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Abstract 24 

The purpose of this work is to enhance KinasePhos, a machine-learning-based kinase-specific 25 

phosphorylation site prediction tool. Experimentally verified kinase-specific phosphorylation data 26 

were collected from PhosphoSitePlus, UniProt, GPS 5.0, and Phospho.ELM. In total, 41,421 27 

experimentally verified kinase-specific phosphorylation sites were identified. A total of 1380 unique 28 

kinases were identified, including 753 with existing classification information from KinBase and the 29 

remaining 627 annotated by building a phylogenetic tree. Based on this kinase classification, a total 30 

of 771 predictive models were built at the individual, family, and group levels, using at least 15 31 

experimentally verified substrate sites in positive training datasets. The improved models were 32 

observed to be more effective than other prediction tools. For example, the prediction of sites 33 

phosphorylated by the Akt, CKT, and PKA families had accuracies of 94.5%, 92.5%, and 90.0%, 34 

respectively. The average prediction accuracy for all 771 models was 87.2%. For enhancing 35 

interpretability, the Shapley additive explanations (SHAP) method was employed to assess feature 36 

importance. The web interface of KinasePhos 3.0 has been redesigned with the goal of providing 37 

comprehensive annotations of kinase-specific phosphorylation sites on multiple proteins. 38 

Additionally, considering the large scale of phosphoproteomic data, a downloadable prediction tool 39 

is available at https://awi.cuhk.edu.cn/KinasePhos/index.html or  40 

https://github.com/tom-209/KinasePhos-3.0-executable-file. 41 

 42 
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Introduction 47 

Protein phosphorylation is an important eukaryotic post-translational modification [1]. It involves the 48 

transfer of a phosphate group from ATP to specific amino-acid residues in the substrate. 49 

Phosphorylation is catalyzed by a number of protein kinases, which regulate a variety of signaling 50 

pathways and biological functions important in DNA repair, transcriptional regulation, apoptosis, 51 

immune response, signaling, metabolism, proliferation, and differentiation [2−7]. Dysregulation of 52 

intracellular phosphorylation networks contributes to the occurrence and development of multiple 53 

multifactorial diseases, including cancer, cardiovascular disease, obesity, and others [8−10]. 54 

Therefore, regulating phosphorylation networks by mediating kinase activity has become an attractive 55 

therapeutic strategy [11] with kinases being one of the most important drug targets [12,13]. Thus, 56 

linking dysregulated phosphorylation sites to candidate kinase targets is critical, both for the study of 57 

disease mechanisms and the development of therapeutic kinase inhibitors [14,15]. 58 

The number of experimentally detected phosphorylated sites has increased dramatically in recent 59 

years because of advances in mass spectrometry and new enrichment methods for phosphorylated 60 

proteins and peptides [16]. For example, deep phosphoproteome analysis of Schistosoma mansoni 61 

detected 15,844 unique phosphopeptides mapping to 3,176 proteins [17]. Phosphoproteomics can 62 

provide important information about protein phosphorylation sites, but the responsible kinases cannot 63 

be directly derived from such data. In fact, the kinases for a vast majority of phosphorylation sites are 64 

still unknown due to a lack of adequate evidence [18]. To address this problem, many tools have been 65 

developed to predict kinase-specific phosphorylation sites in proteins. For example, PhosphoPredict 66 

was developed to predict kinase-specific substrates and their associated phosphorylation sites for 12 67 

human kinases and their families by combining protein sequences and functional features [19]. Neural 68 

networks were applied by NetPhos 3.1 to predict phosphorylation sites in eukaryotic proteins for 17 69 

kinases [20]. Quokka was introduced to predict kinase family-specific phosphorylation sites at the 70 

proteomic scale in a high-throughput and cost-effective manner [21]. Musite provided a unique 71 

method that trained models with a bootstrap aggregating procedure, as well as integrated sequence 72 

cluster information around phosphorylation sites, protein-disorder scores, and amino-acid frequencies 73 

to predict general and kinase-specific phosphorylation sites [22]. The Group-Based Prediction System 74 

(GPS) 5.0 tool employed two novel methods, position-weight determination (PWD) and scoring-75 

matrix optimization (SMO), to replace the motif-length selection (MLS) method for refining the 76 

prediction of kinase-specific phosphorylation sites [23]. In addition, the conditional random field 77 

(CRF) model (CRPhos) [24] and support vector machines (PredPhospho) have been employed to 78 

predict the phosphorylation sites [25]. These tools have made outstanding progress in protein 79 

phosphorylation studies. 80 
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In 2005, our group developed KinasePhos 1.0 to identify protein kinase-specific phosphorylation 81 

sites [26]. This tool constructed models from kinase-specific groups of phosphorylation sites based 82 

on the profile hidden Markov model (HMM). Subsequently, support vector machines (SVM) with the 83 

protein-sequence profiles and protein-coupling patterns were applied to update the tool to version 2.0 84 

