

1 **Chemical inhibition of pathological reactive astrocytes promotes neural protection**

2 Benjamin L.L. Clayton¹✉, James D. Kristell¹, Kevin C. Allan¹, Molly Karl², Eric Garrison², Yuka Maeno-
3 Hikichi¹, Annalise M. Sturno¹, H. Elizabeth Shick¹, Robert H. Miller², and Paul J. Tesar¹✉.

4
5 ¹Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine,
6 Cleveland, OH, USA.

7 ²Department of Anatomy and Regenerative Biology, George Washington University School of Medicine,
8 Washington D.C., USA.

9 ✉email: paul.tesar@case.edu; benjamin.clayton@case.edu

10 **Abstract**

11 Disease, injury, and aging induce reactive astrocyte states with pathological functions¹⁻⁴. In
12 neurodegenerative diseases, inflammatory reactive astrocytes are abundant and contribute to
13 progressive cell loss. Modulating the state or function of these reactive astrocytes thereby
14 represents an attractive therapeutic goal^{5,6}. Leveraging a cellular phenotypic screening platform,
15 we show that chemical inhibitors of HDAC3 effectively block pathological astrocyte reactivity.
16 Inhibition of HDAC3 reduces molecular and functional features of reactive astrocytes *in vitro*
17 including inflammatory gene expression, cytokine secretion, and antigen presentation.
18 Transcriptional and chromatin mapping studies show that HDAC3 inhibition mediates a switch
19 between pro-inflammatory and anti-inflammatory states, which disarms the pathological functions
20 of reactive astrocytes. Systemic administration of a blood-brain barrier penetrant chemical
21 inhibitor of HDAC3, RGFP966, blocks reactive astrocyte formation and promotes axonal
22 protection *in vivo*. Collectively, these results establish a platform for discovering chemical
23 modulators of reactive astrocyte states, inform the mechanisms controlling astrocyte reactivity,
24 and demonstrate the therapeutic potential of modulating astrocyte reactivity for neurodegenerative
25 diseases.
26

27
28 **Main**

29 Astrocytes in the central nervous system (CNS) play important homeostatic roles that include
30 trophic support of neurons, promotion of functional synapse formation, and formation and
31 maintenance of the blood-brain barrier⁷⁻⁹. In the context of disease, injury, or normal aging,
32 astrocytes become reactive and can adopt a pathological state that kills neurons and
33 oligodendrocytes⁶. These pathogenic reactive astrocytes are found in neurodegenerative diseases
34 including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral

35 sclerosis, vanishing white matter disease¹⁰, and multiple sclerosis^{1,11}. Thus, there is considerable
36 interest in modulating pathological reactive astrocytes to reduce the progression of these
37 diseases^{3,6,12}. Here, we develop an astrocyte discovery platform and leverage the power of high-
38 throughput phenotypic drug screening¹³ to identify modulators of reactive astrocytes. We identify
39 HDAC3 as a druggable target that modulates reactive astrocytes *in vitro* and *in vivo* by suppressing
40 pro-inflammatory gene programs while inducing expression of anti-inflammatory genes and genes
41 associated with a beneficial reactive astrocyte state. Using a CNS-penetrant HDAC3 inhibitor, we
42 further show that HDAC3 inhibition decreases the formation of reactive astrocytes and that
43 suppression of pathological reactive astrocytes through HDAC3 inhibition promotes axonal
44 protection *in vivo*.

45

46 **An astrocyte discovery platform for high-throughput phenotypic drug screening**

47 Current astrocyte isolation protocols are limited by scale or confounded by culture conditions
48 containing serum, which irreversibly alters the astrocyte transcriptome and morphology¹⁴. This
49 challenges their use as cellular platforms for high-throughput drug screening. To overcome this,
50 we developed an approach to isolate and culture large numbers (hundreds of millions) of resting
51 mouse cortical astrocytes that exhibit a prototypical stellate morphology and express canonical
52 astrocyte marker proteins including GFAP, AQP4, GLT-1, and ALDH1L1 (Extended Data Fig.
53 1a,b). Using single-cell RNA sequencing and *in situ* hybridization, we demonstrated the high
54 purity of these cultures and confirmed that the astrocytes become reactive in response to
55 microglial-derived cytokines tumor necrosis factor (TNF), interleukin 1 alpha (IL1 α), and
56 complement component 1q (C1q)¹ (Fig. 1a-c). Comparison to publicly available single-cell RNA
57 sequencing data from systemic lipopolysaccharide (LPS) driven neuroinflammation in mice
58 demonstrated that these reactive astrocytes increase expression of genes that define an *in vivo*
59 neuroinflammatory specific astrocyte state (Extended Data Fig. 1c), which is also found in mouse
60 models of Alzheimer's disease, multiple sclerosis, and stab wound injury³. Additional comparison
61 to astrocyte transcriptional signatures from single-nuclei analysis of Alzheimer's disease¹⁵,
62 Huntington's disease¹⁶, and Parkinson's disease¹⁷ patient tissue showed that our reactive astrocytes
63 reflect the pathological reactive astrocyte states found in these human neurodegenerative diseases
64 (Fig. 1d-f). Finally, we confirmed that our reactive astrocyte cultures acquire functions of reactive
65 astrocytes including cross-presentation of antigen on major histocompatibility complex (MHC)

66 Class I and increased secretion of proinflammatory cytokines¹⁸ (Fig. 1g,h). Together, these results
67 show that this culture system generates pure astrocytes that robustly transition to a disease-relevant
68 state.

69

70 **Phenotypic drug screen identifies small-molecules that suppress pathological reactive**
71 **astrocytes**

72 Leveraging our astrocyte discovery platform we used the power of high-throughput phenotypic
73 screening to identify small-molecules that suppress astrocyte reactivity. Resting astrocytes
74 exposed to TNF, IL1 α , and C1q were treated with 3115 small molecules in a 384-well plate format
75 and, after 24 hours, their transition to reactive astrocytes was measured with the marker protein
76 guanylate-binding protein 2 (GBP2), which is specifically upregulated in both mouse and human
77 reactive astrocytes in a pathological state^{1,19}. The assay displayed consistently high signal-to-
78 background ratio across all screening plates, demonstrating its suitability as a phenotypic endpoint
79 (Extended Data Fig. 2a-c). Our primary screen successfully identified hit compounds that
80 decreased the percentage of GBP2-positive astrocytes by $\geq 90\%$ compared to cultures treated with
81 DMSO vehicle (Fig. 1i). Of those primary hits, 29 small molecules were validated to modulate
82 reactive astrocytes over at least 3 concentrations and decrease the expression of proteasome 20S
83 subunit beta 8 (*Psmb8*) as a secondary marker of pathological reactive astrocytes (Extended Data
84 Fig. 2d,e). Validated hits covered a broad range of compound classes but were highly enriched for
85 histone deacetylase (HDAC) inhibitors that accounted for 48% (14/29) of the hits (Fig. 1j and 2a).
86 There are 11 HDAC isozymes and many chemical HDAC inhibitors are non-specific. Only
87 HDAC3 was a shared target of all 14 HDAC inhibitors identified in our primary screen, including
88 the only isozyme-specific chemical, RGFP966 (Extended Data Fig. 3a). RGFP966 is an HDAC3
89 specific inhibitor with no reported inhibition of other HDAC isozymes at up to 15uM²⁰. This led
90 us to hypothesize that HDAC3 was the HDAC inhibitor target responsible for modulating
91 pathological reactive astrocytes.

92

93 **HDAC3 regulates pathological reactive astrocyte gene expression and function**

94 Using an additional HDAC3 specific inhibitor, T247²¹, and genetic ablation of *Hdac3*^{22,23}, we
95 pharmacologically and genetically confirmed that HDAC3 inhibition modulates pathological
96 reactive astrocytes (Extended Data Fig. 3b-f). Inhibition of HDAC3 in human astrocyte cultures

97 also suppressed astrocyte reactivity showing that the effects of HDAC3 inhibition are conserved
98 across species (Extended Data Fig. 3g). RNA sequencing also confirmed that RGFP966 treatment
99 significantly downregulated expression of multiple defining genes of pathological reactive
100 astrocytes, including *C3* and *Serpina1*, showing that the effects were global and not limited to
101 decreasing *Gbp2* (Fig. 2b). Pharmacological inhibition of HDAC3 by RGFP966 also suppressed
102 the MHC Class I antigen cross-presentation and inflammatory cytokine secretion functions of
103 pathological reactive astrocytes (Fig. 2c-e). These data show that HDAC3 inhibition reduces
104 pathological reactive astrocyte gene expression and function.

105
106 To understand how HDAC3 inhibitors regulate pathological reactive astrocytes, we sought to
107 define the global chromatin and gene expression changes that occur as astrocytes transition to a
108 pathological reactive state (Fig. 2f). H3K27ac ChIP-seq^{24,25} revealed substantial chromatin
109 remodeling in pathological reactive astrocytes, including changes in super-enhancers that are
110 regions of densely-packed active enhancers that control gene expression and cell state²⁶. In
111 pathological reactive astrocytes, nearly two-thirds of the super-enhancers were distinct from
112 resting astrocytes demonstrating a substantial shift in the chromatin state (Fig. 2g). Expression of
113 genes associated with gained super-enhancers in reactive astrocytes were significantly upregulated
114 and included cytokines and chemokines involved in innate and adaptive immunity (*Cxcl1*, *Ccl5*,
115 *Cxcl12*), while expression of genes associated with shared super-enhancers did not change and
116 included astrocyte defining lineage markers (*Nfia*, *Sox9*, *Fgfrl*, and *Aqp4*)²⁷ (Fig. 2h-j). HDAC3
117 inhibition by RGFP966 significantly decreased expression of gained super-enhancer genes but did
118 not alter shared or lost super enhancer gene expression in reactive astrocytes (Fig. 2k). These data
119 show that HDAC3 inhibition suppresses the transcripts induced in pathological reactive astrocytes
120 by their dramatically altered chromatin landscape.

121
122 To uncover the regulators of astrocyte reactivity, we performed ATAC-seq and mined for motifs
123 under open chromatin regions within gained super-enhancers in pathological reactive astrocytes.
124 This analysis identified the RelA/p65 subunit of NF-κB as the top putative driver shaping the
125 reactive astrocyte chromatin landscape (Extended Data Fig. 4a). Gene ontology analysis also
126 highlighted NF-κB signaling as an enriched pathway in genes targeted by pathological reactive
127 astrocyte gained super-enhancers (Extended Data Fig. 4b). Consistent with these data, we found a

128 significant increase in nuclear RelA/p65 protein in reactive astrocytes that was abrogated by
129 HDAC3 inhibition with RGFP966 (Extended Data Fig. 4c-e). Strikingly, we found that 82.75%
130 (24/29) of the validated hits from our primary screen, including RGFP966, significantly inhibited
131 RelA/p65 transcriptional activity in an orthogonal reporter assay (Extended Data Fig. 4f,g).
132 Collectively, these data highlight a critical role of RelA/p65 in regulating pathological astrocyte
133 reactivity and show that multiple molecular nodes, including HDAC3, can be targeted
134 pharmacologically to impede RelA/p65 and modulate pathological reactive astrocytes.

135

136 **HDAC3 inhibition mediates a switch between pro- and anti-inflammatory astrocyte
137 programs**

138 To explore the role of RelA/p65 as a driver of reactive astrocytes in a pathological state, we
139 performed RelA/p65 ChIP-seq in resting and pathological reactive astrocytes. We found that
140 RelA/p65 DNA binding increased significantly as astrocytes become reactive (Fig. 3a), and that
141 the majority of RelA/p65 direct target genes (genes with a RelA/p65 peak within 5Kb up- or down-
142 stream of the transcription start site) had increased expression (60.43%, 113/187) (Fig. 3b). These
143 included inflammatory cytokines and chemokines (*Cxcl10* and *Ccl2*), genes involved in MHC
144 Class I antigen presentation (*H2-D1*, *B2m*, and *H2-K1*), and genes that define pathological reactive
145 astrocytes (*C3* and *Gbp2*), (Fig. 3b). However, direct targets of RelA/p65 accounted for a small
146 proportion (113/1839 upregulated transcripts, 9/1789 downregulated transcripts) of the overall
147 gene expression changes in pathological reactive astrocytes, indicating that multiple regulatory
148 programs may be mediating the generation of reactive astrocytes.

149

150 Non-RelA/p65 direct target genes with increased expression in pathological reactive astrocytes
151 also included inflammatory cytokines and chemokines (*Cxcl5*, *Ccl7*, and *Il6*), transcription factors
152 involved in acute inflammation (*Cebpb* and *Cebpd*), the immunoproteasome (*Psmb8*, *Psmb9*, and
153 *Psmb10*), interferon-induced genes (*Ifif47*, *Irf7*, *Iigbp1*, *Iigbp7*, and *Ifitm3*), and genes involved in
154 lipid metabolism and transport (*Apoj/Clu* and *Elovl1*) (Fig. 3c). Gene ontology analysis of
155 RelA/p65 and non-RelA/p65 direct target genes identified similar but not identical biological
156 processes regulated by the two gene programs (Fig. 3d). However, transcription factor motifs
157 enriched in the promoters of direct RelA/p65 and non-RelA/p65 direct target genes were distinct
158 suggesting they are controlled by different mechanisms (Fig. 3e,f). HDAC3 inhibition by

159 RGFP966 decreased expression of both RelA/p65 and non-RelA/p65 direct target genes in
160 pathological reactive astrocytes (Fig. 3g). These included RelA/p65 direct target MHC Class I
161 genes involved in the antigen presentation function blocked by RGFP966, and non-RelA/p65
162 direct target genes associated with the metabolism and transport of very-long chain fatty acids that
163 were recently shown to partially mediate pathological reactive astrocyte toxicity to neurons and
164 oligodendrocytes⁶ (Fig. 3h-j). These data show that HDAC3 inhibition broadly suppresses the
165 multiple transcriptional programs that regulate pathological reactive astrocyte formation.

