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Abstract

Background

The collective of somatic mutations in a genome represents a record of mutational
processes that have been operative in a cell. These processes can be investigated by

extracting relevant mutational patterns from sequencing data.

Results

Here, we present the next version of MutationalPatterns, an R/Bioconductor package, which
allows in-depth mutational analysis of catalogues of single and double base substitutions as
well as small insertions and deletions. Major features of the package include the possibility
to perform regional mutation spectra analyses and the possibility to detect strand
asymmetry phenomena, such as lesion segregation. On top of this, the package also
contains functions to determine how likely it is that a signature can cause damaging
mutations (i.e., mutations that affect protein function). This updated package supports
stricter signature refitting on known signatures in order to prevent overfitting. Using
simulated mutation matrices containing varied signature contributions, we showed that
reliable refitting can be achieved even when only 50 mutations are present per signature.
Additionally, we incorporated bootstrapped signature refitting to assess the robustness of
the signature analyses. Finally, we applied the package on genome mutation data of cell
lines in which we deleted specific DNA repair processes and on large cancer datasets, to

show how the package can be used to generate novel biological insights.
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Conclusions

This novel version of MutationalPatterns allows for more comprehensive analyses and
visualization of mutational patterns in order to study the underlying processes. Ultimately,
in-depth mutational analyses may contribute to improved biological insights in mechanisms
of mutation accumulation as well as aid cancer diagnostics. MutationalPatterns is freely

available at http://bioconductor.org/packages/MutationalPatterns.

Keywords

R, regional mutation patterns, mutagenic processes, mutational signatures, indels, base

substitutions, somatic mutations

Background

Mutational landscapes in the genomes of cells are the result of a balance between
mutagenic and DNA-repair processes (1). The somatic mutations that shape these
landscapes gradually accumulate throughout life in both healthy and malignant cells (2,3).
As a result, the complete collection of somatic mutations in the genome of a cell forms a
record of the mutational processes that have been active throughout the life of that cell. In-
depth analyses of somatic mutations can allow us to better understand the mutational

processes that caused them (4).
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First, such analyses can provide insight into the etiology of cancer by identifying mutagenic
exposures, which ultimately contribute to the accumulation of cancer driving mutations. For
example, we recently identified a mutational pattern caused by a carcinogenic strain

of Escherichia coli found in the gut of ~20% of healthy individuals (5). This pattern matched
mutations found in colorectal cancer driver genes, indicating a direct role in tumorigenesis.
Mutational patterns have been systematically determined in vitro for many environmental
mutagenic agents, which can be used to deduce cancer causes (6). The effects of such
agents can also be found in vivo. For example, we recently found mutations caused by
exposure to the antiviral drug ganciclovir, which patients received to treat a viral infection
after a hematopoietic stem cell transplant (7). Second, studying mutational processes can
be useful for improved cancer diagnostics. For example, the presence of certain mutational
signatures can be used as a functional readout for deficiency of homologous recombination
(HR)-mediated double strand break repair (8,9). Cancers with a defect in this repair pathway
are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors, providing a

targeted therapy for the patients (10,11).

One of the most popular tools to analyze somatic mutation profiles is the
R/Bioconductor package MutationalPatterns, which can be used to easily investigate
mutation spectra (12—19). It can also be used to identify new signatures in mutation data
using Nonnegative Matrix Factorization (NMF) and to determine the contribution of
previously defined signatures to a sample using a method known as “signature refitting” (4).
However, the original version of this package has several limitations. First, the package is
limited to single base substitutions (SBSs) and cannot be used for small insertions and
deletions (indels) or double base substitutions (DBSs) even though signatures for these

mutation types have recently been identified in large pan-cancer sequencing efforts (13).
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The package also suffers from signature overfitting when determining the contribution of
known patterns to a sample, which can result in too many signatures being attributed (20).
Additionally, the package only allows for analyzing spectra for mutations in the entire
genome, making it difficult to study the involvement of specific genomic elements, such as
enhancers or secondary hairpin structures. The ability to investigate the role of such
elements in mutation accumulation is important, because this allows for identifying the

molecular mechanisms by which certain processes induce mutagenesis (21-23).

Here we present a novel, almost completely rewritten version of MutationalPatterns for the
analysis of mutational processes, which is easy-to-use and contains many new features,
such as DNA lesion segregation (24). Existing features have also been improved, resulting in
a very comprehensive package that can be used for both basic and more advanced
mutational pattern analyses. MutationalPatterns supports DBSs, multi base substitutions
(MBSs) and indels, and can automatically extract all these mutation types from a single
variant call format (VCF) file. The package can generate region specific spectra and signature
contributions to study the varying activities of mutational processes across the genome. The
package also generates more accurate results by supporting stricter signature refitting. This
refitting can also be bootstrapped to determine the confidence of the results. Additionally, a

process known as lesion segregation can be investigated.

The MutationalPatterns package can be used to generate novel biological insights,
which we demonstrate by applying it to whole genome sequencing (WGS) data obtained
from a lymphoblastoid cell line, in which specific DNA repair processes were deleted using

CRISPR-Cas9 genome editing, as well as by applying the package on large cancer datasets.
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103  Additionally, we demonstrate that the package scales well on these large datasets. Finally,

104  we show the improved accuracy of the stricter signature refitting using simulated data.

