (divided in 28 patches, in total
1249 cells), which required approximately 6 hours of man-
ual work. Still, the trained StarDist model detected 98% of
the cells in the test dataset of membrane-stained S. aureus
(Figure 2). We think that this is an important point, as many
researchers assume that huge training datasets are required
for DL, often leading to discouragement and preventing the
researcher from entering the field.
Another hurdle for new researchers is that the number of DL
networks for a specific task continuously increases, and their
performance can vary strongly depending on the images to
be analysed (59). User-friendly implementations allow re-
searchers to test the different networks and identify the best-
performing network for a particular dataset. Testing different
segmentation networks, we found StarDist and SplineDist be-
ing well suited to segment small rod-shaped and coccoid bac-
teria in bright field and fluorescence images (Figure 2, Sup-
plementary Figure 3), while U-Net and pix2pix performed
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better for elongated cells at low to mid cell density. The per-
formance at higher densities could be improved by predict-
ing cell boundaries and cytosol using a multilabel U-Net, fol-
lowed by post-processing of the network output. Thus, hav-
ing a closer look at the input data can already give indications
about which network might be more or less suited for the seg-
mentation task (Supplementary Note 2). In our experience,
the networks explored in this work are well suited to segment
images recorded under standard conditions (e.g. exponential
growth phase, regularly shaped cells, narrow size distribu-
tion). However, they might be of limited use or require large
training datasets for more specialised cases, e.g. studying
filamentation, irregularly shaped cells or biofilms. In such
cases, we refer to DL networks developed for the particular
segmentation task (29, 30, 32, 34, 35). Instance segmenta-
tions can subsequently be used for downstream applications
such as tracking cell lineages or morphological changes. If
this is not already included in the network (31, 35), segmenta-
tion masks can be used with the Fiji plugin TrackMate, which
was recently updated for the use of DL technology (40) (Sup-
plementary Video 3).

For object detection, we successfully trained models to de-
tect and discriminate cells in specific growth stages (Figure
3A) or treated with different antibiotics (Figure 3B). Next to
their use in image analysis, trained models can also be inte-
grated into smart imaging pipelines in which the microscope
system autonomously decides when and/or how to image a
particular region of interest. Triggers can be the presence (or
dominance) of a specific class (43) or the occurrence of class
transitions (for example initiation of cell division). We an-
ticipate this to be particularly powerful to study rare events,
as smart acquisition strongly reduces data waste and data
curation time (43, 60). At the same time, AI-based antibi-
otic profiling bears great promises for drug-screening appli-
cations and antibiotic mode of action studies. Although being
trained on a limited dataset, the YOLOv2 model was able to
discriminate between different antibiotic treatments based on
their phenological fingerprint. We demonstrated that it could
already be used for drug screening applications, as it was able
to predict a similar mode of action (rod-to-sphere transition)
for MP265-treated cells when trained on Mecillinam-treated
cells (Supplementary Figure 6B). As training an object de-
tection network only requires drawing of bounding boxes and
no intensive feature design, it can be used straightforwardly
by researchers new to this field, especially as membrane and
DNA stains are widespread and easy to use. However, we
think that the predictive power can be further improved by
adding more fluorescent channels, such as indicator proteins
that for example report on membrane integrity or the ener-
getic state of the cell. This will result in comprehensive mod-
els that can be employed for automatic screening of large
compound libraries (3) and might contribute to the discov-
ery of novel antimicrobial compounds, which is desperately
needed to tackle the emerging antibiotic resistance crisis (61).
For cell-biological studies in microbiology, denoising repre-
sents a universally applicable strategy (62). Supervised DL
networks are preferred over self-supervised ones (Figure 4),