166

167 While most transcripts changed by RGFP966 in reactive astrocytes were decreased, nearly 40% of
168 all RGFP966 changed transcripts (539/1380) were increased. Transcripts increased in reactive
169 astrocytes by RGFP966 treatment included numerous genes associated with a beneficial reactive
170 astrocyte state¹ (Fig. 3k). Moreover, gene ontology analysis of genes induced by RGFP966
171 treatment was enriched for terms associated with response to oxidative stress, glutathione
172 metabolism, and KEAP1-NRF2 signaling (Fig. 3l). NRF2 activation in astrocytes has been shown
173 to protect against neurodegeneration and negatively regulate inflammation^{3,28}. Importantly, we
174 found that HDAC3 inhibition with RGFP966 activated NRF2 signaling. Cytoprotective Nrf2 target
175 genes²⁹ including those involved in glutathione production, antioxidant systems, NADPH
176 regeneration, and heme and iron metabolism were significantly induced by RGFP966 treatment
177 (Fig. 3m). These findings show that HDAC3 inhibition not only mitigates proinflammatory target
178 gene expression, but also promotes expression of genes associated with an anti-inflammatory
179 beneficial astrocyte state. This suggests that HDAC3 acts as a molecular switch between reactive
180 astrocyte states where HDAC3 inhibition promotes an anti-inflammatory and protective astrocyte
181 phenotype.

182

183 **Pharmacological inhibition of HDAC3 promotes neuroprotection *in vivo***

184 To examine the therapeutic effect of modulating reactive astrocytes, we tested whether chemical
185 HDAC3 inhibition could reduce pathological reactive astrocytes *in vivo*. With daily intraperitoneal
186 (i.p.) dosing of 10mg/kg, RGFP966 crossed the blood-brain barrier and reached a concentration in
187 brain tissue near *in vitro* IC50 levels required to inhibit astrocyte reactivity (Extended Data Fig.
188 5a). RGFP966 increased gross acetylated histone 4 (AcH4) brain levels *in vivo* demonstrating a
189 pharmacodynamic effect to inhibit the histone deacetylase activity of HDAC3 (Extended Data Fig.

190 5b-d). We used the well-established model of systemic LPS-induced neuroinflammation^{30,31} to test
191 whether HDAC3 inhibition with RGFP966 could modulate pathological reactive astrocytes *in*
192 *vivo*. Compared to vehicle, treatment with 10mg/kg RGFP966 successfully decreased the
193 formation of *Gbp2*-positive pathological reactive astrocytes in LPS-exposed mice (Fig. 4a-c).
194 Importantly, RGFP966 treatment had no effect on general astrocyte reactivity as measured with
195 GFAP and had no effect on microglial activation measured with IBA-1(Extended Data Fig. 5e-k).
196 This shows that HDAC3 inhibition with RGFP966 can specifically decrease the formation of the
197 pathological reactive astrocyte state *in vivo*.

198

199 Finally, we examined whether decreasing pathological reactive astrocyte formation by
200 pharmacologically inhibiting HDAC3 could promote neural protection. To do this, we used a
201 toxin-based model of CNS tissue damage where lysolecithin (lysophosphatidylcholine; LPC) is
202 injected into the dorsal column of the spinal cord, leading to myelinating oligodendrocyte loss,
203 astrogliosis, and both acute and continued axonal degeneration^{32,33}. We first confirmed that LPC-
204 induced injury leads to the formation of *C3*-positive pathological reactive astrocytes, that
205 RGFP966 significantly decreased the formation of these *C3*-positive pathological reactive
206 astrocytes, and that RGFP966 had no effect on general microgliosis or astrogliosis in this injury
207 model (Fig. 4d,e; Extended Data Fig. 6a-d). Using electron microscopy to assess tissue pathology,
208 we compared spinal cord sections from RGFP966-treated versus vehicle-treated LPC mice and
209 found that HDAC3 inhibition with RGFP966 promoted axonal protection (Fig. 4f). At 12 days
210 post-LPC injury, RGFP966 treatment significantly increased the density of total axons and the
211 density of myelinated axons (Fig. 4g,h). These data show that pathological reactive astrocytes play
212 a role in the loss of both unmyelinated and myelinated axons in the LPC injury model and that
213 pharmacological inhibition of HDAC3 suppressed pathological reactive astrocytes and promoted
214 axonal protection following *in vivo* tissue damage.

215

216 **Conclusions**

217 Here we show the development of an astrocyte discovery platform to identify modulators of
218 reactive astrocytes. A phenotypic chemical screen identified HDAC3 as a functional regulator of
219 a pathological reactive astrocyte state change. We demonstrate that pathological reactive
220 astrocytes represent a cell state change that involves global reorganization of the chromatin

221 landscape driven in part by RelA/p65. HDAC3 inhibition in reactive astrocytes suppresses
222 RelA/p65 and non-RelA/p65 proinflammatory gene programs, while increasing expression of anti-
223 inflammatory and beneficial reactive astrocyte associated genes. We further show that inhibition
224 of HDAC3 decreases the formation of pathological reactive astrocytes in an *in vivo* model of
225 neuroinflammation. These findings support the role of HDAC3 as a molecular switch to control
226 astrocyte polarization between pathological or beneficial cell states and suggest that therapeutics
227 targeting HDAC3 in neurodegenerative disease may have the dual benefit of blocking pathological
228 reactive astrocyte formation while promoting the formation of beneficial reactive astrocytes to
229 protect neurons and promote repair. We support this by showing in a model of toxin-induced CNS
230 damage that pharmacological inhibition of HDAC3 decreases the formation of pathological
231 reactive astrocytes and promotes neural protection. These findings provide a foundation for
232 identification of additional pathological reactive astrocyte modulating chemicals, specify a deeper
233 understanding of the molecular regulators of pathological reactive astrocyte gene expression, and
234 support the development of reactive astrocyte-targeted therapies for neurodegenerative diseases.

235

236 **Methods**

237

238 **Mouse studies**

239 All primary cell isolation and LPS studies were performed at Case Western Reserve University.
240 All LPC studies were performed at George Washington University Medical Center. All animal
241 procedures were in accordance with the National Institutes of Health Guidelines for the Care and
242 Use of Laboratory Animals and were approved by the Case Western Reserve University
243 Institutional Animal Care and Use Committee or the George Washington University Medical
244 Center Institutional Animal Care and Use Committee.

245

246 **Lipopolysaccharide (LPS) model of neuroinflammation**

247 C57BL/6N mice were purchased from Charles River (Wilmington, MA). Male and female mice
248 at 7 weeks of age were injected i.p. with either RGFP966 vehicle (30% hydroxypropyl- β -
249 cyclodextrin, 0.1M sodium acetate, and 10% DMSO) or 10mg/kg RGFP966 daily for 11 days.
250 After which mice were injected i.p. daily for two days with either LPS vehicle (saline) plus
251 RGFP966 vehicle, 5mg/kg LPS plus RGFP966 vehicle, or 5mg/kg LPS plus 10mg/kg RGFP966.
252 Animals were then sacrificed and processed for immunohistochemistry.

253

254 **Lysolecithin (LPC) injection model of focal tissue damage**

255 Focal tissue damage in the spinal cord was induced by the injection of 1% LPC solution. 10–12-
256 week-old C57BL/6 female mice were anesthetized using isoflurane and a T10 laminectomy was
257 performed. 1 μ L of 1% LPC was infused into the dorsal column at a rate of 15 mL/hour. The
258 animals were euthanized at day twelve after the laminectomy (n= 3-4 per group). Animals received
259 either RGFP966 vehicle or 10mg/kg RGFP966 daily by i.p. injections that began 1 day prior to
260 LPC injection and ended 11 days after LPC injection. Experiments were terminated 12 days after
261 LPC injection and tissue was then processed for immunohistochemistry or electron microscopy.

262

263 **Isolation and generation of primary astrocytes**

264 Timed-pregnant C57BL/6N mice were purchased from Charles River (Wilmington, MA). Brains
265 from mice of the C57BL/6N strain were extracted at postnatal day 2 (P2). A gross dissection of
266 these brains was performed to isolate the cortices which were then dissociated according to

267 manufacturer's instructions using the Miltenyi Tumor Dissociation Kit (Miltenyi, 130-095-929).
268 After dissociation, cells were plated in flasks coated with poly-L-ornithine (Sigma, P3655) and
269 laminin (Sigma, L2020). Cells were cultured for 24 hours in media consisting of Dulbecco's
270 Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12; ThermoFisher 11320033), N-2
271 MAX Supplement (ThermoFisher, 17502048), B-27 Supplement (ThermoFisher, 17504044),
272 GlutaMAX Supplement (ThermoFisher, 35050079), Penicillin-Streptomycin (ThermoFisher,
273 15070063), and 20ng/mL FGF-2. After 24 hours, the cells were switched to astrocyte enrichment
274 media, comprised of 1:1 DMEM (ThermoFisher, 11960044) and Neurobasal Medium
275 (ThermoFisher, 21103049) supplemented with GlutaMAX (ThermoFisher, 35050061), Sodium
276 Pyruvate (ThermoFisher, 11360070), N-2 MAX Supplement (R&D, AR009), 5ug/ml N-acetyl
277 cysteine (Sigma, A8199), Penicillin-Streptomycin (ThermoFisher, 15070-063), 5 ng/mL HB-EGF
278 (R&D Systems, 259-HE-050), 10 ng/mL CNTF (R&D Systems, 557-NT-010), 10 ng/mL BMP4
279 (R&D Systems, 314-BP-050), and 20 ng/mL FGF2 (R&D Systems, 233-FB-01M) to proliferate.
280 Media was changed every 48 hours. Once confluent, astrocytes were either cryopreserved or
281 passaged once and then cryopreserved. To conduct a terminal experiment, cryopreserved
282 astrocytes were removed from liquid nitrogen storage and thawed in astrocyte maturation media
283 (1:1 DMEM and Neurobasal Medium with GlutaMAX Supplement, Sodium Pyruvate, N-2 MAX
284 Supplement, N-acetyl cysteine supplemented with 5 ng/mL HB-EGF, 10 ng/mL CNTF, 50 ng/mL
285 BMP4, and 20 ng/mL FGF-2) for 48 hours, followed by resting astrocyte media (1:1 DMEM and
286 Neurobasal Medium with 5ng/ml HB-EGF) for another 72 hours. After this five-day thawing and
287 maturation protocol, experimental treatments could be applied to these mature astrocytes in
288 culture.
289

290 **Primary screen and secondary dose response screen**

291 All liquid handling was performed using a BioTek EL406 Washer Dispenser. Astrocytes were
292 thawed and plated, as described for terminal experiments above, onto 384-well plates as described
293 above at a density of 500 cells/mm². A Perkin Elmer Janus G3 Varispan Automated Workstation
294 was then used to treat cells with small-molecules with one molecule per well at a concentration of
295 2uM in 384-well plates, followed one hour later by 3 ng/mL IL1 α (Sigma #I3901), 400 ng/mL
296 C1q (MyBioSource #MBS143105), and 30 ng/mL TNF (R&D Systems #210-TA-020). After
297 incubation for 24 hours, the cells were fixed using 4% paraformaldehyde and stained for GBP2

298 (Proteintech #11854-1-AP) using the procedure detailed in the immunocytochemistry section
299 below, then imaged using the PerkinElmer Operetta CLS High-Content Analysis System. Images
300 were analyzed using automated PerkinElmer Columbus Image Analysis Software. For analysis,
301 toxic chemicals were first removed, a chemical was considered toxic if it decreased the counted
302 number of live cells in the well by greater than 30% compared to reactive astrocyte plus DMSO
303 vehicle control wells. Hits were then determined as those compounds that decreased the number
304 of GBP2-positive reactive astrocytes by greater than or equal to 90% compared to reactive
305 astrocyte plus DMSO vehicle control wells.

306
307 Secondary dose curve screens were performed exactly as described for the primary screen except
308 with custom generated dose curve plates containing the following drug concentrations: 6uM, 3uM,
309 1.5uM, 0.75uM, 0.37uM, 0.18uM, 0.09uM.

310
311 **Z-Score Calculation:** Z-score is a standard measure of drug screen quality. To calculate the Z'
312 standard where σ = standard deviation and μ = mean of either the positive or negative control
313 wells:

$$Z' \text{ standard} = 1 - \frac{3\sigma_{\text{positive}} + 3\sigma_{\text{negative}}}{|\mu_{\text{positive}} - \mu_{\text{negative}}|}$$

315 To calculate Z' Robust where (mad) = mean absolute deviation and \tilde{x} = median of either the
316 positive or negative control wells:

$$Z' \text{ robust} = 1 - \frac{3(\text{mad})_{\text{positive}} + 3(\text{mad})_{\text{negative}}}{|\tilde{x}_{\text{positive}} - \tilde{x}_{\text{negative}}|}$$

318
319 **Generation of *Hdac3* knockout astrocytes**
320 To generate *Hdac3* knockout astrocytes cells were isolated from *Aldh1l1-CreERT²;Hdac3^{fl/fl}* mice,
321 generated by crossing *Aldh1l1-CreERT²*²² (Jax #031008) and *Hdac3^{fl/fl}* (Jax #024119)²³ mice.
322 *Aldh1l1-CreERT²;Hdac3^{fl/fl}* astrocytes were thawed and matured as described above then treated
323 with 1uM tamoxifen (Selleck, S7827) for three days followed by 4-5 days to allow recombination.
324 Cells were then treated with 3 ng/mL IL1 α (Sigma #I3901), 400 ng/mL C1q (MyBioSource
325 #MBS143105), and 30 ng/mL TNF (R&D Systems #210-TA-020) and 24hrs later fixed and
326 stained as described in immunocytochemistry section below.

