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Abstract 15 

Background 16 

The collective of somatic mutations in a genome represents a record of mutational 17 

processes that have been operative in a cell. These processes can be investigated by 18 

extracting relevant mutational patterns from sequencing data. 19 

 20 

Results 21 

Here, we present the next version of MutationalPatterns, an R/Bioconductor package, which 22 

allows in-depth mutational analysis of catalogues of single and double base substitutions as 23 

well as small insertions and deletions. Major features of the package include the possibility 24 

to perform regional mutation spectra analyses and the possibility to detect strand 25 

asymmetry phenomena, such as lesion segregation. On top of this, the package also 26 

contains functions to determine how likely it is that a signature can cause damaging 27 

mutations (i.e., mutations that affect protein function). This updated package supports 28 

stricter signature refitting on known signatures in order to prevent overfitting. Using 29 

simulated mutation matrices containing varied signature contributions, we showed that 30 

reliable refitting can be achieved even when only 50 mutations are present per signature. 31 

Additionally, we incorporated bootstrapped signature refitting to assess the robustness of 32 

the signature analyses. Finally, we applied the package on genome mutation data of cell 33 

lines in which we deleted specific DNA repair processes and on large cancer datasets, to 34 

show how the package can be used to generate novel biological insights. 35 

 36 
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Conclusions 37 

This novel version of MutationalPatterns allows for more comprehensive analyses and 38 

visualization of mutational patterns in order to study the underlying processes. Ultimately, 39 

in-depth mutational analyses may contribute to improved biological insights in mechanisms 40 

of mutation accumulation as well as aid cancer diagnostics. MutationalPatterns is freely 41 

available at http://bioconductor.org/packages/MutationalPatterns. 42 

 43 

Keywords 44 

R, regional mutation patterns, mutagenic processes, mutational signatures, indels, base 45 

substitutions, somatic mutations 46 

 47 

Background 48 

Mutational landscapes in the genomes of cells are the result of a balance between 49 

mutagenic and DNA-repair processes (1). The somatic mutations that shape these 50 

landscapes gradually accumulate throughout life in both healthy and malignant cells (2,3). 51 

As a result, the complete collection of somatic mutations in the genome of a cell forms a 52 

record of the mutational processes that have been active throughout the life of that cell. In-53 

depth analyses of somatic mutations can allow us to better understand the mutational 54 

processes that caused them (4). 55 

 56 
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First, such analyses can provide insight into the etiology of cancer by identifying mutagenic 57 

exposures, which ultimately contribute to the accumulation of cancer driving mutations. For 58 

example, we recently identified a mutational pattern caused by a carcinogenic strain 59 

of Escherichia coli found in the gut of ~20% of healthy individuals (5). This pattern matched 60 

mutations found in colorectal cancer driver genes, indicating a direct role in tumorigenesis. 61 

Mutational patterns have been systematically determined in vitro for many environmental 62 

mutagenic agents, which can be used to deduce cancer causes (6). The effects of such 63 

agents can also be found in vivo. For example, we recently found mutations caused by 64 

exposure to the antiviral drug ganciclovir, which patients received to treat a viral infection 65 

after a hematopoietic stem cell transplant (7). Second, studying mutational processes can 66 

be useful for improved cancer diagnostics. For example, the presence of certain mutational 67 

signatures can be used as a functional readout for deficiency of  homologous recombination 68 

(HR)-mediated double strand break repair (8,9). Cancers with a defect in this repair pathway 69 

are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors, providing a 70 

targeted therapy for the patients (10,11). 71 

 One of the most popular tools to analyze somatic mutation profiles is the 72 

R/Bioconductor package MutationalPatterns, which can be used to easily investigate 73 

mutation spectra (12–19). It can also be used to identify new signatures in mutation data 74 

using Nonnegative Matrix Factorization (NMF) and to determine the contribution of 75 

previously defined signatures to a sample using a method known as “signature refitting” (4). 76 

However, the original version of this package has several limitations. First, the package is 77 

limited to single base substitutions (SBSs) and cannot be used for small insertions and 78 

deletions (indels) or double base substitutions (DBSs) even though signatures for these 79 

mutation types have recently been identified in large pan-cancer sequencing efforts (13). 80 
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The package also suffers from signature overfitting when determining the contribution of 81 

known patterns to a sample, which can result in too many signatures being attributed (20). 82 

Additionally, the package only allows for analyzing spectra for mutations in the entire 83 

genome, making it difficult to study the involvement of specific genomic elements, such as 84 

enhancers or secondary hairpin structures. The ability to investigate the role of such 85 

elements in mutation accumulation is important, because this allows for identifying the 86 

molecular mechanisms by which certain processes induce mutagenesis (21–23). 87 

Here we present a novel, almost completely rewritten version of MutationalPatterns for the 88 

analysis of mutational processes, which is easy-to-use and contains many new features, 89 

such as DNA lesion segregation (24). Existing features have also been improved, resulting in 90 

a very comprehensive package that can be used for both basic and more advanced 91 

mutational pattern analyses. MutationalPatterns supports DBSs, multi base substitutions 92 

(MBSs) and indels, and can automatically extract all these mutation types from a single 93 

variant call format (VCF) file. The package can generate region specific spectra and signature 94 

contributions to study the varying activities of mutational processes across the genome. The 95 

package also generates more accurate results by supporting stricter signature refitting. This 96 

refitting can also be bootstrapped to determine the confidence of the results. Additionally, a 97 

process known as lesion segregation can be investigated. 98 

 The MutationalPatterns package can be used to generate novel biological insights, 99 

which we demonstrate by applying it to whole genome sequencing (WGS) data obtained 100 

from a lymphoblastoid cell line, in which specific DNA repair processes were deleted using 101 

