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24  Abstract

25  The purpose of this work is to enhance KinasePhos, a machine-learning-based kinase-specific
26 phosphorylation site prediction tool. Experimentally verified kinase-specific phosphorylation data
27  were collected from PhosphoSitePlus, UniProt, GPS 5.0, and Phospho.ELM. In total, 41,421
28  experimentally verified kinase-specific phosphorylation sites were identified. A total of 1380 unique
29  kinases were identified, including 753 with existing classification information from KinBase and the
30 remaining 627 annotated by building a phylogenetic tree. Based on this kinase classification, a total
31  of 771 predictive models were built at the individual, family, and group levels, using at least 15
32 experimentally verified substrate sites in positive training datasets. The improved models were
33  observed to be more effective than other prediction tools. For example, the prediction of sites
34  phosphorylated by the Akt, CKT, and PKA families had accuracies of 94.5%, 92.5%, and 90.0%,
35 respectively. The average prediction accuracy for all 771 models was 87.2%. For enhancing
36  interpretability, the Shapley additive explanations (SHAP) method was employed to assess feature
37 importance. The web interface of KinasePhos 3.0 has been redesigned with the goal of providing
38 comprehensive annotations of kinase-specific phosphorylation sites on multiple proteins.
39  Additionally, considering the large scale of phosphoproteomic data, a downloadable prediction tool

40  is available at https://awi.cuhk.edu.cn/KinasePhos/index.html or

41 https://github.com/tom-209/KinasePhos-3.0-executable-file.
42
43  Keywords

44  Kinase-specific phosphorylation; phosphorylation site prediction; phosphorylation; SHAP feature

45  importance
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Introduction

Protein phosphorylation is an important eukaryotic post-translational modification [1]. It involves the
transfer of a phosphate group from ATP to specific amino-acid residues in the substrate.
Phosphorylation is catalyzed by a number of protein kinases, which regulate a variety of signaling
pathways and biological functions important in DNA repair, transcriptional regulation, apoptosis,
immune response, signaling, metabolism, proliferation, and differentiation [2—7]. Dysregulation of
intracellular phosphorylation networks contributes to the occurrence and development of multiple
multifactorial diseases, including cancer, cardiovascular disease, obesity, and others [8—10].
Therefore, regulating phosphorylation networks by mediating kinase activity has become an attractive
therapeutic strategy [11] with kinases being one of the most important drug targets [12,13]. Thus,
linking dysregulated phosphorylation sites to candidate kinase targets is critical, both for the study of

disease mechanisms and the development of therapeutic kinase inhibitors [14,15].

The number of experimentally detected phosphorylated sites has increased dramatically in recent
years because of advances in mass spectrometry and new enrichment methods for phosphorylated
proteins and peptides [16]. For example, deep phosphoproteome analysis of Schistosoma mansoni
detected 15,844 unique phosphopeptides mapping to 3,176 proteins [17]. Phosphoproteomics can
provide important information about protein phosphorylation sites, but the responsible kinases cannot
be directly derived from such data. In fact, the kinases for a vast majority of phosphorylation sites are
still unknown due to a lack of adequate evidence [18]. To address this problem, many tools have been
developed to predict kinase-specific phosphorylation sites in proteins. For example, PhosphoPredict
was developed to predict kinase-specific substrates and their associated phosphorylation sites for 12
human kinases and their families by combining protein sequences and functional features [19]. Neural
networks were applied by NetPhos 3.1 to predict phosphorylation sites in eukaryotic proteins for 17
kinases [20]. Quokka was introduced to predict kinase family-specific phosphorylation sites at the
proteomic scale in a high-throughput and cost-effective manner [21]. Musite provided a unique
method that trained models with a bootstrap aggregating procedure, as well as integrated sequence
cluster information around phosphorylation sites, protein-disorder scores, and amino-acid frequencies
to predict general and kinase-specific phosphorylation sites [22]. The Group-Based Prediction System
(GPS) 5.0 tool employed two novel methods, position-weight determination (PWD) and scoring-
matrix optimization (SMO), to replace the motif-length selection (MLS) method for refining the
prediction of kinase-specific phosphorylation sites [23]. In addition, the conditional random field
(CRF) model (CRPhos) [24] and support vector machines (PredPhospho) have been employed to
predict the phosphorylation sites [25]. These tools have made outstanding progress in protein

