

1 Task-independent acute effects of delta-9- 2 tetrahydrocannabinol on human brain function and 3 its relationship with cannabinoid receptor gene 4 expression: a neuroimaging meta-regression 5 analysis

6

7 **Authors:**

8 Brandon Gunasekera¹, Cathy Davies¹, Grace Blest-Hopley¹, Mattia Veronese^{2,3}, Nick F.
9 Ramsey⁴, Matthijs G. Bossong⁵, Joaquim Radua^{1,6,7}, Sagnik Bhattacharyya^{1*}, CBE
10 Consortium**

11

12 **Author Affiliations:**

13 ¹Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience,
14 King's College London, UK

15 ²Department of Neuroimaging, Centre for Neuroimaging Sciences, King's College London,
16 UK

17 ³Department of Information Engineering, University of Padua, Italy

18 ⁴Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University,
19 Utrecht, The Netherlands

20 ⁵Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The
21 Netherlands

22 ⁶Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM,
23 Barcelona, Spain

24 ⁷Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

26 **** Cannabinoid Brain Effects (CBE) Consortium:**

27 Charlotte Pretzsch⁸, Gráinne McAlonan⁹, Carmen Walter^{10,11}, Jörn Lötsch¹⁰, Tom
28 Freeman^{12,13,14}, Valerie Curran¹², Giovanni Battistella¹⁵, Eleonora Fornari^{16,17}, Geraldo
29 Busatto Filho¹⁸, José Alexandre de Souza Crippa¹⁹, Fabio Duran²⁰, Antonio Waldo Zuardi²¹

30 ⁸ Department of Forensic and Neurodevelopmental Sciences, Kings' College London,
31 London, United Kingdom

32 ⁹ Sackler Institute for Translational Neurodevelopment, Department of Forensic and
33 Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's
34 College London, UK

35 ¹⁰ Institute of Clinical Pharmacology, Goethe - University, Theodor Stern Kai 7, 60590
36 Frankfurt am Main, Germany

37 ¹¹ Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group
38 Translational Medicine and Pharmacology (IME-TMP), Theodor – Stern - Kai 7, 60590
39 Frankfurt am Main, Germany

40 ¹² Clinical Psychopharmacology Unit, University College London, United Kingdom
41 ¹³ National Addiction Centre, Institute of Psychiatry, Psychology and Neuroscience, London,
42 UK
43 ¹⁴ Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath,
44 Bath, UK
45 ¹⁵ Memory and Aging Center, Department of Neurology, University of California, San
46 Francisco, CA 94158, USA
47 ¹⁶ CIBM (Centre d'Imagerie Biomédicale), Centre Hospitalier Universitaire Vaudois (CHUV)
48 MR section, Lausanne, Switzerland,
49 ¹⁷ Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University
50 of Lausanne, Lausanne, Switzerland
51 ¹⁸ Departamento de Psiquiatria da Faculdade de Medicina da USP
52 ¹⁹ Faculdade de Medicina de Ribeirão Preto
53 ²⁰ Pesquisador Científico do Laboratório de Neuroimagem em Psiquiatria, Hospital das
54 Clínicas da
55 ²¹ School of Medicine of Ribeirão Preto, University of São Paulo
56

57 ***Corresponding Author:**

58 Professor Sagnik Bhattacharyya MBBS, MD, PhD
59 Department of Psychosis Studies, Box P067
60 Institute of Psychiatry, Psychology &
61 Neuroscience, De Crespigny Park, London SE5 8AF, UK
62 Tel: (44)20 7848 0955
63 Fax: (44)20 7848 0976
64 Email: sagnik.2.bhattacharyya@kcl.ac.uk

65
66 **Word Count: 3500**

67 **Short title:** Acute effects of THC on the human brain

68 **Keywords:** cannabis, THC, tetrahydrocannabinol, PET, fMRI, neuroimaging, systematic,
69 meta-analysis, reward, memory, attention

70 **Acknowledgments and Disclosures:** SB is supported by grants from the Medical
71 Research Council, UK; NIHR, UK; Wellcome trust; European Commission; Dowager
72 Countess Eleanor Peel trust; Psychiatry Research trust; Parkinson's UK; Rosetrees Trust;
73 Alzheimer's Research UK. SB has participated in advisory boards for or received honoraria
74 as a speaker from Reckitt Benckiser, EmpowerPharm/SanteCannabis and Britannia
75 Pharmaceuticals. All of these honoraria were received as contributions toward research
76 support through King's College London, and not personally. SB also has an ongoing
77 collaboration with Beckley Canopy Therapeutics/ Canopy Growth (investigator initiated
78 research) wherein they are supplying study drug for free for charity (Parkinson's UK) and
79 NIHR (BRC) funded research. MV is funded by the National Institute for Health Research

80 Biomedical Research Centre at South London and Maudsley National Health Service
81 Foundation Trust and King's College London, and by the Wellcome Trust Digital Award
82 215747/Z/19/Z. MV has received consulting honoraria from GSK. The views expressed are
83 those of the authors and not necessarily those of the NHS, the NIHR or the Department of
84 Health.

85 **Conflict of Interest Statement:** There are no known conflicts of interest associated with this
86 publication and no significant financial support for this work that could have influenced its
87 outcome other than those declared in the manuscript.

88 **Contributions:**

89 Conception and Design: Bhattacharyya
90 Data acquisition: Gunasekera, Davies, Bhattacharyya, Bossong, Ramsey, CBE
91 collaborators
92 Statistical analysis: Gunasekera, Radua, Veronese, Blest-Hopley, (overseen by
93 Bhattacharyya)
94 Data interpretation: Gunasekera, Davies, Bhattacharyya
95 Drafting of the manuscript: Gunasekera, Davies, Bhattacharyya
96 Critical revision of the manuscript for important intellectual content: Gunasekera, Davies,
97 Bhattacharyya, Blest-Hopley, Bossong, Ramsey, Radua, Veronese
98 Obtained funding: Not applicable
99 Technical support: Gunasekera, Blest-Hopley, Bhattacharyya, Radua, Veronese

100

101

102 **Abstract:**

103

104 *Background*

105 The neurobiological mechanisms underlying the effects of delta-9-tetrahydrocannabinol
106 (THC) remain unclear. Here, we examined the spatial acute effect of THC on human on
107 regional brain activation or blood flow (hereafter called 'activation signal') in a 'core' network
108 of brain regions that subserve a multitude of processes. We also investigated whether the
109 neuromodulatory effects of THC are related to the local expression of its key molecular
110 target, cannabinoid-type-1 (CB1R) but not type-2 (CB2R) receptor.

111 *Methods*

112 A systematic search was conducted of acute THC-challenge studies using fMRI, PET, and

113 arterial spin labelling in accordance with established guidelines. Using pooled summary data
114 from 372 participants, tested using a within-subject repeated measures design under
115 experimental conditions, we investigated the effects of a single dose (6-42mg) of THC,
116 compared to placebo, on brain signal.

117 *Findings*

118 As predicted, THC augmented the activation signal, relative to placebo, in the anterior
119 cingulate, superior frontal cortices, middle temporal and middle and inferior occipital gyri,
120 striatum, amygdala, thalamus, and cerebellum crus II and attenuated it in the middle
121 temporal gyrus (spatially distinct from the cluster with THC-induced increase in activation
122 signal), superior temporal gyrus, angular gyrus, precuneus, cuneus, inferior parietal lobule,
123 and the cerebellum lobule IV/V. Using post-mortem gene expression data from an
124 independent cohort from the Allen Human Brain atlas, we found a direct relationship
125 between the magnitude of THC-induced brain signal change, indexed using pooled effect-
126 size estimates, and CB1R gene expression, a proxy measure of CB1R protein distribution,
127 but not CB2R expression. A dose-response relationship was observed with THC dose in
128 certain brain regions.

129 *Interpretation*

130 These meta-analytic findings shed new light on the localisation of the effects of THC in the
131 human brain, suggesting that THC has neuromodulatory effects in regions central to many
132 cognitive tasks and processes, with greater effects in regions with higher levels of CB1R
133 expression.

134 **1.0 Introduction**

135 The extract of *Cannabis sativa* contains more than 140 different phytocannabinoids(1).
136 Delta-9-tetrahydrocannabinol (THC) is the most abundant and extensively investigated
137 cannabinoid in human and preclinical studies. While there is growing interest in the
138 therapeutic potential of THC(2–11), there is also considerable evidence of its
139 psychotomimetic effects in healthy(12–17) and vulnerable people(18), as well as those with
140 schizophrenia(19), and an association between THC content of recreational cannabis with a
141 greater risk of onset(20,21) and relapse(22) of psychotic disorders. Thus, there is a pressing
142 need to better understand the effects of THC on the human brain.

143 A substantial number of studies have investigated the effects of THC-rich cannabis or THC
144 isolate using single photon emission tomography (SPECT)/ positron emission tomography
145 (PET) to measure cerebral blood flow (rCBF)(23–31) at rest, and functional MRI (fMRI) to
146 measure the blood oxygen level dependent haemodynamic signal during cognitive
147 activation(32,33) to index brain function. However, conflicting results from these studies
148 have not resulted in a clearer understanding as evident from two recent systematic
149 reviews(33,34).

150 Further, the molecular underpinnings of the effects of THC on human brain function remain
151 unclear. As the cannabinoid-type-1 receptor (CB1R), the main molecular target for THC is
152 present throughout the brain(35,36), systemic administration of THC cannot selectively
153 target receptors only in those brain regions involved in discrete cognitive tasks. Therefore,
154 consistent with recent neuroimaging evidence that a core network of brain regions subserve
155 a wide range of cognitive processes(37,38), it is likely that the diverse behavioural and
156 neuroimaging effects of THC are, at least in part, mediated by effects on such a core
157 network of brain regions. However, whether THC has neuromodulatory effects, that is,
158 effects on regional brain activation or blood flow (hereafter, referred collectively as
159 ‘activation signal’) that occur across diverse (as opposed to specific/unique) cognitive tasks

160 and at rest on a common 'core' network of brain regions that subserve a multitude of
161 processes, has never been tested.

162 Therefore, to answer these questions, here we first meta-analysed original studies that had
163 examined the acute effects of THC, relative to placebo, on brain function in humans using
164 PET, SPECT, fMRI, and arterial spin labelling (ASL), with a view to investigate which brain
165 regions are modulated acutely by a single dose of THC in humans. We hypothesised that a
166 single dose of THC will modulate the function of a distributed set of brain regions that are
167 engaged across a range of cognitive tasks in line with previous literature(37,38). Specifically,
168 we predicted THC effects on dorsal attention (superior parietal lobule extending to the
169 intraparietal sulcus, middle temporal complex and frontal eye fields), frontoparietal (lateral
170 prefrontal cortex, temporoparietal junction, inferior parietal lobule and anterior cingulate
171 cortex) and visual (striate and extrastriate cortex) networks as well as on the amygdala,
172 striatum, thalamus and lateral cerebellum. Next, we used gene expression data from the
173 Allen Human Brain atlas(39,40), to investigate whether the effect of THC on the activation
174 signal across different brain regions, as quantified using a meta-analytic approach, was
175 directly associated with regional CB1R(41) and CB2R(42) gene expression. Previous studies
176 have linked gene expression levels in the human brain with anatomical(43) and
177 functional(44,45) indices measured using neuroimaging techniques. In accordance with
178 current understanding about the molecular targets of THC(46) we hypothesised that the
179 pooled estimate of the effect of THC on the activation signal across different brain regions
180 will be directly associated with CB1R but not CB2R gene expression in these brain regions.