[27]. The datasets available for training are constantly expanding owing to the rapid development of 85 

phosphorylation-related research. Therefore, in this study, we introduce KinasePhos 3.0, with 86 

improved kinase-specific phosphorylation site prediction. We collected experimental identifications 87 

of kinase-specific phosphorylation sites from the PhosphoSitePlus [28], UniProt [29], GPS 5.0 [23], 88 

and Phospho.ELM [30] databases. Redundant data were removed after translating the kinase and 89 

substrate names into unique UniProt IDs. Finally, 41,421 empirically determined, kinase-specific 90 

phosphorylation sites were obtained for use as the training data set, which was a great improvement 91 

from the training of version 2.0, which involved 16,543 kinase-specific phosphorylation sites. We 92 

also assigned kinases to groups, families, or subfamilies according to sequence similarity and the 93 

classification method of KinBase [31]. Then, according to these classifications, we used both SVM 94 

and eXtreme Gradient Boosting (XGBoost) algorithms to construct 771 prediction models at the 95 

kinase group, kinase family, and individual kinase levels, in contrast to 60 predictive models at the 96 

individual kinase level in version 2.0. Using these models, specific phosphorylation sites for ten 97 

groups, 81 families, and 302 kinases were identified. We also plotted the Shapley additive 98 

explanations (SHAP) values of feature groups for each prediction result, which makes the tool more 99 

interpretable than version 2.0, as well as other tools in this field. Using SHAP values, users can 100 

subdivide the prediction to show the impact of each feature group—that is, features related to specific 101 

residues in this study—on the results. Additionally, a standalone version of KinasePhos 3.0, was 102 

developed, making it more convenient for users with larger phosphoproteomic datasets than 103 

KinasePhos 2.0. 104 

 105 

Method 106 

Schematic of the proposed KinasePhos 3.0 107 

Figure 1 depicts a schematic of this study that includes kinase-specific phosphorylation site data 108 

collection, kinase group and family classifications, feature extractions, machine learning-based 109 

kinase-specific phosphorylation site prediction model development, and presentation of results. The 110 

novelties of this study are: 111 

1. To our knowledge, the experimentally verified kinase-specific phosphorylation-site data used 112 

in this study are, to date, the most comprehensive compared to all existing kinase-specific 113 

phosphorylation site prediction tools, such as GPS 5.0 and Kinasephos 2.0. 114 
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2. We obtained 771 prediction models, with at least 15 kinase-specific phosphorylation sites 115 

considered in each. Thus, the minimum number of positive sites for a single model was greater 116 

than that of some other tools. For example, GPS 5.0 includes prediction models for clusters with 117 

no less than three positive sites. 118 

3. To increase the feature interpretability of these prediction models, SHAP was integrated into 119 

KinasePhos 3.0. 120 

 121 

 122 

Figure 1  Schematic of KinasePhos 3.0 development  123 

The procedures include data collection, processing, modeling, and website functions development. 124 

 125 

Kinase-substrate data collection 126 

The experimentally verified kinase-specific phosphorylation sites used in this study were collected 127 

from four phosphorylation-associated resources: GPS 5.0 [23], Phospho.ELM [30], PhosphoSitePlus 128 

[28], and UniProt [29]. Although GPS 5.0, Phospho.ELM and PhosphoSitePlus provided 129 

downloadable, experimentally verified, and kinase-specific phosphorylation sites, their data is not 130 

frequently updated to reflect the increase in experimentally verified phosphorylated sites. In contrast, 131 

UniProt has a standard 8-week release cycle [29]. Therefore, we additionally curated experimentally 132 

verified, kinase-specific phosphorylation sites from UniProt with the aim of assembling the most 133 

comprehensive database. As depicted in Figure 1, 23,196, 3,012, 20,811, and 6,914 experimentally 134 

verified kinase-specific phosphorylation sites were retrieved from GPS 5.0, Phospho.ELM, 135 

PhosphoSitePlus, and UniProt, respectively. After eliminating redundancies, 41,421 sites remained, 136 
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of which, the kinases for 28,369 had UniProt IDs. In contrast, the kinases for the remaining 13,052 137 

sites lack UniProt IDs, primarily because only their kinase family types, instead of kinase names, are 138 

provided. 139 

We converted all the kinase names in our substrate dataset into UniProt entry names. Then, we 140 

used the classification annotations of kinomes and their sequence information from KinBase as the 141 

annotated dataset [31]. By searching the UniProt database, gene names were converted to UniProt 142 

IDs. The collected and annotated human kinome datasets were merged and converted to FASTA 143 

format. Multiple sequence alignments were performed using the MAFFT program [32]. FastTree was 144 

then employed to infer kinetic-maximal-likelihood phylogenetic trees from the kinase sequence 145 

alignments [33]. We assumed that homologous proteins have consistent domains represented by 146 

closer distances in the phylogenetic tree. Therefore, based on the classification data from KinBase 147 

and the generated tree, kinases could be annotated to different clusters at the group, family, and 148 

subfamily levels [34]. In addition, we obtained kinase domain data from the PFAM and SMART 149 

databases to confirm the results of our classification annotation [35, 36]. TreeGraph 2 and the 150 

Interactive Tree Of Life (iTOL) were used to visualize the annotations [34, 37]. 151 

 152 

Model development 153 

The classical BLOSUM62 substitute matrix has been widely employed to encode sequence data [23, 154 

27, 38, 39] and was used in this study. For GPS 5.0, the support vector machine (SVM) showed higher 155 

performance in kinase-specific phosphorylation site predictive models compared to the random forest 156 