phosphorylation studies.
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81 In 2005, our group developed KinasePhos 1.0 to identify protein kinase-specific phosphorylation
82  sites [26]. This tool constructed models from kinase-specific groups of phosphorylation sites based
83  on the profile hidden Markov model (HMM). Subsequently, support vector machines (SVM) with the
84  protein-sequence profiles and protein-coupling patterns were applied to update the tool to version 2.0
85  [27]. The datasets available for training are constantly expanding owing to the rapid development of
86  phosphorylation-related research. Therefore, in this study, we introduce KinasePhos 3.0, with
87  improved kinase-specific phosphorylation site prediction. We collected experimental identifications
88  of kinase-specific phosphorylation sites from the PhosphoSitePlus [28], UniProt [29], GPS 5.0 [23],
89 and Phospho.ELM [30] databases. Redundant data were removed after translating the kinase and
90 substrate names into unique UniProt IDs. Finally, 41,421 empirically determined, kinase-specific
91 phosphorylation sites were obtained for use as the training data set, which was a great improvement
92  from the training of version 2.0, which involved 16,543 kinase-specific phosphorylation sites. We
93  also assigned kinases to groups, families, or subfamilies according to sequence similarity and the
94  classification method of KinBase [31]. Then, according to these classifications, we used both SVM
95 and eXtreme Gradient Boosting (XGBoost) algorithms to construct 771 prediction models at the
96 kinase group, kinase family, and individual kinase levels, in contrast to 60 predictive models at the
97 individual kinase level in version 2.0. Using these models, specific phosphorylation sites for ten
98 groups, 81 families, and 302 kinases were identified. We also plotted the Shapley additive
99  explanations (SHAP) values of feature groups for each prediction result, which makes the tool more
100 interpretable than version 2.0, as well as other tools in this field. Using SHAP values, users can
101  subdivide the prediction to show the impact of each feature group—that is, features related to specific
102 residues in this study—on the results. Additionally, a standalone version of KinasePhos 3.0, was
103  developed, making it more convenient for users with larger phosphoproteomic datasets than

104  KinasePhos 2.0.

105
106 Method

107  Schematic of the proposed KinasePhos 3.0

108  Figure 1 depicts a schematic of this study that includes kinase-specific phosphorylation site data
109  collection, kinase group and family classifications, feature extractions, machine learning-based
110  kinase-specific phosphorylation site prediction model development, and presentation of results. The

111 novelties of this study are:

112 1. To our knowledge, the experimentally verified kinase-specific phosphorylation-site data used
113 in this study are, to date, the most comprehensive compared to all existing kinase-specific
114 phosphorylation site prediction tools, such as GPS 5.0 and Kinasephos 2.0.

4
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115 2. We obtained 771 prediction models, with at least 15 kinase-specific phosphorylation sites
116 considered in each. Thus, the minimum number of positive sites for a single model was greater
117 than that of some other tools. For example, GPS 5.0 includes prediction models for clusters with
118 no less than three positive sites.

119 3. To increase the feature interpretability of these prediction models, SHAP was integrated into
120 KinasePhos 3.0.

121
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123 Figure 1 Schematic of KinasePhos 3.0 development
124 The procedures include data collection, processing, modeling, and website functions development.

125
126 Kinase-substrate data collection

127  The experimentally verified kinase-specific phosphorylation sites used in this study were collected
128  from four phosphorylation-associated resources: GPS 5.0 [23], Phospho.ELM [30], PhosphoSitePlus
129  [28], and UniProt [29]. Although GPS 5.0, Phospho.ELM and PhosphoSitePlus provided
130  downloadable, experimentally verified, and kinase-specific phosphorylation sites, their data is not
131 frequently updated to reflect the increase in experimentally verified phosphorylated sites. In contrast,
132 UniProt has a standard 8-week release cycle [29]. Therefore, we additionally curated experimentally
133 verified, kinase-specific phosphorylation sites from UniProt with the aim of assembling the most
134  comprehensive database. As depicted in Figure 1, 23,196, 3,012, 20,811, and 6,914 experimentally
135  verified kinase-specific phosphorylation sites were retrieved from GPS 5.0, Phospho.ELM,

136 PhosphoSitePlus, and UniProt, respectively. After eliminating redundancies, 41,421 sites remained,
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137  of which, the kinases for 28,369 had UniProt IDs. In contrast, the kinases for the remaining 13,052
138  sites lack UniProt IDs, primarily because only their kinase family types, instead of kinase names, are

139  provided.

140 We converted all the kinase names in our substrate dataset into UniProt entry names. Then, we
141  used the classification annotations of kinomes and their sequence information from KinBase as the
142  annotated dataset [31]. By searching the UniProt database, gene names were converted to UniProt
143 IDs. The collected and annotated human kinome datasets were merged and converted to FASTA
144  format. Multiple sequence alignments were performed using the MAFFT program [32]. FastTree was
145  then employed to infer kinetic-maximal-likelihood phylogenetic trees from the kinase sequence
146  alignments [33]. We assumed that homologous proteins have consistent domains represented by
147  closer distances in the phylogenetic tree. Therefore, based on the classification data from KinBase
148 and the generated tree, kinases could be annotated to different clusters at the group, family, and
149  subfamily levels [34]. In addition, we obtained kinase domain data from the PFAM and SMART
150 databases to confirm the results of our classification annotation [35, 36]. TreeGraph 2 and the

151  Interactive Tree Of Life (iTOL) were used to visualize the annotations [34, 37].
152
153  Model development

154  The classical BLOSUMG62 substitute matrix has been widely employed to encode sequence data [23,
155 27,38, 39] and was used in this study. For GPS 5.0, the support vector machine (SVM) showed higher
156  performance in kinase-specific phosphorylation site predictive models compared to the random forest
157 (RF) and k-nearest neighbor (KNN) [23] methods. Additionally, eXtreme Gradient Boosting
158  (XGBoost) [40], an efficient implementation of gradient boosted decision trees, is suitable for web
159  server applications for a faster response owing to its model performance and execution speed.
160  Therefore, SVM and XGBoost were used to train the prediction models. The development, testing,

161  and validation of these algorithms were implemented using Python 3.8.