327

Human astrocyte generation

328

Human induced pluripotent stem cells (iPSCs) were cultured to differentiate into astrocytes as previously described³⁴. In short, iPSC colonies were placed in neural induction media for 10 days until neural rosettes could be picked, dissociated, and plated in a glial expansion medium. These cells were allowed to proliferate and become a homogenous population of glial progenitor cells (GPCs) over eight passages on poly-L-ornithine and laminin-coated plates. These GPCs were then passaged onto a Matrigel-coated plate to culture in an astrocyte induction media for two weeks, which was followed by culturing for another four weeks in an astrocyte maturation medium.

335

336

Real-time polymerase chain reaction (qPCR)

337

Cells were lysed in TRIzol and total RNA was extracted with phenol-chloroform followed by spin columns from the RNEasy Mini Kit (Qiagen, 74104). RNA quality and quantity was determined using a NanoDrop spectrophotometer. The RNA was then reverse transcribed using the iScript cDNA synthesis kit (BioRad, 1708891) according to the manufacturer's instructions. Real-time qPCR was performed using the Taqman Gene Expression Master Mix (Applied Biosystems, 4369016) and the Taqman assay probes for human: *GBP2* (Thermo Fisher Assay ID: Hs00894837_m1) and *PSMB8* (Hs00544758_m1).

344

345

ViewRNA ISH *in vitro*

346

In situ hybridization of cells in culture was performed with ThermoFisher ViewRNA according to manufacturer's instructions without modification (ThermoFisher #QVC0001). Briefly, cells were fixed and permeabilized followed by hybridization with target-specific probes for 2hrs at 40C. Target probe signal was then amplified and signal was imaged using the PerkinElmer Operetta CLS High-Content Analysis System and analyzed using automated scripts in PerkinElmer Columbus Image Analysis software. Probes for *C3* (ThermoFisher, VB4-3112231-VC) and *Serpingle* (ThermoFisher, VB4-3114232-VC).

353

354

Enzyme-linked immunosorbent assay (ELISA) and cytokine profiling

355

Secreted cytokine levels were measured by ELISA and cytokine profiling arrays. ELISA assays were performed according to the manufacturer's instructions for *CCL5* (R&D Systems, DY478-05) and *IL6* (DY406-05). Relative *CCL5* and *IL6* concentrations were measured based on

358 absorbance measured by Synergy Neo2 (BioTek) plate reader. Secreted cytokines were measured
359 using the Proteome Profiler Array Mouse XL Cytokine Array Kit (R&D Systems, ARY028)
360 according to manufacturer's instructions.

361

362 **OVA₂₅₇₋₂₆₄ peptide antigen presentation assay**

363 Mouse primary astrocytes were cultured and treated with reactive astrocyte driving cytokines with
364 or without the HDAC3 specific inhibitors, RGFP966 and T247. After 24 hours of treatment, these
365 cells were cultured in the presence of the OVA₂₅₇₋₂₆₄ peptide (GenScript RP10611 or Sigma
366 S7951). After 12 hours, the cells were live-stained for two hours using a conjugated antibody
367 targeted against an OVA₂₅₇₋₂₆₄ peptide antigen (BioLegend, 141605). The cells were then fixed
368 with 4% paraformaldehyde and imaged using the PerkinElmer Operetta CLS High-Content
369 Analysis System. Images were analyzed using the automated Columbus Image Data Storage and
370 Analysis System to identify the extent to which HDAC3 inhibitors decreased OVA₂₅₇₋₂₆₄ antigen
371 presentation.

372

373 **NF-κB Jurkat reporter assay**

374 Jurkat NF-κB reporter cells were purchased from BPS Bioscience (60651). Cells were grown in
375 manufacturer recommended growth media of RPMI 1640 with 10% FBS, 1x Pen/Strep, and
376 1mg/mL Geneticin. To test whether drugs inhibit NF-κB activity, the reporter cells were exposed
377 to drugs or DMSO vehicle for one hour before the addition of 3 ng/mL IL-1a (Sigma, I3901), 400
378 ng/mL C1q (MyBioSource, MBS143105), and 30 ng/mL TNF (R&D Systems, 210-TA-020).
379 Cells were then incubated for 24hrs, then luciferase activity was measured with the One-Step
380 Luciferase Assay System (BPS Bioscience, 60690-1) according to manufacturer's instructions
381 with a Synergy Neo2 plate reader (BioTek).

382

383 **Immunocytochemistry**

384 For immunocytochemistry, cells were fixed with ice-cold 4% PFA for 15 minutes at room
385 temperature, washed three times with PBS, blocked and permeabilized with 10% donkey serum
386 and 0.1% Triton X-100 in PBS for 1hr, and then stained with primary antibodies overnight
387 followed by three washes with PBS, and then 1hr incubation with Alexa fluor secondary antibodies
388 and DAPI. Stained cells were imaged using the PerkinElmer Operetta CLS High-Content Analysis

389 System and analyzed using automated scripts in PerkinElmer Columbus Image Analysis software.
390 Primary antibodies used were GBP2 (ProteinTech, 11854-1-AP), Vimentin (BioLegend, 919101),
391 AQP4 (Sigma, HPA014784), GLT-1 (Novus Biologicals, NBP1-20136), ALDH1L1 (Novus
392 Biologicals, NBP2-50045), and HDAC3 (BioLegend, 685202).

393

394 **Single-cell RNAseq sample preparation and analysis**

395 Resting and reactive astrocytes were lifted from culture plates using TrypLE (ThermoFisher,
396 12563011) and collected in 1x PBS with 1% bovine serum albumin (BSA). Cells were then spun
397 down at 1000rpm for 10 minutes. After which cells were washed once with 1x PBS with 1% BSA
398 before being filtered through 40um FlowMi Tip Strainers (VWR, 10032-802). Cells were then
399 diluted with 1x PBS with 1% BSA and loaded onto the Chromium 10x Controller according to
400 manufacturer's instructions. Following partitioning of single-cells in gel bead emulsions, reverse-
401 transcriptions and library preparation were performed according to 10x Single Cell 3' v2 chemistry
402 kit instructions (v2 kit since discontinued). Finally, libraries were sequenced by the Case Western
403 Reserve University Genomics Core on an Illumina HiSeq2500 with paired-end 50bp reads and a
404 target sequence depth of 50,000 reads per cell. Sequence data were first processed by 10x Cell
405 Ranger v3.1 using default settings to generate a gene expression matrix and then all downstream
406 analysis was performed with the R package, Seurat v4.0¹².

407

408 **Bulk RNAseq sample preparation and analysis**

409 Total RNA was extracted from resting and reactive astrocytes using the same procedure as
410 described for qPCR and sent to Novogene for mRNA Sequencing. For gene expression analysis,
411 reads were mapped to the mm10 genome using kallisto v0.46.1
412 (<https://pachterlab.github.io/kallisto/>)¹³. Transcripts were summarized to the gene level with
413 tximport v1.2 (<https://bioconductor.org/packages/release/bioc/html/tximport.html>)¹⁴. Normalized
414 expression and differential gene expression were then generated using DESeq2 v1.32.0
415 (<https://bioconductor.org/packages/release/bioc/html/DESeq2.html>)¹⁵.

416

417 **H3K27ac and RelA/P65 Chromatin immunoprecipitation sequencing (ChIP-seq)**

418 Nuclei isolation and chromatin shearing were performed using the Covaris TruChIP protocol
419 following manufacturer's instructions for the "high-cell" format. In brief, 5 million (H3K27Ac) or

420 20 million resting and reactive (RelA/P65) were cross-linked in “Fixing buffer A” supplemented
421 with 1% fresh formaldehyde for 10 minutes at room temperature with oscillation then quenched
422 for 5 minutes with “Quench buffer E.” These cells were then washed with PBS and either snap
423 frozen and stored at -80C or immediately used for nuclei extraction and shearing per the
424 manufacturer protocol. The samples were sonicated with the Covaris S2 using the following
425 settings: 5% Duty factor 4 intensity for four 60 seconds cycles. Sheared chromatin was cleared
426 and incubated overnight at 4C with primary antibodies that were pre-incubated with protein G
427 magnetic DynaBeads (Thermo Fisher, 10004D). Primary antibodies used included anti-H3K27Ac
428 (Abcam, ab4729) and anti-RelA/P65 (Cell Signaling Technology, 8242). These beads were then
429 washed, eluted, reverse cross-linked, and treated with Rnase A followed by proteinase K. ChIP
430 DNA was purified using Ampure XP beads (Aline Biosciences, C-1003-5) and then used to
431 prepare Illumina sequencing libraries as described previously¹⁶. Libraries were sequenced on the
432 Illumina HiSeq2500 with single-end 50bp reads with a read-depth of at least 20 million reads per
433 sample.

434

435 For peak calling, reads were quality and adaptor trimmed using Trim Galore! Version 0.4.1.
436 Trimmed reads were aligned to mm10 with Bowtie2 version 2.3.2¹⁷. Duplicate reads (potential
437 artifacts of PCR in library preparation) were removed using Picard MarkDuplicates. Peaks were
438 called with MACS version 2.1.1¹⁸. Peaks were visualized with the Integrative Genomics Viewer
439 (IGV, Broad Institute). Peaks were compared and contrasted using bedtools implemented in the R
440 software environment using the BedtoolsR package (<http://phanstiel-lab.med.unc.edu/bedtoolsr.html>) and peaks were assigned to the nearest gene using the R packages
441 ChIPSeeker¹⁹, ChIPpeakanno²⁰, and GenomicRanges²¹. Super-enhancers were called using rank
442 ordering of super-enhancers (ROSE) analysis package^{24,25}. Super-enhancers and genes targeted by
443 super-enhancers were generated for the H3K27ac biological replicate with the strongest signal and
444 key findings confirmed with a second biological replicate.

446

447 **Omni Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)**
448 Omni ATAC-Seq was performed on 50,000 resting and reactive astrocytes following the protocol
449 outlined in Corces et al.²² In brief, nuclei were extracted from cells and treated with transposition
450 mixture containing Nextera Tn5 Transposase for (Illumina, FC-121-1030). Transposed fragments

451 were then purified using QIAGEN MinElute columns (QIAGEN, 28004), PCR amplified, and
452 libraries were purified with PCRClean DX purification system (Aline Biosciences, C-1003-5) with
453 a sample to bead ratio of 1:1.2. Final libraries were sequenced on the illumina HiSeq2500 with
454 single-end 50bp reads and nearly 100 million reads per sample. Reads were aligned to the mm10
455 mouse genome following the same pipeline used for ChIP-seq data (see ChIP-seq and analysis)
456 and peaks were called using the “narrowPeaks” function of MACS version 2.1.1, as outlined for
457 RelA/P65 ChIP-seq (see ChIP-seq and analysis).

458

459 **Motif enrichment analysis**

460 Motifs were called under RelA/P65 peaks, ATAC-seq peaks, or regions of gained or lost H3K27Ac
461 using HOMERv4.11.1 (Heinz et al., 2010). The findMotifsGenome.pl tool was used with mm10
462 as the reference genome.

463

464 **Pharmacokinetics**

465 C57BL/6 adult mice were injected i.p. with 10mg/kg RGFP966 daily for 11 days. Mice were then
466 perfused with saline to remove blood from the brain. Brain tissue was then collected and snap
467 frozen. Brain tissues were thawed at room temperature and homogenized in PBS. Calibration
468 standards and study samples were extracted with 3x volume of acetonitrile containing 0.1% formic
469 acid with 200 ng/ml internal standard solution. Samples were then each vortexed for 1 minute,
470 then transferred to an Eppendorf R5417R and centrifuged at 14000 rpm for 7 minutes. Following
471 extraction of tissue, homogenate calibrators and study samples were transferred directly to an
472 autosampler microtiter plate for analysis. Samples were analyzed by LC-MS-MS in the positive
473 ion electrospray ionization mode.

474

475 **Immunohistochemistry**

476 Mice were perfused with PBS followed by 4% paraformaldehyde, after which brains were
477 extracted and cryopreserved in 30% sucrose, then frozen in OCT and sectioned. To stain, slides
478 were washed with PBS and then incubated overnight with primary antibody. After primary
479 incubation, slides were then washed and labeled with Alexa Fluor secondary antibodies
480 (ThermoFisher). Images were captured on a Hamamatsu Nanozoomer S60 Digital slide scanner
481 with NDPview 2.0 software. Image analysis was performed using automated scripts with Perkin

482 Elmer Columbus Image Analysis Software. Primary antibodies used were AcH4 (EMD Millipore,
483 06-866), GFAP (DAKO, 685202), and IBA-1 (Abcam, 685202)

484

485 **Western Blotting**

486 Protein samples were collected in RIPA buffer (Sigma, R0278) with Halt Protease and
487 Phosphatase Inhibitor (ThermoFisher, 78441). Total protein concentration was determined by
488 BCA assay (ThermoFisher, 23225). Equal amounts of total protein were loaded onto 4-12% Bis-
489 Tris gels (Invitrogen). Proteins were then separated by gel-electrophoresis and transferred to PVDF
490 membranes (ThermoFisher, LC2002). Blots were probed with RelA/p65 (Cell Signaling
491 Technology, 8242) and beta-Actin (Sigma, A3854), developed using SuperSignal West Pico Plus
492 Chemiluminescent Substrate (ThermoFisher, 34577), and visualized using a Li-Cor Odyssey XF
493 Imager.

