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 101 

Abstract: 102 
 103 

Background 104 

The neurobiological mechanisms underlying the effects of delta-9-tetrahydrocannabinol 105 

(THC) remain unclear. Here, we examined the spatial acute effect of THC on human on 106 

regional brain activation or blood flow (hereafter called ‘activation signal’) in a ‘core’ network 107 

of brain regions that subserve a multitude of processes. We also investigated whether the 108 

neuromodulatory effects of THC are related to the local expression of its key molecular 109 

target, cannabinoid-type-1 (CB1R) but not type-2 (CB2R) receptor. 110 

Methods 111 

A systematic search was conducted of acute THC-challenge studies using fMRI, PET, and 112 
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arterial spin labelling in accordance with established guidelines. Using pooled summary data 113 

from 372 participants, tested using a within-subject repeated measures design under 114 

experimental conditions, we investigated the effects of a single dose (6-42mg) of THC, 115 

compared to placebo, on brain signal. 116 

Findings 117 

As predicted, THC augmented the activation signal, relative to placebo, in the anterior 118 

cingulate, superior frontal cortices, middle temporal and middle and inferior occipital gyri, 119 

striatum, amygdala, thalamus, and cerebellum crus II and attenuated it in the middle 120 

temporal gyrus (spatially distinct from the cluster with THC-induced increase in activation 121 

signal), superior temporal gyrus, angular gyrus, precuneus, cuneus, inferior parietal lobule, 122 

and the cerebellum lobule IV/V. Using post-mortem gene expression data from an 123 

independent cohort from the Allen Human Brain atlas, we found  a direct relationship 124 

between the magnitude of THC-induced brain signal change, indexed using pooled effect-125 

size estimates, and CB1R gene expression, a proxy measure of CB1R protein distribution, 126 

but not CB2R expression. A dose-response relationship was observed with THC dose in 127 

certain brain regions.  128 

Interpretation  129 

These meta-analytic findings shed new light on the localisation of the effects of THC in the 130 

human brain, suggesting that THC has neuromodulatory effects in regions central to many 131 

cognitive tasks and processes, with greater effects in regions with higher levels of CB1R 132 

expression.  133 
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1.0 Introduction 134 

The extract of Cannabis sativa contains more than 140 different phytocannabinoids(1). 135 

Delta-9-tetrahydrocannabinol (THC) is the most abundant and extensively investigated 136 

cannabinoid in human and preclinical studies. While there is growing interest in the 137 

therapeutic potential of THC(2–11), there is also considerable evidence of its 138 

psychotomimetic effects in healthy(12–17) and vulnerable people(18), as well as those with 139 

schizophrenia(19),  and an association between THC content of recreational cannabis with a 140 

greater risk of onset(20,21) and relapse(22) of psychotic disorders. Thus, there is a pressing 141 

need to better understand the effects of THC on the human brain.  142 

A substantial number of studies have investigated the effects of THC-rich cannabis or THC 143 

isolate using single photon emission tomography (SPECT)/ positron emission tomography 144 

(PET) to measure cerebral blood flow (rCBF)(23–31) at rest, and functional MRI (fMRI) to 145 

measure the blood oxygen level dependent haemodynamic signal during cognitive 146 

activation(32,33) to index brain function. However, conflicting results from these studies 147 

have not resulted in a clearer understanding as evident from two recent systematic 148 

reviews(33,34).  149 

Further, the molecular underpinnings of the effects of THC on human brain function remain 150 

unclear. As the cannabinoid-type-1 receptor (CB1R), the main molecular target for THC is 151 

present throughout the brain(35,36), systemic administration of THC cannot selectively 152 

target receptors only in those brain regions involved in discrete cognitive tasks. Therefore, 153 

consistent with recent neuroimaging evidence that a core network of brain regions subserve 154 

a wide range of cognitive processes(37,38), it is likely that the diverse behavioural and 155 

neuroimaging effects of THC are, at least in part, mediated by effects on such a core 156 

network of brain regions. However, whether THC has neuromodulatory effects, that is, 157 

effects on regional brain activation or blood flow (hereafter, referred collectively  as 158 

‘activation signal’) that occur across diverse (as opposed to specific/unique) cognitive tasks 159 
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and at rest on a common ‘core’ network of brain regions that subserve a multitude of 160 

processes, has never been tested.  161 

Therefore, to answer these questions, here we first meta-analysed original studies that had 162 

examined the acute effects of THC, relative to placebo, on brain function in humans using 163 

