

1 Microglia ferroptosis is prevalent in neurodegenerative disease and regulated 2 by SEC24B

3
4 Sean K. Ryan¹, Matija Zelic¹, Yingnan Han², Erin Teeple², Luoman Chen², Mahdiar Sadeghi²,
5 Srinivas Shankara², Lilu Guo², Cong Li², Fabrizio Pontarelli¹, Elizabeth H. Jensen¹, Dinesh
6 Kumar², Mindy Zhang², Joseph Gans², Bailin Zhang², Jonathan Proto¹, Jacqueline Saleh¹, James
7 C. Dodge¹, Deepak Rajpal², Dmitry Ofengeim¹, Timothy R. Hammond^{1*}

8 Affiliations

9 1 Sanofi, Neurological Diseases; Framingham, MA, 01701 USA.

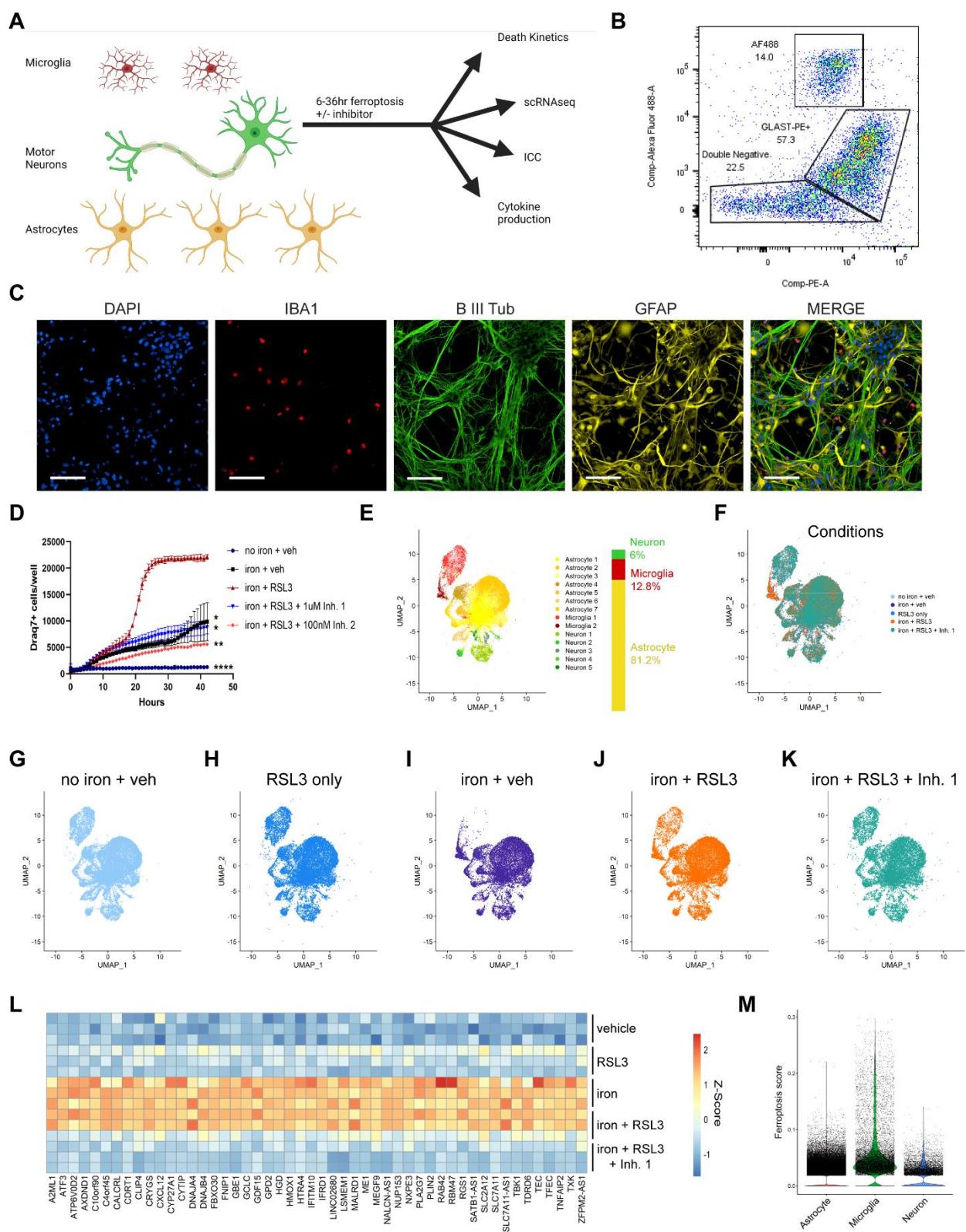
10 2 Sanofi, Translational Sciences; Framingham, MA, 01701 USA.

11
12 *Corresponding author. Email: timothy.hammond@sanofi.com

13 Abstract

14 Iron dysregulation has been implicated in multiple neurodegenerative diseases, including
15 Parkinson's Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS).
16 One prominent feature of affected brain regions are iron-loaded microglia, but how iron overload
17 influences microglia physiology and disease response is poorly understood. Here we show that
18 microglia are highly susceptible to ferroptosis, an iron-dependent form of cell death. In a tri-culture
19 of human iPSC-derived neurons, astrocytes, and microglia, under ferroptosis-inducing conditions,
20 microglia undergo a drastic shift in cell state, with increased ferritin levels, disrupted glutathione
21 homeostasis, and altered cytokine signaling. Similar ferroptosis-associated signature (FAS)
22 microglia were uncovered in PD, and the signature was also found in a large cohort of PD patient
23 blood samples, raising the possibility that ferroptosis can be identified clinically. We performed a
24 genome-wide CRISPR screen which revealed a novel regulator of ferroptosis, the vesicle
25 trafficking gene SEC24B. A small molecule screen also nominated several candidates which
26 blocked ferroptosis, some of which are already in clinical use. These data suggest that ferroptosis
27 sits at the interface of cell death and inflammation, and inhibition of this process in microglia and
28 other brain cells may provide new ways for treating neurodegenerative disease.

29 Introduction


30 Iron is important for redox-based metabolic activities and is the most abundant transition
31 metal in the brain [1]. Disrupted iron homeostasis has been implicated in neurodegeneration [2]
32 and iron accumulation has been correlated with disease progression in several neurodegenerative
33 disorders including Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and
34 Friedreich's Ataxia [3-5]. While all cell types in the brain can store iron, microglia have one of the
35 highest storage capacities and are prone to iron accumulation in disease [1, 6-10]. Additionally, a
36 subpopulation of iron-laden microglia with a unique transcriptomic signature has been discovered
37 in the rim of progressive multiple sclerosis (MS) lesions [11, 12], raising questions about how
38 these cells participate in pathological progression in MS as well as other neuroinflammatory and
39 neurodegenerative disorders

40 One mechanism that has not been explored in detail is whether microglia function is altered
41 in response to iron dysregulation and whether these cells are susceptible to a novel iron-dependent

42 form of cell death called ferroptosis [13]. Ferroptosis is distinct from other forms of cell death like
43 apoptosis and necroptosis and is driven by iron-dependent phospholipid peroxidation [13].
44 Ferroptosis has been implicated in multiple neurodegenerative disorders including PD and
45 mutations in the iron storage gene FTL cause a rare form of Parkinsonism [14]. Interestingly,
46 disease-relevant subtypes of neurons including motor neurons and dopaminergic neurons seem
47 especially susceptible to ferroptosis [15, 16], but the role in glia is largely unexplored. Previous
48 studies have shown that primary and immortalized mouse microglia can also undergo ferroptosis
49 in mono-cultures [17], but the effect of microglial iron accumulation in cellular function or
50 neurodegeneration is not fully understood.

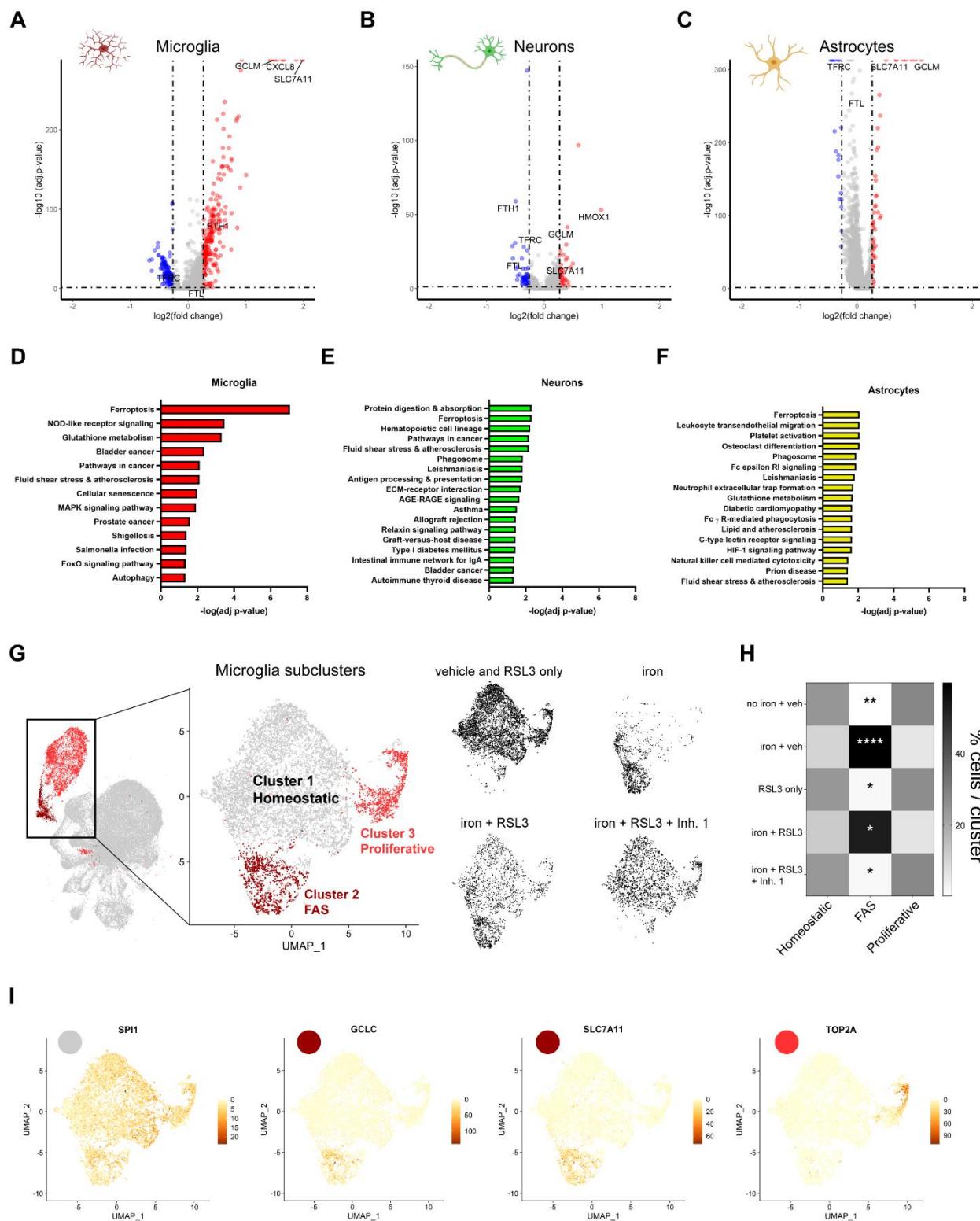
51 To understand the role of iron accumulation in human microglia and to model the complex
52 interactions between neurons and glia in a disease-relevant system, we developed a human induced
53 pluripotent stem cell (hiPSC)-derived tri-culture system that contained microglia, neurons, and
54 astrocytes [18]. We found that microglia had the strongest transcriptional response to iron
55 dysregulation among the three cell types. Using single cell RNA sequencing (scRNASeq), we
56 identify a subset of microglia with a distinct ferroptosis-associated signature (FAS). We also found
57 enrichment of the microglia iron dysregulation/FAS in the spinal cord of ALS patients, as well as,
58 in blood from two large PD patient cohorts and in microglia from single nuclei RNAseq
59 (snRNASeq) from PD patient midbrain samples. To understand how iron-dependent signaling is
60 regulated in microglia, we performed a genome-wide CRISPR screen and identified a network that
61 regulates ferroptosis in microglia. Interestingly, we identified key genes that regulate this form of
62 cell death in microglia including *ACSL4* and a novel ferroptosis susceptibility gene *SEC24B*.
63 Finally, we performed a small molecule screen to identify inhibitors of this process in microglia
64 and showed that pharmacological modulation may be a viable strategy to mitigate ferroptosis in
65 neurodegenerative disease. These findings point to an important role for ferroptosis in microglia
66 that may interplay with neuronal ferroptosis.