CRISPR-Cas9 genome editing, as well as by applying the package on large cancer datasets. 102 
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Additionally, we demonstrate that the package scales well on these large datasets. Finally, 103 

we show the improved accuracy of the stricter signature refitting using simulated data. 104 

 105 

Implementation 106 

Mutation profiles 107 

MutationalPatterns supports SBSs, DBSs, MBSs and indels. Multiple mutation types are 108 

allowed to be present in a single VCF file so that users do not have to split them beforehand. 109 

A specific mutation type can be selected as an argument with the “read_vcfs_as_granges” 110 

function when reading in the VCF files. Alternatively, the “get_mut_type” function can be 111 

used on data that is already loaded in the memory. 112 

DBS and MBS variants can be called by various variant callers, such as the Genome 113 

Analysis ToolKit (GATK) Mutect2, in two different ways (25). The variants can be called 114 

explicitly as DBS and MBS variants or as neighboring SBSs. A downside of the first approach 115 

is that neighboring germline and somatic mutations can be called as a single combined DBS 116 

or MBS, because the variants are compared to the reference instead of the control sample. 117 

MutationalPatterns supports both approaches. When the second approach is used, 118 

neighboring SBSs will be merged into somatic DBS or MBS variants. 119 

Because they get merged, DBS and MBS variants are no longer incorrectly identified 120 

as separate SBSs by MutationalPatterns. This improves the quality of the SBS profiles, as 121 

DBS and MBS mutations often have a very different context on account of them being 122 

caused by different processes (13) (Additional file 1: Figure S1). 123 

 124 
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The COSMIC contexts of SBS, indel and DBS variants can be retrieved with fast vectorized 125 

functions, namely “mut_context”, “get_indel_context” and “get_dbs_context”. The context 126 

of SBS variants consisted of its direct 5’ and 3’ bases in the original package. These contexts 127 

were chosen because they are generally the most informative and adding more bases 128 

drastically increases the feature space, leading to sparsity (4). Indeed, adding only one extra 129 

base to both the upstream and downstream context increases the number of features from 130 

96 to 1536. However, with the increasing availability of large sequencing cohorts such large 131 

feature spaces have become more manageable, making it easier to examine nucleotide 132 

preference more upstream or downstream of the mutated base. Therefore, 133 

MutationalPatterns’ users can now choose any context size for SBSs. 134 

 135 

The mutation contexts can be used for custom analyses. Alternatively, the number of 136 

mutations per context can be counted, resulting in a count matrix, where each row is a 137 

context and each column a sample. These matrices are created with the “mut_matrix”, 138 

“mut_matrix_stranded”, “count_indel_contexts”, “count_dbs_contexts” and 139 

“count_mbs_contexts” functions. The “count_mbs_contexts” function uses the length of 140 

the MBSs, because to date no COSMIC consensus has been defined.  141 

The count matrices can be plotted as spectra or profiles for all the mutation types 142 

(Fig. 1a, b, c). The SBS spectra can be displayed in the individual samples. Additionally, the 143 

error bars can be displayed as standard deviation, 95% confidence interval (CI) and the 144 

standard error of the mean. A count matrix with a larger context can be visualized using the 145 

new “plot_profile_heatmap” or “plot_river” functions (Fig. 1d, Additional file 1: Figure S2). 146 

This last function can be especially helpful to provide a quick overview of a mutation 147 
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 8 

spectrum with a wider context. Next to visualizing them, a count matrix can also be used for 148 

downstream analyses, such as a de novo extraction of mutational signatures. In some cases, 149 

it can be useful to pool multiple samples within a count matrix to increase statistical power. 150 

This can be done using the new “pool_mut_mat” function. 151 

 152 

Fig. 1 Mutation profiles can be made for multiple mutation types 153 

a Relative contribution of the indicated mutation types to the point mutation spectrum. 154 

Bars depict the mean relative contribution of each mutation type over all the samples and 155 
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 9 

error bars indicate the 95% confidence interval. The dots show the relative contributions of 156 

the individual samples. The total number of somatic point mutations per tissue is indicated. 157 

b Absolute contribution of the indicated mutation types to the indel spectrum for the wild-158 

type (WT) and MSH2 knockout. The total number of indels per sample is indicated. c 159 

Absolute contribution of the indicated mutation types to the DBS spectrum for the wild-type 160 

(WT) and XPC knockout. The total number of DBSs per sample is indicated. d Heatmap 161 

depicting the relative contribution of the indicated mutation types and the surrounding 162 

bases to the point mutation spectrum for the WT and MSH2 knockout. The total number of 163 

somatic point mutations per tissue is indicated. 164 

 165 

Region specific analyses 166 

Mutational processes can be influenced by regional genomic features at multiple scales, 167 

such as chromatin landscape, secondary hairpin structures as well as the major and minor 168 

groove of the DNA (21–23). With the previous version of MutationalPatterns, it was possible 169 

to test for enrichment and/or depletion of the mutation load in such regions. However, the 170 

package lacked the possibility to automatically correct for multiple testing. In addition, 171 

mutational profiles in genomic regions could not be easily assessed. In MutationalPatterns, 172 

multiple testing correction is now automatically performed when testing for enrichment and 173 

depletion. In addition, multiple significance levels are now supported, which can be 174 

visualized using one or multiple asterisks. Furthermore, regional mutation profiles can be 175 

determined in detail. This is done by first splitting mutations based on pre-defined genomic 176 

regions, with the new “split_muts_region” function, which requires a GRanges or 177 