181

182

183 **2.0 Methods**

184 The protocol for the meta-analytic synthesis was registered in PROSPERO
185 (CRD42019145453) and we followed recommendations for neuroimaging meta-
186 analyses(47). A detailed description of the methods are reported in Supplementary Methods.

187 **2.1 Search Strategy**

188 A systematic search of published human literature was conducted within Ovid MEDLINE,
189 Embase, Global Health, and PsychINFO databases in accordance with the Cochrane
190 Handbook(48) and MOOSE guidelines(49). Search terms are detailed in Supplementary
191 Methods.

192 **2.2 Eligibility Criteria**

193 Studies were included if they (i) assessed the effect of THC on brain function using an acute
194 drug challenge paradigm in humans, (ii) used fMRI, PET, SPECT or arterial spin labelling
195 (ASL) to measure brain function, (iii) conducted whole-brain analysis (thus excluding small
196 volume correction and region of interest analyses), (iv) applied consistent statistical
197 thresholding across brain regions, and (v) published in a peer-reviewed journal. Additional
198 details are reported in Supplementary Methods.

199 **2.3 Data Extraction**

200 For all articles that met the inclusion criteria, authors or corresponding authors were
201 contacted by email with a request for providing whole brain statistical maps. Some studies
202 used multiple task contrasts, therefore, combined maps with reduced variance were
203 calculated to avoid dependent data in the analyses(50). Where maps were unavailable,
204 whole-brain coordinates with their t-statistic were manually extracted from the published
205 article for the conditions of interest (THC<PLB and THC>PLB). See Supplementary Methods
206 for further details.

207 **2.4 Data analysis**

208 Voxel-wise meta-analyses of regional brain differences were conducted using the anisotropic
209 effect-size version of the Seed-based Mapping (AES-SDM 5.15) software package
210 (<https://www.sdmproject.com/>)(51,52). For studies for which we could not obtain the map,
211 AES-SDM uses an anisotropic non-normalized Gaussian kernel to recreate an effect-size
212 map and an effect-size variance map for the contrast between THC and placebo from peak
213 coordinates and effect sizes for each individual fMRI study. Once contrasts were obtained
214 for all studies, a mean map was created by performing a voxel-wise calculation of the
215 random-effects mean of the study maps (measured as Hedge's g), weighted by sample size
216 and variance of each study and between-study heterogeneity. Statistical significance was
217 determined using standard randomisation tests(53). For details on Q_H statistics, Egger's test,
218 and jack-knife leave-one-out sensitivity analysis see Supplementary Methods.

219 **2.5 Meta regression analysis: Dose**

220 A multiple meta-regression analysis was carried out using approaches described
221 previously(54) using a significance threshold of $P < .0005$ (51,54). We set out to investigate
222 the association between THC dose and pooled effect-size (Hedge's g). To control for the
223 confounding effect of the route of THC administration, we also entered the route of THC
224 delivery (inhalation via respiratory tract versus oral capsule) as categorical predictor. Cook's
225 distance(55) was calculated to identify any studies that were a potential outlier.

226 **2.6 Whole brain correlation with CNR1 and CNR2 gene expression**

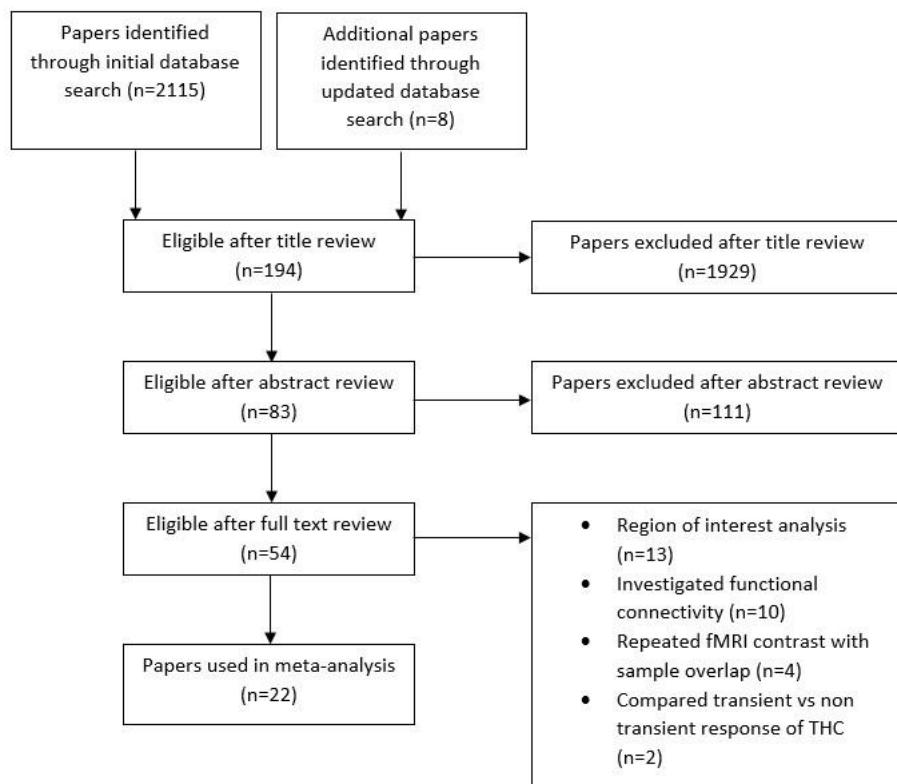
227 Detailed description of the analytic pipeline including processing of genetic data from the
228 Allen Human Brain Atlas is reported in Supplementary Methods. In summary, from the
229 neuroimaging data synthesis, using SDM, we extracted the effect-size estimates of the voxel
230 of the centroid for each of the 78 regions of the Desikan-Killiany(56) atlas from our main
231 analysis. Then, we carried out linear regression analysis with the SDM effect-size estimates
232 for brain regions in the Desikan-Killiany(56) atlas as the dependent variable and the

233 corresponding average CNR1 and CNR2 gene expression values derived from the Allen
234 Human Brain Atlas as the predictor variables using Python 3.7.9(57). We followed the
235 recommendations put forward by Arnatkevičiūtė and colleagues with regard to processing
236 mRNA microarray expression data from the Allen Human Brain Atlas(39) and used the
237 package *abagen*(58) to conduct a reproducible workflow in processing and preparing the
238 data.

239 **2.7 Subgroup analysis**

240 To better understand sources of heterogeneity, we conducted subgroup analysis. When
241 three or more contrasts were available, we looked at more homogeneous groups based on
242 type of imaging activation paradigm, as well as methodological variables that may have
243 influenced the results focusing on fMRI based studies, those that administered THC isolate,
244 and scanner magnetic field strength.

245


246

247 **3.0 Results**

248 **3.1 Included Studies**

249 A final set of 22 manuscripts met the study inclusion criteria (Table 1)(12,15,67–
250 76,59,77,78,60–66). Of these manuscripts, 17 used fMRI(12,15,72–76,59–62,67–70), 4
251 PET(63–66), and 1 used arterial spin labelling(71). Figure 1 shows the PRISMA
252 flowchart(79). Twenty-three separate contrasts, derived from 22 manuscripts, were included
253 in the analysis due to some studies reporting multiple contrasts (see Supplementary
254 Methods). Therefore, the final sample size of participants, including those with multiple
255 contrasts, was 372 (372 under THC condition vs 370 under placebo condition). Our key
256 analysis included 16 studies that administered THC isolate(12,15,72,73,75–78,59–62,67,69–
257 71) and 6 that administered THC-rich cannabis(63–66,68,74).

258

259

260 *Figure 1. PRISMA flowchart of search strategy for meta-analysis*
261 Studies included cognitive paradigms that engaged reward(61,67,68), memory(15,69,77),
262 emotion(62,70,72), attentional salience(12,63,64,66,74,78) and sensory
263 processing(59,60,75,76). One arterial spin labelling study did not use a cognitive task(71).

Table 1. Studies included in meta-analysis. T=Tesla, INH=inhalation, OC= oral capsule, VPA= verbal paired associates task, MIDT= monetary incentive delay task, NA= not available, DB= double blind, PC= placebo controlled, R= randomised, WS= within subject, '=' minute, A= alcohol, C= cannabis, D= illicit drug, T= tobacco, NAD= nicotine addiction disorder