(RF) and k-nearest neighbor (KNN) [23] methods. Additionally, eXtreme Gradient Boosting 157 

(XGBoost) [40], an efficient implementation of gradient boosted decision trees, is suitable for web 158 

server applications for a faster response owing to its model performance and execution speed. 159 

Therefore, SVM and XGBoost were used to train the prediction models. The development, testing, 160 

and validation of these algorithms were implemented using Python 3.8. 161 

The performance of the kinase-specific, phosphorylation-site prediction models was assessed via 162 

classification accuracy and two other metrics, precision and recall, as indicators of reliability. The 163 

F1_score, a more comprehensive quantifier of model reliability and the area under the receiver 164 

operating characteristic (ROC) curve (AUC) were also computed. These performance measures are 165 

defined as: 166 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்ே

்௉ାி௉ାிேା்ே
     (1) 167 

𝑟𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାி
     (2) 168 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     (3) 169 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
ଶ×௣௥௘௖௜௦௜௢௡×௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥
    (4) 170 

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, 171 

respectively. Weighted accuracy, weighted recall, weighted precision, and weighted F1_score are the 172 

weighted mean of accuracy, recall, precision, and F1_score with weights equal to the class probability, 173 

respectively. 174 

 175 

Feature interpretation with SHAP 176 

Because explainable machine learning offers the potential to provide more insights into model 177 

behavior, the interpretability of machine-learning models has received significant attention, along 178 

with the popularity of machine-learning algorithms. Several feature-importance methods have been 179 

developed, including permutation feature importance, which is based on the decrease in model 180 

performance and SHAP values [41], which are based on the magnitudes of feature attributions. To 181 

increase the interpretability of our prediction models, SHAP was employed to integrate feature 182 

importance. SHAP is a game-theory approach and a local explanation to depict the feature’s 183 

importance. It has been adopted in some studies [42−44] to interpret machine-learning models. The 184 

explanation model can be illustrated by the following equation [41]: 185 

𝑔(𝑧ᇱ) = ∅଴ + ෍ ∅௜𝑧௜
ᇱ

ெ

௜ୀଵ

   (5) 186 

where 𝑧ᇱ ∈ {0, 1}ெ, with 0 and 1 indicating the absence and presence of a feature, respectively. M 187 

represents the number of simplified input features. The Shapley value ∅௜, namely the contribution of 188 

feature 𝑖, is calculated as: 189 

∅௜ = ∑
ห௭ᇲห!൫ெିห௭ᇲหିଵ൯!

ெ!
[𝑓௫(𝑧ᇱ) − 𝑓௫(𝑧ᇱ\𝑖)]௭ᇲ⊆௫ᇲ      (6) 190 

where |𝑧ᇱ| is the number of non-zeros in 𝑧ᇱ, 𝑧ᇱ\𝑖 means 𝑧ᇱ without feature 𝑖, 𝑓௫ is the output of the 191 

model, and 𝑥ᇱ represents simplified inputs. 192 

The SHAP typically evaluates each feature individually; however, in some cases, quantifying the 193 

effect of a group of features may be more informative. As mentioned above, the data are 15-mer 194 

sequences. In the feature extraction process, the residue at each position was encoded by a 20-195 

dimensional BLOSUM log-odds vector [45]. After being encoded by the BLOSUM62 substitution 196 

matrix, the sequences were converted into 300-dimensional (15 × 20) vectors, with each element in a 197 
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vector representing a feature. Because the amino-acid residue at each position was encoded by a 20-198 

dimensional vector, representing 20 features, these features were clustered as a feature group when 199 

performing SHAP analysis, representing a group of features related to specific residues. As a result, 200 

15 feature groups were obtained, corresponding to each position of a 15-mer sequence. 201 

 202 

Results 203 

Classifying kinases at group and family levels 204 

In total, we obtained 1,380 unique kinases from the kinase-substrate dataset. Of these, 753 were 205 

included in the KinBase database, which includes classification information. In contrast, the 206 

remaining kinases needed to be annotated by other classification methods. Merging these kinases with 207 

the annotated dataset of the human kinome and classifying them by building an evolutionary 208 

phylogenetic tree (Figure S1) showed that proteins that are homologous or with consistent domains 209 

clustered tightly in smaller branches (Figure 2A), such as STK10_BOVIN, STK10_HUAMN, 210 

STK10_MOUSE, and STK10_RAT. Since STK10_HUAMN belongs to the SLK subfamily of the 211 

STE20 family of the STE group, we inferred that the other three kinases also belong to that subfamily. 212 

Different subfamilies of kinases can form different clusters. For example, for TAO_DROME, 213 

TAOK3_HUMAN, TAOK2_HUAMN, TAOK2_MOUSE, TAOK1_HUAMN, TAOK1_RAT, and 214 

TAOK1_MOUSE, although they also belong to the STE20 family of the STE group, the difference in 215 

the domain amino acid sequence from the SLK subfamily placed them on another branch belonging 216 

to the TAO subfamily. Based on this process, we annotated the collected kinases to groups, families, 217 

and subfamilies. Figure 2B shows a kinome tree for several major groups. Analysis of each group 218 

separately showed that kinases in the same group contained similar domains (Figure 2C). This 219 

indicated that our annotation of the collected kinases was reliable. 220 
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 221 