105

106 Implementation

107  Mutation profiles

108  MutationalPatterns supports SBSs, DBSs, MBSs and indels. Multiple mutation types are

109 allowed to be present in a single VCF file so that users do not have to split them beforehand.
110 A specific mutation type can be selected as an argument with the “read_vcfs_as_granges”
111 function when reading in the VCF files. Alternatively, the “get_mut_type” function can be

112 used on data that is already loaded in the memory.

113 DBS and MBS variants can be called by various variant callers, such as the Genome
114  Analysis ToolKit (GATK) Mutect2, in two different ways (25). The variants can be called

115  explicitly as DBS and MBS variants or as neighboring SBSs. A downside of the first approach
116  is that neighboring germline and somatic mutations can be called as a single combined DBS
117  or MBS, because the variants are compared to the reference instead of the control sample.
118  MutationalPatterns supports both approaches. When the second approach is used,

119 neighboring SBSs will be merged into somatic DBS or MBS variants.

120 Because they get merged, DBS and MBS variants are no longer incorrectly identified
121 as separate SBSs by MutationalPatterns. This improves the quality of the SBS profiles, as
122 DBS and MBS mutations often have a very different context on account of them being

123  caused by different processes (13) (Additional file 1: Figure S1).

124
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125 The COSMIC contexts of SBS, indel and DBS variants can be retrieved with fast vectorized
126  functions, namely “mut_context”, “get_indel_context” and “get_dbs_context”. The context
127  of SBS variants consisted of its direct 5" and 3’ bases in the original package. These contexts
128  were chosen because they are generally the most informative and adding more bases

129 drastically increases the feature space, leading to sparsity (4). Indeed, adding only one extra
130 base to both the upstream and downstream context increases the number of features from
131 96 to 1536. However, with the increasing availability of large sequencing cohorts such large
132  feature spaces have become more manageable, making it easier to examine nucleotide

133  preference more upstream or downstream of the mutated base. Therefore,

134  MutationalPatterns’ users can now choose any context size for SBSs.

135

136  The mutation contexts can be used for custom analyses. Alternatively, the number of
137  mutations per context can be counted, resulting in a count matrix, where each row is a
138  context and each column a sample. These matrices are created with the “mut_matrix”,
139  “mut_matrix_stranded”, “count_indel_contexts”, “count_dbs_contexts” and

140 “count_mbs_contexts” functions. The “count_mbs_contexts” function uses the length of

141  the MBSs, because to date no COSMIC consensus has been defined.

142 The count matrices can be plotted as spectra or profiles for all the mutation types
143  (Fig. 1a, b, c). The SBS spectra can be displayed in the individual samples. Additionally, the
144  error bars can be displayed as standard deviation, 95% confidence interval (Cl) and the

145  standard error of the mean. A count matrix with a larger context can be visualized using the
146  new “plot_profile_heatmap” or “plot_river” functions (Fig. 1d, Additional file 1: Figure S2).

147  This last function can be especially helpful to provide a quick overview of a mutation
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spectrum with a wider context. Next to visualizing them, a count matrix can also be used for
downstream analyses, such as a de novo extraction of mutational signatures. In some cases,
it can be useful to pool multiple samples within a count matrix to increase statistical power.

This can be done using the new “pool_mut_mat” function.
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Fig. 1 Mutation profiles can be made for multiple mutation types

a Relative contribution of the indicated mutation types to the point mutation spectrum.

Bars depict the mean relative contribution of each mutation type over all the samples and
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156  error bars indicate the 95% confidence interval. The dots show the relative contributions of
157  theindividual samples. The total number of somatic point mutations per tissue is indicated.
158 b Absolute contribution of the indicated mutation types to the indel spectrum for the wild-
159  type (WT) and MSH2 knockout. The total number of indels per sample is indicated. c

160  Absolute contribution of the indicated mutation types to the DBS spectrum for the wild-type
161  (WT) and XPC knockout. The total number of DBSs per sample is indicated. d Heatmap

162  depicting the relative contribution of the indicated mutation types and the surrounding

163  bases to the point mutation spectrum for the WT and MSH2 knockout. The total number of

164  somatic point mutations per tissue is indicated.

165

166  Region specific analyses

167  Mutational processes can be influenced by regional genomic features at multiple scales,

168  such as chromatin landscape, secondary hairpin structures as well as the major and minor
169  groove of the DNA (21-23). With the previous version of MutationalPatterns, it was possible
170  to test for enrichment and/or depletion of the mutation load in such regions. However, the
171  package lacked the possibility to automatically correct for multiple testing. In addition,

172 mutational profiles in genomic regions could not be easily assessed. In MutationalPatterns,
173  multiple testing correction is now automatically performed when testing for enrichment and
174  depletion. In addition, multiple significance levels are now supported, which can be

175  visualized using one or multiple asterisks. Furthermore, regional mutation profiles can be
176  determined in detail. This is done by first splitting mutations based on pre-defined genomic
177  regions, with the new “split_muts_region” function, which requires a GRanges or

178  GRangeslist object containing chromosome coordinates as its input. These coordinates can
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179  beread into R from file types like “.txt” or “.bed” files or they can be directly read from
180 databases, such as Ensembl (26). This analysis can be performed for multiple samples and
181 multiple types of regions at once. A user could, for example, split a set of mutations into

Y/

182  “promoter”, “enhancer” and “other” mutations.