PET, SPECT, fMRI, and arterial spin labelling (ASL), with a view to investigate which brain 164 

regions are modulated acutely by a single dose of THC in humans.  We hypothesised that a 165 

single dose of THC will modulate the function of a distributed set of brain regions that are 166 

engaged across a range of cognitive tasks in line with previous literature(37,38). Specifically, 167 

we predicted THC effects on dorsal attention (superior parietal lobule extending to the 168 

intraparietal sulcus, middle temporal complex and frontal eye fields), frontoparietal (lateral 169 

prefrontal cortex, temporoparietal junction, inferior parietal lobule and anterior cingulate 170 

cortex) and visual (striate and extrastriate cortex) networks as well as on the amygdala, 171 

striatum, thalamus and lateral cerebellum. Next, we used gene expression data from the 172 

Allen Human Brain atlas(39,40), to investigate whether the effect of THC on the activation 173 

signal across different brain regions, as quantified using a meta-analytic approach, was 174 

directly associated with regional CB1R(41) and CB2R(42) gene expression. Previous studies 175 

have linked gene expression levels in the human brain with anatomical(43) and 176 

functional(44,45) indices measured using neuroimaging techniques. In accordance with 177 

current understanding about the molecular targets of THC(46) we hypothesised that the 178 

pooled estimate of the effect of THC on the activation signal across different brain regions 179 

will be directly associated with CB1R but not CB2R gene expression in these brain regions.  180 

181 
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 182 

2.0 Methods 183 

The protocol for the meta-analytic synthesis was registered in PROSPERO 184 

(CRD42019145453) and we followed recommendations for neuroimaging meta-185 

analyses(47). A detailed description of the methods are reported in Supplementary Methods. 186 

2.1 Search Strategy  187 

A systematic search of published human literature was conducted within Ovid MEDLINE, 188 

Embase, Global Health, and PsychINFO databases in accordance with the Cochrane 189 

Handbook(48) and MOOSE guidelines(49). Search terms are detailed in Supplementary 190 

Methods. 191 

2.2 Eligibility Criteria 192 

Studies were included if they (i) assessed the effect of THC on brain function using an acute 193 

drug challenge paradigm in humans, (ii) used fMRI, PET, SPECT or arterial spin labelling 194 

(ASL) to measure brain function, (iii) conducted whole-brain analysis (thus excluding small 195 

volume correction and region of interest analyses), (iv) applied consistent statistical 196 

thresholding across brain regions, and (v) published in a peer-reviewed journal. Additional 197 

details are reported in Supplementary Methods.  198 

2.3 Data Extraction 199 

For all articles that met the inclusion criteria, authors or corresponding authors were 200 

contacted by email with a request for providing whole brain statistical maps. Some studies 201 

used multiple task contrasts, therefore, combined maps with reduced variance were 202 

calculated to avoid dependent data in the analyses(50). Where maps were unavailable, 203 

whole-brain coordinates with their t-statistic were manually extracted from the published 204 

article for the conditions of interest (THC<PLB and THC>PLB). See Supplementary Methods 205 

for further details.  206 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466757
http://creativecommons.org/licenses/by-nd/4.0/


 8 

2.4 Data analysis 207 

Voxel-wise meta-analyses of regional brain differences were conducted using the anisotropic 208 

effect-size version of the Seed-based Mapping (AES-SDM 5.15) software package 209 

(https://www.sdmproject.com/)(51,52). For studies for which we could not obtain the map, 210 

AES-SDM uses an anisotropic non-normalized Gaussian kernel to recreate an effect-size 211 

map and an effect-size variance map for the contrast between THC and placebo from peak 212 

coordinates and effect sizes for each individual fMRI study. Once contrasts were obtained 213 

for all studies, a mean map was created by performing a voxel-wise calculation of the 214 

random-effects mean of the study maps (measured as Hedge’s g), weighted by sample size 215 

and variance of each study and between-study heterogeneity. Statistical significance was 216 

determined using standard randomisation tests(53). For details on QH statistics, Egger’s test, 217 

and jack-knife leave-one-out sensitivity analysis see Supplementary Methods.  218 

2.5 Meta regression analysis: Dose 219 

A multiple meta-regression analysis was carried out using approaches described 220 

previously(54) using a significance threshold of P< .0005(51,54). We set out to investigate 221 

the association between THC dose and pooled effect-size (Hedge’s g). To control for the 222 

confounding effect of the route of THC administration, we also entered the route of THC 223 

delivery (inhalation via respiratory tract versus oral capsule) as categorical predictor. Cook’s 224 

distance(55) was calculated to identify any studies that were a potential outlier. 225 

2.6 Whole brain correlation with CNR1 and CNR2 gene expression  226 

Detailed description of the analytic pipeline including processing of genetic data from the 227 

Allen Human Brain Atlas is reported in Supplementary Methods. In summary, from the 228 

neuroimaging data synthesis, using SDM, we extracted the effect-size estimates of the voxel 229 

of the centroid for each of the 78 regions of the Desikan-Killiany(56) atlas from our main 230 

analysis. Then, we carried out linear regression analysis with the SDM effect-size estimates 231 

for brain regions in the Desikan-Killiany(56) atlas as the dependent variable and the 232 
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corresponding average CNR1 and CNR2 gene expression values derived from the Allen 233 