67 **Results**

68

69 **Figure 1: Ferroptosis induction causes a unique transcriptional response and cell death in**
70 **iPSC tri-cultures**

71 (A) Schema for generation of tri-culture and downstream analysis. (B) Flow cytometry analysis
72 isolating GFP+ microglia, GLAST-PE+ astrocytes, and double-negative neurons. (n=1). (C)
73 Representative image of tri-culture showing IBA1+ (red) microglia, β III-tubulin+ (green) neurons,
74 and GFAP+ (yellow) astrocytes. Scale bar = 100 μ m. (D) Draq7+ death kinetics in tri-cultures
75 exposed to 1600uM iron + 1uM RSL3 \pm commercial ferroptosis inhibitors. (n=4). Representative
76 graph. AUC, log transformed. two-way ANOVA, Dunnett post hoc. *p<0.05, **p<0.01,
77 ***p<0.0001. Error bars represent SEM. (E) UMAP representation of single cell RNA seq
78 analysis of 108,456 cells from tri-cultures exposed to 1600uM iron + 1uM RSL3 \pm commercial
79 ferroptosis inhibitors. (F-K) UMAP colored by treatment condition (L) Pseudobulk analysis of all
80 cell types and heatmap of top dysregulated genes. (n=3). (M) Violin plot of gene signature
81 enrichment UCell score for all three cell types using genes from (L).


82

83 **Induction of ferroptosis in human iPSC tri-culture reveals prominent microglia ferroptotic
84 signature**

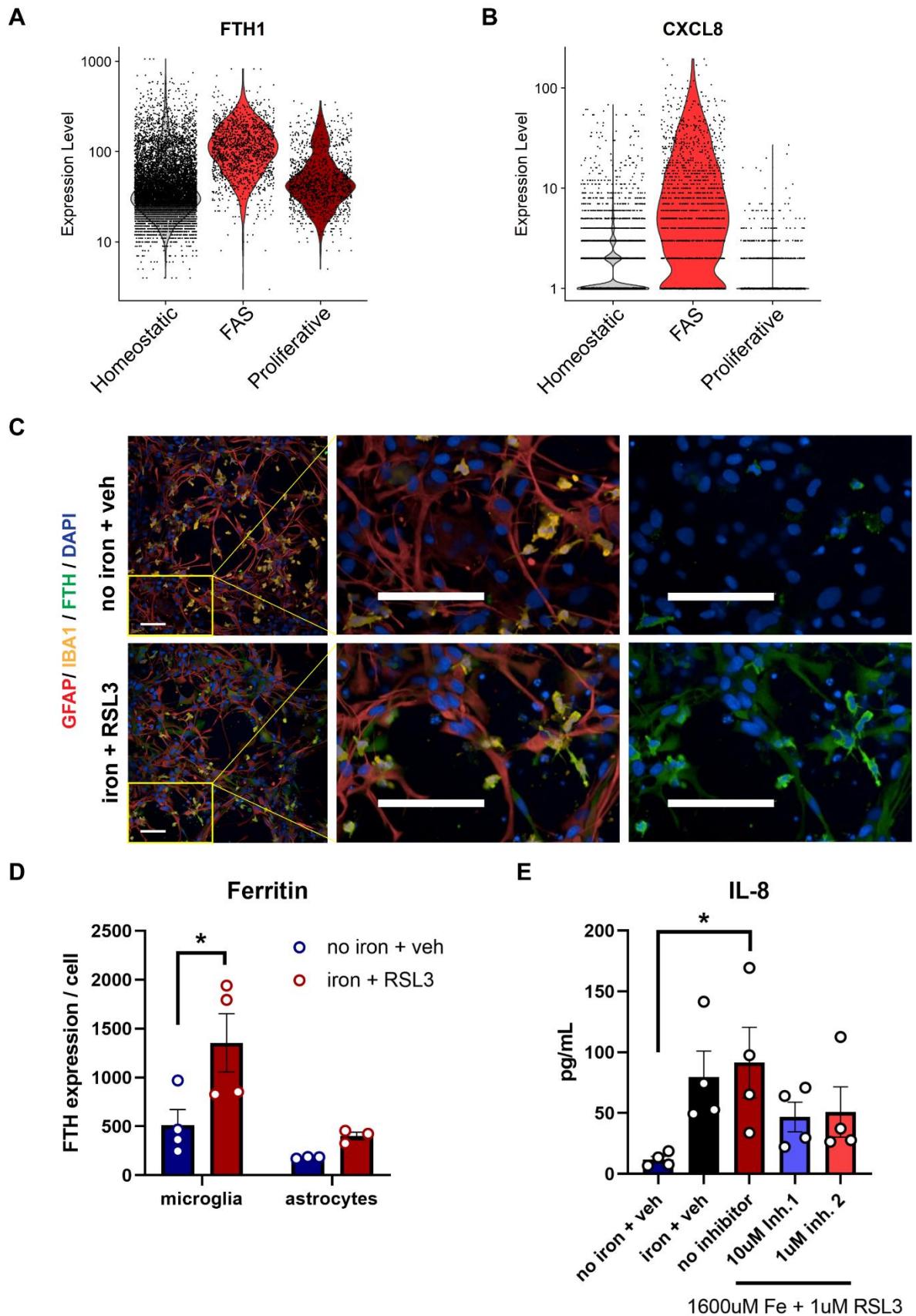
85 To better understand the role of iron signaling and ferroptosis in the brain, we made a
86 human iPSC-derived tri-culture of neurons, astrocytes, and microglia (Fig. 1A) [18, 19]. This
87 system can be used for acute and long-term studies and consists of approximately 15% microglia,
88 25% neurons, and 60% astrocytes as determined by FACS and immunocytochemistry (Fig. 1B and
89 S1A). All cell types were well integrated and form a complex network within two weeks (Fig. 1C).
90 To study the role of iron overload and whether these cultures were susceptible to ferroptosis we
91 treated the cultures with iron and RSL3 (iron + RSL3), an inhibitor of GPX4 and known inducer
92 of lipid peroxidation and ferroptosis [13]. While iron alone led to minimal cell death as assessed
93 by Draq7 integration, a dye that permeates dead cells, inhibition of GPX4 induced robust cell death
94 20 hours post-treatment, suggesting that this culture system can undergo ferroptosis. Interestingly,
95 RSL3 alone did not induce cell death suggesting that this human model system requires iron
96 supplementation (Fig. S1B); these data are different than studies in immortalized cell lines in
97 which RSL3 alone was sufficient to cause death [13, 20]. In support of a ferroptotic mechanism,
98 the iron + RSL3 induced cell death was inhibited to iron alone ($42.9\% \pm 14.8\%$ SE of iron + RSL3)
99 levels by two commercial ferroptosis inhibitors Ferrop_{Inh1} ($63.6\% \pm 20.6\%$ SE of iron + RSL3)
100 ($p<0.05$) and Ferrop_{Inh2} ($40.9\% \pm 11.6\%$ SE of Iron + RSL3 ($P<0.01$) (Fig. 1D). These results
101 suggest that we can utilize this human tri-culture system to study the role of ferroptosis.

102 To elucidate how each cell type responded to ferroptosis induction, we investigated cell-
103 specific transcriptomic changes in the tri-culture system by performing scRNAseq. We analyzed
104 the cells 6 hours after ferroptotic stimulation, a timepoint that precedes significant death induction
105 in the iron + RSL3 condition (Fig. 1D). Transcription inhibitors were used to preserve cell state
106 during the preparation of the cells for sequencing [21]. Altogether, 108,455 cells were sequenced
107 with an average read depth of ~23,000 counts per cell. We identified 13 clusters across the five
108 conditions: Vehicle treated (no iron + veh), RSL3 only, iron only, iron + RSL3, and iron + RSL3
109 + Ferrop_{Inh1} (Fig. S1C). Using cluster gene expression signatures and several known markers for
110 each cell type, we were able to clearly distinguish the microglia (12.8%), neurons (6%), and
111 astrocytes (81.2%) (Fig. 1E, S1D-F). We performed unbiased pseudo-bulk analysis and identified

112 genes that were induced in the iron + RSL3 condition that were also reversed by Ferrop_{Inh1} (Fig
113 1L). This unbiased ferroptosis-associated signature (FAS) was then applied to examine enrichment
114 through UCell scoring [22] for each cell type. We found that microglia had the strongest induction
115 of the ferroptosis signature, which was supported by the presence of a unique FAS microglia sub-
116 population in the iron only and iron + RSL3 conditions (Microglia 2, Fig. 1E-K). This FAS
117 microglial-specific cluster was almost nonexistent in the no iron + veh control and RSL3 only
118 conditions, and it was markedly reduced in the iron + RSL3 + Ferrop_{Inh1} condition (Fig. 1G, H, K,
119 and S1G). Our data shows a robust alteration in the transcriptional profile of the microglia prior to
120 ferroptosis suggesting that these cells maybe the most sensitive responders to iron (Fig. 1M, S2A-
121 C).

122

123 **Figure 2: Ferroptosis induction causes a profound shift in microglia cell state compared to**
124 **astrocytes and neurons.**


125 (A) to (C) Volcano plot of transcriptional changes in (A) microglia (B) neurons and (C) astrocytes
126 in the iron + RSL3 condition versus no iron + veh. (D) to (F) KEGG pathway analysis of top
127 upregulated and downregulated genes in the (D) microglia, (E) neurons, and (F) astrocytes in the
128 iron + RSL3 condition versus no iron + veh. (G) UMAP microglia subclusters (homeostatic,
129 ferroptosis-associated signature (FAS), and proliferative) and plots for each treatment condition in
130 black. (H) Quantification of microglia subclusters per condition. Two-way ANOVA, Tukey post
131 hoc. * $p<0.05$, ** $p<0.01$, *** $p<0.0001$. (I) UMAP gene expression plots for the microglia marker
132 *SPI1* (grey in (G)), the ferroptosis markers *GCLC* and *SLC7A11* (maroon in (G)), and the cell
133 proliferation marker *TOP2A* (pink in (G)).

134 **Neurons and Astrocytes have a more subtle ferroptosis induction**

135 To further understand the ferroptosis-dependent signature, we examined differentially-
136 expressed genes (DEGs) between the iron + RSL3 and no iron + veh conditions in each cell type
137 (Fig. 2A-C). FAS microglia upregulated several ferroptosis-related genes including ferritin, *FTH1*,
138 and the glutathione-related genes *SLC7A11* and *GCLM* (Fig. 2A), which are necessary to produce
139 glutathione, the main reducing agent for lipid peroxidation in ferroptosis [23, 24]. KEGG pathway
140 analysis [25] of the top 50 differentially expressed genes showed that ferroptosis was the most
141 significantly affected pathway. Glutathione metabolism was also one of the top associated
142 pathways as well as MAPK signaling, which has been implicated in ferroptosis induction through
143 the voltage-dependent anion channel (VDAC) in the mitochondria [26-28] (Fig. 2D). Several of
144 the same ferroptosis and iron-related genes that were upregulated in the FAS microglia were also
145 differentially expressed in astrocytes and neurons, including *SLC7A11*, *GCLM*, and *TFRC* (Fig.
146 2B and C). Despite this similarity, the number of dysregulated genes was much lower in neurons
147 and astrocytes. Unlike microglia, the ferritin genes *FTH1* and *FTL* were both downregulated in
148 neurons (Fig. 2B) suggesting cell-type differences in iron sequestration in the early stages of
149 ferroptosis induction. However, ferroptosis was still one of the top affected pathways in neuron
150 and astrocytes (Fig. 2E and F). These results indicate that neurons and astrocytes may have a
151 delayed or muted response to ferroptosis-inducing stimuli compared to microglia.