183 Splitting the mutations according to different genomic regions results in a

184  GRangesList containing sample/region combinations. These combinations can be treated as

185 separate samples by, for example, performing de novo signature analysis to identify

186  processes that are specifically active in certain genomic regions. Knowing in which regions a

187  signature is predominantly present, can lead to a better understanding of its etiology.

188 Instead of treating the sample/region combinations as separate samples, the genomic

189  regions can also be incorporated into the mutational contexts, using the new

190 “lengthen_mut_matrix” function. This means that a mutational context like “A[C>A]A” could
191  be splitinto “A[C>A]A-promoter” and “A[C>A]A-enhancer”. This analysis allows users to

192  generate signatures that contain different mutation contexts in different genomic regions.

193  Such signatures could be more specific than the regular COSMIC signatures.

194  Region-specific mutation spectra can be visualized with the “plot_spectrum_region”

195 function, which contains the same arguments as the “plot_spectrum” function (Fig. 2a, b). In
196  addition, region-specific 96-channel mutation profiles can be visualized with the new

197  “plot_profile_region” function, which contains the same arguments as the “plot_96_profile”
198 function (Fig. 2c). Both the “plot_spectrum_region” and “plot_profile_region” functions

199 contain a “mode” argument, which allows users to normalize for the occurrence of the

200 different mutation types per sample/region combination, per sample, or not at all.

10
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201 Instead of using pre-determined genomic regions, it is also possible to compare the
202  mutation spectra of regions with different mutation densities. These regions can be

203  identified using the new “bin_mutation_density” function.

204 Regional mutational patterns can also be investigated using an unsupervised

205 approach, which is unique to MutationalPatterns, with the new

206  “determine_regional_similarity” function. This function uses a sliding window approach to
207  calculate the cosine similarity between the global mutation profile and the mutation profile
208  of smaller genomic windows, allowing for the unbiased identification of regions with a

209 mutation profile, that differs from the rest of the genome. Users can correct for the

210 oligonucleotide frequency of the genomic windows using the “oligo_correction” argument.
211 The function returns an S4 object, containing the genomic windows with their associated
212 cosine similarities and the settings used to run the function. Because of the unbiased

213 approach of this function, it works best on a large dataset containing at least 100,000

214  substitutions. The result of this analysis can be visualized using the new

215  “plot_regional_similarity” function.

216

217  Lesion segregation

218 Mutation spectra sometimes contain Watson versus Crick strand asymmetries (24). These
219 asymmetries can be the result of many DNA lesions occurring during a single cell cycle. If
220 these lesions are not properly repaired before the next genome duplication, then the

221 resulting sister chromatids will segregate into different daughter cells, which will each

222  inherit the lesions on opposite strands. This process is known as lesion segregation (24). The

223 presence of lesion segregation in mutation data can be calculated with the new

11
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224  “calculate_lesion_segregation” function. This calculation can be done for all mutations
225  together or separately for the different mutation contexts. The results can be visualized

226  using the “plot_lesion_segregation” function (Fig. 2d, Additional file 1: Figure S3).

227

12
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Fig. 2 Regional spectra show differences between genomic regions

a Relative contribution of the indicated mutation types to the point mutation spectrum split

between exons and the rest of the genome for each sample. b Relative contribution of the

13
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232 indicated mutation types to the point mutation spectrum split between early-,

233  intermediate-, and late-replicating DNA for each sample. c Relative contribution of each

234  trinucleotide change to the point mutation spectrum split between early- intermediate and
235 late-replicating DNA for each sample. d A jitter plot depicting the presence of lesion

236  segregation for each sample per chromosome. Each dot depicts a single base substitution.
237  Any C>N or T>N is shown as a “+” strand mutation, while G>N and A>N mutations are shown
238  onthe “-“ strand. The x-axis shows the position of the mutations. The horizontal lines are
239  calculated as the mean of the "+" and "-" strand, where "+" equals 1 and "-" equals 0. They
240 indicate per chromosome on which strand most of the mutations are located. The

241  mutations were downsampled to 33% to reduce the file size.

242

243 Mutational signature analysis

244  When performing signature analyses, it is possible to either extract novel signatures using
245  NMF or to fit previously defined signatures to a mutation count matrix (signature refitting).
246  Both approaches can be applied for all mutation types. By combining count matrices of

247  different types, it is even possible to create a composite signature.

248 MutationalPatterns now supports a variational Bayesian (Bayes) NMF algorithm from
249  the ccfindR package to help choose the optimal number of signatures, in addition to the

250 regular NMF algorithm (27) (Additional file 1: Figure S4). One challenge with de novo

251  signature extraction is that extracted signatures can be very similar to previously defined
252  signatures with known etiology. With the new “rename_nmf_signatures” function, these

253  extracted signatures can be identified using cosine similarity scores and their names can be

14
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254  changed from an arbitrary naming to a custom naming that reflects their similarity to these

255  previously defined signatures.