if well-registered image pairs can be acquired (Figure 4).
This is mostly the case for static or slow-moving targets, but
acquisition of training data on fixed specimens represents a
good alternative (15). We note, however, that this requires
proper controls to exclude fixation artefacts (as we have done
in previous work (55, 63) (Supplementary Figure 7C)). Arte-
facts might be learned by the model and erroneously intro-
duced into live-cell data during prediction, which can be hard
to detect and lead to misinterpretation. Overall, all denoising
approaches strongly improved the quality and SNR of nu-
cleoid images in fixed cells (Figure 4A), with CARE (super-
vised DL) expectedly outperforming N2V (self-supervised)
and PureDenoise (parametric) on our test dataset. Using the
trained CARE model on labelled E. coli nucleoids in fast-
growing cells revealed both high nucleoid complexity and
dynamics on the second time-scale (Supplementary Video
6). We observed high-density regions which dynamically
move within the area populated by the nucleoid. Such ‘super-
domains’ were reported in previous studies (64, 65), even-
tually representing macrodomains or regions of orchestrated
gene expression. Strong chromosome fluctuations were also
reported in cells with a long generation time, showing an
elongated nucleoid positioned along the bacterial long axis
(66). In contrast, a highly complex nucleoid with structural
stability on the minute time scale was observed during fast
growth (67). Our data suggests that fast dynamics and a sta-
ble global nucleoid structure likely coexist. This might be
important to maintain nucleoid flexibility while at the same
time allowing for robust chromosome segregation during fast
growth. The molecular or physico-chemical basis for this,
however, needs to be further investigated.
When acquisition of high-quality data is challenging and no
paired high-SNR images are available, self-supervised net-
works such as Noise2Void can be employed (62). We show
this for time-series of FtsZ-GFP in vertically aligned B. sub-
tilis cells (41), in which the gain in SNR allows following
subtle FtsZ structures during their treadmilling along the cell
septum (Figure 4E, Supplementary Video 7). Thus, even
without access to high-SNR ground truth data, denoising can
substantially increase image quality in challenging live-cell
data. Concluding, we see the largest benefit of denoising in
long-term microscopy experiments and capturing of fast dy-
namics. These experiments are strongly limited by photo-
toxic effects, photobleaching and in temporal resolution, pa-
rameters that are improved by denoising approaches.
We further consider artificial labelling and prediction of
super-resolution images as future approaches with broad ap-
plicability. Increasing specificity and spatial resolution of
bioimages (13, 14, 17, 18) is particularly useful in small bac-
terial cells, where most processes occur on scales close to
or below the diffraction limit. Training a CARE model on
paired bright field and super-resolution membrane images,
we were able to artificially label membranes with subpixel
accuracy (Figure 5A). Precise (sub-diffraction) prediction of
cell boundaries enables the determination of cell size and
shapes (morphometric analysis), which is important to de-
scribe and compare deletion mutants, drug-treated cells or
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cells grown under different environmental conditions (68). In
subcellular localisation studies, fluorescence images are often
overlaid with the respective bright field image. This provides
only a very inaccurate picture of the relative molecule local-
isation, which can be strongly improved using our artificial
labelling approach (Figure 5B). Additionally, as artificial la-
belling does not require a fluorescent label, it further opens
up a spectral window for other fluorescent targets, thus in-
creasing multiplexing capabilities. Using membrane stains,
DL can be efficiently used to increase the spatial resolution,
as we showed by predicting SIM images from diffraction-
limited fluorescence signal using supervised learning. The
enhanced resolution can improve downstream applications
such as analysis of cell cycle stages in spherical bacteria (69).
As bright field or fluorescence membrane images are part of
basically any study including microscopy data, we think that
artificial labelling and prediction of super-resolution images
can be very useful for the bacterial research community.
As a general but important note, DL models are highly spe-
cific for the type of data they were trained on. Evaluat-
ing the model on ground truth data is thus essential to val-
idate model performance, identify potential artefacts and
and avoid a replication crisis for DL-based image analysis
(59). Already slightly varying image acquisition parameters
can transform a model from a good performer to a source
of artefacts. Such parameters include different magnifica-
tions (pixel sizes), varying focal planes, illumination pat-
terns, camera settings, and many more. However, even if
pretrained models do not provide satisfying results, they can
be used for transfer-learning, which can strongly acceler-
ate the training and increase model performance. Collect-
ing pretrained models in model zoos (such as the BioIm-
age model zoo: https://bioimage.io/ can create a
database encompassing a variety of species, microscopy tech-
niques and experiments. This database can be used by the re-
searchers to explore potential DL applications and apply pre-
trained models to their own research using designated plat-
forms (9, 15, 23, 25, 38). Together with easily accessible
DL networks and shared datasets, this work can support re-
searchers to familiarise themselves with DL and find an entry
point into the DL universe. Datasets and models generated
in this work can be downloaded via Zenodo (see Supplemen-
tary Table 2), while further documentation on sample prepa-
ration, data preprocessing, training parameters and example
images can be found on our GitHub repository (https:
//github.com/HenriquesLab/DeepBacs/wiki).
In summary, user-friendly DL approaches possess large po-
tential for image analysis in bacteriology. Both alone and in
combination with classical image analysis routines, DL ap-
proaches will help to increase the amount and quality of in-
formation that can be extracted from bacterial bioimages.