Figure 2  Kinase classification 222 

A. Phylogenetic tree of the kinases of the SLK and TAO subfamilies in the STE20 family of the STE 223 

group. B. Kinome  tree composed of several major groups. C. Domain annotation of TK group kinases. 224 

 225 
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Finally, these kinases were classified into 12 kinase groups and 116 kinase families. When we 226 

developed our predictive models, only groups or family clusters with at least 15 experimental 227 

phosphorylation sites were considered. As a result, ten groups and 81 families were retained. As 228 

serine/threonine (S/T) and tyrosine (Y) kinases modify different residues, we developed prediction 229 

models for both types separately in family clusters. Similarly, only group or family clusters with at 230 

least 15 related sites were considered. Since most substrate residues in the TK group were Y, while 231 

most substrate residues in the other nine groups were S/T, they were not separately considered when 232 

creating group prediction models. Moreover, we developed prediction models at the individual kinase 233 

level for clusters with more than 15 phosphorylation sites, with 11 types of organisms retained. While 234 

the majority are human, mice, and rat, others include mouse-ear cress (arath), bovine, chicken, pig, 235 

sumatran orangutan (ponab), fission yeast (schpo), African clawed frog (xenla), and yeast. Again, 236 

phosphoserine/phosphothreonine and phosphotyrosine sites were considered separately if their 237 

number in substrates of a particular kinase was no less than 15. In practice, 15-residue sequences (-7 238 

to +7) surrounding kinase-specific phosphorylation sites were extracted as positive data. After 239 

removing redundant sites within each cluster, numbers of clusters and the number ranges for the 240 

positive data in each are summarized in Table 1. We obtained ten models for the ten group clusters; 241 

81, 61, and 20 models were built for family clusters considering S/T and Y sites, S/T sites, and Y 242 

sites, respectively; 302, 243, and 54 models were developed for kinase-specific clusters considering 243 

S/T and Y sites, S/T sites, and Y sites, respectively. A total of 771 prediction models were created. 244 

In the group clusters, the numbers of positive sites ranged from 204 to 5,737. In the family clusters, 245 

the numbers ranged from 15 to 2,050, and the numbers of kinase clusters ranged from 15 to 930. 246 

Although clusters with positive sites less than 15 were not considered when developing models, the 247 

data for these clusters are included in supplementary files (Table S1) for those who might be interested 248 

in them. 249 

Table 1  Summary of numbers of prediction models and ranges of positive sites for predictive 250 
models 251 

Clusters Model number Number range of positive data 

group 10 204 − 5737 
family_all 81 15 − 2050 
family_ST 61 15 − 2046 
family_Y 20 18 − 1310 
kinase_all 302 15 − 930 
kinase_ST 243 15 − 929 
kinase_Y 54 15 − 652 

                    Note: all indicates the S/T and Y sites, ST means S/T sites, and Y refers to Y sites. 252 
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In each cluster, all the same types of residues in the phosphorylated substrate proteins, except those 253 

known to be positive phosphorylation sites, were regarded as negative data. For example, in family 254 

clusters considering all phosphorylated residues (model type family_all listed in Table 1), all S/T and 255 

Y sites in all substrate proteins in a cluster were obtained. After eliminating the positive data (i.e., 256 

experimentally verified phosphorylation sites), the remaining sites were taken as the negative data of 257 

that cluster. Similarly, in family clusters considering S/T residues (model type family_ST in Table 1), 258 

the negative data are all S and T sites except those sites in the positive data for that cluster. CD-HIT 259 

[46] has been widely used to reduce sequence similarity in the literature [19, 47]. Because the number 260 

of negative sites obtained via this method is much greater than the number of positive sites, for 261 

balance we first used the CD-HIT-2D [46] to reduce the similarity of negative data to positive data 262 

with a similarity threshold of 0.4, the minimum threshold in the CD-HIT-2D suite. Furthermore, CD-263 

HIT [46] was employed to further reduce the similarity between the negative data in each cluster. 264 

After experimentally applying different threshold values, we found that the number of negative sites 265 

is sometimes much greater than the number of positive sites, even though the minimum threshold of 266 

0.4 in the CD-HIT suite was adopted. Suppose the number of negative sites is more than five times 267 

greater than the number of positive sites after applying CD-HIT-2D and CD-HIT. In this case, we 268 

applied the random undersampling technique from the imbalanced-learn library in Python to keep the 269 

number difference within five-fold to reduce the imbalance between positive and negative data when 270 

developing the predictive models. 271 

To investigate the characteristics of amino-acid composition in the aforementioned positive 15-272 

mer sequences and provide a graphical representation, we obtained sequence logos of positive 273 

sequence clusters for all models using the WebLogo tool (https://weblogo.berkeley.edu/). Some 274 

representative logos are shown in Figure 3, which correspond to the ten groups (left two columns) 275 

and to some representative families (right two columns). In the common kinase family protein kinase 276 