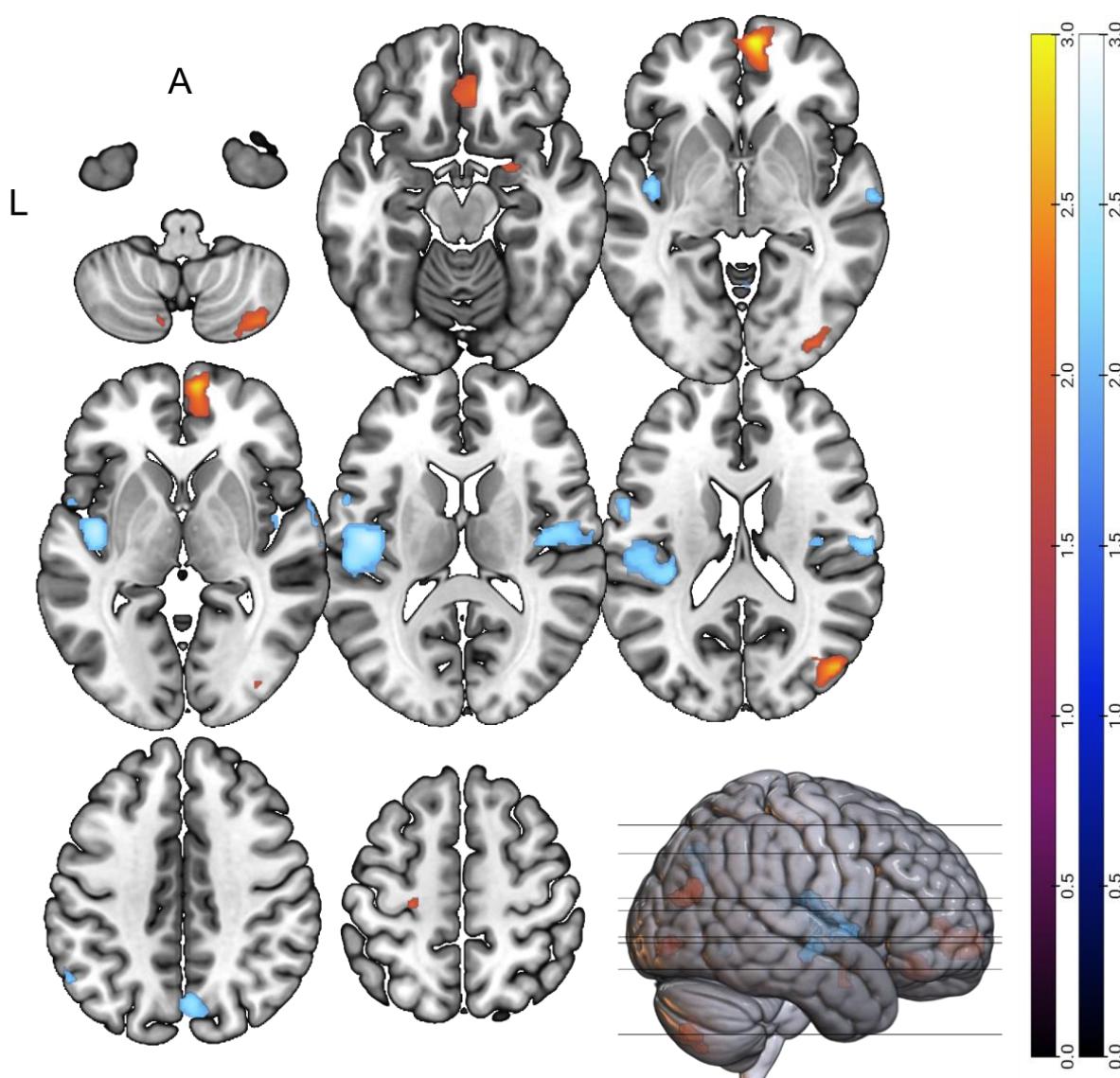
Author	Route	Mode	Paradigm	Baseline condition	Scanner strength (T)	Design	Sample size	Mean age (SD)	Time to scanning	Pre-scan screens	Dose	THC plasma level (SD) ng/ml
Battistella(74)	INH	fMRI	Visuo-motor tracking	Visually track a target	1.5	DB, PC, R, WS	31	24.1 (3)	45'	A,C,D,T	42mg	9.3
Bhattacharyya(12)	OC	fMRI	Attentional processing	Oddball vs standard	1.5	DB, PC, R, WS	15	26.7 (5.7)	1-2h	A,C,D	10 mg	1h= 3.9 (7.3) 2h=5.1 (5.6)
Bhattacharyya(15)	OC	fMRI	VPA	Presented with pairs of words- state if font is the same	1.5	DB, PC, R, WS	15	26.7 (5.7)	1-2h	A,C,D	10 mg	1h= 3.9 (7.3) 2h=5.1 (5.6)
Bhattacharyya(72)	OC	[11C]MeP PEP PET & fMRI	Fear processing	Neutral expression	1.5	DB, PC, R, WS	14	23.8 (4.5)	1-2h	A,C,D,T	10mg	NA
Bhattacharyya(73)	OC	fMRI	Go/No-Go	Oddball vs standard	1.5	DB, PC, R, WS	36	26.0 (5.5)	1-2h	A,C,D,T	10mg	1h= 3.9 (7.3) 2h=5.1 (5.6)
Bossong(69)	INH	fMRI	Sternberg Item Recognition	Load 1 of memory paradigm	3	DB, PC, R, WS	13	21.6 (2.1)	5'	A,C,D,T	6mg	70 (40.6)

<i>Bossong(70)</i>	INH	fMRI	Happy/Fearful Face Matching	Sensorimotor control condition (geometric shape matching)	3	DB, PC, R, WS	14	21.5 (2.5)	5'	A,C,D,T	6mg	82.3 (45.9)
<i>Bossong(71)</i>	INH	ASL	Resting	NA	3	DB, PC, R, WS	33	22.6 (4.3)	5'	A,C,D,T	6mg	84.9 (43.5)
<i>Bossong(77)</i>	INH	fMRI	Associative memory	Pictural cue	3	DB, PC, R, WS	13	21.6 (2.1)	5'	A,C,T	6mg	58.1 (31.3)
<i>Bossong(78)</i>	INH	fMRI	Continuous performance task	Watch stimuli	3	DB, PC, R, WS	20	22.9 (4.9)	5'	A,C,T	6mg	78.4627.0 ng/ml
<i>Freeman(68)</i>	INH	fMRI	Musical Reward	Scrambled sound	1.5	DB, PC, R, WS	16	26.2 (7.3)	5'	C,D	8mg	NA
<i>Jansma(67)</i>	INH	fMRI	MIDT	No monetary reward	3	DB, PC, R, WS	10	25.6 (2.1)	5'	A,C,T	6mg	82.8 HC 82.8 NAD
<i>Lee(75)</i>	OC	fMRI	Capsaicin induced pain	No pain	3	DB, PC, R, WS	12	24- 34	3h	A, C,D,T	15mg	3.5h= 1-1.2 (estimated)

O'Leary(65)	INH	H2150 PET	Self-paced counting task	NA	1.5	DB, PC, NR, WS	12	21.7 (1.4)	10-15'	C	20mg	Occasional=17 .6 (8.7) Chronic=35.8 (19.7)	
O'Leary(64)	INH	H2150 PET	Auditory Attention Task	NA	1.5	DB, PC, NR, WS	12	30.5 (8.6)	10-15'	C,D	20mg	2.6 (3.6)-37.1 (27.1)	
O'Leary(66)	INH	H2150 PET	Auditory Attention Task	NA	1.5	DB, PC, NR, WS	12	23.5 (4.3)	10-15'	C,D	20mg	10.3 (2.5)-107.2 (59.7)	
O'Leary(63)	INH	H2150 PET	Auditory Attention Task	NA	1.5	DB, PC, R, WS	5	26.2 (8)	10-15'	C	20mg	NA	
Rabinak(62)	OC	fMRI	Emotional processing task	Neutral expression	3	DB, PC, R, WS	14	20.8 (2.6)	2h	A,C,D	7.5mg	NA	
van Hell(61)	INH	fMRI	MIDT	No monetary reward	3	DB, PC, R, WS	11	21.7 (2.3)	5'	A,C,T	6mg	60.1 (33.7)	
Walter(76)	OC	fMRI	Visual DSDT	Control visual cue	3	DB, PC, R, WS	13	25.5 (2.3)	2h	A, C,D,T	20mg	NA	

Walter(76)	OC	fMRI	Nociceptive pain DSDT	Different pain intensity	3	DB, PC, R, WS	22	26.1 (2.9)	2h	A, C,D,T	20mg	NA
Walter(60)	OC	fMRI	Olfactory and pain response	Different gaseous stimuli	3	DB, PC, R, WS	15	26.6 (2.9)	2h	A,C,D,T	20mg	NA
Winton-Brown(59)	OC	fMRI	Auditory and visual stimulation	Independent of sensory load	1.5	DB, PC, R, WS	14	26.7 (5.7)	1-2h	A,C,D	10 mg	1h= 3.9 (7.3) 2h=5.1 (5.6)

266


267 **3.2 Main meta-analysis results: Effects of THC vs placebo**

268 There were 9 regions of significantly increased activation signal (Table 2, Figure 2) under
269 THC compared with placebo. Seven regions showed a significant attenuation of activation
270 signal under THC compared with placebo (Table 2, Figure 2).

271

	MNI coordinate				SDM-Z	P	Voxels	Region	Egger's Test P value
	x	y	z						
THC>PLB	6	62	-4	3.172	<0.001	434	R medial orbital superior frontal gyrus (extending to R medial & orbital superior frontal gyrus, R anterior cingulate/ paracingulate gyri, R striatum, L medial orbital superior frontal gyrus)	0.044	
	6	34	-12	2.631	0.001	196	R medial orbital superior frontal gyrus (extending to the L+R gyrus rectus, L+R anterior cingulate/ paracingulate gyri, L medial orbital superior frontal gyrus)	0.067	
	48	-76	20	2.883	<0.001	166	R middle temporal gyrus (extending to R middle occipital gyrus, R middle temporal gyrus)	0.961	
	38	-76	-48	2.411	0.001	152	R cerebellum crus II (extending to R lobule VIII/VIIB)	0.303	
	32	-88	-8	2.451	<0.001	76	R inferior occipital gyrus (extending to R middle occipital gyrus)	0.720	
	24	0	-16	2.042	0.002	47	R amygdala (extending to R temporal pole, superior temporal gyrus, R hippocampus)	0.069	
	-12	-74	44	3.367	<0.001	37	L cerebellum lobule VIIB (extending to L lobule VIIB/ VIII)	0.654	
	-24	-24	54	2.177	0.001	19	L precentral gyrus (adjacent to deep white matter)	0.688	
	0	-20	-12	2.134	0.001	16	L thalamus	0.817	
THC<PLB	-44	-12	8	-3.117	0.001	1118	L insula (extending to L Rolandic operculum, L temporal pole, L superior temporal gyrus, L Heschl gyrus, L postcentral gyrus, L supramarginal gyrus, L inferior frontal gyrus opercular part)	0.037	
	48	-8	10	-2.429	<0.001	474	R Rolandic operculum (extending to R insula, R Heschl gyrus, R postcentral gyrus, R temporal pole, R superior temporal gyrus, R supramarginal gyrus)	0.044	
	4	-72	28	-2.48	0.001	204	R cuneus cortex (extending to R precuneus, L precuneus, L cuneus cortex)	0.238	
	-56	0	20	-2.349	0.001	86	L precentral gyrus (extending to L inferior frontal gyrus, opercular part, L postcentral gyrus, L Rolandic operculum)	0.971	
	64	-16	-4	-2.323	0.001	65	R superior temporal gyrus (extending to R middle temporal gyrus)	0.135	
	-56	60	40	-2.273	0.002	38	L angular gyrus (extending to L inferior parietal gyri, excluding supramarginal gyri)	0.902	
	4	-60	-8	-2.333	0.001	26	Cerebellum lobule IV/V	0.318	

273

274
275
276
277

Figure 2. Differences in brain signal following THC compared with placebo obtained from main multimodal meta-analysis. Orange= areas of increased activation signal (THC>placebo). Blue= areas of attenuated activation signal (THC<placebo). Left side of the brain sections indicates the left side of the brain; A= anterior.