Availability. Datasets and models are available on Zen-
odo (Supplementary Table 2). Notebooks can be accessed
via the ZeroCostDL4Mic repository (https://github.
com/HenriquesLab/ZeroCostDL4Mic/wiki).
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Methods
Segmentation of E. coli bright field images. E. coli
MG1655 cultures were grown in LB Miller at 37°and 220
rounds per minute (rpm) overnight. Working cultures were
inoculated 1:200 and grown at 23°and 220 rpm to OD600
0.5 – 0.8. For time lapse imaging, cells were immobilised
under agarose pads prepared using microarray slides (VWR,
catalogue number 732-4826) as described in de Jong et al.,
2011 (1). Bright field time series (1 frame/min, 80 min total
length) of 10 regions of interest were recorded with an An-
dor iXon Ultra 897 EMCCD camera (Oxford instruments) at-
tached to a Nikon Eclipse Ti inverted microscope (Nikon In-
struments) bearing a motorized XY-stage (Märzhäuser) and
an APO TIRF 1.49NA 100x oil objective (Nikon Instru-
ments). To generate the segmentation training data, 19 indi-
vidual frames from different regions of interest were rescaled
using Fiji (2x scaling without interpolation) to allow for bet-
terer annotation. Resulting images were annotated manually
using the freehand selection ROI tool in Fiji. For quality
control, a test dataset of 15 frames was generated similarly.
Contrast was enhanced in Fiji and images were either con-
verted into 8-bit TIFF (CARE, U-Net, StarDist) or PNG for-
mat (pix2pix).

Data pre- and post-processing for cell segmentation
using the multi-label U-Net notebook. In order to im-
prove segmentation performance, we employed a U-Net that
is trained on semantic segmentations of both cell cytosol
and boundaries. To generate the respective training data,
annotated cells were filled with a gray value of 1, while
cell boundaries were drawn with a gray value of 2 and a
line thickness of 1. Together with the fluorescence im-
age, this image was used as network input during train-
ing. During post-processing, cell boundaries were subtracted
from predicted cell segmentations, followed by thresholding
and marker-based watershed segmentation (Fiji plugin "Mor-
pholibJ" (2)). Pre- and post-processing routines are provided
as Fiji macros and can be downloaded from the DeepBacs
github repository.

Segmentation of S. aureus bright field and fluo-
rescence images. For S. aureus time-lapse experiments
overnight cultures of S. aureus strain JE2 were back-diluted
1:500 in TSB and grown to mid-exponential phase (OD600nm
= 0.5). One milliliter of the culture was incubated for 5 min
(at 37°C) with the membrane dye Nile Red (5 µg/ml, Invit-
rogen), washed once with phosphate buffered saline (PBS),
subsequently pelleted and resuspended in 20 µl PBS. One
microliter of the labelled culture was then placed on a mi-
croscope slide covered with a thin layer of agarose (1.2%
(w/v) in 1:1 PBS/TSB solution). Time-lapse images were
acquired every 25 s (for DIC) and 5 min (for fluorescence im-
ages) by structured illumination microscopy (SIM) or classi-
cal diffraction limited widefield microscopy in a GE Health-
Care Deltavision OMX system (with temperature and humid-
ity control, 37°). The images were acquired using 2 PCO
Edge 5.5 sCMOS cameras (one for DIC, one for fluores-

cence), an Olympus 60x 1.42NA Oil immersion objective
(oil refractive index 1.522), Cy3 fluorescence filter sets (for
the 561 nm laser) and DIC optics. Each time-point is a Z-
stack of 3 epifluorescence images using either the 3D-SIM
optical path (for SIM images) or classical widefield optical
path (for non super-resolution images). These stacks were
acquired with a Z step of 125 nm in order to use the 3D-
SIM-reconstruction modality (for the SIM images) of Ap-
plied Precision’s softWorx software (AcquireSRsoftWoRx),
as this provides higher quality reconstructions. A 561 nm
laser (100 mW) was used at 11–18 W cm-2 with exposure
times of 10-30 ms. For single-acquisition S. aureus exper-
iments, sample preparation and image acquisition was per-
formed as mentioned above but single images were acquired.
To generate the training dataset for StarDist segmentation,
individual channels were separated and preprocessed using
Fiji (3, 4). Nile Red fluorescence images were manually an-
notated using ellipsoid selections to approximate the S. au-
reus cell shape. Resulting ROIs were used to generate the
required ROI map images (using the “ROI map” command
included in the Fiji plugin LOCI) in which each individual
cell is represented by an area with a unique integer value.
Training images (512 x 512 px²) were further split into 256
x 256 px² images, resulting in 28 training images pairs. 5
full field-of-view test image pairs were provided for model
quality control. For segmentation of S. aureus bright field
images (corresponding to the Nile Red fluorescence images)
were paired with the ROI masks created for fluorescence im-
age segmentation.