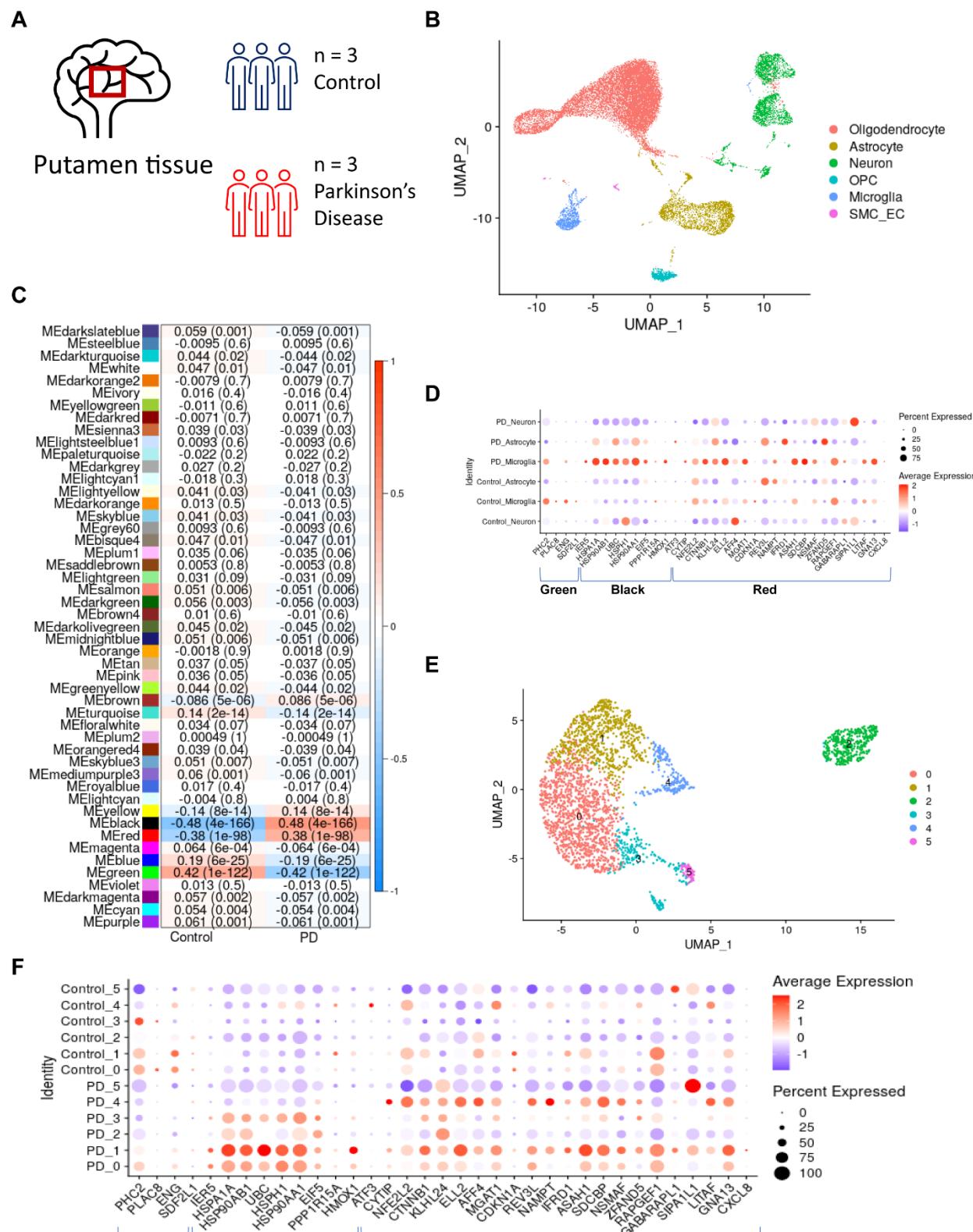
152 To understand the effect of the ferroptotic stimuli directly on microglia cell-state we
153 subclustered the microglia and uncovered 3 unique subpopulations (Fig. 2G). We identified cluster
154 2 as the iron-induced FAS microglial cluster; the cells in this cluster expressed the iron and
155 ferroptosis-related genes *GCLC* and *SLC7A11*. We also identified cluster 1 as the homeostatic
156 population most represented in the control conditions and cluster 3 as a proliferative subset of
157 microglia by expression of *TOP2A* (Fig. 2G-I). The FAS microglia cluster was significantly
158 enriched in the iron ($p<0.0001$) and iron + RSL3 ($p<0.05$) conditions and significantly reduced in
159 vehicle ($p<0.01$), RSL3 only ($p<0.05$), and iron + RSL3 + Ferrop_{Inh1} ($p<0.05$) conditions (Fig. 2G
160 and H). There were no changes in the proportion of microglia in the proliferative subpopulation.
161 These data demonstrate that microglia undergo a drastic shift in cell state following exposure to
162 iron and prior to cell death, suggesting a functional consequence of iron-overload in these cells.

163

165 **Figure 3: Microglia produce the majority of ferritin and increase IL-8 production during**
166 **ferroptosis**

167 (A) and (B) Violin plots for *FTH1* and *CXCL8* in the homeostatic microglia, ferroptotic microglia,
168 and proliferative microglia. (C) Representative images of *FTH1* (green) expression in IBA1+
169 microglia (yellow) and GFAP+ astrocytes (red) in tri-cultures 18 hours post-treatment. Scale bar
170 = 100 μ m. (D) Average expression of *FTH1* per IBA1+ microglia (n=4) or GFAP+ astrocyte (n=3).
171 Log transformed, two-way ANOVA, Sidak post hoc. *p<0.05. Error bars represent SEM. (E) IL-
172 8 production among conditions (n=4). One-Way ANOVA, Dunnett post hoc. *p<0.05. Error bars
173 represent SEM.

174 **Microglia uptake iron and secrete the inflammatory cytokine IL-8**


175 Our data suggest that transcriptionally, microglia are most affected by alterations in iron
176 homeostasis but does not address whether this also manifests in a functional alteration. One of the
177 top differentially expressed genes in the FAS microglia was the gene encoding the ferritin heavy
178 chain, *FTH1*. Ferritin is the main protein that sequesters iron in the cell and increased expression
179 has been associated with ferroptosis in a disease context [29]. *FTH1* was significantly upregulated
180 in the FAS microglia (Fig. 2A and 3A). We performed immunocytochemistry to confirm increased
181 expression, as well as compare protein expression across cell types. Consistent with the
182 transcriptomic data, FAS microglia increased expression of ferritin by 2.3-fold over vehicle treated
183 cells (p<0.05). Astrocytes also increased expression over vehicle treated, but to an overall lesser
184 magnitude, with iron + RSL3 treated microglia producing 2.9-fold more ferritin than iron + RSL3
185 treated astrocytes (Fig. 3C and D). This finding corroborates that microglia play a major role in
186 sequestering iron [9, 30].

187 These data suggest that microglia are highly sensitive to iron homeostasis, but to address
188 whether this also leads to altered downstream signaling, we examined whether microglia change
189 their secretory profile following iron challenge. We measured cytokine production from the
190 supernatants in the human tri-culture system using a multiplexed approach. We identified a
191 marked 7.8-fold increase in secreted IL-8 (p<0.05) (Fig. 3E) while the other 9 cytokines tested
192 were not detectable, suggesting a targeted inflammatory response. Interestingly, *CXCL8* the gene
193 encoding IL-8, was one of the top upregulated genes in the FAS microglia with a 2.6-fold increase
194 (Fig. 2A and 3B). IL-8, which serves as a chemoattractant, has been linked to neurodegenerative
195 disorders including ALS and PD [31]. There was a stepwise increase in IL-8 levels from iron only
196 to Iron+RSL3. Remarkably, treatment with Ferrop_{Inh1} and Ferrop_{Inh2} partially blocked increases in
197 IL-8 production (Fig. 3E). These results suggest the microglia are producing a specific
198 inflammatory response that can be reduced by blocking ferroptosis. Overall, these results suggest
199 that microglia are the major cell type to uptake iron and the first to induce ferroptosis (Fig. S2A-
200 C) and produce an inflammatory response that could contribute to the pathological environment in
201 disease.

202

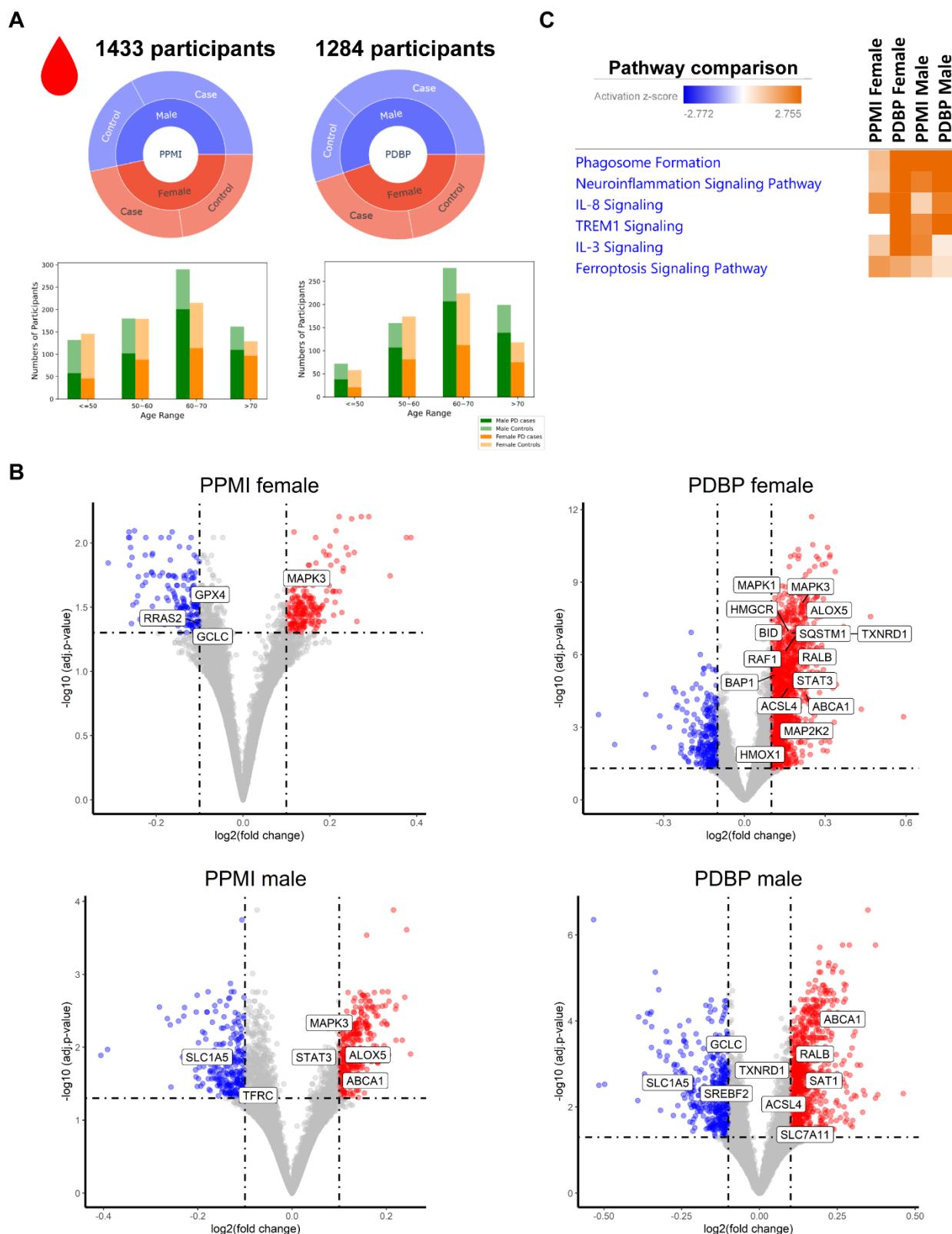
203 **Microglia exhibit lipid peroxide ferroptosis signature**

204 Our data thus far show that microglia are sensitive to iron handling by undergoing
205 phenotypic changes and cell death. Furthermore, we show that commercial ferroptosis inhibitors
206 can block both the signaling alterations and cell death. However previous work has shown that
207 ferroptosis is induced by a specific set of arachidonic acid-derived lipid peroxides that leads to loss
208 of membrane integrity and cell death.[20, 32]. Therefore, we sought to determine if human
209 microglia treated with iron + RSL3 were susceptible to lipid peroxidation. We utilized an
210 immortalized microglia cell line derived from primary, human adult microglia which is susceptible
211 to ferroptosis and blocked by commercial inhibitors [11] (Fig. S3A). We performed lipidomic
212 analysis at 2 hours post induction before cell death (Fig. S3B) and measured free 12-HETE and
213 15-HETE, which are the reduced forms of the hydroperoxides 12-HpETE and 15-HpETE. Indeed,
214 ferroptosis induction caused a 2-fold increase in 12-HETE ($p<0.0001$) and a 30-fold increase in
215 15-HETE ($p<0.0001$), which was prevented with Ferrop_{Inh2} co-treatment. Interestingly, neither
216 iron alone nor RSL3 alone was able to significantly induce these lipid peroxides (Fig. S3C and D).
217 This is consistent with the data obtained in the tri-culture system (Fig. 1D and S1B) that both iron
218 and RSL3 are necessary to fully induce ferroptosis. Iron alone seems sufficient to induce the
219 ferroptotic gene signature (Fig. 1L), but inhibition of GPX4 is necessary to fully induce ferroptosis.
220 A specific oxidized lipid, 1-SA-2-15-HpETE-PE, has been implicated in ferroptosis and was
221 increased in models of PD and in fibroblasts from PD patients [32]. In the microglia we uncovered
222 a 6-fold increase in 1-SA-2-15-HpETE-PE ($p<0.01$), which was also blocked with Ferrop_{Inh1} or
223 Ferrop_{Inh2} treatment (Fig. S3E). These findings show that the microglia produce the defined,
224 distinct ferroptotic lipid hydroperoxyl signature.