A (PKA), protein kinase C (PKC), protein kinase D (PKD), casein kinase 2 (CK2), cyclin-dependent 277 

kinase (CDK), and mitogen-activated protein kinase (MAPK), the majority of phosphorylated sites 278 

are S/T residues, as shown in Figure 3. Kinases of some families, such as the focal adhesion kinase 279 

(FAK) and serine/threonine-protein kinase STE7 (STE7) families, can phosphorylate both S/T and Y 280 

residues. The Abelson kinase (Abl) family and tyrosine kinase (Tec) family clusters mainly 281 

correspond to Y sites. More sequence logos of these families and individual kinases are provided in 282 

Supplementary Table S2. 283 
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 284 

Figure 3  Sequence logos of site clusters of different kinase groups and family clusters  285 

Sequence logos of substrate site clusters phosphorylated by kinases from the CMGC group, AGC 286 

group, TK group, Other group, CAMK group, Atypical group, STE group, CK1 group, TKL group, 287 

and PKL group, are shown in the left two columns. Those phosphorylated by kinases of the PKA, 288 

PKC, PKD, CK2, CDK, MAPK, Tec, FAK, STE7, and Abl families are shown in the right two columns. 289 

 290 

Performance of KinasePhos 3.0 and comparison with other tools 291 

As there are a total of 771 prediction models, to conveniently present their overall performance, 292 

average values of accuracy, weighted F1 score, weighted precision, weighted recall, and ROC-AUC 293 

for models in each of the seven types of clusters (that is, groups, family_all, family_ST, family_Y, 294 

kinase_all, kinase_ST, and kinase_Y, as presented in Table 1) were calculated (Table 2). The 295 

performance of each model is shown in Supplementary Table S2. It is worth noting that the accuracy, 296 

weighted F1 score, weighted precision, weighted recall, and ROC-AUC were generally slightly 297 

higher with XGBoost than with SVM. Thus, the XGBoost algorithm was adopted for training our 298 

models to develop the website prediction function. 299 

 300 
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Table 2  Selected KinasePhos 3.0 performance comparisons with support vector machines (SVM) 301 
and eXtreme Gradient Boosting (XGBoost) algorithms 302 

Clusters Model 
types 

Accuracy Weighted 
F1 score 

Weighted 
precision 

Weighted 
recall 

AUC 

groups SVM 0.847 0.832 0.850 0.847 0.888 
XGBoost 0.856 0.849 0.852 0.856 0.891 

family_all SVM 0.873 0.833 0.827 0.873 0.828 
XGBoost 0.881 0.862 0.862 0.881 0.819 

family_ST SVM 0.873 0.836 0.831 0.873 0.839 
XGBoost 0.883 0.866 0.866 0.883 0.836 

family_Y SVM 0.832 0.791 0.803 0.832 0.826 
XGBoost 0.830 0.812 0.817 0.830 0.809 

kinase_all SVM 0.857 0.602 0.774 0.857 0.808 
XGBoost 0.873 0.851 0.845 0.873 0.807 

kinase_ST SVM 0.860 0.807 0.782 0.860 0.832 
XGBoost 0.881 0.863 0.860 0.881 0.830 

kinase_Y SVM 0.816 0.747 0.711 0.816 0.746 
XGBoost 0.809 0.776 0.763 0.809 0.716 

Note: The classification performance listed here are the average of measures for all models 303 
belonging to that cluster. 304 

 305 

To examine these models in more detail, the classification performance of the kinase group models 306 

and the numbers of positive and negative sites used to train them are presented in Table 3. 307 

Table 3  Table 3 Performance of kinase group eXtreme Gradient Boosting (XGBoost) models 308 
with 10-fold cross-validation 309 

Kinase 

groups 

No. of 
positive 

sites 

No. of 
negative 

sites 

Accuracy Weighted 
F1 score 

Weighted 
precision 

Weighted 
recall 

AUC 

CMGC 5737 1470 0.943 0.943 0.944 0.943 0.982 
AGC 4602 1632 0.901 0.901 0.901 0.901 0.958 
TK 2680 1688 0.808 0.807 0.808 0.808 0.884 

Other 2068 1523 0.79 0.79 0.792 0.79 0.875 
CAMK 1892 1920 0.852 0.852 0.854 0.852 0.928 
Atypical 1037 2004 0.886 0.88 0.888 0.886 0.935 

STE 625 1595 0.837 0.826 0.833 0.837 0.851 
CK1 508 1402 0.857 0.849 0.854 0.857 0.888 
TKL 360 1222 0.802 0.769 0.775 0.802 0.744 
PKL 204 1400 0.882 0.875 0.876 0.882 0.862 

 310 

The new KinasePhos 3.0 was compared with other predictive models, namely KinasePhos 1.0 [26], 311 

KinasePhos 2.0 [27], GPS 5.0 [23], ScanSite 4.0 [48], and Net-Phos3.1 [20], using four typical kinase 312 
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families (CDK, CK2, PKA, and MAPK), selected and compared using GPS 5.0. We found that 313 

KinasePhos 3.0 is competitive (Figure 4). ROC curves produced by 10-fold cross-validation of 314 