Segmentation of live B. subtilis cells. Bacillus sub-
tilis cells expressing FtsZ-GFP were prepared as described
in (Whitley et al., 2021) (5) (strain SH130, PY79 Δhag
ftsZ::ftsZ-gfp-cam). Strains were taken from glycerol stocks
kept at -80°and streaked onto nutrient agar (NA) plates con-
taining 5µg/ml chloramphenicol then grown overnight at
37°C. Liquid cultures were started by inoculating time-lapse
medium (TLM) (de Jong et al., 2011) (1) with a single colony
and growing overnight at 30°with 200 rpm agitation. The
following morning, cultures were diluted into chemically de-
fined medium (CDM) containing 5µg/ml chloramphenicol to
OD600 = 0.1, and grown at 30°C until the required opti-
cal density was achieved (5). All imaging was done on a
custom-built, 100X inverted microscope. A 100x TIRF ob-
jective (Nikon CFI Apochromat TIRF 100XC Oil), a 200mm
tube lens (Thorlabs TTL200) and Prime BSI sCMOS cam-
era (Teledyne Photometrics) were used achieving an imag-
ing pixel size of 65nm/pixel. Cells were illuminated with a
488 nm laser (Obis) and imaged using a custom ring-TIRF
module operated in ring-HiLO (6). A pair of galvanome-
ter mirrors (Thorlabs) spinning at 200Hz provides uniform,
high SNR illumination (5). The raw data analyzed here were
acquired and analysis of that raw data presented in Whitley
et al., 2021 (5). These data have now been reanalyzed us-
ing cell segmentation methods discussed. Slides were pre-
pared as described previously. Molten 2% agarose made
with CDM was poured into gene frames (Thermo Scien-
tific) to form flat agarose pads, then cut down to thin 5mm
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strips. 0.5 µl of cell culture grown to mid-exponential phase
(OD600 = 0.2-0.3) was spotted onto the agarose and allowed
to absorb (approx. 30 seconds). A plasma-cleaned cov-
erslip was then placed atop the gene frame and sealed in
place. Before imaging, the prepared slides were then pre-
warmed inside the microscope body at least 15 minutes be-
fore imaging. Time-lapse images were then taken in TIRF
using a custom built 100x inverted microscope. Images were
taken at 1 second exposure, 1 frame/minute at 1-8 W/cm2
(5). Videos were denoised using ImageJ plugin PureDe-
noise (7) then lateral drift was corrected using StackReg
(8). To create the training dataset, 10 frames were extracted
from each time-lapse approximately 10 frames apart. This
was to ensure sufficient difference between the images used
for training. Ground truth segmentation maps were gener-
ated by manual annotation of cells in each frame using the
Fiji/ImageJ LabKit plugin lab (https://github.com/
juglab/imglib2-labkit. This process assigns a dis-
tinct integer to all pixels within a cell region, and background
pixels are labelled 0. A total of 4,672 cells were labelled
across 80 distinct frames to create the final training dataset.

Confocal imaging for denoising of E. coli time series.
E. coli strain CS01 carrying a chromosomal H-NS-mScarlet-
I protein fusion (parental strain NO34) was grown in LB
Lennox at 25°and shaking at 220 rpm. To generate the train-
ing dataset, cells were fixed chemically using a mixture of
2% formaldehyde and 0.1% glutaraldehyde. Fixed or live
cells were immobilized under agarose pads poured into gene
frames following the protocol by de Jong et al. (1). Imag-
ing was performed on a commercial Leica SP8 confocal mi-
croscopy (Leica Microsystems) bearing a 1.40 NA 63x oil
immersion objective (Leica Microsystems). To increase op-
tical sectioning, the pinhole size was set to 0.5 AU and 512
x 512 px² confocal images (45 nm pixel size) were recorded
and emission was detected with HyD detectors in standard
operation mode (gain 100, detection window 570 – 650 nm).
For the training dataset, a two-channel image of the same
structure was recorded in frame sequential mode using dif-
ferent settings for low (0.03% 561 nm laser light, no averag-
ing) and high SNR images (0.1% 561 nm laser light, 4x line
averaging), respectively. For live-cell time series, the field of
view was reduced to 256 x 256 px² to allow for fast acquisi-
tion of high SNR images at 0.8 Hz. Low SNR time series
were recorded at similar frame rate by including a lag time.