GRangesList object containing chromosome coordinates as its input. These coordinates can 178 
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be read into R from file types like “.txt” or “.bed” files or they can be directly read from 179 

databases, such as Ensembl (26). This analysis can be performed for multiple samples and 180 

multiple types of regions at once. A user could, for example, split a set of mutations into 181 

“promoter”, “enhancer” and “other” mutations. 182 

Splitting the mutations according to different genomic regions results in a 183 

GRangesList containing sample/region combinations. These combinations can be treated as 184 

separate samples by, for example, performing de novo signature analysis to identify 185 

processes that are specifically active in certain genomic regions. Knowing in which regions a 186 

signature is predominantly present, can lead to a better understanding of its etiology. 187 

Instead of treating the sample/region combinations as separate samples, the genomic 188 

regions can also be incorporated into the mutational contexts, using the new 189 

“lengthen_mut_matrix” function. This means that a mutational context like “A[C>A]A” could 190 

be split into “A[C>A]A-promoter” and “A[C>A]A-enhancer”. This analysis allows users to 191 

generate signatures that contain different mutation contexts in different genomic regions. 192 

Such signatures could be more specific than the regular COSMIC signatures. 193 

Region-specific mutation spectra can be visualized with the “plot_spectrum_region” 194 

function, which contains the same arguments as the “plot_spectrum” function (Fig. 2a, b). In 195 

addition, region-specific 96-channel mutation profiles can be visualized with the new 196 

“plot_profile_region” function, which contains the same arguments as the “plot_96_profile” 197 

function (Fig. 2c). Both the “plot_spectrum_region” and “plot_profile_region” functions 198 

contain a “mode” argument, which allows users to normalize for the occurrence of the 199 

different mutation types per sample/region combination, per sample, or not at all. 200 
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Instead of using pre-determined genomic regions, it is also possible to compare the 201 

mutation spectra of regions with different mutation densities. These regions can be 202 

identified using the new “bin_mutation_density” function. 203 

Regional mutational patterns can also be investigated using an unsupervised 204 

approach, which is unique to MutationalPatterns, with the new 205 

“determine_regional_similarity” function. This function uses a sliding window approach to 206 

calculate the cosine similarity between the global mutation profile and the mutation profile 207 

of smaller genomic windows, allowing for the unbiased identification of regions with a 208 

mutation profile, that differs from the rest of the genome. Users can correct for the 209 

oligonucleotide frequency of the genomic windows using the “oligo_correction” argument. 210 

The function returns an S4 object, containing the genomic windows with their associated 211 

cosine similarities and the settings used to run the function. Because of the unbiased 212 

approach of this function, it works best on a large dataset containing at least 100,000 213 

substitutions. The result of this analysis can be visualized using the new 214 

“plot_regional_similarity” function. 215 

 216 

Lesion segregation 217 

Mutation spectra sometimes contain Watson versus Crick strand asymmetries (24). These 218 

asymmetries can be the result of many DNA lesions occurring during a single cell cycle. If 219 

these lesions are not properly repaired before the next genome duplication, then the 220 

resulting sister chromatids will segregate into different daughter cells, which will each 221 

inherit the lesions on opposite strands. This process is known as lesion segregation (24). The 222 

presence of lesion segregation in mutation data can be calculated with the new 223 
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“calculate_lesion_segregation” function. This calculation can be done for all mutations 224 

together or separately for the different mutation contexts. The results can be visualized 225 

using the “plot_lesion_segregation” function (Fig. 2d, Additional file 1: Figure S3). 226 

 227 
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 228 

Fig. 2 Regional spectra show differences between genomic regions 229 

a Relative contribution of the indicated mutation types to the point mutation spectrum split 230 

between exons and the rest of the genome for each sample. b Relative contribution of the 231 
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indicated mutation types to the point mutation spectrum split between early-, 232 

intermediate-, and late-replicating DNA for each sample. c Relative contribution of each 233 

trinucleotide change to the point mutation spectrum split between early- intermediate and 234 

late-replicating DNA for each sample. d A jitter plot depicting the presence of lesion 235 

segregation for each sample per chromosome. Each dot depicts a single base substitution. 236 

Any C>N or T>N is shown as a “+” strand mutation, while G>N and A>N mutations are shown 237 

on the “-“ strand. The x-axis shows the position of the mutations. The horizontal lines are 238 

calculated as the mean of the "+" and "-" strand, where "+" equals 1 and "-" equals 0. They 239 

indicate per chromosome on which strand most of the mutations are located. The 240 

mutations were downsampled to 33% to reduce the file size. 241 

 242 

Mutational signature analysis 243 

When performing signature analyses, it is possible to either extract novel signatures using 244 

NMF or to fit previously defined signatures to a mutation count matrix (signature refitting). 245 

Both approaches can be applied for all mutation types. By combining count matrices of 246 

different types, it is even possible to create a composite signature. 247 

 MutationalPatterns now supports a variational Bayesian (Bayes) NMF algorithm from 248 

the ccfindR package to help choose the optimal number of signatures, in addition to the 249 

regular NMF algorithm (27) (Additional file 1: Figure S4). One challenge with de novo 250 

signature extraction is that extracted signatures can be very similar to previously defined 251 

signatures with known etiology. With the new “rename_nmf_signatures” function, these 252 

extracted signatures can be identified using cosine similarity scores and their names can be 253 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.01.466730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466730
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

changed from an arbitrary naming to a custom naming that reflects their similarity to these 254 

previously defined signatures. 255 

The original MutationalPatterns package already contained the “fit_to_signatures” 256 

function, which finds the optimal combination of signatures to reconstruct a profile and 257 

calculates a reconstructed profile based on this combination of signatures.  However, this 258 

approach could lead to too many signatures being used to explain the data (20). One simple 259 

method to reduce this overfitting, which was used in the vignette of the previous version of 260 