162 The performance of the kinase-specific, phosphorylation-site prediction models was assessed via
163  classification accuracy and two other metrics, precision and recall, as indicators of reliability. The
164  F1 _score, a more comprehensive quantifier of model reliability and the area under the receiver
165  operating characteristic (ROC) curve (AUC) were also computed. These performance measures are

166  defined as:

TP+TN

167 accuracy = ——— (1)
TP+FP+FN+TN
TP
168 recall = 2)
TP+F
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169 . TP \
recision = ———
P prrp O
170 F1_score = ZXpTefi:?iOnxrecall @)
pTeClSlOTl+T

171 where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives,
172 respectively. Weighted accuracy, weighted recall, weighted precision, and weighted F1_score are the
173 weighted mean of accuracy, recall, precision, and F1_score with weights equal to the class probability,

174  respectively.
175
176  Feature interpretation with SHAP

177  Because explainable machine learning offers the potential to provide more insights into model
178  behavior, the interpretability of machine-learning models has received significant attention, along
179  with the popularity of machine-learning algorithms. Several feature-importance methods have been
180  developed, including permutation feature importance, which is based on the decrease in model
181  performance and SHAP values [41], which are based on the magnitudes of feature attributions. To
182  increase the interpretability of our prediction models, SHAP was employed to integrate feature
183  importance. SHAP is a game-theory approach and a local explanation to depict the feature’s
184  importance. It has been adopted in some studies [42—44] to interpret machine-learning models. The

185  explanation model can be illustrated by the following equation [41]:

M
186 g(z'") =0, + z ®;z; (5)
i=1

187  where z' € {0, 1}, with 0 and 1 indicating the absence and presence of a feature, respectively. M
188  represents the number of simplified input features. The Shapley value @;, namely the contribution of

189  feature i, is calculated as:

|z"|\(m—|z"]-1)!
Nz MElz 71

190 0 = Syew L LG - £E\DT(6)

191  where |z']| is the number of non-zeros in z’, z'\i means z" without feature i, f, is the output of the

192  model, and x’ represents simplified inputs.

193 The SHAP typically evaluates each feature individually; however, in some cases, quantifying the
194  effect of a group of features may be more informative. As mentioned above, the data are 15-mer
195  sequences. In the feature extraction process, the residue at each position was encoded by a 20-
196  dimensional BLOSUM log-odds vector [45]. After being encoded by the BLOSUMG62 substitution

197  matrix, the sequences were converted into 300-dimensional (15 x 20) vectors, with each element in a
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198  vector representing a feature. Because the amino-acid residue at each position was encoded by a 20-
199  dimensional vector, representing 20 features, these features were clustered as a feature group when
200 performing SHAP analysis, representing a group of features related to specific residues. As a result,

201 15 feature groups were obtained, corresponding to each position of a 15-mer sequence.

202

203 Results

204  Classifying kinases at group and family levels

205 In total, we obtained 1,380 unique kinases from the kinase-substrate dataset. Of these, 753 were
206 included in the KinBase database, which includes classification information. In contrast, the
207  remaining kinases needed to be annotated by other classification methods. Merging these kinases with
208  the annotated dataset of the human kinome and classifying them by building an evolutionary
209  phylogenetic tree (Figure S1) showed that proteins that are homologous or with consistent domains
210  clustered tightly in smaller branches (Figure 2A), such as STKI/0 BOVIN, STK10 HUAMN,
211 STKI10 MOUSE, and STK10 RAT. Since STK10 HUAMN belongs to the SLK subfamily of the
212 STE20 family of the STE group, we inferred that the other three kinases also belong to that subfamily.
213 Different subfamilies of kinases can form different clusters. For example, for TAO DROME,
214  TAOK3 HUMAN, TAOK2 HUAMN, TAOK2 MOUSE, TAOKI HUAMN, TAOKI RAT, and
215  TAOKI MOUSE, although they also belong to the STE20 family of the STE group, the difference in
216  the domain amino acid sequence from the SLK subfamily placed them on another branch belonging
217 to the TAO subfamily. Based on this process, we annotated the collected kinases to groups, families,
218  and subfamilies. Figure 2B shows a kinome tree for several major groups. Analysis of each group
219  separately showed that kinases in the same group contained similar domains (Figure 2C). This

220 indicated that our annotation of the collected kinases was reliable.
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222 Figure 2 Kinase classification
223 A. Phylogenetic tree of the kinases of the SLK and TAO subfamilies in the STE20 family of the STE

224 group. B. Kinome tree composed of several major groups. C. Domain annotation of TK group kinases.