KinasePhos 3.0 are presented, with the sensitivity (Sn) and 1-Specificity (Sp) values for the other 315 

tools shown as dots with different colors in the plots. 316 

 317 

 318 

Figure 4  Performance comparisons between KinasePhos 3.0 and existing tools 319 

Existing tools include GPS 5.0 (blue, orange, and green dots), ScanSite 4.0 (purple, brown, pink, and 320 

grey dots), NetPhos 3.1 (olive dot), KinasePhos 1.0 (cyan, salmon, and teal dots), and KinasePhos 321 

2.0 (orchid dot). Models include those for the (A) CDK, (B) CK2, (C) PKA, and (D) MAPK families. 322 

When k-fold cross-validation was applied, an optimization investigation of k for cross-validation 323 

with k=4, 6, 8, and 10 was performed (Figure 5), which includes the CDK, CK2, PKD, and Tec 324 

families and compares the performance with ROC curves and AUC values. We found that the 325 

selection of k did not have a significant impact on performance; thus, the commonly used 10-fold 326 

cross-validation was adopted for presenting performance. 327 

Human Beclin-1 (UniProt ID: Q14457) has been used as a test protein in GPS 5.0 to predict kinase-328 

specific phosphorylation sites. For comparison, we used it to investigate the predictions made by 329 

KinasePhos 3.0. AGC family models were selected as representative models. GPS 5.0 predicted 38, 330 

49, and 56 phosphorylation sites with high, medium, and low thresholds, respectively, while 331 

KinasePhos 3.0 obtained 33 phosphorylation sites. It should be noted that all these 33 phosphorylation 332 

sites lie within the 56 phosphorylation sites predicted by GPS 5.0 with a low threshold. Of these 33 333 

phosphorylation sites, 30 belong to the 49 phosphorylation sites predicted by GPS 5.0, with a medium 334 

threshold, and 25 of these 33 phosphorylation sites fall among the 38 phosphorylation sites predicted 335 
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by GPS 5.0 with a high threshold. Therefore, the prediction results from KinasePhos 3.0 are 336 

reasonably consistent with GPS 5.0. 337 

 338 

Figure 5 Performance comparisons between KinasePhos 3.0 at different levels of cross-validation 339 

The results presented are from the (A) CDK, (B) CK2, (C) PKD, and (D) Tec family models, with 4-, 340 

6-, 8-, and 10-fold cross-validations. 341 

 342 

Results of feature interpretation with SHAP 343 

We used mitogen-activated protein kinase 1 (MAPK1, UniProt ID P28482), of Homo sapiens to test 344 

the Akt family prediction model. MAPK1 is a serine/threonine kinase that plays an essential role in 345 

the MAPK signal transduction pathway. Notably, residues 29, 185, 187, 190, 246, 248, and 284, in 346 

MAPK1 can be phosphorylated [29]. To further investigate the importance of feature groups to amino 347 

acid characteristics of these 15-mer sequences, iceLogo [49] 348 

(https://iomics.ugent.be/icelogoserver/create), which is a web-based service capable of visualizing 349 

conserved patterns in protein and nucleotide sequences with probability theory, was used to obtain 350 

sequence logos to compare the difference between positive and negative data belonging to the same 351 

clusters. 352 

Figure 6A and 6C represent the impact of feature groups on model output, while Figure 6B shows 353 

the iceLgo of the positive phosphorylation sites of the Akt family in contrast to the negative data. 354 
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Figure 6D shows a heat map of the mean absolute SHAP values to show the impact of the features 355 

on the model output magnitude. It can be observed that the third position (pos-3) and fifth position 356 

(pos-5) before the phosphorylated sites have a relatively significant negative impact on the model 357 

prediction results. The results computed from SHAP are consistent with the iceLogo sequence and 358 

also with the position weight values computed for the Akt family at positions -5 and -3 in GPS 5.0, 359 

which were 0.85 and 1.00, respectively [22]. 360 

 361 

Figure 6  Feature explained by SHAP values 362 

A. SHAP values showing the impacts of feature groups on model output. B. iceLogo of Akt family 363 
positive phosphorylation sites contrasted with its negative sites. C. Mean absolute SHAP values 364 
demonstrating the average impact of feature groups on model output magnitude. D. Heat map of 365 
mean absolute SHAP values. (A), (C) and (D) are derived from using mitogen-activated protein 366 
kinase 1 protein to test the Akt family prediction model. 367 

 368 

Web interface and downloadable prediction tool of the KinasePhos 3.0 369 

The KinasePhos3.0 prediction service can be accessed via a web interface and a standalone prediction 370 

tool, the usages of which are presented in this section. MAPK1 (UniProt ID: P28482) and human 371 

Beclin-1 (UniProt ID: Q14457) were selected to illustrate the prediction of kinase-specific 372 

phosphorylation sites. 373 

Web interface 374 

The core parts of the web interface allowing users to upload data, choose kinase models, and view 375 

predictions are presented in Figure S2A and S2B. The navigation bar “WEB SERVICES” (1 in Figure 376 

S2A) allows users to choose models of a specific type for the seven cluster types: group clusters 377 
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considering S/T and Y sites; family clusters considering S/T and Y sites, S/T sites, and Y sites; and 378 

kinase-specific clusters considering S/T and Y sites, S/T sites, and Y sites. After choosing the model 379 

type, users can upload their FASTA format sequence data by clicking the "Choose File" button (2 in 380 