Human Brain Atlas as the predictor variables using Python 3.7.9(57). We followed the 234 

recommendations put forward by Arnatkevic̆iūtė  and colleagues with regard to processing 235 

mRNA microarray expression data from the Allen Human Brain Atlas(39) and used the 236 

package abagen(58) to conduct a reproducible workflow in processing and preparing the 237 

data.  238 

2.7 Subgroup analysis 239 

To better understand sources of heterogeneity, we conducted subgroup analysis. When 240 

three or more contrasts were available, we looked at more homogeneous groups based on 241 

type of imaging activation paradigm, as well as methodological variables that may have 242 

influenced the results focusing on fMRI based studies, those that administered THC isolate, 243 

and scanner magnetic field strength. 244 

245 
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 246 

3.0 Results 247 

3.1 Included Studies 248 

A final set of 22 manuscripts met the study inclusion criteria (Table 1)(12,15,67–249 

76,59,77,78,60–66). Of these manuscripts, 17 used fMRI(12,15,72–76,59–62,67–70), 4 250 

PET(63–66), and 1 used arterial spin labelling(71). Figure 1 shows the PRISMA 251 

flowchart(79). Twenty-three separate contrasts, derived from 22 manuscripts, were included 252 

in the analysis due to some studies reporting multiple contrasts (see Supplementary 253 

Methods). Therefore, the final sample size of participants, including those with multiple 254 

contrasts, was 372 (372 under THC condition vs 370 under placebo condition). Our key 255 

analysis included 16 studies that administered THC isolate(12,15,72,73,75–78,59–62,67,69–256 

71) and 6 that administered THC-rich cannabis(63–66,68,74).  257 

 258 

 259 
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Figure 1. PRISMA flowchart of search strategy for meta-analysis 260 

Studies included cognitive paradigms that engaged reward(61,67,68), memory(15,69,77), 261 

emotion(62,70,72), attentional salience(12,63,64,66,74,78) and sensory 262 

processing(59,60,75,76). One arterial spin labelling study did not use a cognitive task(71).  263 
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Table 1. Studies included in meta-analysis. T=Tesla, INH=inhalation, OC= oral capsule, VPA= verbal paired associates task, MIDT= monetary incentive delay task, NA= not available, DB= double 264 
blind, PC= placebo controlled, R= randomised, WS= within subject, ‘= minute, A= alcohol, C= cannabis, D= illicit drug, T= tobacco, NAD= nicotine addiction disorder 265 

Author 
Ro
ute Mode Paradigm 

Baseline 
condition 

Scanner 
strengt

h (T) Design 
Sample 

size 

Mean 
age 
(SD) 

Time to 
scanning 

Pre-scan  
screens Dose 

THC plasma 
level (SD) 

ng/ml 

Battistella(74) INH fMRI 
Visuo-motor 

tacking 
Visually track 

a target 1.5 
DB, PC, 
R, WS 31 

24.1 
(3) 45' A,C,D,T 42mg  9.3 

Bhattacharyya(12) OC fMRI 
Attentional 
processing 

Oddball vs 
standard 1.5 

DB, PC, 
R, WS 15 

26.7 
(5.7) 1-2h A,C,D 

10 
mg 

1h= 3.9 (7.3) 
2h=5.1 (5.6) 

Bhattacharyya(15) OC fMRI VPA 

Presented 
with pairs of 
words- state 
if font is the 

same 1.5 
DB, PC, 
R, WS 15 

26.7 
(5.7) 1-2h A,C,D 

10 
mg 

1h= 3.9 (7.3) 
2h=5.1 (5.6) 

Bhattacharyya(72) OC 

[11C]MeP
PEP PET 

& fMRI Fear processing 
Neutral 

expression 1.5 
DB, PC, 
R, WS 14 

23.8 
(4.5) 1-2h A,C,D,T 10mg NA 

Bhattacharyya(73) OC fMRI Go/No-Go 
Oddball vs 
standard 1.5 

DB, PC, 
R, WS 36 

26.0 
(5.5) 1-2h A,C,D,T 10mg 

1h= 3.9 (7.3) 
2h=5.1 (5.6) 

Bossong(69) INH fMRI 
Sternberg Item 

Recognition 

Load 1 of 
memory 
paradigm 3 

DB, PC, 
R, WS 13 

21.6 
(2.1) 5' A,C,D,T 6mg 70 (40.6) 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466757
http://creativecommons.org/licenses/by-nd/4.0/


 13 

Bossong(70) INH fMRI 
Happy/Fearful 
Face Matching 

Sensorimotor 
control 

condition 
(geometric 

shape 
matching) 3 

DB, PC, 
R, WS 14 

21.5 
(2.5) 5' A,C,D,T 6mg 82.3 (45.9) 