225
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226 Finally, these kinases were classified into 12 kinase groups and 116 kinase families. When we
227  developed our predictive models, only groups or family clusters with at least 15 experimental
228  phosphorylation sites were considered. As a result, ten groups and 81 families were retained. As
229  serine/threonine (S/T) and tyrosine (Y) kinases modify different residues, we developed prediction
230  models for both types separately in family clusters. Similarly, only group or family clusters with at
231 least 15 related sites were considered. Since most substrate residues in the TK group were Y, while
232 most substrate residues in the other nine groups were S/T, they were not separately considered when
233 creating group prediction models. Moreover, we developed prediction models at the individual kinase
234 level for clusters with more than 15 phosphorylation sites, with 11 types of organisms retained. While
235  the majority are human, mice, and rat, others include mouse-ear cress (arath), bovine, chicken, pig,
236  sumatran orangutan (ponab), fission yeast (schpo), African clawed frog (xenla), and yeast. Again,
237  phosphoserine/phosphothreonine and phosphotyrosine sites were considered separately if their
238  number in substrates of a particular kinase was no less than 15. In practice, 15-residue sequences (-7
239 to +7) surrounding kinase-specific phosphorylation sites were extracted as positive data. After
240  removing redundant sites within each cluster, numbers of clusters and the number ranges for the
241  positive data in each are summarized in Table 1. We obtained ten models for the ten group clusters;
242 81, 61, and 20 models were built for family clusters considering S/T and Y sites, S/T sites, and Y
243 sites, respectively; 302, 243, and 54 models were developed for kinase-specific clusters considering
244  S/T and Y sites, S/T sites, and Y sites, respectively. A total of 771 prediction models were created.
245  In the group clusters, the numbers of positive sites ranged from 204 to 5,737. In the family clusters,
246  the numbers ranged from 15 to 2,050, and the numbers of kinase clusters ranged from 15 to 930.
247  Although clusters with positive sites less than 15 were not considered when developing models, the
248  data for these clusters are included in supplementary files (Table S1) for those who might be interested
249  in them.

250 Table 1 Summary of numbers of prediction models and ranges of positive sites for predictive
251  models

Clusters Model number Number range of positive data
group 10 204 - 5737
family_all 81 15 -2050
family ST 61 15 - 2046
family Y 20 18- 1310
kinase all 302 15-930
kinase ST 243 15-929
kinase Y 54 15 - 652
252 Note: all indicates the S/T and Y sites, ST means S/T sites, and Y refers to Y sites.

10
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253 In each cluster, all the same types of residues in the phosphorylated substrate proteins, except those
254  known to be positive phosphorylation sites, were regarded as negative data. For example, in family
255  clusters considering all phosphorylated residues (model type family_all listed in Table 1), all S/T and
256 Y sites in all substrate proteins in a cluster were obtained. After eliminating the positive data (i.e.,
257  experimentally verified phosphorylation sites), the remaining sites were taken as the negative data of
258 that cluster. Similarly, in family clusters considering S/T residues (model type family ST in Table 1),
259  the negative data are all S and T sites except those sites in the positive data for that cluster. CD-HIT
260  [46] has been widely used to reduce sequence similarity in the literature [19, 47]. Because the number
261  of negative sites obtained via this method is much greater than the number of positive sites, for
262  balance we first used the CD-HIT-2D [46] to reduce the similarity of negative data to positive data
263  with a similarity threshold of 0.4, the minimum threshold in the CD-HIT-2D suite. Furthermore, CD-
264  HIT [46] was employed to further reduce the similarity between the negative data in each cluster.
265  After experimentally applying different threshold values, we found that the number of negative sites
266 is sometimes much greater than the number of positive sites, even though the minimum threshold of
267 0.4 in the CD-HIT suite was adopted. Suppose the number of negative sites is more than five times
268  greater than the number of positive sites after applying CD-HIT-2D and CD-HIT. In this case, we
269  applied the random undersampling technique from the imbalanced-learn library in Python to keep the
270  number difference within five-fold to reduce the imbalance between positive and negative data when

271 developing the predictive models.

272 To investigate the characteristics of amino-acid composition in the aforementioned positive 15-
273 mer sequences and provide a graphical representation, we obtained sequence logos of positive
274  sequence clusters for all models using the WebLogo tool (https://weblogo.berkeley.edu/). Some
275  representative logos are shown in Figure 3, which correspond to the ten groups (left two columns)
276  and to some representative families (right two columns). In the common kinase family protein kinase
277 A (PKA), protein kinase C (PKC), protein kinase D (PKD), casein kinase 2 (CK2), cyclin-dependent
278  kinase (CDK), and mitogen-activated protein kinase (MAPK), the majority of phosphorylated sites
279  are S/T residues, as shown in Figure 3. Kinases of some families, such as the focal adhesion kinase
280 (FAK) and serine/threonine-protein kinase STE7 (STE7) families, can phosphorylate both S/T and Y
281  residues. The Abelson kinase (Abl) family and tyrosine kinase (Tec) family clusters mainly
282  correspond to Y sites. More sequence logos of these families and individual kinases are provided in