Bacillus subtilis VerCINI microscopy. The raw data anal-
ysed here were acquired and analysis of that raw data is pre-
sented in Whitley et al. 2021 (5). These data have now
been reanalysed using the denoising methods described. Sili-
cone micropillar wafers were nanofabricated and used to pre-
pare agarose microholes as described previously (5). Molten
6% agarose was poured onto the silicone micropillars and
allowed to set, forming an agarose pad punctured with mi-
croscopic holes. The agarose pad was then transferred into
a gene frame, and agarose surrounding the micro-hole ar-
ray was cut away. Concentrated liquid cell culture at mid
exponential phase (OD600 = 0.4) was loaded onto the pad

and centrifugation using an Eppendorf 5810 centrifuge with
MTP/Flex buckets loaded individual cells into the micro-
holes. The pad was then washed to remove unloaded cells.
This repeated several times until a sufficient level cell load-
ing was achieved. Cells were imaged at 1 frame/second with
continuous exposure for 2 minutes at 1-8 W/cm2 (5). Image
denoising was performed using the Image J plugin PureDe-
noise (7) and lateral drift was then corrected using StackReg
(8).

E. coli cell cycle classification. Classification of rod-
shaped, dividing and microcolonies was performed using the
time series described in section BL segmentation E. coli.
Individual frames from several time series were used for
training. To generate the training dataset, individual frames
spread over the entire time series (typically frames 1, 15, 30,
55 and 80) were converted into PNG format. For the large
field-of-view model, the entire image was used, while im-
ages were split into 4 regions of 256 x 256 px² size for the
small field-of-view model. Images were annotated using La-
belImg (9). The final training dataset contained 28 annotated
patches, and dataset size was increased 4x during training us-
ing data augmentation implemented in the ZeroCostDL4Mic
YOLOv2 notebook (rotation and flipping).

E. coli cell cycle classification. E. coli strain NO34 (10)
was grown in LB at 32°shaking at 220 rpm overnight. Work-
ing cultures were inoculated 1:200 in fresh LB and grown
to mid-exponential phase and antibiotics were added at the
concentration and for the time listed in Supplementary Table
5. Antibiotic stock solutions were prepared freshly 5-10 min
before use. Cells were fixed using a mixture of 2% formalde-
hyde and 0.1% glutaraldehyde, quenched using 0.1% sodium
borohydrate (w/v) in PBS for 3 min and immobilized on PLL-
coated chamber slides (see (11) for details). Nucleoids were
stained using 300 nM DAPI for 15 min. After 3 washes
with PBS, 100 nM Nile Red in PBS was added to the cham-
bers and confocal images were recorded with a commercial
LSM710 microscope (Zeiss, Germany) bearing a Plan-Apo
63x oil objective (1.4 NA) and using 405 nm (DAPI) and 543
nm (Nile Red) laser excitation in sequential mode. Images
(800 x 800 px²) were recorded with a pixel size of 84 nm, 16-
bit image depth, 16.2 µs pixel dwell time, 2x line averaging
and 1 AU pinhole size.
4-8 confocal images were used to generate the training
dataset, depending on the cell count per image (for ex-
ample, only few cells are present per image for nalidixate
treated cells, while many cells were present for chloram-
phenicol treatment). Each image was converted to PNG for-
mat, split into 4 non-overlapping patches (400 x 400 px²)
and patches were annotated online using makesense.ai (Make
Sense, n.d.). Annotations were exported in PASCAL VOC
format. Next to the 5 antibiotic treatments and control con-
ditions, vesicles and partially attached cells were added as
additional classes (“Vesicles” and “Oblique”, respectively),
resulting in a total of 8 classes. Synthetic test data was gen-
erated by randomly stitching 200 x 200 px² patches of differ-
ent drug treatments and the control condition. Small patches
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were manually cropped from images that were not seen by
the network during the training. In total, 32 test images were
generated this way and annotated online using makesense.ai
(12) as described above. Additionally, 400 x 400 px² image
patches of previously unseen images (drug-treatments and
control) were annotated using LabelImg (9).