227 (A) Brain region and sample size for single Nucseq dataset. (B) Unsupervised clustering and
228 annotation of cell types identifies microglia cluster present in control and PD samples. (C)
229 WGCNA analysis uncovers three modules significantly associated with the PD microglia (green,
230 red, and black). (D) Dot plot of shared genes in green, red, and black modules with microglia tri-
231 culture signature in different control and PD cell types. (E) Subclustering of microglia from (B) to
232 identify subpopulations. (F) Dot plot of shared genes in green, red, and black modules in microglia
233 subpopulations.

234

235 **FAS microglia are present in human neurodegenerative disease**


236 There is strong evidence for the involvement of ferroptosis in many neurodegenerative
237 diseases, including ALS and PD [7, 32-35]. However, identifying a consistent signature has
238 remained elusive, and there has been little focus on immune cells and microglia. Inflammation
239 from microglia and peripheral immune cells is known to play a significant role in disease
240 progression. We wanted to determine if we could identify a shared ferroptosis transcriptomic
241 signature across multiple neurodegenerative diseases. Iron dysregulation has been identified in
242 ALS patients, including increased iron accumulation in the deep cortical layers, as well as in
243 microglia in the motor cortex, and iron chelators can increase life expectancy in a mutant SOD1
244 mouse model of ALS [5, 7]. Iron overload can lead to oxidative stress and death through pathways
245 independent of ferroptosis [36]. Thus, we wanted to determine if the ferroptotic signature identified
246 in the tri-culture FAS microglia was present in ALS patient tissue. We compared gene expression
247 changes between ALS patient and case controls from the Target ALS consortia (Table S1) for the
248 top 50 upregulated genes in the FAS microglia. Indeed, we found significant upregulation of the
249 gene set especially in the spinal cord of patients, including *SLC7A11* and *GCLM*, which were
250 upregulated across all cell types in the tri-culture. To a lesser degree, there was also dysregulation
251 in the motor cortex, frontal cortex, occipital cortex, and cerebellum (Fig. S4A). These results
252 demonstrate a strong ferroptotic signature in ALS patients, primarily in the spinal cord, suggesting
253 ferroptosis induction in the region most affected by disease.

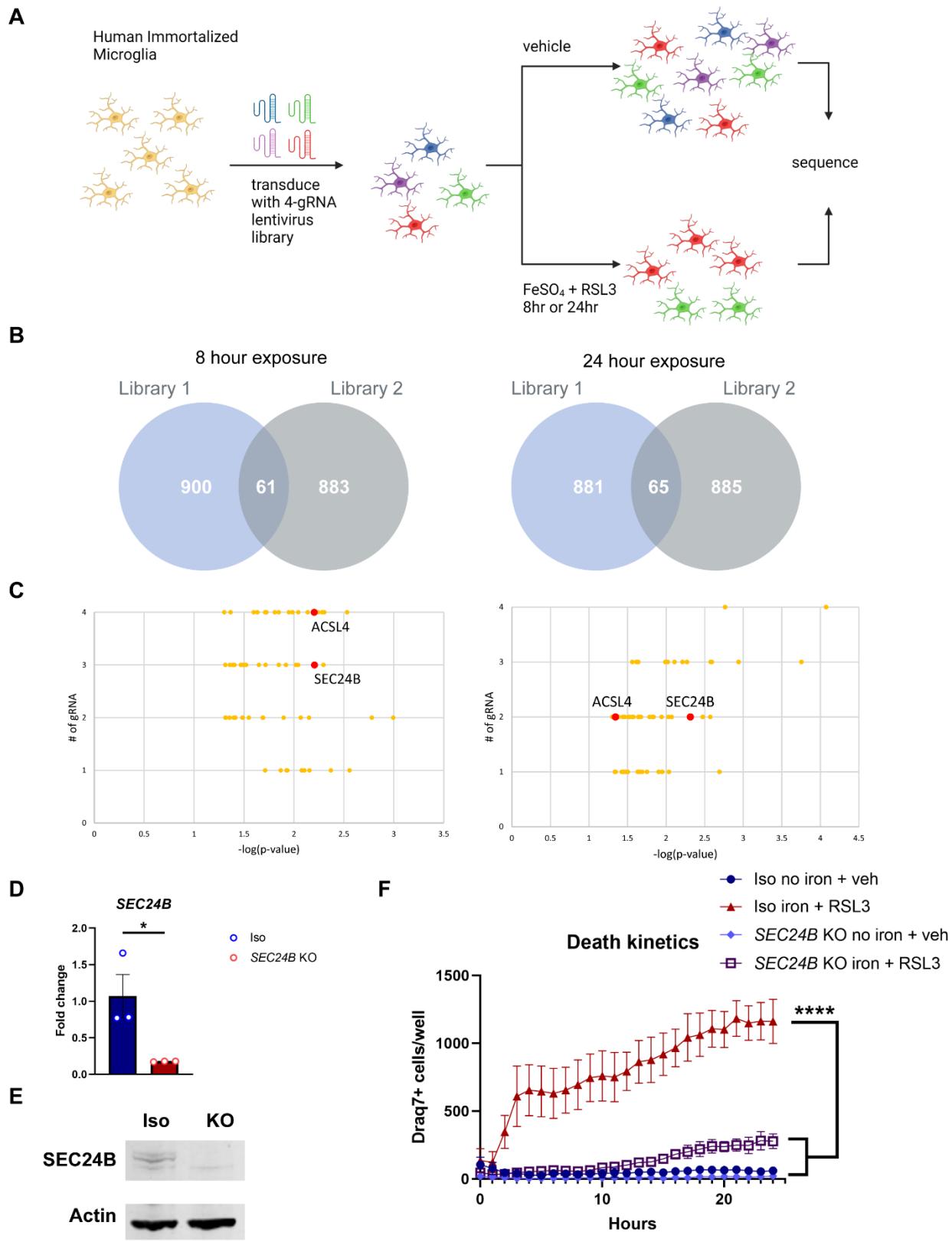
254 Previous work identified a subset of microglia in MS patients with an iron-related /
255 ferroptotic signature [11, 12, 37]. To determine if the iron-related signature found in MS microglia
256 is present in PD, we analyzed snRNAseq of putamen tissue from three PD patients and three
257 healthy controls (Fig. 4A) (Table S2). The putamen is a pathologically relevant area in the mid
258 brain for PD, with significant connections to the substantia nigra and reduced spontaneous activity
259 leading to impaired task performance in PD patients [38, 39]. Unbiased clustering identified
260 microglia, oligodendrocyte precursor cells (OPCs), oligodendrocytes, neurons, astrocytes, and
261 endothelial cells in the sequenced samples (Fig. 4B and S5A). To determine which cell type might
262 exhibit a ferroptotic signature we performed differential expression analysis of the MS microglia
263 iron and ferroptosis-related gene signature across all cell types and found that the microglia in PD
264 tissue were uniquely enriched for the gene signature (Fig. S5B). To further investigate the
265 signature, we identified six microglia subpopulations in the dataset (Fig. 4E and S5C). Microglia
266 subcluster 1 had the most prominent MS ferroptosis signature (Fig. S5D). This gives further

267 evidence, at the transcriptomic level, that ferroptosis may be occurring in the microglia of PD
268 patients.

269 To further investigate the ferroptotic signature in PD microglia, we utilized our tri-culture
270 ferroptotic microglia signature, which we found to be enriched in ALS spinal cord (fig. S3A). We
271 performed weighted gene co-expression network analysis (WGCNA) on the control and PD
272 snRNAseq dataset (Fig. S5A and B). This analysis revealed the 3 modules that were most
273 significantly correlated with PD: red [$R=0.38$, $p=1\times 10^{-98}$], green [$R=-0.42$, $p=1\times 10^{-122}$], and black
274 [$R=0.48$, $p=4\times 10^{-166}$] (Fig. 4C, S6A and B). The red and black modules were positively correlated
275 with PD and were enriched for our tri-culture-derived ferroptosis signature genes including
276 *HMOX1* and *CXCL8* suggesting that PD patients show enrichment of a ferroptosis signature.
277 Interestingly, when we compared the genes from those modules across neurons, microglia, and
278 astrocytes from the snRNAseq datasets, we found the highest level of differential expression in
279 the microglia (Fig. 4D). The red and black module genes were more enriched and highly expressed
280 in PD microglia than in control microglia. Genes from the green module, which was anticorrelated
281 with PD, showed increased gene expression in the control patient microglia relative to PD patient
282 microglia and could demonstrate dampening of a homeostatic microglial signature in PD patients.
283 We then analyzed the microglia subclusters (Fig. 4E) for the ferroptosis-associated signature and,
284 like the MS microglia signature, PD microglia subcluster 1 had the strongest upregulation of the
285 red and black module genes. However, the red and black modules were also enriched in subclusters
286 0, 2, 3, and 4. These results show a strong, shared ferroptosis-associated signature in microglia
287 specifically in disease-afflicted areas across multiple neurodegenerative disorders including MS,
288 PD, and ALS.

289

290


291 **Figure 5: Detection of a ferroptosis gene signature in the AMP-PD Parkinson's patient blood**
292 **samples**

293 (A) Breakdown of case, control, age, and gender for the PPMI and PDBP studies by the AMP-PD
294 consortia. (B) Volcano plots for DEGs, $-0.1 < \log_2 \text{fold change} < 0.1$ and adjusted p-value < 0.5 ,
295 between healthy controls and PD patients stratified by gender and cohort. (C) IPA Comparison
296 Analysis of differentially expressed genes (inclusion cutoffs: $-0.1 < \log_2 \text{fold change} < 0.1$ and
297 adjusted p-value < 0.5 with male and female patients in PPMI and PDBP studies).