256 The original MutationalPatterns package already contained the “fit_to_signatures”
257  function, which finds the optimal combination of signatures to reconstruct a profile and
258  calculates a reconstructed profile based on this combination of signatures. However, this
259  approach could lead to too many signatures being used to explain the data (20). One simple
260 method to reduce this overfitting, which was used in the vignette of the previous version of
261 MutationalPatterns, is to remove all signatures with less than 10 mutations. However, this
262  method, which we will call “regular_10+", only reduced overfitting slightly. To reduce

263  overfitting, we introduce the new “fit_to_signatures_strict” function. The default backwards
264  selection method of this function iteratively refits a set of signatures to the data, each time
265 removing the signature with the lowest contribution. During each iteration the cosine

266  similarity between the original and reconstructed profile is calculated. The iteration process
267  stops when the change in cosine similarity between two iterations is bigger than the user-
268  specified “max_delta” cutoff (Additional file 1: Figure S5). Users can set the “max_delta”
269  cutoff based on their desired sensitivity and specificity. Stricter refitting, with this method, is
270  comparable to a previously described approach and results in less signatures being chosen
271  when tested on mutation data obtained from cell lines that lack specific DNA repair

272  pathways (Fig. 3a, b; see Additional file 2) (13). The “fit_to_signatures_strict” function also
273  has a best subset selection approach. This method works similarly to the backwards

274  selection approach. However, instead of removing the signature with the lowest

275  contribution, each combination of x signatures is tried. This includes signatures that were
276  notincluded in a previous iteration. Here, x is the number of signatures used during

277  refitting, which is reduced by one in each iteration step. By default,
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278  “fit_to_signatures_strict” uses the backwards selection method, because the best subset
279  method becomes very slow when fitting against more than 10-15 signatures. Therefore, we
280 used the backwards selection method for all “strict” signature refitting analyses in the rest
281  of this manuscript. Another way to reduce overfitting is to only use signatures that are

282  known to be potentially active in your tissue/cells of interest. We recommend using this

283  method in combination with “fit_to_signatures_strict” for optimal results.

284 In addition to estimating contributions of signatures to mutation spectra, it is also
285  vital to know how confident these contributions are. The confidence of signature

286  contributions can be determined using a bootstrapping approach with the new

287  “fit_to_signatures_bootstrapped” function, which can use both the strict and the regular
288  refitting methods. Its output can be visualized in multiple ways using the

289  “plot_bootstrapped_contribution” function (Fig. 3¢, Additional file 1: Figure S6). The

290 signature contributions can be correlated between signatures across the different bootstrap
291  iterations. This correlation can be visualized using the “plot_correlation_bootstrap” function
292  (Fig. 3d). A negative correlation between two signatures means that each signature had a
293 high contribution in iterations in which the other had a low contribution, which can occur
294  when the refitting process has difficulty distinguishing between two similar signatures. One
295  simple way to deal with highly similar signatures is to merge them. This can be done using

296 the new “merge_signatures” function.

297 To test the accuracy of signature analysis, the cosine similarity between the
298  reconstructed and original mutation profile needs to be determined. A high cosine similarity
299 between the reconstructed and original profile indicates that the used signatures can

300 explain the original spectrum well. This comparison between reconstructed and original
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301 mutation profiles can be visualized with the new “plot_original_vs_reconstructed" function

302 (Fig. 3e).

303 In order to perform refitting, a matrix is required of the predefined signatures.

304  Signature matrices of the Catalogue of Somatic Mutations in Cancer (COSMIC) (v3.1 +v3.2),
305 SIGNAL (v1) and SparseSignatures (v1) are now included in MutationalPatterns (6,13,15,28).
306 These matrices include general, tissue-specific and drug exposure signatures. The COSMIC
307 matrices also include DBS and indel signatures, next to the standard SBS signatures.

308 Signature matrices can be easily loaded using the new “get_known_signatures” function.

309
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310

311  Fig. 3 Signature refitting is improved

312  aAbsolute contribution of each mutational signature for each sample using “regular”

313  signature refitting and b “strict” signature refitting. ¢ Dot plot showing the contribution of
314  each mutational signature for each sample using bootstrapped signature refitting. The
315 colour of a dot indicates the fraction of bootstrap iterations in which a signature

316 contributed to a sample. The size indicates the mean number of contributing mutations
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317  across bootstrap iterations in which the contribution was not zero. d Heatmap depicting the
318 Pearson correlation between signature contributions across the bootstrap iterations. e Bar
319 graph depicting the cosine similarity between the original and reconstructed profiles of each

320 sample based on signature refitting.

321

322  Signature-specific damaging potential analysis

323  Some signatures are more likely than others to have functional effects by causing premature
324  stop codons (“stop gain”), splice site mutations or missense mutations, because of sequence
325  specificity underlying these changes. With MutationalPatterns it is now possible to analyze
326  how likely it is for a signature to either cause "stop gain", "missense", "synonymous" or

327  ‘"splice site" mutations for a set of genes of interest. For this analysis to be performed, the
328 potential damage first needs to be calculated per mutational context, with the

329 “context_potential_damage_analysis” function. Next, the potential damage per context is
330 combined using a weighted sum to calculate the potential damage per signature using the
331  “signature_potential_damage_analysis” function. The potential damage per signature is also

332  normalized using a “hypothetical” flat signature, which contains the same weight for each

333 mutation context.