283  Supplementary Table S2.
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4+ CMGC 44 Atypical + AGC/PKA + CMGC/MAPK

284

285  Figure 3 Sequence logos of site clusters of different kinase groups and family clusters

286  Sequence logos of substrate site clusters phosphorylated by kinases from the CMGC group, AGC
287  group, TK group, Other group, CAMK group, Atypical group, STE group, CKI group, TKL group,
288  and PKL group, are shown in the left two columns. Those phosphorylated by kinases of the PKA,
289  PKC, PKD, CK2, CDK, MAPK, Tec, FAK, STE7, and Abl families are shown in the right two columns.

290
291  Performance of KinasePhos 3.0 and comparison with other tools

292  As there are a total of 771 prediction models, to conveniently present their overall performance,
293  average values of accuracy, weighted F1 score, weighted precision, weighted recall, and ROC-AUC
294  for models in each of the seven types of clusters (that is, groups, family all, family ST, family Y,
295  kinase all, kinase ST, and kinase Y, as presented in Table 1) were calculated (Table 2). The
296  performance of each model is shown in Supplementary Table S2. It is worth noting that the accuracy,
297  weighted F1 score, weighted precision, weighted recall, and ROC-AUC were generally slightly
298  higher with XGBoost than with SVM. Thus, the XGBoost algorithm was adopted for training our

299  models to develop the website prediction function.

300
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301 Table 2 Selected KinasePhos 3.0 performance comparisons with support vector machines (SVM)
302 and eXtreme Gradient Boosting (XGBoost) algorithms

Clusters Model Accuracy Weighted Weighted Weighted AUC

types F1 score precision recall
groups SVM 0.847 0.832 0.850 0.847 0.888
XGBoost  0.856 0.849 0.852 0.856 0.891
family all  SVYM 0.873 0.833 0.827 0.873 0.828
XGBoost  0.881 0.862 0.862 0.881 0.819
family ST SVM 0.873 0.836 0.831 0.873 0.839
XGBoost  0.883 0.866 0.866 0.883 0.836
family Y  SVM 0.832 0.791 0.803 0.832 0.826
XGBoost  0.830 0.812 0.817 0.830 0.809
kinase all ~ SVM 0.857 0.602 0.774 0.857 0.808
XGBoost  0.873 0.851 0.845 0.873 0.807
kinase ST  SVYM 0.860 0.807 0.782 0.860 0.832
XGBoost  0.881 0.863 0.860 0.881 0.830
kinase Y SVM 0.816 0.747 0.711 0.816 0.746
XGBoost  0.809 0.776 0.763 0.809 0.716

303  Note: The classification performance listed here are the average of measures for all models
304  belonging to that cluster.

305

306 To examine these models in more detail, the classification performance of the kinase group models

307 and the numbers of positive and negative sites used to train them are presented in Table 3.

308 Table 3 Table 3 Performance of kinase group eXtreme Gradient Boosting (XGBoost) models
309 with 10-fold cross-validation
Kinase No. of No.of Accuracy Weighted Weighted Weighted AUC
positive negative F1 score precision recall
groups sites sites
CMGC 5737 1470 0.943 0.943 0.944 0.943 0.982
AGC 4602 1632 0.901 0.901 0.901 0.901 0.958
TK 2680 1688 0.808 0.807 0.808 0.808 0.884
Other 2068 1523 0.79 0.79 0.792 0.79 0.875
CAMK 1892 1920 0.852 0.852 0.854 0.852 0.928
Atypical 1037 2004 0.886 0.88 0.888 0.886 0.935
STE 625 1595 0.837 0.826 0.833 0.837 0.851
CK1 508 1402 0.857 0.849 0.854 0.857 0.888
TKL 360 1222 0.802 0.769 0.775 0.802 0.744
PKL 204 1400 0.882 0.875 0.876 0.882 0.862
310
311 The new KinasePhos 3.0 was compared with other predictive models, namely KinasePhos 1.0 [26],

312 KinasePhos 2.0 [27], GPS 5.0 [23], ScanSite 4.0 [48], and Net-Phos3.1 [20], using four typical kinase
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313  families (CDK, CK2, PKA, and MAPK), selected and compared using GPS 5.0. We found that
314  KinasePhos 3.0 is competitive (Figure 4). ROC curves produced by 10-fold cross-validation of
315  KinasePhos 3.0 are presented, with the sensitivity (Sn) and 1-Specificity (Sp) values for the other

316  tools shown as dots with different colors in the plots.

10 ) — 10-fold (AUC = 0.98 = 0.01) 1.0 = —— 10-fold (AUC = 0.97 =+ 0.01)
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319  Figure 4 Performance comparisons between KinasePhos 3.0 and existing tools

320  Existing tools include GPS 5.0 (blue, orange, and green dots), ScanSite 4.0 (purple, brown, pink, and
321 grey dots), NetPhos 3.1 (olive dot), KinasePhos 1.0 (cyan, salmon, and teal dots), and KinasePhos
322 2.0 (orchid dot). Models include those for the (A) CDK, (B) CK2, (C) PKA, and (D) MAPK families.