298 **Analysis of PD patient blood reveals ferroptotic signature**

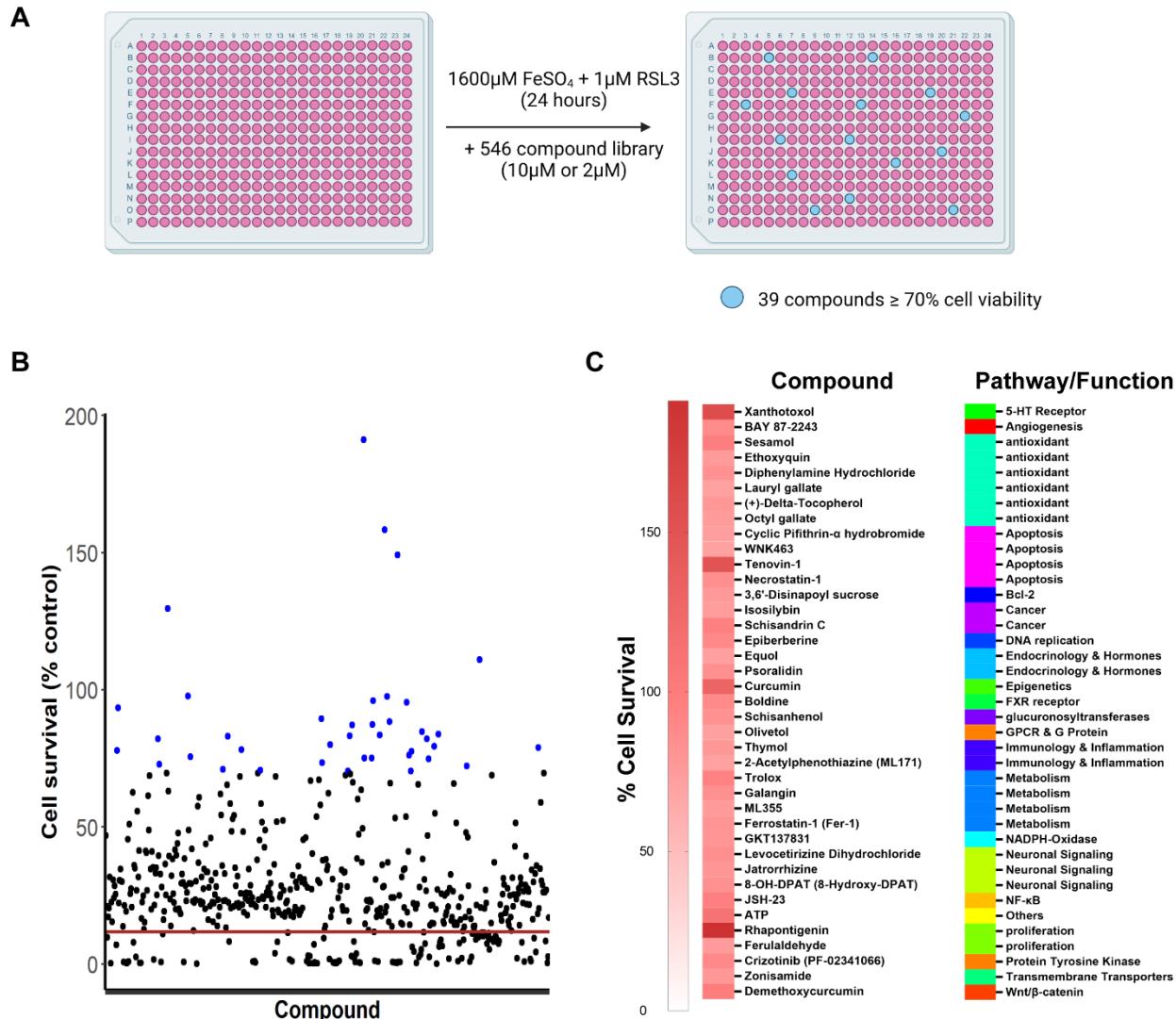
299 Our data thus far indicate that iron dysregulation leads to a distinct signature in microglia.
300 We next sought to investigate whether there might be evidence of altered iron homeostasis
301 systemically in patients with neurodegenerative disease. For this, bulk RNA-Seq analysis was
302 performed on blood samples obtained from case and control participant enrolled in cohort studies
303 of the Accelerating Medicines Partnership Parkinson's Disease (AMP PD), the Parkinson's
304 Progression Markers Initiative (PPMI) (n=1,433; 816 PD case: 617 control), and Parkinson's
305 Disease Biomarkers Program (PDBP) (n=1,284; 780 PD case: 504 control) (Fig. 5A) (Table S3).
306 Unbiased differential gene expression analysis between PD cases and healthy controls uncovered
307 significantly up- and down-regulated ferroptosis-related genes, many of which were found in our
308 tri-culture FAS microglia signature including, *GCLC*, *GPX4*, *HMOX1*, *SQSTM1*, and *SLC7A11*
309 (Fig. 5B) (Table S4). Indeed, ferroptosis and IL-8 signaling were among the top dysregulated
310 pathways identified using Ingenuity Pathway Analysis (IPA) (Fig. 5C). These findings suggest
311 that a ferroptotic gene signature is present in PD patient-derived blood samples and that iron
312 dysregulation may be present systemically in patients. Furthermore, these findings show that iron
313 dyshomeostasis is observed peripherally in PD and that blood samples could potentially be used
314 as a peripheral biomarker for central nervous system (CNS) ferroptosis pathway activation in PD
315 and other neurodegenerative diseases.

316

Figure 6: Genome-Wide CRISPR screen identifies *SEC24B* as a novel regulator of ferroptosis in microglia

320 (A) Schema for positive selection Genome-wide CRISPR screen in Cas9-expressing human
321 immortalized microglia. (B) Venn diagrams for hits from each viral pool in 8hr and 24hr
322 treatments. (C) Overlapping hits from each viral pool with number of gRNAs identified in 8hr and
323 24hr treatment with *SEC24B* and *ACSL4* highlighted. (D) qRT-PCR analysis showing markedly
324 reduce expression of *SEC24B* in KO line (n=3). Unpaired t test. *p<0.05. Error bars represent
325 SEM. (E) Western blot showing absence of *SEC24B* protein in KO line. (F) Death kinetics in
326 *SEC24B* KO Hap1 cell line and isogenic control (n=3). AUC, one-way ANOVA, Dunnett post
327 hoc. ***p<0.0001. Error bars represent SEM.

328


329 **SEC24B regulates ferroptosis in microglia**

330 Susceptibility to ferroptosis varies among cell types, [40-42] so we sought to determine if
331 there are unique regulators of ferroptosis in microglia. Genome-wide screens for ferroptosis
332 regulators have been performed in several cancer cell lines and have identified regulators including
333 *FSP1*, *POR*, and *ACSL4* [43-47]. However, little is known about ferroptosis regulation in brain
334 cells. We performed a positive selection genome-wide CRISPR screen using Cas9-expressing
335 immortalized human microglia. We utilized a 76,612-guide library that targets 19,114 genes and
336 uses 4 guides per gene. Cells were transduced with two separately generated viral pools and treated
337 with vehicle or iron + RSL3 for 8 or 24 hours to have shorter or longer selection, respectively (Fig.
338 6A). We found 61 hits from the 8 hour exposure (Fig. 6B). Hits were stratified by the number of
339 guide (g)RNAs that were detected for each gene in the surviving pool with p values < 0.05 (Fig.
340 6C and S8A and C). Pathway analysis using PANTHER [48] identified several necrosis and
341 necroptotic pathways as the most significantly associated with the 8 hour hits (Fig. S8B).
342 Furthermore, 65 hits were found in the 24 hour condition (Fig. 6B). Interestingly, these hits were
343 associated with different pathways than those found in the 8hr condition, with G-protein coupled
344 receptor signaling being the most significantly associated pathway (Fig. S8D).

345 Across the 126 hits, *ACSL4* and *SEC24B* were present in both timepoints and libraries (Fig.
346 6C). *ACSL4* has been identified in several previous genome-wide CRISPR screens [43-45], but
347 *SEC24B* has not been previously described as a regulator of ferroptosis. *SEC24B* is a COPII coat
348 complex component that is important for vesicle trafficking from the endoplasmic reticulum (ER)
349 to the Golgi apparatus [49]. To confirm *SEC24B* as a regulator of ferroptosis we assessed
350 ferroptosis susceptibility in an *SEC24B* KO myeloid cell line. *SEC24B* knockout was confirmed
351 by qRT-PCR, which showed a roughly 80% reduction in RNA expression (p<0.05), and an absence
352 of protein by Western blot (Fig. 6D and E). Cells were incubated with Draq7 and ferroptosis was
353 measured over 24 hours. The *SEC24B* cells were highly resistant to ferroptosis with a 4-fold
354 reduction in ferroptosis as compared to the control, isogenic line (p<0.0001) (Fig. 6F). These
355 results demonstrate that *SEC24B* is required for ferroptosis induction in microglia and
356 macrophages.

357

358

359

360 **Figure 7: Ferroptosis pharmacological inhibitors revealed in small molecule screen**

361 (A) Schema and results for pharmacological compound screen in which 546 compounds were
362 tested for their ability to block ferroptosis in an immortalized microglia cell line. (B) 39 of the 546
363 compounds rescued cell viability to at least 70% of the vehicle control (blue dots) and 5 rescued
364 to at least 100%. 3 technical replicates per compound. Red line indicates average cell survival with
365 ferroptosis induction and no compound. (C) Heatmap of percent cell survival for the 39 hits and
366 the associated pathway or function.

367 **Pharmacological screen identifies clinical compounds that inhibit ferroptosis in microglia
368 and corroborates CRISPR-identified pathways**

369 To test whether we could also inhibit ferroptosis pharmacologically we performed a
370 targeted small molecule screen and identified molecules that are already in clinical trials or can be
371 used as tool compounds for further drug development. We utilized a commercially available,

372 ferroptosis-related library that consists of 546 compounds, including some that are already in
373 clinical use [50, 51]. Ferroptosis was induced in the human microglia cell line and were co-treated
374 with the compounds at 10 μ M or 2 μ M. Inhibition of ferroptosis was noted for any compound that
375 led to $\geq 70\%$ cell viability compared to vehicle control. Of the 546 compounds we found 39
376 compounds that inhibited ferroptosis (Fig. 7A and B) (Table S5). Interestingly, 3 of the
377 compounds, levoceftirizine dihydrochloride, jatrorrhizine, and 8-OH-DPAT, targeted neuronal
378 signaling, and 2 of the compounds, olivetol and xanthotoxol, targeted G protein-coupled receptor
379 (GPCR) signaling. Xanthotoxol targets the GPCR 5-HT receptor (Fig. 7C), which is involved in
380 mediating excitatory and inhibitory neurotransmission [52]. The 5-HT receptor is also expressed
381 on microglia and may be involved in inflammation [53].

382 In addition to validating multiple pathways from the CRISPR screen, several of the other
383 hits corroborated previously identified regulators of ferroptosis. Galangin targets cytochrome P450
384 and ML171 and GKT137831 both target NADPH-oxidase (Fig. 7C). Cytochrome P450
385 oxidoreductase, which utilizes NADPH, has been recently identified in a separate genome-wide
386 screen [45]. Additionally, the p53 inhibitors cyclic pifithrin- α hydrobromide and Tenovin-1, were
387 also effective at preventing ferroptosis. P53 has recently been identified as an alternative pathway
388 for ferroptosis induction [42]. Lastly, BAY 87-2243 is a HIF-1 α inhibitor in phase 1 clinical trials
389 for cancer. HIF-1 α was upregulated in the ferroptotic microglia in the tri-culture. These results
390 reaffirm the pathways identified in the CRISPR screens and point to possible clinical compounds
391 that could be used for the treatment of ferroptosis-related neurodegenerative diseases.

392

393 DISCUSSION

394 While ferroptosis has been previously described in microglia [17], the relationship of
395 ferroptosis induction to neurodegeneration has not been explored. Iron overload in microglia has
396 been well described [7, 11, 54] but the consequences of this overload at the transcriptomic and
397 functional level are not well understood. Here, we identify microglia as a major player in a
398 ferroptotic cascade during neurodegeneration. In the tri-culture model, the microglia are the first
399 to develop a ferroptotic signature. Microglia may act as an initiator of ferroptosis and/or
400 inflammation via IL-8 production that leads to neurotoxicity [31]. Additional temporal studies
401 would be required to confirm the microglia-mediated neuronal death in response to iron rather than
402 cell autonomous neuronal ferroptosis. It is possible that microglia play a protective role by
403 sequestering iron, but as they undergo ferroptosis, iron is released into the extracellular space and
404 taken up by other cell types. In support of this mechanism, in our tri-culture system, the neurons
405 die after *en masse* death of the microglia.

406 We found that the ferroptosis-associated signature (FAS) correlates well across multiple
407 neurodegenerative diseases. We and others have previously identified a ferroptotic signature in
408 MS microglia [11, 12]. Using snRNA-Seq, we established a unique ferroptotic gene signature in
409 our tri-culture system microglia. This ferroptotic gene signature was enriched in the ALS patient
410 spinal cord, as well as in microglia from PD patient putamen. This supports the utility of our human
411 iPSC-derived tri-culture system to recapitulate disease-relevant ferroptosis signatures and the

412 activation of ferroptosis pathways in ALS and PD specifically in microglia in disease-associated
413 tissues. Determining when and where ferroptosis occurs and identifying biomarkers that could help
414 stratify patients will be beneficial for treatment in the clinic. Existing efforts to identify individual
415 markers of ferroptosis has been difficult [55], and here we demonstrate that a transcriptomic
416 signature could be another useful tool. We identified a ferroptotic signature in two separate tissues,
417 blood and brain, suggesting that there could be several approaches used to identify affected
418 patients.