Bossong(71) INH ASL Resting NA 3 
DB, PC, 
R, WS 33 

22.6 
(4.3) 5' A,C,D,T 6mg 84.9 (43.5) 

Bossong(77) INH fMRI 
Associative 

memory Pictural cue 3 
DB, PC, 
R, WS 13 

21.6 
(2.1) 5’ A,C,T 6mg 58.1 (31.3) 

Bossong(78) INH fMRI 

Continuous 
performance 

task Watch stimuli 3 
DB, PC, 
R, WS 20 

22.9 
(4.9) 5’ A,C,T 6mg 

78.4627.0 
ng/ml 

Freeman(68) INH fMRI Musical Reward 
Scrambled 

sound 1.5 
DB, PC, 
R, WS 16 

26.2 
(7.3) 5' C,D 8mg NA 

Jansma(67) INH fMRI MIDT 
No monetary 

reward 3 
DB, PC, 
R, WS 10 

25.6 
(2.1) 5' A,C,T 6mg 

82.8 HC 82.8 
NAD 

Lee(75) OC fMRI 
Capsaicin 

induced pain No pain 3 
DB, PC, 
R, WS 12 24- 34 3h A, C.D,T 15mg 

3.5h= 1-1.2 
(estimated) 
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O’Leary(65) INH 
H2150 
PET 

Self-paced 
counting task NA 1.5 

DB, PC, 
NR, WS 12 

21.7 
(1.4) 10-15' C 20mg 

Occasional=17
.6 (8.7) 

Chronic=35.8 
(19.7) 

O'Leary(64) INH  
H2150 
PET 

Auditory 
Attention Task NA 1.5 

DB, PC, 
NR, WS 12 

30.5 
(8.6) 10-15' C,D 20mg 

2.6 (3.6)-37.1 
(27.1) 

O'Leary(66) INH   

H2150 
PET 

Auditory 
Attention Task NA 1.5 

DB, PC, 
NR, WS 12 

23.5 
(4.3) 10-15' C,D 20mg 

10.3 (2.5)-
107.2 (59.7) 

O'Leary(63) INH  
H2150 
PET 

Auditory 
Attention Task NA 1.5 

DB, PC, 
R, WS 5 

26.2 
(8) 10-15' C 20mg NA 

Rabinak(62) OC fMRI 
Emotional 

processing task 
Neutral 

expression 3 
DB, PC, 
R, WS 14 

20.8 
(2.6) 2h A,C,D 

7.5m
g NA 

van Hell(61) INH fMRI MIDT 
No monetary 

reward 3 
DB, PC, 
R, WS 11 

21.7 
(2.3) 5' A,C,T 6mg 60.1 (33.7) 

Walter(76) OC fMRI Visual DSDT 
Control visual 

cue 3 
DB, PC, 
R, WS 13 

25.5 
(2.3) 2h A, C.D,T 20mg NA 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466757
http://creativecommons.org/licenses/by-nd/4.0/


 15 

Walter(76) OC fMRI 
Nociceptive pain  

DSDT 
Different  

pain intensity 3 
DB, PC, 
R, WS 22 

26.1 
(2.9) 2h A, C.D,T 20mg NA 

Walter(60) OC fMRI 
Olfactory and 
pain response 

Different 
gaseous 
stimuli 3 

DB, PC, 
R, WS 15 

26.6 
(2.9) 2h A,C,D,T 20mg NA 

Winton-Brown(59) OC fMRI 
Auditory and 

visual stimulation 

Independent 
of sensory 

load 1.5 
DB, PC, 
R, WS 14 

26.7 
(5.7) 1-2h A,C,D 

10 
mg 

1h= 3.9 (7.3) 
2h=5.1 (5.6) 

 266 
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3.2 Main meta-analysis results: Effects of THC vs placebo 267 

There were 9 regions of significantly increased activation signal (Table 2, Figure 2) under 268 

THC compared with placebo. Seven regions showed a significant attenuation of activation 269 

signal under THC compared with placebo (Table 2, Figure 2). 270 

 271 
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Table 2. Main meta-analytic findings showing areas of increased and attenuated activation signal  following THC, compared with placebo, obtained from the main multimodal meta-analysis 272 

  MNI coordinate  SDM-Z P Voxels Region Egger's 
Test P 
value 

  x y z           

THC>PLB 6 62 -4 3.172 <0.001 434 R medial orbital superior frontal gyrus (extending to R medial & orbital superior frontal gyrus, 
R anterior cingulate/ paracingulate gyri, R striatum, L medial orbital superior frontal gyrus)  

0.044 

  6 34 -12 2.631 0.001 196 R medial orbital superior frontal gyrus (extending to the L+R gyrus rectus, L+R anterior 
cingulate/ paracingulate gyri, L medial orbital superior frontal gyrus) 

0.067  

  48 -76 20 2.883 <0.001 166 R middle temporal gyrus (extending to R middle occipital gyrus, R middle temporal gyrus) 0.961 