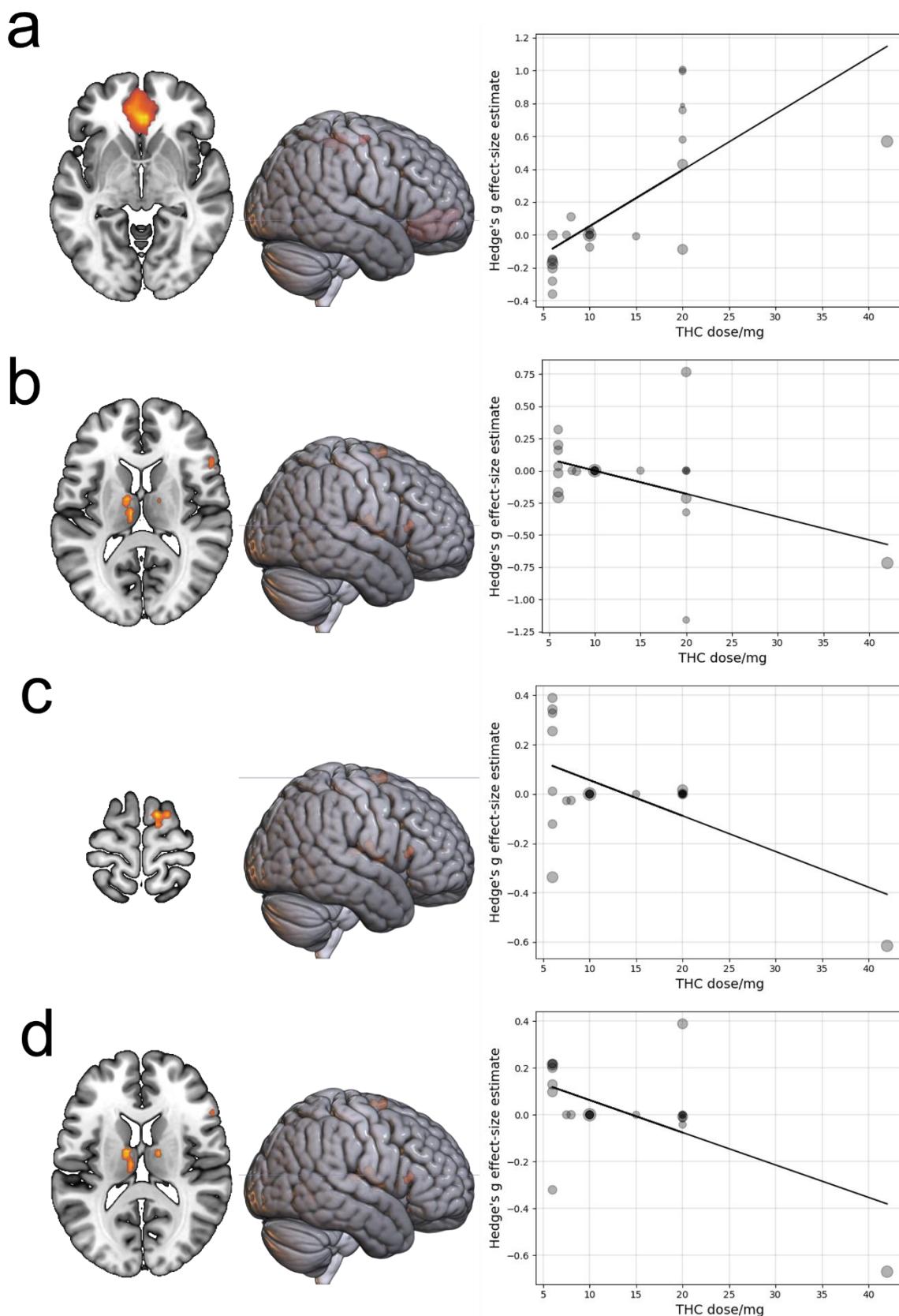
278

279 **3.3 Sensitivity, Heterogeneity, and Publication Bias**

280 Jack-knife sensitivity analysis showed that out of a total of 368 clusters, 87% survived
281 following repeat analyses leaving one study out at a time (Supplementary Table 1). Funnel
282 plots were created and examined for each cluster. Egger's tests were performed to look for
283 publication bias (see Table 2 and Supplementary Results). Visual inspection of overlap of
284 meta-analytic activation maps and heterogeneity maps indicated no areas within our main
285 analysis were significantly influenced by heterogeneity.

286 Different imaging modalities may be a source of heterogeneity. To ensure these factors
287 minimally influenced our core findings, we conducted subgroup analysis of fMRI studies
288 (Supplementary Table 7). There was significant overlap between the findings of our main
289 results and those from the fMRI subgroup alone (Supplementary Figure 25).

290 Results of subgroup analyses based on cognitive paradigm and methodological variables
291 are reported in Supplementary Tables 2-9.


292 **3.4 Meta-regression analysis: Dose**

293 Meta-regression analysis identified brain regions where there was a significant correlation
294 between the pooled effect-size estimates of THC effect on activation signal and THC dose
295 (6mg to 42mg) (Table 3, Figure 3).

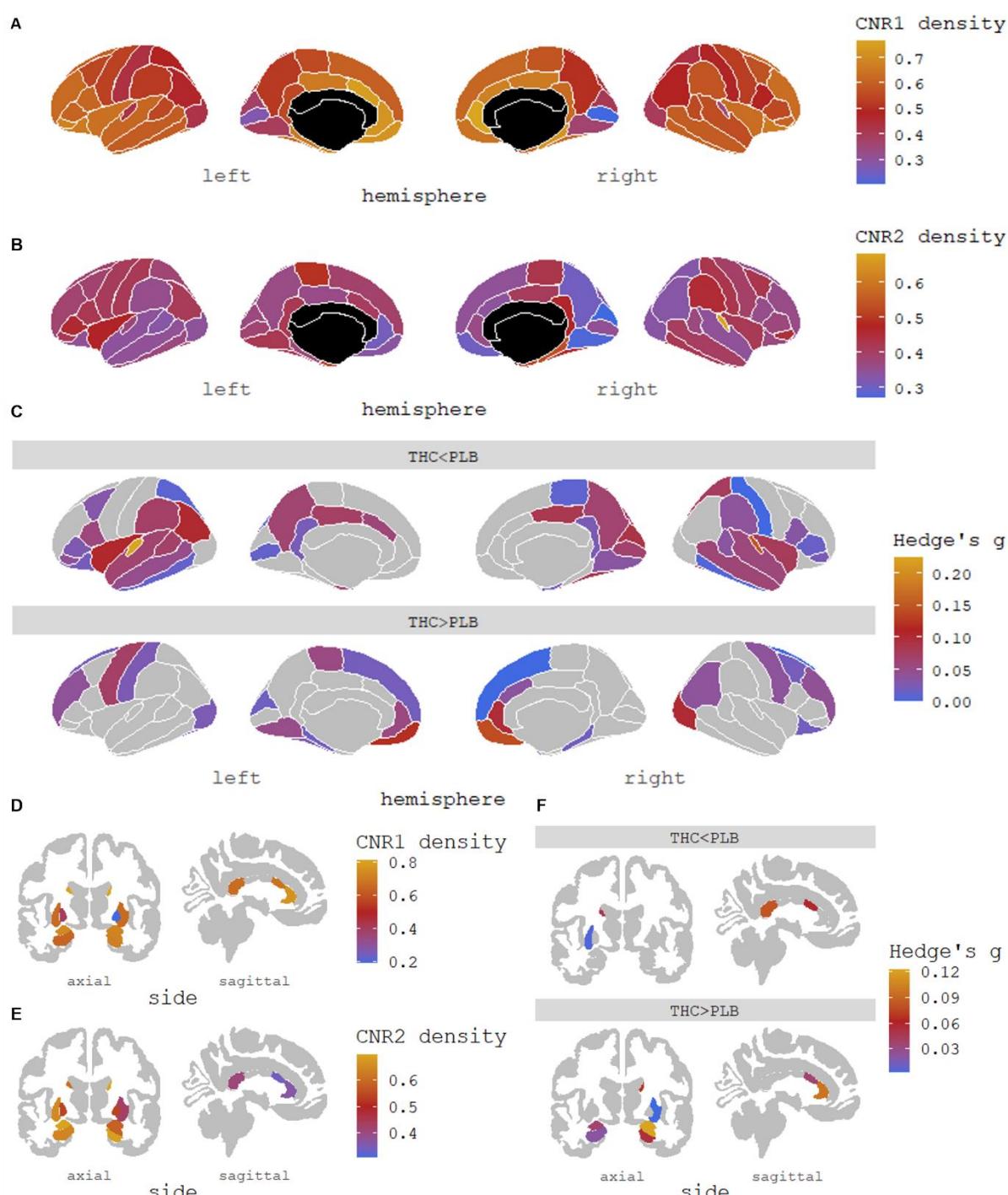
296 *Table 3. Meta-regression results showing regions where THC dose was associated with modulation of brain signal under*
297 *THC compared with the placebo condition*

	MNI coordinate				SDM-Z	P	Voxels	Region
<i>Positive correlation</i>	x	y	z					
	4	38	-4	5.044	<0.001		1592	R anterior cingulate/ paracingulate gyri (extending to L+R medial orbital and medial superior frontal gyrus, L anterior cingulate/ paracingulate gyri, L+R gyrus rectus, L+R olfactory cortex)
<i>Negative correlation</i>	4	-32	60	3.132	<0.001		214	R paracingulate lobule (extending to R+L paracentral lobule, R+L precuneus, R supplementary motor area, L median cingulate, R median cingulate)
	44	-10	60	3.042	0.001		36	R precentral gyrus
	-8	-18	12	-2.837	<0.001		125	L thalamus (extending to L caudate nucleus)
	12	2	70	-2.890	<0.001		93	R supplementary motor area (extending to R dorsolateral superior frontal gyrus)
	-48	-54	0	-2.930	<0.001		65	L middle temporal gyrus (extending to L inferior temporal gyrus)
	14	-8	14	-2.828	<0.001		52	R thalamus (extending to R caudate nucleus)
	-48	-66	0	-2.552	<0.001		29	L middle temporal gyrus (extending to L inferior and middle occipital gyrus)
	-54	22	8	-2.438	0.001		26	R inferior frontal gyrus, triangular part (extending to opercular part)

298

299
300
301
302

Figure 3. Meta-regression analysis showing relationship between THC dose (mg) and Hedge's g effect-size estimate of brain signal modulation by THC compared to placebo. Bubble size= inverse of effect-size variance. Bubble intensity= overlap of contrasts.