419 Regulation of ferroptosis in microglia has not yet been studied. To this point, no genetic or
420 pharmacological screen for ferroptosis regulators has been performed on microglia. Using a
421 genome-wide CRISPR screen, we discovered that, in addition to the well-described regulator
422 *ACSL4*, *SEC24B* also strongly regulates ferroptosis in microglia. *SEC24B* has never previously
423 been implicated as a regulator of ferroptosis. Under homeostatic conditions, it is involved in
424 vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, particularly for
425 secretory proteins [56]. ER stress has been implicated in ferroptotic induction [26, 57]. This stress
426 may prevent trafficking of anti-ferroptotic proteins such as GPX4, as reduced GPX4 expression
427 has been identified in multiple neurodegenerative disorders including MS and ALS [58, 59].
428 Additionally, chronic iron overload has been associated with impaired protein secretion [60]. Loss
429 of *SEC24B* could dysregulate secretory proteins like transferrin, which is necessary for cellular
430 uptake of iron. *SEC24B* could be a unique regulator of ferroptosis in microglia or at least in a
431 subset of cell types. Future studies exploring expression and subcellular localization of ferroptosis-
432 related proteins such as transferrin and ferritin as well as iron uptake and trafficking may help
433 determine how *SEC24B* regulates ferroptosis.

434 Despite the fact that ferroptosis has been implicated in many disorders, an effective
435 therapeutic to mitigate ferroptosis has not been developed for patients [36]. Iron chelators are one
436 potential approach, but many have unknown or poor blood brain barrier permeability and may
437 disrupt homeostatic redox functions [61]. Given the clear role of ferroptosis in neurodegenerative
438 diseases, there is a need for a more exploration into ferroptosis-related therapeutics. There are
439 several more iron-related compounds in clinical trials, including the vitamin E derivative
440 vatiquinone, deuterated linoleic acid, and activators of the antioxidant NRF2 pathway. We
441 screened a commercially available library of ferroptosis-related compounds in the human
442 microglia cell line. We found several compounds involved in established ferroptotic regulatory
443 pathways. This included the HIF-1 α inhibitor BAY 87-2243, which is in phase 1 clinical trials for
444 cancer, as well as the FDA-approved antioxidant Octyl gallate. These compounds could also be
445 tested for efficacy in ferroptosis-related neurodegenerative disorders.

446 Overall, our work further confirms the role of ferroptosis in multiple neurodegenerative
447 disorders, including ALS and PD. Using a unique tri-culture system, we show cell type-specific
448 disease signatures of ferroptosis identifying microglia as an initiating cell type in ferroptosis.
449 Through a genome-wide CRISPR screen, we also describe a novel regulator of ferroptosis,
450 *SEC24B*, in microglia. Further understanding the role of *SEC24B* in microglia and ferroptosis may
451 lead to new insights for therapeutic targets for treating multiple neurodegenerative disorders.
452 Finally, we demonstrated pathway convergence of the genetic and pharmacologic screens on

453 pathways that drive ferroptosis, furthering the understanding of the molecular mechanisms of
454 microglial ferroptosis. Altogether, our work supports the importance of iron dyshomeostasis in
455 microglia as a critical driver across multiple neurodegenerative diseases.

456 MATERIALS AND METHODS

457 Study Design

458 In this study, to understand the role of ferroptosis in neurodegenerative disease, we aimed to
459 evaluate the susceptibility of disease relevant cell types to ferroptosis. We developed a tri-culture
460 of hiPSC-derived neurons, astrocytes, and microglia and placed cultures under ferroptotic
461 conditions (iron + RSL3) \pm ferroptosis inhibitors. To understand the susceptibility to ferroptosis
462 of each cell type, gene expression changes were measured by single cell RNAseq, protein
463 expression changes were measured by ICC, and functional changes were measured by cytokine
464 expression and death kinetics via Draq7 incorporation. These analyses identified microglia as
465 highly susceptible to ferroptosis. Next, we investigated the microglia ferroptotic signature in
466 multiple neurodegenerative disease patient samples through bulk RNAseq and single Nucseq,
467 identifying the ferroptotic signature. We utilized a genome-wide CRISPR screen to identify
468 regulators of ferroptosis in microglia and identified *SEC24B* and validated in a separate *SEC24B*
469 KO myeloid cell line. Commercial compounds were screened for ferroptosis inhibition in a human
470 microglia cell line to identify translatable chemical material.

471 Study size calculations

472 Power calculations were not completed for these studies.

473 Treatment of outliers

474 No outliers were removed for these studies.

475 Randomization

476 Plate wells were randomly assigned to treatment groups.

477 Blinding

478 Studies were not blinded. ICC and Draq7 quantification were automatically counted by the
479 appropriate software.

480 Replication

481 The number of replicates for each experiment and the test used to calculate statistical significance
482 is indicated in the figure legends and/or methods. All cell culture experiments had one to three
483 technical replicates per biological replicate. Technical replicates were averaged together per
484 biological replicate.

485 Tri-culture assembly

486 On D0, 96 well plates (Perkin Elmer 6055302 or Corning 3595) were coated with Matrigel
487 (Corning 354277) (diluted in appropriate amount of DMEM (Life Technologies 11330057)

488 solution). 200uL sterile PBS (Thermo Fisher Scientific 20012-027) was added to any unused
489 wells. iAstrocytes (Fujifilm ASC-100-020-001-PT) were thawed and plated at 1.5×10^4 per well in
490 Fuji designated astrocyte media (200uL per well) (DMEM/F12, HEPES (Life Technologies
491 11330057) + 2% heat inactivated fetal bovine serum Certified One Shot (Gibco A38400-01) + 1x
492 N-2 supplement, 100x (Gibco 17502-048)). On D1, 3.5×10^4 iCell motor neurons (Fujifilm C1048)
493 were added per well. Motor neurons were thawed and resuspended at 3.5×10^4 cells/200uL in
494 complete Fuji Motor neuron media (100mL iCell Neural base medium 1 (Fujifilm M1010) + 2mL
495 iCell Neural supplement A (Fujifilm M1032) + 1mL iCell Nervous system supplement (Fujifilm
496 M1031)). Fuji astrocyte media was fully aspirated and 200uL of motor neuron cell suspension was
497 added to each well. On D3, a 75% media exchange (150uL) was performed in all wells with
498 NB/B27+ media (B-27 Plus Neuronal system kit (Life technologies A3653401)). On D5, iCell
499 Microglia (Fujifilm C1110) were pated at 1×10^4 per well in NB/B27+ with iMg growth factors (B-
500 27 Plus Neuronal system kit (Life technologies A3653401) + 25ng/mL M-CSF (peprotech 300-
501 25) + 100ng/mL IL-34 (peprotech 200-34) + 50ng/mL TGF- β 1 (peprotech 100-21). iMicroglia
502 were thawed and resuspended in NB/B27+ with iMg growth factors at 1×10^4 cells/100uL. 100uL
503 of media was removed from each well and 100ul of iMicroglia cell suspension was added. Half
504 media exchanges were performed on D7, D9, D11, and D14. All treatments were added on D15.

505 **Tri-culture ferroptosis treatments**

506 2x solutions were made for all tri-culture treatments. Half media exchanges with 2x treatments
507 were performed. Final concentrations were 1:1000 DMSO (Sigma D2650), 1600uM FeSO₄
508 (Sigma F8633), 1uM RSL3 (Sigma SML2234), 10uM cayman ferroptosis inhibitor (Ferrop_{Inh1})
509 (Cayman Chemical 10010468), and 1uM liproxstatin-1 (Ferrop_{Inh2}) (Sigma SML1414). Cultures
510 were treated for 6-42hrs depending on experiment. All inhibitors were added as co-treatments.

511 **scRNAseq cell preparation**

512 6hrs post treatment, cells were washed 2x with PBS. Cells were then treated with 0.25% Trypsin
513 + EDTA (Sigma T4049) + transcription/translation inhibitors (5ug/mL actinomycin-D (Sigma
514 A1410) + 10uM triplotide (Sigma T3652) + 27.1ug/mL anisomycin (Sigma A9789) for 6min in
515 37°C 5% CO₂ incubator. 1 volume of PBS + 2% FBS (Gibco A38400-01) +
516 transcription/translation inhibitors + 1:100 DNase was added to quench. Cells were combined
517 from two wells and put through 40um cell strainers (BD Falcon 352235). Strained cell suspension
518 was placed in a 1.7ml eppendorf tube on ice. Cells were counted by hemocytometer. Cell
519 suspensions were spun at 4°C for 5min at 1500RPM. Supernatant was removed and cells were
520 resuspended at 1,000 cells/uL in ice cold PBS.

521 **ScRNAseq**

522 Cells were loaded onto the 10x Genomics Next GEM Single Cell 3' V3.1 sample chip and run
523 following manufacturers protocols. All 15 samples were processed in parallel and were amplified
524 11 cycles during the initial cDNA amplification and the 12 cycles for the sample index PCR. The
525 samples were sequenced on an Illumina Novaseq 6000 to an average depth of approximately
526 40,000 reads/cell. Sequencing files were processed using the Cell Ranger 4 pipeline and
527 GRCh38 human reference genome.

528 **ScRNaseq analysis**

529 Samples were analyzed using Seurat 4.0.2 [62] in R version 4.0.3. Samples were filtered based on
530 the overall distribution of UMIs and gene counts per cell to limit the inclusion of low-quality cells
531 and doublets. Cells with less than 3500 genes and 8000 UMIs and greater than 9000 genes, 50000
532 UMIs, and 10% mitochondrial genes were removed from analysis. Following filtering, the variable
533 features were selected using the “vst” method and using 2000 features. RunICA was performed
534 for 75 ICs and then the FindNeighbors function was run using 33 ICs to build the KNN graph.
535 Cluster resolution was set to “0.3” and the UMAP was generated using the RunUMAP function
536 and using 33 ICs. Cell types were assigned by identifying genes unique to each cluster and through
537 cross-referencing to known markers of each cell type and existing published datasets. UMAP plots
538 and gene expression plots were generated using built in Seurat/ggplot2 plotting functions unless
539 otherwise described. Cluster specific genes in figures 1 and 2 were generated using the
540 FindAllMarkers function in Seurat. Ferroptosis-related genes for figure 3 were calculated using
541 the FindMarkers function in Seurat and using DeSeq2 as the differential expression test comparing
542 the vehicle and Iron+RSL3 conditions. Volcano plots were generated using ggplot2 and significant
543 points were colored using log fold change > 1.2 and adjusted p value < 0.05 as cutoffs.

544 **Pseudobulk analysis**

545 For the unbiased analysis of ferroptosis-related genes (Figure 1L) pseudobulk gene matrices
546 were generated for each sample by calculating the row sums for each gene. The samples were
547 then all combined into a single gene counts matrix and analyzed using Deseq2 with the treatment
548 condition as the variable of interest [63]. Genes with count sums equaling 0 were removed from
549 the analysis. Statistically significant genes (Adjusted P value < 0.05) in the Control vs.
550 Iron+RSL3 groups and Iron+RSL3 vs. Iron+RSL3+'468 samples were identified and cross-
551 referenced to find genes that were upregulated in the stimulated group and downregulated in the
552 inhibitor treated groups. Genes were plotted using the Pheatmap package in R.

553 **UCell analysis**

554 To determine the cell type enrichment of the ferroptosis signature generated from the pseudobulk
555 analysis the UCell package was used (Andreatta and Carmona, 2021). The UCell signature score
556 is based on the Mann-Whitney U statistic and is agnostic to dataset cell type composition when
557 assigning scores. The 57 overlapping genes from the pseudobulk analysis the gene signature
558 input and used to calculate the UCell score for each cell in the dataset. UCell score violin plots
559 were grouped by cell type (microglia, neuron, and astrocyte) and plotted using Seurat/ggplot2.