494

495 ***In situ* hybridization with RNAscope**

496 *In situ* hybridization for *in vivo* studies was performed using RNAscope Multiplex Fluorescence
497 V2 Assay (ACD Bio, 323136) according to manufacturer's instructions for fixed frozen samples.
498 Briefly, tissue was prepared by first dehydrating with increasingly higher percentages of ethanol,
499 then dried, blocked with hydrogen peroxide, followed by antigen retrieval for 5 minutes, dried
500 again, and then protein was digested using provided Protease III. RNA-Targeting probes purchased
501 from ACD Bio were then annealed at 40C for 2 hours followed by washing and a series of
502 amplification steps before finally tagging the RNA with Opal Dye fluorophores (Perkin Elmer). *In*
503 *situ* hybridization Images were captured on a Hamamatsu Nanozoomer S60 Digital Slide scanner
504 with NDPview 2.0 software. Image analysis was performed using automate scrips with Perkin
505 Elmer Columbus Image Analysis Software. The following mouse specific RNAscope probes were
506 used: *Slc1a3* (ACD Bio, 430781), *Gbp2* (ACD Bio, 572491), *Gfap* (ACD Bio, 313211), and *C3*
507 (ACD Bio, 417841).

508

509 **Electron microscopy sample preparation and analysis**

510 Samples were processed as previously described²³. Briefly, mice were perfused with 4% PFA, 2%
511 gluteraldehyde, and 0.1 M sodium cacodylate. Spinal cords were extracted, and samples were
512 osmicated, stained *en bloc* with uranyl acetate and embedded in Embed 812, an Epon-812

513 substitute (Electron Microscopy Sciences). Thin sections were cut, carbon-coated and imaged
514 either on a Helios NanoLab 660 Scanning Electron Microscope (FEI)

515

516 **Gene ontology (GO) and gene set enrichment analysis (GSEA)**

517 GO analysis was performed using gProfiler (<https://bijt.cs.ut.ee/gprofiler/gost>)²⁴ with a
518 significance threshold set at false discovery rate (FDR) < 0.05 and calculated by Benjamini-
519 Hochberg FDR. Redundant GO terms were removed using REVIGO³⁵ (<http://revigo.irb.hr/>) using
520 default settings. Comparisons between RelA/p65 direct target genes and non-RelA/p65 direct
521 target genes GO terms was performed with the R package, clusterProfiler³⁶ v4.0.5
522 (<https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html>), following the tutorial
523 for “Biological Theme Comparison” at <https://yulab-smu.top/biomedical-knowledge-mining-book/index.html>. GSEA scores were generated for curated gene sets from publicly-available data.
524 GSEA was run using classical scoring, 1000 gene-set permutations, and signal-to-noise metrics.
525 Normalized enrichment scores (NES) and FDR were calculated by the GSEA software³⁷
526 (<https://www.gsea-msigdb.org/gsea/index.jsp>).

527

528 **Statistical analysis**

530 Unless otherwise noted, GraphPad Prism was used to perform statistical analyses. The statistical
531 tests used and description of data presentation and sample size can be found in each figure legend.
532 Unless otherwise noted, sample sizes were determined by reference to previous literature. For all
533 Tukey box-and-whisker plots, the middle line of the box is the median, the box extends from the
534 25th to 75th percentile, the upper whisker is placed at the 75th percentile plus 1.5x the inter-quartile
535 distance, the lower whisker is placed at the 25th percentile plus 1.5x the inter-quartile distance, and
536 any individual data points that fall outside of the upper and lower whiskers are plotted.

537

538 **Data availability**

539 All datasets generated in this study have been deposited in Gene Expression Omnibus
540 (<https://www.ncbi.nlm.nih.gov/geo/>) under SuperSeries accession code GSE185215 with
541 subseries for RNA-seq (GSE185212), scRNA-seq (GSE184437), ChIP-seq (GSE185606), and
542 ATAC-seq (GSE185605).

543

544 **Acknowledgments** This study was supported by grants from the National Institutes of Health
545 R35NS116842 (P.J.T.), F30HD096784 (K.C.A.), and T32GM007250 (K.C.A), and the Hartwell
546 Foundation (B.L.L.C), as well as institutional support from the Case Western Reserve University
547 School of Medicine and philanthropic support from the Fakhouri, R. Blane & Claudia Walter,
548 Long, Goodman, Geller, and Weidenthal families, and the Research Institute for Children's Health.
549 Additional support was provided by the Small Molecule Drug Development and Genomics core
550 facilities of the CWRU Comprehensive Cancer Center (P30CA043703), the CWRU Light
551 Microscopy Imaging Center (S10-OD016164), and the University of Chicago Genomics Facility.
552 The authors thank Drew Adams, Yuriy Federov, Bill Harte, Marissa Scavuzzo, Erin Cohn, Mayur
553 Madhavan, and Matt Elitt for technical assistance and/or discussion.

554

555 **Author contributions** B.L.L.C. and P.J.T. conceived and managed the overall study. B.L.L.C.
556 and J.D.K. performed, quantified, and analyzed all *in vitro* studies. H.E.S. helped to generate
557 astrocyte cultures. B.L.L.C. performed and analyzed all single-cell RNAseq experiments. B.L.L.C.
558 performed the small-molecule screen and all validations. K.C.A. performed all ChIP-seq and
559 ATAC-seq experiments and super-enhancer analysis. B.L.L.C. performed ChIP-seq, ATAC-seq,
560 and bulk RNA-seq data analysis. B.L.L.C. and A.M.S performed and analyzed *in vivo* LPS studies.
561 M.K., E.G., and R.H.M. performed *in vivo* LPC studies and generated electron microscopy images.
562 Y.M.H. analyzed electron microscopy images. B.L.L.C. assembled all figures. B.L.L.C. and P.J.T.
563 wrote the manuscript with input from all authors.

564

565 **Competing interests** B.L.L.C. and P.J.T. are listed as inventors on pending patent claims filed by
566 Case Western Reserve University covering methods and compositions for treating
567 neurodegenerative disorders. All other authors declare no competing interests.

568

References

- 569 1 Liddelow, S. A. *et al.* Neurotoxic reactive astrocytes are induced by activated microglia.
570 *Nature* **541**, 481-487, doi:10.1038/nature21029 (2017).
- 571 2 Clarke, L. E. *et al.* Normal aging induces A1-like astrocyte reactivity. *Proc Natl Acad Sci
572 U S A* **115**, E1896-E1905, doi:10.1073/pnas.1800165115 (2018).
- 573 3 Wheeler, M. A. *et al.* MAFG-driven astrocytes promote CNS inflammation. *Nature* **578**,
574 593-599, doi:10.1038/s41586-020-1999-0 (2020).
- 575 4 Smith, H. L. *et al.* Astrocyte Unfolded Protein Response Induces a Specific Reactivity
576 State that Causes Non-Cell-Autonomous Neuronal Degeneration. *Neuron* **105**, 855-866
577 e855, doi:10.1016/j.neuron.2019.12.014 (2020).
- 578 5 Yun, S. P. *et al.* Block of A1 astrocyte conversion by microglia is neuroprotective in
579 models of Parkinson's disease. *Nat Med* **24**, 931-938, doi:10.1038/s41591-018-0051-5
580 (2018).
- 581 6 Guttenplan, K. A. *et al.* Neurotoxic reactive astrocytes induce cell death via saturated
582 lipids. *Nature*, doi:10.1038/s41586-021-03960-y (2021).
- 583 7 Hasel, P. & Liddelow, S. A. Astrocytes. *Curr Biol* **31**, R326-R327,
584 doi:10.1016/j.cub.2021.01.056 (2021).
- 585 8 Allen, N. J. & Eroglu, C. Cell Biology of Astrocyte-Synapse Interactions. *Neuron* **96**, 697-
586 708, doi:10.1016/j.neuron.2017.09.056 (2017).
- 587 9 Nagai, J. *et al.* Behaviorally consequential astrocytic regulation of neural circuits. *Neuron*
588 **109**, 576-596, doi:10.1016/j.neuron.2020.12.008 (2021).
- 589 10 Dooves, S. *et al.* Astrocytes are central in the pathomechanisms of vanishing white matter.
590 *J Clin Invest* **126**, 1512-1524, doi:10.1172/JCI83908 (2016).
- 591 11 Absinta, M. *et al.* A lymphocyte-microglia-astrocyte axis in chronic active multiple
592 sclerosis. *Nature* **597**, 709-714, doi:10.1038/s41586-021-03892-7 (2021).
- 593 12 Leng, K. *et al.* CRISPRi screens in human astrocytes elucidate regulators of distinct
594 inflammatory reactive states. *BioRxiv*, 2021.2008.2023.457400,
595 doi:10.1101/2021.08.23.457400 (2021).
- 596 13 Najm, F. J. *et al.* Drug-based modulation of endogenous stem cells promotes functional
597 remyelination in vivo. *Nature* **522**, 216-220, doi:10.1038/nature14335 (2015).
- 598 14 Foo, L. C. *et al.* Development of a method for the purification and culture of rodent
599 astrocytes. *Neuron* **71**, 799-811, doi:10.1016/j.neuron.2011.07.022 (2011).
- 600 15 Grubman, A. *et al.* A single-cell atlas of entorhinal cortex from individuals with
601 Alzheimer's disease reveals cell-type-specific gene expression regulation. *Nat Neurosci* **22**,
602 2087-2097, doi:10.1038/s41593-019-0539-4 (2019).
- 603 16 Al-Dalahmah, O. *et al.* Single-nucleus RNA-seq identifies Huntington disease astrocyte
604 states. *Acta Neuropathol Commun* **8**, 19, doi:10.1186/s40478-020-0880-6 (2020).

605 17 Smajić, S. *et al.* Single-cell sequencing of the human midbrain reveals glial activation and
606 a neuronal state specific to Parkinson's disease. *medRxiv*, 2020.2009.2028.20202812,
607 doi:10.1101/2020.09.28.20202812 (2020).

608 18 Chastain, E. M., Duncan, D. S., Rodgers, J. M. & Miller, S. D. The role of antigen
609 presenting cells in multiple sclerosis. *Biochim Biophys Acta* **1812**, 265-274,
610 doi:10.1016/j.bbadi.2010.07.008 (2011).

611 19 Hartmann, K. *et al.* Complement 3(+) astrocytes are highly abundant in prion diseases, but
612 their abolishment led to an accelerated disease course and early dysregulation of microglia.
613 *Acta Neuropathol Commun* **7**, 83, doi:10.1186/s40478-019-0735-1 (2019).

614 20 Malvaez, M. *et al.* HDAC3-selective inhibitor enhances extinction of cocaine-seeking
615 behavior in a persistent manner. *Proceedings of the National Academy of Sciences* **110**,
616 2647-2652, doi:10.1073/pnas.1213364110 (2013).

617 21 Suzuki, T. *et al.* Identification of highly selective and potent histone deacetylase 3
618 inhibitors using click chemistry-based combinatorial fragment assembly. *PLoS ONE* **8**,
619 e68669, doi:10.1371/journal.pone.0068669 (2013).

620 22 Srinivasan, R. *et al.* New Transgenic Mouse Lines for Selectively Targeting Astrocytes
621 and Studying Calcium Signals in Astrocyte Processes In Situ and In Vivo. *Neuron* **92**,
622 1181-1195, doi:10.1016/j.neuron.2016.11.030 (2016).

623 23 McQuown, S. C. *et al.* HDAC3 is a critical negative regulator of long-term memory
624 formation. *J Neurosci* **31**, 764-774, doi:10.1523/JNEUROSCI.5052-10.2011 (2011).

625 24 Loven, J. *et al.* Selective inhibition of tumor oncogenes by disruption of super-enhancers.
626 *Cell* **153**, 320-334, doi:10.1016/j.cell.2013.03.036 (2013).

627 25 Whyte, W. A. *et al.* Master transcription factors and mediator establish super-enhancers at
628 key cell identity genes. *Cell* **153**, 307-319, doi:10.1016/j.cell.2013.03.035 (2013).

629 26 Hnisz, D. *et al.* Super-enhancers in the control of cell identity and disease. *Cell* **155**, 934-
630 947, doi:10.1016/j.cell.2013.09.053 (2013).

631 27 Molofsky, A. V. & Deneen, B. Astrocyte development: A Guide for the Perplexed. *Glia*
632 **63**, 1320-1329, doi:10.1002/glia.22836 (2015).

633 28 Vargas, M. R., Johnson, D. A., Sirkis, D. W., Messing, A. & Johnson, J. A. Nrf2 activation
634 in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic
635 lateral sclerosis. *J Neurosci* **28**, 13574-13581, doi:10.1523/JNEUROSCI.4099-08.2008
636 (2008).

637 29 Tonelli, C., Chio, I. I. C. & Tuveson, D. A. Transcriptional Regulation by Nrf2. *Antioxid
638 Redox Signal* **29**, 1727-1745, doi:10.1089/ars.2017.7342 (2018).