MutationalPatterns, is to remove all signatures with less than 10 mutations. However, this 261 

method, which we will call “regular_10+”, only reduced overfitting slightly. To reduce 262 

overfitting, we introduce the new “fit_to_signatures_strict” function. The default backwards 263 

selection method of this function iteratively refits a set of signatures to the data, each time 264 

removing the signature with the lowest contribution. During each iteration the cosine 265 

similarity between the original and reconstructed profile is calculated. The iteration process 266 

stops when the change in cosine similarity between two iterations is bigger than the user-267 

specified “max_delta” cutoff (Additional file 1: Figure S5). Users can set the “max_delta” 268 

cutoff based on their desired sensitivity and specificity. Stricter refitting, with this method, is 269 

comparable to a previously described approach and results in less signatures being chosen 270 

when tested on mutation data obtained from cell lines that lack specific DNA repair 271 

pathways (Fig. 3a, b; see Additional file 2) (13). The “fit_to_signatures_strict” function also 272 

has a best subset selection approach. This method works similarly to the backwards 273 

selection approach. However, instead of removing the signature with the lowest 274 

contribution, each combination of x signatures is tried. This includes signatures that were 275 

not included in a previous iteration. Here, x is the number of signatures used during 276 

refitting, which is reduced by one in each iteration step. By default, 277 
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“fit_to_signatures_strict” uses the backwards selection method, because the best subset 278 

method becomes very slow when fitting against more than 10-15 signatures. Therefore, we 279 

used the backwards selection method for all “strict” signature refitting analyses in the rest 280 

of this manuscript. Another way to reduce overfitting is to only use signatures that are 281 

known to be potentially active in your tissue/cells of interest. We recommend using this 282 

method in combination with “fit_to_signatures_strict” for optimal results. 283 

In addition to estimating contributions of signatures to mutation spectra, it is also 284 

vital to know how confident these contributions are. The confidence of signature 285 

contributions can be determined using a bootstrapping approach with the new 286 

“fit_to_signatures_bootstrapped” function, which can use both the strict and the regular 287 

refitting methods. Its output can be visualized in multiple ways using the 288 

“plot_bootstrapped_contribution” function (Fig. 3c, Additional file 1: Figure S6). The 289 

signature contributions can be correlated between signatures across the different bootstrap 290 

iterations. This correlation can be visualized using the “plot_correlation_bootstrap” function 291 

(Fig. 3d). A negative correlation between two signatures means that each signature had a 292 

high contribution in iterations in which the other had a low contribution, which can occur 293 

when the refitting process has difficulty distinguishing between two similar signatures. One 294 

simple way to deal with highly similar signatures is to merge them. This can be done using 295 

the new “merge_signatures” function. 296 

To test the accuracy of signature analysis, the cosine similarity between the 297 

reconstructed and original mutation profile needs to be determined. A high cosine similarity 298 

between the reconstructed and original profile indicates that the used signatures can 299 

explain the original spectrum well. This comparison between reconstructed and original 300 
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mutation profiles can be visualized with the new “plot_original_vs_reconstructed" function 301 

(Fig. 3e). 302 

 In order to perform refitting, a matrix is required of the predefined signatures. 303 

Signature matrices of the Catalogue of Somatic Mutations in Cancer (COSMIC) (v3.1 + v3.2), 304 

SIGNAL (v1) and SparseSignatures (v1) are now included in MutationalPatterns (6,13,15,28). 305 

These matrices include general, tissue-specific and drug exposure signatures. The COSMIC 306 

matrices also include DBS and indel signatures, next to the standard SBS signatures. 307 

Signature matrices can be easily loaded using the new “get_known_signatures” function. 308 

 309 
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 310 

Fig. 3 Signature refitting is improved 311 

a Absolute contribution of each mutational signature for each sample using “regular” 312 

signature refitting and b “strict” signature refitting. c Dot plot showing the contribution of 313 

each mutational signature for each sample using bootstrapped signature refitting. The 314 

colour of a dot indicates the fraction of bootstrap iterations in which a signature 315 

contributed to a sample. The size indicates the mean number of contributing mutations 316 
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across bootstrap iterations in which the contribution was not zero. d Heatmap depicting the 317 

Pearson correlation between signature contributions across the bootstrap iterations. e Bar 318 

graph depicting the cosine similarity between the original and reconstructed profiles of each 319 

sample based on signature refitting. 320 

 321 

Signature-specific damaging potential analysis 322 

Some signatures are more likely than others to have functional effects by causing premature 323 

stop codons (“stop gain”), splice site mutations or missense mutations, because of sequence 324 

specificity underlying these changes. With MutationalPatterns it is now possible to analyze 325 

how likely it is for a signature to either cause "stop gain", "missense", "synonymous" or 326 

"splice site" mutations for a set of genes of interest. For this analysis to be performed, the 327 

potential damage first needs to be calculated per mutational context, with the 328 

“context_potential_damage_analysis” function. Next, the potential damage per context is 329 

combined using a weighted sum to calculate the potential damage per signature using the 330 