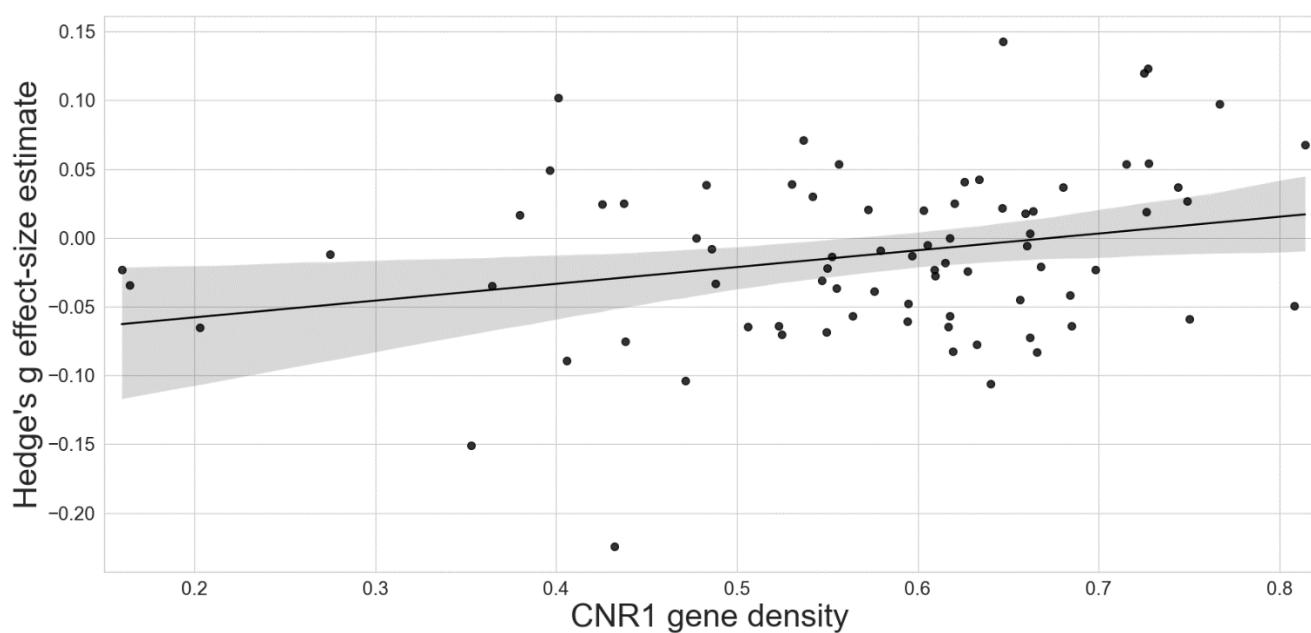

303 a) Effect-size estimates from right anterior cingulate/ paracingulate cluster
304 b) Effect-size estimates from left thalamus cluster
305 c) Effect-size estimates from right supplementary motor area cluster
306 d) Effect-size estimates from right thalamus cluster
307

308 Cook's distance(55) estimate identified the study by Battistella et al.,(74) as being a potential
309 outlier (further discussed in Supplementary Discussion 4).

310 **3.5 Whole brain correlation with CNR1 and CNR2 gene expression**

311 Cortical and sub-cortical spatial expression of CNR1, CNR2 expression, and Hedge's g
312 effect size estimate of brain regions parcellated across the Desikan-Killiany(56) atlas are
313 displayed in Figure 4. Multiple regression analysis indicated that there was a significant
314 direct relationship between Hedge's g effect-size estimate and CNR1 ($t=2.415$, $P=0.018$,
315 coefficient= 0.122, 95%CI= 0.021- 0.223, Figure 5) but not CNR2 gene expression ($t=-0.036$,
316 $P=0.971$, coefficient= -0.002, 95%CI= -0.131- 0.126) across the 78 brain regions of the atlas.

317


318

319 *Figure 4. Cortical spatial gene expression of (A) CNR1, (B) CNR2, and (C) Hedge's g effect size estimate derived from the*
 320 *main meta-analytic findings displaying regions of increased activation (THC>PLB), and attenuated activation (THC<PLB).*
 321 *Sub-cortical spatial distribution of (D) CNR1, (E) CNR2, and (F) Hedge's g effect size estimate derived from the main meta-*
 322 *analytic findings displaying regions of increased activation (THC>PLB), and attenuated activation (THC<PLB). Figures*
 323 *produced using ggseg(80) in R studio(81) parcelated across 78 regions of the Desikan–Killiany brain atlas(56). Hedge's g*
 324 *was extracted from the centroid of each brain parcel. Gene expression data was obtained from the Allen Human Brain*
 325 *Atlas(82).*

326

327

328

329

330 *Figure 5. Scatterplot showing the relationship between CNR1 expression values and Hedge's g effect size estimate of THC*
331 *effect compared with placebo across the brain (based on parcellation implemented in the Desikan Killiany atlas). P=0.018,*
332 *t= 2.415, R²= 0.073, coefficient= 0.122, 95%CI= 0.021- 0.223). Shaded band around the regression line indicates 95%*
333 *confidence interval.*

334

335

336

337

338

339

340

341 **4.0 Discussion**

342 In this meta-analytic synthesis, we examined the acute effect of THC isolate and THC-rich
343 cannabis (hereafter referred to as THC) on human brain activation signal measured using
344 different neuroimaging modalities including fMRI(12,15,72–76,59–62,67–70), PET(63–66),
345 and ASL(71). Using pooled summary data from 372 participants who were tested using a
346 within-subject repeated measures design under experimental conditions acutely (5 minutes
347 to 3 hours after administration) following a single dose of THC (ranging from 6 – 42 mg) or
348 placebo administered orally or through inhalation, we tested whether a single dose of THC
349 modulates the brain activation signal in a ‘core’ network of brain regions that subserve a
350 multitude of processes. When combining data from all studies, we found that THC
351 modulated the function of 16 brain regions. Within our predicted network of regions, THC
352 augmented the activation signal relative to placebo in the anterior cingulate, superior frontal
353 cortices, temporal pole, middle temporal and middle and inferior occipital gyri, striatum,
354 amygdala, thalamus, and cerebellum crus II. There was also an attenuation of activation
355 signal under the influence of THC in the temporal pole, middle temporal gyrus (spatially
356 distinct from the cluster with THC-induced increase in activation signal), superior temporal
357 gyrus, angular gyrus, precuneus, cuneus, inferior parietal lobule, and the cerebellum lobule
358 IV/V. Further, we also found that THC augmented activation signal in regions that we had
359 not predicted, including the paracingulate and precentral gyri (adjacent to deep white
360 matter), gyrus rectus and the hippocampus. An attenuating effect of THC was also observed
361 in other brain regions that we had not predicted in the insula, Rolandic operculum, Heschl’s
362 gyrus, precentral (spatially distinct from increase in activation signal) and postcentral gyri
363 (see Table 2 for coordinates).

364 Our second prediction was that the acute effect of THC on activation signal across different
365 brain regions will be directly associated with pooled CNR1 but not CNR2 gene expression
366 data from a set of 6 unrelated healthy volunteers (who did not take part in the neuroimaging

367 studies reported here) in the same brain regions, as obtained from the Allen Human Brain
368 atlas. As predicted, we found that there was a direct relationship between the effect of THC
369 on brain activation signal with CNR1 gene expression, a proxy measure of CB1R
370 distribution.

371 One of the main motivations for the present study and the analytic approach adopted here
372 was to answer questions that previous individual studies in isolation could not address.
373 Consistent with this objective, we identified that at the meta-analytic level, THC has effects
374 on components of a common core network of brain regions, that has been described as a
375 'domain-general' core network that facilitates cross-task cognitive function(37). In their study,
376 Shine et al. performed principal component analysis (PCA)(83) to identify an 'integrative
377 core' network of brain regions engaged across seven diverse cognitive tasks(37) which
378 spatially mapped onto dorsal attention, frontoparietal and visual networks as well as the
379 striatum, thalamus, cerebellum and amygdala(37). The spatial overlap between the
380 modulatory effects of THC that we report here and the regions within the domain-general
381 core described by Shine and colleagues, which subserve a multitude of cognitive processes,
382 might explain the diverse cognitive, behavioural, and neural effects of THC. Previous
383 experimental work in cannabis users has shown that cannabis has wide-ranging effects on
384 regional brain activation across numerous tasks(84), as well as effects on behavioural
385 performance during those tasks(34). Please see Supplementary Discussion 1 for additional
386 discussion regarding the effects of THC on activation signal in brain regions that were not
387 part of the hypothesised core network, and results of analyses of cognitively homogenous
388 subgroups of studies.

389 From a neurobiological perspective, effects on a common core network of brain regions
390 makes sense: THC acts primarily via partial agonism of CB1R(36,46) which are ubiquitously
391 distributed throughout the brain, with particularly high densities in cortex, amygdala, basal
392 ganglia outflow tracts and cerebellum(35). THC does not selectively target CB1R only in
393 those brain regions involved in a specific cognitive task, and instead has effects on receptors

394 throughout the brain. In turn, THC affects the neurophysiology of these brain regions which
395 subserve a multitude of cognitive and emotional processes. This was further demonstrated
396 by our fMRI subgroup analysis (see Supplementary Results). We combined cognitive-
397 specific effects from fMRI paradigms and intoxication-related effects from THC. Overlap in
398 the brain substrates modulated by THC was observed across our main findings and the fMRI
399 subgroup analyses. Shine and colleagues also demonstrated that the dynamic function of
400 this integrative core is strongly influenced by the modulatory effect of neurotransmitters, and
401 propose that any dysregulation in neurotransmitter systems, for example, in the context of
402 neuropsychiatric disorders or as induced through pharmacological manipulation, could
403 conceivably facilitate or impede neurotransmission through actions on this integrative
404 core(37). In this regard, the endocannabinoid system itself may be an exemplary candidate,
405 poised at the synapse as a critical mediator of neural homeostasis and signalling:
406 endocannabinoids are released postsynaptically and via retrograde signalling, bind to
407 presynaptic CB1 where they inhibit neurotransmitter release. The administration of
408 exogenous cannabinoids such as THC may subvert this on-demand fine-tuning by
409 indiscriminately binding CB1 receptors, and therefore may cause widespread alterations to
410 synaptic signalling resulting in impairment of the function of the common core network which,
411 in turn may explain the diverse acute and long-term behavioural and cognitive
412 consequences of cannabis use(21,85,86).

413 Our second major finding was that the effect of THC on the pooled effect-size of regional
414 brain signal was related to a proxy measure of regional CB1R density. The multiple linear
415 regression model identified no significant relationship between CNR2 gene expression (a
416 proxy measure of CB2R(36) with the effect size estimate). This is perhaps unsurprising as
417 studies have shown that CB2 receptors are predominately distributed peripherally(87) with
418 limited central distribution. Moreover, THC has less efficacy in its partial agonistic affinity to
419 CB2 receptors compared with CB1 receptors *in vitro*(46). The brain regions found to be
420 modulated by THC in our core analysis, including the anterior cingulate, amygdala, striatum,

421 and cerebellum are known to be rich in CB1R(35). We show, for the first time, that a linear
422 relationship exists between the effect of THC on increases in brain signal (as indexed by the
423 pooled effect-size estimate) and CNR1 gene expression levels (as estimated on the basis of
424 an average from 6 post-mortem brains of healthy individuals obtained from Allen Human
425 Brain Atlas), a proxy measure of CB1R availability, across the whole brain(41). These
426 findings are important as the CB1R is the main molecular target of THC in the human brain,
427 where it has partial-agonist effects(46,88). Our findings thus provide novel —albeit indirect—
428 evidence that the effects of THC on human brain function are in part related to local CB1
429 receptor availability, and complement independent experimental evidence that the acute
430 effects of THC on human behaviour may be mediated by its effects on CB1R. See
431 Supplementary Discussion 2 for additional discussion on CB1R mediating the effects of
432 THC.