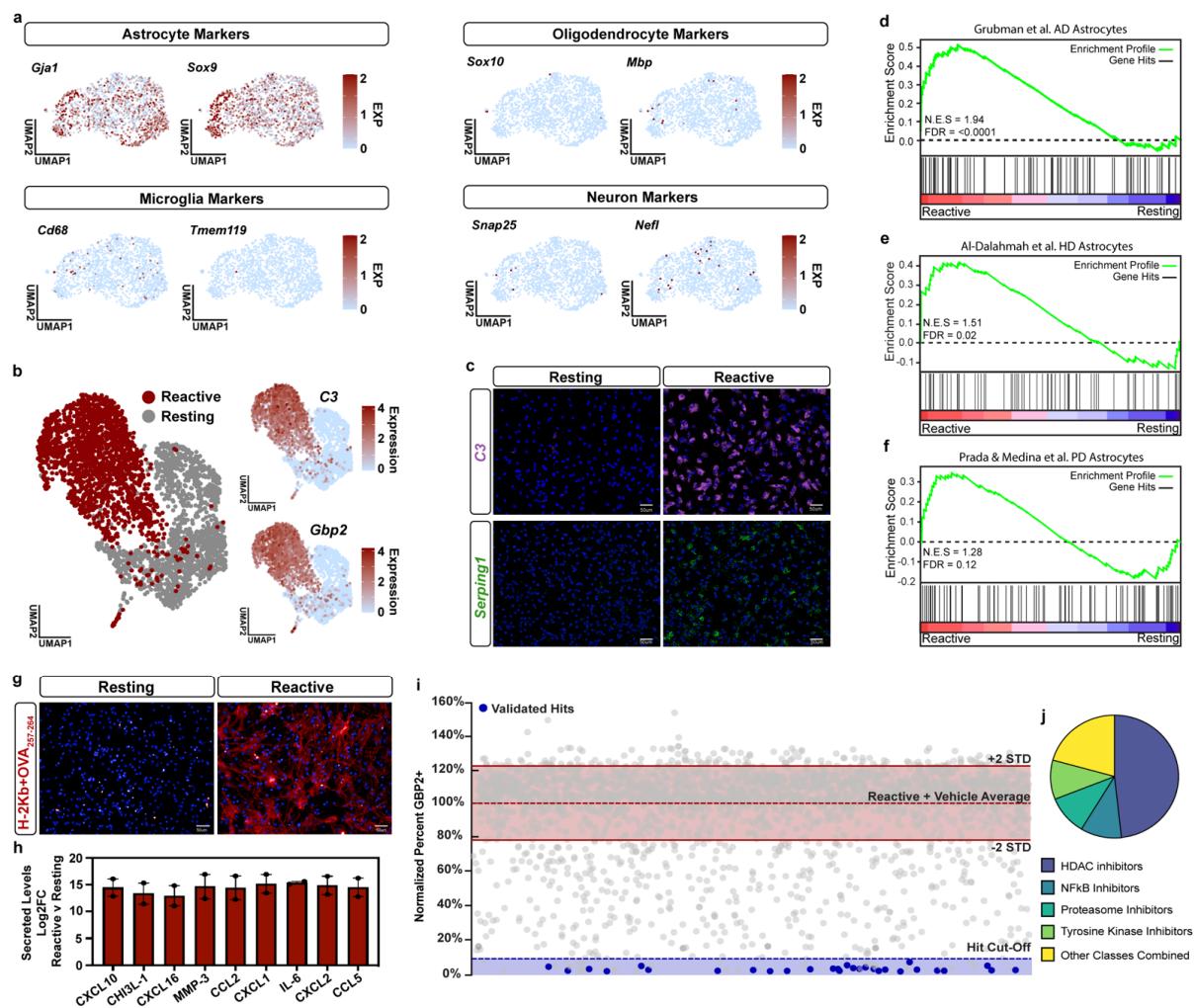
639 30 Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory
640 astrocyte subtypes in the mouse brain. *Nat Neurosci*, doi:10.1038/s41593-021-00905-6
641 (2021).

642 31 Zamanian, J. L. *et al.* Genomic analysis of reactive astrogliosis. *J Neurosci* **32**, 6391-6410,
643 doi:10.1523/JNEUROSCI.6221-11.2012 (2012).

644 32 El Waly, B., Buttigieg, E., Karakus, C., Brustlein, S. & Debarbieux, F. Longitudinal
645 Intravital Microscopy Reveals Axon Degeneration Concomitant With Inflammatory Cell
646 Infiltration in an LPC Model of Demyelination. *Front Cell Neurosci* **14**, 165,
647 doi:10.3389/fncel.2020.00165 (2020).

648 33 McMullan, C. E., Zhao, C. & Franklin, R. J. M. Toxin-Based Models to Investigate
649 Demyelination and Remyelination. *Methods Mol Biol* **1936**, 377-396, doi:10.1007/978-1-
650 4939-9072-6_21 (2019).

651 34 Perriot, S. *et al.* Human Induced Pluripotent Stem Cell-Derived Astrocytes Are
652 Differentially Activated by Multiple Sclerosis-Associated Cytokines. *Stem Cell Reports*
653 **11**, 1199-1210, doi:10.1016/j.stemcr.2018.09.015 (2018).


654 35 Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long
655 lists of gene ontology terms. *PLoS ONE* **6**, e21800, doi:10.1371/journal.pone.0021800
656 (2011).

657 36 Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
658 *Innovation (N Y)* **2**, 100141, doi:10.1016/j.xinn.2021.100141 (2021).

659 37 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
660 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-
661 15550, doi:10.1073/pnas.0506580102 (2005).

662 **Figure 1**

663

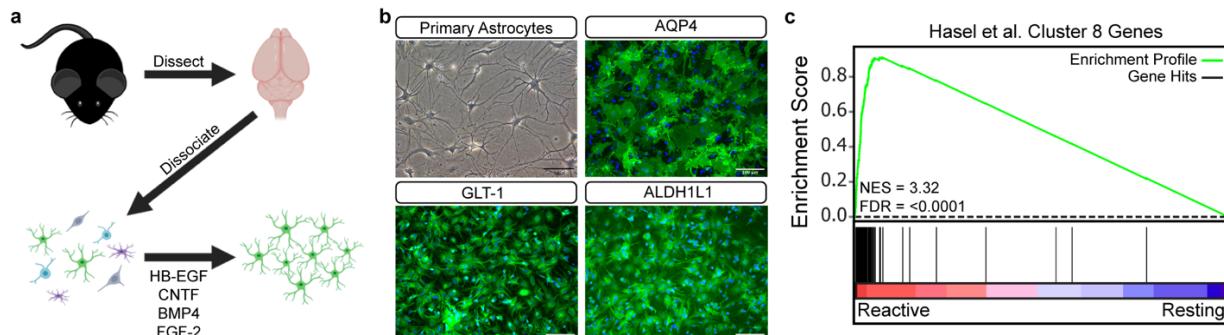
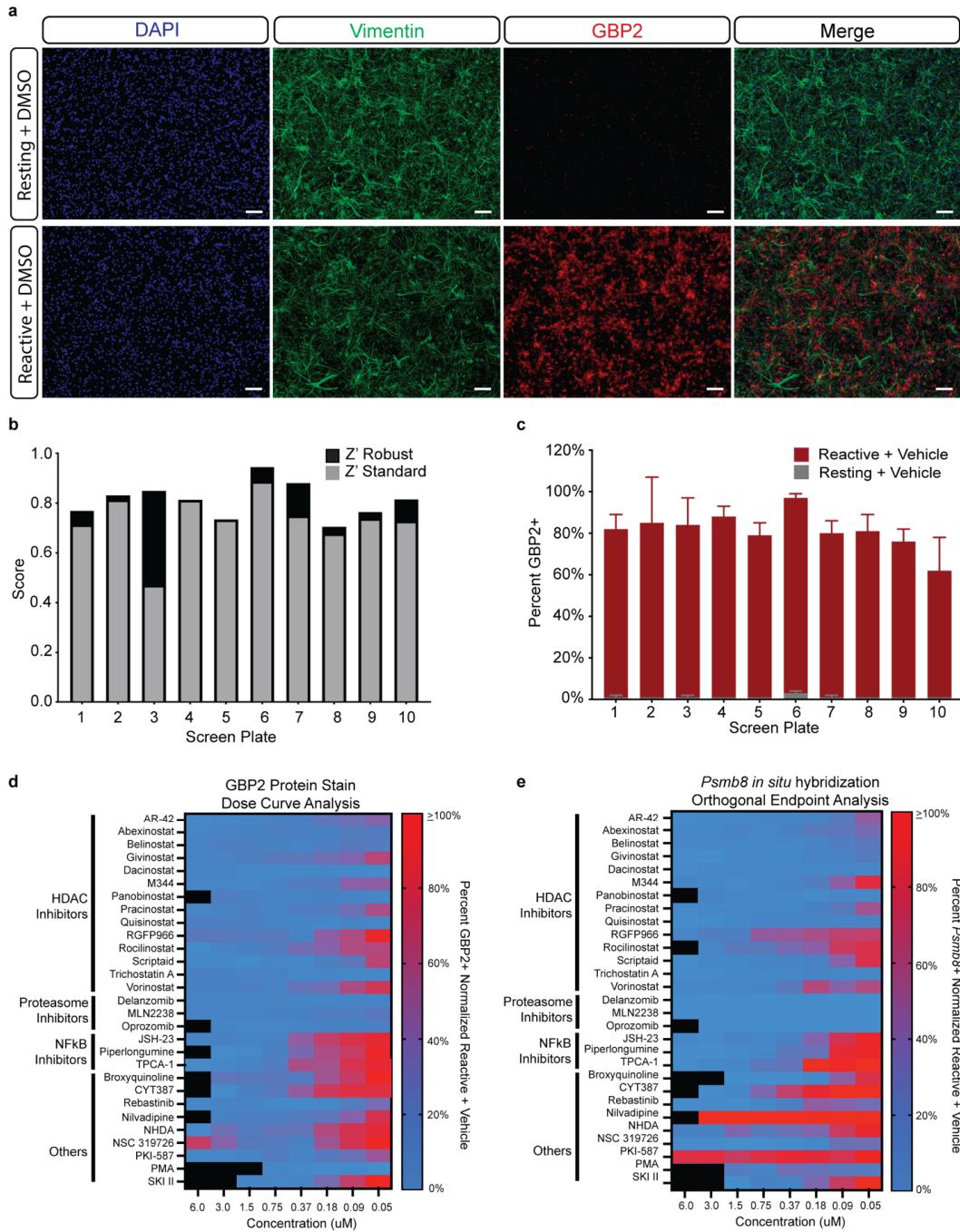

664
665

Figure 1. An astrocyte discovery platform identifies inhibitors of pathological reactive astrocyte formation. **a**, Expression of cell-type specific markers layered onto UMAP plots from single-cell RNAseq of primary resting astrocytes. **b**, UMAP plot of resting and pathological reactive astrocytes (abbreviated to reactive in figures) single-cell RNAseq colored by condition, resting (grey) and reactive (red). Additional UMAP plots showing expression levels for the pathological reactive astrocyte markers *C3* and *Gbp2*. **c**, Representative images of *in situ* hybridization in resting and reactive astrocyte cultures with probes against the pathological reactive astrocyte markers *C3* and *Serp1*. **d-f**, Gene set enrichment analysis (GSEA) comparing pathological reactive astrocytes to the top 100 genes upregulated in astrocytes from single-nuclei RNAseq data from **d**, Alzheimer's, **e**, Huntington's, and **f**, Parkinson's disease patient tissue. **g**, Representative images of resting and reactive astrocyte cultures exposed to the OVA₂₅₇₋₂₆₄ peptide and then stained for MHC Class I bound to OVA₂₅₇₋₂₆₄ (H-2Kb+OVA₂₅₇₋₂₆₄) in red. **h**, The Log2 fold-change (Log2FC) of secreted cytokines in reactive vs resting astrocytes conditioned media. Data presented as mean \pm s.e.m for $n = 2$ biological replicates (independent astrocyte isolations). **i**, Scatter plot of primary screen results displayed as percent GBP2 positive, validated hits (blue dots) and reactive + vehicle average (red line) with +/- 2 STD lines. **j**, Pie chart showing the distribution of hit classes.

681 normalized to reactive astrocyte plus vehicle controls for all non-toxic chemicals and validated hit
682 chemicals colored in blue. The dashed blue line represents the hit cut-off at a $\geq 90\%$ decrease in
683 GBP2- positive astrocytes compared to reactive astrocyte plus vehicle controls. Dashed red line
684 represents the average percent GBP2 positive for reactive astrocytes plus vehicle set at 100%.
685 Solid lines represent ± 2 standard deviations from the mean of reactive plus vehicle control wells.
686 **j**, Pie chart depicting the chemical class breakdown of all 29 validated chemical hits.