  38 -76 -48 2.411 0.001 152 R cerebellum crus II (extending to R lobule VIII/VIIB) 0.303  

  32 -88 -8 2.451 <0.001 76 R inferior occipital gyrus (extending to R middle occipital gyrus) 0.720 

  24 0 -16 2.042 0.002 47 R amygdala (extending to R temporal pole, superior temporal gyrus, R hippocampus) 0.069  

  -12 -74 44 3.367 <0.001 37 L cerebellum lobule VIIB (extending to L lobule VIIB/ VIII)  0.654 

  -24 -24 54 2.177 0.001 19 L precentral gyrus (adjacent to deep white matter) 0.688  

  0 -20 -12 2.134 0.001 16 L thalamus 0.817 

THC<PLB -44 -12 8 -3.117 0.001 1118 L insula (extending to L Rolandic operculum, L temporal pole, L superior temporal gyrus, L 
Heschl gyrus, L postcentral gyrus, L supramarginal gyrus, L inferior frontal gyrus opercular 
part) 

 0.037 

 
48 -8 10 -2.429 <0.001 474 R Rolandic operculum (extending to R insula, R Heschl gyrus, R postcentral gyrus, R 

temporal pole, R superior temporal gyrus, R supramarginal gyrus) 
0.044 

  4 -72 28 -2.48 0.001 204 R cuneus cortex (extending to R precuneus, L precuneus, L cuneus cortex)  0.238 

  -56 0 20 -2.349 0.001 86 L precentral gyrus (extending to L inferior frontal gyrus, opercular part, L postcentral gyrus, L 
Rolandic operculum) 

0.971 

  64 -16 -4 -2.323 0.001 65 R superior temporal gyrus (extending to R middle temporal gyrus)  0.135 

  -56 60 40 -2.273 0.002 38 L angular gyrus (extending to L inferior parietal gyri, excluding supamarginal gyri) 0.902 

  4 -60 -8 -2.333 0.001 26 Cerebellum lobule IV/V  0.318 
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 273 

274 
Figure 2. Differences in brain signal following THC compared with placebo obtained from main multimodal meta-analysis. 275 
Orange= areas of increased activation signal (THC>placebo). Blue= areas of attenuated activation signal (THC<placebo).  276 
Left side of the brain sections indicates the left side of the brain; A= anterior. 277 

 278 

3.3 Sensitivity, Heterogeneity, and Publication Bias 279 

Jack-knife sensitivity analysis showed that out of a total of 368 clusters, 87% survived 280 

following repeat analyses leaving one study out at a time (Supplementary Table 1). Funnel 281 

plots were created and examined for each cluster. Egger’s tests were performed to look for 282 

publication bias (see Table 2 and Supplementary Results). Visual inspection of overlap of 283 

meta-analytic activation maps and heterogeneity maps indicated no areas within our main 284 

analysis were significantly influenced by heterogeneity. 285 
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Different imaging modalities may be a source of heterogeneity. To ensure these factors 286 

minimally influenced our core findings, we conducted subgroup analysis of fMRI studies 287 

(Supplementary Table 7). There was significant overlap between the findings of our main 288 

results and those from the fMRI subgroup alone (Supplementary Figure 25).  289 

Results of subgroup analyses based on cognitive paradigm and methodological variables 290 

are reported in Supplementary Tables 2-9. 291 

3.4 Meta-regression analysis: Dose 292 

Meta-regression analysis identified brain regions where there was a significant correlation 293 

between the pooled effect-size estimates of THC effect on activation signal and THC dose 294 

(6mg to 42mg) (Table 3, Figure 3). 295 

Table 3. Meta-regression results showing regions where THC dose was associated with modulation of brain signal under 296 
THC compared with the placebo condition 297 

 MNI coordinate SDM-Z P Voxels Region 

 x y z     

Positive 
correlation 

4 38 -4 5.044 <0.001 1592 

R anterior cingulate/ paracingulate gyri 
(extending to L+R medial orbital and medial 
superior frontal gyrus, L anterior cingulate/ 
paracingulate gyri, L+R gyrus rectus, L+R 
olfactory cortex) 

 4 -32 60 3.132 <0.001 214 

R paracingulate lobule (extending to R+L 
paracentral lobule, R+L precuneus, R 
supplementary motor area, L median cingulate, 
R median cingulate) 

 44 -10 60 3.042 0.001 36 R precentral gyrus  

Negative 
correlation 

-8 -18 12 -2.837 <0.001 125 L thalamus (extending to L caudate nucleus) 

 12 2 70 -2.890 <0.001 93 
R supplementary motor area (extending to R 
dorsolateral superior frontal gyrus) 

 -48 -54 0 -2.930 <0.001 65 
L middle temporal gyrus (extending to L inferior 
temporal gyrus) 