433 Our third key result was the identification of a relationship between THC dose and the effect-
434 size estimates of activation signal across a range of brain substrates. We found a positive
435 relationship between THC dose and its effects in the anterior cingulate cluster (comprising
436 the dorsal and ventral regions), and a negative relationship in the supplementary motor area.
437 These findings are significant as the anterior cingulate is believed have a role in social
438 evaluation(89) and cognition(90), with functional alterations in individuals with high trait
439 anxiety(91) and psychosis(92,93). Therefore, the dose-dependent effect of THC on the
440 ventral cingulate may explain the findings of THC challenge studies(13,94) that investigated
441 cognitive and psychological outcomes and have reported an association between higher
442 doses of THC and increased psychotomimetic, anxiolytic, and cognitive impairments.
443 Cannabis use has also been associated with motor impairments(95) with epidemiological
444 reports suggesting a dose-related risk of motor vehicle accidents(96). However, one study
445 has reported increased supplementary motor cortex activation with reduced psychomotor
446 performance in chronic cannabis users during visual motor tasks(97). Interestingly, greater
447 undirected functional connectivity between the dorsal anterior cingulate and supplementary

448 motor area has been observed during proactive vs reactive motor control task
449 conditions(98). Together, these findings suggest that the dose-response effects of THC on
450 psychomotor dysfunction may, in part, be mediated by its effects on these brain regions,
451 which could have implications for understanding how THC impairs the operation of heavy
452 machinery in everyday life in cannabis users or patients prescribed THC-based medications.
453 Emotional and cognition-agnostic effects of THC and its relationship with frontal cortical
454 executive functioning as well as top-down control of subcortical structures are further
455 discussed in Supplementary Discussion 3. Although, in our dose-response analyses, we
456 identified the study by Battistella et al.,(74) as being a potential outlier, we refrained from
457 excluding the study from dose-response association analyses in accordance with current
458 thinking in this regard (please see further elaboration of this in Supplementary Discussion 4)
459 and instead advise appropriate caution in the interpretation of the dose-response results.

460 ***Limitations***

461 The results presented here are to be considered in light certain key limitations. Firstly, our
462 results are based on summary data from individual studies rather than individual participant
463 level imaging data from the same participants carrying out multiple different cognitive and
464 emotional processing tasks as well as actual baseline CB1R data in the same participants
465 measured using PET imaging. This would have allowed more direct testing of our
466 hypotheses. While future endeavours should aim to carry out such studies, conducting them
467 in over 300 participants as reported herein is likely to be challenging both in terms of
468 resources as well as logistics. The present meta-analysis, in contrast, provides an early
469 insight into these questions using existing data. Another key caveat to be considered while
470 interpreting our meta-analytic results is related to the issue of heterogeneity across the
471 included studies. While this is inherent to any meta-analytic endeavour, our steps to examine
472 the extent to which they may have influenced our results indicate that they are unlikely to
473 have substantially affected our key conclusions. Limitations are discussed in greater detail in
474 Supplementary Discussion, Methodological considerations & heterogeneity.

475 Notwithstanding these limitations, the three major findings of the current study extend
476 previous evidence on the effects of THC to specifically link (a) the molecular effects of THC
477 at the CB1 receptor to (b) its physiological (haemodynamic) effects on regional brain signal
478 activation, which together may underlie (c) the acute cognitive and behavioural
479 consequences of cannabis use. Only through meta-analytic synthesis of 22 studies across
480 372 participants in computational unison were we able to demonstrate that the pleiotropic
481 effects of THC at each of these levels of observation may be related to its molecular target—
482 the CB1 receptor. Here we present a potential mechanistic explanation for the pleiotropic
483 effects of THC by reporting its effects on a ‘integrative core’ of brain regions engaged across
484 diverse cognitive and emotional processes(37), where its effects are in turn related to the
485 availability of its main central molecular target across the brain.

486

487

488

489

490

491 **References**

- 492 1. Lumir Ondrej Hanus, Stefan Martin Meyer, Eduardo Munoz, Orazio Taglialatela-Scafati, Giovanni Appendino. Phytocannabinoids: a unified critical inventory. *Nat Prod Rep* [Internet]. 2016 [cited 2020 Jan 22];33:1347–448. Available from: www.rsc.org/npr
- 496 2. Friedman D, Devinsky O. Cannabinoids in the Treatment of Epilepsy. *N Engl J Med* [Internet]. 2015 Sep 10 [cited 2020 Nov 24];373(11):1048–58. Available from: <https://www.nejm.org/doi/10.1056/NEJMra1407304>
- 499 3. Smith LA, Azariah F, Lavender VT, Stoner NS, Bettiol S. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy [Internet]. Vol. 2015, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2015 [cited 2020 Nov 24]. Available from: <http://doi.wiley.com/10.1002/14651858.CD009464.pub2>
- 503 4. Davis MP. Cannabinoids for symptom management and cancer therapy: The evidence [Internet]. Vol. 14, *JNCCN Journal of the National Comprehensive Cancer Network*. Harborside Press; 2016 [cited 2020 Nov 24]. p. 915–22. Available from: <https://jnccn.org/view/journals/jnccn/14/7/article-p915.xml>
- 507 5. Marinelli L, Balestrino M, Mori L, Puce L, Rosa GM, Giorello L, et al. A randomised controlled cross-over double-blind pilot study protocol on THC:CBD oromucosal spray efficacy as an add-on therapy for post-stroke spasticity. *BMJ Open* [Internet]. 2017 Sep 1 [cited 2020 Nov 24];7(9):16843. Available from: <http://bmjopen.bmj.com/>
- 511 6. Collin C, Davies P, Mutiboko IK, Ratcliffe S. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. *Eur J Neurol* [Internet]. 2007 Mar 1 [cited 2020 Nov 24];14(3):290–6. Available from: <https://onlinelibrary.wiley.com/doi/full/10.1111/j.1468-1331.2006.01639.x>
- 515 7. Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, et al. Cannabis in painful

516 HIV-associated sensory neuropathy: A randomized placebo-controlled trial. *Neurology*
517 [Internet]. 2007 Feb 13 [cited 2020 Nov 24];68(7):515–21. Available from:
518 <https://n.neurology.org/content/68/7/515>

519 8. Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W. Cannabis-based medicines for
520 chronic neuropathic pain in adults [Internet]. Vol. 2018, Cochrane Database of
521 Systematic Reviews. John Wiley and Sons Ltd; 2018 [cited 2020 Nov 24]. Available
522 from:
523 <https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012182.pub2/full>

524 9. Narang S, Gibson D, Wasan AD, Ross EL, Michna E, Nedeljkovic SS, et al. Efficacy
525 of Dronabinol as an Adjuvant Treatment for Chronic Pain Patients on Opioid Therapy.
526 *J Pain*. 2008 Mar 1;9(3):254–64.

527 10. Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central
528 pain in multiple sclerosis? Randomised double blind placebo controlled crossover
529 trial. *BMJ* [Internet]. 2004 Jul 31 [cited 2020 Nov 24];329(7460):253. Available from:
530 <http://www.bmj.com/>

531 11. Wilsey B, Marcotte T, Tsodikov A, Millman J, Bentley H, Gouaux B, et al. A
532 Randomized, Placebo-Controlled, Crossover Trial of Cannabis Cigarettes in
533 Neuropathic Pain. *J Pain*. 2008 Jun 1;9(6):506–21.

534 12. Bhattacharyya S, Crippa JA, Allen P, Martin-Santos R, Borgwardt S, Fusar-Poli P, et
535 al. Induction of psychosis by Δ 9-tetrahydrocannabinol reflects modulation of prefrontal
536 and striatal function during attentional salience processing. *Arch Gen Psychiatry*.
537 2012;69(1):27–36.

538 13. D’Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu Y Te, et al. The
539 psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy
540 individuals: Implications for psychosis. *Neuropsychopharmacology*. 2004
541 Aug;29(8):1558–72.

542 14. Morrison PD, Zois V, McKeown DA, Lee TD, Holt DW, Powell JF, et al. The acute
543 effects of synthetic intravenous 9- tetrahydrocannabinol on psychosis, mood and
544 cognitive functioning. *Psychol Med.* 2009 Oct;39(10):1607–16.

545 15. Bhattacharyya S, Fusar-Poli P, Borgwardt S, Martin-Santos R, Nosarti C, O'Carroll C,
546 et al. Modulation of mediotemporal and ventrostriatal function in humans by A9-
547 tetrahydrocannabinol a neural basis for the effects of cannabis sativa on learning and
548 psychosis. *Arch Gen Psychiatry.* 2009 Apr;66(4):442–51.

549 16. Colizzi M, Weltens N, McGuire P, Lythgoe D, Williams S, Van Oudenhove L, et al.
550 Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals:
551 implications for psychosis. *Mol Psychiatry* [Internet]. 2019 Feb 15 [cited 2019 Jul 9];1.
552 Available from: <http://www.nature.com/articles/s41380-019-0374-8>

553 17. Bhattacharyya S, Falkenberg I, Martin-Santos R, Atakan Z, Crippa JA, Giampietro V,
554 et al. Cannabinoid Modulation of Functional Connectivity within Regions Processing
555 Attentional Salience. *Neuropsychopharmacology* [Internet]. 2015;40(6):1343–52.
556 Available from: <http://dx.doi.org/10.1038/npp.2014.258>

557 18. Bhattacharyya S, Atakan Z, Martin-Santos R, Crippa JA, Kambeitz J, Prata D, et al.
558 Preliminary report of biological basis of sensitivity to the effects of cannabis on
559 psychosis: AKT1 and DAT1 genotype modulates the effects of δ -9-
560 tetrahydrocannabinol on midbrain and striatal function. Vol. 17, *Molecular Psychiatry*.
561 2012. p. 1152–5.

562 19. D'Souza DC, Abi-Saab WM, Madonick S, Forselius-Bielen K, Doersch A, Braley G, et
563 al. Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition,
564 psychosis, and addiction. *Biol Psychiatry.* 2005 Mar 15;57(6):594–608.

565 20. Di Forti M, Marconi A, Carra E, Fraietta S, Trotta A, Bonomo M, et al. Proportion of
566 patients in south London with first-episode psychosis attributable to use of high
567 potency cannabis: A case-control study. *The Lancet Psychiatry.* 2015 Mar 1;2(3):233–

568 8.

569 21. Di Forti M, Quattrone D, Freeman TP, Tripoli G, Gayer-Anderson C, Quigley H, et al.
570 The contribution of cannabis use to variation in the incidence of psychotic disorder
571 across Europe (EU-GEI): a multicentre case-control study. *The Lancet Psychiatry*.
572 2019 May 1;6(5):427–36.

573 22. Schoeler T, Monk A, Sami MB, Klamerus E, Foglia E, Brown R, et al. Continued
574 versus discontinued cannabis use in patients with psychosis: A systematic review and
575 meta-analysis. *The Lancet Psychiatry*. 2016 Mar 1;3(3):215–25.

576 23. Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Valentine A, et al. Brain
577 glucose metabolism in chronic marijuana users at baseline and during marijuana
578 intoxication. *Psychiatry Res - Neuroimaging*. 1996 May 31;67(1):29–38.

579 24. Mathew RJ, Wilson WH, Coleman RE, Turkington TG, Degrado TR. Marijuana
580 intoxication and brain activation in marijuana smokers. *Life Sci*. 1997 May
581 2;60(23):2075–89.