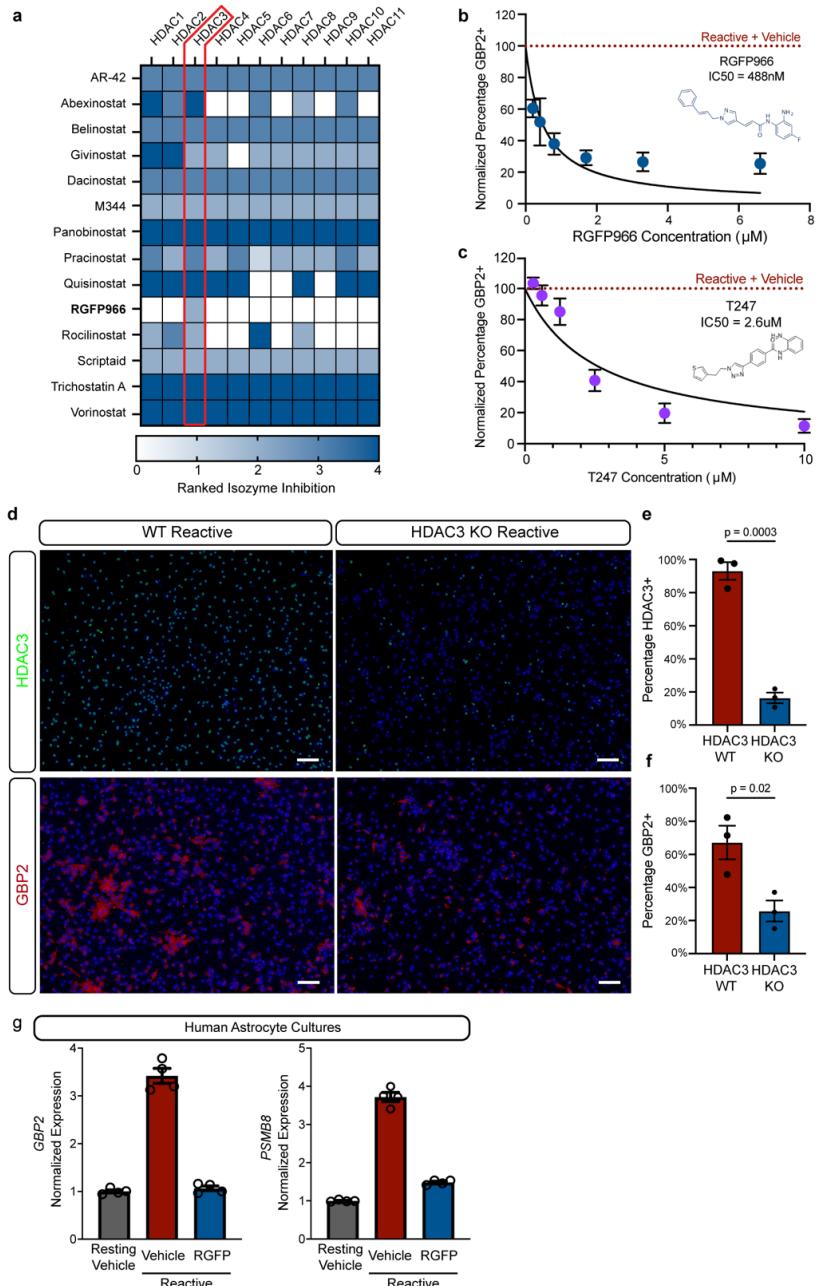

687 **Extended Data Figure 1**

688

699 **Extended Data Figure 2**

700

701

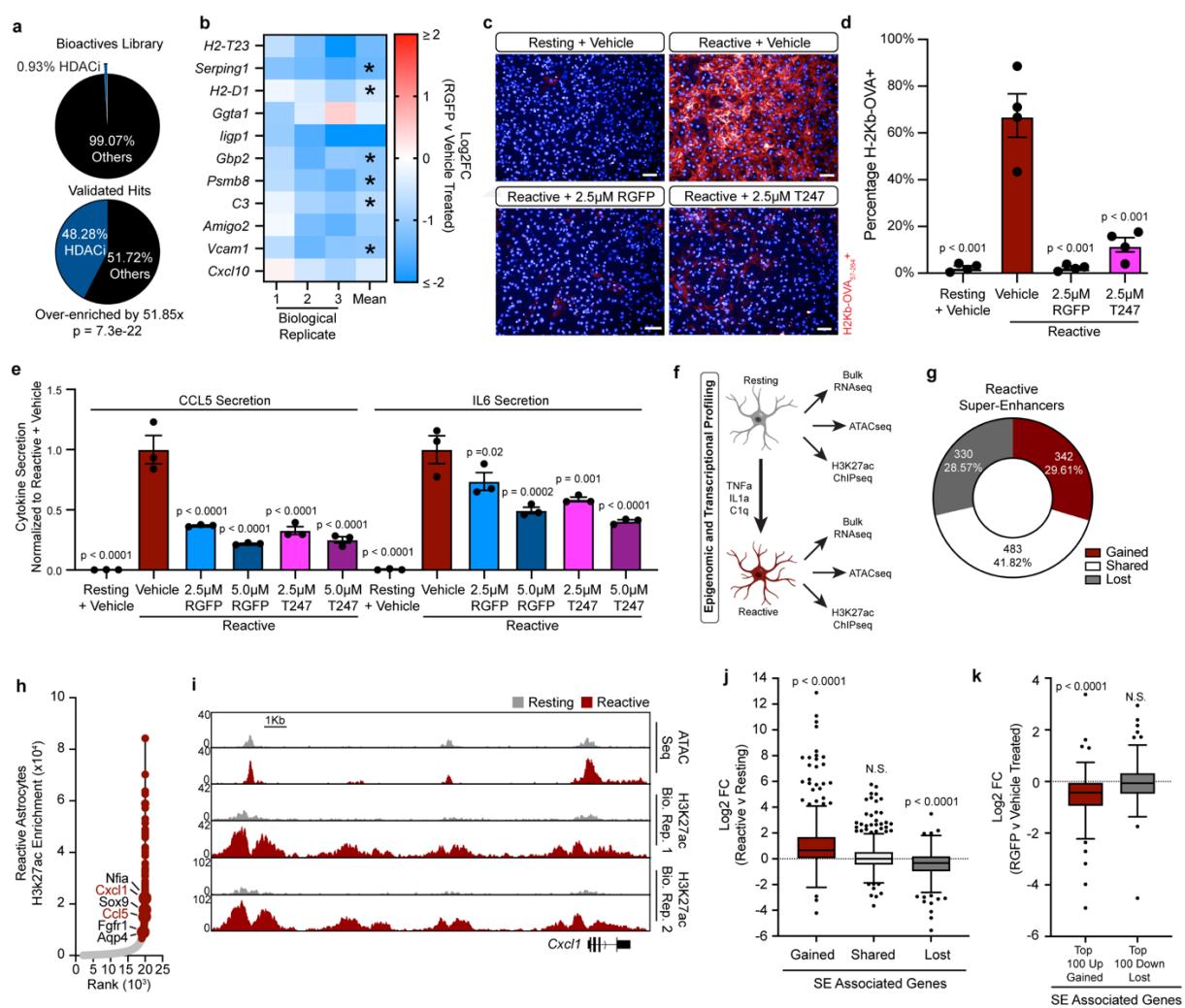

702

703 **Extended Data Figure 2. Primary screen quality control and secondary validation of**
 704 **primary hits. a, Example images of DMSO vehicle-treated reactive and resting control wells.**
 705 **Scale bar is 100um. b, Z-prime standard, and robust scores for each primary screen plate. c,**
 706 **Average percent GBP2 positive astrocytes in DMSO vehicle treated reactive and resting control**
 707 **wells on each primary screen plate. d, Dose curve analysis of hits from primary screen.**
 708 **Compounds were tested across an 8-point dose curve with decreasing half-steps from 6uM to**

709 0.05uM. Data are presented as the percent of GBP2 positive cells normalized to DMSO vehicle
710 treated reactive astrocyte control wells. $n = 2$ biological replicates (independent astrocyte
711 isolations). Black data points represent toxic doses where total cell number in the well decreased
712 by >50% compared to DMSO vehicle treated reactive astrocyte control wells. **e**, Dose curve
713 analysis of hits from primary screen with *Psmb8* positivity by *in situ* hybridization as a secondary
714 endpoint. Compounds were tested across an 8-point dose curve with decreasing half-steps from
715 6uM to 0.05uM. Data are presented as the percent of *Psmb8* positive normalized to DMSO vehicle
716 treated reactive astrocyte control wells with an $n = 1$ biological replicate (independent astrocyte
717 isolation). Black data points represent toxic doses where total cell number in the well decreased
718 by >50% compared to DMSO vehicle treated reactive astrocyte control wells.

719 **Extended Data Figure 3**

720


721
722

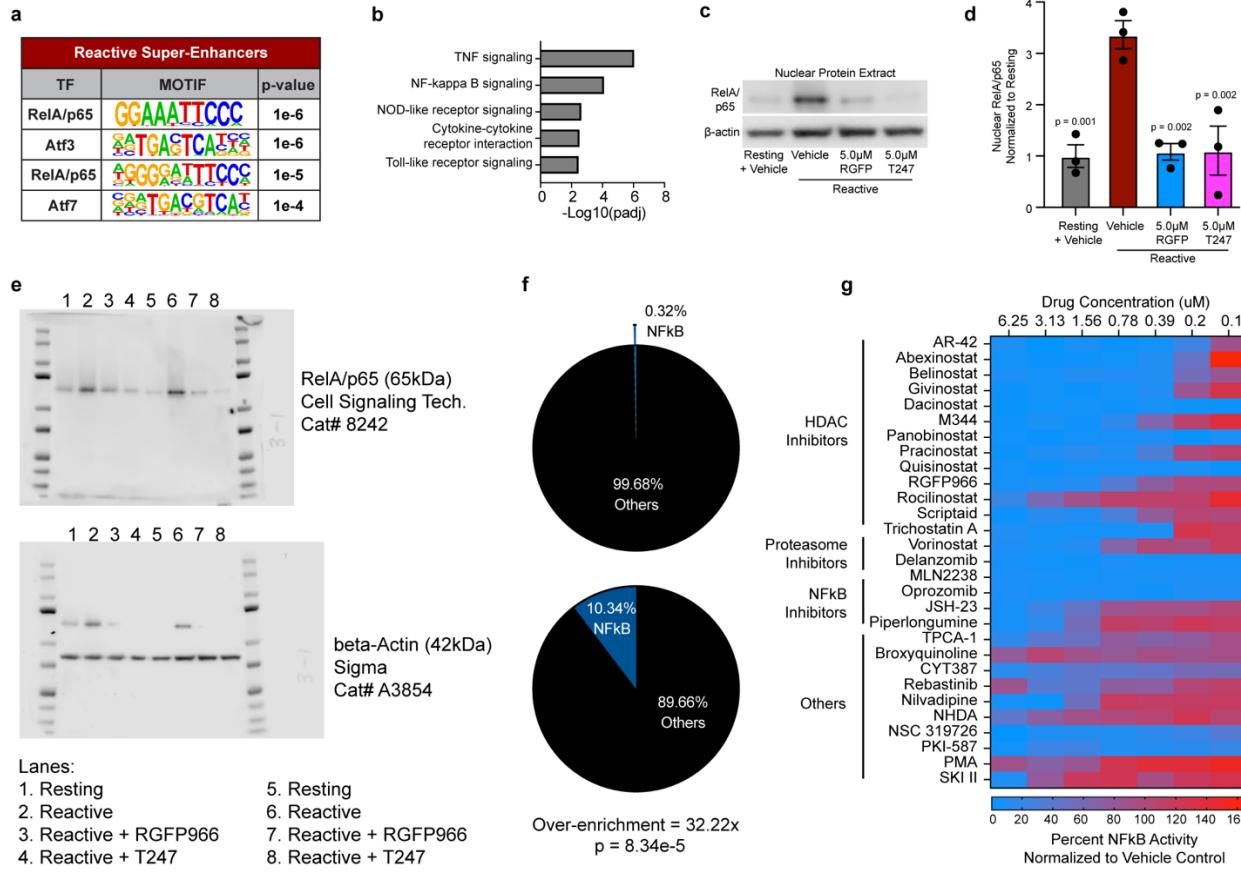
723 **Extended Data Figure 3. Pharmacological and genetic inhibition of HDAC3 modulates**
724 **pathological reactive mouse and human astrocytes. a**, Ranked inhibition against each HDAC
725 isozyme for the validated HDAC inhibitors identified in the primary screen. Highlighted is HDAC3,
726 which is the only shared target between all HDAC inhibitor hits from the primary screen. Ranked
727 efficiency was pulled from target data provided by Selleck Chemical for each compound. **b**, Dose
728 curve and IC50 value for the HDAC3 specific inhibitor RGFP966. **c**, Dose curve and IC50 value
729 for the HDAC3 specific inhibitor T247. **d**, Representative images of wild-type (WT) and HDAC3
730 knockout (KO) astrocyte cultures exposed to the reactive factors TNF, IL1a, and C1q. Scale bar

731 is 100um. **e**, Quantification of the percentage of cells positive for HDAC3 normalized to WT for
732 the experiment represented in d. Data are presented as the mean \pm s.e.m. for $n = 3$ biological
733 replicates (independent astrocyte isolations). p-value generated with a Student's two-tailed t-test.
734 **f**, Quantification of the percentage of cells positive for GBP2 normalized to WT for the experiment
735 represented in d. Data are presented as the mean \pm s.e.m. for $n = 3$ biological replicates
736 (independent astrocyte isolations). p-value generated with a Student's two-tailed t-test. **g**, GBP2
737 and *PSMB8* qPCR results for human iPSC derived resting or reactive (TNF, IL1 α , and C1q
738 treated) astrocyte cultures treated with vehicle or 5uM RGFP966. Data are presented as mean \pm
739 s.e.m. for $n = 4$ technical replicates.