560 **Microglia subclustering analysis**

561 Microglia were subset from the larger dataset based on cell type definitions presented in Figure 1
562 and reanalyzed using Seurat. The variable features were selected using the “vst” method and
563 using 2000 features. RunICA was performed for 20 ICs and then the FindNeighbors function
564 was run using 10 ICs to build the KNN graph. Cluster resolution was set to “0.05” and the
565 UMAP was generated using the RunUMAP function and using 10 ICs. Microglia subtypes were
566 identified by using the FindAllMarkers function in Seurat. The volcano plot of ferroptotic
567 microglia markers was generated using ggplot2 and significant points were colored using log

568 fold change > 1.2 and adjusted p value < 0.05 as cutoffs. UMAP plots and gene expression plots
569 were generated using built in Seurat/ggplot2 plotting functions unless otherwise described.

570
571 To calculate the percent of cells per cluster from each sample, the number of cells from each
572 sample in a given cluster was calculated and normalized to the number of cells per sample. These
573 values were then normalized to the other replicate samples. Significantly enriched samples were
574 identified using a two-way ANOVA with Tukey's post hoc test and P values are reported in each
575 figure.

576

577 **Cytokine analysis**

578 Supernatants from tri-cultures were run on the Proinflammatory Panel 1 (human) (MSD K15049D)
579 according to manufacturer's instructions.

580 **Draq7 death kinetics in tri-culture**

581 2x treatments described in the previous section had Draq7 (abcam ab109202) added at 1:150. Cells
582 were treated as described and imaged once an hour on the incucyte S3. Images were analyzed on
583 the incucyte software.

584 **Ferroptosis induction in HAP1 cell lines**

585 *SEC24B* KO and isogenic control Hap1 cell lines (Horizon Discovery HZGHC001222c002 &
586 C631) were plated at 2.5×10^4 cells/ well of a 96 well plate in HAP1 media (Iscove's Modified
587 Dulbecco's Medium (IMDM) (Gibco 12440-053) + 20% FBS (Gibco A38400-01). 24hrs post
588 plating, cells were treated with 1600uM FeSO₄ + 1 μ M RSL3 for 24 hours depending on the
589 experiment. Cell death was tracked by Draq7 (abcam ab109202).

590 **Draq7 death kinetics for immortalized microglia and HAP1 cell lines**

591 Draq7 (abcam ab109202) was added to treatments at 1:300. Cells were imaged in the incucyte S3
592 once an hour. Images were analyzed on incucyte software.

593 **Genome-wide CRISPR screen sgRNA lentiviral library production**

594 Lenti-X 293T (Takarbio 632180) cells were thawed in complete Lenti-X 293T media (DMEM
595 (Millipore D5796) + 10% Tet-Free FBS (Takarbio 631101) + 1x pen/strep (Millipore TMS-AB2-
596 C)) on an uncoated T75 flask. Once cells reached 80% confluence, cells were re-plated at 1×10^6
597 cells per 10cm dish in 8mL Lenti-X 293T media onto 10 dishes. Cells were grown to 80-90%
598 confluence. Each dish was transduced with 1 vial of Guide-it Genome-Wide sgRNA Library
599 Transfection Mix (Takarbio 632650) as per manufacturer's instructions. 24hrs post-transduction,
600 and additional 6mL of media was added to each dish for a total of 14mL per dish. 48hrs post-
601 transduction supernatants were collected from each dish. Two dishes' supernatants were pooled,
602 creating 5 total libraries. 8mL of media was added back to each dish, and the supernatants were
603 stored at 4°C. 72hrs post-transduction, the remaining 8mL of supernatant was collected from each
604 dish and added to the respective stored supernatants for a total of 44mL per library. The libraries
605 were centrifuged at 4°C at 500xg for 10 min. 200uL was removed to determine viral titer, and the

606 remaining was aliquoted and stored at -80°C. Viral RNA was isolated with NucleoSpin RNA virus
607 (Takarabio 740956) according to manufacturer's instructions, provided in Guide-it CRISPR
608 Genome-Wide sgRNA Library System (Takarabio 632646). Viral titer was determined with Lenti-
609 X qRT-PCR titration kit (Takarabio 631235) according to manufacturer's instructions.

610 **Genome-wide CRISPR screen**

611 Human microglia cell line was plated in T150 flasks (BD Falcon 355001) at 20 million/flask in
612 25mL complete microglia media and placed in 37C 5% CO₂ incubator. 24hrs post plating,
613 puromycin (Takara bio 631305) was added at 5ug/mL. Cells were grown in 5ug/mL puromycin
614 for 11 days. A full media exchange was performed without puromycin. 4 days post-removal of
615 puromycin, Nunc non-treated T175 flasks (Thermo Scientific 159926) were coated with 9ug/mL
616 retromectin (Takara bio T110B) and incubated overnight at 4°C. The following day, retromectin
617 coating was removed, blocked in 2% BSA (Sigma A7030) for 30in at RT. Plates were washed 1x
618 with PBS. Plates were coated with sgRNA pool at 60 MOI for 6hrs in 37°C 5% CO₂ incubator.
619 After 6hrs, viral supernatants were removed and cells were added at 1.67x10⁷ cells per flask across
620 6 flasks for a total of 1x10⁸ cells. Cells were placed in 37°C 5% CO₂ incubator. 24hrs post-
621 transduction, cells were treated with 100ug/mL hygromycin B (Takara bio 631309). Cells were
622 exposed to 100ug/mL hygromycin B for 8 days. Cells were lifted as previously described and
623 plated to 20 Nunc EasYFlask 75cm (Thermo Fisher Scientific 156499) at 5x10⁶ cells per flask per
624 replicate. 24hrs post re-plating, cells were treated with 10x solutions (vehicle treatment or 1.6mM
625 FeSO₄ + 10uM RSL3) for either 8hr or 24hr. Post-treatment, cells were washed 2x with RT PBS
626 and media replaced with complete microglia media. 2 days post-treatment the vehicle control
627 flasks had DNA from 1x10⁸ cells per replicate isolated with Nucleobond CB 500 kit (Takara Bio
628 740509) according to manufacturer's instructions. The 8hr and 24 hr ferroptosis-treated cultures
629 were allowed to re-grow for 4-10 days. Once sufficiently re-grown, DNA from 1x10⁸ cells were
630 isolated with Nucleobond CB 500 kit. DNA was stored at -80°C.

631 **CRISPR screen analysis**

632 The sgRNA sequences were amplified using Guide-it™ CRISPR Genome-Wide Library PCR Kit
633 (Takara, 632651) and subjected to the high-throughput amplicon sequencing on NextSeq500. 20bp
634 of sgRNA sequences were first extracted using Cutadapt. The sgRNA counting and hit generation
635 were done in MAGeCK and the downstream analysis were performed by MAGeCKFlute. The
636 PCA plots were generated using edgeR and Glimma. Hits from the positive selection with a p
637 value < 0.05 from each condition were imported into and intersected in R studio. PANTHER was
638 used for the GO enrichment analysis. Each condition has two biological replicates.

639 **Screen of commercial ferroptosis-related compounds**

640 The human microglia cell line was plated at 1,000 cells/ well of a 384-well plate. 24 hours post-
641 plating the cells were co-treated with the commercial ferroptosis compound library (Selleckchem
642 L6400) at 10μM or 2μM, depending on the stock concentration of 10mM or 2mM, and 1600μM
643 FeSO₄ + 1μM RSL3. 10μM for 535 of the compounds and 2μM for 11 of the compounds. 24 hours
644 post-treatment, cell survivability was determined by cell titer glo (Promega G9241). Compounds
645 were tested in triplicate.

646 **Quantification and statistical analysis**

647 All quantification and statistical analyses were completed as described in the figure legends and
648 methods. In brief, tri-culture biological replicates were considered independently differentiated
649 cultures each with one to three technical replicates as individual wells. Statistical analysis across
650 conditions was measured using one- or two-way analysis of variance (ANOVA). Dunnett's,
651 Tukey's, or Sidak's post hoc test was used as appropriate as indicated in figure legends. For gene
652 expression change in scRNAseq or single Nucseq log-fold change cutoffs were >1.2 log fold and
653 $>.1$ log2fold respectively with adjusted p value <0.05 , as described in figure legends and methods.
654 For the genome-wide CRISPR screen, two independent viral pools were used across two replicate
655 cell cultures for each viral pool. For all experiments involving the SEC24B KO HAP1 line and its
656 isogenic control, each biological replicate was considered and as an independent culture. Unpaired
657 two-tail t test and one-way ANOVA with a Dunnett post hoc was used as indicated in the figure
658 legends. The compound screen was performed with three technical replicates. Data for tri-culture
659 death kinetics, FTH expression, and cell counts were log transformed to account for baseline shifts.
660 For all panels where statistical significance is indicated, $*p<0.05$, $**p<0.01$, $***p<0.001$, and
661 $****p<0.0001$. Bar graphs display individual data points and report the data as the means \pm SEM.

662 **Acknowledgements**

663 AMP PD Differential expression analysis: Meaghan Cogswell, Dongyu Liu, Katherine W. Klinger,
664 Stephen L. Madden, S. Pablo Sardi, Dinesh Kumar

665 AMP PD: Data used in the preparation of this article were obtained from the AMP PD Knowledge
666 Platform. For up-to-date information on the study, <https://www.amp-pd.org>. "AMP PD – a public-
667 private partnership – is managed by the FNIH and funded by Celgene, GSK, the Michael J. Fox
668 Foundation for Parkinson's Research, the National Institute of Neurological Disorders and Stroke,
669 Pfizer, Sanofi, and Verily.

670 AMP PD Cohort: Clinical data and biosamples used in preparation of this article were obtained
671 from the Parkinson's Progression Markers Initiative (PPMI), and the Parkinson's Disease
672 Biomarkers Program (PDBP).

673 PPMI – a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson's
674 Research and funding partners, including [list the full names of all of the PPMI funding partners
675 found at www.ppmi-info.org/fundingpartners]. The PPMI Investigators have not participated in
676 reviewing the data analysis or content of the manuscript. For up-to date information on the study,
677 visit www.ppmi-info.org.

678 Parkinson's Disease Biomarker Program (PDBP) consortium is supported by the National Institute
679 of Neurological Disorders and Stroke (NINDS) at the National Institutes of Health. A full list of
680 PDBP investigators can be found at <https://pdbl.ninds.nih.gov/policy>. The PDBP Investigators
681 have not participated in reviewing the data analysis or content of the manuscript.

682 For the Target ALS data, we would like to thank: The Target ALS Human Postmortem Tissue
683 Core, New York Genome Center for Genomics of Neurodegenerative Disease, Amyotrophic
684 Lateral Sclerosis Association and TOW Foundation, Discovery Bioinformatics Services, QIAGEN

685 Digital Insights (QIAGEN Discovery Bioinformatics Services) especially Tiantian Ren and
686 Hrisavgi Mangam. The Sanofi Translational Sciences Team especially John Green, Dominic
687 Cammarata, Cheng Zhu, Mindy Zhang, Michael Dufault, Yi-Chien Chang, Lin An, Deepak Rajpal,
688 and Katherine Klinger from Sanofi Translational Sciences.

689 **Funding**

690 Research support funds were received from Sanofi.

691 **Author Contributions**

692 Conceptualization: SKR, TRH

693 Methodology: SKR, TRH, DO

694 Investigation: SKR, TRH, YH, ET, LC, MS, SS, LG, CL, FP, EHJ, DK, MZ, JG, BZ, JP, JS, JCD,
695 DR, DO

696 Visualization: SKR, TRH, ET, EHJ, JP

697 Project administration: TRH, DO

698 Supervision: TRH, DO

699 Writing – original draft: SKR

700 Writing – review & editing: SKR, TRH, DO, MZ, ET, LC, EHJ

701 **Competing interests**

702 SKR, MZ, YH, ET, LC, MS, SS, LG, CL, FP, EHJ, DK, MZ, JG, BZ, JP, JS, JCD, DR, DO, and
703 TRH were employees of Sanofi at the time that their research was conducted.

704 **Data and materials availability**

705 All data associated with this study are present in the paper or Supplementary Materials. AMP-PD
706 data is available through the Terra platform by request and requires approval for access through
707 the AMP-PD data use agreement. RNA-seq data will be deposited in GEO Accession.