334  This analysis will only take mutational contexts into account. Other features, such as
335 open/closed chromatin, are not considered, because they vary per tissue type. However,
336 this analysis can still give an indication of how damaging a signature might be, which could

337  be supplemented by further custom analyses.

338
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339  This new version of MutationalPatterns also comes with many smaller updates and bugfixes.

340 A comprehensive list can be found in Additional file 3: Table S1.

341

342 Results

343

344  Extended mutation context analysis and regional mutational patterns

345 To demonstrate the importance of analyzing extended mutation contexts, regional

346  mutational patterns and lesion segregation for characterizing the underlying mutagenic
347  processes, we applied MutationalPatterns to three published mutation datasets. First, we
348  ran MutationalPatterns on 276 melanoma samples from the HMF database. After pooling
349  these samples, we observed that TT[C>T]CT mutations are the most common type of

350 substitution (Fig. 4a). This substitution type is more common than other T[C>T]C

351  substitutions, showing that the extended context has a large effect. Next, we compared the
352  mutation patterns of the melanoma samples between the different genomic regions

353 classified by the Ensembl regulatory build (30). While the patterns look similar, they are
354  significantly different (Fig. 4b) (p = 0.0005, chi-squared test). One subtle difference is the
355  low contribution of T[C>T]A in promoters compared to “Other” regions of the genome, not

356 presentin the regulatory build.

357 Next, to show how MutationalPatterns can be used to identify regional activity of
358  specific mutation processes in an unsupervised manner, we applied the package on 217
359 pooled pediatric B-ALL WGS samples (31). These B-cell-derived leukemias have undergone

360 VDJrecombination, which is associated with somatic hypermutation at loci encoding for
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361 immunoglobulin (32,33). As somatic hypermutation is associated with a specific signature,
362 these sites were expected to have a mutation spectrum that is different from the rest of the
363 genome. Indeed, MutationalPatterns was able to detect this for the two VDJ regions,

364 located on chromosomes 2 and 14 (Fig. 4c). Some other regions also seem to have a

365 different mutational pattern, several of which contain PCDH genes. However, further

366 research is needed to explain these results. This example shows how MutationalPatterns

367 can identify region-specific mutational processes in an unsupervised manner.

368 Finally, to show how MutationalPatterns can identify lesion segregation, we applied
369 it on a dataset known to contain this phenomenon. We found significant lesion segregation
370 in data obtained from induced pluripotent stem cells treated with 0.109 uM of

371  dibenz[a,h]anthracene diol-epoxide (6,24), using the “plot_lesion_segregation” function of
372  MutationalPatterns (Fig. 2d). It was even possible to spot sister-chromatid-exchange events,
373  such as on chromosome 2 of sample MSMO0.103_s6 (Fig. 2d, lower panel). To reduce the file
374  size of the figure, 66% of the mutations of each sample were removed using the

375 “downsample” argument of this function. Using MutationalPatterns, we also found lesion

376  segregation in patients that received the antiviral drug ganciclovir (7).
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Fig. 4 Large cancer datasets show extended and regional mutation patterns

a Heatmap depicting the relative contribution of the indicated mutation types and the
surrounding bases to the point mutation spectrum for metastatic melanomas. The total
number of somatic point mutations is indicated. b Relative contribution of each C>T
trinucleotide change to the point mutation spectrum split between different genomic
regions. ¢ Graph depicting the similarity in the mutation profile between genomic windows
and the rest of the genome. Each dot shows the cosine similarity between the mutation

profiles of a single window and the rest of the genome. The dots are colored based on the
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386 sizes in mega bases of the windows. The locations of the mutations are plotted on the

387  bottom of the figure.

388

389  MutationalPatterns offers more functionality than other mutation analysis tools

390 Anoverview of the functions of MutationalPatterns and related tools is shown in Table 1.
391 The original version of MutationalPatterns is also included in this table. An important

392  advantage of the original package was that it combined many mutational analyses into a
393  single package. This new version improves many of these features and adds many new and

394  unique features.

395

396 Mutation matrices can be generated faster

397 To make MutationalPatterns scalable to large cancer datasets and suitable for interactive

398 analysis we improved the runtime of the “mut_matrix” and “mut_matrix_stranded”

399 functions by vectorizing them. The new functions for retrieving the mutation contexts and
400 generating the mutation matrices have also been written in a vectorized way. As a result,

401 these functions have O(n) or better scaling as tested on a large WGS database from the

402  Hartwig Medical Foundation (HMF) (Additional file 1: Figure S7) (29).

403 To test their improved performance, we benchmarked the “mut_matrix” and
404  “mut_matrix_stranded” functions on the example data provided in the previous version of
405  MutationalPatterns (Additional file 1: Figure S8). These functions are now respectively 3.4

406 and 2.6 times as fast on average. In other words, a mutation matrix for 1 million SBSs can
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407 now be made in only 135 seconds on a laptop, which makes these functions suitable for

408 large cancer datasets.