“signature_potential_damage_analysis” function. The potential damage per signature is also 331 

normalized using a “hypothetical” flat signature, which contains the same weight for each 332 

mutation context. 333 

This analysis will only take mutational contexts into account. Other features, such as 334 

open/closed chromatin, are not considered, because they vary per tissue type. However, 335 

this analysis can still give an indication of how damaging a signature might be, which could 336 

be supplemented by further custom analyses. 337 

 338 
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This new version of MutationalPatterns also comes with many smaller updates and bugfixes. 339 

A comprehensive list can be found in Additional file 3: Table S1. 340 

 341 

Results 342 

 343 

Extended mutation context analysis and regional mutational patterns 344 

To demonstrate the importance of analyzing extended mutation contexts, regional 345 

mutational patterns and lesion segregation for characterizing the underlying mutagenic 346 

processes, we applied MutationalPatterns to three published mutation datasets. First, we 347 

ran MutationalPatterns on 276 melanoma samples from the HMF database. After pooling 348 

these samples, we observed that TT[C>T]CT mutations are the most common type of 349 

substitution (Fig. 4a). This substitution type is more common than other T[C>T]C 350 

substitutions, showing that the extended context has a large effect. Next, we compared the 351 

mutation patterns of the melanoma samples between the different genomic regions 352 

classified by the Ensembl regulatory build (30). While the patterns look similar, they are 353 

significantly different (Fig. 4b) (p = 0.0005, chi-squared test). One subtle difference is the 354 

low contribution of T[C>T]A in promoters compared to “Other” regions of the genome, not 355 

present in the regulatory build. 356 

 Next, to show how MutationalPatterns can be used to identify regional activity of 357 

specific mutation processes in an unsupervised manner, we applied the package on 217 358 

pooled pediatric B-ALL WGS samples (31). These B-cell-derived leukemias have undergone 359 

VDJ recombination, which is associated with somatic hypermutation at loci encoding for 360 
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immunoglobulin (32,33). As somatic hypermutation is associated with a specific signature, 361 

these sites were expected to have a mutation spectrum that is different from the rest of the 362 

genome. Indeed, MutationalPatterns was able to detect this for the two VDJ regions, 363 

located on chromosomes 2 and 14 (Fig. 4c).  Some other regions also seem to have a 364 

different mutational pattern, several of which contain PCDH genes. However, further 365 

research is needed to explain these results. This example shows how MutationalPatterns 366 

can identify region-specific mutational processes in an unsupervised manner. 367 

Finally, to show how MutationalPatterns can identify lesion segregation, we applied 368 

it on a dataset known to contain this phenomenon. We found significant lesion segregation 369 

in data obtained from induced pluripotent stem cells treated with 0.109 uM of 370 

dibenz[a,h]anthracene diol-epoxide (6,24), using the “plot_lesion_segregation” function of 371 

MutationalPatterns (Fig. 2d). It was even possible to spot sister-chromatid-exchange events, 372 

such as on chromosome 2 of sample MSM0.103_s6 (Fig. 2d, lower panel). To reduce the file 373 

size of the figure, 66% of the mutations of each sample were removed using the 374 

“downsample” argument of this function.  Using MutationalPatterns, we also found lesion 375 

segregation in patients that received the antiviral drug ganciclovir (7). 376 
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 377 

Fig. 4 Large cancer datasets show extended and regional mutation patterns 378 

a Heatmap depicting the relative contribution of the indicated mutation types and the 379 

surrounding bases to the point mutation spectrum for metastatic melanomas. The total 380 

number of somatic point mutations is indicated. b Relative contribution of each C>T 381 

trinucleotide change to the point mutation spectrum split between different genomic 382 

regions. c Graph depicting the similarity in the mutation profile between genomic windows 383 

and the rest of the genome. Each dot shows the cosine similarity between the mutation 384 

profiles of a single window and the rest of the genome. The dots are colored based on the 385 
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sizes in mega bases of the windows. The locations of the mutations are plotted on the 386 

bottom of the figure. 387 

 388 

MutationalPatterns offers more functionality than other mutation analysis tools 389 

An overview of the functions of MutationalPatterns and related tools is shown in Table 1. 390 

The original version of MutationalPatterns is also included in this table. An important 391 

advantage of the original package was that it combined many mutational analyses into a 392 

single package. This new version improves many of these features and adds many new and 393 

unique features. 394 

 395 

Mutation matrices can be generated faster 396 

To make MutationalPatterns scalable to large cancer datasets and suitable for interactive 397 

analysis we improved the runtime of the “mut_matrix” and “mut_matrix_stranded” 398 

functions by vectorizing them. The new functions for retrieving the mutation contexts and 399 

generating the mutation matrices have also been written in a vectorized way. As a result, 400 

these functions have O(n) or better scaling as tested on a large WGS database from the 401 

Hartwig Medical Foundation (HMF) (Additional file 1: Figure S7) (29).  402 

To test their improved performance, we benchmarked the “mut_matrix” and 403 

“mut_matrix_stranded” functions on the example data provided in the previous version of 404 

MutationalPatterns (Additional file 1: Figure S8). These functions are now respectively 3.4 405 

and 2.6 times as fast on average. In other words, a mutation matrix for 1 million SBSs can 406 
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now be made in only 135 seconds on a laptop, which makes these functions suitable for 407 

large cancer datasets. 408 

 409 

Table 1: Feature comparison with other packages 

Group Feature Mutational
Patterns 

Mutational
Patterns 
original (12) 

Sigprofiler 
(13) 

SignatureAn
alyzer (13) 

deconstruct
Sigs (14) 

sparseSigna
tures (15) 

signeR (16) somaticSign
atures (17) 

Maftools 
(18) 

decompTu
mor2Sig 
(19) 