740 **Figure 2**

741

742


743

744 Figure 2. Chemical inhibition of HDAC3 modulates pathological reactive astrocytes. a,
745 Proportion of HDAC inhibitor compounds enriched in primary screen validated hit list compared
746 to the primary screen chemical library as a whole, showing that HDAC inhibitors are significantly
747 enriched in the validated hit list. p -value generated by a hypergeometric test. **b**, Heatmap of the
748 Log2 fold-change (Log2FC) between RGFP966 (RGFP) and vehicle (DMSO) treated pathological
749 reactive astrocytes. Red is upregulated and blue is downregulated in RGFP treated cells. Data
750 are presented as Log2FC for $n = 3$ biological replicates (independent astrocyte isolations) with
751 mean and asterisks denoting a $p < 0.05$ calculated by DESeq2. **c**, Representative images of
752 resting and reactive astrocytes treated with vehicle or the HDAC3 inhibitors RGFP or T247, then
753 exposed to the OVA₂₅₇₋₂₆₄ peptide and stained for MHC Class I bound to OVA₂₅₇₋₂₆₄ (H-2Kb+OVA)
754 in red. Scale bar is 50 μ m. **d**, Quantification of experiments represented in c. Data presented as
755 mean \pm s.e.m. $n = 4$ biological replicates (independent astrocyte isolations). p -values generated
756 by a one-way ANOVA with Dunnett post-test for multiple comparisons to reactive plus vehicle
757 control. **e**) Quantification of CCL5 and IL6 ELISAs performed on astrocyte conditioned media.

758 Data presented as mean \pm s.e.m for an $n = 3$ biological replicates (independent astrocyte
759 isolations). p-value generated by a one-way ANOVA with Dunnett post-test for multiple
760 comparisons to reactive plus vehicle control. **f**, Diagram of transcriptional and epigenetic data
761 captured to analyze chromatin changes between resting and pathological reactive astrocytes. **g**,
762 Distribution of gained, shared, and lost super-enhancers in pathological reactive astrocytes. **h**,
763 Hockey-stick plot showing H3K27ac enrichment at enhancers in pathological reactive astrocytes.
764 The enhancers are ranked and those in red were called as super-enhancers by ROSE analysis.
765 Closest genes to each super-enhancer were called with HOMER, genes in red are targeted by
766 gained super-enhancers in pathological reactive astrocytes while those in black are targeted by
767 shared super-enhancers that were called in both resting and pathological reactive astrocytes. **i**,
768 Example browser track for the gained super-enhancer gene *Cxcl1*. **j**, Tukey box and whisker plot
769 showing the average Log2FC between pathological reactive and resting astrocytes for genes
770 associated with gained, shared, and lost super-enhancers in pathological reactive astrocytes. p-
771 value is generated with a one-sample Wilcoxon Signed Ranked test comparing to a hypothetical
772 median of Log2FC = 0, which would designate no difference in expression between reactive and
773 resting astrocytes. **k**, Tukey box and whisker plot showing the average Log2FC between RGFP
774 and vehicle treated pathological reactive astrocytes for the top 100 upregulated genes associated
775 with gained super-enhancers and the top 100 downregulated genes associated with lost super-
776 enhancers in pathological reactive astrocytes. p-value is generated with a one-sample Wilcoxon
777 Signed Ranked test comparing to a hypothetical median of Log2FC = 0 which would designate
778 no difference in expression between reactive and resting astrocytes.

779 **Extended Data Figure 4**

780

781

782

783

784

785

786

787

788

789

790

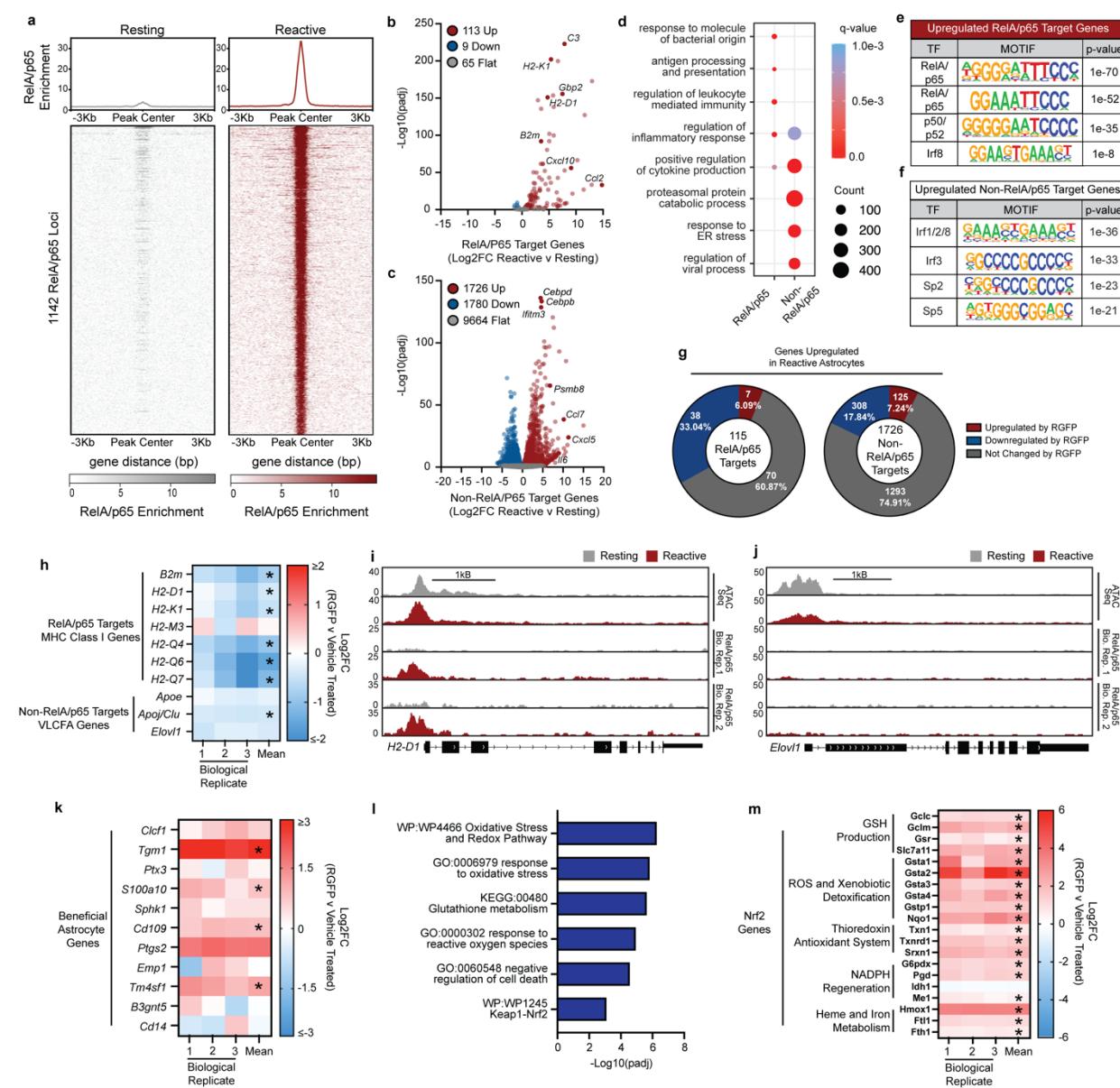
791

792

793

794

795


796

797

Extended Data Figure 4. RelA/p65 regulates pathological reactive astrocyte formation and is a unifying target of small-molecule inhibitors of pathological reactive astrocyte formation. **a**, Top results of HOMER transcription factor motif mining beneath pathological reactive astrocyte super-enhancers. **b**, Gene ontology analysis showing KEGG pathways enriched in genes associated with gained pathological reactive astrocyte super-enhancers. **c**, Representative western blot image of nuclear protein extracts probed for RelA/p65 and β -Actin. **d**, Quantification of experiments represented in **c**. Data are presented as mean \pm s.e.m for an n = 3 biological replicates (independent astrocyte isolations). p-values generated by a one-way ANOVA with Dunnett post-test for multiple comparisons to reactive plus vehicle control. **e**, Full uncropped western blots that correspond to Fig. 2m. **f**, Distribution of NFκB inhibitors in the full primary screen drug library versus validated hits, showing that NFκB inhibitors are significantly enriched in the validated hit list. p-value generated by a hypergeometric test. **g**, Heatmap showing the normalized NFκB luciferase activity in Jurkat reporter cells treated with the validated hits from the primary drug screen. Data presented as percentage of NFκB activity from a single biological replicate (astrocyte isolation) across an 8-point dose curve from 6.25uM to 0.1uM.