409

Table 1: Feature comparison with other packages

Group Feature Mutational Mutational Sigprofiler SignatureAn deconstruct sparseSigna signeR (16) somaticSign Maftools decompTu
Patterns Patterns (13) alyzer (13) Sigs (14) tures (15) atures (17) (18) mor2Sig
original (12) (19)
Language Language/platform R R Python (+ R Python R (cran) R R R R R
(bioconduct (bioconduct wrapper) (bioconduct (bioconduct (bioconduct (bioconduct (bioconduct
or) or) or) or) or) or) or)
Genome Supported genomes Genome Genome Human, - Human Genome Genome Genome Genome Genome
agnostic agnostic Mice, Rat, agnostic agnostic agnostic agnostic agnostic
Yeast
Mutation 96 SNV profile X X X - X - X X X X
profile
extended SNV profile X - X - - - - X - X
Indel profile X - X - - - - - - -
DBS profile X - X - - - - - - -
MBS profile X - - - - - - - - -
Transcriptional strand bias X X X - - - - - - -
profile
Replicative strand bias X X X - - - - - - -
profile
Pool samples X - - - - - - - - -
Signature Signature extraction X X X - - - - X X -
extraction (NMF)
Signature extraction X - - X - - X - - -
(Bayes NMF)
Signature extraction - - - - - X - - - -
(Lasso NMF)
Update signature names X - - - - - - - - -
Signature Signature refitting X X X X X - - - - X
refitting
Strict signature refitting X - X X X - - - - X
Strict signature refitting X - - - - - - - - X
(best subset)
Bootstrapped signature X - - - - - - - - -
refitting
Correlation bootstrapped X - - - - - - - - -
refitting
Signature Signature potential X - - - - - - - - -
damage damage analysis
analysis
Signature other Plot supported profiles / X X X X X X X X X X
signatures
Plot and compare X X - - - - - - - -
supported profiles
Signature contribution X X - - - - X X - -
heatmap
Signature contribution X X - - - - X X - -
barplot
Signature/profile X X - - - - - - X -
similarity heatmap
Similarity with X - - - - - - - - -
reconstructed profile
barplot
Genomic Rainfall plot X X - - - - - X X -
distribution
Enrichment/depletion in X X - - - - - - - -
genomic region
Region specific profiles X - - - - - - - - -
Region specific signatures X - - - - - - - - -
Unsupervised regional X - - - - - - - - -
similarity
Lesion Lesion segregation X - - - - - - - - -

segregation

410
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411

412  Strict signature refitting improves performance

413  To determine how well the strict refitting method of MutationalPatterns performs as

414  compared to the regular method, we used simulated mutation matrices. These matrices
415  were generated by sampling trinucleotide changes of 4 different randomly selected

416  signatures. This process was repeated 300 times per matrix, to generate 300 “samples”.
417  Each of the samples in a matrix contained the same number of mutations per signature but
418  was composed of different signatures. The signatures were selected from the first 30

419  signatures of the COSMIC signature matrix. We limited our analysis to the first 30, because
420 these are the signatures that are most often observed in cancers and therefore more

421  accurately resemble real-life scenarios. In addition, this approach better resembles how the
422  package is used, because users will often fit against a limited number of signatures

423  associated with a specific tissue. By limiting ourselves to the first 30 COSMIC signatures we
424  also reduced overfitting. Any overfitting we observed was thus not caused by us using an
425  unusually large signature matrix. In total we generated 4 matrices, each containing 300

426  samples. The number of mutations per sample was respectively 200, 400, 2000 and 4000 for

427  the 4 different matrices.

428 The fraction of correctly attributed mutations to the specific signatures was

429 increased with the strict refitting approach of MutationalPatterns as compared to “regular”
430  or “regular_10+" refitting (Additional file 1: Figure S9a). All the tested refitting methods
431  work better when there are more mutations per signature. Instead of using the number of
432  correctly attributed mutations as a readout for performance, we determined whether the

433  presence and absence of specific signatures was correctly classified. This readout might be
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434  more informative for mutational signature analysis because the presence of a signature can
435  be a clinically relevant finding. The strict refitting method achieved a much higher precision
436  than the original methods, while retaining a high correct recall rate (sensitivity) (Additional

437  file 1: Figure S9b). The strict method obtained an area under the curve (AUC) of 0.925, even
438  when only 50 mutations were present per signature, indicating that refitting can be

439  performed on relatively small amounts of mutations.

440

441  SBS10a and SBS18 have a high damage potential

442  We applied the “signature_potential_damage_analysis” function on the COSMIC signatures.
443  This analysis showed that SBS10a and SBS18 are respectively 3.6 and 2.0 times as likely to
444  cause a “stop gain” mutation compared to a completely flat signature, containing the same
445  weight for each mutation context, on a set of genes associated with cancer (Additional file
446  3:Table S2, Table S3). SBS18 is related to oxidative stress, suggesting that this type of stress
447  has a high potency of generating premature stop codons in genes that are recurrently

448  associated with tumorigenesis (13). In contrast, the clock-like signature SBS1, which also
449  occurs in healthy cells, was 0.81 and 0.40 times as likely to cause “stop gain” and “splice
450 site” mutations, respectively, as compared to a completely flat hypothetical signature (2,34)
451  (Additional file 3: Table S2). The damaging potential of this ageing-related mutational

452  process is thus relatively low. Overall, C>A heavy signatures, like the recently identified

453  ganciclovir signature, have more damage potential, because they are most likely to