323 When k-fold cross-validation was applied, an optimization investigation of k for cross-validation
324  with k=4, 6, 8, and 10 was performed (Figure 5), which includes the CDK, CK2, PKD, and Tec
325  families and compares the performance with ROC curves and AUC values. We found that the
326  selection of k did not have a significant impact on performance; thus, the commonly used 10-fold

327  cross-validation was adopted for presenting performance.

328 Human Beclin-1 (UniProt ID: Q14457) has been used as a test protein in GPS 5.0 to predict kinase-
329  specific phosphorylation sites. For comparison, we used it to investigate the predictions made by
330 KinasePhos 3.0. AGC family models were selected as representative models. GPS 5.0 predicted 38,
331 49, and 56 phosphorylation sites with high, medium, and low thresholds, respectively, while
332 KinasePhos 3.0 obtained 33 phosphorylation sites. It should be noted that all these 33 phosphorylation
333  sites lie within the 56 phosphorylation sites predicted by GPS 5.0 with a low threshold. Of these 33
334  phosphorylation sites, 30 belong to the 49 phosphorylation sites predicted by GPS 5.0, with a medium
335 threshold, and 25 of these 33 phosphorylation sites fall among the 38 phosphorylation sites predicted
14
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336 by GPS 5.0 with a high threshold. Therefore, the prediction results from KinasePhos 3.0 are
337  reasonably consistent with GPS 5.0.
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339  Figure 5 Performance comparisons between KinasePhos 3.0 at different levels of cross-validation
340  The results presented are from the (A) CDK, (B) CK2, (C) PKD, and (D) Tec family models, with 4-,
341 6-, 8-, and 10-fold cross-validations.
342
343  Results of feature interpretation with SHAP
344  We used mitogen-activated protein kinase 1 (MAPK1, UniProt ID P28482), of Homo sapiens to test
345  the Akt family prediction model. MAPK1 is a serine/threonine kinase that plays an essential role in
346  the MAPK signal transduction pathway. Notably, residues 29, 185, 187, 190, 246, 248, and 284, in
347  MAPKI can be phosphorylated [29]. To further investigate the importance of feature groups to amino
348 acid characteristics of these 15-mer sequences, iceLogo [49]
349  (https://iomics.ugent.be/icelogoserver/create), which is a web-based service capable of visualizing
350 conserved patterns in protein and nucleotide sequences with probability theory, was used to obtain
351  sequence logos to compare the difference between positive and negative data belonging to the same
352 clusters.
353 Figure 6A and 6C represent the impact of feature groups on model output, while Figure 6B shows
354  the iceLgo of the positive phosphorylation sites of the Akt family in contrast to the negative data.
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355  Figure 6D shows a heat map of the mean absolute SHAP values to show the impact of the features
356  on the model output magnitude. It can be observed that the third position (pos-3) and fifth position
357  (pos-5) before the phosphorylated sites have a relatively significant negative impact on the model
358  prediction results. The results computed from SHAP are consistent with the iceLogo sequence and
359  also with the position weight values computed for the Akt family at positions -5 and -3 in GPS 5.0,
360  which were 0.85 and 1.00, respectively [22].
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361

362  Figure 6 Feature explained by SHAP values

363  A. SHAP values showing the impacts of feature groups on model output. B. iceLogo of Akt family
364  positive phosphorylation sites contrasted with its negative sites. C. Mean absolute SHAP values
365  demonstrating the average impact of feature groups on model output magnitude. D. Heat map of
366  mean absolute SHAP values. (A), (C) and (D) are derived from using mitogen-activated protein
367  kinase I protein to test the Akt family prediction model.

368

369 Web interface and downloadable prediction tool of the KinasePhos 3.0

370  The KinasePhos3.0 prediction service can be accessed via a web interface and a standalone prediction
371  tool, the usages of which are presented in this section. MAPKI (UniProt ID: P28482) and human
372 Beclin-1 (UniProt ID: Q14457) were selected to illustrate the prediction of kinase-specific

373  phosphorylation sites.
374  Web interface

375  The core parts of the web interface allowing users to upload data, choose kinase models, and view
376  predictions are presented in Figure S2A and S2B. The navigation bar “WEB SERVICES” (1 in Figure

377  S2A) allows users to choose models of a specific type for the seven cluster types: group clusters
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378 considering S/T and Y sites; family clusters considering S/T and Y sites, S/T sites, and Y sites; and
379  kinase-specific clusters considering S/T and Y sites, S/T sites, and Y sites. After choosing the model
380 type, users can upload their FASTA format sequence data by clicking the "Choose File" button (2 in
381  Figure S2A). Alternatively, users can enter protein UniProt IDs in the box (2 in Figure S2A) separated
382 by a semicolon. Users can then choose models by ticking checkboxes (3 in Figure S2A). It should be
383  noted that these models are sub-clustered into ten kinase groups: "AGC,” "Atypical,” "CAMK,”
384 "CKI1,” "CMGC,” "Other,” "PKL,” "STE,” "TK" and "TKL,” so users can click a specific kinase
385  group first and then check the models belonging to that group. Subsequently, the users can click the
386 "START KINASEPHOS" button (4 in Figure S2A) to run the prediction, following which, the result
387  page, shown in Figure S2B, will finally appear.