Language Language/platform R 
(bioconduct
or) 

R 
(bioconduct
or) 

Python (+ R 
wrapper) 

Python R (cran) R 
(bioconduct
or) 

R 
(bioconduct
or) 

R 
(bioconduct
or) 

R 
(bioconduct
or) 

R 
(bioconduct
or) 

Genome Supported genomes Genome 
agnostic 

Genome 
agnostic 

Human, 
Mice, Rat, 
Yeast 

- Human Genome 
agnostic 

Genome 
agnostic 

Genome 
agnostic 

Genome 
agnostic 

Genome 
agnostic 

Mutation 
profile 

96 SNV profile X X X - X - X X X X 
 

extended SNV profile X - X - - - - X - X 
 

Indel profile X - X - - - - - - - 
 

DBS profile X - X - - - - - - - 
 

MBS profile X - - - - - - - - - 
 

Transcriptional strand bias 
profile 

X X X - - - - - - - 
 

Replicative strand bias 
profile 

X X X - - - - - - - 
 

Pool samples X - - - - - - - - - 

Signature 
extraction 

Signature extraction 
(NMF) 

X X X - - - - X X - 
 

Signature extraction 
(Bayes NMF) 

X - - X - - X - - - 
 

Signature extraction 
(Lasso NMF) 

- - - - - X - - - - 
 

Update signature names X - - - - - - - - - 

Signature 
refitting 

Signature refitting X X X X X - - - - X 
 

Strict signature refitting X - X X X - - - - X 

 Strict signature refitting 
(best subset) 

X - - - - - - - - X 

- Bootstrapped signature 
refitting 

X - - - - - - - - - 
 

Correlation bootstrapped 
refitting 

X - - - - - - - - - 

Signature 
damage 
analysis 

Signature potential 
damage analysis 

X - - - - - - - - - 

Signature other Plot supported profiles / 
signatures 

X X X X X X X X X X 
 

Plot and compare 
supported profiles 

X X - - - - - - - - 
 

Signature contribution 
heatmap 

X X - - - - X X - - 
 

Signature contribution 
barplot 

X X - - - - X X - - 
 

Signature/profile 
similarity heatmap 

X X - - - - - - X - 
 

Similarity with 
reconstructed profile 
barplot 

X - - - - - - - - - 

Genomic 
distribution 

Rainfall plot X X - - - - - X X - 
 

Enrichment/depletion in 
genomic region 

X X - - - - - - - - 
 

Region specific profiles X - - - - - - - - - 
 

Region specific signatures X - - - - - - - - - 

 Unsupervised regional 
similarity 

X - - - - - - - - - 

Lesion 
segregation 

Lesion segregation X - - - - - - - - - 

 410 
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 411 

Strict signature refitting improves performance 412 

To determine how well the strict refitting method of MutationalPatterns performs as 413 

compared to the regular method, we used simulated mutation matrices. These matrices 414 

were generated by sampling trinucleotide changes of 4 different randomly selected 415 

signatures. This process was repeated 300 times per matrix, to generate 300 “samples”. 416 

Each of the samples in a matrix contained the same number of mutations per signature but 417 

was composed of different signatures. The signatures were selected from the first 30 418 

signatures of the COSMIC signature matrix. We limited our analysis to the first 30, because 419 

these are the signatures that are most often observed in cancers and therefore more 420 

accurately resemble real-life scenarios. In addition, this approach better resembles how the 421 

package is used, because users will often fit against a limited number of signatures 422 

associated with a specific tissue. By limiting ourselves to the first 30 COSMIC signatures we 423 

also reduced overfitting. Any overfitting we observed was thus not caused by us using an 424 

unusually large signature matrix. In total we generated 4 matrices, each containing 300 425 

samples. The number of mutations per sample was respectively 200, 400, 2000 and 4000 for 426 

the 4 different matrices. 427 

The fraction of correctly attributed mutations to the specific signatures was 428 

increased with the strict refitting approach of MutationalPatterns as compared to “regular” 429 

or “regular_10+” refitting (Additional file 1: Figure S9a). All the tested refitting methods 430 

work better when there are more mutations per signature. Instead of using the number of 431 

correctly attributed mutations as a readout for performance, we determined whether the 432 

presence and absence of specific signatures was correctly classified. This readout might be 433 
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more informative for mutational signature analysis because the presence of a signature can 434 

be a clinically relevant finding. The strict refitting method achieved a much higher precision 435 

than the original methods, while retaining a high correct recall rate (sensitivity) (Additional 436 

file 1: Figure S9b). The strict method obtained an area under the curve (AUC) of 0.925, even 437 

when only 50 mutations were present per signature, indicating that refitting can be 438 

performed on relatively small amounts of mutations. 439 

 440 

SBS10a and SBS18 have a high damage potential 441 

We applied the “signature_potential_damage_analysis” function on the COSMIC signatures. 442 

This analysis showed that SBS10a and SBS18 are respectively 3.6 and 2.0 times as likely to 443 

cause a “stop gain” mutation compared to a completely flat signature, containing the same 444 

weight for each mutation context, on a set of genes associated with cancer (Additional file 445 

3: Table S2, Table S3). SBS18 is related to oxidative stress, suggesting that this type of stress 446 

has a high potency of generating premature stop codons in genes that are recurrently 447 

associated with tumorigenesis (13). In contrast, the clock-like signature SBS1, which also 448 

occurs in healthy cells, was 0.81 and 0.40 times as likely to cause “stop gain” and “splice 449 

site” mutations, respectively, as compared to a completely flat hypothetical signature (2,34) 450 