454  introduce a premature stop codon in an open reading frame (7). Being able to quickly assess
455  the damage potential of existing and novel signatures can be very useful to prioritize

456  samples and mutagenic exposures for further investigation.
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457

458  Applying MutationalPatterns on mutation data of DNA repair-deficiencies

459  Toillustrate the functionality of MutationalPatterns on real-life data and to obtain novel
460 biological insights, we applied it to mutation data obtained from cell lines in which we

461  deleted specific DNA repair pathways using CRISPR-Cas9 genome editing technology

462  (Additional file 1: Figure S10, Additional file 2). In AHH-1 cells, a lymphoblastoid cell line, we
463  generated bi-allelic knockout lines of MSH2, UNG and XPC by transfecting the cells with a
464  plasmid containing Cas9 and a single gRNA against the gene of interest. By co-transfection
465  with a HPRT-targeting plasmid, we were able to select the transfected cells using 6-

466 thioguanine, to which only HPRT-sufficient cells are sensitive. Using this protocol, no

467  targeting vectors for each gene of interest were required. We analyzed somatic mutations in
468  HPRT-only knockout lines as well as the combination of HPRT with MSH2, UNG and XPC
469  (Additional file 2). To catalogue mutations that were acquired specifically in the absence of
470 the targeted DNA repair gene, we used a previously developed method (35). In brief, whole
471 genome sequencing was performed on generated clones and subclones. By subtracting

472  variants present in the clones from those in the subclones, the somatic mutations, that

473  accumulated in between the clonal steps, were determined.

474

475  The SBS profiles are shown in Additional file 1: Figure S11. Interestingly, the profile observed
476  inthe MSH2 knockout cell line displayed a large C[C>A]T peak. When extending the

477  sequence context surrounding the mutated base, the MSH2 deficiency profile showed a

478  large TT[T>C]TT peak, suggesting that this extended context surrounding mutated thymine

479  residues is important for the underlying mutagenic process (Fig. 1d).
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480

481 Next, we examined regional mutation patterns. The spectra of the MSH2- and UNG-

482  deficient cells varied between the exonic regions and the rest of the genome (Fig. 2a)(fdr =
483  0.0012, fdr = 0.0012; chi-squared test). Their exons contained more C>T and less T>C

484  mutations. The other samples did not show a significant difference in regional mutation
485  spectra. However, when we downsampled all the samples to 227 mutations, which is the
486 number of mutations in the HPRT only knockout, no significant regional mutation patterns
487  were observed in MSH2 and UNG knockout cells. This suggests that with this number of
488 mutations insufficient statistical power was obtained for these analyses. Next to examining
489  mutation profiles in exonic regions, we also analyzed regions with different replication

490 timing dynamics, using the median replication timing data from 5 B-lymphocyte cell lines
491 from ENCODE (Fig. 2b, Additional file 3: Table S4) (40). The spectra of MSH2 and UNG

492  knockouts were different between early-, intermediate- and late-replicating DNA (fdr =
493  0.0012, fdr = 0.0012; chi-squared test). Early replicating DNA has more C>T and less C>A
494  than late replicating DNA. These differences were still present when downsampling was
495  applied (fdr = 0.0025, fdr = 0.010; chi-squared test). Based on these region-specific analyses,
496  we can conclude that the mutational processes active in the MSH2 and UNG knockouts
497  show varying activities in different regions of the genome, a result that cannot easily be

498 obtained with other tools.

499 We also tested if any of the DNA repair knockout cells displayed lesion segregation,
500  which would indicate that most of the mutations occurred during a single cell-cycle;

501 however, this was not the case (Additional file 1: Figure S6).

502
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503  Finally, we looked at the mutational signatures in the knockout samples. Based on signature
504  refitting, the MSH2 knockout contained contributions of SBS5, SBS20, SBS26 and SBS44 (Fig.
505  3b, c). Because of the bootstrapping we can be more confident in these results. SBS5 is a
506 clock-like signature, with unknown etiology. SBS20, SBS26 and SBS44 are all associated with
507 defective DNA mismatch repair in cancer mutation data (13). The UNG knockout contained
508 contributions from SBS30, which has previously been attributed to deficiency of the base
509 excision repair gene NTHL1 (13). The glycosylase encoded by NTHL1 is involved in the

510 removal of oxidized pyrimidines from the DNA and therefore SBS30 likely reflects an

511 alternative consequence of oxidative stress-induced mutagenesis as compared to SBS18.
512 However, UNG is a glycosylase that is believed to remove uracil residues from the DNA

513 (36,37). Therefore, our data suggests that SBS30 can be caused, besides oxidized

514  pyrimidines, by unremoved uracil residues. Alternatively, UNG may also, to a certain extent,
515  beinvolved in the removal of oxidized pyrimidines from the DNA. Even though the

516  contribution of SBS30 was relatively modest in the UNG knockout, it was consistently picked
517  up by the bootstrapping algorithm. This observation indicated that the number of mutations
518 attributed to a signature is not necessarily related to the confidence of its presence, which
519 further demonstrates the importance of our bootstrapping approach. Unexpectedly, the
520 contribution of SBS30 in UNG knockout cells was negatively correlated with SBS2, even

521  though their cosine similarity is only 0.46 (Fig. 3d). This indicates that the refitting algorithm
522  has difficulty choosing between SBS2 and SBS30. Such difficulties in signature selection

523  could lead to different and possibly incorrect signatures being attributed to similar sample
524  types. Understanding the correlation of estimated signature contributions between

525  different signatures, which can be achieved with bootstrapping, is important to prevent

526  incorrect interpretation of the data. The XPC knockout contained contributions from SBSS.
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527  The etiology of this signature is not yet known. However, this finding further confirms the
528  association of SBS8 with nucleotide excision repair deficiency (38,39). Overall, the COSMIC
529  signatures could explain the mutation profiles of most samples quite well, even when strict

530 refitting was used (Fig. 3e).