388 As shown in section 1 of Figure S2B, users can download predictions in TXT format by clicking
389  the download button. Section 2 summarizes the proteins uploaded or entered by users, along with the
390 numbers of predicted phosphorylation sites for each protein and the models chosen by users. If a
391  UniProt ID entered by users does not match any IDs in the UniProt database, it will be ignored.
392  Section 3 lists the predicted sites. Similar to GPS 5.0, a column called “Source” is used to indicate
393  whether the phosphorylation site has been experimentally verified (Exp.) or merely predicted (Pred.).
394  To view the details for a specific protein, users can click the UniProt ID in column “Input ID” of

395  section 2, and the page shown in Figure 7 will appear.

396 Section 2 in Figure 7A lists the predicted sites for a particular protein (P28482 was clicked in this
397 example). When users mouse over the rows of this table, the window shown by Figure 7B will be
398  displayed on the right-hand side, showing the impact of feature groups on model output, (Figure 6A
399  and C), and the sequence logo of the corresponding model. The distribution of S/T/Y phosphorylation
400  sites and the distribution of the models are presented in the pie charts in Section 3. To provide a more
401 intuitive view of the predicted phosphorylation sites, Section 4 displays predicted sites in a figure
402  with probabilities, with S, T, and Y sites labeled in different colors. If users want to switch to

403  predictions for another protein, they can click the protein’s ID in Section 2.
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405  Figure 7 The web interface showing the results related to a specific protein
406  A. Detailed predictions for a specific protein, with predicted phosphorylation sites listed and depicted.
407  B. Shapley additive explanations (SHAP) showing the impacts of feature groups on model output and

408  sequence logo of the corresponding model.
409
410  Downloadable prediction tool

411  Considering the availability of large-scale phosphoproteomic data, a downloadable prediction tool
412 (as shown in Figure S3) to predict all S/T and Y phosphorylation sites at kinase group, kinase family,
413  and individual kinase levels is also provided at https://awi.cuhk.edu.cn/KinasePhos/download.html
414  and https://github.com/tom-209/KinasePhos-3.0-executable-file. After downloading and starting
415  KinasePhos3.exe, the "Browse" button is used to upload the data file, which should be a text file in
416  FASTA format, as shown in the "Example Input.txt" file that is downloaded along with the tool. Users
417  can then choose prediction models to test their data using checkboxes. If the "Kinase groups" are
418  checked, all models at the group level will be executed. In addition, users can also choose group

419  models separately by ticking the "AGC,” "Atypical,” "CAMK," "CK1,” "CMGC,"” "Other,” "PKL,"
420 "STE,” "TK" or "TKL" checkboxes based on their requirements. Similarly, users can test their data

421  wusing all models at the family and individual kinase levels by checking the "Kinase families" and the
422  "Kinases" checkboxes, respectively. Additionally, users can choose specific family model or kinase
423  model by clicking the corresponding checkboxes. It should be noted that these models at the kinase

424  family level and individual kinase level are grouped into ten scroll areas corresponding to the ten
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425  kinase groups, while the models at the individual kinase level are further classified into human and
426  other organisms for the convenience of testing data from humans and other species. With the models
427  checked, users then click "Run and save" to run the prediction tool and save prediction results. It will
428  take some time if users select many models and submit large-scale data before it produces a window
429  that allows users to specify a location to save results as a CSV file. This downloadable prediction tool

430 is recommended for users who want to test large-scale data using our predictive models.
431 Discussion

432 Although advances in mass spectrometry and enrichment methods have led to a massive increase in
433 high-throughput phosphoproteomic data, it is still difficult to determine the number of
434 phosphorylation sites that can exist in a eukaryotic proteome [50] Vlastaridis et al. (2017) estimated
435  that there are 230,000, 156,000, and 40,000 phosphorylation sites in human, mouse, and yeast,
436  respectively [50]. However, as noted above, we only identified 41,421 experimentally verified,
437  kinase-specific phosphorylation sites from 135 organisms, even with data that are already more
438  comprehensive than those included in previous tools. The numbers of experimentally verified, kinase-
439  specific phosphorylation sites in human, mouse, and yeast identified in this study were 19,123, 4,618,
440  and 332, respectively. Therefore, for most phosphorylation sites, the kinases that phosphorylate them
441 are yet to be identified. Computational methods are viable solutions for kinase-specific
442  phosphorylation prediction, as empirical methods are more time-consuming and expensive. Kinase-
443  specific phosphorylation sites in the kinase family and individual kinase levels are divided into S/T

444  and Y, S/T, and Y site clusters, a total of 771 clusters, with a prediction model created for each.