 14 -8 14 -2.828 <0.001 52 R thalamus (extending to R caudate nucleus) 

 -48 -66 0 -2.552 <0.001 29 
L middle temporal gyrus (extending to L inferior 
and middle occipital gyrus) 

 -54 22 8 -2.438 0.001 26 
R inferior frontal gyrus, triangular part 
(extending to opercular part)   

 298 
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 299 
Figure 3. Meta-regression analysis showing relationship between THC dose (mg) and Hedge's g effect-size estimate of brain 300 
signal modulation by THC compared to placebo.  Bubble size= inverse of effect-size variance. Bubble intensity= overlap of 301 
contrasts.  302 
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a) Effect-size estimates from right anterior cingulate/ paracingulate cluster 303 
b) Effect-size estimates from left thalamus cluster 304 
c) Effect-size estimates from right supplementary motor area cluster 305 
d) Effect-size estimates from right thalamus cluster 306 
 307 

Cook’s distance(55) estimate identified the study by Battistella et al.,(74) as being a potential 308 

outlier (further discussed in Supplementary Discussion 4).  309 

3.5 Whole brain correlation with CNR1 and CNR2 gene expression  310 

Cortical and sub-cortical spatial expression of CNR1, CNR2 expression, and Hedge’s g 311 

effect size estimate of brain regions parcellated across the Desikan-Killiany(56) atlas are 312 

displayed in Figure 4. Multiple regression analysis indicated that there was a significant 313 

direct relationship between Hedge’s g effect-size estimate and CNR1 (t=2.415, P=0.018, 314 

coefficient= 0.122, 95%CI= 0.021- 0.223, Figure 5) but not CNR2 gene expression (t=-0.036, 315 

P=0.971, coefficient= -0.002, 95%CI= -0.131- 0.126) across the 78 brain regions of the atlas.  316 
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 317 

 318 

Figure 4. Cortical spatial gene expression of (A) CNR1 , (B) CNR2 , and (C) Hedge’s g effect size estimate derived from the 319 
main meta-analytic findings  displaying regions of increased activation (THC>PLB), and attenuated activation (THC<PLB). 320 
Sub-cortical spatial distribution of (D) CNR1, (E) CNR2, and (F)  Hedge’s g effect size estimate derived from the main meta-321 
analytic findings displaying regions of increased activation (THC>PLB), and attenuated activation (THC<PLB). Figures 322 
produced using ggseg(80) in R studio(81) parcellated across 78 regions of the Desikan–Killiany brain atlas(56). Hedge’s g 323 
was extracted from the centroid of each brain parcel. Gene expression data was obtained from the Allen Human Brain 324 
Atlas(82). 325 

 326 
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 327 

 328 

 329 

Figure 5. Scatterplot showing the relationship between CNR1 expression values and Hedge’s g effect size estimate of THC 330 
effect compared with placebo across the brain (based on parcellation implemented in the Desikan Killiany atlas). P=0.018, 331 
t= 2.415, R2= 0.073, coefficient= 0.122, 95%CI= 0.021- 0.223). Shaded band around the regression line indicates 95% 332 
confidence interval.  333 

 334 

 335 

 336 

 337 

  338 

339 
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 340 

4.0 Discussion 341 

In this meta-analytic synthesis, we examined the acute effect of THC isolate and THC-rich 342 

cannabis (hereafter referred to as THC) on human brain activation signal measured  using 343 

different neuroimaging modalities including fMRI(12,15,72–76,59–62,67–70), PET(63–66), 344 

and ASL(71). Using pooled summary data from 372 participants who were tested using a 345 

within-subject repeated measures design under experimental conditions acutely (5 minutes 346 

to 3 hours after administration) following a single dose of THC (ranging from 6 – 42 mg) or 347 

placebo administered orally or through inhalation, we tested whether a single dose of THC 348 

modulates the brain activation signal in a ‘core’ network of brain regions that subserve a 349 

multitude of processes. When combining data from all studies, we found that THC 350 

modulated the function of 16 brain regions. Within our predicted network of regions, THC 351 

augmented the activation signal relative to placebo in the anterior cingulate, superior frontal 352 

cortices, temporal pole, middle temporal and middle and inferior occipital gyri, striatum, 353 

amygdala, thalamus, and cerebellum crus II. There was also an attenuation of activation 354 

signal under the influence of THC in the temporal pole, middle temporal gyrus (spatially 355 

distinct from the cluster with THC-induced increase in activation signal), superior temporal 356 

gyrus, angular gyrus, precuneus, cuneus, inferior parietal lobule, and the cerebellum lobule 357 

IV/V. Further, we also found that THC augmented activation signal in regions that we had 358 

not predicted, including the paracingulate and precentral gyri (adjacent to deep white 359 

matter), gyrus rectus and the hippocampus. An attenuating effect of THC was also observed 360 

in other brain regions that we had not predicted in the insula, Rolandic operculum, Heschl’s 361 

gyrus, precentral (spatially distinct from increase in activation signal) and postcentral gyri 362 