582 25. Mathew RJ, Wilson WH, Chiu NY, Turkington TG, Degrado TR, Coleman RE.
583 Regional cerebral blood flow and depersonalization after tetrahydrocannabinol
584 administration. *Acta Psychiatr Scand* [Internet]. 1999 Jul [cited 2020 Jan
585 26];100(1):67–75. Available from: <http://doi.wiley.com/10.1111/j.1600-0447.1999.tb10916.x>

587 26. Mathew RJ, Wilson WH, Turkington TG, Hawk TC, Coleman RE, DeGrado TR, et al.
588 Time course of tetrahydrocannabinol-induced changes in regional cerebral blood flow
589 measured with positron emission tomography. *Psychiatry Res - Neuroimaging*. 2002
590 Dec 30;116(3):173–85.

591 27. Mathew RJ, Wilson WH, Tant SR. Acute changes in cerebral blood flow associated
592 with marijuana smoking. *Acta Psychiatr Scand*. 1989 Feb;79(2):118–28.

593 28. Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Ivanovic M, et al. Cerebellar
594 metabolic activation by delta-9-tetrahydrocannabinol in human brain: A study with
595 positron emission tomography and 18F-2-Fluoro-2-deoxyglucose. *Psychiatry Res*
596 *Neuroimaging*. 1991;40(1):69–78.

597 29. Mathew RJ, Wilson WH, Humphreys DF, Lowe J V, Wiethe KE. Regional cerebral
598 blood flow after marijuana smoking. *J Cereb Blood Flow Metab*. 1992;12(5):750–8.

599 30. Mathew RJ, Wilson WH. Acute changes in cerebral blood flow after smoking
600 marijuana. *Life Sci*. 1993;52(8):757–67.

601 31. Mathew RJ, Wilson WH, G. Turkington T, Coleman RE. Cerebellar activity and
602 disturbed time sense after THC. *Brain Res*. 1998 Jun 29;797(2):183–9.

603 32. Bhattacharyya S, Atakan Z, Martin-Santos R, A. Crippa J, K. McGuire P. Neural
604 Mechanisms for the Cannabinoid Modulation of Cognition and Affect in Man: A Critical
605 Review of Neuroimaging Studies. *Curr Pharm Des*. 2012 Sep 24;18(32):5045–54.

606 33. Gunasekera B, Davies C, Martin-Santos R, Bhatthacharyya S. The Yin and Yang of
607 Cannabis - a systematic review of human neuroimaging evidence of the differential
608 effects of delta-9-tetrahydrocannabinol and cannabidiol. *Biol Psychiatry Cogn
609 Neurosci Neuroimaging* [Internet]. 2020 Oct [cited 2021 Jan 20]; Available from:
610 <https://pubmed.ncbi.nlm.nih.gov/33414100/>

611 34. Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, et al. The
612 neuropsychopharmacology of cannabis: A review of human imaging studies. Vol. 195,
613 *Pharmacology and Therapeutics*. Elsevier Inc.; 2019. p. 132–61.

614 35. Mackie K. Distribution of Cannabinoid Receptors in the Central and Peripheral
615 Nervous System. In: *Cannabinoids* [Internet]. Berlin/Heidelberg: Springer-Verlag;
616 2005 [cited 2020 May 6]. p. 299–325. Available from:
617 http://link.springer.com/10.1007/3-540-26573-2_10

618 36. Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: Signaling
619 and function in the central nervous system. Vol. 19, International Journal of Molecular
620 Sciences. MDPI AG; 2018.

621 37. Shine JM, Breakspear M, Bell PT, Ehgoetz Martens K, Shine R, Koyejo O, et al.
622 Human cognition involves the dynamic integration of neural activity and
623 neuromodulatory systems. *Nat Neurosci* [Internet]. 2019 Feb 1 [cited 2021 Jan
624 20];22(2):289–96. Available from: <https://www.nature.com/articles/s41593-018-0312-0>

625 38. Krienen FM, Thomas Yeo BT, Buckner RL. Reconfigurable task-dependent functional
626 coupling modes cluster around a core functional architecture. *Philos Trans R Soc B
627 Biol Sci* [Internet]. 2014 Oct 5 [cited 2021 Jan 20];369(1653). Available from:
628 <https://pubmed.ncbi.nlm.nih.gov/25180304/>

629 39. Arnatkevičiūtė A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene
630 expression and neuroimaging data. *Neuroimage*. 2019;189(July 2018):353–67.

631 40. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An
632 anatomically comprehensive atlas of the adult human brain transcriptome. *Nature*
633 [Internet]. 2012 Sep 20 [cited 2021 Jan 26];489(7416):391–9. Available from:
634 <http://www.brain-map.org>.

635 41. CNR1 cannabinoid receptor 1 [Homo sapiens (human)] - Gene - NCBI [Internet].
636 [cited 2021 Jan 26]. Available from: <https://www.ncbi.nlm.nih.gov/gene/1268>

637 42. CNR2 cannabinoid receptor 2 [Homo sapiens (human)] - Gene - NCBI [Internet].
638 [cited 2021 Apr 8]. Available from:
639 <https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=1269>

640 43. Manza P, Yuan K, Shokri-Kojori E, Tomasi D, Volkow ND. Brain structural changes in
641 cannabis dependence: association with MAGL. *Mol Psychiatry* [Internet]. 2020 Dec 6
642 [cited 2021 Feb 8];25(12):3256–66. Available from:

643 http://www.nature.com/articles/s41380-019-0577-z

644 44. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-Bongaarts AL, et al.
645 Canonical genetic signatures of the adult human brain. *Nat Neurosci* [Internet]. 2015
646 Nov 25 [cited 2021 Feb 8];18(12):1832–44. Available from:
647 <https://pubmed.ncbi.nlm.nih.gov/26571460/>

648 45. Richiardi J, Altmann A, Milazzo AC, Chang C, Chakravarty MM, Banaschewski T, et
649 al. Correlated gene expression supports synchronous activity in brain networks.
650 *Science (80-)* [Internet]. 2015 Jun 12 [cited 2021 Feb 2];348(6240):1241–4. Available
651 from: www.sciencemag.org/content/348/6240/1238/suppl/DC1

652 46. Pertwee RG. The diverse CB 1 and CB 2 receptor pharmacology of three plant
653 cannabinoids: Δ 9-tetrahydrocannabinol, cannabidiol and Δ 9-tetrahydrocannabivarin.
654 Vol. 153, *British Journal of Pharmacology*. 2008. p. 199–215.

655 47. Müller VI, Cieslik EC, Laird AR, Fox PT, Radua J, Mataix-Cols D, et al. Ten simple
656 rules for neuroimaging meta-analysis. Vol. 84, *Neuroscience and Biobehavioral*
657 *Reviews*. Elsevier Ltd; 2018. p. 151–61.

658 48. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. *Cochrane*
659 *Handbook for Systematic Reviews of Interventions* version 6.1 (updated September
660 2020) [Internet]. Cochrane. 2020 [cited 2020 Dec 11]. Available from:
661 www.training.cochrane.org/handbook

662 49. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-
663 analysis of observational studies in epidemiology: A proposal for reporting. *J Am Med*
664 *Assoc*. 2000 Apr 19;283(15):2008–12.

665 50. Norman LJ, Carlisi C, Lukito S, Hart H, Mataix-Cols D, Radua J, et al. Structural and
666 functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-
667 compulsive disorder: A comparative meta-analysis. *JAMA Psychiatry* [Internet]. 2016

668 Aug 1 [cited 2020 Nov 16];73(8):815–25. Available from: <https://jamanetwork.com/>

669 51. Radua J, Rubia K, Canales-Rodríguez EJ, Pomarol-Clotet E, Fusar-Poli P, Mataix-
670 Cols D. Anisotropic Kernels for Coordinate-Based Meta-Analyses of Neuroimaging
671 Studies. *Front Psychiatry* [Internet]. 2014 [cited 2020 Jan 21];5. Available from:
672 <http://journal.frontiersin.org/article/10.3389/fpsyg.2014.00013/abstract>

673 52. Radua J, Romeo M, Mataix-Cols D, Fusar-Poli P. A general approach for combining
674 voxel-based meta-analyses conducted in different neuroimaging modalities. *Curr Med
675 Chem*. 2013;20(3):462–6.

676 53. Radua J, Van Den Heuvel OA, Surguladze S, Mataix-Cols D. Meta-analytical
677 comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs
678 other anxiety disorders. *Arch Gen Psychiatry* [Internet]. 2010 Jul 1 [cited 2020 Nov
679 16];67(7):701–11. Available from:
680 <https://jamanetwork.com/journals/jamapsychiatry/fullarticle/1151078>

681 54. Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in
682 obsessive-compulsive disorder. Vol. 195, *British Journal of Psychiatry*. 2009. p. 393–
683 402.

684 55. Cook RD. Cook's Distance. In: *International Encyclopedia of Statistical Science*
685 [Internet]. Springer Berlin Heidelberg; 2011 [cited 2021 Apr 8]. p. 301–2. Available
686 from: https://link.springer.com/referenceworkentry/10.1007/978-3-642-04898-2_189

687 56. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An
688 automated labeling system for subdividing the human cerebral cortex on MRI scans
689 into gyral based regions of interest. *Neuroimage* [Internet]. 2006 Jul 1 [cited 2021 Feb
690 2];31(3):968–80. Available from: <https://pubmed.ncbi.nlm.nih.gov/16530430/>

691 57. Welcome to Python.org [Internet]. [cited 2021 Jan 26]. Available from:
692 <https://www.python.org/>

693 58. Markello R, Shafiei G, Zheng Y-Q, Mišić B. A toolbox for the Allen Brain Atlas
694 genetics data. Zenodo [Internet]. 2020 Oct 15 [cited 2021 Jan 26]; Available from:
695 <https://zenodo.org/record/4091537#.YBAFOOj7Q2w>

696 59. Winton-Brown TT, Allen P, Bhattacharrya S, Borgwardt SJ, Fusar-Poli P, Crippa JA,
697 et al. Modulation of auditory and visual processing by delta-9- tetrahydrocannabinol
698 and cannabidiol: An fMRI study. Neuropsychopharmacology [Internet].
699 2011;36(7):1340–8. Available from: <http://dx.doi.org/10.1038/npp.2011.17>

700 60. Walter C, Oertel BG, Felden L, Nöth U, Vermehren J, Deichmann R, et al. Effects of
701 oral Δ9-tetrahydrocannabinol on the cerebral processing of olfactory input in healthy
702 non-addicted subjects. Vol. 73, European Journal of Clinical Pharmacology. 2017. p.
703 1579–87.

704 61. Van Hell HH, Jager G, Bossong MG, Brouwer A, Jansma JM, Zuurman L, et al.
705 Involvement of the endocannabinoid system in reward processing in the human brain.
706 Psychopharmacology (Berl). 2012 Feb;219(4):981–90.

707 62. Rabinak CA, Sripada CS, Angstadt M, De Wit H, Phan KL. Cannabinoid modulation of
708 subgenual anterior cingulate cortex activation during experience of negative affect. J
709 Neural Transm. 2012 Jun;119(6):701–7.

710 63. O’Leary DS, Block RI, Flaum M, Schultz SK, Boles Ponto LL, Watkins GL, et al. Acute
711 marijuana effects on rCBF and cognition: A PET study. Neuroreport. 2000 Nov
712 27;11(17):3835–41.