Figure S2A). Alternatively, users can enter protein UniProt IDs in the box (2 in Figure S2A) separated 381 

by a semicolon. Users can then choose models by ticking checkboxes (3 in Figure S2A). It should be 382 

noted that these models are sub-clustered into ten kinase groups: "AGC,” "Atypical,” "CAMK,” 383 

"CK1,” "CMGC,” "Other,” "PKL,” "STE,” "TK" and "TKL,” so users can click a specific kinase 384 

group first and then check the models belonging to that group. Subsequently, the users can click the 385 

"START KINASEPHOS" button (4 in Figure S2A) to run the prediction, following which, the result 386 

page, shown in Figure S2B, will finally appear.  387 

As shown in section 1 of Figure S2B, users can download predictions in TXT format by clicking 388 

the download button. Section 2 summarizes the proteins uploaded or entered by users, along with the 389 

numbers of predicted phosphorylation sites for each protein and the models chosen by users. If a 390 

UniProt ID entered by users does not match any IDs in the UniProt database, it will be ignored. 391 

Section 3 lists the predicted sites. Similar to GPS 5.0, a column called “Source” is used to indicate 392 

whether the phosphorylation site has been experimentally verified (Exp.) or merely predicted (Pred.). 393 

To view the details for a specific protein, users can click the UniProt ID in column “Input ID” of 394 

section 2, and the page shown in Figure 7 will appear. 395 

Section 2 in Figure 7A lists the predicted sites for a particular protein (P28482 was clicked in this 396 

example). When users mouse over the rows of this table, the window shown by Figure 7B will be 397 

displayed on the right-hand side, showing the impact of feature groups on model output, (Figure 6A 398 

and C), and the sequence logo of the corresponding model. The distribution of S/T/Y phosphorylation 399 

sites and the distribution of the models are presented in the pie charts in Section 3. To provide a more 400 

intuitive view of the predicted phosphorylation sites, Section 4 displays predicted sites in a figure 401 

with probabilities, with S, T, and Y sites labeled in different colors. If users want to switch to 402 

predictions for another protein, they can click the protein’s ID in Section 2. 403 
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 404 

Figure 7  The web interface showing the results related to a specific protein 405 

A. Detailed predictions for a specific protein, with predicted phosphorylation sites listed and depicted. 406 

B. Shapley additive explanations (SHAP) showing the impacts of feature groups on model output and 407 

sequence logo of the corresponding model. 408 

 409 

Downloadable prediction tool 410 

Considering the availability of large-scale phosphoproteomic data, a downloadable prediction tool 411 

(as shown in Figure S3) to predict all S/T and Y phosphorylation sites at kinase group, kinase family, 412 

and individual kinase levels is also provided at https://awi.cuhk.edu.cn/KinasePhos/download.html 413 

and https://github.com/tom-209/KinasePhos-3.0-executable-file. After downloading and starting 414 

KinasePhos3.exe, the "Browse" button is used to upload the data file, which should be a text file in 415 

FASTA format, as shown in the "Example Input.txt" file that is downloaded along with the tool. Users 416 

can then choose prediction models to test their data using checkboxes. If the "Kinase groups" are 417 

checked, all models at the group level will be executed. In addition, users can also choose group 418 

models separately by ticking the "AGC,” "Atypical,” "CAMK,” "CK1,” "CMGC,” "Other,” "PKL,” 419 

"STE,” "TK" or "TKL" checkboxes based on their requirements. Similarly, users can test their data 420 

using all models at the family and individual kinase levels by checking the "Kinase families" and the 421 

"Kinases" checkboxes, respectively. Additionally, users can choose specific family model or kinase 422 

model by clicking the corresponding checkboxes. It should be noted that these models at the kinase 423 

family level and individual kinase level are grouped into ten scroll areas corresponding to the ten 424 
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kinase groups, while the models at the individual kinase level are further classified into human and 425 

other organisms for the convenience of testing data from humans and other species. With the models 426 

checked, users then click "Run and save" to run the prediction tool and save prediction results. It will 427 

take some time if users select many models and submit large-scale data before it produces a window 428 

that allows users to specify a location to save results as a CSV file. This downloadable prediction tool 429 

is recommended for users who want to test large-scale data using our predictive models. 430 

Discussion 431 

Although advances in mass spectrometry and enrichment methods have led to a massive increase in 432 

high-throughput phosphoproteomic data, it is still difficult to determine the number of 433 

phosphorylation sites that can exist in a eukaryotic proteome [50] Vlastaridis et al. (2017) estimated 434 

that there are 230,000, 156,000, and 40,000 phosphorylation sites in human, mouse, and yeast, 435 

respectively [50]. However, as noted above, we only identified 41,421 experimentally verified, 436 

kinase-specific phosphorylation sites from 135 organisms, even with data that are already more 437 

comprehensive than those included in previous tools. The numbers of experimentally verified, kinase-438 

specific phosphorylation sites in human, mouse, and yeast identified in this study were 19,123, 4,618, 439 

and 332, respectively. Therefore, for most phosphorylation sites, the kinases that phosphorylate them 440 

are yet to be identified. Computational methods are viable solutions for kinase-specific 441 

phosphorylation prediction, as empirical methods are more time-consuming and expensive. Kinase-442 

specific phosphorylation sites in the kinase family and individual kinase levels are divided into S/T 443 

and Y, S/T, and Y site clusters, a total of 771 clusters, with a prediction model created for each. 444 