531 Next, we studied the indel signatures in these knockout lines. Deletion of MSH2

532  resulted in an increased number of indels as compared to wild-type cells (Fig. 1b). Most of
533  these indels were single thymine deletions in thymine mononucleotide repeat regions.

534  Signature analysis indicated that ID1, ID2 and ID7 contributed to the indel pattern in the

535  MSH2-deficient cells (Fig. 5a, b). Of these, ID1 and ID2 are associated with polymerase

536 slippage during DNA replication and found in large numbers in cancers with mismatch repair
537  deficiency. ID7 is also associated with defective DNA mismatch repair, but not attributed to
538 polymerase slippage (13). Together these signatures could explain the mutational indel

539  profile of MSH2 knockout cells very well (Fig. 5¢), showing that MutationalPatterns can

540 perform indel signature refitting. None of the knockout cells displayed a strongly increased

541  number of DBSs as compared to the wild-type cells (Fig. 1c).
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Fig. 5 Indel signatures can explain the MSH2 profile

a Relative contribution of each mutational signature for the wild-type (WT) and MSH2
samples using strict signature refitting. b Dot plot showing the contribution of each
mutational signature for the WT and MSH2 samples using bootstrapped signature refitting.
The color of a dot indicates the fraction of bootstrap iterations in which a signature
contributed to a sample. The size indicates the mean number of contributing mutations
across bootstrap iterations in which the contribution was not zero. ¢ Bar graph depicting the
cosine similarity between the original and reconstructed profiles of the WT and MSH2

samples based on signature refitting.
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554  The novel version of MutationalPatterns has been designed to be easy-to-use in such a way
555 that both experienced bioinformaticians and wet-lab scientists with a limited computational
556  background can use it. The code is written in the tidyverse style, which makes it more

557  similar to natural English and therefore easier to understand for non-programmers.

558 MutationalPatterns gives clear error messages with tips on how to solve them, in contrast to
559  the default error messages in R, which can sometimes be cryptic. The updated vignette,

560 accompanying the package, not only explains how the functions in the package can be used,

561  but also informs users on the pros and cons of the different analysis strategies.

562 Similar to the previous version of the package, plots are all generated using ggplot2
563  (41). This allows users to visualize their data in highly customizable plots that can be easily
564  modified. Because this feature was not readily apparent for many users of the original

565  MutationalPatterns package, we have now explicitly showed how to modify the elements of

566 a plot, such as the axis and theme, in the vignette.

567 We have adopted unit testing for this version of the package, resulting in more than
568 90% code coverage. This will improve the stability of the package and makes it easier to

569 maintain.

570 The novel version of MutationalPatterns is already available on Bioconductor as an
571  update of the previous version. MutationalPatterns does not break existing scripts and

572  pipelines, because backwards incompatible changes have been kept to a minimum.

573

574  Conclusions
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575  MutationalPatterns is an easy-to-use R/Bioconductor package that allows in-depth analysis
576  of a broad range of patterns in somatic mutation catalogues, supporting single and double
577  base substitutions as well as small insertions and deletions. Here, we have described the
578 new and improved features of the package and shown how the package performs on

579  existing cancer data sets and on mutation data obtained from cell lines in which specific
580 DNA repair genes are deleted. These analyses demonstrate how the package can be used to

581 generate novel biological insights.

582

583  Mutational pattern analyses have proven to be a powerful approach to dissect mutational

584  processes that have operated in cancer and to support treatment decision making in

585  personalized medicine. Therefore, mutational patterns hold a great promise for improved

586  future cancer diagnosis. The MutationalPatterns package can be used to fulfill this promise

587 and we are confident that it will be embraced by the community.

588

589  Availability and requirements

590 The availability and requirements are listed as follows:

591  Project name: MutationalPatterns

592  Project home page: https://github.com/ToolsVanBox/MutationalPatterns

593 Archived version:

594  https://bioconductor.org/packages/3.14/bioc/html/MutationalPatterns.html

595  Operating system(s): Linux, Windows or MacOS
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596  Programming language: R (version >=4.1.0)

597 License: MIT

598

599 List of abbreviations

600 HR: homologous recombination

601 Indels: Insertions and deletions

602 DBS: double base substitutions

603 VCF: variant call format

604 MBS: Multi base substitutions

605 COSMIC: Catalogue of Somatic Mutations in Cancer

606  NMF: non-negative matrix factorization

607  Bayes: Bayesian

608 AUC: Area under the curve

609  PCA: Principal component analysis

610 Cl: Confidence interval

611  WT: wild-type

612  Mb: mega bases

613
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