(Additional file 3: Table S2). The damaging potential of this ageing-related mutational 451 

process is thus relatively low. Overall, C>A heavy signatures, like the recently identified 452 

ganciclovir signature, have more damage potential, because they are most likely to 453 

introduce a premature stop codon in an open reading frame (7). Being able to quickly assess 454 

the damage potential of existing and novel signatures can be very useful to prioritize 455 

samples and mutagenic exposures for further investigation. 456 
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 457 

Applying MutationalPatterns on mutation data of DNA repair-deficiencies 458 

To illustrate the functionality of MutationalPatterns on real-life data and to obtain novel 459 

biological insights, we applied it to mutation data obtained from cell lines in which we 460 

deleted specific DNA repair pathways using CRISPR-Cas9 genome editing technology 461 

(Additional file 1: Figure S10, Additional file 2). In AHH-1 cells, a lymphoblastoid cell line, we 462 

generated bi-allelic knockout lines of MSH2, UNG and XPC by transfecting the cells with a 463 

plasmid containing Cas9 and a single gRNA against the gene of interest. By co-transfection 464 

with a HPRT-targeting plasmid, we were able to select the transfected cells using 6-465 

thioguanine, to which only HPRT-sufficient cells are sensitive. Using this protocol, no 466 

targeting vectors for each gene of interest were required. We analyzed somatic mutations in 467 

HPRT-only knockout lines as well as the combination of HPRT with MSH2, UNG and XPC 468 

(Additional file 2). To catalogue mutations that were acquired specifically in the absence of 469 

the targeted DNA repair gene, we used a previously developed method (35). In brief, whole 470 

genome sequencing was performed on generated clones and subclones. By subtracting 471 

variants present in the clones from those in the subclones, the somatic mutations, that 472 

accumulated in between the clonal steps, were determined. 473 

 474 

The SBS profiles are shown in Additional file 1: Figure S11. Interestingly, the profile observed 475 

in the MSH2 knockout cell line displayed a large C[C>A]T peak. When extending the 476 

sequence context surrounding the mutated base, the MSH2 deficiency profile showed a 477 

large TT[T>C]TT peak, suggesting that this extended context surrounding mutated thymine 478 

residues is important for the underlying mutagenic process (Fig. 1d).  479 
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 480 

Next, we examined regional mutation patterns. The spectra of the MSH2- and UNG- 481 

deficient cells varied between the exonic regions and the rest of the genome (Fig. 2a)(fdr = 482 

0.0012, fdr = 0.0012; chi-squared test). Their exons contained more C>T and less T>C 483 

mutations. The other samples did not show a significant difference in regional mutation 484 

spectra. However, when we downsampled all the samples to 227 mutations, which is the 485 

number of mutations in the HPRT only knockout, no significant regional mutation patterns 486 

were observed in MSH2 and UNG knockout cells. This suggests that with this number of 487 

mutations insufficient statistical power was obtained for these analyses. Next to examining 488 

mutation profiles in exonic regions, we also analyzed regions with different replication 489 

timing dynamics, using the median replication timing data from 5 B-lymphocyte cell lines 490 

from ENCODE (Fig. 2b, Additional file 3: Table S4) (40). The spectra of MSH2 and UNG 491 

knockouts were different between early-, intermediate- and late-replicating DNA (fdr = 492 

0.0012, fdr = 0.0012; chi-squared test). Early replicating DNA has more C>T and less C>A 493 

than late replicating DNA. These differences were still present when downsampling was 494 

applied (fdr = 0.0025, fdr = 0.010; chi-squared test). Based on these region-specific analyses, 495 

we can conclude that the mutational processes active in the MSH2 and UNG knockouts 496 

show varying activities in different regions of the genome, a result that cannot easily be 497 

obtained with other tools. 498 

We also tested if any of the DNA repair knockout cells displayed lesion segregation, 499 

which would indicate that most of the mutations occurred during a single cell-cycle; 500 

however, this was not the case (Additional file 1: Figure S6).  501 

 502 
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Finally, we looked at the mutational signatures in the knockout samples. Based on signature 503 

refitting, the MSH2 knockout contained contributions of SBS5, SBS20, SBS26 and SBS44 (Fig. 504 

3b, c). Because of the bootstrapping we can be more confident in these results. SBS5 is a 505 

clock-like signature, with unknown etiology. SBS20, SBS26 and SBS44 are all associated with 506 

defective DNA mismatch repair in cancer mutation data (13). The UNG knockout contained 507 

contributions from SBS30, which has previously been attributed to deficiency of the base 508 

excision repair gene NTHL1 (13). The glycosylase encoded by NTHL1 is involved in the 509 

removal of oxidized pyrimidines from the DNA and therefore SBS30 likely reflects an 510 

alternative consequence of oxidative stress-induced mutagenesis as compared to SBS18. 511 

However, UNG is a glycosylase that is believed to remove uracil residues from the DNA 512 