The performance of KinasePhos 3.0 is competitive with other existing kinase-specific 445 

phosphorylation site prediction tools, such as GPS 5.0 and Scansite 4.0. It should be highlighted that 446 

the kinase-specific phosphorylation sites employed to develop KinasePhos 3.0 are more 447 

comprehensive than those employed with the existing tools, which is illustrated by the numbers of 448 

sites presented. In addition to collecting data from other existing tools, we text-mined experimentally 449 

verified kinase-specific phosphorylation sites from the UniProt database. Sample size is one of the 450 

most important parameters influencing model performance when developing machine learning-based 451 

classification models. We only used clusters with at least 15 experimentally verified phosphorylation 452 

sites when building models. This ensured that our sample size was comparable to those of some tools. 453 

For example, KinasePhos 2.0 used clusters with at least ten experimentally verified phosphorylation 454 

sites. In GPS 5.0, clusters with no less than three sites were considered, with 10-fold cross-validation 455 

and leave-one-out validation methods tested separately to evaluate the predictors' performance with 456 

245 kinase categories with no less than 30 sites and 372 kinase categories with 3 to 30 sites, 457 

respectively. 458 
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KinasePhos 3.0 also offers SHAP feature importance when performing prediction tasks. Since 459 

features were grouped based on their positions in the peptides containing 15 amino acids, that is, 460 

features related to a specific position were regarded as a feature group, feature group importance 461 

provides a more intuitive understanding of the implications of the surrounding residues on the 462 

phosphorylation of each peptide. The importance of the SHAP feature group is consistent with the 463 

sequence logo characteristics obtained from iceLogo, as illustrated above. The feature group 464 

importance is also consistent with the position weight computed using GPS. Instead of simply 465 

providing a prediction of whether a given residue can be phosphorylated by a specific kinase group, 466 

kinase family, or kinase, the inclusion of feature interpretation in the prediction models provides more 467 

insights into the potential roles of surrounding residues in phosphorylation. 468 

Our study has several limitations. First, although we have collected a more comprehensive, 469 

experimentally verified kinase-specific phosphorylation site database than those used in other studies 470 

in this field, small numbers of these sites cannot be used to develop predictive models at the family 471 

or individual kinase level, as the number of sites is less than 15, below the threshold for creating a 472 

model, owing to data availability. However, these sites are included in the supplementary material for 473 

readers who might be interested in them. Second, the transfer learning technique adopted by Deznabi 474 

I et al. [51] might be employed to predict phosphorylation sites for kinases with less than 15 known 475 

phosphorylation sites. Moreover, considering protein-protein interactions and structural 476 

characteristics of proteins might improve predictions for kinases with few known phosphorylation 477 

sites. Third, we did not investigate deep learning methods, some of which have been described in the 478 

literature, such as DeepPhos [52] and MusiteDeep [53], and have demonstrated effectiveness in 479 

predicting kinase-specific phosphorylation sites. Leveraging the power of deep learning, along with 480 

more features, will be a good strategy to explore in the future to further increase the prediction 481 

performance. Fourth, our models do not distinguish among organisms, although the majority of 482 

phosphorylation sites are from humans, mice, and rats. Tools that can separate species may better 483 

satisfy some users’ requirements. 484 

Conclusion 485 

In conclusion, our updated KinasePhos 3.0 represents a significant improvement over versions 1.0 486 

and 2.0. Notably, more comprehensive experimentally verified kinase-specific phosphorylation site 487 

data have been collected, and prediction models have been increased, with the potential to meet more 488 

specific requirements of the users. The prediction performance of this version is competitive with that 489 

of other existing tools, such as GPS 5.0. Importantly, we provide users with both web-based and 490 

downloadable tools, making it more user-friendly. In the future, KinasePhos 3.0 will be valuable for 491 

predicting unknown sites, judging if these sites can be phosphorylated by a specific kinase group, 492 
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kinase family, or kinase, based on user requirements. These predictions will aid in empirical kinase 493 

and substrate characterization, reducing costs and saving time.  494 

 495 
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Supplementary material 

Figure S1  The evolutionary tree for all the collected kinases 

A. The obtained evolutionary tree showed that homologous proteins or proteins with 

consistent domains clustered tightly in smaller branches. B. The kinome tree composed  

of several major groups. C. Analysis of the kinases of each group separately showed that 

the kinases in the same group contained similar domains. 

Figure S2  The web interface of KinasePhos 3.0 

A. The web interface for users to select model types, upload or enter their data and choose 

prediction models.  B. The overview of predicted results. 

Figure S3  The downloadable prediction tool 

This is the standalone prediction tool of the KinasePhos3.0, which can predict S/T and Y 

phosphorylation sites at kinase group, kinase family, and in individual kinase levels. 

 

Table S1  The experimentally identified kinase-specific phosphorylation sites used in 

KinasePhos3.0 

 

Table S2  The performance of the 771 models 
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