798
799

Figure 3

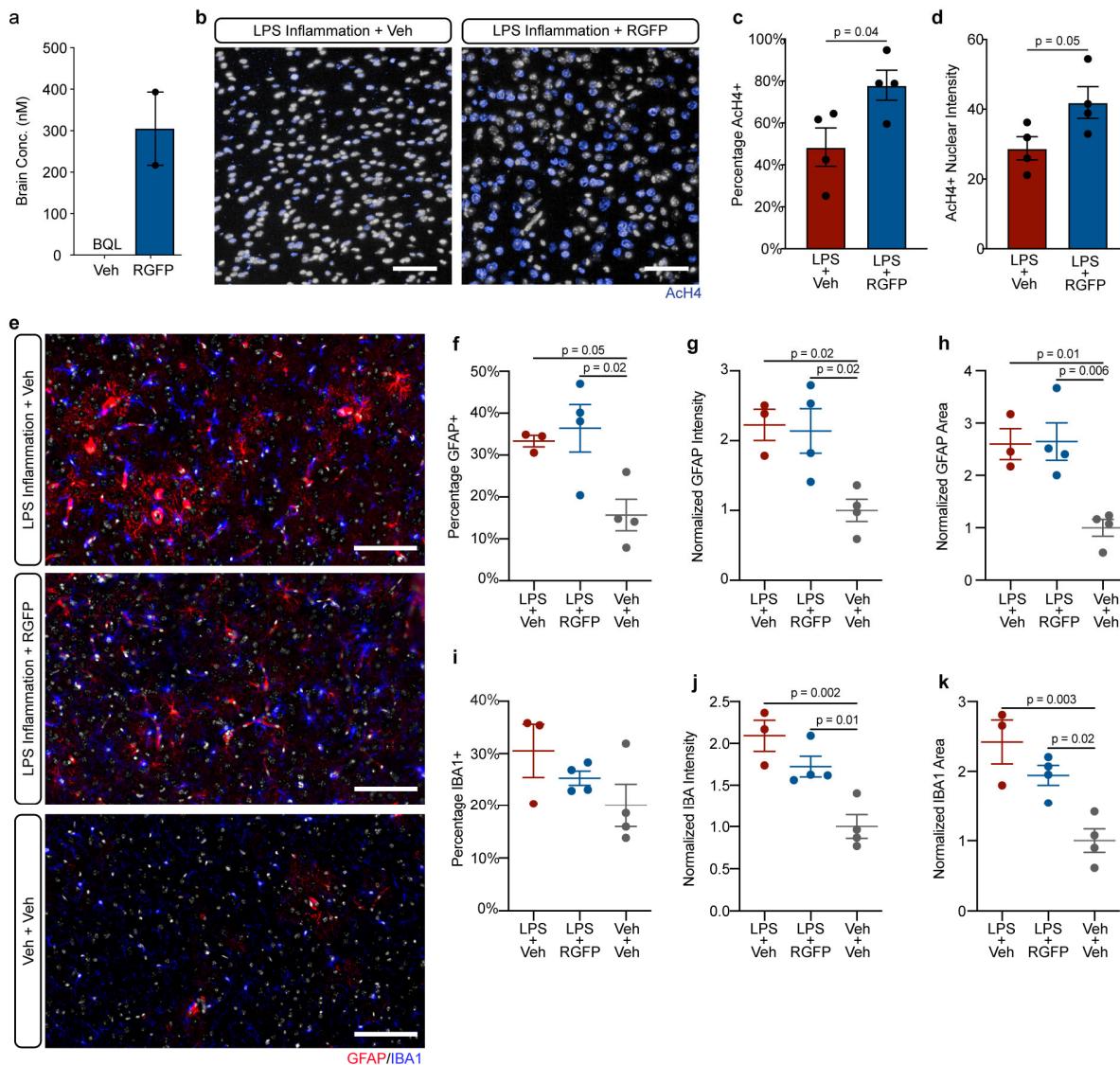

800
801

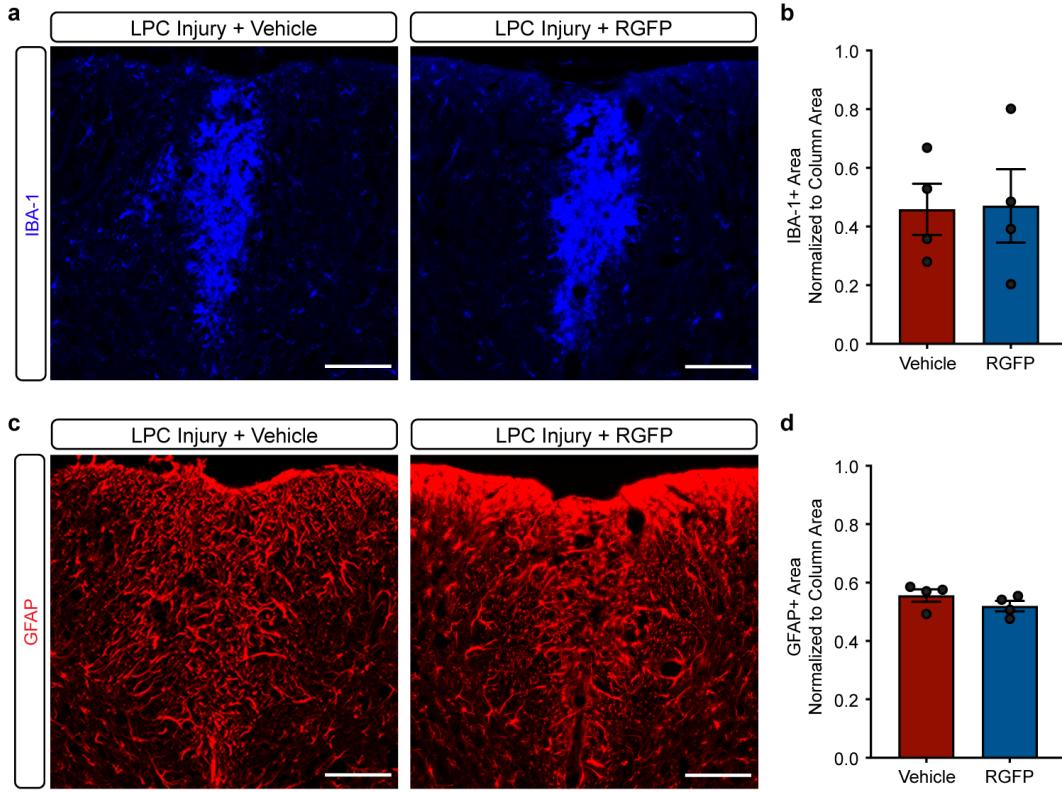
Figure 3. HDAC3 mediates a switch between pro-inflammatory and anti-inflammatory gene expression. **a**, RelA/p65 DNA binding aggregate heatmap and profile showing enriched RelA/p65 DNA binding at in reactive astrocytes compared to resting astrocytes. **b**, Volcano plot of RelA/p65 target genes (genes with a RelA/p65 peak within 5Kb up or downstream of the TSS). Of the 187 total RelA/p65 target genes in reactive astrocytes 60.43% (113/187) are upregulated while 4.81% (9/187) are downregulated and 34.76% (65/187) do not change. Log2FC and padj values were generated from bulk RNAseq analysis with DESEQ2 and with an $n = 3$ biological replicates (independent astrocyte isolations) per group. **c**, Volcano plot of the remaining Non-RelA/p65 target genes (genes without a RelA/p65 peak within 5Kb up or downstream of the transcription start site). Of the 14,364 Non-RelA/p65 target genes 13.10% (1726/13170) are upregulated in reactive astrocytes while 13.51% (1780/13170) are downregulated and 73.39% (9664/13170) do

813 not change. **d**, Comparison of gene ontology terms called for RelA/p65 and Non-RelA/p65 target
814 genes that are significantly upregulated in pathological reactive astrocytes. **e**, Transcription factor
815 motifs identified with ATAC-seq at the promoter of the RelA/p65 target genes that are upregulated
816 in reactive astrocytes compared to resting. **f**, Transcription factor motifs identified with ATAC-seq
817 at the promoter of the Non-RelA/p65 target genes that are upregulated in reactive astrocytes
818 compared to resting. **g**, Distribution of the effect that treatment with the HDAC3 specific inhibitor
819 RGFP966 (RGFP) has on RelA/p65 and Non-RelA/p65 target genes that are upregulated in
820 reactive compared to resting astrocytes. **h**, Heatmap showing the expression of the RelA/p65
821 MHC Class I genes and the non-RelA/p65 genes involved in very long-chain fatty acid synthesis
822 and transport. Expression is shown as the Log2 fold-change (Log2FC) between 5uM RGFP966
823 and vehicle (DMSO) treated cells. Asterisks denote significance as called by DESeq2. **i**, Example
824 browser track of the RelA/p65 target gene *H2-D1* from the MHC Class I gene set. **j**, Example
825 browser track of the non-RelA/p65 target gene *Elov1* that catalyzes the first and rate-limiting step
826 in very long-chain fatty acid elongation. **k**, Heatmap showing the difference in expression between
827 5uM RGFP and vehicle-treated pathological reactive astrocytes for genes associated with a
828 beneficial reactive astrocyte. Expression is shown as Log2FC for RGFP966 versus vehicle with
829 asterisks denoting significance as called by DESeq2. **l**, Gene ontology analysis of genes
830 significantly increased by RGFP treatment. **m**, Heatmap showing the difference in expression
831 between 5uM RGFP and vehicle-treated pathological reactive astrocytes for cytoprotective Nrf2
832 target genes. Expression is shown as Log2FC for RGFP966 versus vehicle with asterisks
833 denoting significance as called by DESeq2.

834 **Extended Data Figure 5**

835

836


837

838 **Extended Data Figure 5. *In vivo* pharmacology of RGFP in mice challenged with systemic**
 839 **LPS to induce neuroinflammation. a**, Brain concentration of RGFP966 (RGFP) following
 840 treatment with vehicle (Veh) or 10mg/kg RGFP. Data presented as mean \pm s.e.m. for $n = 1-2$
 841 biological replicates (mice). Concentration of RGFP in brain from vehicle treated mouse was
 842 below quantifiable levels (BQL). **b**, Representative images of immunohistochemistry for AcH4
 843 (blue) in the cortex of mice treated chronically with vehicle or 10mg/kg RGFP and then exposed
 844 to systemic LPS injections to induce neuroinflammation. Scale bar 100um. **c**, Quantification of
 845 the percentage of cells that are AcH4 positive from the experiment represented in b. Data are
 846 presented as the mean \pm s.e.m. for $n = 4$ biological replicates (mice) per group. p-value generated
 847 with a Student's two-tailed t-test. **d**, Quantification of AcH4 nuclear intensity from the experiment
 848 represented in b. Data are presented as the mean \pm s.e.m. for $n = 4$ biological replicates (mice)
 849 per group. p-value generated with a Student's two-tailed t-test. **e**, Representative images of

850 immunohistochemistry for GFAP (red) and IBA-1 (blue) in the cortex of mice treated with vehicle
851 or 10mg/kg RGFP and exposed to systemic LPS or saline vehicle. Scale bar 100um. **f-h**,
852 Quantification of GFAP positive astrocytes in the experiment represented in e. Data are presented
853 for the **f**, percentage of GFAP positive cells, **g**, control-normalized GFAP intensity, and **h**, control
854 normalized GFAP area. Data are presented as mean \pm s.e.m. for $n = 3-4$ biological replicates
855 (mice) per group. p-value generated by one-way ANOVA with Tukey's post-test. **i-k**,
856 Quantification of IBA-1 positive microglia in the experiment represented in e. Data are presented
857 for the **i**, percentage of cells IBA-1 positive, **j**, control normalized IBA-1 intensity, and **k**, control
858 normalized IBA-1 area. Data are presented as mean \pm s.e.m. for $n = 3-4$ biological replicates
859 (mice) per group. p-value generated by one-way ANOVA with Tukey's post-test.

860 **Extended Data Figure 6**

861

862

863

864

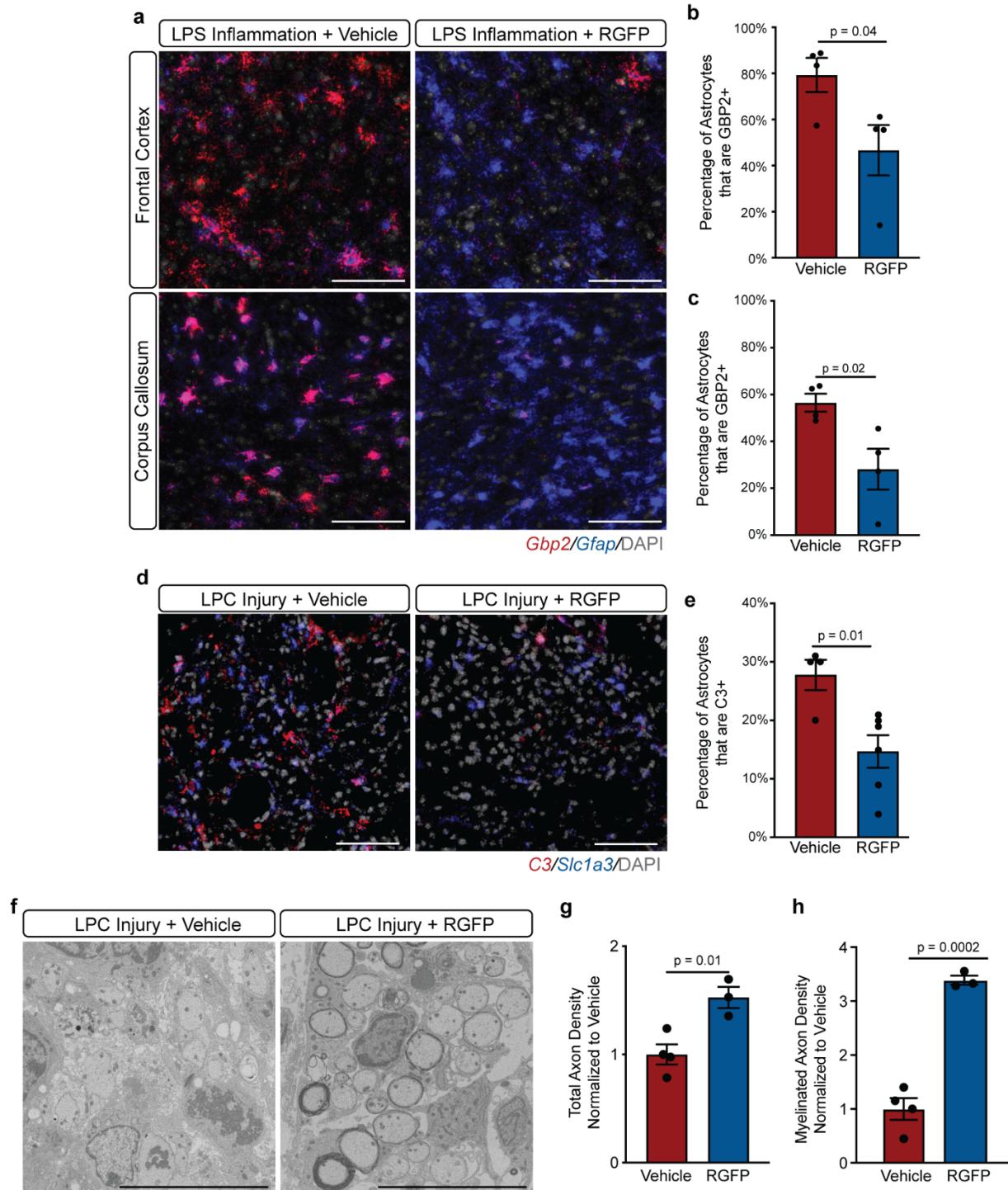
865

866

867

868

869


870

871

Extended Data Figure 6. RGFP966 has no effect on generalized gliosis in the toxin-based injury model LPC. **a**, Representative images of LPC lesions from vehicle or RGFP966 (RGFP) treated mice stained for IBA-1. Scale bar is 100um. **b**, Quantification of the IBA-1 positive area divided by the dorsal column area from staining represented in a. Data are presented as mean \pm s.e.m. for $n = 4$ biological replicates (mice) for each group. **c**, Representative images of LPC lesion from vehicle or RGFP treated mice stained for GFAP. Scale bar is 100um. **d**, Quantification of the GFAP-positive area divided by the dorsal column area from staining represented in a. Data are presented as mean \pm s.e.m. for $n = 4$ biological replicates (mice) per group.

872

Figure 4

873

874

875

876

877

878

879

Figure. 4 HDAC3 inhibition blocks reactive astrocyte formation *in vivo* and promotes axonal protection. a) Representative images of *Gbp2* (red) and *Gfap* (blue) *in situ* hybridization from the frontal cortex and corpus callosum of mice after 48hrs of systemic lipopolysaccharide (LPS) exposure and treated with vehicle or 10mg/kg RGFP. Scale bar is 100um. b-c, Quantification of *in situ* data represented in a. The percentage of astrocytes that are GBP2+ in

880 the **b**, frontal cortex or **c**, corpus callosum of mice exposed to LPS and treated with vehicle or
881 10mg/kg RGFP is presented as mean \pm s.e.m for $n = 4$ biological replicates (2 male and 2 female
882 mice) with p-value generated by Student's unpaired two-tailed t-test. **d**, Representative images of
883 *C3* and *Slc1a3* *in situ* hybridization in the dorsal column of lysolecithin (LPC) lesioned mice at 12
884 days post lesion and treated with vehicle or 10mg/kg RGFP. Scale bar is 50um. **e**, Quantification
885 of *in situ* data represented in D. The percent of astrocytes that are *C3* positive in LPC-exposed
886 mice treated chronically with vehicle 10mg/kg RGFP. Data are presented as the mean \pm s.e.m for
887 $n = 4$ -6 biological replicates (mice) with p-value generated by Student's unpaired two-tailed t-test.
888 **f**, Representative electron microscopy (EM) images of LPC lesioned mice treated with vehicle or
889 10mg/kg RGFP. Scale bar is 10um. **g**, Quantification of axon density in EM images represented
890 in **f**. Total axon density normalized to control for LPC lesioned mice treated with vehicle ($n = 4$
891 mice) or 10mg/kg RGFP ($n = 3$ mice) is presented as mean \pm s.e.m. with p-value generated by
892 Student's unpaired two-tailed t-test. **h** Quantification of remyelinated axon density in EM images
893 represented in **f**. Myelinated axon density normalized to control for LPC lesioned mice treated
894 with vehicle or 10mg/kg RGFP is presented as mean \pm s.e.m for $n = 3$ -4 biological replicates
895 (mice) with p-value generated by Student's unpaired two-tailed t-test.