(36,37). Therefore, our data suggests that SBS30 can be caused, besides oxidized 513 

pyrimidines, by unremoved uracil residues. Alternatively, UNG may also, to a certain extent, 514 

be involved in the removal of oxidized pyrimidines from the DNA. Even though the 515 

contribution of SBS30 was relatively modest in the UNG knockout, it was consistently picked 516 

up by the bootstrapping algorithm. This observation indicated that the number of mutations 517 

attributed to a signature is not necessarily related to the confidence of its presence, which 518 

further demonstrates the importance of our bootstrapping approach. Unexpectedly, the 519 

contribution of SBS30 in UNG knockout cells was negatively correlated with SBS2, even 520 

though their cosine similarity is only 0.46 (Fig. 3d). This indicates that the refitting algorithm 521 

has difficulty choosing between SBS2 and SBS30. Such difficulties in signature selection 522 

could lead to different and possibly incorrect signatures being attributed to similar sample 523 

types. Understanding the correlation of estimated signature contributions between 524 

different signatures, which can be achieved with bootstrapping, is important to prevent 525 

incorrect interpretation of the data. The XPC knockout contained contributions from SBS8. 526 
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The etiology of this signature is not yet known. However, this finding further confirms the 527 

association of SBS8 with nucleotide excision repair deficiency (38,39). Overall, the COSMIC 528 

signatures could explain the mutation profiles of most samples quite well, even when strict 529 

refitting was used (Fig. 3e). 530 

Next, we studied the indel signatures in these knockout lines. Deletion of MSH2 531 

resulted in an increased number of indels as compared to wild-type cells (Fig. 1b). Most of 532 

these indels were single thymine deletions in thymine mononucleotide repeat regions. 533 

Signature analysis indicated that ID1, ID2 and ID7 contributed to the indel pattern in the 534 

MSH2-deficient cells (Fig. 5a, b). Of these, ID1 and ID2 are associated with polymerase 535 

slippage during DNA replication and found in large numbers in cancers with mismatch repair 536 

deficiency. ID7 is also associated with defective DNA mismatch repair, but not attributed to 537 

polymerase slippage (13). Together these signatures could explain the mutational indel 538 

profile of MSH2 knockout cells very well (Fig. 5c), showing that MutationalPatterns can 539 

perform indel signature refitting. None of the knockout cells displayed a strongly increased 540 

number of DBSs as compared to the wild-type cells (Fig. 1c).  541 
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 542 

Fig. 5 Indel signatures can explain the MSH2 profile 543 

a Relative contribution of each mutational signature for the wild-type (WT) and MSH2 544 

samples using strict signature refitting. b Dot plot showing the contribution of each 545 

mutational signature for the WT and MSH2 samples using bootstrapped signature refitting. 546 

The color of a dot indicates the fraction of bootstrap iterations in which a signature 547 

contributed to a sample. The size indicates the mean number of contributing mutations 548 

across bootstrap iterations in which the contribution was not zero. c Bar graph depicting the 549 

cosine similarity between the original and reconstructed profiles of the WT and MSH2 550 

samples based on signature refitting. 551 
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The novel version of MutationalPatterns has been designed to be easy-to-use in such a way 554 

that both experienced bioinformaticians and wet-lab scientists with a limited computational 555 

background can use it. The code is written in the tidyverse style, which makes it more 556 

similar to natural English and therefore easier to understand for non-programmers. 557 

MutationalPatterns gives clear error messages with tips on how to solve them, in contrast to 558 

the default error messages in R, which can sometimes be cryptic. The updated vignette, 559 

accompanying the package, not only explains how the functions in the package can be used, 560 

but also informs users on the pros and cons of the different analysis strategies. 561 

Similar to the previous version of the package, plots are all generated using ggplot2 562 

(41). This allows users to visualize their data in highly customizable plots that can be easily 563 

modified. Because this feature was not readily apparent for many users of the original 564 

MutationalPatterns package, we have now explicitly showed how to modify the elements of 565 

a plot, such as the axis and theme, in the vignette. 566 

We have adopted unit testing for this version of the package, resulting in more than 567 

90% code coverage. This will improve the stability of the package and makes it easier to 568 

maintain.  569 

The novel version of MutationalPatterns is already available on Bioconductor as an 570 

update of the previous version. MutationalPatterns does not break existing scripts and 571 

pipelines, because backwards incompatible changes have been kept to a minimum. 572 

 573 

Conclusions 574 
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MutationalPatterns is an easy-to-use R/Bioconductor package that allows in-depth analysis 575 

of a broad range of patterns in somatic mutation catalogues, supporting single and double 576 

base substitutions as well as small insertions and deletions. Here, we have described the 577 

new and improved features of the package and shown how the package performs on 578 

existing cancer data sets and on mutation data obtained from cell lines in which specific 579 

DNA repair genes are deleted. These analyses demonstrate how the package can be used to 580 

generate novel biological insights. 581 

 582 

Mutational pattern analyses have proven to be a powerful approach to dissect mutational 583 

processes that have operated in cancer and to support treatment decision making in 584 

personalized medicine. Therefore, mutational patterns hold a great promise for improved 585 

future cancer diagnosis. The MutationalPatterns package can be used to fulfill this promise 586 

and we are confident that it will be embraced by the community. 587 

 588 

Availability and requirements 589 

The availability and requirements are listed as follows: 590 

Project name: MutationalPatterns 591 

Project home page: https://github.com/ToolsVanBox/MutationalPatterns 592 

Archived version: 593 

https://bioconductor.org/packages/3.14/bioc/html/MutationalPatterns.html 594 

Operating system(s): Linux, Windows or MacOS 595 
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Programming language: R (version > = 4.1.0) 596 

License: MIT 597 

 598 

List of abbreviations 599 

HR: homologous recombination 600 

Indels: Insertions and deletions 601 

DBS: double base substitutions 602 

VCF: variant call format 603 

MBS: Multi base substitutions 604 

COSMIC: Catalogue of Somatic Mutations in Cancer 605 

NMF: non-negative matrix factorization 606 

Bayes: Bayesian 607 

AUC: Area under the curve 608 

PCA: Principal component analysis 609 

CI: Confidence interval 610 

WT: wild-type 611 

Mb: mega bases 612 
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