445 The performance of KinasePhos 3.0 is competitive with other existing kinase-specific
446  phosphorylation site prediction tools, such as GPS 5.0 and Scansite 4.0. It should be highlighted that
447  the kinase-specific phosphorylation sites employed to develop KinasePhos 3.0 are more
448  comprehensive than those employed with the existing tools, which is illustrated by the numbers of
449  sites presented. In addition to collecting data from other existing tools, we text-mined experimentally
450  verified kinase-specific phosphorylation sites from the UniProt database. Sample size is one of the
451  most important parameters influencing model performance when developing machine learning-based
452  classification models. We only used clusters with at least 15 experimentally verified phosphorylation
453  sites when building models. This ensured that our sample size was comparable to those of some tools.
454  For example, KinasePhos 2.0 used clusters with at least ten experimentally verified phosphorylation
455  sites. In GPS 5.0, clusters with no less than three sites were considered, with 10-fold cross-validation
456  and leave-one-out validation methods tested separately to evaluate the predictors' performance with
457 245 kinase categories with no less than 30 sites and 372 kinase categories with 3 to 30 sites,

458  respectively.
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459 KinasePhos 3.0 also offers SHAP feature importance when performing prediction tasks. Since
460  features were grouped based on their positions in the peptides containing 15 amino acids, that is,
461  features related to a specific position were regarded as a feature group, feature group importance
462  provides a more intuitive understanding of the implications of the surrounding residues on the
463  phosphorylation of each peptide. The importance of the SHAP feature group is consistent with the
464  sequence logo characteristics obtained from iceLogo, as illustrated above. The feature group
465  importance is also consistent with the position weight computed using GPS. Instead of simply
466  providing a prediction of whether a given residue can be phosphorylated by a specific kinase group,
467  kinase family, or kinase, the inclusion of feature interpretation in the prediction models provides more

468  insights into the potential roles of surrounding residues in phosphorylation.

469 Our study has several limitations. First, although we have collected a more comprehensive,
470  experimentally verified kinase-specific phosphorylation site database than those used in other studies
471  in this field, small numbers of these sites cannot be used to develop predictive models at the family
472  or individual kinase level, as the number of sites is less than 15, below the threshold for creating a
473  model, owing to data availability. However, these sites are included in the supplementary material for
474  readers who might be interested in them. Second, the transfer learning technique adopted by Deznabi
475  letal. [51] might be employed to predict phosphorylation sites for kinases with less than 15 known
476  phosphorylation sites. Moreover, considering protein-protein interactions and structural
477  characteristics of proteins might improve predictions for kinases with few known phosphorylation
478  sites. Third, we did not investigate deep learning methods, some of which have been described in the
479  literature, such as DeepPhos [52] and MusiteDeep [53], and have demonstrated effectiveness in
480  predicting kinase-specific phosphorylation sites. Leveraging the power of deep learning, along with
481 more features, will be a good strategy to explore in the future to further increase the prediction
482  performance. Fourth, our models do not distinguish among organisms, although the majority of
483  phosphorylation sites are from humans, mice, and rats. Tools that can separate species may better

484  satisfy some users’ requirements.
485  Conclusion

486  In conclusion, our updated KinasePhos 3.0 represents a significant improvement over versions 1.0
487  and 2.0. Notably, more comprehensive experimentally verified kinase-specific phosphorylation site
488  data have been collected, and prediction models have been increased, with the potential to meet more
489  specific requirements of the users. The prediction performance of this version is competitive with that
490  of other existing tools, such as GPS 5.0. Importantly, we provide users with both web-based and
491  downloadable tools, making it more user-friendly. In the future, KinasePhos 3.0 will be valuable for

492  predicting unknown sites, judging if these sites can be phosphorylated by a specific kinase group,
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493  kinase family, or kinase, based on user requirements. These predictions will aid in empirical kinase

494  and substrate characterization, reducing costs and saving time.

495
496 Code availability
497  The source code is available on Github: https://github.com/tom-209/KinasePhos-3.0-executable-file.
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Supplementary material
Figure S1 The evolutionary tree for all the collected kinases

A. The obtained evolutionary tree showed that homologous proteins or proteins with

consistent domains clustered tightly in smaller branches. B. The kinome tree composed

of several major groups. C. Analysis of the kinases of each group separately showed that

the kinases in the same group contained similar domains.

Figure S2 The web interface of KinasePhos 3.0

A. The web interface for users to select model types, upload or enter their data and choose

prediction models. B. The overview of predicted results.

Figure S3 The downloadable prediction tool

This is the standalone prediction tool of the KinasePhos3.0, which can predict S/T and Y

phosphorylation sites at kinase group, kinase family, and in individual kinase levels.

Table S1 The experimentally identified kinase-specific phosphorylation sites used in

KinasePhos3.0

Table S2 The performance of the 771 models
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