713 64. O’Leary DS, Block RI, Koeppel JA, Flaum M, Schultz SK, Andreasen NC, et al.
714 Effects of smoking marijuana on brain perfusion and cognition.
715 Neuropsychopharmacology. 2002;26(6):802–16.

716 65. O’Leary DS, Block RI, Turner BM, Koeppel J, Magnotta VA, Ponto LB, et al.
717 Marijuana alters the human cerebellar clock. Neuroreport [Internet]. 2003 Jun 11

718 [cited 2020 Apr 28];14(8):1145–51. Available from: <http://journals.lww.com/00001756-200306110-00009>

719

720 66. O'Leary DS, Block RI, Koeppel JA, Schultz SK, Magnotta VA, Ponto LB, et al. Effects
721 of smoking marijuana on focal attention and brain blood flow. *Hum Psychopharmacol*.
722 2007 Apr;22(3):135–48.

723 67. Jansma JM, Van Hell HH, Vanderschuren LJM, Bossong MG, Jager G, Kahn RS, et
724 al. THC reduces the anticipatory nucleus accumbens response to reward in subjects
725 with a nicotine addiction. *Transl Psychiatry* [Internet]. 2013 [cited 2020 Jan 25];3:3.
726 Available from: www.nature.com/tp

727 68. Freeman TP, Pope RA, Wall MB, Bisby JA, Luijten M, Hindocha C, et al. Cannabis
728 Dampens the Effects of Music in Brain Regions Sensitive to Reward and Emotion. *Int
729 J Neuropsychopharmacol*. 2018;21(1):21–32.

730 69. Bossong MG, Jansma JM, Van Hell HH, Jager G, Oudman E, Saliasi E, et al. Effects
731 of Δ9-tetrahydrocannabinol on human working memory function. *Biol Psychiatry*
732 [Internet]. 2012;71(8):693–9. Available from:
733 <http://dx.doi.org/10.1016/j.biopsych.2012.01.008>

734 70. Bossong MG, van Hell HH, Jager G, Kahn RS, Ramsey NF, Jansma JM. The
735 endocannabinoid system and emotional processing: A pharmacological fMRI study
736 with {increment}9-tetrahydrocannabinol. *Eur Neuropsychopharmacol*. 2013
737 Dec;23(12):1687–97.

738 71. Bossong MG, van Hell HH, Schubart CD, van Saane W, Iseger TA, Jager G, et al.
739 Acute effects of Δ9-tetrahydrocannabinol (THC) on resting state brain function and
740 their modulation by COMT genotype. *Eur Neuropsychopharmacol* [Internet].
741 2019;29(6):766–76. Available from: <https://doi.org/10.1016/j.euroneuro.2019.03.010>

742 72. Bhattacharyya S, Egerton A, Kim E, Rosso L, Riano Barros D, Hammers A, et al.

743 Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to
744 amygdalar cannabinoid-1 (CB1) receptors. *Sci Rep* [Internet]. 2017;7(1):1–15.
745 Available from: <http://dx.doi.org/10.1038/s41598-017-14203-4>

746 73. Bhattacharyya S, Atakan Z, Martin-Santos R, Crippa JA, Kambeitz J, Malhi S, et al.
747 Impairment of inhibitory control processing related to acute psychotomimetic effects of
748 cannabis. *Eur Neuropsychopharmacol* [Internet]. 2014;25(1):26–37. Available from:
749 <http://dx.doi.org/10.1016/j.euroneuro.2014.11.018>

750 74. Battistella G, Fornari E, Thomas A, Mall JF, Chtioui H, Appenzeller M, et al. Weed or
751 Wheel! fMRI, Behavioural, and Toxicological Investigations of How Cannabis Smoking
752 Affects Skills Necessary for Driving. *PLoS One*. 2013;8(1).

753 75. Lee MC, Ploner M, Wiech K, Bingel U, Wanigasekera V, Brooks J, et al. Amygdala
754 activity contributes to the dissociative effect of cannabis on pain perception. *Pain*
755 [Internet]. 2013;154(1):124–34. Available from:
756 <http://dx.doi.org/10.1016/j.pain.2012.09.017>

757 76. Walter C, Oertel BG, Felden L, Nöth U, Deichmann R, Lötsch J. Delta-9-
758 tetrahydrocannabinol reduces the performance in sensory delayed discrimination
759 tasks. A pharmacological-fMRI study in healthy volunteers. *IBRO Reports* [Internet].
760 2019;7(November):117–28. Available from: <https://doi.org/10.1016/j.ibror.2019.11.004>

761 77. Bossong MG, Jager G, van Hell HH, Zuurman L, Jansma JM, Mehta MA, et al. Effects
762 of Δ9-tetrahydrocannabinol administration on human encoding and recall memory
763 function: A pharmacological fMRI study. *J Cogn Neurosci*. 2012;24(3):588–99.

764 78. Bossong MG, Jansma JM, van Hell HH, Jager G, Kahn RS, Ramsey NF. Default
765 Mode Network in the Effects of Δ9-Tetrahydrocannabinol (THC) on Human Executive
766 Function. *PLoS One*. 2013;8(7):1–10.

767 79. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic

768 reviews and meta-analyses: The PRISMA statement [Internet]. Vol. 339, BMJ
769 (Online). British Medical Journal Publishing Group; 2009 [cited 2020 Nov 17]. p. 332–
770 6. Available from: <http://www.bmj.com/content/339/bmj.b2535?tab=related#datasupp>

771 80. Plotting Tool for Brain Atlases • ggseg [Internet]. [cited 2021 Apr 7]. Available from:
772 <https://lcbc-kuo.github.io/ggseg/index.html>

773 81. RStudio [Internet]. [cited 2021 Mar 1]. Available from: <https://rstudio.com/>

774 82. Microarray Data :: Allen Brain Atlas: Human Brain [Internet]. [cited 2021 Mar 22].
775 Available from: <http://human.brain-map.org/>

776 83. Brendel W, Romo R, Machens CK. Demixed Principal Component Analysis. *Adv
777 Neural Inf Process Syst.* 2011;22:2654–62.

778 84. Blest-Hopley G, Giampietro V, Bhattacharyya S. Residual effects of cannabis use in
779 adolescent and adult brains — A meta-analysis of fMRI studies. *Neurosci Biobehav
780 Rev* [Internet]. 2018;88(October 2017):26–41. Available from:
781 <https://doi.org/10.1016/j.neubiorev.2018.03.008>

782 85. Schoeler T, Petros N, Di Forti M, Klamerus E, Foglia E, Ajnakina O, et al. Effects of
783 continuation, frequency, and type of cannabis use on relapse in the first 2 years after
784 onset of psychosis: an observational study. *The Lancet Psychiatry*. 2016 Oct
785 1;3(10):947–53.

786 86. Schoeler T, Theobald D, Pingault JB, Farrington DP, Jennings WG, Piquero AR, et al.
787 Continuity of cannabis use and violent offending over the life course. *Psychol Med
788* [Internet]. 2016 Jun 1 [cited 2021 Mar 17];46(8):1663–77. Available from:
789 https://www.cambridge.org/core/product/identifier/S0033291715003001/type/journal_
790 article

791 87. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International
792 Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Vol. 54,

793 Pharmacological Reviews. Pharmacol Rev; 2002. p. 161–202.

794 88. Bossong MG, Jansma JM, Bhattacharyya S, Ramsey NF. Role of the
795 endocannabinoid system in brain functions relevant for schizophrenia: An overview of
796 human challenge studies with cannabis or {increment}9-tetrahydrocannabinol (THC).
797 Vol. 52, Progress in Neuro-Psychopharmacology and Biological Psychiatry. Elsevier
798 Inc.; 2014. p. 53–69.

799 89. Rigney AE, Koski JE, Beer JS. The functional role of ventral anterior cingulate cortex
800 in social evaluation: Disentangling valence from subjectively rewarding opportunities.
801 Soc Cogn Affect Neurosci [Internet]. 2018 Jan 1 [cited 2021 Feb 2];13(1):14–21.
802 Available from: /pmc/articles/PMC5755235/?report=abstract

803 90. Apps MAJ, Rushworth MFS, Chang SWC. The Anterior Cingulate Gyrus and Social
804 Cognition: Tracking the Motivation of Others [Internet]. Vol. 90, Neuron. Cell Press;
805 2016 [cited 2021 Mar 17]. p. 692–707. Available from: /pmc/articles/PMC4885021/

806 91. Paulus MP, Feinstein JS, Simmons A, Stein MB. Anterior cingulate activation in high
807 trait anxious subjects is related to altered error processing during decision making.
808 Biol Psychiatry [Internet]. 2004 Jun 15 [cited 2021 Mar 17];55(12):1179–87. Available
809 from: <http://www.biologicalpsychiatryjournal.com/article/S0006322304003464/fulltext>

810 92. Smieskova R, Roiser JP, Chaddock CA, Schmidt A, Harrisberger F, Bendfeldt K, et al.
811 Modulation of motivational salience processing during the early stages of psychosis.
812 Schizophr Res. 2014 Sep 16;166(1–3):17–23.

813 93. Nielsen MO, Rostrup E, Wulff S, Bak N, Lublin H, Kapur S, et al. Alterations of the
814 brain reward system in antipsychotic naïve schizophrenia patients. Biol Psychiatry.
815 2012 May 15;71(10):898–905.

816 94. Curran HV, Freeman TP, Mokrysz C, Lewis DA, Morgan CJA, Parsons LH. Keep off
817 the grass? Cannabis, cognition and addiction [Internet]. Vol. 17, Nature Reviews

818 Neuroscience. Nature Publishing Group; 2016 [cited 2021 Jan 27]. p. 293–306.

819 Available from: www.nature.com/nrn

820 95. Prashad S, Filbey FM. Cognitive motor deficits in cannabis users [Internet]. Vol. 13,

821 Current Opinion in Behavioral Sciences. Elsevier Ltd; 2017 [cited 2021 Feb 11]. p. 1–

822 7. Available from: [/pmc/articles/PMC4966282/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966282/)

823 96. Ramaekers JG, Berghaus G, Van Laar M, Drummer OH. Dose related risk of motor

824 vehicle crashes after cannabis use. Vol. 73, Drug and Alcohol Dependence. Elsevier

825 Ireland Ltd; 2004. p. 109–19.

826 97. King GR, Ernst T, Deng W, Stenger A, Gonzales RMK, Nakama H, et al. Altered brain

827 activation during visuomotor integration in chronic active cannabis users: Relationship

828 to cortisol levels. J Neurosci [Internet]. 2011 Dec 7 [cited 2021 Feb 11];31(49):17923–

829 31. Available from: <https://www.jneurosci.org/content/31/49/17923>

830 98. Asemi A, Ramaseshan K, Burgess A, Diwadkar VA, Bressler SL. Dorsal anterior

831 cingulate cortex modulates supplementary motor area in coordinated unimanual

832 motor behavior. Front Hum Neurosci [Internet]. 2015 Jun 4 [cited 2021 Feb

833 11];9(JUNE):309. Available from: [/pmc/articles/PMC4454840/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454840/)

834

835

836