(see Table 2 for coordinates).  363 

Our second prediction was that the acute effect of THC on activation signal across different 364 

brain regions will be directly associated with pooled CNR1 but not CNR2 gene expression 365 

data from a set of 6 unrelated healthy volunteers (who did not take part in the neuroimaging 366 
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studies reported here) in the same brain regions, as obtained from the Allen Human Brain 367 

atlas. As predicted, we found that there was a direct relationship between the effect of THC 368 

on brain activation signal with CNR1 gene expression, a proxy measure of CB1R 369 

distribution.  370 

One of the main motivations for the present study and the analytic approach adopted here 371 

was to answer questions that previous individual studies in isolation could not address. 372 

Consistent with this objective, we identified that at the meta-analytic level, THC has effects 373 

on components of a common core network of brain regions, that has been described as a 374 

‘domain-general’ core network that facilitates cross-task cognitive function(37). In their study, 375 

Shine et al. performed principal component analysis (PCA)(83) to identify an ‘integrative 376 

core’ network of brain regions engaged across seven diverse cognitive tasks(37) which 377 

spatially mapped onto dorsal attention, frontoparietal and visual networks as well as the 378 

striatum, thalamus, cerebellum and amygdala(37).  The spatial overlap between the 379 

modulatory effects of THC that we report here and the regions within the domain-general 380 

core described by Shine and colleagues, which subserve a multitude of cognitive processes, 381 

might explain the diverse cognitive, behavioural, and neural effects of THC. Previous 382 

experimental work in cannabis users has shown that cannabis has wide-ranging effects on 383 

regional brain activation across numerous tasks(84), as well as effects on behavioural 384 

performance during those tasks(34). Please see Supplementary Discussion 1 for additional 385 

discussion regarding the effects of THC on activation signal in brain regions that were not 386 

part of the hypothesised core network, and results of analyses of cognitively homogenous 387 

subgroups of studies.  388 

From a neurobiological perspective, effects on a common core network of brain regions 389 

makes sense: THC acts primarily via partial agonism of CB1R(36,46) which are ubiquitously 390 

distributed throughout the brain, with particularly high densities in cortex,  amygdala, basal 391 

ganglia outflow tracts and cerebellum(35). THC does not selectively target CB1R only in 392 

those brain regions involved in a specific cognitive task, and instead has effects on receptors 393 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466757
http://creativecommons.org/licenses/by-nd/4.0/


 26 

throughout the brain. In turn, THC affects the neurophysiology of these brain regions which 394 

subserve a multitude of cognitive and emotional processes. This was further demonstrated 395 

by our fMRI subgroup analysis (see Supplementary Results). We combined cognitive-396 

specific effects from fMRI paradigms and intoxication-related effects from THC. Overlap in 397 

the brain substrates modulated by THC was observed across our main findings and the fMRI 398 

subgroup analyses.  Shine and colleagues also demonstrated that the dynamic function of 399 

this integrative core is strongly influenced by the modulatory effect of neurotransmitters, and 400 

propose that any dysregulation in neurotransmitter systems, for example, in the context of 401 

neuropsychiatric disorders or as induced through pharmacological manipulation, could 402 

conceivably facilitate or impede neurotransmission through actions on this integrative 403 

core(37). In this regard, the endocannabinoid system itself may be an exemplary candidate, 404 

poised at the synapse as a critical mediator of neural homeostasis and signalling: 405 

endocannabinoids are released postsynaptically and via retrograde signalling, bind to 406 

presynaptic CB1 where they inhibit neurotransmitter release. The administration of 407 

exogenous cannabinoids such as THC may subvert this on-demand fine-tuning by 408 

indiscriminately binding CB1 receptors, and therefore may cause widespread alterations to 409 

synaptic signalling resulting in impairment of the function of the common core network which, 410 

in turn may explain the diverse acute and long-term behavioural and cognitive 411 

consequences of cannabis use(21,85,86).  412 

Our second major finding was that the effect of THC on the pooled effect-size of regional 413 

brain signal was related to a proxy measure of regional CB1R density. The multiple linear 414 

regression model identified no significant relationship between CNR2 gene expression (a 415 

proxy measure of CB2R(36) with the effect size estimate). This is perhaps unsurprising as 416 

studies have shown that CB2 receptors are predominately distributed peripherally(87) with 417 

limited central distribution. Moreover, THC has less efficacy in its partial agonistic affinity to 418 

CB2 receptors compared with CB1 receptors in vitro(46). The brain regions found to be 419 

modulated by THC in our core analysis, including the anterior cingulate, amygdala, striatum, 420 
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and cerebellum are known to be rich in CB1R(35). We show, for the first time, that a linear 421 

relationship exists between the effect of THC on increases in brain signal (as indexed by the 422 

pooled effect-size estimate) and CNR1 gene expression levels (as estimated on the basis of 423 

an average from 6 post-mortem brains of healthy individuals obtained from Allen Human 424 