708 **References**

- 709 1. Song, N., et al., *Astroglial and microglial contributions to iron metabolism disturbance in*
710 *Parkinson's disease*. *Biochim Biophys Acta Mol Basis Dis*, 2018. **1864**(3): p. 967-973.
- 711 2. Rouault, T.A., *Iron metabolism in the CNS: implications for neurodegenerative diseases*. *Nat Rev*
712 *Neurosci*, 2013. **14**(8): p. 551-64.
- 713 3. Ward, P.G.D., et al., *Longitudinal evaluation of iron concentration and atrophy in the dentate*
714 *nuclei in friedreich ataxia*. *Movement Disorders*, 2019. **34**(3): p. 335-343.
- 715 4. Oakley, A.E., et al., *Individual dopaminergic neurons show raised iron levels in Parkinson disease*.
716 *Neurology*, 2007. **68**(21): p. 1820.
- 717 5. Jeong, S.Y., et al., *Dysregulation of iron homeostasis in the CNS contributes to disease*
718 *progression in a mouse model of amyotrophic lateral sclerosis*. *J Neurosci*, 2009. **29**(3): p. 610-9.
- 719 6. Andersen, H.H., K.B. Johnsen, and T. Moos, *Iron deposits in the chronically inflamed central*
720 *nervous system and contributes to neurodegeneration*. *Cellular and Molecular Life Sciences*,
721 2014. **71**(9): p. 1607-1622.
- 722 7. Kwan, J.Y., et al., *Iron Accumulation in Deep Cortical Layers Accounts for MRI Signal*
723 *Abnormalities in ALS: Correlating 7 Tesla MRI and Pathology*. *PLoS ONE*, 2012. **7**(4): p. e35241.

724 8. van Duijn, S., et al., *Cortical Iron Reflects Severity of Alzheimer's Disease*. J Alzheimers Dis, 2017.
725 9. Bishop, G.M., et al., *Accumulation of Non-Transferrin-Bound Iron by Neurons, Astrocytes, and*
726 *Microglia*. Neurotoxicity Research, 2011. **19**(3): p. 443-451.
727 10. Benarroch, E.E., *Brain iron homeostasis and neurodegenerative disease*. Neurology, 2009.
728 11. Proto, J.D., et al., *Disrupted microglial iron homeostasis in progressive multiple sclerosis*. bioRxiv,
729 2021: p. 2021.05.09.443127.
730 12. Absinta, M., et al., *A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis*.
731 Nature, 2021: p. 1-6.
732 13. Dixon, Scott J., et al., *Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death*. Cell,
733 2012. **149**(5): p. 1060-1072.
734 14. Burn, J. and P.F. Chinnery, *Neuroferritinopathy*. Seminars in Pediatric Neurology, 2006. **13**(3): p.
735 176-181.
736 15. Do Van, B., et al., *Ferroptosis, a newly characterized form of cell death in Parkinson's disease*
737 *that is regulated by PKC*. Neurobiol Dis, 2016. **94**: p. 169-78.
738 16. Chen, L., et al., *Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results*
739 *in Rapid Motor Neuron Degeneration and Paralysis*. J Biol Chem, 2015. **290**(47): p. 28097-28106.
740 17. Kapralov, A.A., et al., *Redox lipid reprogramming commands susceptibility of macrophages and*
741 *microglia to ferroptotic death*. Nature Chemical Biology, 2020. **16**(3): p. 278-290.
742 18. Ryan, S.K., et al., *Neuroinflammation and EIF2 Signaling Persist despite Antiretroviral Treatment*
743 *in an hiPSC Tri-culture Model of HIV Infection*. Stem Cell Reports, 2020. **14**(4): p. 703-716.
744 19. Ryan, S.K., K.L. Jordan-Sciutto, and S.A. Anderson, *Protocol for Tri-culture of hiPSC-Derived*
745 *Neurons, Astrocytes, and Microglia*. STAR Protoc, 2020. **1**(3): p. 100190.
746 20. Kagan, V.E., et al., *Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis*. Nat Chem
747 Biol, 2017. **13**(1): p. 81-90.
748 21. Marsh, S.E., et al., *Single Cell Sequencing Reveals Glial Specific Responses to Tissue Processing &*
749 *Enzymatic Dissociation in Mice and Humans*. bioRxiv, 2020. **46**(6): p. 2020.12.03.408542.
750 22. Andreatta, M. and S.J. Carmona, *UCell: Robust and scalable single-cell gene signature scoring*.
751 Computational and Structural Biotechnology Journal, 2021. **19**: p. 3796-3798.
752 23. Yang, W.S. and B.R. Stockwell, *Ferroptosis: Death by Lipid Peroxidation*. Trends in Cell Biology,
753 2016. **26**(3): p. 165-176.
754 24. Gipp, J.J., C. Chang, and R.T. Mulcahy, *Cloning and nucleotide sequence of a full-length cDNA for*
755 *human liver γ -glutamylcysteine synthetase*. Biochemical and Biophysical Research
756 Communications, 1992. **185**(1): p. 29-35.
757 25. Xie, Z., et al., *Gene Set Knowledge Discovery with Enrichr*. Current Protocols, 2021. **1**(3): p. e90.
758 26. Xie, Y., et al., *Ferroptosis: process and function*. Cell Death & Differentiation, 2016. **23**(3): p. 369-
759 379.
760 27. Poursaitidis, I., et al., *Oncogene-Selective Sensitivity to Synchronous Cell Death following*
761 *Modulation of the Amino Acid Nutrient Cystine*. Cell Reports, 2017. **18**(11): p. 2547-2556.
762 28. Yagoda, N., et al., *RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent*
763 *anion channels*. Nature, 2007. **447**(7146): p. 864-8.
764 29. Thomsen, M.S., et al., *Neurodegeneration with inflammation is accompanied by accumulation of*
765 *iron and ferritin in microglia and neurons*. Neurobiology of Disease, 2015. **81**: p. 108-118.
766 30. Reinert, A., et al., *Iron concentrations in neurons and glial cells with estimates on ferritin*
767 *concentrations*. BMC Neurosci, 2019. **20**(1): p. 25.
768 31. McLarnon, J.G., *Chemokine Interleukin-8 (IL-8) in Alzheimer's and Other Neurodegenerative*
769 *Diseases*. Journal of Alzheimers Disease & Parkinsonism, 2016. **6**(6): p. 1-4.
770
771

772 32. Sun, W.Y., et al., *Phospholipase iPLA2beta averts ferroptosis by eliminating a redox lipid death*
773 *signal*. *Nat Chem Biol*, 2021. **17**(4): p. 465-476.

774 33. Yan, N. and J. Zhang, *Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease*.
775 *Frontiers in Neuroscience*, 2020. **13**: p. 1443.

776 34. Angelova, P.R., et al., *Alpha synuclein aggregation drives ferroptosis: an interplay of iron,*
777 *calcium and lipid peroxidation*. *Cell Death Differ*, 2020. **27**(10): p. 2781-2796.

778 35. Li, J., et al., *Ferroptosis: past, present and future*. *Cell Death & Disease*, 2020. **11**(2): p. 88.

779 36. Jiang, X., B.R. Stockwell, and M. Conrad, *Ferroptosis: mechanisms, biology and role in disease*.
780 *Nat Rev Mol Cell Biol*, 2021. **22**(4): p. 266-282.

781 37. Lee, N.J., et al., *Potential role of iron in repair of inflammatory demyelinating lesions*. *Journal of*
782 *Clinical Investigation*, 2019. **129**(10): p. 4365-4376.

783 38. Wang, J., et al., *Consistent decreased activity in the putamen in Parkinson's disease: a meta-*
784 *analysis and an independent validation of resting-state fMRI*. *GigaScience*, 2018. **7**(6).

785 39. Liu, A., et al., *Decreased subregional specificity of the putamen in Parkinson's Disease revealed*
786 *by dynamic connectivity-derived parcellation*. *NeuroImage: Clinical*, 2018. **20**: p. 1163-1175.

787 40. Wu, J., et al., *Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling*.
788 *Nature*, 2019. **572**(7769): p. 402-406.

789 41. Tang, D., et al., *Ferroptosis: molecular mechanisms and health implications*. *Cell Res*, 2021. **31**(2):
790 p. 107-125.

791 42. Chu, B., et al., *ALOX12 is required for p53-mediated tumour suppression through a distinct*
792 *ferroptosis pathway*. *Nat Cell Biol*, 2019. **21**(5): p. 579-591.

793 43. Dixon, S.J., et al., *Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in*
794 *Nonapoptotic Cell Death*. *ACS Chemical Biology*, 2015. **10**(7): p. 1604-1609.

795 44. Doll, S., et al., *ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition*. *Nat*
796 *Chem Biol*, 2017. **13**(1): p. 91-98.

797 45. Zou, Y., et al., *Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in*
798 *ferroptosis*. *Nat Chem Biol*, 2020. **16**(3): p. 302-309.

799 46. Hayano, M., et al., *Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration*
800 *pathway and inhibits ferroptosis induced by cystine deprivation*. *Cell Death & Differentiation*,
801 2016. **23**(2): p. 270-278.

802 47. Bersuker, K., et al., *The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis*.
803 *Nature*, 2019. **575**(7784): p. 688-692.

804 48. Mi, H., et al., *Large-scale gene function analysis with the PANTHER classification system*. *Nature*
805 *Protocols*, 2013. **8**(8): p. 1551-1566.

806 49. Pagano, A., et al., *Sec24 Proteins and Sorting at the Endoplasmic Reticulum**. *Journal of*
807 *Biological Chemistry*, 1999. **274**(12): p. 7833-7840.

808 50. Helbig, L., et al., *BAY 87-2243, a novel inhibitor of hypoxia-induced gene activation, improves*
809 *local tumor control after fractionated irradiation in a schedule-dependent manner in head and*
810 *neck human xenografts*. *Radiation Oncology (London, England)*, 2014. **9**(1): p. 207.

811 51. Wolf, V.G., et al., *Octyl gallate, a food additive with potential beneficial properties to treat*
812 *Helicobacter pylori infection*. *Food & Function*, 2017. **8**(7): p. 2500-2511.

813 52. Barnes, N.M. and T. Sharp, *A review of central 5-HT receptors and their function*.
814 *Neuropharmacology*, 1999. **38**(8): p. 1083-1152.

815 53. Quintero-Villegas, A. and S.I. Valdés-Ferrer, *Role of 5-HT7 receptors in the immune system in*
816 *health and disease*. *Molecular Medicine*, 2020. **26**(1): p. 2.

817 54. Koeppen, A.H., et al., *The dentate nucleus in Friedreich's ataxia: the role of iron-responsive*
818 *proteins*. *Acta Neuropathol*, 2007. **114**(2): p. 163-73.

819 55. Yang, W.S., et al., *Peroxidation of polyunsaturated fatty acids by lipoxygenases drives*
820 *ferroptosis*. Proc Natl Acad Sci U S A, 2016. **113**(34): p. E4966-75.

821 56. Wendeler, M.W., J.P. Paccaud, and H.P. Hauri, *Role of Sec24 isoforms in selective export of*
822 *membrane proteins from the endoplasmic reticulum*. EMBO reports, 2007. **8**(3): p. 258-264.

823 57. Dixon, S.J., et al., *Pharmacological inhibition of cystine–glutamate exchange induces*
824 *endoplasmic reticulum stress and ferroptosis*. eLife, 2014. **3**: p. e02523.

825 58. Chen, L., et al., *Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease*
826 *of SOD1G93A mice*. Scientific Reports, 2021. **11**(1): p. 12890.

827 59. Hu, C.L., et al., *Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in*
828 *multiple sclerosis and experimental autoimmune encephalomyelitis*. Journal of Neurochemistry, 2019. **148**(3): p. 426-439.

829 60. Desvergne, B., et al., *Chronic iron overload inhibits protein secretion by adult rat hepatocytes*
830 *maintained in long-term primary culture*. (0171-9335 (Print)).

831 61. Nunez, M.T. and P. Chana-Cuevas, *New Perspectives in Iron Chelation Therapy for the Treatment*
832 *of Neurodegenerative Diseases*. Pharmaceuticals (Basel), 2018. **11**(4).

833 62. Hao, Y., et al., *Integrated analysis of multimodal single-cell data*. Cell, 2021. **184**(13): p. 3573-
834 3587.e29.

835 63. Love, M.I., W. Huber, and S. Anders, *Moderated estimation of fold change and dispersion for*
836 *RNA-seq data with DESeq2*. Genome Biology, 2014. **15**(12): p. 550.

837

838