Artificial labeling of E. coli membranes. PAINT super-
resolution images of E. coli membranes were recorded as de-
scribed elsewhere (11). In brief, cells were grown in LB at
37°C and 220 rpm, fixed in mid-exponential phase (OD600
= 0.5) using a mixture of 2% formaldehyde and 0.1% glu-
taraldehyde, immobilized on poly-L-Lysine coated chamber
slides and permeabilized with 0.5% TX-100 in PBS for 30
min. 400 pM Nile Red in PBS was added and PAINT time
series (6,000 - 10,000 frames) were recorded on a custom
built setup for single-molecule detection (Nikon Ti-E body
equipped with a 100x Plan Apo TIRF 1.49 NA oil objective)
using 561 nm excitation ( 1 kW/cm²) or a commercial N-
STORM system with a similar objective and imaging param-
eters. Two image datasets were recorded using either a 1x
or 1.5x tube lens (158 and 106 nm pixel size, respectively).
PAINT images were reconstructed using Picasso (13) and ex-
ported at different magnifications (8x for 158 nm pixel [ 19.8
nm/px] and 6x for 106 nm pixel size [17.7 nm/px]). Cor-
responding bright field images were scaled similarly in Fiji
without interpolation and registered with the PAINT image.
Multiple 512 x 512 px² image patches were extracted from
these images and used for model training. For artificial label-
ing in drug-treated cells, cells were exposed to the following
antibiotics: 100 µg/ml rifampicin for 10 min, 50 µg/ml Chlo-
ramphenicol for 60 min, 2 µg/ml Mecillinam for 60 min .
Further sample preparation and imaging was performed sim-
ilar to untreated cells.

Prediction of membrane SIM images in live E.
coli cells. For widefield-to-SIM prediction experiments
overnight cultures of E. coli strain DH5α were back-diluted
1:500 in LB and grown to mid-exponential phase (OD600 =
0.3). One milliliter of the culture was incubated for 10 min
(at 37°) with the membrane dye FM5-95 (10 µg/ml, Invit-
rogen), washed once with PBS, subsequently pelleted and re-
suspended in 10 µl PBS. One microliter of the labelled culture
was then placed on a microscope slide covered with a thin
layer of agarose (1.2% (w/v) in 1:1 PBS/LB solution). Image
acquisition was performed as mentioned in section Segmen-
tation of S. aureus bright field and fluorescence images.
To generate the paired training dataset for super-resolution
prediction, raw SIM images were averaged to obtain the
diffraction limited widefield image, while the in-focus plane
of the SIM reconstruction was used as corresponding high-
resolution image. The dataset was curated by removing defo-
cused images and images with low signal resulting in recon-
struction artefacts. In total, 55 training and 5 test image pairs
were used.

Calculation of the multiscale structural similarity in-
dex (SSIM). Performance of several deep learning ap-

proaches (e.g. CARE) was accessed by calculating the mul-
tiscale structural similarity index (here denoted as SSIM) be-
tween the source/predicted image and the ground truth im-
age (14) (see Supplementary Note 1). Since background is
suppressed efficiently by most networks and is thus over-
proportionally contributing to the average per-image SSIM
value (leading to an over-optimistic value), we determined
the SSIM only within the outlines of bacterial cells. For this,
ROIs were generated in Fiji by thresholding the high SNR
image or time series average image. For denoising of live-
cell time series lacking ground truth data (e.g. N2V), we de-
termined the SSIM value over time by comparing each image
frame to the subsequent image frame of the time series (thus
termed subsequent-frame SSIM). A low SSIM value thus de-
picts a high frame-to-frame variation.

SQUIRREL analysis. To access artefacts in super-resolution
prediction from widefield data we used the SQUIRREL al-
gorithm implemented in the Fiji NanoJ plugin (15, 16). This
way, the predictions of 5 WF images and the respective SIM
ground truth images were analysed. SQUIRREL calculates
a diffraction limited image from super-resolution images to
compare them with the corresponding low-resolution ground
truth image. Resulting error maps give rise to reconstruction
and in this case also prediction artefacts.
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