Brain Atlas), a proxy measure of CB1R availability, across the whole brain(41). These 425 

findings are important as the CB1R is the main molecular target of THC in the human brain, 426 

where it has partial-agonist effects(46,88). Our findings thus provide novel —albeit indirect— 427 

evidence that the effects of THC on human brain function are in part related to local CB1 428 

receptor availability, and complement independent experimental evidence that the acute 429 

effects of THC on human behaviour may be mediated by its effects on CB1R. See 430 

Supplementary Discussion 2 for additional discussion on CB1R mediating the effects of 431 

THC.   432 

Our third key result was the identification of a relationship between THC dose and the effect-433 

size estimates of activation signal across a range of brain substrates. We found a positive 434 

relationship between THC dose and its effects in the anterior cingulate cluster (comprising 435 

the dorsal and ventral regions), and a negative relationship in the supplementary motor area. 436 

These findings are significant as the anterior cingulate is believed have a role in social 437 

evaluation(89) and cognition(90), with functional alterations in individuals with high trait 438 

anxiety(91) and psychosis(92,93). Therefore, the dose-dependent effect of THC on the 439 

ventral cingulate may explain the findings of THC challenge studies(13,94) that investigated 440 

cognitive and psychological outcomes and have reported an association between higher 441 

doses of THC and increased psychotomimetic, anxiolytic, and cognitive impairments. 442 

Cannabis use has also been associated with motor impairments(95) with epidemiological 443 

reports suggesting a dose-related risk of motor vehicle accidents(96). However, one study 444 

has reported increased supplementary motor cortex activation with reduced psychomotor 445 

performance in chronic cannabis users during visual motor tasks(97). Interestingly, greater 446 

undirected functional connectivity between the dorsal anterior cingulate and supplementary 447 
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motor area has been observed during proactive vs reactive motor control task 448 

conditions(98). Together, these findings suggest that the dose-response effects of THC on 449 

psychomotor dysfunction may, in part, be mediated by its effects on these brain regions, 450 

which could have implications for understanding how THC impairs the operation of heavy 451 

machinery in everyday life in cannabis users or patients prescribed THC-based medications. 452 

Emotional and cognition-agnostic effects of THC and its relationship with frontal cortical 453 

executive functioning as well as top-down control of subcortical structures are further 454 

discussed in Supplementary Discussion 3. Although, in our dose-response analyses, we 455 

identified the study by Battistella et al.,(74) as being a potential outlier, we refrained from 456 

excluding the study from dose-response association analyses in accordance with current 457 

thinking in this regard (please see further elaboration of this in Supplementary Discussion 4) 458 

and instead advise appropriate caution in the interpretation of the dose-response results.   459 

Limitations 460 

The results presented here are to be considered in light certain key limitations. Firstly, our 461 

results are based on summary data from individual studies rather than individual participant 462 

level imaging data from the same participants carrying out multiple different cognitive and 463 

emotional processing tasks as well as actual baseline CB1R data in the same participants 464 

measured using PET imaging. This would have allowed more direct testing of our 465 

hypotheses. While future endeavours should aim to carry out such studies, conducting them 466 

in over 300 participants as reported herein is likely to be challenging both in terms of 467 

resources as well as logistics. The present meta-analysis, in contrast, provides an early 468 

insight into these questions using existing data. Another key caveat to be considered while 469 

interpreting our meta-analytic results is related to the issue of heterogeneity across the 470 

included studies. While this is inherent to any meta-analytic endeavour, our steps to examine 471 

the extent to which they may have influenced our results indicate that they are unlikely to 472 

have substantially affected our key conclusions. Limitations are discussed in greater detail in 473 

Supplementary Discussion, Methodological considerations & heterogeneity.   474 
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Notwithstanding these limitations, the three major findings of the current study extend 475 

previous evidence on the effects of THC to specifically link (a) the molecular effects of THC 476 

at the CB1 receptor to (b) its physiological (haemodynamic) effects on regional brain signal 477 

activation, which together may underlie (c) the acute cognitive and behavioural 478 

consequences of cannabis use. Only through meta-analytic synthesis of 22 studies across 479 

372 participants in computational unison were we able to demonstrate that the pleiotropic 480 

effects of THC at each of these levels of observation may be related to its molecular target—481 

the CB1 receptor. Here we present a potential mechanistic explanation for the pleiotropic 482 

effects of THC by reporting its effects on a ‘integrative core’ of brain regions engaged across 483 

diverse cognitive and emotional processes(37), where its effects are in turn related to the 484 

availability of its main central molecular target across the brain.  485 

 486 

 487 

 488 

489 
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